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1 INTRODUCTION 1

1 Introduction

After intoduction of competition and deregulation of the power markets the

trading risk had abruptly increased due to extreme volatility of electricity

prices. This is especially true for spot prices, where volatility can be as high

as 50% on the daily scale, i.e. over ten times higher than for other energy

products (natural gas and crude oil). High volatility enforces market partici-

pants to hedge against sharp price changes. In order to hedge efficiently, it is

expedient to thoroughly study and, afterwards, accurately model electricity

price dynamics. Designed models will make it possible to develope bidding

strategies and negotiation skills to hedge producers and wholesale consumers

and, simulteneously, to maximize their profits.

The main distinctive statistical feature of the electricity spot market price

series is price spikes - the prices which within few hours can jump up to ten

times higher from the mean level. Although market analysts are always able

to explain the spike occurrence afterwards via some reasons, future spikes

have seldom been produced by the same composition of factors, as electricity

spot prices are simulteneously driven by both predetermined constituents,

such as weather conditions, demand level and possibilities of energy produc-

tion, as well as some unexpected random factors.

In recent years a considerable number of techniques have been developed to

simulate electricity spot prices. Many of them adapt well-known stochastic

models with addition of certain electricity price characteristics, like price

spikes and mean reversion. Among the earliest models are jump-diffusion

[15], and its extension - mean reverting jump-diffusion of Johnson and Barz

[14]. A significant drawback of the latter model is the slow speed of mean

revertion after a jump. However, this was subsequently overcome by adding

downwards jumps, allowing time-varying parameters or incorporating non-

linearities in the price dynamics, such as regime switching and stochastic

volatility [5], [12].
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Since electricity spot prices exhibit excessive and non-constant volatility

with evidence of heteroscedasticity both in unconditional and conditional

variance, models that involve GARCH effects have been also employed.

Karakatsani and Bunn [16] applied four approaches (including regression-

GARCH and Time-Varying parameter regression with exogenous variables)

to explain the stochastic dynamics of spot volatility and understand agent

reactions of shocks. Further improvement was acquired when a regression

model with the assumptions of an explicit jump component for prices and a

leptocurtic distribution for innovations was introduced.

While such hybrid approcahes incorporate some fundumental factors, the

structural models are aimed at capturing more detailed patterns for electrity

prices. For example, Vehviläinen and Pyykkönen [26] modelled hydrological

inflow and snow-pack development that affect the main source of electricity

in Scandinavia - hydro power generation. They provided a stochastic factor

based approach, where the fundamentals affecting the spot price are mod-

eled independently and then a market equilibrium model is used to combine

them to determine spot prices. The model is rather designed for medium-

term modeling and forecasting of electricity spot prices.

There are also universal approaches applied for price predictions, like arti-

ficial intelligence approaches based on neural networks and fuzzy logic [25],

[28]. However, the main disadvantages of artificial intelligence based tech-

niques are a lack of intuitiveness and the fact that no simple physical inter-

pretation is possible for their components.

In this study we investigate the applicability of fluid mechanics and Kalman

filtering to forecasting electricity spot prices. This work is divided into sev-

eral sections. The first section provides an introduction to electricity spot

markets, in the second one some analogues between fluid mechanics and mar-

ket dynamics are described. The fourth and the fifth sections are devoted to

the Burgers’ equation and the numerical methods for its resolution, corre-

spondingly. Theoretical background on methods for Stochastic Differential
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Equations have been represented in section six. Section seven is devoted to

Kalman filtering in several modifications (EKF, VKF and VEnKF).

A detailed description of a fluid mechanic model of Nord Pool spot prices has

been given in section eight, while the subject of the ninth section is Kalman

filtering applied to forecasting the Nord Pool spot prices. Two final sections

present practical results and discuss conclusions that can be arrived at from

them.

2 Electricity spot markets

2.1 Nordic electricity spot market

The Nordic electricity exchange Nord Pool is the world’s only multinational

exchange for trading electric power, operating in Norway, Denmark, Sweden,

Finland and Estonia. The company represents over 70% of the total elec-

tricity consumption in the Nordic countries. Since 2005 Nord Pool provides

also emission allowances and emission credits.

The Nord Pool Spot market membership includes energy producers, energy

intensive industries, large consumers, distributors, funds, investment com-

panies, banks, brokers, utility companies and financial institutions [34].

Nord Pool regulates the market in an optimal way, matching electricity gen-

eration supply with demand on an hourly basis. The trading cycle is orga-

nized as a closed auction and it is conducted once a day. By noon of a given

day the market administrator receives the electronically sent bids and offers

from producers and consumers for each hourly period of the next day and

calculates hourly spot prices as an equilibrium point of supply and demand

for each particular hour.

There are three possible ways of bidding at the day-ahead market Elspot.

The first kind of bidding - hourly bidding - involves a pair of price and

volume for each hour, while for the second kind the price and the volume
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remain identical for a number of successive hours. Lastly, flexible bidding

implies fixed price and volume with flexible hour of the sale determined by

the highest day price that is above the price specified by the bid.

In case of grid congestions, the Nordic Exchange area is divided into pre-

determined price areas that are separated by congested transmission lines.

Inside of the price areas, congestions are not expected to happen. Within

the Nordic electricity market, Norway is subdivided into five price areas,

Denmark composes two price areas, while Sweden, Finland and Estonia con-

stitute one price area each[13]. The participants’ bids in the bidding areas

on each side of the congestion is aggregated into supply and demand curves

in the same way as in the system price calculation [33].

2.2 Pure trading and regression model

2.2.1 Time Series Regression Model

Consider the linear time series regression model

Yt = β0 + β1x1t + β2x2t + . . .+ βkxkt + εt = x′
tβ + εt, t = 1, . . . , T (2.2.1)

where xt = (1, xt1, xt2, . . . , xtk)
′ is a (k + 1) × 1 vector of the background

variables, β = (β0, β1, β2, . . . , βk)
′ is a (k + 1) × 1 vector of unknown pa-

rameters to be estimated, and εt is a random error term. The part of the

right-hand side involving the regressors, β0+β1x1t+β2x2t+ . . .+βkxkt+εt,

is called the regression or the regression function, and the coefficients

(β’s) are called the regression coefficients [10].

In matrrix form the model (2.2.1) is expressed as

y = Xβ + ε (2.2.2)

where y, ε are T × 1 vectors and X is T × (k + 1) matrix. The standard

assumptions of the time series regression model are
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• the linear model (2.2.1) is correctly specified.

• {yt,xt} is jointly stationary and ergodic.

• the regressors xt are predetermined : E[xisεt] = 0 for all s ≤ t and

i = 1, . . . , k.

• E[xtx
′
t] = ΣXX is of full rank k + 1.

• {xt, εt} is an uncorrelated process with finite (k+1)×(k+1) covariance

matrix E[ε2txtx
′
t] = S = σ2ΣXX .

The second assumption rules out trending regressors, the third rules out

endogenous regressors but allows lagged dependent variables.

