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INTRODUCTION TO MAGNETO-FLUID MECHANICS

*
Tien-Sun Chang

CHAPTER I — INTRCDUCTION

Magneto~fluid mechanies, as the name implies, is a branch of fluid
mechanics, The difference between msgneto-fluid mechanics and ordinary
fluid mechanics (in the restricted sense) lies in the forms of the external
body forces. In the study of ordinary fluid mechanics, the body forces are
either neglected or known in advance independent of the motion of the fluid
medium.

In the study of magneto-fluid mechanics, the situation is much more
complicated. Here we are working with a medium which is electrically con-
ducting. When this medium moves in the presence of an externally applied
magnetic field, a current is induced in the fluid medium. This induced
current will interact with the msgnetic field and cause s modification of
the magnetic field. This current and the modified magnetic field will
then interact and produce a body force {called the ponderomotive force)
acting on the fluid medium and thereby influencing the subsequent motion
of the fluid medium. This coumplicated interaction of the motion of the
electrically conducting fluid medium with the applied magnetic field con-
stitutes the central core of interest of the study of magneto~fluid wmechanics.

Almost all of the observed phenomens in astrophysics are magento-fiuid
dynamic in nature. Current interests in hypersonic flow and containment

of hot gases for the design of fusion reactors are also closely relsted to

*
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the study of the motion of partially or fully lonized gases in externally
applied magnetic fields. Our own recent interest at the Reactor Division
concerns the feasibility of using an applied magnetic field to stabilize
the motion of a vortex heat-exchanger reactor and to reduce the influence
of turbulence in the vortex flow., These and many other applications are
the reasons why magneto-fluid mechanics plays so important a role in mod-
ern engineering sciences.

The purpose of this series of lectures is to develop the general
theory of magneto-fluid mechanics by considering the fluid medium as a
continuous, neutrally charged, electrically conducting fluid. Time ﬁill
not allow us to develop the theory from a microscopic viewpoint using the

concept of statistical mechanics of ionized gases,



CHAPTER II — METHOD OF ANALYSIS

2.1, Continuum Concept

As mentioned in the previous chapter, we are only going to be ine
terested in the continuum concept of magneto-fluid mechanics. Iet us now
amplify this statement slightly. Consider a region of a fluid medium with
a total volume V., If the total mass of the fluid medium contained in this
region V is M, then the average density, :, of the fluid medium of this
region V is defined as the fraction of mass contained per unit volume in
v if tﬁe mass is distributed uniformly within the region V, i.e.,

_ M
p == . (2.1.1)
v

The density at a point in a body of a fluid medium can be obtained by
enclosing that point with a small volumetric element AV, and by taking the
average density AM/&V of this volumetric element, where AM is the fraction
of the mass of the fluid medium in AV. The value of AM/AV will become
almost a constant as AV is taken smaller and smaller while always en-
closing the point in consideration. In other words, the value of AM/AY
seems to possess alimit at that point. Actually, if we continue to reduce
the value of AV, the value of AM/AV will begin to fluctuate. This is
because the volume AV will become too small to contain a sufficient number
of molecules, or charged particles, to cancel out the effects introduced
due to the random motions of the molecules or charged particles. 1In fact,
vwhen AV is made as small as the size of the particles, the value of AM/AV
will either be very large or nearly equal to zero depending upon whether

at that instant of observation the volumetric element contains a particle



or not. Therefore, in order to have a definitely defined value of density
at a8 point in a fluid medium, the volumetric element AV cannot be made too
small. In other words, the value of AV should be chosen such that it is
small enough to give an apﬁarent limit of the value of AM/AV but not so
small such that the value of AM/AV fluctuates and becomes meaningless.

The word "density” is meaningful only if the fluid medium can be observed
this way. We shall now write the definition of the density, p, at a point

P in a fluid medium as
dM
p = —/ (2.1.2)
av

However, we should understand at the same time that dM/dV has the follow-

ing physicsl meaning:

aM M
— = 1im -, (2.1.3)
av AP AV '
aVv>AV®
AVP ‘
where AVSAV® mean that AV is a very small volumetric element enclosing

P but is larger than a characteristic volume AV® which is the smallest
bound of the size of the volumetric element to yleld s meaningful limit
of the ratio of AM/AV.

This type of restriction of the smallest size of observation should

be considered in each and every discussion of the average properties of a
continuum. For example, in our discussions, we shall treat volumetric
elements of the size such that on the average they are neutrally charged.
This is true also in the discussion of the forces acting on the fluid

medium.



2.2. Eulerian Veiwpoint

Instead of considering the properties of the volumetric elements in
a fluid in motion in terms of their initial positions and time (the
lagrangian viewpoint), it is usually more convenient to consider them as
functions of their instantaneous positions and time. This approach is

called the Eulerian method, It shall be the method used in the develop-

ment of the basic theory of magneto-fluld mechanics in the subsequent

lectures.

2.3. Cartesian Tensor Notation

The discussion of any physical theory of mechanics of continuous
media can be treated and presented more precisely and efficiently if
Cartesian tensor notation is used in place of the classical vector nota=-
tion. Classical vector notation is a system of algebraic symbols which
follow & special set of algebraic rules., Furthermore, the rules of vector
calculus are many and usually complicated. The rules of Cartesian tensors,
on the other hand, are very simple. The algebrs and calculus of Cartesian
tensors are the same as those for ordinary scalar quantities, One can
learn these rules and the few formulas related to Cartesian temsors in a
relatively short period. Therefore, we will no longer be burdened with
the extra mathematical rules of the classical vector analysis while learn-~
ing a new theory. In addition, physical quantities are usually tensorisl
quantities which cannot always be represented by vectors of the usual
sense, In this sequence of lectures, we shall attempt to develop the

theory of magneto-fluid mechanics using the Cartesian tensor notation.
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2.4. laws Governing the Motion of an Electrically Conducting Fluid in

the Presence of an Externally Applied Magnetic Fiéld

The laws governing the motion of a fluid medium are the laws of con-
servation of mass, the Newton's second law of motion, and the law of con-
servation of energy. Due to the interaction of the electrically conducting
fluid with the externally appliéd megnetic field in magneto-fluid mechanics,
additional laws pertaining to the electromagnetic interection and the Ohm's
law have to be considered in conjunction with the laws of ordinary fluid
mechanics. It 1s the purpose of this sequence of lectures to introduce
these laws of magneto-fluid mechanics mathematically in terms of a system
of equations using the Cartesian tensor notation. These equations in
general are very complicated and do not posses a general solution. Simple
solved examples will be drawn to indicate the fundamental behavior of
magneto-fluid flow. A discussion of the similarity parsmeters in magneto-

fluid flow will alsc be briefly included.
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CHAPTER III — TYPES OF FORCES AND THE STRESS TENSOR

3.1. Body Forces and Surface Forces

Forces acting on a body of a fluid medium may be divided into two
parts; those which act across a surface due to direct contact with another
body and those which act at & distance, not due to direct contact.

Body forces are forces which act on all the volumetric elements in
the medium due to some external body or effect. An example of this is
the gravitational force exerted on a medium due to another body et & dis-
tance. These types of forces can be conveniently discussed as force in-
tensities, fi (or simply forces) per unit mass. This definition is based

on the apparent limit of the average value over a small volumetric element,

ov,
- AF daF 1 4aF
£, = um —+ - 2 . - 2 (3.1.1)
AV-P M aM p 4av
AV>AV®
where AFi is the total force acting on the small volumetric element
AV, and

AM  is the total mess contained in AV.

Surface forces are contact forces which act across some surface of

the fluid medium, This surface may be internal or external, These types
of forces are conveniently discussed as force intensities (or stresses)
per unit area., Let us consider a very small planar surface AS with unit

normal n, containing & point P in a continuum, Fig. 3.1.1. If the total

force acting by the fluld medium on the positive n, side across the sur-

face element on the fluld medium on the negative n, side is AFi, then the

i

stress vector, 9, (or stress), acting across the surface element by the
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fluid medium on the n, side at the point P is defined as

i
AFi d'Fi
o, = Um — = — , (3.1.2)
AP A8 as
AS>AS

where AS® is the limit of the smallest size of AS for the fluid to be

observed as a continuous medium.

A

Fig. 3.1.1. Figure Depiciting the PForce AF:L Acting ona
Small Surface Element AS Containing a Point P in a Fluid Medium.

We note that the stress or stress vector, ) is a function of posi-
tion, time, the orientation of the surface element, and the choice of the
sense of direction of the unit normel, n,. Every stress vector can be re-
solved into two components; one in the direction of n, and one lying in the
surface element., They are called the "normal" and "shearing" components of

O'i-
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The usual essumption for both the body and surface forces is that the
net moment due to the forces acting on the small volumetric or surface

element vanishes.

3.2. Stress Tensor

Iet us consider a point P in a fluld medium and a set of local
Cartesian sxes drawn from the point P, Visualize a small surface element

containing P whose unit normal is in the positive xl-direction, Fig. 3.2.1.
x
.4

!

13

Fig. 3.2.1. Stress Vector Oy Acting on a Small Surface
Element Whose Unit Normal is in the Positive x,-Direction by

the Portion of the Fluid Medium Containing the Unit Normal.

The stress vector aﬁi acting on this surface element by the médium

containing the positive xl-axis has three components; one normal component
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% acting in the positive xladirection and two shearing components LY

O.a in the positive X, and xs-directions, respectively. Similarly, we

can visualize two other stress vectors O,i 031 acting on surface elements

whose unit normals are in the positive x,- and xeadirections. These three

stress vectors 0,4 céi’

of nine components of stress is called s stress temsor. It can be denoted

Oy have a total of nine components. This set

by a single symbol ¢ It is obvious that the reaction sui-.s scuponents

3’
acting by the fluld medium on the portion of the medium on the positive
sides of the coordinate planes are equal and opposite to the nine com-
ponents just defined.

It is possible to show that this stress tensor o,, completely de-

Ji
fines the stresses acting at that point on an arbitrarily inclined plane

with respect to the set of Cartesian coordinate axes x,. To prove this,

i
consider a very smsll tetrahedron as shown in Fig. 3.2.2.
Xy A oi: stress vector acting

on inclined surface

n.: unit normal of

J inclined surface
0 .
22 > x2
A: area of inclined
surface

X1

Fig. 3.2.2. Stresses Acting on a Differential Tetrahedron

at a Point P in a Fluld.
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Iet us consider the forces acting on the free body of this tetrahedron.
If we assume that the inertisl and body forces are negligible compared
to the magnitudes of the surface forces for a very small tetrahedron,

then by balancing the forces on the tetrshedron, we obtain

o, A - TRy A = 0 , (3.2.1)
where Oi is stress vector acting on the inclined area A whose
unit normal is nj, and
031 is the stress tensor at point P,

Equation (3.2.1) can be written as

o, = Oy g . (3.2.2)
This means that the stress Gi at a point P acting on & plane whose unit
normal is nJ is expressible in terms of the stress tensor 031 at P and
the unit normal n,.

J
It will not be bhard to show, by using the equilibrium condition

(with inertia and body forces neglected) of a small parallelepiped that

the streds tensor is symmetrical, i.e.,

oy = 0ij . (3.2.3)

This mesns that there are only six independent components defining a

stress tensor. They are

11 22 33

o = g 2
12 21
g = @ 3
23 32
g = o . (302. Lt’)

31 13
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CHAPTER IV - EQUATIONS GOVERNING THE MOTION OF A FLUID MEDIUM

4,1, Equation of Continuity

One of the most important equations governing the motion of a fluid

is derived from the ides of conservation of mass. Consider a surface S

enclosing a fixed region 6f space V in which fluid motion exists,

Fig. 4.1.1. Let us call the outward normal of & surface element dS on S,
nJ (xl, xa, xs); the velocity components of & volumetric element of the
fluid in the region V, 1 (xl, X5 Xg3 t); and the density of a volumetric

element in the region V, p (xl, X, Xg3 t). Tt is obvious from the concept

X

Fig. 4.1.1. Region of Space in Which Fluid Motion Exists.

of conservation of mass that the rate of increase of mass in the region V

is exactly the smount of mass flowing into the region per unit time, or

%
f—-» av = “qud ans , (%.1.1)
v o S
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or

dp

j\~ w+kqun as = 0 , (4.1.2)
3 J 3

v )

Equation (4.1.2) states that the total production of mass of the region V
which includes both the net increase of mass within V and the amount of
mass outflow is zero, Equation (4.1.1) or (4.1.2) is called the integral

continuity equation.

