
i 

OAK RIDGE .If..td~AL LABORATORY 
operoted by 

UNION CARBIDE CORPORATION 

for the 

U.S. ATOMIC ENERGY COMMISSION 
• 

I nl I 
ORNL- TM- 436 . f/ 

COpy NO. -,~ :;-

DA TE - December 17, 1962 

INTRODUCTION TO MAGNETO-FLUID MECHANICS 

Lectures Delivered at 

Oak Ridge National Laboratory 

Summer 1962 

By 

Tieo .. Sun Chang 

NOTICE 

This document contoins information of a preliminary nature and was prepared 
primarily for internal use at the Oak Ridge National Laboratory, It is subject 
to revision or correction and therefore does not represent a final report. The 
information is not to be abstracted, reprinted or otherwise given public dis­
semination wi thout the approval of the ORNL patent branch, Legal and Infor­
mation Control Department. 



This report wOs prepared as on account of Government sponsored work~ Neither the United Stotes f 

nor the Commission, nor any person acting on behalf of the Commission! 

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy. 

compreteness~ or usefurness of the information contained in this report, or thot the use of 

any information, apparotus. method, or proce~a disclosed in this report may not infringe 

pr ivotely owned rights i or 

B. Assomes ony iiabilities with respect to the use of l or for domoges resulting from the use of 

ony information~ apporotos, method, or process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission lf includes any employee or 

contractor of the Commission, Of employee of such controctor# to the extent thot such employee 

or controctor of the Commission, or employee of such contractor prepares, disseminates, or 

provides occeSs to, any information pursuant to his employment or contract with the CommisJion, 

or his employment with such controc1'or. 

• 



3 

CONTENTS 

Chapter I - Introduction • • . . • . 

Chapter II - Method of Analysis 

Chapter III - Types of Forces and the Stress Tensor 

Chapter IV - Equations Governing the Motion of a Fluid Medium 

Chapter V - Field Theory of Electromagnetism • • • . 

Chapter VI - Formulation of Magneto-Fluid Mechanics 

Chapter VII - Alternative Formulations and Second Law of 
Thermodynamics • • . . . • • • . • • • • • 

Chapter VIII - Similarity Parameters of Magneto-Fluid Flow 
, 

Chapter IX - Alfven Waves . . . . . . . . . . . . . . . . 
Chapter X - Steady Parallel Incompressible Magneto-Fluid Flow 

Chapter XI - Magneto-Fluid Dynamic Shock Waves 

Appendix I - Vectors and Cartesian Tensors • . • 

Appendix II - Outline of Elements of Electricity and Magnetism 

Appendix III - Selected Reference Books . . . . . . . . . . . 

.. 

5 

7 

11 

16 

24 

34 

56 

62 

66 

73 

80 

96 

106 





INTRODUCTION TO MAGNETO-FLUID MECHANICS 

* Tien-Sun Chang 

CHAPl'ER I - INTRODUCTION 

Magneto-fluid mechanics, as the name implies, is a branch of fluid 

mechanics. The difference between magneto-fluid mechanics and ordinary 

fluid mechanics (in the restricted sense) lies in the forms of the external 

body forces. In the study of ordinary fluid mechanics, the body forces are 

either neglected or known in advance independent of the motion of the fluid 

medium. 

In the study of magneto-fluid mechanics, the situation is much more 

complicated. Here we are working with a medium which is electrically con-

ducting. When this medium moves in the presence of an externally applied 

magnetic field, a current is induced in the fluid medium. This induced 

current will interact with the magnetic field and cause a modification of 

the magnetic field. This current and the modified magnetic field will 

then interact and produce a body force (called the ponderomotive force) 

acting on the fluid medium and thereby influencing the subsequent motion 

of the fluid medium. This complicated interaction of the motion of the 

electrically conducting fluid medium with the applied magnetic field con-

stitutes the central core of interest of the study of magneto-fluid mechanics. 

Almost all of the observed phenomena in astrophysics are magento-fluid 

dynamic in nature. Current interests in hypersonic flow and containment 

of hot gases for the design of fusion reactors are also closely related to 

* Summer employee, present address Department of Engineering Mechanics, 
Virginia Polytechnic Institute, Blacksburg, Virginia. 
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the study of the motion of partially or fully ionized gases in externally 

applied magnetic fields. Our own recent interest at the Reactor Division 

concerns the feasibility of using an applied magnetic field to stabilize 

the motion of a vortex heat-exchanger reactor and to reduce the influence 

of turbulence in the vortex flow. These and many other applications are 

the reasons why magneto-fluid mechanics plays so important a role in mod­

ern engineering sciences. 

The purpose of this series of lectures is to develop the general 

theory of magneto-fluid mechanics by considering the fluid medium as a 

continuous, neutrally charged, electrically conducting fluid. Time will 

not allow us to develop the theory from a microscopic viewpoint using the 

concept of statistical mechanics of ionized gases. 
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CHAPrER II - MEn'HOD OF ANALYSIS 

2.1. Continuum Concept 

As mentioned in the previous chapter, we are only going to be in-

terested in the continuum concept of magneto-fluid mechanics. Let us now 

amplify this statement slightly. Consider a region of a fluid medium with 

a total volume V. If the total mass of the fluid medium contained in this 

region V is M, then the average density, p, of the fluid medium of this 

region V is defined as the fraction of mass contained per unit volume in 

V if the mass is distributed uniformly wi thin the t'egion V J 1. e. J 

M 
P =­

V 
(2.1.1) 

The density at a point in a body of a fluid medium can be obtained by 

enclosing that point with a small volumetric element AV, and by taking the 

average density ~AV of this volumetric element, where 6M is the fraction 

of the mass of the fluid medium in AV. The value of ~AV will become 

almost a constant as AV is taken smaller and smaller while always en­

closing the point in consideration. In other words, the value of ~AV 

seems to possess a limit at that point. Actually, if we continue to reduce 

the value of AV, the value of ~AV will begin to fluctuate. This is 

because the volume AV will become too small to contain a sufficient number 

of molecules, or charged particles, to cancel out the effects introduced 

due to the random motions of the molecules or charged particles. In fact, 

when AV is made as small as the size of the particles, the value of ~ AV 

will either be very large or nearly equal to zero depending upon whether 

at that instant of observation the volumetric element contains a particle 
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or not. Therefore, in order to have a definitely defined value of density 

at a point in a fluid medium, the volumetric element 6.V cannot be made too 

small. In other words, the value of 6.V should be chosen such that it is 

small enough to give an apparent limit of the value of t::JAj6.V but not so 

small such that the value of t::JAj 6.V fluctuates and becomes meaningless. 

The word "density" is meaningful only if the fluid medium can be observed 

this way. We shall now write the def1ll1 tion of the density, p, at a poiht 

P in a fluid medium as 

dM 
p = (2.1.2) 

dV 

However, we should understand at the same time that clM/dV has the fo110w-

ing physical meaning: 

dM 
= lim 

dV 6.'V-+P 6.V 
6.'V'>6.V· 

, (2.1.3) 

where ~~V. mean that 6.V is a very small volumetric element enclosing 

P but is larger than a characteristic volume 6.V· which is the smallest 

bound of the size of the volumetric element to yield a meaningful limit 

of the ratio of t::JAj6.V. 

This type of restriction of the smallest size of observation should 

be considered ~n each and every discussion of the average properties of a 

continuum. For example" in our discussions, we shall treat volumetric 

elements of the size such that on the average they are neutrally charged. 

This is true also in the discussion of the forces acting on the fluid 

medium. 

• 
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2.2. Eulerian Vei wpoint 

Instead of considering the properties of the volumetric elements in 

a fluid in motion in terms of their initial positions and time (the 

Lagrangian viewpoint), it is usually more convenient to consider them as 

functions of their instantaneous positions and time. This approach is 

called the Eulerian method. It shall be the method used in the develop­

ment of the basic theory of magneto-fluid mechanics in the subsequent 

lectures. 

2.3. CarteSian Tensor Notation 

The discussion of any physical theory of mechanics of continuous 

media can be treated and presented more precisely and efficiently if 

Cartesian tensor notation is used in place of the classical vector nota­

tion. Classical vector notation is a system of algebraic symbols which 

follow a special set of algebraiC rules. Furthermore, the rules of vector 

calculus are many and usually complicated. The rules of Cartesian tensors, 

on the other hand, are very simple. The algebra and calculus of Cartesian 

tensors are the same as those for ordinary scalar quantities. One can 

learn these rules and the few formulas related to Cartesian tensors in a 

relati vely short period. Therefore, we will no longer be burdened with 

the extra mathematical rules of the classical vector analysis while learn­

ing a new theory. In addition, physical quantities are usually tensorial 

quantities which cannot always be represented by vectors of the usual 

sense. In this sequence of lectures, we shall attempt to develop the 

theory of magnetO-fluid mechanics using the Cartesian tensor notation. 
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2.4. Laws Governing the Motion of an Electrically Conducting Fluid in 

'the Presence of an Externally Applied Magnetic Field 

The laws governing the motion of a fluid medium. are the laws of con­

servation of mass, the NfJ'Wton t s second law of motion, and the law of con­

servation of energy. Due to the interaction of the electrically conducting 

fluid with the externally applied magnetic field in magneto-fluid mechanics, 

additional laws pertaining to the electromagnetic interaction and the Ohm's 

law have to be considered in conjunction with the laws of ordinary fluid 

mechanics. It is the purpose of this sequence of lectures to introduce 

these laws of magneto-fluid mechanics mathematically in terms of a system 

of equations using the cartesian tensor notation. These equations in 

general are very complicated and do not posses a general solution. Simple 

solved examples will be drawn to indicate the fundamental behavior of 

magneto-fluid flow. A discussion of the similarity parameters in magneto­

fluid flow will also be briefly included. 

• 

• 
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CHAPTER III - TYPES OF FORCES AND THE STRESS TENSOR 

3.1. Body Forces and Surface Forces 

Forces acting on a body of a fluid medium may be divided into two 

parts; those which act across a surface due to direct contact with another 

body and those which act at a distance, not due to direct contact. 

Body forces are forces which act on all the volumetric elements in 

the medium due to some external body or effect. An example of this is 

the gravitational force exerted on a medium due to another body at a dis-

tance. These types of forces can be conveniently discussed as force in-

tensities, fi (or simply forces) per unit mass. This definition is based 

on the apparent limit of the average value over a small volumetric element, 

6V, 

where 

= = = 
1 dF

i - , (3.1.1) 
p dV 

6Fi is the total force acting on the small volumetric element 

f::.V, and 

6M is the total mass contained in f::.V. 

Surface forces are contact forces which act across some surface of 

the fluid medium. This surface may be internal or external. These types 

of forces are conveniently discussed as force intensities (or stresses) 

per unit area. Let us consider a very small planar surface DB with unit 

normal ni containing a point P in a continuum, Fig. 3.1.1. If the total 

force acting by the fluid medium on the positive ni side across the sur­

face element on the fluid medium on the negative ni side is 6Fi , then the 

stress vector, 0i (or stress), acting across the surface element by the 



fluid medium on the ni side at the point P is defined as 

a = 
i 

AFi 
lim = 
~ 68 
t::.9'>I!Jf3 • 

dJ'i 

dB 

where 68· is the lim! t of the smallest size of 68 for the fluid to be 

observed as a continuous medium. 

x 
s 

~--------------------------------~x 

X 
1 

2 

Fig. 3.1.1. Figure Depici tins the Force AF i Acting on a 

Small Surface Element 68 Containing a Point P in a Fluid Nedi um. 

We note that the stress or stress ~ctor, ai' is a function of posi­

tion, time, the orientation of the surface element, and the choice of the 

sense of direction of the unit normal, ni" Every stress vector can be re­

solved into two components; one in the direction of ni and one lying in the 

surface element. They are called the "normal" and "shearing" components of 
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The usual assumption for both the body and surface forces is that the 

net moment due to the forces acting on the small volumetric or surface 

element vanishes. 

3.2. stress Tensor 

Let us consider a point P in a fluid medium and a set of local 

Cartesian axes drawn from the point P. Visualize a small surface element 

containing P whose unit normal is in the positive x -direction, Fig. 3.2.l. 

x3 t 1 

X 
1 

(1 
13 

I 
I 

a 
12 

X 
2 

Fig. 3.2.1. Stress vector (111 Acting on a Small Surface 

Element Whose unit Normal is in the Positive x1 -Direction by 

the Portion of the Fluid Medium Containing the unit Normal. 