To understand the fourth assumption, recall from matrix algebra that the

rank of a matrix equals the number of linearly independent columns of the

matrix. The assumption says that none of the k + 1 columns of the data

matrix X can be expressed as a linear combination of the other columns of

X. That is, X is of full column rank. Since the k + 1 columns cannot

be linearly independent if their dimension is less than k+1, the assumption

implies that T ≥ k + 1, i.e., there must be at least as many observations as

there are regressors [10].

The fifth assumption implies that error term is a serially uncorrelated process

with constant unconditional variance σ2. In the time series regression model,

the regressors xt are random and the error term εt is not assumed to be

normally distributed.

2.2.2 Least Squares Estimation

Ordinary least squares (OLS) estimation is based on minimizing the sum of

squared residuals

SSR (β) =

T∑
t=1

(
yt − x′

tβ
)2

=

T∑
t=1

ε2t (2.2.3)
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and produces the fitted model

yt = x′
tβ̂ + ε̂t, t = 1, . . . , T (2.2.4)

where β̂ = (X′X)−1X′y and ε̂t = yt − ŷt = yt − x′
tβ̂. The error variance is

estimated as σ̂2 = ε̂′ε̂/(T − k− 1). Under the assumptions described above,

the OLS estimates β̂ are consistent and asymptotically normally distributed

[30].

2.2.3 Goodness of Fit

Goodness of fit is summarized by the R of the regression

R = 1− ε̂′ε̂
(y − y1)′(y − y1)

(2.2.5)

where y is the sample mean of yt and 1 is a T × 1 vector of 1’s. R2 measures

the percentage of the variability of yt that is explained by the regressors,

xt. The usual R2 has the undesirable feature of never decreasing as more

variables are added to the regression, even if the extra variables are irrelevant.

2.2.4 Pure Trading Series

By pure-trading we mean the price series (behaviour) with eliminated trend

and seasonality impact. The pure price represents a general systematic non-

linear component that changes over time and does not repeat or at least does

not repeat within the time range captured by the data.

In a recent study [17] a regression model was applied to pure-trading series,

employing hydrological storage level and temperature as the background

variables. Before estimating the desired model, the explanatory variables

were also detrended and deseasonalized to comply with the dependent vari-

able. Finally, the least-squares-optimal regression model was built in a mov-

ing regression fashion with half-a-year history window, see Figure 1.
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In order to obtain a better fitting, there should be more background variables

taken into account, e.g. prices of fossil fuels, rainfall and non-base demand

[4].

Figure 1: Plot of the regression model (green), real price (red) and pure price
(blue) for a half year window (adapted from [17]).

3 Analogies between fluid mechanics and market
dynamics

The Navier-Stokes equations, describing the motion of an incompressible

fluid are given by:
⎧⎨
⎩

∂t	u+ 	u · ∇	u = −∇p+ νΔ	u

∇ · 	u = 0
(3.1)

u(	r, t) denotes the velocity of the fluid at position 	r and time t and p is the

pressure, the left hand side describes the total derivate of the velocity.
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The control parameter, which governs the behaviour of a liquid, is the di-

mensionless Reynolds number R:

R =
Lu

ν
(3.2)

where L is a typical length scale of the observed system, ν is the kine-

matic viscosity. R is a measure for the complexity of the flowing fluid,

	u = u	f(	r/L, t). For small R the motion of the fluid is laminar. When R

becomes bigger the flow turns into a turbulent flow.

A flow of energy from large to small scales is one of the main characteristics

of a fully developed turbulence. It results in dissipation of large amounts

of energy in a viscous fluid. Kolmogorov and Obhukov stated that when

energy is injected in big eddies that they break up into smaller eddies until

the energy is dissipated on the smallest scale. This cascade of kinetic energy

results in a scaling of the moments 〈(Δu)n〉 of Δu as (Δr)ξn , where the an-

gle brackets denote the mean value of the inclosed quantity and Δu is the

difference of the velocity component in the direction of the spatial separation

of length Δr, see [8].

On a qualitative level financial markets and turbulence have a tempting

similarity. The analogy to energy in turbulence is said to be information in

financial markets [27]. Müller et al. [21] found that there are two different

types of traders. The long-term traders evaluate the market on a low fre-

quency and have a long memory. The short-term traders watch the market

continuously, re-evaluate the situation and execute transactions more often

but they have a shorter memory. That is why they cause different types of

volatility. On a short time scale the volatility is dominated by the actions of

the short-time traders, while the long-term traders cause the volatility on a

long time grid. Furthermore they found, that the information flow between

these two different classes of traders is asymmetric. The short-term traders

react on peaks of the long-term volatility with increased trading activity, but

the long-term traders often ignore the fluctuations on short time scales. This
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net information flow from long to short time scales is said to be the infor-

mation cascade in financial markets. The claimed analogy between different

quantities in fluid mechanics and financial markets is summarized in Table 1.

Table 1: Analogy between fluid mechanics and financial markets (partially
adapted from [8]).

Hydrodynamic turbulence Financial markets
Energy Information
Spatial distance Time delay
Laminar periods interrupted
by turbulent bursts (intermit-
tency)

Clusters of low and high
volatility

Energy cascade in space hier-
archy

Information cascade in time
hierarchy

Advection of the particles Traders’ movement towards
the higher price

〈(Δu)n〉 ∝ (Δr)ξn 〈(Δx)n〉 ∝ (Δt)ξn

3.1 Diffusion equation

Assume that prices are quantized into classes . . . , Sn−2, Sn−1, Sn, Sn+1, Sn+2, . . .

and that at some time t in the future, these prices are realized with probabil-

ities . . . , pn−2, pn−1, pn, pn+1, pn+2, . . .. Then, one may ask for the evolution

of these probabilities with time. If we assume that a price change Sn → Sn±1

must take place during Δt, the probability p′n of having Sn at time step Δt af-

ter t will be p′n = (pn−1+pn+1)/2 because the price Sn can either be reached

by a downward move from Sn+1, occurring with a probability pn+1/2, or

by an upward move from Sn−1 with a probability pn−1/2. The change in

probability of a price Sn during the time step Δt is then

Δpn = p′n − pn =
pn−1 + 2pn − pn+1

2
→ ∂2p(S, t)

∂S2
(ΔS)2 (3.1.1)

if the limit of continuous prices and time is taken. On the other hand,

Δpn → ∂p(S, t)

∂t
Δt (3.1.2)
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in the same limit, and therefore

D
∂2p

∂S2
− ∂p

∂t
= 0 (3.1.3)

Hence, p(S, t) satisfies a diffusion equation, describing the motion of sus-

pended particles in a solvent - the so-called Brownian motion. In case of

special initial conditions p(S, 0) = δ[S − S(0)], i.e., knowledge of the price

at time t = 0 the Gaussian distribution is obtained [27].

This reveals, that the diffusion equation corresponds to the Efficient Market

Hypothesis (EMH). The EMH states that the current price of an asset fully

reflects all available information relevant to it and that new information is

immediately incorporated into the price, while the future flow of news (that

will determine future stock prices) is random and unknowable in the present.

It also assumes that there is a rational and unique way to use available infor-

mation, that all agents possess this knowledge and that any chain reaction

produced by a ‘shock’ happens instantaneously [32].