Applying the Gauss Theorem, Eq. (%.1.2) becomes

d[‘[ EE + (p qj)’j ] av = 0 ., (4.1.3)
A2

ot

However, Eq. (4.1.3) should be satisfied for any fixed region of space.
This means that the integrand of the left-hand side of Eg. (4%.1.3) should

be identically equal to zero, i.e.,

= b a,y =0, (b.1.4)
or

% 0 b

'a"t" + Q.j 0§J+pq'j}3 = ’ (01.5)

The first two terms of the left-hand side of Eq. (4.1.5) can be con-
sidered as the total time rate of change of density of a fluid element if
we follow the motion of this fluid element along. It is sometimes called

the co-moving derivative of the density of the fluid element. Since in

most of the equations in fluid mechanics, the total time derivatives are
co-moving derivatives, we shall denote this type of differentiation by

the symbol



unless otherwise noted. Therefore, Eq. (4.1.5) can be written as

dp
— p qj’j = O # (L"ela6)
dt

Equations (4.1.4%), (4.1.5), (4.1.6) are three alternstive forms of the
equation of continuilty. The continuity equation relates the four field

functions p (xl, x

RN t) and q (x1

Xy Xgj t) in terms of s scalar
partial differential equation. In order to solve a p;gﬁlem of fluid
motion, it is generally necessary to £ind additional relationships for

these field functions.

4,2, The Equation of Motion

The equations of motion which give three additional relationships
between the field functions, p and qj’ can be obtained directly from the

Newton's second law of motion.

Iet us fix our attention to a fixed region of space V, in which fluid
motion exists, Fig. 4.2.1.

The Newton's second law states that the total time rate of change of
momentum of & body of fluld medium is equal to the external force acting
on the fluid medium. Applying it to a subregion V; of V bounded by a

surface 3, we obtain

o (p q)
fO'idS-l-fpfidV =f°'=——'a:—— d\f‘i-quiqnds, (%.2.1)

S Vi vy S

where o, (xl, X, X5 t) i1s the stress vector acting on a surface

element d4S,
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%

Fig. 4.2.1. Free Body Diegram of an Arbitrary Region of e

Fluid Mediwm in Motion.

o) (xl, X, Xq3 t) is the density of the fluid medium of a
volumetric element 4V,

£, (xl, Xy %Xg3 t) is the body force per unit mass acting
on & volumetric element 4V, and

4 (xx, X %3 t) 1is the velocity vector at & point in

the f£luid medium.

Expressing oy in terms of the stress tensor, 42 We can rewrite

%
Eq. (4.2.1) ss

f f3(pqi) ,
g/\odi n as + o fi av = T av + &/hp Yy 9, nJ as , (4.2.2)

v, A S

vhere ny (xl, Xy xs) is the unit normal of a surface element

dS on S.



20

Equation (4.2.2) is called the momentum integral equation governing the

motion of a region of a fluid medium.

If we transform the surface integrals in Eq. (4.2.2) into volume
integrals by means of the Gauss Theorem, we obtain

f o (p q,) ( ) } .

o +p L, = ———— av = 0 . .2,

vx
Equation (4.2.3) should hold true for any arbitrary region,V, of the
fluid medium in motion. This means that the integrand of the left-hand

side of Eq. (4.2.3) should be identically equal to zero, or

3 (p q)

+ (o q qj),J = p T +Oy (4.2.4)

This is one form of the equation of motion. An alternative form of the
equation of motion can be obtained by multiplying the continuity equation,

Eq. (4.1.4), by q; and subtracting it from Eq. (4.2.4%).
9

p +p qj qi,J = p fi + cﬁi,j . (4.2.5)

We note that the co-moving derivative of the velocity vector, Qs is

dg, 9 g

dt

+ qi,J . (4.2.6)

This means that Eq. (%.2.5) can be written as

el
4 = £ 4 L (4.2.7)
at P ?

The three scalar partial differential equations of motion represented

by Eq. (4.2.5) or Eq. (4.2.7) give the additional relationships among the



]

functions p and Q- However, they introduce at the same time nine in-

dependent components of the field functions of f, (xl, X_, X.; t) and

2 3

(xl, X , X ; t), It is therefore generally necessary to obtain eddi-

..
ji 2’ T3

tional equations to relate these unknown field functions.

k.3. The First law of Thermodynamics

An additional relationship governing the unknown field functions,

Ps 9y fi, cji’ is given by the law of conservation of energy. This re-

lationship or equation is called the energy equation or the first law of

thermodynami.cs.

To derive this equation, let us refer to Fig. 4.2.1 again. If we czll

the internsl energy of the fluid medium per unit mass, u (xl, Xy X5 t);

3
and the heat transferred into the fluid medium per mass per unit time,
c (xl, Xo Xg5 t); then the following energy balance equation is obtained

for the arbitrary region Vl.

r 3w 3(z o 0%) r .
| dv + “jp ——— @V + \j puq, n, dS + &/h 5 pq2 q, n, 45 =
S 3t d dd
v, v, 8 S
(1) (11) (I11) (1v)
= u[\ oji ny 4 ds + \jﬁ p fya AV + k/ﬁ pcav . (%.3.1)
S v v
1 1
(V) (v1) (VII)

The terms (I), (II), (III), and (IV) are the time rate of energy production
due to the arbitrary region V, of the fluid medium; the terms (v) and (VI)
are the time rate of work done on the fluid medium in region V1 by the

surface and body forces; and the term (VII) is the time rate of heat
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transfer into the region Vl.

Using the Gauss Theorem, Eq. (%.3.1) becomes

Vf{ -3-2- bt @]+ [ourtada | - @, 0,
1

-p £, q -pc}dV:O . (4.3.2)

Equation (4.3.2) should hold true for any arbitrary region Vv, of the fluid
medium. This means that the integrand of the left-band side of Eq. (4.3.2)

should be identically equal to zero, or

3

- [p(u + 3 qa)] + [p(u + % ¢°) qa] )5 (9, q)sy + 0 £, a4 +pe. (4.3.3)

Equation (4.3.3) is the energy equation or the first law of thermodynamics

of a fluid medium in motion,
An alternative form of the energy equation or the first law of thermo-
dynamics can be obtained by multiplying the continuity equation, Eq.

(4.1.4), by (u + % q®) and subtracting it from Eq. (4.3.3):

3(u + 3 4°) .
v +p qJ(u +3 qe),J = (05 )yy+ o £y rpe ,  (B.3.4)
or
d(u + % qa) 1
—'—d—-—- = - (oji (11)‘,3+fi aQ +c . (4.3.5)
t P

If we multiply the equation of motion, Eq. (4.2.7), by q and sum,
we obtain
a(z a®) 1

= - O q, + f (4.3.6)
" RSP 1Y
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which is called the work-kinetic energy equation. We note that the term

on the left-hand side of Eq. (4.3.6) is the co-moving rate of change of
the kinetic energy of a fluld element per unit timeé per unit mass, and
that the terms on the right-hand side of Eq. (4.3.6) are the work done
per unit time per unit mass on the element of the fluld medium.
Subtracting Eq. (4.3.6) from Eq. (4.3.5), we obtain still another

form of the first law of thermodynamics:

du 1 )
—_— = = O, q +c . (4.3.7

Equation (4.3.7) is one of the most useful forms of the first law of
thermodynamics., It separates the first law of thermodynamics from the
kinetic motion of the fluid medium. Therefore, many of the thermodynamic
concepts pertaining to the equilibrium states of a fluid medium can now
be carried over by the application of this equation.

In introducing the continuity equation, the equation of motion, and
the first law of thermodynamics, we introduced the following unknown field
functions: p, q, fi, o,ji’ u, ¢. The total number of unknowns far ex-
ceeds the number of equations introduced. We therefore are forced to look

for other independent relationships relating these unknowns. These re-

lationships for magneto-fluid flow are introduced in the next two chapters.
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CHAPTER V — FIELD THEORY OF ELECTROMAGRETISM

5.1. Introduction

The usual approach in the discussion of classical electricity and
magnetism is to deduce a set of field equatione‘governing electromagnetic
interaction with charged particles in vacuum from restricted experimental
evidences. These laws are then carried over for electromagnetic inter-
action within a material medium by arbitrarily setting aside a portion of
the éharge density and electric currents as material properties. The
remainder of the charge density and electric current are then treated as
true charge density and current which interact with the modified electro-
magnetic field. Concepts such as polarization, magnetization, electric
and magnetic permeabilities are introduced to discuss the material effects
from a macroscopic point of view. When the medium is in motion, these
laws are further modified to include the effects caused by the motion of
the medium.

This concept of polarization and magnetization is very convenient in
treating electromagnetic interactions within a solid continuum. This is
not so in the case of conducting fluids. Permanent or slow-varyling defi-
nitions of a polarized and magnetized material cannot be assumed for such
a medium. Therefore, in the study of magneto-fluld flow, we shall treat
the individual particles in the medium in direct interaction with the
electromagnetic field and with each other. The concept of material
electric and magnetic permeability becomes unnecessary in treating the

motions of conducting fields. The currents produced in the medium will

»*
Formulated for Rationatized MKS units.
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be taken as they are in terms of their microscopic origin. The problem
of co-moving variation with a medium becomes a consequence instead of a
cause in electromagnetic interaction when treated this way.

In what follows, we shall attempt to derive the classical laws of
electromagnetic interaction in vacuum through a set of postulates and the
concept of retardation potentials without the consideration of the equiva-

lent material effects. We shall then rely on the results of the physics

of ionized gases to offer us an Ohm's law pertaining to the actual current
in the moving fluid medium. This approach differs from the conventional

method of deducing the general laws through a set of restricted equations.

5.2. Charge Density, Current Density, and Continuity Equation of the

Law of Conservation of Charge

The charge density P at a point in a medium is defined as

fas)
? = 1lim — (5.2.1)
AV-0 AV
AV>AV®

Since both positive and negative charges may be present in a medium, we

can define

AQi
P, = lm — (5.2.2)
AV AV
AV °

wvhere % refer to the sign of the charges. Obviously, we bave

o

= p+ + 6”0

The current density J, at a point in a medium 1s defined as

i = 6+<q+i) + 8-(‘1“1) (5.2.3)
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where q,, are the velocities of the charges AQi at the point in consider-

ation.

Continuity Equation of Conservation of Charge

X
1

Fig. 5.2.1., Region in Which Charge Motion Exists

Consider a surface S’enclosing a fixed region of space V in which
charge motion exists, Fig. 5.2.1. Let us call the unit cutward normal of
a surface element dS' on S n, (xl, X, xa); the current density.

Jy (xl, X X5 t); and the charge density, p (xl, X, X3 t). It is
obvious from the concept of conservation of charge that

% 7

f—-—- av + fJi n, ds = 0. (5.2.4)
at P

v

4

s
Applying the Gauss theorem, (5.2.4) becomes

f<§+a‘ )dv-o (5.2.5)
v ot B
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(5.2.5) should be satisfied for any fixed region of space, This means

that the integrand of the left-hand side of (5.2.5) should be identically

equal to zero, i.e.,

(5.2.6)

(5.2.6) is called the Continuity Equation for the conservation charge.

5.3. Electric and Magnetic Fields

The electric field E,, and the magnetic induction field B, are
i _ 1

defined as follows:

aAi
B by - 2
By = €ixfy,y

where ¢, Ai are the retarded scalar and vector potentials,

1 p av’
¢ B f »

hweo v T
‘4
po f’-’idv
A1="—" »
by v r
with g--’ﬁ(x' X, SRR
1’ T2’ s o
~ ? 14 ’ r
Jy = J, (x, X X t - c@)
14
ry= X =X
2
r¥=r, T,
1
oMo © o2
0
The concept of retarded time
- r
t = t - "
¢

is designed to take into account the finite speed of propagation

(5.3.1)

(5.3.2)

(5.3.3)

(5.3.4)

(5.3.5)

c of
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electromagnetic interaction. The justification of these definitions is
shown later when compared with the conventional results deduced from

restricted experimental lavs.