The stress vector (11i acting on this surface element by the medium 

containing the positive x
1
-axis has three components; one normal component 
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a
11 

acting in the positive x1~direction and two shearing components a
12

, 

a 13 in the posi ti ve x2 - and Xs -directions, respectively. Similarly, we 

can visualize two other stress vectors a2i , as! acting on surface elements 

whose unit normals are in the positive x2 - and x
3

-directions. These three 

stress vectors a1i, aai' aSi have a total of nine components. This set 

of nine components of stress is called a stress tensor. It can be denoted 

by a single s,mbol a ji. It is obvious that the reaction b:'::>:':_::;":::'::llponents 

acting by the fluid medium. on the portion of the medium. on the positive 

sides of the coordinate planes are equal and opposite to the nine comg 

ponents just defined. 

It is possible to show that this stress tensor a ji completely de­

fines the stresses acting at that point on an arbitrarily inclined plane 

with respect to the set of cartesian coordinate axes Xi" To prove this, 

consider a very small tetrahedron as shown in Fig. 3.2.2. 

a 
22 

X1 

stress vector acting 
on inclined surface 

nj: unit normal of 
inclined surface 

X
2 

area of inclined 
surface 

Fig. 3.2.2. Stresses Acting on a Differential Tetrahedron 

at a Point P in a Fluid. 
• 
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Let us consider the forces acting on the free body of this tetrahedron. 

If we assume that the inertial and body forces are negligible compared 

to the magnitudes of the surface forces t'or a very small tetrahedron, 

then by balancing the forces on the tetrahedron, we obtain 

where ai is stress vector acting on the inclined area A whose 

unit normal is n., and 
J 

a ji is the stress tensor at point p. 

Equation (3.2.1) can be written as 

(3.2.1) 

(3.2.2) 

This means that the stress ai at a point P acting on a plane whose unit 

normal is nj is expressible in terms of the stress tensor a ji at P and 

the unit normal nj • 

It will not be hard to show, by using the equilibrium condition 

(with inertia and body forces neglected) of a small parallelepiped that 

the stress tensor is symmetrical, i.e., 

This means that there are only six independent components defining a 

stress tensor. They are 

a a , a , 
11' 22 33 

a ::: a , 
12 21 

a ::: a J 
23 32 

a ::: a (3.2.4) :n 13 
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CHAPTER IV - EQUATIONS GOVERNING THE MOTION OF A FLUID MEDIUM 

4.1. Equation of Continuity 

One of the most important equations governing the motion of a fluid 

is derived from the idea of conservation of mass. Consider a surface S 

enclosing a fixed region of space V in which fluid motion exists, 

Fig. 4.1.1. Let us call the outward normal of a surface element dS on S, 

n
J 

(x , x , x )j the velocity components of a volumetric element of the 
1 2 S 

fluid in the region V, qJ (x1 ' x
2

' Xsj t)j and the density of a volumetric 

It is obvious from the concept 

Fig. l~.1.l. Region of Space in Which Fluid Motion Exists. 

of conservation of mass that the rate of increase of mass in the region V 

is exactly the amount of mass flowing into the region per unit time, or 

J ~dV= J ov - p qJ nJ dS , 
V S 

(4.1.1) 

, 
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J dp dV + J P qj nj dS :: 0 

vats 
(4.1.2) 

Equation (4.1.2) states that the total production of mass of the region V 

which in~ludes both the net increase of mass wi thin V and the amount of 

mass outflow is zero. Equation (4.1.1) or (4.1.2) is called the integral 

continuity equation. 

Applying the Gauss Theorem, Eq. (4.1.2) becomes 

(4.1.3) 

However, Eq. (4.1.3) should be satisfied for any fixed region of space. 

This means that the integrand of the left-hand side of Eq. (4.1.3) should 

be identically equal to zero, i.e., 

- + (4.1.4) 

or 

(4.1. 5) 

The first two terms of the left-hand side of Eq. (4.1.5) can be con-

sidered as the total time rate of change of density of a fluid element if 

we follow the motion of this fluid element along. It is sometimes called 

the co-moving derivative of the density of the fluid element. Since in 

most of the equations in fluid mechaniCS, the total time derivatives are 

co-moving derivatives, we shall denote this type of differentiation by 

the symbol 
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d 

I 
dt 

unless otherwise noted. Therefore, Eq. (4.1.5) can be written as 

dp 

+ P qj' j 
dt 

= 0 (4.1.6) 

Equations (4.1.4), (4.1.5), (4.1.6) are three alternative forms of the 

equation of continuity. The continuity equation relates the four field 

functions p (x
1

, x
2

, xs; t) and qj (x1 , x2 ' xs; t) in terms of a scalar 
i~c 

partial differential equation. In order to solve a problem ~f fluid 

motion, it is generally necessary to find additional relationships for 

these field functions. 

4.2. The Equation of Motion 

The equations of motion which give, three additional relationships 

between the field functions, p and qj' can be obtained directly from the 

Newton's second law of motion. , 

Let us fix our attention to a fixed region of space V, in which fluid 

motion exists, Fig. 4.2.1. 

The Newton I s second law states that the total time rate of change of 

momentum of a body of fluid medium is equal to the external force actIng 

on the fluid medium. Applying it to a subregion V1 of V bounded by a 

surface S, we obtain 

where 

, ('+.2.1) 

ai (x1 , x
2

' xs; t) is the stress vector acting on a surface 

element dS, 
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X
1 

Fig. 4.2.1. Free Body Diagram. of an Arbitrary Region of a 

Fluid Medium in Motion • 

P (x
1

' x
2

' xs; t) is the density of the fluid medium of a 

volumetric element dV, 

fi (x
1

' x
2

' xs; t) is the body force per unit mass acting 

on a volumetric element dV, and 

~ (x
1

' x
2

' x3 ; t) is the velocity vector at a point in 

the fluid medium. 

Expressing ui in terms of the stress tensor, Uji' we can rewrite 

Eq. (4.2.1) as 

J U ji nj dS + J P fi dV = J d (p ~) dV + J p ~ qj nj dS , (4.2.2) 
S V1 V

1 
dt S 

where nj (x1, x2'~) is the unit normal of a surface element 

dS on S • 
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Equation (4.2.2) is called the momentum integral equation governing the , 

motion of a region of a fluid medium. 

If we transform the surface integrals in Eq. (4.2.2) into volume 

integrals by means of the Gauss Theorem, we obtain 

(4.2.3) 

Equation (4.2.3) should hold true for any arbitrary regio~V, of the 

fluid medium in motion. This means that the integrand of the left-hand 

side of Eq. (4.2.3) should be identically equal to zero, or 

(4.2.4) 

This is one form of the equation of motion. An alternative form of the 

equation of motion can be obtained by multiplying the continuity equation, 

Eq. (4.1.4), by ~ and subtracting it from Eq. (4.2.4). 

()~ 
p ~ + p qj ~,j = P fi + Uji,j 

We note that the co-moving derivative of the velocity vector, ~, is 

d~ () ~ 
-=-+qq 
dt ()t j i,j 

This means that Eq. (4.2.5) can be written as 

d~ 

dt 

(4.2.5) 

(4.2.6) 

(4.2.7) 

The three scalar partial differential equations of motion represented 

by Eq. (4.2.5) or Eq. (4.2.7) give the additional rehtionShips,,~ng the 

.. 

.. 

.. 



functions p and q.. However, they introduce at the same time nine in-
1 

dependent components of the field functions of fi (x
1

' xc' xs; t) and 

0.. (x , x , x ; t). It is therefore generally necessary to obtain e.ddl­
J1 1 c s 

tional equations to relate these unlmown field functions. 

4.3. The First Law of Thermodynamics 

An additional relationship governing the unknown field functions, 

p, qi' f i , °ji' is given by the law of conservation of energy. This re­

lationship or equation is called the energy e~uation or the first law of 

thermodynamiCS. 

To derive this equation, let us refer to Fig. 4.2.1 again. If we call 

the internal energy of the fluid medium per unit mass, u (x , x , x j t); 
1 c 3 

and the heat transferred into the fluid medium per mass per unit time, 

C (x1 ' xc' xs; t); then the following energy balance equation is obtained 

for the arbitrary region V
1

' 

r o(pu) J 
-dV+ 

;./ dt V 
1 1 

J 
s 

(I) (II) (III) (IV) 

(V) (VI) (VII) 

The terms (I), (II), (III), and (IV) are the time rate of energy production 

due to the arbitrary region V
1 

of the fluid medium; the terms (V) and (VI) 

are the time rate of work done on the fluid medium in region V
1 

by the 

surface and body forces; and the term (VII) is the time rate of heat 
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transfer into the region V
1

, 

Using the Gauss Theorem, Eq. (4.3.1) becomes 

- P fi ~ - pc} dV = 0 • 

Equation (4.3.2) should hold true for any arbitrary region V
1 

of the fluid 

medium. This means that the integrand of the left-hand side of Eq. (4.3.2) 

should be identically equal to zero, or 

Equation (4.3.3) is the energy equation or the first law of thermodynamics 

of a fluid medium in motion. 

An alternative form of the energy equation or the first law of thermo-

dynamics can be obtained by multiplying the continuity equation, Eq. 

(4.1.4), by (u + i q2) and subtracting it from Eq. (4.3.3): 

or 

1 
= 

(4.3.4) 

(4.3.5) 

If we multiply the equation of motion, Eq. (4.2.7), by qi and sum, 

we obtain 
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which is called the work-kinetic energy equation. We note that the term 

on the left-hand side of Eq. (4.3.6) is the co-moving rate of change of 

the kinetic energy of a fluid element per unit time per unit mass, and 

that the terms on the right-hand side of Eq. (4.3.6) are the work done 

per unit time per unit mass on the element of the fluid medium. 

Subtracting Eq. (4.3.6) from Eq. (4.3.5), we obtain still another 

form of the first law of thermodynamics: 

du 1 
= 

dt 

Equation (4.3.7) is one of the most useful forms of the first law of 

thermodynamics. It separates the first law of thermodynamics from the 

kinetic motion of the fluid medium. Therefore, many of the thermodynamic 

concepts pertaining to the equilibrium states of a fluid medium can now 

be carried over by the application of this equation. 

In introducing the continuity equation, the equation of motion, and 

the first law of thermodynamics, we introduced the following unknown field 

functions: p, q., f., OJ" u, c. 
~ 1 1 

The total number of unknowns far ex-

ceeds the number of equations introduced. We therefore are forced to look 

for other independent relationships relating these unknowns. These re-
, 

lationships for magneto-fluid flow are introduced in the next two cha.pters. 
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CBAPl'ER V - FIELD THEORY OF ELECTRCMAGNE'.rISM* 

5.1. Introduction 

The usual approach in the discussion of classical electricity and 

magnetism is to deduce a set of field equations governing electromagnetic 

interaction with charged particles in vacuum from restricted experimental 

evidences. These laws are then carried over for electromagnetic inter-

a.ction within a material medium by a.rbi trarily setting aside a portion of 

the charge density and electric currents as material properties. The 

remainder of the charge denSity and electric current are then treated as 

tru~ charge density and current which interact with the modified electro-

magnetic field. Concepts such as polarization .. magnetization, elect~ic 

and magnetic permeabilities are introduced to discuss the material effects 

from a macroscopic point of view. When the medium is in motion, these 

laws are further modified to include the effects caused by the motion of 

the medium. 

This concept of polarization and magnetization is very convenient in 

treating electromagnetic interactions within a solid continuum. This is 

not so in the case of conducting fluids. Permanent or slow-varying defi-

nitions of a polarized and magnetized material cannot be assumed for such 

a medium. Therefore, in the stu.c:1y of magneto-fluid flow" we shall treat 

the individual particles in the me~Lum in direct interaction with the 

electromagnetic field and with each other. The concept of material 

electric and magnetic permeability becomes unnecessary in treating the 

motions of conducting fields. The currents produced in the medium will 

* Formulated for Rationatized MKS units. 
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be taken as they are in terms of their microscopic origin. The problem 

of co~ving variation with a medimn becomes a consequence instead of a 

cause in electromagnetic interaction when treated this way. 

In what follows, we shall attempt to derive the classical laws of 

Alectromagnetic interaction in vacuum through a set of postulates and tbe 

noncept of retardation potentials without the consideration of tbe equiva-

lent material effects. We shall thoen rely on the results of the physics 

of ionized gases to offer us an Ohm's law pertaining to the actual current 

in the moving fluid medium. This approach differs from the conventional 

method of deducing the general laws through a set of restricted equations. 

5.2. Charge Density, CUrrent Density, and Continuity Equation of the 

Law of Conservation of Charge 

The charge density p at a point in a medium is defined as 

p = 11m 
AV-IQ 
AV>AV· 

-. 
AV 

Since both positive and negative charges may be present in a medium, we 

can define 

11± = 

where ± refer to the sign of the charges. Obviously, we have 

" A I). P ::: p+ + tJ_· 

The current density J
i 

at a point in a medium is defined as 
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where q±1 are the velocities ot the charges 6Q± at the point in consider­

ation. 