3.2 Capasso-Morale System of Stochastic Differential Equa-
tions

Opponents of the EMH sometimes cite examples of market movements that

seem inexplicable in terms of conventional theories of stock price determina-

tion, for example the stock market crash of October 1987 where most stock

exchanges crashed at the same time. The correct explanation seems to lie

either in the mechanics of the exchanges (e.g. no safety nets to discontinue

trading initiated by program sellers) or the peculiarities of human nature

[32]. An alternative theory, prominent as the Behavioral Finance, attempts

to build models accounting for human behaviour and psychology. In Finan-

cial market the latter manifests itself mostly in fear and greed, influenced

then by our common trading biases: herding, overconfidence and short-term

thinking.
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A fruitful approach, based on a Capasso-Morale type system of stochastic

differential equations, is based on the modelling of the behavior of each in-

dividual trader in a group of traders in the spot market. It was used so far

for modelling animal population dynamics. Therefore, an evolution of each

individual price is drived by the system of SDE of the type:

dXk
N (t) = [fkN + hkN (X1

N (t), . . . ,XN
N (t), t)]dt+

σ(X1
N (t), . . . ,XN

N (t), t)dW k(t), k = 1, . . . , N (3.2.1)

where the function fkN : R+ → R describes the individual dynamics which

may depend only on time or on the state of the particle itself, hkN : RN ×R+

stands for the interaction of the k-th trader with other traders in the group.

Here an additive noise is modelled via a family of independent Wiener pro-

cesses.

It is assumed that traders do observe one another and thus tend to follow a

general price path, like in model, described by the diffusion equation. How-

ever, there is a limit for overcrowding (in microscale) which in power trading

could be interpreted as physical impossibility of two market participants to

buy the same dose of electricity [20]. The force that describes the individual

dynamics corresponds to the momentum term in Navier-Stokes equations:

e.i., it describes the fact, that the individual prices deviate from the global

tendency due to the traders pursuit of an extra profit.

4 One-dimensional fluid mechanics - the Burgers’
equation

Burgers’ equation is a fundamental partial differential equation from fluid

mechanics. It occurs in various areas of applied mathematics, such as mod-

elling gas dynamics and traffic flow. It is named for Johannes Martinus

Burgers (1895-1981). Since this single equation has a convective term, a
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diffusive term and a time-dependent term, it can serve as a simplest model

that includes the nonlinear and viscous effects of fluid dynamics.

It has been discussed by Burgers as a mathematical model of turbulence and

by Cole as the approximate theory for weak non-stationary shock waves in

a real fluid. This equation provides an approximation of the Navier-Stokes

equations in the case where the net force acts mostly in one direction.

For a given velocity u and viscosity coefficient ν, the general form of viscous

Burgers’ equation is:

ut + αuux + νuxx = 0 (4.1)

Burgers’ equation is parabolic when the viscous term is included. If the

viscous term is neglected, the remaining equation is hyperbolic:

ut + uux = 0 (4.2)

If the viscous term is dropped from the Burgers’ equation the nonlinearity

allows discontinuous solutions to develop. Consider the inviscid equation 4.2

with smooth initial data. For small time t, a solution can be constructed by

following characteristics:

x′(t) = u(x(t), t) (4.3)

and along each characteristic u is constant, since

d

dt
u(x(t), t) =

∂

∂t
u(x(t), t) +

∂

∂x
u(x(t), t)x′(t)

=ut + uux

=0 (4.4)

Moreover, since u is constant on each characteristic, the slope x′(t) is con-

stant by 4.3 and so the characteristics are straight lines, determined by the

initial data (see Figure 2).

If the initial data is smooth, then this can be used to determine the solution

u(x, t) for small enough t that characteristics do not cross. For each (x, t)

we can solve the equation

x = ξ + u(ξ, 0)t (4.5)
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for ξ and then

u(x, t) = u(ξ, 0) (4.6)

Figure 2: Characteristics and solution for Burgers’ equation (small t)
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Figure 3: Shock formation in Burgers’ equation
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For larger t the equation 4.5 may not have a unique solution. This happens

when the characteristics cross. At the time Tb where the characteristics first

cross, the function u(x, t) has an infinite slope - the wave "breaks" and a
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shock forms. Beyond this point there is no classical solution of the PDE,

and the weak solution becomes discontinuous. Figure 3 shows an extreme

example where the initial data is piecewise linear and many characteristics

come together at once, [18].

Consider the viscous Burgers’ equation with an external forcing:

ut + αuux + νuxx = f(x, t) (4.7)

Describing 4.7 in terms of market dynamics, we come up with the following

analogies:

• u specifies price,

• f(x, t) stands for fundumentals (i.e., external forces of periodic charecter

affecting system dynamic),

• ϑuxx - the diffusion term describing the fact that the spot market tends

to reach the equilibrium price,

• αuux - the momentum term expressing traders’ movement towards

higher price,

• ux - the spread of bids for a given hour or day.

4.1 Topology of the domain

The Nord Pool spot market can be considered as a group of traders, observ-

ing one another, so that if one trader has changed the price significantly, the

bidding of neighbouring participants will strongly correlate with this event.

Reciprocally, their neighbours will take into account observed changes while

making their decisions, and so forth. Finally, after the splash propagates

throughout the whole group, attenuating subsequently, the market feedback

will influence the initial trader that had caused the chain reaction. This
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assumptions can be introduced via choosing a periodic topological domain.

Since there are neither inflow nor outflow constraints, advected waves are

able to propagate fluently through the boundaries.

However, it is more reasonable to consider an infinite domain, since in reality

the Elspot participants observe one another within the small microgroups,

so that in most cases the traders from inside are not strongly influenced

by the external changes. This particular choice of the topological domain

imposes the advected perturbations to have limited range of outspread, si-

multaneously excluding the possibility of market feedback. The latter effect

can be taken into account by considering the semi-infinite case and specify-

ing an appropriate boundary condition, so that the energy won’t be neither

absorbed nor superinduced at the boundary.

5 Numerical Methods for Burgers’ equation

Further we consider the following initial-boundary value problem for Burgers’

equation:

ut + αuux + ϑuxx = f(x, t), 0 ≤ x ≤ 1 (5.1)

u(x, 0) = φ(x) (5.2)

u(0, t) = u(1, t) (5.3)

We describe explicit and implicit finite difference schemes for above-stated

IBV problem and then try to proceed in a different way using Wavelet-

Galerkin method (see [35]).
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5.1 Finite Difference Schemes

We discretize the x− t plane by choosing a mesh width h ≡ Δx and a time

step k ≡ Δt and define the descrete mesh points (xi, tn) by.

xi = ih, i = 0, 1, . . . ,M

tn = nk, n = 0, 1, . . . , N (5.1.1)

Where,

M + 1 = 1/h, and N = T/k (5.1.2)

5.1.1 Explicit finite difference scheme

To obtain an explicit finite difference scheme, we discretize ∂u
∂t ,

∂u
∂x and ∂2u

∂x2

at any mesh point (xi, tn) as follows:

∂u

∂t
≈ un+1

i − uni
k

(First order Forward difference formula) (5.1.3)

∂u

∂x
≈ uni+1 − uni−1

2h
(First order Centered difference formula) (5.1.4)