5.4, Properties of the Electric Field

From (5.3.1), we obtain

PS)
Es g = =%y - > By g
1 9% 29 1 o
BRI Rl

(5.4.1)
By direct differentistion and using (5.3.3), (5.3.4), we can show that

Lo ° (5.4.2)
¢ - - — = - 5. o2
'11 cg Jt? € ’
and
1 o
Ai,i + ‘;‘a g = Oo (5-&';3)
Therefore, (5.4.1) becomes
d 4L
B = < (5.kk)
0

Also, from (5.3.1) and (5.3.2), we obtain

T e S By ey i 2, 5]

)
ot

il

(5.%.5)
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5.5. Properties of the Magnetic Induction Field

From (5.3.2), we obtain

B = 0 (5-501)
1,1 (Solenoidal)

By taking the curl of (5.3.2), we obtain

Sk B, T Gigx Sers P,y

(air 535 - 846 ajr) Ay ,rd
= Ay ML (5.5.2)
Also, from (5.3.1)
JE ¢ 2
e -(._.),1 S § (5.5.3)
ot ot ot2
Therefore
1 OE d 1 o3 1
€ B = — .—-—j—'- - A - — ._..i + A - e m—
ijk 7k, 2 ot 1,3 @ o2 Jsd cg 3t 1
(5.5.4)
Now, by direct differentiation
1 o
Ai,w - ;E " = =Ky Jy (5.5.5)
Using (5.5.5) and (5.4.3), (5.5.%) becomes
1 aEi
Py T 25
0
aE:L

5.6. Maxwell's Equations

(5.%.2), (5.4.5), (5.5.1), (5.5.6) form a set of interlocking
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equations relating the electric field Ei and the magnetic induction field

Bi'

B
'Ei,i = :—: (5.4.2)

0

aBi
ei{]k Ek;d = 'at—"') (5-“.5)
By = 0, (5.5.1)
BEi

€ 5k Bk,j = up (% g;— + Jy |- (5.5.6)

They are called the Maxwells' equations in vacuum. The charge density'ﬁ

and current density J1 should be the total contributions of the medium

when applied to magneto-fluid flow. "p" is the total charge density at a

point in the medium and Ji should include all types of currents other then

the vacuum displacement current which is written out explicitly in (5.5.6).
It is possible to define the displacement vector D1 and magnetic field

strength B& as,

Dy = & By
B
i

Hi = — : - (506.1)
Mo

However, these do not Introduce any additional advantage when polar-
ization ahd magnetization concepts of material medium are not introduced.

The forms of the Maxwell's equation indicate that our iniiial postu-
lates were correct and Justified.

Another fact which is worth noting is the case for electromagnetic

interaction in free space where both the charge and current densities are
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not present.

From (5.4.2) and (5.5.5), we note that both the scalar and
vector potentials satisfy the wmve equation.

1 %

db,u ;—2- o2 = 0 (5.6.2)
0
1 BZAi

ALay T ;% e (5.6.3)

The propagation velocity of these waves is ;/cg = €

o Mo This is one of the
assumptions made in introducing these retardation potentials.

5.7. Ohm's law

Where & conducting medium is in motion, it is possible to separute

the current J, (excluding the displacement current) in terms of a part

called the convection current J, (convection) and a part called the con-

duction current 9y (conduction). The convection part is given as

9y (convection) = 9 ? . (5.7.1)
The conduction part should include all the currents not included in con-
vection.

For a fully ionized gas, the conduction current can be shown to be

given approximately by the following relatlonship 1f ilnertias effect of the
electrons is neglected.

et
J + — € J, B
i n(e) iJk "3 "k
l ]
= 0 Ei + eijk qd Bk + -n—; P(e))i? (5'7‘2)

where

T 1is the mean electron collision period,
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m(e) is the mass of a single electron,
p(e) is the mean electron pressure,

n is the number of electrons per unit volume, and

ne2t

m{e)

g =

is called the conductivity.

In most of the spplications, the terms

et
— €, . J, B (Hall effect) ,
m(e) ijk "J 'k
[+
- P(e):-
ne i

are small and can be neglected. The resulting expression when the electron

pressure gradient and Hall effect are neglected for Ji becomes

iy =0 [%1 &k 9y Bk] . (5.7.3)
(5.7.3) can be shown to be true for other types of conducting fluid media

as well if secondary effects are neglected. It is called the Obm's law.

(5.7.3) can be rewritten as

Jd = 0E (5.7.4)

where

=
il
=
+

s 1 eijk 1y B, (5.7-5)

is the effective electric field seen by the moving medium. The term
eijk qJ Bk is the lorentz contribution of an apparent electric field

due to the motlon of the wmedium.
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The term

et
- € J, B
n(e) 13k ") "k
becomes important when the spiraling of the electrons about the lines of

mernetic field becomes important. It contributes a component of the

current in a direction normal to E 1 This current is called the BHall

current.
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CHAPTER VI — FORMULATION OF MAGNETO-FLUID MECHANICS

6.1.

Introduction

In discussing the continuity equation, the equations of motion, and

the first law of thermodynemics governing the motion of & fluid medium in

Chapter IV, we introduced a total of fifteen unknown field functions:

s Uy Co

a4y fi;) aiJ

electromagnetic intersction was formulated,

Cs

In Chapter V, the classical nonrelstivistic theory of

This involves the introduction

of fourteen additional unknowns; Ei’ Bi’ Ji’ ¢, Aig p through the fourteen

*
equaticns given by the fundamental postulates of electromsgnetism,

(2) E,
(b) B,
{c) ¢
(@) Ay
3%
(&) —
ot
() Js
where (g) K
(n) 3,
(i) ry
(3) <4

*
Renumbered for esse

JA
e
s 3¢
1 o
b f — dV’ 5
har € T
" 7.
O
] f_}. W,
kar r
-+ Jigi = 0 3
= o imi t e 9 Bk] ;
r
=6(X;;X;,X’,‘b=~) 9
o
P r
=Ji(xl)xﬂxﬁt°-)3
o)
= X X,
= 1/ & ug

of reference.

(6.1.1)
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The concept of a Lorentz or ponderomotive force £ 4 was also introduced.

1

v
Y

1T S JJ B, . (6.1.2)
The purpose of this chapter is to formulate a continuum theory of
magneto~fluid flow by combining the classical concepts of ordinary fluid
- mechanics and the concepts of electromagnetic interaction.
We shall assume that the electrically conducting fluid medium is
neutrally charged. This means that the 1imit of observation of the volu-
metric elements of the fluld medium should be large enough such that the

net charge density f:\ vanishes everyvhere in the medium.
P = P, + P =0 . (6.1.3)
This assumption in the flow of lonized gases and conducting liquids 1s
usually reallized and does not contribute a serious restriction on the theory
to be Pormulated in this chapter.
Equation (6.1.2) implies that the convection current in the fluid

medium vanishes; i.e.,

Ji (convection) = ’fJ\q_i = 0 . (6.1.4)

From the continuity equation of charges,

7y
g + Ji,i =0 , (6.1.1e)

and Eq. (6.1.2), we know that the conduction current or the total current

J 4 1s always solencidal.

J =0 . (6.1.5)
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OE
This means that the Maxwell's vacuum displacement current eo Et_i" for a

neutrally charged fluid medium vanishes. This results in some simplifi -

cation in the theory of magneto-fluid flow.

6.2. Ponderomotive or lorentz Force

In a neutrally charged conducting fluid medium, the only body force of

electromagnetic origin is the so-called pondercmotive or lorentz force f

i)
glven by one of the equations of the Biot-Savart law,
The magnetic induction field B, in Eq. (6.1.2) 1s related to E, J'i,

?, ¢, A, by the fundamental postulates [Eq. (6.1.1)] and through the veloci-
ty components qk

The fundamental postulates [Eq. (6.1.1)] can be reduced to a set of
interlocking equations as shown in Chapter V. For an electrically con-
ducting, neutrally charged medium, these interlocking equations become :*

Maxwell's equations

(&) E = 0 ,

1,1
() Bi’i = 0 ,

9B,
©) &Py =" 5
(@) ey By = Body -
Olm's law
() 3, = ¢ [E:j_+<-:j_"k a, Bk]

* :
Renumbered for ease of reference.
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Continuity equation for charges
(£) g = 0 (6.2.2)
]

i,1
These relations are not entirely independent of each other. However, they

form a convenient set of equations in formulating problems of magneto-fluid

flow.

6.3. Separation of the Stress Tensor, the Kinetic Equation of State, and

the Newtonian Fluid

It 1s always possible to separate the stress tensor aid in terms of

a scalar function p and a new tensor 113 as follows:

(6.3.1)

o = - pSiJ + 113

where Bij is the "Kronecker delta".
We are st liberty to choose the magnitude of the scalar function p
(the fluid pressure). For an incompressible isotropic fluid, it can be
shown that the magnitude of p hqa to be equal to the negative of one-third
of the algebraic sum of the normﬁl components of the stress tensor, Gij'
For a compressible fluid, one criterion to determine this seperation of

the stress tensor, o,, is to assume that the scalar function p will take

iJ
on the same thermodynamic role, whether dynamic motion exists or not in

the fluid, i.e., there exists s kinetic equation of state such that

F (0, e, 1) = 0 . (6.3.2)

Another criterion for the separation of the stress tensor oij for a
compressible fluid is to assume that the dissipation in the viscous fluid

due to a dynamic process is contributed entirely by the new stress tensor
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Ti 3 (the viscous stress tensor). Using the kinetic theory of gases, it can
be shown that for a monatomic gas, these two criteria imply that the scalar
function p again has to be equal to the negative of one-third of the alge-

braic sum of the normal components of the stress tensor oi 3

O’ii * (6°3"3)

o
#
13
W

Equation (6.3.3) determines the magnitude of the fluid pressure p for an

incompressible isotropic fluid and a monatomic gas. It implies that

T, =0 . (6.3.4)

For other types of gases, however, this is not exactly true.

| Inasmuch as we have assumed that the viscous stress tensor 'ci 3 contri-
buted the dissipation during a dynamic process of the viscous fluid, it is
logical for us to relate the components of the viscous stress tensor 'ri 3 to
the velocity gradients q_i, y° ‘We note that the velocity gradients q‘i, 3 can

be separated into one symmetric tensor € 3 and one anti-symmetric tensor

a)i‘1 as follows:
q‘i,;} = eiJ - wi:) R (6.3.5)
where
1l
Wt St (6:3.6)

is called the veloclty strain tensor, and

1l

%y = 7 (g0 -,y (6.3.7)
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is called the vorticity tensor.

The vorticity tensor mij can be shown to be a measure of the rate of

rigid body rotatlion of the fluld elements and the veloclty strain tensor

eiJ is a measure of the distortion of the fluld elements. Therefore, it

is logical for us to relate the viscous stress tensor Tij

velocity strain tensor eiJ only. If the relationship between tij and €

in terms of the

ij
is lineaxr then the fluid is called s Newtonian fluid.

1'13 = Aijk;& Ek‘ 3 (6.338)

where the components of the tensor A, , are constants. Equation (6.3.8)

Jk£
implies that when all the components of ekt are zero, the viscous stress

tensor vanishes. Both the viscous stress tensor 113 and the velocity strain

tensor €,, are symmetrical. This means that

1)

8
>
i
ey

A (6.3.9)

ike Jike ijtk

For an isotroplc medlum, the tensor Aijkz should be invariant under

rotations and reflections of the coordinate system. Combining this re-

striction with Eq. (6.3.9), we can show that A can be expressed in

Jke
terms of two scalar constants A\ and u.

Aijk& = A5, .5 + p (5, 8 + 8, ,.8,) , (6.3.11)

for an isotropic Newbtonian fluid.
Therefore, for an isotropic Newtonian fluid, the relationship between

the viscous stress tensor and the velocity strain tensor is

Ty " [MsiJ B, + (B

1 Byp *+ By Bl 6y (6.3.12)
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or

Tyy = N € aid + 2u € (6.3.13)

’
or

i 1 - 8 . L 2
Experimental evidence has shown that the constant p is always positive and

real. It is called the "first coefficient of viscosity."

Contracting Eq. (6.3.14), we obtain,

Ty o= (3N + 2u) Y, - (6.3.15)

The constant (3\ + 2u) is called the "bulk (or second) coefficient of

viscosity." For an incompressible fluid,

q‘i,i = 0 . (6.3916)
This means that
'ii = 0 ’ ) (6*3‘1")
and therefore
1
p = -; Gii » (6'3'3)

for an isotropic incompressible fluid, For a monatomic ges, 111 vanishes

for another reason. Therefore, we deduce that

2

AN o= - ;u , (6.3.17)
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for a monatomic gas.
In general, however, Eq. (6.3.17) does not hold exactly for an incom-
pressible fluid or a polyatomic gas.