Continuity Equation ot Conservation ot Charge 

X 
1 

x 
3 

(@dV v 

Fig. 5.2.1. Region in Which Charge Motion Exists 

X 
2 

, 
Consider a surface 8 enclosing a fixed region ot space V in which 

charge motion exists, Fig. 5.2.1. Let us call the unit outward norm.u of 

a surface element as' on 8~ ni (x , x , x ); the current density. 
1 2 3 

J i (x , x , x ; t); and the charge density, p (x , x , x ; t). It is 
1 2 3 1 2 3 

obvious from the concept of conservation of charge that 

J Clil dV .. J J 1 n1 ilif = O. 

V at 8' 

(5.2.4) 

Applying the GaUBS theorem, (5.2.4) becomes 

J (: .. J 1, i ) dV • O. 
V 
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(5.2.5) s40uld be satisfied for any fixed region of space. This means 

that the integrand of the left-hand side of (5.2.5) should be identically 

equal to zero, i.e., 

+ Ji.,i = o. at 
(5.2.6) 

(5.2.6) is called the Continuity Eqt~tion for the conservation charge. 

5.3. Electric and Magnetic Fields 

The electric field El , and the magnetic induction field Bi are 

defined as follows: 

eM
i - -, 

at 

where " Ai are the retarded sc~lar and vector potentials, 

with 
,.. 

1t (~ , p = 
1 ,.. 

(:L , J i = J i 1 

r i = Xi - x 

2 r = r i r i , 

1 
€O~O = - . 

c2 
o 

i 

,.. I ,= 1 J P dV , 

41T€O V r 

'J dV' J~1 
r V 

, I r x , x ; t - - ) 
2 3 Co 

I , r x , x j t - - , 
2 3 Co , 

The concept of retarded time 
r ,.. 

t = t - , 
c 

, 

is designed to take into account the finite speed of. propagation c of 
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electromagnetic interaction. The justification of these definitions is 

shown later when compared with the conventional results deduced from 

restricted experimental laws. 

5.4. Properties of the Electric Field 

From (5.3.1), we obtain 

B.y direct differentiation and using (5.3.3), (5.3.4), we can show that 

a.nd 
1 dqJ 

+ - = O. 

Therefore, (5.4.1) becomes 

€o 
Also, from (5.3.1) and (5.3.2), we obtain 

() 

€ijk Ek,j = - dt [€1jk ~,j] 

dB
i 

= --
at 

(5.4.4 ) 

.. 



• 

29 

5.5. Properties of the Magnetic Induction Field , . 

From (5.3.2), we obtain 

Bi,i = 0 
(Solenoidal) 

By taking the curl of (5.3.2), we obtain 

EiJk Bk,J = Eijk 'krs As,rJ 

= (6ir 6jS - 6is 6jr ) As,rj 

= Aj,ij - Ai,jj 

Also, from (5.3.1) 

Therefore 

:2 ::~) + tJ'J -:g :}1 
Nov, by direct differentiation 

1 OE
i 

Eijk Bk,j = --c2 --Ot-- + 

= ~: [<0 :1 
5.6. Maxwell's Equations 

(5.4.2), (5.4.5), (5.5.1), (5.5.6) form a set of interlocking 

(5.5.4) 
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equations relating the electric field Ei and the magnetic induction field 

Bi • 

OBi 
= - --, 

at 

Bi i = o , 
. , 

Jl Eijk Bk,J fo 
dE

i = "'0 -+ 
at 

They are called the Maxwells' equations in vacuum. The charge density p 

and current density Ji should be the total contributions of the medium 

when applied to magneto-fluid flow. np" is the total charge density at a 

point in the medium and J i should include all types of currellts other than 

the vacuum displacement current which is written out explicitly in (5.5.6). 

It is possible to define the displacement vector Di and magnetic field 

strength Hi as, 

"'0 

However, these do not introduce any add! tional advantage when polar-

ization and magnetization concepts of material medium are not introduced. 

The forms of the Maxwell's equation indicate that our initial postu-

lates were correct and Justified. 

Another fact which is worth noting is the case for· electromagnetic 

interaction in free space where both the charge and current densities are 
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not present. From (5.4.2) and ( 5 . 5. 5), we note that both the sca.l.a.r and 

vector potentials satisfy the wave equation. 

1 'do2; 

;'11 - = 0 
co2 'dt2 
0 

1 'do2A 

Ai,jj 
-1. :: 0 

co2 'dto2 
0 

The propagation velocity of these Wllves is l/c~ = EO f.L
O

' This is one of the 

assumptions made in introducing these retardation potentials. 

5.7. Obm I s law 

Where a conducting medium is in motion, it is possible to separate 

the current J i (excluding the displacement current) in terms of a part 

called the convection current Ji (convection) and a part called the con­

duction current J i (conduction). The convection part is given as 

J i (convection) = qi P' • (5.7.1) 

The conduction part should include all the currents not included in con .. 

vection. 

For a ful.ly ionized gas, the conduction current C8Jl be shown to be 

given approximately by the following relationship if inertia effect of the 

electrons is neglected. 

+ - p(e),J 
ne I 

(5.7.2). 
1 

where ~ is the mean electron collision period, 
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m(e) is the mass of a single electron, 

p(e) is the mean electron pressure, 

n is the number of electrons per unit volume, and 

ne2 1' 
CJ = -- is called the conductivity. 

m(e) 

In most of the applications, the terms 

e1' 

m(e) 

are small and can be neglected. The resulting expression when the electron 

pressure gradient and Hall effect are neglected for Ji becomes 

J1 = "[El + '!jk qj Bk] . 

(5.7.3) can be shown to be true for other types of conducting fluid media 

as well if secondary effects are neglected. It is called the Ohm's law. 

(5.7.3) can be rewritten as 

where 

is the effective electric field seen by the moving medium. The term 

€ijk qj Bk is the Lorentz contribution of an apparent electric field 

due to the motion of the medium. 

• 
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The term 

e'f 

m{e) 

becomes important when the spiraling of the electrons about the linea of 

meqnetic field becomes important. It contributes a component of the 

current in a direction normal to Ei • This current is called the Ball 

current. 
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CHAPl'ER VI - FORMULATION OF MAGNFrO~FLUlD MECHANICS 

601. Introduction 

In discussing the continuity equation, the equations of motion, and 

the first law of thermodynamics governing the motion of a fluid medium in 

Chapter IV ~ we introduced a total of fifteen unknown field func-:'ions ~ p, 

qi' f.p a .. , uJ c. In Chapter V, the classical nonrelativistic theory of 
~ ~J 

electromagnetic interaction was formulated. This involves the introd.uct.ion 

of fourteen additional unknowns, Ei , Bi , J i' q" Ai ~ p through the fourteen 

'* equations given by the fundamental postulates of electromagnetism. 

where 

*' 

(a) = , 

(b) := , 
-

(c) J 
p av 
r 

(d) Ai 
\.10 = 
4'JT 

or; 
(e) + J

i 
i _. 0 , 

at ' 

(g) 

(h) 

(i) 

p 

:= J. (x', x' , x! ; t, 
~ ~ .2 3 

, 

Renumbered for ease of reference, 

, 

r 
) 

(6.1.1) 

• 

,. 
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'!'be concept of a Lorentz or ponderomotive force fi vas also introduced. 

(6.1.2 ) 

The purpose of this chapter is to formulate a continuum theory' of 

magneto-fluid flow by combining the classical concepts of ordinary fluid 

mechanics and the concepts of electromagnetic interaction. 

We shall assume that the electrically" conducting fluid medium is 

neutrally" charged. This means that the limit of observation of the volu-

metric elements of the fluid medium should be large enough such that the 

A 
net charge density p vanishes every"Where in the medium. 

A P ;::: p + 'P 
+ - = 0 (6.1.3) 

This assumption in the flow of ionized gases and conducting liquids is 

usual~ realized and does not contribute a serious restriction on the theory 

to be formulated in this chapter. 

Equation (6.1.2) implies that the convection current in the fluid 

medium vanishes; i.e., 

J i (conve.ction) "" 'P' ~ = 0 • (6.1.1 .. ) 

From the continuity equation of charges, 

- + (6.1.le) 

and Eq. (6.1.2), we know that the conduction current or the total current 

J
i 

is always solenoidal. 
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~Ei 
This means that the Maxwell's vacuum displacement current 6

0 
~, for a 

neutrall.y' charged fluid medium vanishes. This results in some simplif!,-

cation in the theory of magneto-fluid flow. 

6.2. Ponderomoti va or wrentz Force 

In a neutra~ charged conducting fluid medium, the only body force of 

electromagnetic origin is the so-calledponderomotive or Lorentz force f
i

, 

given bY' one of the equations of the Biot-Savart law, 

(6.1.2 ) 

The magnetic induction field Bk in Eq. (6.1.2) is related to Ei , J
i

, 

1;', ., Ai bY' the fundamental postulates [Eq. (6.1.1)] and through the veloci­

tY' components ~. 

The fundamental postulates [Eq. (6.1.1)] can be reduced to a set of 

interlocking equations as shown in Chapter V. For an electri~ con-

* ducting, neutra~ charged medium, these interlocking equations become: 

~ll's equations 

(a) Ei,i = 0 , 

(mi 
= - - , 

Ot 

Ohm's law 

* Renumbered for ease of reference. 

• 
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Continuity equation for charges 

(f) Ji,i = 0 (6.2.2) 

These relations are not entirely independent of each other. Bawever, they 

form a convenient set of equations in formulating problems of magneto-fluid 

flow. 

6.3. Separation of the Stress Tensor, the Kinetic Eg,uation of state, and 

the Newtonian Fluid 

It is always possible to sep1.rat.e the stress tensor a i.1 in terms of 

a scalar function p and a new tensor 1'i.1 as follows: 

where 5i .1 is the "Kronecker delta ll
• 

We are at liberty to choose the magnitude of the scalar function p 

(the fluid pressure). For an incompressible isotropic flUid, it can be 

shown that the magnitude of p has to be equal to the nega.tive of one-third 

of the algebraic sum of the normal components of the stress tensor, a i.1 • 

For a compressible fluid, one criterion to determine this separation of 

the stress tensor, (11.1 1s to assume that the scalar function p will take 

on the same thermo~c role, whether dynamic motion exists or not in 

the fluid, i.e., there exists a kinetic equation of state such that 

F (p, p, T) = 0 • 
1 

(6-3.2) 

Another criterion for the sep1.ration of the stress tensor a
iJ 

for a. 

compressible fluid. is to a.ssume that the dissip1.tion in the viscous fluid 

due to a dynamic process is contributed entirely by the new stress tensor 



1'ij (the viscous stress tensor). UsiDg the kinetic theo17 ot gases, it can 

be shown that tor a monatomic gas, these two criteria imply that the scalar 

function p again has to be equal to the negative ot one-third ot the alge-

braic sum ot the normal components of the stress tensor aij , 

1 
p ... - - a • 

3 ii 

Equation (6.3.3) determines the magnitude ot the tluid pressure p for an 

incompressible isotropic tluid and a monatomic gas. It implies that 

For other types ot gases, however, this is not exactly true. 

Inasmuch as we have assumed that the viscous stress tensor "ij contri­

buted the diSSipation during a dynamic process of the viscous fluid, it is 

logioal tor us to relate the components otthe viscous stress tensor "ij to 

the velocity gradients ~, j • We note that the velocity gradients ~, .1 can 

be separated into one symmetric tensor Eij and one anti-symmetric tensor 

(J)ij as tollows: 

where 

1 

Eij ... 2 (~,j + qj,i) (6.3.6) 

is called the velocity strain tensor, and 

1 
(J)ij ... - (qj i - ~ .1) 

. 2 ' , 
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is ealled the vorticity tensor. 

The vorticity tensor (l)ij can be shown to be a measure of the rate of 

rigid bo~ rotation of the fluid elements and the velocity stra1n tensor 

E:ij is a measure of the distortion of the fluid elements. Therefore, it 

is logical for us to relate the viscous stress tensor 'Tij in terms of the 

velocity strain tensor E:ij only. If the relationship between 'Tij and E:ij 

is linear then the fluid is called a Newtonian fluid. 

(6.3.8 ) 

where the components of the tensor Aijk,t are constants. Equation (603.8) 

implies that when all the components of ~ are zero, the vi~cous stress 

tensor vanishes. Both the viscous stress tensor 'Tij and the velocity strain 

tensor E:
ij 

are symmetrical. This means that 

For an isotropic medium, the tensor Aijkt should be invariant under 

rotations and reflections of the coordinate system. Combining this re­

striction with Eq. (6.3.9), we can show that Aijkt can be expressed in 

terms of two scalar constants ~ and ~. 