∂2u

∂x2
≈ uni+1 − 2uni + uni−1

h2
(Second order Centered difference formula)

(5.1.5)

Taking into account for boundary conditions and inserting 5.1.3, 5.1.4, 5.1.5

in 5.1, 5.3 the discrete version of the IBV problem 5.1-5.3 formulates the

second order finite difference scheme of the form:

un+1
0 − un0

k
+ α

un0 (u
n
1 − unM )

2h
+ ϑ

un1 − 2un0 + unM
h2

= fn0 , (5.1.6)

un+1
i − uni

k
+ α

uni (u
n
i+1 − uni−1)

2h
+ ϑ

uni+1 − 2uni + uni−1

h2

= fni , i = 1, . . . ,M − 1, (5.1.7)

un+1
M − unM

k
+ α

unM (un0 − unM−1)

2h
+ ϑ

un0 − 2unM + unM−1

h2
= fnM (5.1.8)

u0i = φi, i = 0, . . . ,M (5.1.9)
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which is the explicit finite difference scheme for IBVP:

un+1
0 = un0 − αkun0

2h
(un1 − unM )− ϑk

h2
(un1 − 2un0 + unM ) + kfn0 , (5.1.10)

un+1
i = uni − αkuni

2h
(uni+1 − uni−1)−

ϑk

h2
(uni+1 − 2uni + uni−1)

+ kfni , i = 1, . . . ,M − 1, (5.1.11)

un+1
M = unM − αkunM

2h
(un0 − unM−1)−

ϑk

h2
(un0 − 2unM + unM−1) + kfnM ,

(5.1.12)

u0i = φi, i = 0, . . . ,M (5.1.13)

However, it is more common to discretize Burgers’ equation in the so-called

conservative form, since according to the Lax-Wendroff theorem, if a

solution of a conservative scheme converges (Δx→ 0), it converges towards

a weak solution of the conservation law. In conservative form Burgers’

equation takes the form:

ut + αFx + ϑuxx = f(x, t), F =
u2

2
(5.1.14)

The explicit Lax-Friedrichs scheme for conservative formulation 5.1.14 can

be written in the following way:

un+1
i =

uni+1 + uni−1

2
− αk

4h
((uni+1)

2 − (uni−1)
2)

− ϑk

h2
(uni+1 − 2uni + uni−1) + kfni (5.1.15)

It is interesting to note that the explicit treatment of the viscous term has

been shown not to converge, while the viscous term treated implicitly makes

Lax-Friedrichs scheme stable, [1].

5.1.2 Implicit Lax-Friedrichs scheme.

Consider the following descretization of the Burgers’ equation:

un+1
i =

uni+1 + uni−1

2
− αk

4h
((uni+1)

2 − (uni−1)
2)

− ϑk

h2
(un+1

i+1 − 2un+1
i + un+1

i−1 ) + kfni , i = 1, . . . ,M − 1. (5.1.16)
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Theorem 1 Denote an exact solution of original IBVP as z, let us define

for any vector x = (x1, x2, . . . , xn) ∈ Rn,:

||x||∞ = max
1≤j≤n

{|xj |} (5.1.17)

and for the bounded function z defined on the domain I × [0, T ],

||z||∞ = sup
I×[0,T ]

{|z|} (5.1.18)

If the condition 5.1.19
kC0

h
≤ 1, (5.1.19)

where C0 = max{||φ||∞, ||z||∞}, holds for k, h with kM ≤ T and k
h is a

positive constant, the implicit Lax-Friedrichs scheme 5.1.16 is convergent,

[1].

5.2 Wavelet-Galerkin Method

5.2.1 Burgers equation. Generalized solution.

In the present method the boundary conditions are automatically taken into

account due to proper choise of the basic functions. Here instead of the clas-

sical we consider a generalized solution such that u(x, ·) ∈ Ŵ 1
2 (0, 1), u(·, t) ∈

C0(�), ut(·, t) ∈ L2(0, 1), where Ŵ 1
2 (0, 1) is a Sobolev space of integrable

functions

Ŵ 1
2 (0, 1) =

{
f ∈ L2(0, 1) | ∃D1f ∈ L2(0, 1),

‖f‖W 1
2 (0,1)

=
(‖f‖L2(0,1) + ‖D1f‖L2(0,1)

) 1
2 , f(0) = f(1)

}
(5.2.1)

Employing the fact that C∞(0, 1) is densely embedded into W 1
2 (0, 1), we

define generalized solution as a function u, such that for every smooth test



5 NUMERICAL METHODS FOR BURGERS’ EQUATION 19

function ϕ(x) ∈ C∞(0, 1), ϕ(0) = ϕ(1) the following equality holds:

1∫
0

ut(x, t) · ϕ(x)dx+

1∫
0

α

(
u2(x, t)

2

)
x

· ϕ(x)dx

+

1∫
0

ϑuxx(x, t) · ϕ(x)dx =

1∫
0

f(x, t) · ϕ(x)dx (5.2.2)

Applying integration by parts to move derivatives from dependent variable

on the test function and taking into account for boundary conditions we

ultimately define the equality fullfilled for required solution:

1∫
0

ut(x, t) · ϕ(x)dx− α

2

1∫
0

u2(x, t) · ϕx(x)dx+

ϑ

1∫
0

u(x, t) · ϕxx(x)dx =

1∫
0

f(x, t) · ϕ(x)dx,

∀ϕ(x) ∈ C∞(0, 1), ϕ(0) = ϕ(1) (5.2.3)

Otherwise, expressing in terms of scalar product we constitute:

〈ut(·, t), ϕ〉L2(0,1) −
α

2
〈u2(·, t), ϕx〉L2(0,1) + ϑ〈u(·, t), φxx〉L2(0,1)

= 〈f(·, t), φ〉L2(0,1),∀φ ∈ C∞ (5.2.4)

5.2.2 Harmonic wavelets

Let us consider a complex Littlewood-Paley basis defined from the mother

wavelet:

ψ(x) =
e4iπx − e2iπx

2iπx
(5.2.5)

Applying translation and extension consiquently, the orthonormal basic func-

tions are constructed:

ψk
j (ω) =

⎧⎪⎨
⎪⎩

eiωk/2j

2π·2j/2 2π · 2j < 2πω · 2j+1

0 otherwise
(5.2.6)
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and finally, transformed to periodical analogues at the unit interval:

ψk per
j (x) =

1

2j/2

2j+1−1∑
mj=2j

e−2iπ(x−k/2j)mj (5.2.7)

Figure 4 contains both real and imaginary parts of periodic harmonic wavelets

ψ0
0(x), ψ

1
1(x), ψ

2
2(x) and ψ3

4(x).