Summarizing, we can express the stress tensor uij in terms of the fluid

pressure p and the velocity gradients qi J for an isotropic Newtonian fluid
s

as follows:
o = - o+ k 5 + . [ ¥} 8
g9 = (Perg )8,y 4+a,) (6.3.18)
For a fluid which satisfies the condition,

o, (6.3.4)

Ty4 <

Equation (6.3.18) becomes
2
Ui,j == (P + 3 M qk,k) 613 + M (qi,J + qj,i) .« (6.3.19)

If the fluid is incompressible, (p = C), then the continuity equation for

fluid motion states that

qk,k = 0 ‘ L (603.16)

Therefore, Eq. (6.3.18) or Eq. (6.3.19) becomes
Oy = =P 51J + 4 (qi,J + qd,i) , (6.3.20)

for an incompressible, isotropic, Newtonian fluid.

6.4. Pourier law of Heat Conduction

The heat flux b

1 due to a temperature gradient T 1 is called hest
, —

conduction.
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It is not hard to show that the heat transfer due to heat conduction, ¢,

into a fluid element per unit time per unit volume ig

€ = - bi,i . (6'!‘.1)

The heat flux bi is usurlly related to the temperature gradient by

the following expression:
bi b - k T,i » (60h02)

where k = constant is called the "heat-conductivity". Equation (6.4.2) is

colled the Fourier law of heat conduction.

6.5. Joule Heating

The work done % by the electromagnetic field on a neutrally charged,

conducting fluld element per unit volume per unit time is obviously

dw
— = B J ] (6.501)
at 171
where
3 = c[‘Ei-t-eiJkqu Bl . (6.2.2¢)
Therefore,
aw J2 ( )
— = = 4+ € J,B_ . 6.5.2
1t o 13k 4 Yy Pk

The second term on the righthand side of Eq. (6.5.2) we notice is the

work done by the ponderomotive force 'fi. The first term on the righthand

side of Eq. (6.5.2) is a dissipative term (non-negative term) which can
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be considered as a heat transfer term due to electromagnetic interaction.

This non-negative term %a is usually called Joule heating.

J2
p ¢ (Joule heating) = ~— (6.5.3)
o

The heat transfer term ¢ in the firat law of thermodynamics can

therefore be written as

[+ = E o+ —E- + c’ K] (60 Soh‘)
where
- 1
C = - bi " is due to conduction,
o ’
€ = — 1is due to Joule heating, and
po

¢ ia the heat transfer due to radiation.

6.6. Caloric Equation of State

The internsl energy per unit mass u as appearéd in the first law of

thermodynamics is usually assumed to be related to the fluid demsity p,

and the absolute temperature T. through the Caloric equation of state,

P, (e, ) = 0 (6.6.1)

The exact form of Eq. (6.6.1) depends on the kinetic equation of state,
the second law of thermodynamics, and the specific heat at constant volume.

This will be discussed in detaill in Chapter VII.
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6.7. Conservative Forces

Body forces fi of non-electromagnetic origin are usually conservative

forces derivable from a scalar function of position
b1
fi = "Q,i s (6.701)
where 4 = di{x, x,x . Te
( L X a) (6.7.2)

is called the force potential which is usually known in advance. The body

force term in the equations of motion or the first law of thermodynamics

can therefore be written as

£, o= f, + ? + £, (6.7.3)

where

1
3 GiJk Jj 9 is the Ilorentz force,

i
i

L]
it

N - § 4 are known conservative forces, and
2

£/ are other body forces not accounted for in fi

and fi.

6.8. Formulation of Magneto-Fluid Flow

In the previous discuséions, we have introduced no less than 48

equations governing the 48 unknown field functions: p, g, f,, ?i, £

Oy B Typ W T, E;» By, Jys ¢, Ai,‘B, ¢, ¢, ¢, b,. Combining these
equations we obtain a set of equations governing the motion of an electri-
cally conducting, neutrally charged, isotropic, Newtonian fluid medium
within an externally applied maghetic field, The interlocking and the

dependent characteristics of the electromesgnetic equations cause &n
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apparent excess of the number of equations over the unknowns. However,
this get of equations is one of the most convenlent sets of equations

governing magneto-fluid flow.

Continuity equation for jluid metion.

3

— + (p q,) a0 L
> 3,3

Equations of mobion

d.
— . + 1 -p & o+ o€, . J H 6.8.1)
g dt Pt T,y TP ey e ( '
First law of thermodynsmics
au a @) 1 1 o
—_— p R . Ty Y,y 7T by, v+ ¢4 (6.8.2)
at dat b + o’
Maxwell's Equatlions
(a) Ei,i = 0 »
(b) Bi,i = 0 3
BBi
' € E = e e— ,
(c) i3k "k, 4 5t

@ e B g = Koy
Ohm's law

() 9, = olB + gk Y B,
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Continuity equation of charges

(£) Ji’i = 0 |, (6.2.2)

Fourier law of heat conduction

bi = =k T’1 . - (6.4.2)

Newtonien viscous law for an lsotropic fluid

1 = MOy tu (g g +a ’i) . (6.3.14)

Kinetic equation of state

Fl (py o T) = O . (6.3.2)

Caloric equation of state

F, (4, p,T) = 0 . (6.6.1)

Joule Heating

oll

Ja
— (6.5.3)
pc'

In formulating the theory, we also introduced six constants Bor €2 O,

A, u, and k, The constants, "

€2 po", are glven for a given set of electro-
magnetic units. "0, A, u, and k" are either determined from experiments

or based on the results of statistlical mechanics. The fluid medium is
assumed to be isotropic, Newtonian and follows the Fourier heat conduction
law, ‘The Ohm's law of the form of 5ig. (6.2.2e) implies that the Hall

current is negiected in the discussion, The unimown field functions are

Py Uy P, Tidk Ei’ Bi" Ji’ u, T, bi.’ T,
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CHAPTER VII ~ ALTERNATIVE FORMULATIONS AND
SECOND IAW OF THERMODYNAMICS

7.1. Introduction

There are several alternative forms of the formulation of magneto-
fluid flow, For example, the ponderomotive force can be easily expressed
in terms of an equivalent tensor of the second rank called the Maxwell's

stress tensor. The motion of the magnetic induction field can be described

in terms of a vector equation called the induction equation. It is also

possible to define a specific entropy per unit mass such that the first
law and the second law of thermodynamics can be expressed in a single

equation,

7.2. Maxwell's Stress Tensor

The ponderomotive or Iorentz force

pf; = € gk J:l B, (6.1.2)
can be combined with one of the equations of the Maxwell's laws
€5 B,y < Mo Ji (6.2.23)

such that thies force is expressed in terms of the magnetic induction field

Bi alone.

1
PEy = Sk (ﬁg €irs Bs,r) By

1
= L-(; <8kr Sis sks B:Lr') Bs,r Bk
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1
- Ho (Bi)kBk-Bk,i Bk)
1 [ B® 1
- =] 2 + &= B, . B . 2.7
p0<2>,1 by 1,k "k (7.2.1)

But,

Bk,k = 0 . (6.2.2b)

Therefore, Eq. (7.2.1) becomes

B2 B, B \
; i
ot = { — ), + =) (7.2.2)
on a1 " ,k
o, o /
or
e *
P 1 = aiJ,,j s (7'2“3)
* * *
where 9y = P 513 + Ty (7.2.4)
" B2
P = — , (7.2.5)
2M0
B, B
*
Ty T ik (7.2.6)
Ho
*
"61 J" is called the Maxwell's stress temsor. It is composed of an equiva-
* 2 2
lent magnetic pressure p = %1—- and a tension -3—- along the lines of
0 0
force. ‘

Using Eq. (7.2.3), the equations of motion for the fluid medium can

be written as

i g (7.2.7)
o -0 + ) 7.2.7
it i, T
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- #*
vhere O'Ji = 0'31 + aJi , and
f’i represents other body forces.

7.3. The "Induction Equation"

From the Ohm's law, we have

J

e L .
Ey o €igk Yy B -

Therefore,
1l

€1k Bx, g 10k Tk,3 T Sigk Skre (% Bg)

)

Substituting Eq. (7.3.2) into one of the Maxwell's equations

OB
€ E S § s
we obtaln
BBi 1
3 13k “krs (0. B) 5 + g L Y9 =0

But from Eq. (6.2.2d)

Therefore, Eq. (7.3.3) becomes

OB N 1

— = €, ,, € B 4 em—— € . €
3 1% Sers (3 Bg) 4 w0 13k krs Bs,ry

(7.3.1)

(7.3.2)

(6.2.2¢)

(7.3.3)

(7.3.4)

0, (7.3.4)
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or,
BBi 1
o (8, Byp = By By,) (2, B)) 4+ . (8, Byg = 85 8y ) By oy = O
(7.3.5)
or,
aB1 1 ;
3 (W (ay B, o (By,19 = By g9) = O (7:3.6)
But,
By =0 . (6.2.2b)
Therefore, Eq. (7.3.6) bec&mes
bBi 1 v
5 By Gy B, o bl T 0 (7.3.7)

Equation (7.3.7) is called the induction equation, which is sometimes quite

useful in the study of magneto-fluid flow.

7.4, Second Iaw of Thermodynamics and Entropy Production

The first law of thermodynawmics

du 1

—_— = = + C (h.3.7)
PP R 9%

cen be written as

du d(%)
dat

-

- = ; Ty Y,y e (7.4.1)



51

vhere we have separated the stress tensor according to the separation

equation
Oy = - P Bij + 113 . (6.3.1)

The viscous stress tensor 1s assumed to contrlbute the material dissi=~

pation in the medium. For a reversible process the viscous stress tensor

must not be present in the fluid medium. Therefore, for a reversible

process
1
;; + P at = it - s (7-”02)

where we have called the time rate of heat transferred reversibly into the
db rev
medium —jég-—*l . Or in differential form (following the motion of the

particles along)

awrp(2) = g, (7.4.3)

where the dash on the symbol &b indicates that it is not an exact differ-
ential, Equation (7.%4.3) is identical with the differential form of the
first law of thermodynamics for a fluid element undergoing an egquilibrium

thermodynamic process. The second law of thermodynamics for reversible

processes states that

N Blrev) du + pd(%) ,

T T

(7.4.4)

where

s = s (p, p) , (7.4.5)
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is a thermodynamic variable defined by Eq. (7.4.4) called the specific

entropy per unit mass.

If we consider the specific internal energy u to be given by the

caloric eguation of state

F, (4,0, T) = 0 , (6.6.1)
or
u = ufp, T)
= u(v,T) , ‘ (7.4.6)
where
1 .
vo= - . (7.4.7)
]

is the specific volume per mess; then from Eq. (7.4.4), we obtain

du du
aT + (p + §o) av
a5 = & Sv - (7.4.8)
T

Since ds is & perfect differential, we know that

1
[; (0 + %)] , (7.4.9)

d 1 du
ov \ T oT

d
T

or

¥|¥
3

Y&
L~}

(7.4.10)

Therefore,
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du '—'(;)\r aT +<§:—)T dvk
=<-Z-:—>v dv + Q:; -gdv . (7.4.11)

This means that the specific energy per unit mess u 1s defined if the

kinetic equation of state

Fl (s ps T) = © (6.3.2)

is glven and if the specific heat for constant volume

(’30) (7.4.12)
G om | e T.4.12
v “BT v

is known.

Using the definition of specific entropy in Eq.(7.4.8), Eq. (7.4.2)

becomes
a(3)
ds du P
T o= = == 4 P m— (7.4.13)
at dt dt

This is the combined first and second law of thermodynsmics for a reversible
process.

For a fluld process with viscous dissipation ard irreversible heat
-transfer in magneto-fluid mechanics, the first law of thermodynamics given
in Eq. (6.8.2) should be used |

du a (%) 1 1

— 4+ P = e T [+ = =)
at at p 9 Ld i

. (6.8.2)

+
oll
+
)




54

Neglecting the radiation heat transfer ¢’ and using Eqs. (6.5.3) and (7.4.8),

we obtain
ds 1 J2 1

T — = — 7% +4 — - =) . (7.4.1%)
; i 4,3 oo o i

If the net heat transfer due to heat conduction amd Joule heating vanishes,
then
ds 1l

M oo = == g q . (7'“’"15)
% 5 et

But the gecond law of thermodynamics for irreversible processes states

that

ds

dt
for an adisbatic process (c = 0). Therefore, Eqs. (7.4.15) and (7.4.16)
state that |

1
Y = e 701_'_‘17
T a1, ( )

is always non-negative. "v" is called the viscous dissipation functlon.