(6.3.U) 

for an isotropic Newtonian fluid. 

Therefore I for an isotropic Newtonian fluid, the relationship betwel!n 

the viscous stress tensor and the velocity strain tensor is 

(6.3.12) 
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or 

or 

Experimental evidence has shown that the constant ~ is alwa;ys positive and 

real. It is called the "first coefficient of viscosity." 

Contracting Eq. (6.3.14), we obtain, 

~ii = (3~ + ~) ~ i • 
" 

The constant (3~ + ~) is called the "bulk (or second) coefficient of 

viscosity." For an in~ressible fluid, 

~,i = 0 • (6.3.16) 

This means that 

~ii = 0 , (6.3.4) 

and therefore 

1 
p ... 0'11 , 

3 
(6.3.3) 

for an isotropic incompressible fluid. For a monatomic gas, ~11 vanishes 

for another reason. Therefore, we deduce that 

2 
~ = - -~ , (6.3.17) 

3 

• 
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for a monatomic gas. 

In general, however, li:q. (6.3.17) does not hold exact17 for an incom­

pressible fluid or a pol.yatomic gas. 

SUIIID8.riz1ng, we can express the stress tensor CJ'iJ in tel'll8 of the fluid 

pressure p and the veloCity gradients ~,J for an isotropic Newtonian fluid 

a8 tollows: 

For a fluid which satisfies the condition, 

1'11 = 0 , (6.3.4) 

Equation (6.3.18) becomes 

If the fluid 1s incompressible, (p = 0), then the continuity equation for 

fluid motion states that 

(6.3.16) 

Therefore, Eq. (6.3.18) or Eq. (6.3.19) becomes 

(6.3.20) 

for an incompressible, isotropic, Newtonian fluid. 

6.4. Fourier LaV of Heat Conduction 

The heat flux b1 due to a temperature gradient T,i is called ~ 

conduction. 
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It is not hard to show that the heat transfer due to heat conduction, c, 

into a fluid element peruni t time per unit volume 1s 

c ... (6.4.1) 

The heat flux bi is usually related to the temperature gradient by 

the following expression: 

bi = - k T,i ' (6.4.2) 

where k = constant is called the "heat-conductivity". Equation (6.4.2) is 

called the Fourier law of heat conduction. 

6.5. Joule Beati!1S 

dw The work done dt by the electromagnetic field on a neutrally charged, 

conducting fluid element per unit volume per unit time is obviously 

(6.5.1) 

where 

(6.2.2e) 

Therefore, 

- = 
dt a 

The second term on the righthand side of Eq. (6.5.2) we notice is the 

work done by the ponderomoti ve force f i • The first term on the right..hand 

side of Eq. (6.5.2) is a dissipative term (non-negative term) which can 

• 



be considered as a heat transfer term due to electromagnetic interaction. 

~ This non-nepti ve term. a is usually called Joule heating. 

p ! (Joule heating) = 

Tbe heat transfer term. c in the first law of thermodynamics can 

therefore be written as 

where 

-c == 

c==c+c+c' , 

1 
bi,i is due to conduction, 

p 

~ 
~ == - is due to Joule heating, and 

pU 

c' is the heat transfer due to radiation. 

6.6. Caloric Eg,uation of state 

(6.5.4) 

The interDal energy per unit mass u as appeared in· the first law of' 

thel"llOd.yDam1cs is usually assumed to be related to the fluid density p, 

and the absolute temperature T.. through the Caloric eg,uation of state, 

F (u, p, T) == 0 
2 

(6.6.1) 

The exact form. of Eq. (6.6.1) depends on the kinetic equation of state, 

the second law of thermodynamics, and the specific heat at constant volume. 

This will be discussed in detail in Chapter VII. 
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6.1. Conservative Forces 
= 

Body forces fi of non-electromagnetic origin are usually conservative 

forces derivable from a scalar function of position 

where 

= 
fi = - 0 i ' , 

o = 0 (x , x , x ) 
l. 2 3 

is called the force potential which is usually known in advance. The body 

force term in the equations of motion or the first law of thermodynamics 

can therefore be written as 

, (6.1.3) 

where 

= 
fi = - O,i are known conservative forces, and 

ri are other body forces not accounted for 1n 1i 
= 

6.8. Formulation of MagnetO-Fluid Flow 

In the previous discussions, we have introduced no less than 48 
= 

equations governing the 48 unknown field functions: p, qi' f i' 1i' f i' 

aij , p, ~ij' u, T, Ei , Bi , J i , " Ai'~' c, c, c, bi • Combining these 

equations we obtain a set of equations governing the motion of an electri-

cally conducting, neutrally charged, isotropic, Newtonian fluid medium 

wi thin an externally applied magnetic field. The interlocking and the 

dependent characteristics of the electromagnetic equations cause an 

• 



apparent excess ot the number of equations over the unknowns. However, 

this set ot equations is one of the most convenient sets of equations 

80verning magneto-:fluid flow. 

- + at 

d~ 
p- -:.:: ~.p +T -pU 

dt . ,i .1:I.,j ... 

c) 

J £..! 4· €t· k ' I l.!. ., . ~, 

First law of t~rm()d~2.~:.f.;. 

du d (1) 1 1 
--lL.. - 1. C 

, 
-+ J? - - 1'Ji q ,~ + + c 
dt dt i,j I ,1 

p p . 

Maxwell's E9,uaUons 

(a) Ei,i .- 0 , 

(b) Di i = a , , 
OBi 

(c) EiJk Ek, j = --
3t 

(d) E B iJk k,.l = JJ.O J i 

Ohm's law 

(6,B,1) 

(6. B.2) 
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Continuity equation of charges 

Fourier law of beat conduction 

b i ... - kT 
,i 

Newtonian viscous law for an isotropic fluid 

Kinetic equation· of state 

F (p, p, T) = 0 . 
1 

Caloric equation of state 

F (u, p, T) = 0 
2 

Joule Beatin,g 

= c = 
pC1 

(6.2.2) 

(6.4.2) 

(6.3.2) 

(6.6.1) 

(6.5.3) 

In fOl"llulating the theory, we also introduced six constants .... 0' 60, C1, 

A, .... , and k. The constants, "60, .... 0'" are given for a given set of electro­

magnetic units. "C1, A, .... , and k" are either detel"llined from experiments 

or based on the results of statistical mechanics. The fluid medium is 

assumed to be isotropic, Newtonian and follows the Fourier heat conduction 

law. The Ohm's law of the fOTlll of ]!:q. (6.2.2e) implies that the Hall 

current is neglected in the discussion. The unknown field functions are 

p, ~, p, 'fiJ, Ei , Bi , J i , u, T, bi.' ~. 



CHAPl.'ER VII - ALTERNATIVE FORMUIATIONS AND 

SECOND lAW OF THERMODYNAMICS 

7.1. Introduction 

There are several alternative forms of the formulation of magneto .. 

fluid flow. For example, the ponderomoti ve force can be easily expressed 

in terms of an equivalent tensor of the second rank called the Maxwell's 

stress tensor. The motion of the magnetic induction field can be described 

in terms of a vector equation called the induction equation. It is also 

possible to define a specific entropy per unit mass such that the first 

law and the second law of thermodynamics can be expressed in a single 

equation. 

7.2. Maxwell's stress Tensor 

The ponderomotive or Lorentz force 

(6.l.2) 

can be combined with one of the equations of the Maxwell's laws 

(6.2.2d) 

such that this force is expressed in terms of the magnetic induction field 

1 = -J.10 
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= !... (Bi,k ~ - Bk,i ~) IlO 

1 (~) 1 
Bi,k Bk = - IlO '2 ,i + -

IlO 
(7.2.1) 

But, 

= 0 . (6.2.2b) 

Therefore, Eq. (7.2.1) becomes 

, (7.2.2) 

or 

* * * where O'ij = - P 8ij + 'fij , (7.2.4) 

* 
~ 

p = , 
2Ilo 

* Bi Bk 
'fij = 

IlO 

* "O'ij" is called the Maxwell's stress tensor. 

* B2 lent magnetic pressure p = 2 and a tension 
IlO 

It is composed of an equi va­
B2 
--- along the lines of 
IlO 

force. 

Using Eq. (7.2.3), the equations of motion for the fluid medium can 

be written as 
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where 

t'i represents other body forces. 

1.3. The "Induction !9.uation" 

From the Ohm's law, we have 

Therefore, 
1 

Ei.1k ~,.1 = a €i.1k Jk,.1 - EiJk Ekrs (~ Bs) ,.1 . (1.3.2) 

Substituting Eq. (1.3.2) into one of the Maxwell's equa:t;ions 

dB
i 

E E = - ---iJk k,J dt' 

we obtain 

dB
i 

_ 

dt 

But from Eq. (6.2.2d) 

Therefore, Eq. (1.3.3) becomes 

E E B iJk krs s,rJ 

(6.2.2c) 
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or, 

or, 

1 
(~Bj),j + (qj Bi),,'to J.I. a (Dj,ij - Bi,.1.1) = o. (7.3.6) 

o 

But, 

= 0 . (6.2.2b) 

Therefore, Eq. (7.3.6) becomes 

o . 

Equation (7.3.7) is called the induction equation, which is sometimes quite 

useful in the study of magneto-flu1(l flow. 

7.4. Second. law of Thermodynamics and Entropy Production 

The first law of thermodynamics 

can be written as 

du 

dt 

du 1 

~ = ; a ji ~,j + c 

+ p 

dt 

1 

= - l' .11 ~,j + c , 
p 

(~.3.7) 

(7.~.1) 
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where we have separated the stress tensor according to the separation 

equation 

(6.3.1) 

The viscous stress tensor is assumed to contribute the material dissi-

pation in the medium. For a reversible process the vis~ous stress tensor 

must not be present in the fluid medium. Therefore, for a reversible 

process 

du 
+ p 

dt 
::: 

dt 

db(rev.) 

dt 
, 

where we have called the time rate of heat transferred reversibly into the 
db 

medium 1~v,), Or in differential form (following the motion of the 

particles along) 

where the ~ on the symbol db indicates that it is not an exact differ­

ential. Equation (1.4.3) is identical with the differential form of the 

first law of thermodynamics for a fluid element undergoing an equilibrium 

thermodynamic process. The second law of thermodynamics for reversible 

~rocesses states that 

crb du + pd(~) 
(rev.) ds = = , (1.4.4) 
T T 

where 

s = s (p, p) , 
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is a thermodynamic variable defined. by Eq. (1.4.4) called the specific 

entropy per unit mass. 

If we consider the specific internal energz u to be given by the 

caloric equation of state 

or 

where 

F (~, p, T) = 0 , 
2 

u = u (p, T) 

= u (v, T) , 

1 
v = 

p 

is the specific volume per mass; then from Eq. (1.4.4), we obtain 

ds = 
~ dT + (p + ~) dv 

T 

Since ds is a perfect differential, we know that 

o (lOu) 0 [lOu] - - - = - - (p + ~) I 

OV TOT M T 

or 

= T - P . 

Therefore, 

(6.6.1) 

(1.4.6) 

(1.4.8) 

(1.4.10) 
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du =C:} dT + C:)T dv 

=C:)v dv + ~: - ~ dv (7.4.11) 

This means that the specific energy per unit mass u is defined if the 

kinetic equation of state 

(6.3.2) 

is given and if the specific heat for constant volume 

( .... (}U) 
c = -
v '(}T v 

is known. 

Using the definition of specific entropy in Eq.(7.4.8), Eq. (7.4.2) 

becomes 

ds 
T- = 

dt 

du 

dt 
+ p--

dt 

This is the combined first and second law of thermodynamics for a reversible 

process. 

For a fluid process with viscous dissipation and irreversible heat 

-transfer in magneto-fluid mechanics, the first law of thermodynamics given 

in Eq. (6.8.2) should be used 

du 1 1 
-+p-­ == (6.8.2) 
dt dt 
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Neglecting the radiation heat transfer' and using Eqs. (6.5.3) and (7.4.8), 

we obtain 

ds 1 1 
T = TJi ~,J + 

p p 0 
- - (7~4.14) 

dt p 

It the net heat transfer due to heat conduction aDd Joule heating vanishes, 

then 

ds 1 
T = 

dt 

But the second law of thermodYD!!ics for irreversible processe~ states 

that 

ds 
> 0 

dt 

for an adiabatic process (c = 0), Therefore, Eqs. (7.4.15) and (7.4.16) 

state that 

1 

v = T (.) l' ji ~,J 

is always non-negative. "v" is called the viscous dissipation funct1on. 