Figure 4: Real and imaginary parts of periodic harmonic wavelets: (a) ψ0
0(x)

(b) ψ1
1(x) (c) ψ2

2(x) (d) ψ3
4(x)
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5.2.3 Wavelet-Galerkin method

In this subsection harmonic wavelets are employed to obtain a generalized

solution satisfying the equation:

〈ut(·, t), ϕ〉L2(0,1) −
α

2
〈u2(·, t), ϕx〉L2(0,1) + ϑ〈u(·, t), φxx〉L2(0,1)

= 〈f(·, t), φ〉L2(0,1),∀φ ∈ C∞ (5.2.8)

Here the brackets 〈·, ·〉 express the scalar product:

〈f, g〉L2(0,1) =

1∫
0

f(x)g(x)dx, (5.2.9)
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where an overline denotes a complex conjugate. Using a standard approach

for the Galerkin method, we introduce u(x, t) via combination of the time-

dependent amplitude and the basis, depending on the spatial variable:

u(x, t) =
r∑

j=0

2j−1∑
k=0

ajk(t)ψ
j
k(x) (5.2.10)

Substituting 5.2.10 into 5.2.8, we obtain equation with respect to the time-

dependent coefficients ars(t):

d

dt
ars(t)−

α

2

r∑
j=0

r∑
p=0

2j−1∑
k=0

2j−1∑
q=0

N jpr
qksa

j
k(t)a

p
q(t)

+ϑ

r∑
j=0

2j−1∑
k=0

Ljr
ksa

j
k(t) = f rs (t) (5.2.11)

where:

N jpr
qks = 〈ψj

k

d

dx
ψp
q , ψ

p
s〉 (5.2.12)

Ljr
ks = 〈 d

2

dx2
ψj
kψ

r
s〉 (5.2.13)

f rs (t) = 〈f(·, t), ψr
s〉 (5.2.14)

Thereafter, by swapping summation with integration and calculating the

internal integrals we finally express coefficients 5.2.12,5.2.13 explicitly:

N jpr
qks = − 2iπ

2
j+p+r

2

2j+1−1∑
mj=2j

2p+1−1∑
mp=2p

2r+1−1∑
mr=2r

mpe
2iπ

(
mjk

2j
−mpq

2p
−mrs

2r

)
δmj+mp,mr

(5.2.15)

Ljr
ks = − 4π2

2(j+r)/2

2j+1−1∑
mj=2j

2r+1−1∑
mr=2r

m2
je

2iπ(
mjk

2j
−mrs

2r
)δmj ,mr (5.2.16)

6 Research methods for Stochastic Differential Equa-
tions

Brownian Motion. A scalar standard Brownian motion, or standard Wiener

process, over [0, T ] is a random variable W (t) that depends continuously on
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t ∈ [0, T ] and satisfies the following three conditions:

1. W (0) = 0 (with probability1).

2. For 0 ≤ s < t ≤ T the random variable given by the increment

W (t) − W (s) is normally distributed with mean zero and variance

t− s, equivalently, W (t)−W (s) ∼ √
t− sN(0, 1).

3. For 0 ≤ s < t < u < v ≤ T the increments W (t)−W (s) and W (v)−
W (u) are independent.

Stochastic integrals. Given a suitable function h, consider a sum of the

form
N−1∑
j=0

h(tj)(W (tj+1)−W (tj)) (6.1)

which by analogy with the approximation of the Rieman integral, may be

regarded as an approximation to a stochastic integral
∫ T
0 h(t)dW (t). Here,

we are integrating h with respect to Brownian motion.

An alternative to 6.1 is given by

N−1∑
j=0

h

(
tj + tj+1

2

)
(W (tj+1)−W (tj)) (6.2)

The “left-hand” sum 6.1 gives in limit (when δt → 0) what is known as the Itô

integral, whereas the “midpoint” sum 6.2 produces the Stratonovich integral.

6.1 The Euler–Maruyama Method

Consider a scalar autonomous SDE

dX(t) = f(X(t))dt+ g(X(t))dW (t), X(0) = X0, 0 ≤ t ≤ T (6.1.1)

Here, f and g are scalar functions and the initial condition X0 is a random

variable. The solution X(t) is a random variable for each t.
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We assume that f and g are defined and measurable in [0, T ]×R and satisfy

both Lipschitz and linear growth bound conditions. These requirements

ensure existence and uniqueness of solution of the SDE 6.1.1.

If g ≡ 0 and X0 is constant, then the problem becomes deterministic, and

6.1.1 reduces to the ordinary differential equation dX(t)/dt = f(X(t)), with

X(0) = X0.

SDE 6.1.1 can be rewritten in integral form as

X(t) = X(0) +

∫ t

0
f(X(s))ds +

∫ t

0
g(X(s))dW (s), 0 ≤ t ≤ T (6.1.2)

The second integral on the right-hand side of 6.1.2 is to be taken with respect

to Brownian motion. To apply a numerical method to 6.1.1 over [0, T ], we

first discretize the interval. Let Δt = T/L, where L is some positive integer,

and τj = jΔt. Our numerical approximation to X(τj) will be denoted as

Xj . The Euler–Maruyama (EM) method takes the form

Xj =Xj−1 + f(Xj−1)Δt

+g(Xj−1)(W (τj)−W (τj−1)), j = 1, 2, . . . , L (6.1.3)

Notice from the integral form 6.1.2, that

X(τj) = X(τj−1) +

∫ τj

τj−1

f(X(s))ds +

∫ τj

τj−1

g(X(s))dW (s) (6.1.4)

Each of the three terms on the right-hand side of 6.1.3 approximates the

corresponding term on the right-hand side of 6.1.4. It is also should be

mentioned that in the deterministic case (g ≡ 0 and X0 is constant), 6.1.3

reduces to Euler’s method.

Strong and weak convergence. A method is said to have strong order

of convergence equal to γ if there exists a constant C such that

E|Xn −X(τ)| ≤ CΔtγ (6.1.5)

for any fixed τ = nΔt ∈ [0, T ] and Δt sufficiently small. Here E denotes the

expected value. If f and g satisfy appropriate conditions, it can be shown
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that EM has strong order of convergence γ = 1
2 . Note that in determenistic

case (g ≡ 0 and X0 is constant) the expected value can be deleted from the

left-hand side of 6.1.5 and the inequality is true with constant γ = 1.

The strong order of convergence measures the rate at which the “mean of

the error” decays as Δt→ 0. A less demanding alternative is to measure the

rate of decay of the “error of the means.” This leads to the concept of weak

convergence. A method is said to have weak order of convergence equal to γ

if there exists a constant C such that for all functions p in some class

|Ep(Xn)− Ep(X(τ))| ≤ CΔtγ (6.1.6)

at any fixed τ = nΔt ∈ [0, T ] and Δt sufficiently small.

It can be shown that the weak order of convergence for EM method is γ = 1

[11].

6.2 Milstein’s Higher Order Method

It was mentioned above that EM has strong order of convergence γ = 1
2

whereas the underlying deterministic Euler method converges with classical

order 1. It is possible to raise the strong order of EM to 1 by adding a

correction to the stochastic increment, resulting in Milstein’s method. The

correction arises because the traditional Taylor expansion must be modi-

fied in the case of Itô calculus. Truncating the Itô–Taylor expansion at an

appropriate point produces Milstein’s method for the SDE 6.1.1:

Xj = Xj−1 + f(Xj−1) + g(Xj−1)(W (τj)−W (τj−1))Δt

+
1

2
g(Xj−1)g

′(Xj−1)
(
(W (τj)−W (τj−1))

2 −Δt
)
,

j = 1, 2, . . . , L (6.2.1)



6 RESEARCH METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS25

6.3 Stochastic Runge-Kutta methods

High order numerical schemes can be further constructed by truncating

Itô–Taylor expansion the same way it is done in EM and Milstein meth-

ods described above. But the computational cost can be high due to the

proliferation of elementary derivatives. In order to obtain derivative-free

methods, the extension of classical Runge-Kutta methods to stochastic dif-

ferential equations has been introduced, see [6, 22].