Combining Egs. (7.4.14) and (7.%.17), we obtain

ds J bi 1
f— = v + - 2 (7@’4-18)
at Tpo T o
or,
ds 1 /% J2 b T
— + -(J») L=V o+ - 22 (1..19)
dt p T 7’ Top p T
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BEquation (7.4.19) is the combined statement of the first and second laws

of thermodynamics for irreversible processes. Since the heat flux bi

is always in the opposite direction of T 4 the terms on the right of

b
Eq. (7.4.19) are all non-negative. For a flow process where the co-moving
rate of change of the specific entropy per unit time per unit mass of a

fluid element vanishes, 1.e.

— = 0 3 , (7.4.20)

there i8 a net outflux of entropy flow per unit time per unit mass from

the fluid element

1 /% J2 b, T
_(_i.>i = v o+ S TT (7.4.21)
p *T./? TOo)p p T?

which is always non-negative., This outflux of entropy must somehow be

produced within the fluld element. It is called the entropy production.

The entropy production which characterizes irreversible magneto-fluid flow
is due to viscous dissipation, Joule heating, and irreversible heat con-

duction.
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CHAPTER VIII — SIMIIARITY PARAMETERS
OF MAGNETO-FLUID FIOW

8.1. Introduction

In this chapter, we shall compare the relative magnitudes of the terms
appearing in the governing equations of magneto-fluid mechanics in terms of

the so-called dimensionless similarity parameters.

When a particular term or set of terms in the governing equations
appears to contribute negligible effects on a given problem in magneto-
fluid flow, this term or set of terms can be deleted from the governing
equations and thereby simplifying the analysis of the given problem. The
same idea applies in experimental investigations of magneto-fluid flow.
When an experiment is simulated in the laboratory, it will only be nec=
essary to keep those simllarity parameters which arose from the more im-

portant terms in the governing equations alike.

8.2. Nondimensionslized Equations and Similarity Parameters for Magneto-

Fluid Flow with s Unigue p-p-relationship

Iet us first consider the simple case of magneto-fluid flow where the

fluid pressure p and the fluid density p are uniquely related,

p = p () . (8.2.1)
In addition, let us also assume that

() Gij = =p §ij + 113 ,

() 7y = A8y q ey 4+9,)

(c) A= "% B

1
(a) £, = 5 €43k JJ B, » end
() I, = U[.‘Ei+eijk a Bk] ,



o1

(£) =0 . (8.2.2)

ot
The set of equations governing this type of magneto-fluld flow 1s
given as follows:

(a) Continuity Equation

(p qJ),,j = 0 »

(v) Equations of Motion

_ 1
Py = By tr (39,4 )

1 ’22) . ]
uOK? PR RV I

(¢) Induction Equation

1
(4B =y By) 5 = 505 iy
(d) Solenoidal Property of B,
Bi’i = 0 , (8.2.3)
and
p = p (o) . (8.2.1)

We note that due to the assumption of the existence of a unique
p-p-relationship, the first law of thermodynamics and the equations of
state are not included in the set of equations governing the fluld motion.

let us now choose the following set of dimensionless variables:

A~
P

>
oo welw



A 4
4 ==
q
A Bi
Bi = - ,
B
X
o i
xi = ;'—' ) (802' l")
x
vhere S is a certain constant characteristic pressure in the flow,
4 1is a certain constant characteristic velocity in the flow,
?3' is a certain constant characteristic magnetic induction
field, and
¥ 1s a certain constant characteristic length.

Transforming Eq. (8.2.3) by Eq. (8.2.4), we obtain
A =
(a) ® qd);f 0,

A A 1
(b) 449 o = -3 Cy

A D P 1 ~ ~
() @3 -4 55 = 7y "3
(@ B4 -0,
&) 2 =920 . (8.2.5)

= —i
where c (p) ™ g is called the characteristic ;Eress
3p4q coefficient,

qx
R = %1% 15 called the characteristic Reynolds number,
. , Reynolds number
o L")
. PHy @ ’
A® = —Z>— 1s called the characteristic Alfven number, and
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R(m) = Ky o E X 1is called the characteristic magnetic
Reynolds number.

From elementary gas dynamics, we know that the ratio

neildé

is a measure of certain characteristic sonic velocity in. the flow. There-

fore, the characteristic pressure coefficient C( can be visuslized as

P)
the measure of the reciprocal of the square of certain characteristic Mach

number M in the flow, i.e.,

C(P) ~ -M; . (8.2.6)

As we shall see later in Chapter IX, the value

ga

b i,
is equal to the square of the speed of propagation of nondissipative
magneto-fluid waves in a conducting medium. Therefore, the Alfven number
is the ratio of the magnitudes of the characteristic flow velocity to the
characteristic Alfven wave velocity.

For magneto-fluid flows satisfying the reatrictions given by Egs.
(8.2.1) and (8.2.2) to be dynamically similar, it is necessary for them to
have the same characteristic values of M, R; A, and R(m) in addition to
the requirement of having identical dimensionless boundary conditions.

These characteristic nmumbers are usually called the similarity parameters.

In practical problems of magueto-fluid flow, these characteristic
numbers have different relative magnitudes. It is usualiy only necessary

to retain those terms which are predominating in the governing equations.
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Some of the possible types of magneto=-fluid flow categorized according to

the magnitudes of R and R(m) are listed as followsi

1. Inviscid, magnetic-predominating flows R = o , R(m) << 1.
2. Inviscid, magnetic boundary layer flows R = = , R(m) >> 1.
3. Viscous and magnetic boundary layer flow: R >> 1, R(m) >> 1,

4. Viscous and magnetic-predominating flow: R << 1, R(m) << 1.

There is vanother dimensionless similarity parameter characterizing the
relative magnitudes of the magnetic and viscous forceé in magneto-fluid
flow, It can be obtained from the equations of motion by expressing the
ponderomotive force in terms of the cdnductivity o using the Ohm's law and
by comparing this term with the viscous term. It is called the Hartwann
number, and defined as follows:

kel N VA T (8.2.7)
A® M
From Eq. (8.2.7), we know tha.t‘ A 1s not a new independent similarity
parameter. Eoweirer, it is a very convenient parameter to use when com-
paring the viscous and magnetic forces in magneto-fluld flow if the fluid

is not perfectly conducting.

8.3. Additional Similarity Parameters Arising from the First law of

Thermodynamics

If there does not exist a unique p-~p-relationship, then the magneto-~-
fluid flow should also be governed by the first law of thermodynamics and
the equations of state. For an idesl gas, it will not be hard to show that
the additional similarity perameters introduced for such type of flow are

the Prandtl number




P = (¢ B (8.3.1)

where c(p) is the specific heat per unit mass for constant pressure, and

the relative energy parameter

q?

£E = . (8.3.2)
‘(o) T

The Prandtl number P characterizes the relative magnitudes of viscous
dissipation and heat conduction. The relative energy parameter §, as the
name implies, characterizes the relative magnitudes of the kinetic energy

ﬁer unit mass to the specific enthalpy h of the fluid defined by

B
h = u + 5 - (8.3.3)

The characteristic parameter J indicating the relative magnitudes of
Joule heating and heat conduction can be expressed in terms of the Afvén
number and the magnetic Reynolds number as follows:

B2 1 5.0
Jd = e pot = » .3o1‘*

and is not an independent parameter.
Therefore, a complete set of similarity parameters for magneto-fluid
flow can be chosen as follows: M, R, A, R(m)’ P, and §, Another convenient

set is: M, R, A, K, P, &nd ¢.
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CHAPTER IX — ALFVEN WAVES"

9.1. Introduction

It is possible to deduce a propagation velocity for small disturbances
in an incompressible, inviscid, and perfectly conducting fluid in the pres-
ence of & uniform magnetic field in analogy with the discussion of sonic
disturbances in an ordinary compreséible inviscid fluid medium. This type

of wave propagation is called an Alfven wave.

9.2. Governing Equations for Nondissipative, Incompressible Magneto-Fluid
Flow

For a perfectly conducting fluid, the Ohm's law becomes

Ei = wei,jk qJ Bk , (9.2.1)
and the curtrent is determined from Eq. (6.2.2e)

Ji = ;o EiJk Bk,; . (9.2.2)

Therefore, the complete set of equations for nondissipative, in-

compressible magneto~fluid flow in the absence of other body forces 1is;

B® B, B
)+ (=),
2By 7 4 Po 7,3

09
(8) p = TP Uy T PaC <

3 B,
®) == = B4,y By o

(C) q'i,i = 0 3

(a) B 0 . (9.2.3)

fi

1,1
We note that Egs. (9.2.3c, d) are added restrictions on the field

vectors q,, B, vhich are governed by Eqs. (9.2.38, b).

i
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9.3. Small Perturbation Equations from Equilibrium

let us assume that the fluild is essentially in equilibrium with a
uniform magnetic induction field, Bi(O). Consider small disturbances in
the fluid such that

(&) q; = €q; ,
() B, = B,(0) +eB; ,

(¢) »

p(0) + €D ,

L]

(d) € «< 1 . (9.3.1)
where Bi(o), p(0) are constants,
Inserting Eq. (9.3.1) into Eq. (9.2.3) and combining, we obtain to

the lowest order of e,

~e

d 9 . 1 © 3 1 -
(a) p—= = - [p +- B.(0)B ] +— B,(0) B s
J J i,
at Ko ,1 Ho J J
3 3, .
(b) —g: = Bj(o) q:i.,j . (9'302)

These are the small perturbation equations governing wave propagations

in a nondissipative medium which is initially at rest.

9.4, Reduction to the Wave Equation

From Eq. (9.3.2a), we know that
N l ~
[p + = B,(0) B, ] = 0 ., (9.4.1)
u J J 144
0 2
However, we know that for the fluid region outside of the applied uniform

magnetic induction field,Bi(O),

[~ 1 ~ ~
p+ ~ B.(0) B, ] = P
L b 3 1 (outside) (outside)

= 0 . (9.4.2)
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Therefore, from the uniqueness theorem for the solution of a Iaplace
equation, we know that

~ 1 o~ A
[p * B,(0) BJ] = 0 / (9.4.3)

everyvwhere in the fluid. Therefore, Eq. (9.3.2a) becomes,

37 1
ot P Hg

BJ(O) 31,.; ’ (9.4.4)

Equations (9.3.2b) and (9.4.4) can be combined, and we obtain two
second order linear partial differential equations govering the small per-

turbations '&i and B, as follows:

i
¥4 2 .
® S AORO L
3* 3 o
i 1
®) —% - ™ B,(0) B, (0) B, ,, . (9.4.5)

Calling the unit vector in the positive direction of the applied
magnetic induction field ‘bi,; Eq. (9.4.5) becomes

32 Ei B2(0) 3° 3’1

a = "
(2) oF R ’
0 .
2 2 2 ¥
" B, 3(0) 9~ By (9.4.6)

a2 P My 2

These are the standard one-dimensional wave equations, The solutions

of these equation are

alb = At) + p(d +At) ,

#

-
Ly
~

._EI" FE?
1}

y (b -At) + 8(b 4+ At) , (9.4.7)
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where ¢, B, 7, and b are arbitrary functions and

B%(0)
- (9.4.8)
P g

is called the Alfven velocity. The propagation is along the direction of

the applied magnetic induction field Bi(o).
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CHAPTER X — STEADY PARALLEL INCOMPRESSIBIE
MAGNETO~FLUID FLOW

10.1. Governing Equations

One of the simplest examples in magheto-fluid flow is the steady
parallel flow of an incompressible, electrically conducting, Newtonian
fluid within two parallel, infinite, insulating flat plates in the absence
of other body forces. Let us choose a set of right-handed Cartesian co-
ordinate axes xi, such that the x1~direction is in the direction of flow
and the x,-direction is in the positive direction of the applied uniform
magnetic induction field. Due to the steady parallel flow assumption, sll
dependent variables are functions of Xg only with the exception of the
fluid pressure p, which can have a constant gradient in the xl-direction.