Combining Eqs. (7.4.14) and (7. 4.17), we obtain 

ds .f2 bi i 
= v + ...:::.z.;::. (7.4.18) 

dt Tpo Tp 

or, 

ds : (bi ) 
~ b

i 
T
,i + = v + 

dt p T ,i Top P T2 
(7.4.19) 
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Equation (7.4.19) is the combined statement of the first and second laws 

of thermodynamics for irreversible processes. Since the heat flux bi 

is always in the opposite direction of T i' the terms on the right of , 
Eq. (7.4.19) are all non-negative. For a flow process where the co-moving 

rate of change of the specific entroPY' per unit time per unit mass of a 

fluid element vanishes, i.e. 

ds 
= 0 • , (7.4.20) 

dt 

there is a net outf1ux of entropy flow per unit time per unit mass from 

the fluid element 

:(bi ) = v + ;r. 
pT.,i Tap 

(7.4.21) 

which is always non-negative. This outf1ux of entroPY' must somehow be 

produced within the fluid element. !: is called the entropy production. 

The entropy production which characterizes irreversible magneto-fluid flow 

is due to viscous dissipation, Joule heating, and irreversible heat con-

duction. 
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CHAPl'ER VIII - SIMIIARITY PARAMIln'ERS 

OF MAGNETO-FLUID FIlJW 

8.1. Introduction 

In this chapter, we shall compare the relative magnitudes of the terms 

appearing in the governing equations of magneto-fluid mechanics in terms of 

the so-called dimensionless similarity parameters. 

When a particular term or set of terms in the governing equations 

appears to contribute negligible effects on a given problem in magneto-

fluid flow, this term or set of terms can be deleted from the governing 

equations and thereby simplifying the analysis of the given problem. The 

same idea applies in experimental investigations of magneto-fluid flow. 

When an experiment is simulated in the laboratory, it will only be nec-

essary to keep those similarity parameters which arose from the more im-

portant terms in the governing equations alike. 

8.2. Nondimensionalized Equations and Similarity Parameters for Magneto-

Fluid Flow with a Unique p-p-relationship 

Let us first consider the simple case of magneto-fluid flow where the 

fluid pressure p and the fluid density p are uniquely related j 

p = p (p) (8,2.1) 

In addition, let us also assume that 

(b) Tij = ). t)ij ~)lk + j.1 (%,J + qJ,i) , 

(c) ). 
2 

=: ~ - j.1 , 
3 

(d) fi 
1 

Eijk J j Bk and == , 
p 

(e) J i = o [Ei + EiJk qj Bk] , 
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(f) = 0 (8.2.2) 

The set of equations governing this type of magneto-fluid flow is 

given as follows: 

(a) Continuitl E~uation 

(p qj) ,j = 0 , 

(b) E~uations of Motion 

1 
p qj qi,j == -p + j.1 ( 3 qj,ji + qi,jj) ,i 

- ~o [cr ),1 - BJ B1,J ] , 

(c) Induction Equation 

(qj Bi ~ qi Bj),j 
1 

= Bi,jj .. j.10 C1 

(d) Solenoidal Propertl of Bi 

Bi i = 0 , , (8.2.3) 

and 

p = p (p) (8.2.1) 

We note that due to the assumption of the existence of a unique 

p-p-relationship, the fir~t law of thermodynamics and the equations of 

state are not inCluded in the set of equations governing the fluid motion. 

Let us now choose the following set of dimensionless variables: 

A. 
p 

P :: -;;,- , 
p 

~ = 
p 

p 



.... 
where p 

.... 
q 

.... 
B 

.... 
X 

~ 
~ 

= , .... 
q 

A Bi 
Bi = - , .... 

B 

A Xi 
xi = , 

IV 

X 
(8.2.4) 

is a certain constant characteristic pressure in the flow, 

is a certain constant characteristic velocity in the flow, 

is a certain constant characteristic magnetic induction 
field, and 

is a certain constant characteristic length. 

Transforming Eq. (8.2.3) by Eq. (8.2.4), we obtain 

where 

(a) (p qj),S = 0, 

(b) qj qi,S' = - ~ C (p) i',l' + * [ ~ ~j,"l + ~'JsJ 

-;2 [ (12),1 -i J ~i,1 ] , 

(c) 

(d) 

(e) ; = 'P' (6') 
.... 
p 

............ 

is called the characteristic 12ressure . 
coefficient, 

(8.2.5) 

R = 
p q x 

is called the characteristic Reynolds number, 
Il 

, 
is called the characteristic Alfven number, and 
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...... = ~O a q x is called the characteristic magnetic 
Reynolds number. 

From elementary gas dynamics, we know that the ratio 

p 

is a measure of certain charact.eristic sonic velocity in the flow. There-

fore, the characteristic pressure coefficient C(p) can be visualized as 

the measure of the reciprocal of the square of certain characteristic Mach 

number M in the flow, i.e., 

(8.2.6) 

As we shall see later in Chapter IX, the value 

P flO 

is equal to the square of the speed of propagation of nondissipat:l ve 

magneto~fluid waves in a conducting medium. TherE:fore, the Alfv'en number 

is the ratio of the magnitudes of. the characteristic: flow velocity to the 

characteristic Alrv'en wave velocity. 

For magneto=fluid flows satisfying the restrictions given by Eqs. 

(8.2.1) and (8.2.2) to be dynamically similar, it is neC!sssary for t.hem to 

have the same characteristic values of M, R, A, and R{m) in addition to 

the requirement of having identical dimensionless oolmdary conditions. 

These characteristic numbers are usually called the similarity parameters. 

In practical problems of mggneto=flu1d flow, these characteristic 

numbers have different relative magnitudes. It is usually only necessary 

to retain those terms wh.ich are predominating in the governing equations. 
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Some of the possible types of magneto-fluid flow categorized according to 

the magnitudes of R and Rem) are listed as followsl 

1. 

2. 

3. 

4. 

Inviscid, magnetic-predominating flow: R ... GO , Rem) « 1. 

Inviscid, magnetic boundary layer flow: R'" GO , Rem) » 1. 

Viscous and magnetic boundary layer flow: R» 1, R(m) » 1. 

Viscous and magnetic ... predom1nating flow: R« 1,R(m) « 1. 

There is another dimensionless similarity parameter characterizing the 

relative magnitudes of the magnetic and viscous forces in magneto-fluid 

flow. It can be obtained from the equations of motion by expressing the 

ponderomoti ve force in terms of the conductivity f1 using the Ohm I s law and 

by comparing this term with the viscous term. It is called the Hartmann 

number, and defined as follows: 

(8.2.7) 

'A 

From Eq. (8.2.7), we know that H is not a new independent similarity 

parameter. However, it is a very convenient parameter to use when com-

paring the viscous and magnetic forces in magneto-fluid flow if the fluid 

is not perfectly conducting. 

8.3. Additional Similarity Parameters Arising from the First Law of 

Thermodynamics 

If there does not exist a unique piP-relationship, then the magneto-

fluid flow should also be governed by the first law of thermodynamics and 

the equations of state. For an ideal gas, it will not be, hard to show that 

the additional similarity parameters introduced for such type of flow are 

the Prand tl number 
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C(p) ~ 
P = 

k 
, (8.3.1) 

where c(p) is the specific heat per unit mass for constant prelJsure, and 

the relative energy parameter 

(8.3.2) 
c(p) T 

The Prandtl number P characterizes the relative magnitudes of viscous 

dissipation and heat conduction. The relative energy parameter t, as the 

name implies, characterizes the relative magnitudes of the kinetic energy 

per unit mass to the specific enthalpy h of the fluid defined by 

P 
h = u + - • 

p 

The characteristic parameter J indicating the relative magnitudes of 

Joule heating and heat conduction can be expressed in terms of the Afven 

number and the magnetic Reynolds number as follows: 

1 

2 
A R(m) 

, (8.3.4) 

and is not an independent pl.rameter. 

Therefore, a complete set of similarity parameters for magneto-fluid 

flow can be chosen as follows: M, R, A, R(m)1 P, and l. Another convenient 

set is: M, R, A, H, P, and t. 
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CHAP.rER IX - ALFVEN WAVES·· 

9.1. Introduction 

It is possible to deduce a propasation velocity for small disturbances 

in an incompressible, inV1scid, and perfectly conducting flu1d in the pres-

ence of a uniform magnetic field in analogy with the discussion of sonic 

disturbances in an ordinary compressible inviscid flu1d medium. This type 

of wave propasation is called an Alf~n wave. 

9.2. Governing Equations for Nondiss:l.pa.tive, Incompressible MagnetO-Fluid 

Flow 

Fbr a perfectly conducting flu1d, the Ohm's law becomes 

Ei = -Eijk qj Bk ' 

and the current is determined from Eq. (6.2.2e) 

1 
J = - E B i ~O iJk k,J 

(9.2.1) 

Therefore, the complete set of equations for nondissipative, in-

compressible magneto-fluid f'low in the absence of' other body forces is: 

(b) 0 Bi = 
at 

(c) qi,i = 0 , 

(d) Bi,i = 0 

, 

(9.2.3) 

We note that Eqa. (9.2.3c, d) are added restrictions on the field 

vectors qi' Bi which are governed by Eqs. (9.2.3a, b). 



9.3. Small Perturbation Equations from Equilibrium 

Let us assume that the fluid is essentially in equilibrium with a 

uniform magnetic induction field, Bi(O). Consider small disturbances in 

the fluid such that 

(a) 
,.., 

~ == €~ , 

Bi(O) 
,.., 

(b) Bi = + € Bi , 
(c) p(O) 

,.., 
p = + € P , 

(d) € « 1 (9.3.1) 

where Bi(O), p(O) are constants. 

Inserting Eq. (9.3.1) into Eq. (9.2.3) and combining, we obtain to 

the lowest order of E, 

(a) 
0"" ~ 

p-
ot 

1 
, 

(b) (9.3.2) 

These are the small perturbation equations governing wave propagations 

in a nondissipative medium which is initially at rest. 

9.4. Reduction to the Wave Equation 

From Eq. (9.3.2a), we know that 

However, we know that for the fluid region outside of the applied uniform 

magnetic induction fleld,B.(O), 
~ 

"'" = P(outside) 

= 0 (9.'+.2) 
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Therefore, from the uniqueness theorem for the solution of a !aplace 

equation, we know that 

everywhere in the fluid. Therefore, Eq. (9.3.2&) becOMs, 

~ ~ I 
.. ---- Bj(O) Bi j , 

~ p "'0 ' 

Equations (9.3.2b) and (9.4.4) can be combined, aDd we obtain two 

second order linear partial differential equations govering the small per-

'" '" turbations ~ and Bi as follows: 

(a) 
~2~ 1 

Bj(O) ~(O)~,Jk = , 
~2 

P "'0 

~2' '" 

(b) 
Bi 1 

Bj(O) ~(O) Bi,jk (9.4.5) .. . 
~E 

P "'0 

callIng the unit vector In the positive direction of the applied 

magnetIc Induction :field bi , Eq. (9.4.5). becomes 

~2 ~ B2(0) ~2 ~ 
(a) == 

~t2 ~b~ 
, 

p "'0 

(b) 
B2(0) ~2 '" Bi (9.4.6) 

p "'0 
~b2 

= 

These are the standard one-dimensional wave equations. The solutions 

of these equation are 

Ca) ~. == a Cb • At) + ~ (b + At) 1 

Cb) ii = "I (b - At) + e ('Q + At) 1 
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where a, ~, 1, and 6 are arbitrary functions and 

, 
is called the Alfven velocity. The propagation is along the direction of 

the applied magnetic induction field Bi(O). 
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CHAPrER X - STEADY PARALLEL mCGfPRESSIBIB 

MAGNETO-FT.mD FLOW 

10. L Governing Equations 

One of the simplest examples in magneto-fluid flow is the steady 

parallel flow of an incompressible, electrically conducting, Newtonian 

fluid within two parallel, infinite, insulating flat plates in the absence 

of other body forces. Let us choose a set of right-handed Cartesian, co­

ordinate axes Xi' such that the x1 -direction is in the direction of flow 

and the xa-direction is in the positive direction of the- applied uniform 

magnetic induction field. Due to the steady parallel flow assumption, all 

dependent variables are functions of x2 only with the exception of the 

fluid pressure p, which can have a constant gradient in'the x1 -direction. 

The governing equations written explicitly for this case are: 

(a) 

(b) 

(c) 

Cd) 

(e) 

Continuity Equation 

d q2 
= 0 , 

Equations of Motion 

d2 q 
]. 