Consider a scalar autonomous SDE

dy(t) = a(t, y(t))dt+ b(t, y(t))dWt t0 ≤ t ≤ T

y(t0) = y0

(6.3.1)

Let us introduce an equidistant discretization {t0, . . . , tL} of the time interval

[0, T ] with stepwise Δ = T/L. The general form of an s-stage stochastic

Runge-Kutta scheme for the solution of 6.3.1 is given by:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn +
∑s

j=1 Z
(0)
ij a(tn + μjΔ, Yj) +

∑s
j=1 Z

(1)
ij b(tn + μjΔ, Yj)

i = 1, . . . , s

yn+1 = yn +
∑s

j=1 z
(0)
j a(tn + μjΔ, Yj) +

∑s
j=1 z

(1)
j b(tn + μjΔ, Yj)

(6.3.2)

or, equivalently,
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Kn
i = a(tn + μjΔ, yn +Δ

∑s
j=1 λijK

n
j +ΔW

∑s
j=1 γijK

n
j ) i = 1, . . . , s

K
n
i = b(tn + μjΔ, yn +Δ

∑s
j=1 λijK

n
j +ΔW

∑s
j=1 γijK

n
j ) i = 1, . . . , s

yn+1 = yn +
∑s

i=2 αiK
n
i +

∑s
i=1 βiK

n
i

(6.3.3)

with μ1 = 0. Z(1) and z(1) are respectively arbitrary matrix and vector

whose elements are random variables and Z(0) and z(0) are respectively the

parameter matrix and vector associated with the deterministic components.
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If both Z(0) and Z(1) are strictly lower triangular, then 6.3.2 is said to be

explicit, otherwise it is implicit.

The above scheme 6.3.2 or 6.3.3 can be represented in the tableau form

μ Z(0) Z(1)

z(0)
T

z(1)
T

A specific case is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = yn +Δ
∑s

j=1 λija(tn + μjΔ, Yj) + ΔW
∑s

j=1 γijb(tn + μjΔ, Yj)

i = 1, . . . , s

yn+1 = yn +Δ
∑s

j=1 αja(tn + μjΔ, Yj) + ΔW
∑s

j=1 βjb(tn + μjΔ, Yj)

(6.3.4)

and its tableau form for s = 3 is

0 0 0 0 0 0 0
μ2 λ21 0 0 γ21 0 0
μ3 λ31 λ32 0 γ31 γ32 0

α1 α2 α3 β1 β2 β3

Analogously with the deterministic case, the technique for obtaining the

order conditions consists in matching the truncated Runge-Kutta scheme

with the stochastic Taylor series expansion of the exact solution over one

step assuming exact initial values [22].

7 Kalman Filters

In 1960, R.E. Kalman published his famous paper describing a recursive

solution to the discretedata linear filtering problem. Since that time, due
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in large part to advances in digital computing, the Kalman filter has been

the subject of extensive research and application, particularly in the area of

mathematical finance, see for example [3, 9].

In this section we firstly describe the extended Kalman filter (EKF), then

a promising approximation to EKF, called the Variational Kalman Filter

(VKF) is reviewed, and finally we consider the hybrid method that combines

the ensemble filering approach with the VKF, prominent as the Variational

Ensemble Kalman Filter (VEnKF).

7.1 Extended Kalman Filter

Many estimation problems that are of practical interest are nonlinear but

"smooth". That is, the functional dependences of the measurement or state

dynamics on the system state are nonlinear, but almost linear for small per-

turbations in the values of the state variables. For these cases the Extended

Kalman filter can be applied. In this extension of the standard Kalman fil-

ter linearization techniques are employed to get linear approximations of the

nonlinear system dynamics and measurement operators.

Suppose that the state x ∈ R
d of a discrete-time controlled process is gov-

erned by the nonlinear stochastic difference equation

xk = M(xk−1) + εpk (7.1.1)

with a measurement y ∈ R
m that is

yk = K(xk) + εok (7.1.2)

The random variables εpk and εok represent the process and measurement noise

(respectively). They are assumed to be independent (of each other), white,

and with normal probability distributions

εpk ∼ N(0,Cεpk
)

εok ∼ N(0,Cεok
)

(7.1.3)
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where Cεpk
and Cεok

are process noise covariance and measurement noise

covariance matrices, correspondingly.

In the above models M : Rd → R
d is the model evolution operator that

relates the state at the previous time step k − 1 to the state at the current

step k, in the absence of either a driving function or process noise, and K :

R
d → R

m is the observation operator that relates state to the measurement

yk. The Extended Kalman filter algorithm for estimating states and their

error covariances can be described as follows.

The Extended Kalman Filter algorithm

1. Compute the predicted state estimate and covariance:

(a) Compute the prior state xp
k = M(xest

k−1)

(b) Compute the prior covariance yp
k = K(xp

k)

(c) Compute linearized model operator Mk = ∂
(M(xest

k−1)
)
∂x

(d) Compute linearized measurement operator Kk = ∂
(K(xp

k)
)
∂x

(e) Compute the prior covariance Cp
k = MkC

estk−1M
T
k +Cεpk

2. Combine the prior with observations:

(a) Compute the Kalman gain Gk = Cp
kK

T
k

(
KkC

p
kK

T
k +Cεok

)−1

(b) Compute the state estimate xest
k = xp

k +Gk

(
yk −Kkx

p
k

)
(c) Compute the covariance estimate Cest

k = Cp
k −GkKkC

p
k

3. Set k → k + 1 and go to step 1

Since the standard formulation of the Kalman filter (KF) and extended

Kalman filter (EKF) require the storage and multiplication of d × d ma-

trices and the inversion of m × m matrices, for large-scale problems these

methods suffer from the high CPU and memory requirements. However,
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these problems can be overcome by using a low-storage approximation, called

Variational Kalman Filter (VKF).

7.2 Variational Kalman Filter

In variational formulation of Kalman filter the large matrices of linearized

evolution and observation operators were replaced with the tangent linear

and adjoint codes, that produce differentiation at the ’code level’. These

codes are used to propogate covariance in time. The state estimation itself

is viewed as an optimization problem, where the quadratic function

l(x|yk) = 1

2
(x− xp

k)
T
(
Cp

k

)−1
(x− xp

k)

+
1

2
(y −K(x))T

(
Cεok

)−1
(y −K(x)) (7.2.1)

is minimized with respect to x. In the VKF method, introduced in [2] the

minimization is done with the Limited Memory Broyden-Fletcher-Goldfarb-

Shanno (LBFGS) optimization method, that produces both the state esti-

mate and the covariance approximation. The inverse of the prior covariance

is also approximated via solving an auxiliary optimization problem, given as

argmin
u

1

2
uTCp

ku (7.2.2)

Supposing that the linearization Mk of M(xestk−1) is available, the algorithmic

representation for the nonlinear VKF method can be written as follows.