The governing equations written explicitly for this caée are:

Continuity Equation

4 a4,

(a)

= 0 ,

da X,

Bquations of Motion

dqu
(v) P, = —z - Ja Bt I By,
2
() p, = J,B, - J, By ,
(a) P, = 5,8 - T8

Maxwell's Equations

(e)'"""z'=0:

ax
2
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ae
(f) —2 = 0 ’
dxz
o =0,
dE,
—_— = 0 ,
dxa
aB
(8) —£ -0 )
ax
2
G'Ba
) — = 19
dx
2
0 = pyd, ,
&
- = p,J_ ,
ax 0 '3
2
Ohm's law
(1) J = 0E ,
32 = [+4 (Ez - q1 BS) ]
J, = c(Es-qlBa) ’
Continuity Equation for charg_gs
aJ
(J) “""2- = 0 . (10.1.3.)
dx

2

10.2. Reduction of Equations and .Unknowns

We note that Eq. (10.1.1a) is automatically satisfied, since

ql = ql (xa) L

N
o

q3 = 0 . (10.1.2)
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From Eq. (10.1.1J), we know that

J, = constant . (10.2.2)

But the flat plates are insulated. Therefore, we conclude that
J =0 , | (10.2.3)

everywhere in the flow region. This result is consistent with one of the
Maxwell equations (11.1.1h).

From Eq. (10.1.1g), we know that
B, = constant , (10.2.4)

the strength of the applied magnetic induction field,

Since

P.= o, (10.2.5)

we deduced in conjunction with Eqs. (10.1.1d) and (10.2.3), that

J, = 0 . (10.2.6)
Therefore, Eq. (10.1.1c) becomes

P,= Ig By - (10.2.7)

From Eq. (10.1.1h), we know that

B, = comstant = O . (10.2.8)

Therefore, we deduce from Egs. (10.1.1i), (10.2.6), and (10.2.3) that
E =0, (10.2.9)

E, = 0 . (10.2.10)

From Eq. (10.1.1f), we also know that

E, = constant . (10.2.11)
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Summarizing, we have the following set of eqnations* 8till to be

satisfied. They are

cl:"’ql
(=) P, = u e " I B,
2
() P“,a = Ja BJ. ’
dB
1 ,
(C) ';— = uo JS )
2
() o [Ea +q, B ] = Ja . (10.2.12)

In these equations, p 2’ By Bos B2 and Es are constants. Our task
>
is to solve these equations simultaneously, together with the boundary

conditions for the dependent variables: p, q , J

12 g0 and Bx'

10.3. Solution of the Problem

Equations (10.2.12) are linear equations, and the solution of these
equations is readily obtained with the aid of the given boundary conditions.
Iet us substitute Eq. (10.2.12d4) into Eq. (10.2.12a),

ﬂgq

p}l=udx2
2

- 0B, (Ea +a Ba) . (10.3.1)

This is & second order ordinary differential equation for the single vari-
able q,. The boundary conditions for ql are
Q@ =0 at x, =1 , (10.3.2)

vhere 2a is the distance between the two plates and we have put the origin
of the xi-axis midway between the two plates. The solution of Eq. (10.3.1)

subject to the boundary conditions [Eq. (10.3.2)] is

*
Renumbered for convenience.
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i’y 3

N
sz‘
P -f»aBaE3 (cosh -

-1 ’ (10.3.3)

o B:' cosh ﬁ

§.e
BE = - Bea ’ (10.3.4)

B

where

is the Hartmann number defined in the previous chapter.
The current density Ja can be easily obtained by inserting the result
of Eq. (10.3.3) into Eq. (10.2.12d):

fx,
pP.+0B,E cosh -
3 273
Jg = O Eq + == : -1 ’ (10.3.5)
B, cosh @ ‘
But, from Eq. (10.2.12c),
Therefore,
p + 0B E
= - 2.3
31 , Ko (0' Es x,
A
H X,
au Py+oO ZB E sinh —2
2 (= ) +C . (10.3.7)
ﬁ B, cosh H

The constant of integration C-and the value of Es are evaluated from
- the boundary conditions:

B, = 0, at. x, = #a . (10.3.8)
Therefore,
C = 0, and
P, (ﬁ coth | - 1)
E, = — . (10.3.9)

O'Ba
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This mesns that
™

H
K. P . 8 x slnh = x
B, = 22l [ 2. 8 2 ] . (10.3.10)
b § a Vol
B sinh H

2
The pressure p can be evaluated as a function of H1 by inserting
Eq. (10.2.12¢) into Eq. (10.2.12b) and integrating with respect to X,

The result 1s

P+ = p(0) +p _ x , (10.3.11)
1 1

2 Ho
where p(0) is the pressure at the origin if the induced magentic field B,

is not present. “31?/2 uo" can be thought of as an equivalent pressure

in the opposite direction of the fluid flow.

10.4. Velocity Profiles

The velocity pfofiles of this type of flow are predominately in-
fluenced by the Hartmann number ﬁﬁ‘which is a measure of the relative
wegnitudes of the viscosity force and the induced drag force. - The in-
duced drag force tends to flatten the velocity profile, Fig. 10.4.1. For
large values of'ih the velocity is nearly constant except at the boundary

surfaces where the viscosity forces still predominate,



T2

Insulating plate

> q

Insulating plate

/H\(l) < fi\(e) <‘ ﬁ(3) < ﬁ‘(u)

Fig. 10.4.1. Velocity Profiles of Steady,
Parallel, Incompressible Magneto-Fluid Flow Be-
tween Two Parallel Insulating Plates under the
Action of an Applied Magnetic Field Normal to
the Surfaces of the Plates.
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CHAPTER XI — MAGNETO-FLUID DYNAMIC SHOCK WAVES

11.1. Introduction

Analogous to ordinary compressible fluid flow, finite discontinuities
of flow properties can occur across narrow transition zones in a nearly
nondissipative magneto-fluid flow, Within these narrow transition zones,
the gradlents of the flow velocity, temperature, and magnetic induction
field become extremely large. Therefore, the fluid medium should be con-
sidered as a viscous, heat-conducting, dissipative méterial within these
narrovw transition zones. Such s transition zone in magneto-fluid flow is

called a magneto-fluid dynami¢ shock wave.

In this chapter, we shall derive the jump conditions (or shock con=-
ditions) for the flow properties and magnetic properties across such a
shock wave in mgneﬁo’-fluid flow. The derivation is restricted to steady
flow conditions. These results can be easily génemli_zed to include un-

steady flow conditionms,

11.2 Conservative Forms of the Governing Equations of Magneto-Fluid Flow

It will not be hard to show that the continuity equation, the equations
of motion, the first law of thermodynamics, the induction equation, and the
solenoidal condition of the magnetic induction field can be written in the
following alternative forms for steady magneto-fluid flow in the absence of
other body forces.

Continuity Equation

(&) ba), =0,

Equations of Motion

' B2 Bi B
(v) pq3q1+padi-fji+-2'.—ﬁgﬁid---ﬁ-o~i jizo,



T4

First Law of Thermodynamics

(n L b :
(€) |pqy (B+=q%) -1y a4+ gt emkndnk] =0,
0 s1
InductionvKgation
Solenoidal Property of Bi
(e) Bi,i = 0 . (11.2.1)

Equations (11.2.1a, b, c, d, e) are called the conservative forms of
the governing equations for steady magneto-fluid flow. As we shall see in
the next section, conservative laws are directly derivable from these

equations.

11.3. Shock Conditions

Without loss of generality, we can denote the direction normal to the

shock~front, Xy for a given streamline, Fig. 11.3.1.

Shock~Transition Zone
Streamline

Fig. 11.3.1. Magneto-Fluid Dynamic Shock Wave
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Equation (11.2.1a) can be written as
= 0 . e Y
o q:.),:, + (p qa),e + (p qa),s (11.3.1)

Let us integrate Eq. (11.3.1) across the shock transition zone along the

xl-axis.

xi(a) xl(a) x,(2)
I VS [ AL [ R
xl xl xl

" where xl(l) and xl(a) refer to the points just ahead of and behind the shock
vave along the given streamline, respectively.
Since the shock-transition zone is very narrow and since the changes

of flow properties in the x, and x3 directions are small,

x,_(e)
lim (pg)  dx
x,(2) = x (1) =0 Y 1y ° %, Ty
1
x, (2)
= ( ) lim dx
2 q'& a2 X;(Q) - xl(l) =0 xl(l) 8
= 0 » and i (11.363)
x, (2)
11 pag) dax = 0 . (11.3.4)
x1(2) - 1;1(1) =0 % ? % T
T3
Therefore, to the limit of
x (2 - x,(1) = 0, - (1.3.5)
Equation (11.3.2) yields
(2
[p ql} = 0 » (11.3.6)

(1)
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vhere the properties are to be evaluated at x (1) and x, (2) as indicated
by (1) end (2) behind the the square bracket in Eg. (11.3.6).

Similarly, we can show by integration of Egs. (11.2.1b, c, d) that

- 2 Ba &2 (2) '
PY P Tt ] =0 , (11.2.7)
y ° @
_ 3 5 (@
12
pPe 9 -7, - —= = 0 , (11.3.8)
- Ho (1)
2
) B, B, (2
P ql qs - 713 - = 0 , (11.3.9)
- Mo (1)
pq(h+—q)-‘r 4G T L Ty %t
1 (2) ‘
+ — (E2 B -E B )} = 0 , (11.3.10)
Ho (¢}
- ~(2)
_‘h ~31 -9 Bl_ = 0 , (11.3.11)
(1)
- 1(2)
9, B, -4, B:L~ = 0 , (11.3.12)
(1)
- 7(2) .
_q:L Ba - q, Bl_ = 0 , | (11.3.13)
(1)
(2)
[Bl] = 0 . (1103'1’*’)
(1) -

Equation (11.3.11) is e trivial relationship. The term

™ (E B, -E B ) in Eq. (ll 3.10) can be reduced by means of the Olm's
O

law.
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J
- & . -
I."Za = . (qs Bl ql Ba) ) (1103'15)
Iy ‘
E, = 7; - (q1 B, - a, Bl) . (11.3.16)
Therefore,
1
;— (E B -E B ) =
0
1 9
= — (I B -J B)+ -+ (B2 432 -
T 2 a 2 " 2 3
(@ 0
1 . :
hed — B . s )e
- (a, LB, +9%,B B) (11.3.17)
o ,

Therefore, Eq. (11.3.10) becomes

[ (n = 2) T x b
+ = -1 - - +b -
o9 2 2 LR R R PR S

l( )1<‘*2

- — (@B -JB)+ — (B” +B2) -

2 a 3 2 a2 3
ko o
1 ()

- — (q2 Bl Bz +q Bl Ba)} = 0 . (11.3.18)
Ho (1)

But the fluid is nearly nondissipative outside of the transition zone.
Therefore, the dissipative terms in the integrated experssions when evalu-
ated at the endpoints vanish. Thus we obtain the following set of magneto-~

fluid dynamic shock conditions:

. (2)
(a) 1] qul = 0 ,
) (1) .
- 52 ~ (2)
(®) |o qf-+ p+ 22 J -0,

- 21y Mg "(1)



B, B_
@ [pa,q,- 22| -0,
o (1)
B B +(2)
(a) [oqlqa-—“b——a =0 ,
Ho (1)
@ [pa, head s -32 (62 +32)-
1 (2)
'-;; (a,B, B+ 9, B Ba)](l) =0
(2)
(f) [q_l Ba‘ qa BJ. = 0 ,
(1)
- (2)
(s) q, Bs“q-a Bl = 0 ,
) (1)
_ (2
(n) Bl] = 0 . (11.3.19)
T ()

Equations (11.3.19) are the magneto-fluid dynamic shock conditons,
When the magneto-fluld dynemic shock wave and the direction of the
magnetic field are both normal to the direction of the streamline, we

obtain the following simple normel shock conditons:

(=) [p ql](a) = 5 )

(1) ,
~ p2 (2
® [peZrpe—2] =0,
Fto ") (2)
2
q
(c) [o q, (h+*;;q12)+—"‘ B:] =0 ,

) (1)
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(2)

(a) [ql B, ](1) = 0 , (11.3.2;.)

vhere we have arbitrarily set the xl-direction a8 the direction of flow
and the xz-d.irection as the direction of the magnetic field. For such s
normal shock, the first three equations can be obtained from the ordinary
fluid dynsmic normal shock equations, if we replace the fluid pressure p
by

B2
(p + —& ,
2 uo
and the internal energy u by
2
B
(u + ,_g__) .
o ﬂo
It can be shown that such & transition can otcur if

i q 2 | (1)

—5=| >1, (11.3.22)
a? 4 —2

P K
b 0,

— W
a2 4 —&.
P Ky

B

where

can be shown to be the propagation veloclity of small disturbances in &
homogeneous, compresaible, infinitely conducting medium iIn the direction

normal to an applied uniform magnetic field equal to 32(1).
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Appendix I

Vectors and Cartesian Tensors

Al.l The;Index Notation of a Vector

A vector in an ordinary three-dimensional space can be
characterized by its magnitude and its direction with respect to
&8 given reference frame. For example, the vector T as shown in
Fig. Al.1.1 is representel by its algebraic magnitude and its

directional cosines

£ = cos @,

1 1

t = 2] Al.l.1
o cos o’ ( )
£ = cos 6,

3 a

of the line containing'; with respect to a set of right-handed
Curtesisn axes,
The megnitude of the rectangular components rl, r rq of

this vector ; in the three directions of the Cartesian axes are

= 1l

rl r .1’

r =rtt, (A1.1.2)
= rd

Ta = Ty

r =J}12 + ra2 + raz, (AL.1.3)
and

! =r/frfsr@sr?