P,a = 

P,s = 

dx 2 
2 

Js B1 

J1 Ba 

- J1 Bs 

- J2 B1 

Maxwell's Equations 

dEa 
0 = , 

dx 
2 

, 

, 

-, 
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dE 
(t) --ii 

== 0 , 
dx

2 

0 == 0 , 
dE1 - I: 0 , 
dx 

2 

dB 
(g) --& == 0 , 

dx 
2 

dB 
(h) -.§. = 1.10 J 1 J 

dx 
2 

0 = 1.10 J a , 
dB 

.--..6.. 
dx 

2 

Ohm's law 

(i) J 1 • a E1 ' 

J
2 

= a (I • q B) , 
. 2 1:5 

J == a (I - q B) , 
:3 :5 1 2 

Continuitllquation tor Cbarses 

dJ 
(3) --& == 0 . 

dx 
2 

10.2. Reduction of Equations and. tJn,knowns 

We DOte that Eq. (10.1.la.) is automatica.ll7 satisfied, since 

q1 == q1 (xa) I 

~ == 0 , 

'\. III 0 • 

(10.1.1) 

(10.1.2) 
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From Eq. (lO.l.lj), we know that 

J = constant 
2 

But the flat plates are insulated. Therefore, we conclude that 

(10.2.2) 

(10.2.3) 

everywhere in the flow region. This result is consistent with one of the 

Maxwell equations (ll.l.lh). 

From Eq. (lO.l.lg), we know that 

B2 = constant , 

the strength of the applied magnetic induction field. 

Since 

p = 0 , ,s 

we deduced in conjunction with Eqs. (lO.l.ld) and (10.2.3), that 

Therefore, Eq. (lO.l.lc) becomes 

p = J B 
,2 S 1 

From Eq. (lO.l.lh), we know that 

BS = constant = 0 . 

(10.2.4) 

(10.2.5) 

(10.2.6) 

(10.2.7) 

(10.2.8) 

Therefore, we deduce from Eqs. (10.1.11), (10.2.6), and (10.2.3) that 

From Eq. (lO.l.lf), we also know that 

ES = constant 

(10.2.9) 

(10.2.10) 

(10.2.11) 
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Sumarizing, we have the following set of equations* still to be 

satisfied. They are 
d2q 

(a) 1 
J B P,1 = J.L - - , 

dx 2 S .2 
2 

(b) P,2 = Js B1 , 

(c) 
dB1 

J.LO Js -- = , 
dx 

.2 

(d) a [Es + q1 B2 ] = J (10.2.12) s 

In these equations, p , J.L, J.LO' B and E are constants. Our task 
,1 2 s 

is to solve these equations simultaneously, together with the boundary 

conditions for the dependent variables: p, q1' JS1 and B1• 

10.3. Solution of the Problem 

Equations (10.2.12) are linear equations, and the solution of these 

equations is readily obtained with the aid of the given boundary conditions. 

Let us substitute Eq. (10.2.12d) into Eq. (10.2.l2a), 

d.2q 
p = J.L ---1:. - a B (E + q B) 
,1 dx .2 .2 S 1 2 

.2 

(10.3.1) 

This is a second order ordinary differential equation for the single vari-

able q1' The boundary conditions for q are 
1 

q = 0 at x = fa , 
. .2 

(10.3.2) 

where 2a is the distance between the two plates and we have put the origin 

of the Xi-axis midway between the two plates. The solution of Eq. (10.3.1) 

subject to the boundary conditions [Eq. (10.3.2)] is 

* Renumbered for convenience. 
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1'\ 

P.l + a Ba Is ( Hz. 

·9 • 
cosh a-

q 
a B a cosh·1f 

, 
a 

where 

is the lJar't-.Dn number detined in the previous chapter. 

The current density 3s can be easily obtained by inseriiDg the result 

ot Eq. (10.3.3) into Iq. (10.2.12d): 
ix 

P,l + a Ba Is (COSh ~ ) 
38 • a I.s + . L:l - 1 , 

B;o coshH 

BQ.t, tna Eq. (10.2.12c), 

':.. III '1IoJ 3s dx. + constant • 

Theretore, 

( .p 1 + a B 13) '1 III '110 a I - I a x s B 2 
2 

+ C • 

'!'he constant ot intesration C·and the value ot Bs are evaluated f'roIII. 

. ,the 'boundary conditions: 

Theretore , 

C ::I 0, and 

B = 3 

',,1 <B co'th B' - 1) 

(10.3.8) 
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This means that 

J.&o p a [X B = 11 ...! _ 
1 B a 

2 

A 

sinh ! x2 
/\ 

sinh H 
] . (10.3.10) 

The pressure p can be evaluated as a function of H1 by inserting 

Eq. (10.2.12c) into Eq. (lO.2.12b) and integrating with respect to x
2

• 

The result is 

p(O) + P xl 
,1 

, (10.3.11) 

where p(O) is the pressure at the origin if the induced magentic field B1 

is not present. "B1
2j2 IlO" can be thought of as an equivalent ;2ressure 

in the opposite direction of the fluid flow. 

10.4. Velocity Profiles 

The velocIty profIles of this type of flow are predominately in­
/' 

fluenced by the Hartmann number H,'Which is a measure ot the relative 

~gnitudes of the viscosity force and the induced drag force •. The in-

duced drag force tends to flatten the velocity protile, Fig. 10.4.1. FOr 
A 

large values of H, the velocity is nearly constant except at the boundary 

surfaces where the viscosity forces still predominate. 
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... __ .... I111!!!111_. ____ ... _&L_ .. IDS_ulatill8 plate 

-.Q.- ... q 
1 

Insulating plate 

/\ A ~ A H(l) < H(2) < H(3) < H(4) 

Fig. 10.4.1. Velocity Profiles of Steady, 
Parallel, Incompressible :Magneto-Fluid Flow Be­
tween Two Parallel Insulating Plates under the 
Action of an Applied Magnetic Field Normal to 
the Surfaces of the Plates. 
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CHAPrER XI - MAGNETO-FLUID DYNAMIC SHOCK WAVES 

11.1. Introduction 

Analogous to ordinary compressible fluid flow, finite discontinuities 

of flow properties can occur across narrow transition zones in a nearly 

nondissipative magneto-fluid flow. Within these narrow transition zones, 

the gradients of the flow velocity, temperature, and magnetic induction 

field become extremely large. Therefore, the fluid medium should be con-

sidered as a viSCOUS, heat-conducting, dissipative material within these 

narrow transition zones. Such a transItion zone in magneto-fluid now is 

called a magneto-fluid dynamiC shock· wave. 

In this chapter, we shall derive the jump conditions (or shock con­

ditions) for the flow properties and magnetic properties across such a 

shock wave in magneto-fluid flow. The derivation is restricted to steady 

flow conditions. These results can be easily generalized to include un-

steady flow conditions. 

1l.2 Conservative Forms of the Governing Eiuations of Magneto-Fluid Flow 

It will not be hard to show that the continuity equation, the equations 

of motion, the first law of thermodynamics, the induction equation, and the 

solenoidal condition of the magnetic induction field can be written in the 

following alternative forms for steady magneto-fluid flow in the absence of 

other body forces. 

Continuity Equation 

(a) (p ~) i = 0 , , 

(b) 
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First Law of Thermodynamics 

Induction Equat:lon 

Solenoidal Property of Bi 

(e) Bi,i = 0 • (11.2.1) 

Equations (11.2.1&, b, c, d, e) are called the conservative forms ot 

the governing equations for steady magneto-fluid flow. As we shall see in 

the next section, conservative laws are directly derivable from these 

equations. 

11.3. Shock Conditions 

Without loss of generality, we can denote the direction normal to the 

shock-tront, x1 , for a given streamline, Fig. 11.3.1. 

Shock-Transition Zone 

Fig. 11.3.1. Magneto-Fluid Dynamic Shock Wave 

.. 
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Equation (11.2.1&) can be written as 

(11. 3.1) 

Let us integrate Eq. (11.3.1) across the shock transition zone along the 

x
l
-ans. 

Xl (2) x (2) Xl (2) 

J (p ql) d.x +J 1 (p q) d.x1 +J (p aJ) d.x 1 .. 0(11.3.2) 
,1 1 2 ,2 "'3 ,s 

x (1) x (1) . x (1) 
111 

. where xl (1) and xl (2) refer to the points Just ahead of' and behind the shock 

wave along the given streamline, respectively. 

Since the shock-transition zone is very narrow and since the changes 

of' f'low properties in the x and x directions are small, 
a 3 

x (2) 

J 1 

lim (p qa),2 d.x1 x1 (2) - x1 (1) = 0 x (1) 
1 

= 0 ,and (11.3.3) 

x (2) 

J 1 
lim (p q) d.x 

x (2) - x (1) = 0 3,3 1 
1 1 Xl (1) 

= 0 . (11.3.4) 

Therefore, to the limit of 

Equation (11.3.2) yields 
(2) 

[p ql] = 0 , 
(1) 

(11.3.6) 
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where the properties are. to be evaluated at Xl (1) and Xl (2) as indicated 

by (1) and (2) behind the the square bracket in Eq. (11.3.6). 

Similarly, we can show by integration of Eqs. (11.2.1b, c, d) that 

B2 B 2 (2) 

[ p q2 + P _ l' + - - :J.. J = Q , (11.2.7) 
1 11 2 ~ "'0 (1). 

[ pq a-1' -
1 -s 13 

B B J(2) 
1 2 

= 

"'0 (1) 

B1 Bs ](2) = 

"'0 (1) 

o I 

o I 

[ 
1 2 

P q (h + - q ) - l' q - l' q - l' a + bl 1 2 11 1 21 2 31""S 

1 ' (2) 
+. - (E B - E B) J = 0 , 

"'0 
2 3 3 2 

(1) 

(2) 

[q B - q B ] "" 0 I 
l' 1 1 1 

(1) 

[ J(2) q B - q B '" 0 , 
1 2 2 1 

(1) 

[ ](2) q B - q B = 0 I 1 3 S 1 
(1) 

[B1 r '" 0 • 
(1) 

Equation (11.3.11) is a trivial relationship. The term 

(11.3.10) 

(11.3.11) 

(11.3.12) 

(11.3.13) 

(11.3.14) 

-.!. (E B- - E B) in Eq. (11.3.10) can be reduced by means of the Ohm' s 
"'0 2 S S 2 

law .• 

~ 
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Therefore, 

1 

!-LO 
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J 
E2 = ....a .. (Q B - q B) , a -S 1 1 3 

E 
3 

J 
= ..§. - (q B - q B) 

1 2 2 1 

(E B - E B) = 
2 S 3 2 

1 
(J B - J B) + - ~ (B 2 ... B 2) -

2 3 3-2 2 S 
!-LO 

. -
1 

.. - (q B B + q B B) 
!-L 212313 
o 

Therefore, Eq. (1l.3.10) becomes 

[ p q (h + ~ q2) _ T q .. T q .. T q + b -
1 2 11 1 21 2 31 3 1 

1 
- - (J B .. J B) + 

!-LU 2332 

1 2 
- (B + B 2) -
!-L

O 
2 3 o 

(2) 

(q B B + q B B)] 
212 313 

!-LO (1) 

1 
= 0 • 

(1l.3.15) 

(1l.3.16) 

(1l.3.17) 

(11.3.18) 

But the fluid is nearly nondissipative outside of the transition zone. 

Therefore, the dissipative terms in the integrated experssions when eva1u-

ated at the endpoints vanish. Thus we obtain the following set of magneto-

fluid dynamic shock conditions: 
(2) 

(a) [p q1] = 0 , 

(1) 
B 2 2 ,(2) 

(b) [p q 2 + p + -..!L .. B 1. ] =0 J 

1 2 '""0 '""0 (1) 
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(c) [p q1 q2 -
\ Ba J(2) • 

= 0 1 

~o (1) 

(d) [p q q -
B, Bs t J 

= 0 
1 3 1 

~o (1) 

• 

(11.3.19) 

Equations (al.3.l9) are the magneto-fluid dynamic shock conditons. 

When the magneto-fluid dynamic shock wave and the direction of the 

magnetic field are both normal to the direction of the streamline 1 we 

obtain the following simple normal shock conditons: 



• 

19 

where we have arbitrarily set the x
1
-direction as the direction of flaw 

and the :It -direction as the direction of the magnetic field. For such a 
2 

nomal shock, the first three equations can be obtained from. the ordinary 

fluid dynamic normal shock equations, if we replace the fluid pressure p 

by 

~+ , 

and the internal energy u by 

It can be shawn that such a transition can o~cur if 

(1) 

> 1 , 

where 

can be shawn to be the propagation vel.oci ty of s_ll disturbances in a 

homogeneous, c01llpressible, infinitely conducting medium in the direction 

normal to an applied uniform magnetic field equal to B (1). 
2 
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Appendix I 

Vectors and Cartesian Tensors 

Al.l The Index Notation of a Vector 

A vector in an ordina,ry three -dimensional space can be 

characterized by its magni,tude and its direction with respect to .. 
a given reference frame. For example, the vector r as shown in 

Fig. Al.l.l is representee. by its algebraic magnitude and its 

directional cosines 

l = cos 9 , 
~ ~ 

t = cels 9 , (Al.l.l) 
2 2 

l "" cos 6 , 
3 3 .. 

of the ltne containing r with respect to a set of right··handed. 