The Variational Kalman Filter algorithm

1. Compute the predicted state estimate and covariance:

(a) Compute the prior state xp
k = M(xest

k−1)

(b) Define Cp
k = MkC

est
k−1M

T
k +Cεpk

(c) Apply LBFGS to 7.2.2 to get an approximation of
(
Cp

k

)−1
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2. Combine the prior with observations:

(a) Minimize expression 7.2.1 using LBFGS to get the state estimate

xestk and covariance estimate Cest
k .

3. Set k → k + 1 and go to step 1

7.3 Variational Ensemble Kalman Filter

In the Variational Ensemble Kalman Filter (VEnKF) the VKF ideas are

employed in ensemble filtering context. As in VKF, the state estimation

in VEnKF is based on minimizing the cost function in equation 7.2.1. The

prior covariance required in the cost function is defined as

Cp
k =Cov

(M(xest
k−1) + εpk

)
= Cov(M(xest

k−1)) + Cov(εpk)

≈XkX
T
k +Cεpk

(7.3.1)

In the above formula it is assumed that the model error and model response

are uncorrelated. In VEnKF the sample covariance is calculated as

Xk =
(
(sk,1 − xpk), (sk,2 − xpk), . . . , (sk,N − xpk)

)
/
√
N − 1 (7.3.2)

where the state estimate evolved from the previous time is used as the expec-

tation value (xpk = M(xestk−1)), sk = (sk,1, sk,2, . . . , sk,N ) denotes the ensemble

and sk,i = M(sk−1,i). The inverse prior covariance matrix Cp
k = XkX

T
k +Cεpk

can be acquired either by applying the LBFGS to the artificial optimization

problem

argmin
u

uT (XkX
T
k +Cεpk

)u (7.3.3)

or using the Sherman-Morrison-Woodbury (SMW) matrix inversion formula:

(Cp
k)

−1 = (XkX
T
k +Cεpk

)−1

= C−1
εpk

−C−1
εpk

Xk(I +XT
kC

−1
εpk

Xk)X
T
kC

−1
εpk

(7.3.4)

The algorithmic discription of the VEnKF method is given below, see [24].
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The VEnKF algorithm

1. Move the ensemble forward and build the prior:

(a) Compute the prior center point xp
k = M(xest

k−1)

(b) Compute prior ensemble sk,i = M(sk−1,i), i = 1, . . . , N

(c) Define
(
Cp

k

)−1 using SMW formula 7.3.4 or applying the LBFGS

to to 7.3.3.

2. Calculate the posterior estimate and generate the new ensemble:

(a) Apply LBFGS to minimize 7.2.1 to get the state estimate xestk and

the covariance estimate Cest
k .

(b) Sample new ensemble sestk ∼ N(xest
k ,Cest

k )

3. Set k → k + 1 and go to step 1

In order to sample new ensemble of state vectors from N(xest
k ,Cest

k ) one can

use the LBFGS representation for Cest
k :

Cest
k = B0B

T
0 +

n∑
i=1

bib
T
i (7.3.5)

where B0 is d× d matrix and bi are d× 1 vectors. From this representation

a zero mean random vector r ∼ N(0,Cest
k ) can be produced by calculating

r = B0z+
n∑

i=1

ωibi (7.3.6)

where z ∼ N(0,1) and ωi ∼ N(0, 1), B0 and bi can be constructed from

LBFGS inverse Hessian approximation, see [24].

8 A fluid mechanic model of Nordpool spot prices

In this section we describe the model of Nordpool spot prices based on the

Burgers’ equation with an external forcing that consists on three terms.
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The first forcing term p produces the low-speed motions that experience a

mean-reverting behavior. This component was introduced by analogy with

the governing equations for atmospheric motions and operates similar to the

geostrophic force that results in baroclinic Rossby waves. The second forcing

component, described by Brownian motion term dBt, implies the normally

distributed random fluctations about the general path. Finally, f(t) contains

the difference between the real and the pure trading prices (see Figure 5),

that is, it represents the influence of the linear regression components that

are responsible for seasonal behavior and pursuiting the main trend.

Figure 5: Real system price (blue) pure trading price (green) and their resid-
ual (red)
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Thereby, we consider the following initial-boundary value problem for Stochas-

tic Partial differential equation:

−du(x, t) + pdt+ αu(x, t)ux(x, t)dt

+ ϑuxx(x, t)dt = f(t)dt+ dBt, 0 ≤ x ≤ 1 (8.1)

u(x, 0) = u0(x) (8.2)

u(0, t) = u(1, t), (8.3)

where p = u − MA180 contains the difference between the current system

price and the system price six month moving average.

Applying first-order operator splitting approach (see [23]), we decouple the

convection-reaction and diffusion operators at the each time interval [tk, tk+1]:

Convection-reaction subproblem

−du+ pdt+ αuuxdt = f(t)dt+ dBt, 0 ≤ x ≤ 1

u(x, 0) = u0(x)

u(0, t) = u(1, t)

(8.4)

A solution of the convection-reaction subproblem u(∗) defines the initial con-

ditions for the diffusion subproblem:

Diffusion subproblem

−du+ ϑuxxdt = 0, 0 ≤ x ≤ 1

u(x, 0) = u(∗)(x)

u(0, t) = u(1, t)

(8.5)

Employing the semi-Lagrangian formulation, the problem 8.4 can be rewrit-

ten as follows:
Du = pdt− f(t)dt− dBt

u(x, 0) = u0(x)

u(0, t) = u(1, t)

(8.6)

where Du denotes the total derivative of u along the trajectory

Du = du+
dx

dt

∂u

∂x
dt = du− αu

∂u

∂x
dt (8.7)
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The last equality 8.7 implies the characteristic equation

x′(t) = −αu(x(t), t) (8.8)

According to equation 8.8, we firstly advect the grid points to obtain a

solution of the problem 8.6 via the method of characteristics:

x̃ = x− αukτ, (8.9)

where x denotes the fixed set of grid points, uk stands for the vector of

solution from the previous time step , τ denotes the time stepping. Taking

into account for the periodical boundary conditions, we transfer the advected

points x̃ onto the initial spacial domain [0, 1]:

i = � x̃
h
� (8.10)

j = mod(i, Nx − 1) (8.11)

where h stands for the uniform distance between the spacial points, Nx

denotes the number of points and j contains the numbers of the nearest left

grid points for the counterparts of advected points.

d = x̃− ih (8.12)

Here d determines the distances between the projected points and the cor-

responding closest left points of the fixed grid.

˜̃x = jh+ d, (8.13)

Consequently, we apply the following Euler-Maruyama discretization to solve

the Cauchy problem 8.6:

ûk = ˜̃uk + pτ − fkτ − dBk (8.14)

where

• dBk ∼ √
τN(0, INx×Nx) is a multivariate Wiener gain;



9 APPLYING KALMAN FILTERING TO FORECASTING SPOT PRICES35

• fk = f(tk)INx×1;

• ˜̃uk denotes the initial condition uk, interpolated onto the set ˜̃x;

• p = ˜̃uk − MA180INx×1.