1 f/J 1 2 a3’

32 = ra//flz + r22 + raz, (A1.2.4)

b
i
“
LA
LY
+
ke |
N
+
H
‘N



81

wY

X
1

Fig. Al.1.1 Representation of a Vector T

This means that a vector in an ordinary three-dimensional space
can also be represented by the three magnitudes of the rectangular
components of the vector in the directions of a given set of
right-handed Cartesian axes, The three components of ? can be
written as

Ty
where the subscript i is understood to take on the velues of 1, 2, 3

in that order and therefore r, in turn takes on the values of

i

r r r
1 T2’ Ta

in the same order. These represent the magnitudes of the three
rectangular components of T "ri " 1s the index or the Cartesian
tensor notation of ; in an ordinary three-dimensional space., It

completely characterizes, and therefore represents, the vector ?

Al.2 Transformation Iaw of a Vector

From the discussion of the previous section, it is obvious
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that we are at liberty to represent T using its index notation
by referring it to any arbitrary set of right-handed Cartesian
axes, In Fig. Al.2.1 s vector r is drawn from the common origin
of a set of unprimed Cartesian axes and a set of primed axes.
(The common origin is chosen for convenience without loss of
generality). The index notation of the vector T in the unprimed

exes is r, and primed axes is ri'. From analytic geometry, we

i
know that ri' can be expressed in terms of T

Fig. Al.2.1 Representation of a Vector in Two
Sets of Right-Handed Cartesian Axes

B

a r + 8 r +8 T
1 11 1 12 2 13 3

e |
"

=8 r +&8 r +8 Tr ,
2 21 1 22 2 23 3

a r +8 r +8 r ., (A1.2.1)
) 311 322 333

L2 }
L
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where

a ,a ,a &are the directional cosines of the x '-axis
11" 12° a3 1

with respect to the unprimed axes,

a ,a ,&a are the directional cosines of the x '-axis
21" 22" =23 2

with respect to the unprimed axes,

a ,a ,a are the directional cosines of the x '-axis
31" 32’ a3 3

with respect to the unprimed axes.

(A1.2.1) is called the transformation law of the vector r from

one set of the right-handed Cartesian axes to another, It can
be thought of as the definition of a vector in a three-dimensional

space.

Al.3 The Index Notation and the Transformation Iaw of Cartesiap
Tensors
We are now in a position to state the two importent rules
used in "index notation”.

(1) Range Convention: Whenever a small Iatin suffix

occurs unrepeated in a term, it is understood to
take on the values of 1, 2, 3, (unless otherwise
stated), the number of dimensions of the physical
space, It represents & set of numbers or terms.

(11) Summetion Convention: Whenever a small Latin suffix

occurs repeated in a term, it is understood to repre-
sent a summation over the range of 1, 2, 3 (unless

otherwise stated).
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Utilizing the above rules of the "index notation", the

transformation law of a vector as given in (Al.2.1) can be written

as
LA
rt=a,T, | (A1.3.1)
vhere aij represents a set of nine numbers which are the direction-
al cosines between the primed and the unprimed axes, “aij" is

called the transformation matrix. They satisfy the following
orthonormal relations:
aij akj = sik’

vhere 513 is known as the "Kronecker delta" defined as follows:

1 1if 1=},
3) =
o lo 12 143, (a1.3.3)

(A1.3.1) is known as the transformation law for "Cartesian
tensors of the first rank", A vector can therefore be considered
as a Cartesian tensor of the first rank when expressed in index
notation.

The general transformation law for & "Cartesian tensor of
the n'th rank" is

Al (A1.3.4)

retem- = &ri aBJ &tk AiJk"'"
where

AiJk—-- is a Cartesian tensor of the n'th rank expressed in

the unprimed system,

Al

is the transformed tensor of A
r8tmm- 1

Ik in the primed
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system, and
aiJ is the transformation matrix,
We note that a scalar A can also be considered as a tensor,

It is a Cartesian tensor of the zeroth rank.

Al.h Addition and Subtraction of Vectors and Cartesian Tensors Using

the Index Notation

The addition and subtrsction of two Cartesian tensors of the
same rank is defined as follows:

Afgeee ¥ By = Cyy . (AL.4.1)
where

and B1 _ are two Cartesian tensors of the same

Ay ge-- 3=

rank, and

Cia___ is the resulting Cartesian tensor due to addition

or subtraction of Aij--— and Bij-~~‘
(AL.4.1) implies that the addition or subtraction is to be carried
out for each pair of corresponding elements of Aid--~ and Bid---‘
We note that the indices of each term in (Al.4.1) are the same.
The homogeneity of range indices is imperative in an indicial
equation, for otherwise the equation becomes meaningless,
This law of addition and subtraction can be applied to

vectors.

A, £ B, =C,, (Ar.h.2)

i
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where

A,, B, are two vectors, and

i7 71

C, is the resulting vector.

i
This is consistent with the usum) definition and subtraction of

vectors,

Scaler (or Dot) Product of Two Vectors,

The scalar (or dot) product of two vectors %, B 1is a scalar

defined as
K * ‘B" = AB cos8 a, (Alo5ol)

where € is the angle between the two vectors K, 3
From elementary vector analysis, we know that' in terms of

the Cartesian components R and 'ﬁ,
R B=AB +AB +AB. (A1.5.2)
11 2z 33

Therefore, the index notation of the dot product of two vectors

is

s
R.B- AgB, . (A1.5.3)

Vector (or Cross) Product of Two Vectors in Index Notation

The vector (or cross) product of two vectors X, Bisa

vector C normal to K, B such that X, -E:, ¢ form a right~-handed

system. The magnitude of 3’ is

C = AB sin 6, A (A1.6.1)
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From elementary vector analysis, we know that the vector

product Cor K, B can be represented by its three Cartesian

components which are in turn related to the Cartesian components
of A and B.

c -"=AB "'AB;,
h 8 23 a2
C =AB "AB;
2 31l 13
C =AB ~AB., (Al'6'2)
3 12 21 :

let us define a "permutation symbol € Jk" such that

(0, 1f the values of 1, J, k do not form a permutation
of 1, 2, 3

13k 1, if the values of 1, J, k form an even permutation

of 1, 2, 3

-1, if the values of 1, J, k form an odd permutation
of 1, 2, 3

by

Using this symbol, (Al.6.2) becomes

Ci = eiJk AJ Bko (Al0603)
This is the index notation of the cross product of two vectors.

Al.7 Index Notation of the Gradient of a Scalar Function of Position

(scalar Field)

From elementary vector analysis, we know that the gradient

of a scalar function of position in a region R is

g -+ 3 - 3 -
grad¢=v¢=1l&%-+ 12%4-13%% (A1.7.1) |




where

¢ (xl, X xa) is a scalar field which is single valued

and with continuous derivatives in R,

'i’, 7 s T are the unit vectors in the x -, x ~, x -
1 2 a : 1 2 3

directions,

" 3 .+ 3 d |
v = 1’1 33?; + 12 &-2- + 1’3 &; is called the "del operator"”.

It is apparent that the gradient of ¢ can be expressed in
index notation as

gﬁ = ¢,1 (a1.7.2)
%y

vhere , 4 meens partial differentiation with respect to X, o
We note that for an infinitesural displacement dxi within

a surface of ¢ = constant in R,
d¢ = ¢’i dxi = 0, (A10703)

This means that the vector %, 42 OF the grad. ¢, is everywhere

normal to the surface of ¢ = constant in R.

A1.8 Index Notation of the Divergence of & Vector Function of

Position (or Vector Field)

From elementary vector analysis, we know that the divergence

of a vector field in a region R is a scalar field given by
A dA A

dv. =9 B=5t+ 52+ 552 (A1.8.1)

1 2 3
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where

K’(xl, x_, X,) 16 vector field which is single-valued with

continuous derivatives in R,
Al, Aa' Aa are Cartesian components of K;

The Iindex notation of the divergence of a vector field in

R 1is therefore

- - .
V ' Aulli,i'

(N’Loang)
Al.9 Index Notation of Curl of a Vector Function of Position
(or Vector Field)
From elementary vector analysis, we know that the curl of

a vector field is a vector field given as follows

CurlK=aXK=Y (L”\n "A )4’.{ (A. -JA.I. )f"-{ (AA- ‘-A ))
2:3 2 1,3 3,1 a 251 12

(A1.9.1)

where
K'(xl, X xa) is a vector field which is single-valued

with continuous derivatives in R, and
Al’ Aa’ A3 are the Carteslan components of K.
Therefore, the index notation of curl K'is

€k e,y

A1.10 The "€-b" Identity

A very important identity involving the manipulation of

the indicial expression is the "¢-b identity" stated as follows:



€ jk Sirs = aJr Bys - 533 By (A1.10.1)

(A1.10.1) can be easily verified from the definitions of the

permutation symbol and the Kronecker delta.
Using this identity, many of the vector identities become

As an exsmple, the vector identity

obvious,
IxExD-@ - M- -9+ @ -32-@ D3,
’ (A1.10.2)
can be proven as follows:
€ 3k kra Pp By
= (a1r 833 -8, 6Jr)(Ar Bs),J |
(A1.10.3)

B

=By Ay TRy Byt By gt m Ry By

vhere in the manipulation we have used the e¢-5 identity and the

obvious rule of
(A1.10.4)

Al.1]l Scalar ILine Integral and the Stokes Theorem

The scalar line integral of a vector field is defined as
x, (2)
1712
x, (1)

vhere
A (xl, X, xa) is a vector field which is defined within

a region R, and
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xi(l), xi(e) are the end points of a continuous curve in R.

An important theorem in vector analysis which transforms a
line integral into a surface integral is the "Stokes' Theorem".

In index notation, it reads

— ' ‘ '

f Ay ax, ..f Ry € gk Ak,J as (A1.21.1)
c S

where

C is a closed continucus curve in R,
g 1s a surface bounded by C,

n

4 is ‘the unit normal of & differential surface ds’ on & ’

and
A (xl, X 1;3) 18 single-valued and continuous in R.

The direction of n, 1s depicted in Fig. Al.1l.1.

i

X
1

Fig. Al.11.1 Figure Depicting the Direction of the

Normal Vector o, used in the Stokes' Theorem
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Al.12 (Conservative Vector Field and the Concept of Scalar Potential

If a vector field A, in R can be expressed as the gradient

of a scalar field ¢(x1, X xa) in R,

A = ¢,i, | (A1.12.1)
then the scalar line integral of Ai along a curve within R is
%, (2) @ |

%, (1) $(2)

This means that the line integral is dependent only on the end
points. It is independent of the path of integration. If the

line integral is evaluated along a closed path in R, then

f A dx, = fa¢ = 0. (A1.12.3)
Closed path
in R '

We note from elementary vector analysis
TIxH =0, |  (AL.12.4)

vhich 1s an obvious statement in index notation,
€5 % ¢’k.j =0, (AL.12.5)
Therefore, from the Stokes' Theorem, we can again sﬁow that
f Ay &y ”’f ny (e g Ay, ;)88
'“‘fni (&g 9,505 | (81.22.6)

=0.
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The converse of the above result is also true, It states
that if the scalar line integral of any curve in R is independent
of path, (or the scalar line integral around a closed path

vanishes), then
Gidk Ak;.j = 0, (Al.l2.7)
and
AL = 9, (A1.12.8)

If a vector fleld can be expressed as the gradient of &

scalar field, the vector fleld is called a Conservative vector

field, and the scalar field is called the scalar potential of

the conservative vector field.