The magnitude of the rectangular components r , r , r of 
~ 2 $ 

.." 
this vector 11 in the thret~ directions of the Cartesian axes are 

r = rl , 
1 1. 

r = rl , (Al. 1. 2) 
2 2 

r = rl , 
3 3 

From the relations given in (Al.I.l) and (Al.l.2), we note that 

r =Jr 2 + r 2 + r 2 (Al.1..3) 
~ 2 3 ' 

and 

t = r ;'h~ 2 + r 2 + r 2 
~ ~ ~ 2 3 ' 

t = rj/r.~2 + r 2 + r2 (Al.l.4) 
2 2 3 ' 

t = r Ifr. 2 + r 2 + r 2. 
3 ~ 2 3 

• 
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... 
Fig. AI.l.l Representation of & vector r 

x 
2 

This means that a vector in an ordinary three-dimensional spaee 

can also be represented by the three magnitudes of the rectangular 

eomponents of the vector in the directions of & given set of 

right-handed cartesian axes. 
... 

The three components of r can be 

written as 

ri' 

where the subscript i is understood to take on the values of 1, 2, 3 

in that order and therefore r i in turn takes on the values of 

r , r , r 
12:3 

in the same order. These represent the magnitudes of the three 
... 

rectangular components of r. "r i \I is the index or the cartesian 
... 

tensor notation of r in an ordinary three-dimensional space. It 
... 

completely characterizes, and therefore represents, the vector r. 

Al.2 Transformation Law of a vector 

From the discussion of the previou$ section, it is obvious 
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that we are at liberty to represent '1 using its index notation 

by ref'erring it to any arbitrary set of' right-handed Cartesian 
. .. 

axes. In Fig. A1.2.1 a vector r is drawn f'rom the common origin 

of' a set of' unprimed Cartesian axes and a set of' primed axes. 

(The common origin is chosen f'or convenience without loss of' .. 
generali ty) • The index notation of' the vector r in the unprimed 

axes is r i and primed axes is ri' • From analytic geometry, we 

know that ri' can be expressed in terms of' rio 

X 
I 3 

, 
X 

.2 

Fig. A1.2.1 Representation of' a vector in Two 

sets of' Right-Banded Cartesian Axes 

r t :::a r + 8. r + a r ) 

1 111 12 2 15 3 

r I ::: a r + a r + a r , 
2 21 1 22 2 23 3 

r • ::: 8. r + a r + a r 
5 51 1 52 2 35 3 

(A1.2.1) 

.. 



83 

where 
.. 

a a, a are the directional cosines of the x '-axis 
11' 12 13 1 

wi th respect to the unprimed axes, 

a , a ,a are the directional cosines of the x • -axis 
21 22 23 2 

with respect to the unprimed axes, 

a , a a are the d.irectional cosines ot the x t -axis 
31 32' 33 3 

with respect to the unprimed axes. 

(Al.2.1) is called the transformation law of the veetor 1 from 

one set of the right-handed Cartesian axes to another. It can 

be thought of as the definition of a vector in a three-dimensional 

spaee. 

Al.3 The Index Notation and the Transformation Law of Cartesian 

Tensors 

We are now in a position to state the two important rules 

used in "index notation". 

(i) Ra~e Convention: Whenever a small Latin suffix 

oecurs unrepeated in a term, it is understood to 

take on the values of I, 2, 3, (unless otherwise 

stated), the number of dimensions of the physieal 

space. It represents a set of numbers or terms. 

(ii) Summation Convention: Whenever a small Latin suffix 

occurs repeated in a term, it is understood to repre-

sent a summation over the range of I, 2, 3 (unless 

otherwise stated). 
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Utilizing the above rules of the "index notation", the 

transformation law of a vector as given in (Al.2.1) can be written 

as 

(A1.3.1) 

where aij represents a set of nine numbers which are the direction­

al cosines between the primed and the unprimed axes. "aij" is 

called the transformation matrix. Tbey satisfy the following 

orthonormal relations: 

aiJ akj = 6ik, 

a
Ji 

a jk = 6ik, (A1.3.2) 

where 6
ij 

is known as the "Kronecker delta" defined as follows: 

. [1 if i=j, 
5 -
iJ - 0 if ilj. 

(A1.3.1) is known as the transformation law for "Cartesian 

tensors of the first rank". A vector can therefore be considered 

as a cartesian tensor of the first rank when expressed in index 

notation. 

Tbe general transformation law for a "cartesian tensor of 

the n'th rank" is 

(A1.3.4) 

where 

A
ijk 

___ is a Cartesian tensor of the n'th rank expressed in 

the unprimed system, 

A;st___ is the transformed tensor of Aijk___ in the primed 
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system, and 

aij is the transformation matrix. 

We note that a scalar A can also be considered as a tensor. 

It is a Cartesian tensor of the zeroth rank. 

Al.4 Addition and Subtraction of Vectors and Cartesian Tensors USiBS 

the Index Notation 

The addition and subtraction of two Cartesian tensors of the 

same rank is defined as follows: 

A tB =C ij--- ij--- ij--- (A1.4.l) 

where 

A
ij 

___ and B
ij 

___ are two Cartesian tensors of the same 

rank, and 

Cij ___ is the resulting cartesian tensor due to addition 

or subtraction of A
ij 

___ and B
ij 

___ • 

(Al.4.l) implies that the addition or subtraction is to be carried 

out for each pair of corresponding elements of Aij ... _ and Bi •
1 
___ • 

We note that the indices of each term in (Al.4.l) are the same. 

The homogeneity of range indices is imperative in an indicial 

equation, for otherwise the equation becomes meaningless. 

This law of addition and subtraction can be applied to 

vectors. 

(Al.4.2) 
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where 

Ai' Bi are two vectors, and 

Ci is the resulting vector, 

This is consistent with the usual def'ini tion and subtraction of' 

vectors. 

Al.5 Scaler (or Dot) Product of' Two vectors. 

The scalar (or dot) product of' two vectors t, B is a scalar 

defined as 

...... 
A • B = AB cos 8, (Al. 5.1) 

where 8 is the angle between the two vectors A, i. 
From. elementary vector analysis, we know that in terms of 

... ... 
the Cartesian components A and B, 

...... 
A'B=AB +AB +AB. 

11 22 33 
(Al.5.2) 

Therefore, the index notation of the dot product of two vectors 

is 

Al.6 vector (or Cross) Product of' Two vectors in Index Notation 

The vector (or cross) product of' two vectors A, i is a 
~ ... ... ... ... ... 

vector {,; normal to A, B such that A, B, C form a right-handed 
... 

system. The magnitude of C is 

C = AB sin 8, (Al.6.1) 

" 



.. 

• 

• 

From elementary vector analysis, we know that the vector 

product '0 of A, it can be represented by its three Cartesian 

ccmponents which are in turn 'related to the Qartesian component. 

of A and it. 

C =AB -AB" 
1 2 3 3 2 

C = A B - A B , 
23113 

C =AB -AB. 
3 1 2 2 1 

Let us define. a "permutation s)'Dlbol Eijk" such that 

(Al.6.2) 

0, if the values of i, j, k do not form a permutation 

of I, 2, 3 

Eijk = I, if the values of i, j, k form an even permutation 

of 1, 2, 3 

-1, if the values of i, j, k form an odd permutation 

of I, 2, 3 

Using this symbol, (Al.6.2) becomes 

(Al.6.3) 

This is the index notation of the cross product of two vectors. 

Al.7 Index Notation of the Gradient of a Scalar Function of POSition 

(Scalar Field) 

From elementary vector analysis, we know that the gradieJ1t 

of a scalar function of position in a region R is 

(Al. 7.1) 
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where 

; (x , x , x ) is a scalar field which is single valued 
l. 2 3 

and with continuous derivatives in R, 

! , l' , l' are the unit vectors in the x -, x .. , x -
l. 2 3 l. 2 S 

directions, 

~ l' ~ ~ ~ ~ ~ 
V = ~ + 1 ~ +]. ~ is called the "del operator". 

l. OX 2 ox 3 ox 
l. 2 3 

It is apparent that the gradient of ; can be expressed in 

index notation as 

= ;'i (Al. 7.2) 

where 'i means partial differentiation with respect to Xi. 

We note that for an infinitesural displacement dxi within 

a surface of ; = constant in R, 

df = ;'i dxi = O. 

This means that the vector ;'1' or the grad. ;, 1s everywhere 

normal to the surface of ; = constant in R. 

Al.8 Index Notation of the Divergence of a vector Function of 

Position (or vector Field) 

From elementary vector analysiS, we know that the divergence 

of a vector field in a region R is a scalar field given by 

~A OA OA 
di v. A = V • A = rx + ~ + at, (AI. 8.1) 

l. 2 3 

.. 

• 

• 



• 

• 

• 

where 

... 
A (x J X J X ) is vector field which is single-valued with 

1 2 3 

continuous derivatives in R, 

... 
A , A J A are Cartesian components of A. 

1 2 3 

The index notation of the divergence of a vector field in 

R is therefore 

ri . A"" 
v A. i' 1., 

(A.l..8.2 ) 

Al.9 Index Notation ot Curl 0:E' a Vector Funciii()n ot Position 

(or Vector Field) 

From elementary vector ana~5is, we know that the curl of 

a vector field is a vector field given as follows 

... .::l' ... ... ... ... 
curl A = v X A = i (f'. - A ) + i (A - A ) + i (A .. A ) , 

where 

1 3,2 2,3 2 1,3 3)1 3 211 1,2 

(A1.9.l) 

... 
A (x , x , x ) is a vector field which is single-valued 

1. 2 3 

with continuol~s derivatives in R, and 

... 
A , A ,A are the cartesian components of A. 
123 

... 
Therefore J the indl3x notation of cUI'l A is 

Al.lO The It €-6" Identity 

A very important identity involving the manipulation of 

the indicial expression is the If £-6 identity" stated as follows: 



E E = & & - & & ijk irs Jr ks. js kr (ALIO.I) 

(Al.IO.I) can be easily verified from the definitions of the 

permutation symbol and the Kronecker delta. 

Using this identity, many of the vector identities become 

obvious. As an example, the vector identity 

can be proven as follows: 

Eijk Ekrs (Ar Bs)'J 

= (8ir 8ja - 0is b Jr)(Ar Bs)' j 

= (Ai Bj)'j - (Aj Bi)'J 

(ALIO.2) 

(ALI0.3) 

where in the manipulation we have used the E-O identity and the 

obvious rule of 

(ALIO.4) 

Al.II Scalar Line Integral and the Stokes Theorem 

The scalar line integral of a vector field is defined as 

xi (2) 

J Ai dxi , 

xi (I) 

where 

Ai (x , x , x ) is a yector field which is defined wi thin 
3. .2 S 

a region R, and 

• 

.. 

.. 

• 



• 

.. 

• 
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X!(l), xi (2) are the end points of a continuous curve in R • 

An important theorem in vector analysis which transforms a 

line integral into a surface integral is the "Stokes' Theorem". 

In index notation, it reads 

=J (Al.ll.I) 

S 

where 

C is a closed continuous curve in R, 

rf is a surface bounded by C, 

ni is the unit normal of a differential surface as' on S' , 

and 

Ai (x , x , x ) is single-valued and continuous in R. 
1 2 '3 

The direction of ni is depicted in Fig. AI.ll.I. 

x 
3 

n1~ 

~ 
X 

2 

Fig. Al.ll.I Figure Depicting the Direction of the 

Normal vector ni used in the Stokes I Theorem 



Al.12 conservative vector Field and the Conce~ of Scalar Potential 

If a vector field Ai in R can be expressed as the sradient 

of a scalar field ,(x, x , x ) in R, 
123 

(Al.12.l) 

then the scalar line integral of Ai along a curve wi thin R is 

xi (2) . 1(2) J "i dxi = &(I = ,(2) - ,(1). (Al.12.2) 

xi (1) ,(1) 

This means that the line integral is dependent only on the end 

points. It is independent of the path of integration. If the 

line intesral is evaluated along a closed path in R, then 

f 
Closed path 

in R 

We note from elementaI7 vector analysis 

v X ~ = 0, 

which is an obvious statement in index notation, 

(Al.12.4) 

(Al.12.5) 

Therefore, from the stokes I Theorem, we can again show that 

f Ai dxi = J ni (Eijk ~,j)dS' 

= J ni (Eijk , ,kj)dS' 

= O. 