Finally, we approximate the solution of the diffusion subproblem 8.5:

uk+1
i = ûk

i +ϑ
ûk
i+1 − 2ûk

i + ûk
i−1

h2
, i = 2, . . . , Nx − 1 (8.15)

uk+1
1 = ûk

1+ϑ
ûk
2 − 2ûk

1 + ûk
Nx

h2
, (8.16)

uk+1
Nx

= ûk
Nx

+ϑ
ûk
1 − 2ûk

Nx
+ ûk

Nx−1

h2
. (8.17)

9 Applying Kalman filtering to forecasting spot prices

In order to adjust a prediction for Nordpool system price, any modification of

the standart Kalman filter which is suitable for nonlinear dynamic systems

(i.e., EKF, VKF or VEnKF) can be possibly exploited. However, in this

work we are conserned on the VEnKF application.

Out of the Nx model states, measurement is taken from the only one state.

At the every time step we build the histogram out of the estimated data

and determine a mode. In case of a multimodal distribution we consider the

first mode value. Thereby, the observation operator is defined as Kx = Kx,

where

[K]rp =

{
1, r = p = m,
0, otherwise. (9.1)

Here m is a number of an arbitrary state, where the mode value was observed

in the previous estimated data.

Since for application of this hybrid filter an ensemble of particles has to be

produced, we generate a new ensemble before performing each successive
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estimation. Here we take into account the fact, that the traders observe one

another within the small microgroup. It is also assumed, that the observ-

able neigbourhood composes 5% of the whole market traders. Hence, we

firstly build the histogram with 20 bins out of estimated data and determine

the mode value η. Thereafter, we produce an ensemble s ∼ N(η,Σ) from

multivariate normal distribution, where η = η · INx×1, Σ is a diagonal ma-

trix, where the diagonal elements contain the squared difference between the

mode η and the value of the closest neighbouring bin.

We run experiments with varying ensemble sizes N , model and observation

error covariances are assumed to be diagonal and constant; they are given by

Cεpk
= (0.05σclim)2INx×Nx and Cεok

= (0.15σclim)2INx×Nx, correspondingly,

where σclim = 3.641 (standart deviation used in climatological simulations),

see [24].

As the initial guesses in filtering we use xest
0 ∼ N(μ, σ2INx×1), where μ and σ

are fixed arbitary constants, and Cest
0 = INx×Nx . Estimations are produced

taking either real system or pure trading prices as an observation.

10 Results

After applying the VEnKF to the specified model, we plotted the estimated

mode together with observed data, see Figures 6, 7, 8. On purpose to observe

the convergence properties, we calculate the root mean square error (rms),

written as

[rmse]k = |xmo
k − xtruek | (10.1)

where xmo
k is estimated ensemble mode, xtruek is the observed price, see Fig-

ure 10, 11, 12. In case of pure trading series rmse error decreases to almost

zero when the size of the ensemble is large enough (e.g., N = 40), see Figure

12.

From relative error plot (see Figure 9) one can conclude that the convergence
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for the real system price is rather slow and it breaks down in case of spike

derivation. We have also plotted rmse error avereged over time, see Figure

13. One can observe directly proportional relationship between the size of

the ensemble and the forecast skill.

In order to compare the model performance for fixated rate of advection

(α = 5/3), we generate 20, 40 and 60 days ahead forecasts for different dif-

fusion coefficients ϑ, starting from the every n-th estimate (n = 20, 40, 60,

correspondingly, see Figures 14, 16, 18). From obtained forecasts we firstly

observe the model reaction upon the spikes. Thereof, we state that in the

presence of diffusion the spikes are systematically followed by spurious sub-

sequently decreasing oscillations. In addition, it can be noticed that the

stonger is the diffusion, the larger is the amplitude of the oscillations.

In the absence of diffusion the model reacts upon monotonic increase or

decrease, producing spurious spikes. The same phenomena is observed in

the presence of diffusion, so that the bigger is the diffusion coefficient, the

stronger is oscillation.

Fixating the diffusion coefficient (θ = 0.08), we investigate the dependence

of model model behavior on the rate of advection. From the Figures 20,

22, 20 one can observe that the stronger is the advection, the sharper is the

forecast deviation from the current level.
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Figure 6: Ensemble mode (blue) and pure trading price (red) for ensemble
size N = 10, α = 5/3, θ = 0.08
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Figure 7: Ensemble mode (blue) and pure trading price (red) for ensemble
size N = 40, α = 5/3, θ = 0.08
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Figure 8: Ensemble mode (blue) and real system price (red) for ensemble
size N = 10, α = 5/3, θ = 0.08
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Figure 9: Relative error plot for real system price, N = 10, α = 5/3, θ = 0.08
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Figure 10: Rmse error for real system price, N = 10, α = 5/3, θ = 0.08
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Figure 11: Rmse error for pure trading price for ensemble size N = 10,
α = 5/3, θ = 0.08
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Figure 12: Rmse error for pure trading price for ensemble size N = 40,
α = 5/3, θ = 0.08
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Figure 13: Forecast skills for Real system price for different ensemble size :
N=10 (blue), N=15 (green), N=30 (yellow), N=40 (red) α = 5/3, θ = 0.001
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Figure 14: Real price and 20 days ahead forecasts, α = 5/3
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Figure 15: Distibutions of real price and 20 days ahead forecasts, α = 5/3
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Figure 16: Real price and 40 days ahead forecasts, α = 5/3
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Figure 17: Distibutions of real price and 40 days ahead forecasts,α = 5/3
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Figure 18: Real price and 60 days ahead forecasts, α = 5/3
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Figure 19: Distibutions of real price and 60 days ahead forecasts,α = 5/3
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Figure 20: Real price and 20 days ahead forecasts, θ = 0.08
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Figure 21: Distibutions of real price and 20 days ahead forecasts, θ = 0.08
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Figure 22: Real price and 40 days ahead forecasts, θ = 0.08
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Figure 23: Distibutions of real price and 40 days ahead forecasts, θ = 0.08
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Figure 24: Real price and 60 days ahead forecasts, θ = 0.08
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Figure 25: Distibutions of real price and 60 days ahead forecasts, θ = 0.08
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Figure 26: Distibutions of pure trading price and 20 days ahead forecasts,
α = 5/3
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Figure 27: Distibutions of pure trading price and 60 days ahead forecasts,
α = 5/3
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11 Discussion

As we have observed, the specified model of Nord Pool spot prices consid-

ered in periodical spatial domain experiences a spurious volatility after spike
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appearence, at the same time, due to influence of diffusion, large oscillations

subsequently decay. We state that this "panic" reaction of the system is

caused by the impetus contributed by the abrupt increase.

At the same time, similar strong volatility change is observed after period of

long monotonic increase succeeded by decrease of the same character, that

is taking place independently of diffusion rate.

In future work it is reasonable to consider the above-specified model in semi-

infinite domain, imposing an appropriate boundary conditions. This choice

is motivated by fundamental properties of the market, since in reality the

traders observe the market tendencies locally and in the most cases they are

not significanly influenced by the price changes outside their microgroup.

It might be also successful to consentrate upon the multidimensional models

from fluid mechanics, such as Shallow Water Equations or any other system

reduced from the Navier-Stocks equations.
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