Generalized Gauss Theorem Stated in Indicial Form

The generalized Gauss theorem for a tensor field is

'
f By g-n- By 98 =f Ag ggennyt OV (A1.13.1)
g R
1
vhere
Aidk--- (xl’ xa' xa) is & tensor field which is single-

valued and continuous in R,
s’ is a surface enclosing a region Rl and R, and
n, is the unit outward normal of & surface element dS' ong .

The Gauss theorem transforms a surface integral into a volume

integral or vice versa,
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Al.14 Qreen's Theorem in Indicia) Form

The two common forms of the Green's theorem in indiciasl forms

are glven as follows:

f [A’i B,, + AB,iil av =f AB,, n, as’ . (Al.14.1)
R S

f [AB)ii = BA)ii] é"v =£ (AB,i ni - m,i ni)dst .(Al.llha)
R S

vhere
A,B are scalar fields which are single-valued and continuous

in R,
S'is a surface enclosing a region Rl in R, and
n, 1s the unit outward normal of a surface element @S’ on & .
The Green's theorem is extremely useful in developing the unique-

ness theorems of boundary value problems.

Al.15 Vector Potential

If a vector function of position or vector field B, in a

i
region R is derivable from another vector field Ai as follows
= -
where Ai is a single-valued and contionuous in R;
then Ai is called the vector potential of Bi'
An immediate consequence of (Al.15.1) is
B = 0o (Al.15.2)

1,1
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This means that the divergence of a vector field derivable from

a vector potential always vanishes,
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Appendix IT

Outline of Elements of Electricity and Magnetism*

A2.]1 Electrostatics in Vacuum

Coulomb's law:

1
- 1 Q@ ( )
F.o= -_— r A2.1.1
1y € B2 17
ri = Xi - x1, » (Aaoloa)
r*=r, r . (a2.1.3)
» - i j. L4 #*.o
[e): Vacuum electric permesbility]
Definition of electric fileld for stmtionary charge:
o S
B, = lm — o —% . (A2.1.4)
AP0 A aqQ
2>AQ°

*fbrmulated for rationalized MKS units.
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. '
OB (due to Q at xi)

Q
= r (Aaclos)
br ¢, r® 1
0
— (=)
bar N r A
or, E, (due to Q at x;)
=-¢, (A2.1.6)
y
Q
vhere ¢ = - . (82.1.7)
bre. r
0O
For a distribution of charges,
1 s av
¢ = N f ’ (A2.1.8)
T v F
~ aQ 4qQ
p = lim —_ = =, (r2.1.9)
AV-0 Fax') av
LHV>AV®
Bi= -9, =
1 P
= - f (-) av (A2.1.10)
by € v r’,i
ai
XS i
A
X i v
av’
xl
i X,




(A2.1.11)
Fal
p d
Ei,i = .; * (Aaﬂl.le)
¢}
Electromotive Force, EMF
EMP = vorkdonebyEi on & unit charge from
xi(l) to xi(e)
x,(2)
= Ei dxi . (A2‘1'13)
x, (1)
For an electrostatic field,
x, (2)
EMF = f - ¢, ax
x (1)
(2)
- - I[ a
1)
= ¢(2) - ¢Q1) , (A2.1.14)
and
fEi d’xi = fd:ﬁ = 0 (A2.1.15)
stationary current is impossible in electrostatic field.
A2.2 Polarization Vector and Displacement Vector
()
By = - (A2.2.1)
0
o~
o

N A ;
= Pirue * Pp (A2.2.2)
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Pi: Polarization vector
N\
Pii = Pp [ pp: Polarization charge ] . (A2.2.3)
P P
(Ei + —1) - true (A2.2.1)
€ " ,1 o
Definition of displacement vector,
D, = €,E +P (A2.2.5)
¢ AN
DDy s = Pirye (A2.2.6)
If P, = € X E,, (A2.2.7)
[X: Electric susceptibility]
then D, = €, (L +%) E,
= eo K Ei
= €E (A2.2.8)
k: Dielectric constant
€: Electric permeability | °
For a vacuum (i.e., all charges are separately considered),
B
Pi = 0 »
X = 0 ,
k = 1 ,
€ = €& ,
| Di - EO Ei « (A2|209)

A2,3 Current Density and Continulity Equation for Charge

Current density

Ji = vector denoting time rate of flow of
charge per unit area
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1

%
f - av + f gy n ds = 0 (a2.3.1)
v S

or

%

—_+J ] v = o0 |, (A2.3.2)
‘[[at 1,1

v arbitrary]

. % J 0 (42.3.3)
»e — + , = - * '3

3t i,1

(A2.3.3) is called the continuity equation for the conservation of charge.

AZ2.4 Magnetic Induction Fleld in Vacuum

Biot and Savart law

=<

r 1 d’Bi
v
x; ' X v' Ji
d .
> 2
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B, (magnetic induction field)

_ Yo f Sipk 3 Tk gy (A2.4.1)

[uoz Vacuum magnetic permeability]

(Lorentz force)

i
- [ =,
= f €k JJ B, dv . (A2.4,2)
v
Therefore,
B, =0 (B, is solenoidal) (A2.4.3)

ei;)k Bk’3 =y Ji (A2.4.4)



102

By = €,y v

Mo Iy

A (vector potential) = —= f - av .
Iy
i r

A2.5 Magnetization and Magnetic Field Strength

1l
M, = -2- €5k Ty Jk(m) .
Mi: Magnetic moment per unit volume or

magnetization,

r,: Coordinate of the magnetization

J current density Jk(m) .

or,

I @ - €igk Mo,y -

(A2.k4.5)

(A2.4.6)

(A2.5.1)

(A2.5.2)

Therefore, if we assume that the current density can be separated as

J'i + Ji(m) ,

then
3k B,y = Mo ["'1 * "1(“)]
or,
€k [Bk”“o "k] 3 = Mo
Call By (magnetie field strength)
B
1
= - Mi o
Ho
Therefore,

If M, = € X(m) B
2

(A2.5.3)

(A2.5.4)

(a2.5.5)

(A2.5.6)

(A2.5.7)
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then, B Ho Hi + Mi

Mo [1+ X(m)]H,

Ko n(m) Hi
= B H

X(m): Magnetic susceptibility

k(m): Relative magnetic permeability

L p:  Absolute magnetic permeability

In vacuum (i.e., when current is individually considered),

X(@) = 0 |
k(m) = 1 ,
K = uo b

By = B by

i Ji'

[
B

(A2,5.8)

(A2.5.9)

A2.6 ‘Generalization of Magnetic Induction for Nonstationary Currents

in Moving Media

J

€k B,y = Mo Iy
where Jo= J (conduction)
+ 0y (magnetization)

+ J; (polarization)

+ J, (convection)

+ J
with Iy (conduction) = o [E:l * €5k qJ Bk] ’

Jy (magnetization) = € sk Mk,J ,

(vacuum displacement current)

(A2.4.4)

(A2.6.1)
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&y

dt

Jy (polarization)

oP,

e T s Br %)y (B p) ey

- "
Jy (convection) = 4 (o true + P,j,.j
BEi
J, (vacuum displacement) = e, — .
i 0 3t
OF

The vacuum displacement current €

ot

J 3 solenoidsl,

(A2.6.2)

o ~1 15 introduced by Maxwell to keep

J, (conduction) is related to the apparent E, ; for the moving medium

through the Ohm's law.

Jy (conduction) = oE’i

aG’[’Ei'i'G ]

19k I3 Bx
[o: conductivityl.

A2.7 Faraday's lLaw of Induction

d
M=-mf3nds

This becomes (both for stationary and moving media),

oB N

By T T 5

by the Stokes' theorem.

(A2.6.3)

(A2.7.1)

(A2.7.2)
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A2.8 Maxwell's Equations for Moving Media

Since (A2.1.12),(A2.4.3) should also hold for a moving medium, they

and (A2.4.4), (A2.7.2) form a set of interlocking equations defining E,

and Bi for a moving media. Théy are called the Maxwell's equations for a

moving medla.
”~
7
4 E — —
1,8
(0]
By = O,
< 3B,
By T T3
€ B u. J, + p. J, (convection) + ¢ —L  (22.8 1)
| 1Jk Tk,J 01" "o"1 08 T
A N FaN
where p = p true + Pp s
. ,
Jy = I (conduction)

+

Iy (magnetization)

+

Jy (polarization) |,
Jy (conduction) = o {Ei + &5k Yy Bk] ’

Iy (magnetization) = € 1k Mk, 3

oP
i
Ji (polarization) = -a-t"" + (PJ,J) qi + eidk Ekrs (Pr qs) ,d

Iy (convection) = 9 [5 true + P, ] (A2.8.2)

3,3
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Appendix III

Selected Reference Books

The following is a list of selected reference books on the subject of

magneto-fluid mechanics and its related topies. Most of these books con-

tain within themselves lists of publications which can be referred to for

further literature research on this subject.

For current publications on magneto-fluid mechanics, readers are sug-

gested to consult the numerous technical journals published by the various

societies of engineering and physical sciences.

10.

11.

W. P. Allis (ed.), Nuclear Fusion, D. Van Nostrand, New York, 1960.

D. Bershader (ed.), The Magnetodynamics of Conducting Fluids, Stanford
University Press, Stanford Calif., 1959,

A. B. Cambel, T. P. Anderson, and M. M. Slawsky (ed.), Magnetohydro-
dynamics, Northwestern University Press, Evanston, Ill., 1961.

3. Chandrasekher, Hydrodynamic and Hydromagnetic Stebility, Oxford
University Press, Oxford, England, 1961.

T. 3. Chang, Intermediate Fluid Mechanics, Edwards Brothers, Ann Arbor,
Mich., 1962.

3. Chapman end T. G. Cowling, The Mathematical Theory of Non-Uniform
Gases, Cambridge University Press, Cambridge, England, 1939.

F. H. Clauser (ed.), Plasma Dynamics, Addison-Wesley, Reading, Mass.,
1960.

-T. G. Cowling, Magnetohydrodynamics, Interscience, New York, 1957.

V. C. A, Ferraro and C. Plumpton, Magneto-Fluid Mechanics, Oxford
University Press, Oxford, England, 1961.

J. Fox (ed.), Electromagnetics and Fluid Dynamics of Gaseous Plasma,
Polytechnic Press of BPI, Brooklyn, New York, 1962.

J. H. Jeans, The Dynamical Theory of Gases, 3d ed., Cambridge University
Press, Cambridge, England, 1921.




13.

14,

15.

16.

17.

18 »

19.
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S. DeGroot, Thermodynamics of Irreversible Processes, North~Holland
Publishing Co., Amsterdam, 1958.

8. W. Kash, Plasma Acceleration, Stanford University Press, Stanford,
Calif., 1960,

R. K. M. Landshoff, Magnetohydrodynamics, Stanford University Press,
Stanford, Calif., 1957.

R. K. M. landshoff, The Plasma in a Magnetic Field, Stanford University
Press, Stanford, Calif., 1958.

J. G. Linhart, Plasma Physics, North-Holland Publishing Co., Amsterdam,
1960.

P. Moon and D. Spencer, Foundations of Electrodynsmics, D. Van Nostrand,
New York, 1960,

W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism,
Addison-Wesley, Reading, Mass., 1955.

L. Spitzer, Jr., Physics of Fully Jonized Gases, Interscience, New
York, 1956.

, Papers Presented at the Controlled Thermonuclear
Conference, U. S. Technicel Services, Washington, D. C., 1950.

There is another source of reference which should be mentioned here,

This pertains to a series of papers presented in a "Symposium on Magneto-

Fluid Dynamics" contained in Review of Modern Physics, 32, No. 4 (October

1960). Although this series of papers is not published in a book form,

single copies of Vol. 32, No. 4, may be purchased directly from the

American Institute of Physics, publisher of the Jjournsl.
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