(Al.12.6) 

• 

.. 



• 

• 
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The converse of the above result is also true. It states 

that if the scalar line integral of any curve in R is independent 

of path, (or the scalar line integral around a closed path 

vanishes), then 

(Al.12.7) 

and 

(Al .• 12.8) 

If a vector field can be expressed as the gradient of s. 

scalar field, the vector field is called a Conservative vector 

field, and the scalar fiel(l is called the scalar. potential of 

the conservative vector field • 

Al.13 Generalized Gauss Theorem Stated in Indicial Form 

The generalized Gauss theorem f6r a tensor field is 

= J Aijk ___ , i dV (Al.13.l) 

R 
1 

where 

Aijk ___ (Xl' X
2

' X
3

) :La a tensor field which is single'· 

valued and continuous in R, 

S' is a surface enclosing a region Rand R, and 
1 

ni is the unit outward normal of a surface element dS' on S' • 

The Gauss theorem transforms a surface integral into a volume 

integral or vice versa. 
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Al.l4 Green t s Theorem in Indicia]. Form 

The two common forms of the Green's theorem in indicial forms 

are given as follows: 

J [A'i B'i + AB'11 1 dV = J AB'i ni dS' • (A1.14.1) 

R S 

J [AB'ii .. BA'11] dV = J (AB'i ni - BA'i ni)dS' • (A1.14.2) 
R S' 

where 

A,B are scalar fields which are single .. valued and continuous 

in R, 

, 
S is a surface enclosi-ng a region R in R, and 

1 

, , 
ni is the un1 t outward normal of a surface element as on S • 

The Green' s theorem is extremely useful in d.eveloping the unique-

ness theorems of boundary value problems. 

Al.l5 vector Potential 

If a vector function of position or vector field Bi in a 

region R is derivable from another vector field Ai as follows 

where Ai is a single-valued and contionuous in R; 

then Ai is called the vecte.r potential of Bi • 

An immediate consequence of (Al.l5.l) is 

Bi i = O. , (Al.l5.2) 

• 

• 



• 

• 

• 
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Tbis means that the divergence of a vector field derivable from 

a vector potential always vanishes • 



Appendix II 

* Outline of Elements of Electricity and. Magnetism 

A2.l Elect.rostatics in Vacuum 

C()ulomb's law: 

... 
1 Q Q 

[£0: Vacuum electri c permeability] 

Definition of electric field for stationary charge: 

dF
i 

= 
dQ 

* Formulated for rationalized MKS units. 

• 

.. 

(A2.l.l) 

(A2.1.2) 

(A2.1.4) 



.. 

• 

• 

or, 

where 
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•• Ei (due to Q at x'i) 

Q 
= 

Q 
= --- (~) 

r i , 

; = ---

For a distribution of charges, 

1 J 'P dv' , 
V r 

A 
P = 11m = 

dQ 
, 

6Y-tO 6V dV 
t:N>6V· 

E = .; = 
i ,i 

1 J (P)' 
= .. 411' EO V . ; ,1 dv' • 

x 
3 

4 

(A2.l. 5) 

(A2.l.6) 

(A.2.1. 7) 

(A2.1.8) 

(A2.l.9) 

(A2. 1. 10) 



/'\ 
P 

Ii i '" -, EO 

Electromotive Force, EMF 

EMF ... work done by Ii on a unit charge trom. 

Xi (1) to Xi (2) 

Xi (2) 

= J Ii Oxi • 
xi(l) 

Jar an electrostatic field, 

Xi (2) 

EMF '" J .. ',i dxi 
%i(l) 

'" _ r (2) df 

tl) 

== ,(2) - ,(I) , 

statioDaI7 current is impossible in electrostatic field. 

A2.2 Polarization vector and Displacement Vector 

i>' 

I,} '" ~ A ... Ptrue + Pp 

(A2.l.ll) 
• 

(A2. 1. 12) 

(A2. 1. 13) 

.. 

(A2. 1. 14) 

(A2.2.l) 

(A2.2.2) 



.. 

• 

• 

'" == -p P 
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Polarization vector 

Polarization charge ] . 

Definition of displacement vector, 

Di = EO Ei + Pi 

Di . = ~ 
,~ 

Ptrue 

If Pi = EO X Ei , 

[X: Elect:ric suscepti bili ty] 

then Di == EO (1 + X) Ei 

== EO K Ei 

== E Ei 

[ K: DielHctric constant ] . E: Eiectric permeability 

For a vacuum (i.e., all charges are separately considered), 

Pi == 0 , 
X 0 , 
K == 1 

E :::: EO 

Di = EO Ei 

A2.3 Current Density and Continuity Equation for Charge 

Current density 

J i = vector denoting time rate of flow of 
charge per unit area 

(A2.2.3) 

(A~~.2. 4) 

(A2.2.6) 

(A2.2 .. 7) 

(A2.2.8) 

(A2.2.9) 



f 
v 

or 

f 
v 

•• 
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X1 

0a- f dV + 
at S 

~ 
[- + J at i,i 

X 
3 

J i ni dS 

] dV = 

[v arbitrary] 

~ - + Ji,i = 0 
at 

= o , (A2.3.1) 

0 (A2.3.2) , 

(A2.3.3) 

(A2.3.3) is called the continuity e~luation for the conservation of charge. 

A2.4 Maptic Induction Field in Vacuum 

Biot and Savart Law 

-

'" 



• 

-

.. 

.. 

Therefore, 

• 

101 

Bi (magnetic induction field) 

= J dBi 

[~o: Vacut.DD. magnetic permeability) 

X 
3 

'i (IDrentz force) 

= J liFi 

... J €ijk JJ Bk dV • 

V 

Bi,i = 0 (Bi is solenoidal) 

€ijk Bk,j = ~O J i 

(A2.4.l) 

(A2.4.l?) 

(A2.4.3) 

(A2.4.1~) 
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Bi ... 
Eijk '\.,j , 

Ai (vector potential) ~ J J i 4V = -
4". r 

A2.5 Magnetization and Masnetic Field strepg1ih 

1 

or, 

Ni = -Eijk r J Jk(IIl' • 
2 

Magneti c lDOIIlent per un! t vo1l.me or 
magnetization, 

Coordinate of the magnetization 
current density Jk(m). 

(A2.4.5) 

• (A2.4.6) 

(A2.5.2) 

Therefore, if we assume that the current density can be separated as 

then 

Call Hi (magnetic~ 'field strength) 

~ = - Hi • 
IJ.O 

Therefore, 

(A2.5.6) 

If 

.. 

.. 



... 

.. 

then, 
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= ~O [1 + X(m)]Hi 

= ~O teem) Hi 

= ~ H • j. 

X(m): Magnetic susceptibility 

K(m): Relative magnetic permeability 

~: Absolute magnetic permeability 

In vacuum (i.e., when current is individually considered), 

X(m) = 0 , 
teem) = 1 , 

~ = 110 , 

Bi = ~o Hi 

J ' i = J i . 

A2.6 ·Generalization of Magnetic Induction for Nonstationary Currents 

in Moving Media 

where 

with 

Eijk Bk,j = ~O J i ' 

J i = J i (conduction) 

+ J i (magnetization) 

+ J i (polarization) 

+ J i (convection) 

+ J i (vacuum displacement current) 

Ji (conduction) = a [Ei + Eijk ~ B
k

] , 

J i (magnetization) = Eijk Mk,j , 

(A2.4.4) 

(A2.6.1) 
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J i (polarization) = 4Fi 

dt 

J i (convection) = ~ [-p- true + P j, J] , 

OE
i J i (vacuum displacement) = EO - • (A2.6.2) 

at 
OEi . 

The vacuum displacement current EO - is introduced by Maxwell to keep 
ot 

J i solenoidal. 

J i (conduction) is related to the apparent ii for the moving medium 

through the Ohm I s law. 

J i (conduction) = O'ii 

(A2. 6. 3) 

[0': Conductivity]. 

A2 • 7 Faraday's law of Induction 

'I!ILnlII __ _ d J 
'-1.11 Bi ni dB' . 

dt S 

This becomes (both for stationary and moving media), 

, 

by the stokes' theorem. 



• 
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A2.8 Maxwell's Equations for MOving Media 

Since (A.2.1.12),(A2. 4. 3) should also hold for a moving medi\DI, the,. 

aDd (A.2.4.4), (A2.7.2) form a set of interlocking equations .defining Ii 

aDd Bi for a moving media. The,. are called the Maxwell'a equations for a 

moving media. 

where 

Bi i , 

/\. 
P 

=-

= 0 

, 

, 

Eijk ~,j 
aBi = -- , 
at 

A /\. A 
P = P true + Pp , 
A 
J i = J i (conduction) 

+ J i (magnetization) 

+ J i (polarization) , 

J i (magnetization) = Eijk ~,.1 , 

J i (polarization) 
aPi 

= at + (P.1,j) ~ + Ei.1k Ekrs (Pr qs) ,.1 

(A.2.8.2) 
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Appendix III 

Selected Reference Books 

The following is a list of selected reference books on the subject of 

magneto-fluid mechanics and its related topics. Most of these books con-

tain within themselves lists of publ:lcations which can be referred to for 

further literature research on this subject. 

For current publications on magneto-fluid mechanics, readers are sug-

geated to consult the m.nn.erous technical journals published by the varIous 

societies of engineering and physical sciences. 

1. W. P. Allis (ed.), Nuclear Fusion, D. Van Nostrand,New York, 1960. 

2. D. Bershader (ed.), The Magnetodynamics of Conducting Fluids, Stanford 
University Press, Stanford, Calif., 1959. 

3. A. B. Cambel, T. P. Anderson, and M. M. Slawsky (ed.), Magnetohydro­
dynamics, Northwestern University Press, Evanston, Ill., 1961. 

4. 

6. 

7. 

8. 

10. 

11. 

etic Stabilit , Oxford 

T. S. Chang, Intermediate Fluid Mechanics, Edwards Brothers, Ann Arbor, 
Mich., 1962. 

S. Chap:nan and T. G. Cowling, The Mathematical Theory of Non-Uniform 
Gases, Cambridge University Press, Cambridge, England, 1939. 

F. H. Clauser (ed.), Plasma Dynamics, Addison-Wesley, Readlng, Mass., 
1960. 

T. G. Cowling, Magnetohydrodynamics, Interscience, New York, 1957. 

V. c. A. Ferraro and C. Pl~pton, Ma~eto-Fluid Mechanics, Oxford 
University Press, Oxford, England, 1 1. 

J. Fox (ed.), Electroma etics and Fluid Dynamics of Gaseous Plasma, 
PolytechniC Press of BPI, Brooklyn, New York, 1 2. 

J. H. Jeans, The Dynamical Theory of Gases, 3d ed., Cambridge University 
Press, Cambridge, England, 1921. 

• 

.. 
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.. 
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12. S. DeGroot, Thermodynamics of Irreversible Processes, North-Holland 
Publishing Co., Amsterdam, 1958 . 

13. 

14. 

15· 

16. 

17. 

18. 

S. W. Kash, Plasma. Acceleration, Stanford University Press, Stanf'ord, 
Calif., 1960. 

R. K. M. Landshoff, Magnetohydrodynamics, Stan:ford University Press, 
Stan:ford, Calif., 1957. 

R. K. M. Landshoff, The Plasma. in a Magnetic Field, Stanford Un:lversity 
Press, Stanford, Calif., 1959. 

J. G. Linhart, Plasma Physics, North-Holland Publishing Co., Amste:t'dam, 
1960. 

P. Moon and D. Spencer, Foundations of ElectrodynamiCS, D. Van Nos-tnu'ld, 
New York, 1960. 

W. K. H. Panofsky and M. Phillips, Classical ElectriCity and Magnetism, 
Addison-Wesley, Reading, Mass., 1955. 

19. L. Spitzer, Jr., PhysiCS of Fulll Ionized Gases, Interscience, New 
York, 1956 • 

20. , Papers Presented at the Controlled Thermonuclear 
Con:ference, U. S. Technical Services, Washington, D. C., 1959. 

There is another source of reference which should be mentioned here. 

This pertains to a series of papers presented in a "SympositUII. on Magneto­

Fluid Dynamics" contained in Review of Modern PhysiCS, Jg, No. 4 (october 

1960). Although this series of papers is not published in a book form, 

single copies of Vol. 32, No.4, may be purchased directly from the 

American Institute of PhYSiCS, publisher of the journal. 



• 
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