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About the course

These are the lecture notes for the algebra part of the MT2002 module. This part
will consist of (about) 24 lectures, 10 tutorials, 2 projects using Maple and GAP,
and some additional sessions.

The literature for the algebra part is as follows:

R.B.J.T. Allenby, Rings, Fields and Groups, Edward Arnold, 1983.

T.S. Blyth and E.F. Robertson, Essential Student Algebra, Volume 3: Ab-
stract Algebra, Chapman and Hall, 1986.

T.S. Blyth and E.F. Robertson, Algebra Through Practice, Book 3: Groups,
Rings and Fields, Cambridge University Press, 1984.

D.A.R. Wallace, Groups, Rings and Fields, Springer, 1998.

These books will be available on short loan in the Mathematics/Physics library, as
will tutorial questions and solutions. In addition, any book containing the words
‘elementary’ or ‘introduction’ and ‘algebra’ or ‘groups’ is likely to be useful.

The assessment for this module will consist of a continuous assessment compo-
nent (30%), and a three hour written exam at the end of semester (70%). The
continuous assessment component will consist of two class tests, and three Microlab
Assignments.

1. Introduction

Modern algebra is a study of sets with operations defined on them. It begins with
the observation that certain familiar rules hold for different operations on different
sets.

Let us consider the set of natural numbers N. The operations of addition and
multiplication satisfy the following rules:

(x + y) + z = x + (y + z), (1)

(xy)z = x(yz), (2)

x + y = y + x, (3)

xy = yx, (4)

as well as

x(y + z) = xy + xz. (5)

Also there is a distinguished element 1, which has the property

1x = x. (6)

In the sets of integers Z, rationals Q, reals R and complex numbers C all the
above rules remain valid. In addition, in each of them there is a distinguished
element 0 such that

0 + x = x, (7)

0x = 0. (8)

Also, for every element x there is an element −x (its negative) such that

x + (−x) = 0. (9)
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Moreover, in Q, R and C, for every x 6= 0 there is an element 1/x such that

x(1/x) = 1. (10)

At this stage you should note that the following pairs of rules are very similar:
(1) and (2); (3) and (4); (6) and (7); (9) and (10). The only difference is that they
refer to different operations.

Our next example is the set Mn,n of all n×n matrices with real number entries.
Again, we can add and multiply matrices, and we have the following rules:

(A + B) + C = A + (B + C),

(AB)C = A(BC),

A + B = B + A,

A(B + C) = AB + AC, (A + B)C = AC + BC.

This time, however, we do not have AB = BA. Also, we have distinguished matrices
0 (the zero matrix) and I (the identity matrix) such that

A + 0 = A,

AI = IA = A.

For every matrix A there exists a matrix −A such that

A + (−A) = 0.

However, it is not true that for every matrix there exists a matrix A−1 such that
AA−1 = A−1A = I; such a matrix exists if and only if A is invertible (i.e. if A has
a non-zero determinant).

Let us now fix a set X , and consider the set T (X) of all mappings f : X → X .
For such a mapping f and x ∈ X , we shall write the image of x under f as f(x).
We can compose two mappings f and g by applying first one and then the other;
the resulting mapping is denoted by g ◦ f . Thus

(g ◦ f)(x) = g(f(x)).

(Note that this means that we multiply mappings, slightly unnaturally, from right
to left. In some books you will find mappings written to the right of their argument,
i.e. (x)f instead of f(x); a benefit of doing this is that the composition law becomes
(x)(f ◦ g) = ((x)f)g.)

Straight from the definition it follows that

(f ◦ g) ◦ h = f ◦ (g ◦ h),

and that there exists a mapping id (the identity mapping, sending every x to itself)
satisfying

f ◦ id = id ◦ f = f.

However, f ◦ g = g ◦ h does not hold in general, and it is not true that for every
mapping f there exists a mapping g such that f ◦ g = g ◦ f = id.

Exercise 1.1. Find examples confirming the last two claims.

Exercise 1.2. Let X be a set, and let P(X) be the set of all subsets of X . List a
few well known properties of the operations ∪ (union) and ∩ (intersection).

In algebra, one studies an abstract set with one or more operations defined on
it. These operations are assumed to satisfy some basic properties, and the aim is
to study the consequences of these properties.
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2. Groups – definition and basic properties

Definition 2.1. A group is a set G on which a binary operation ∗ is defined, such
that the following hold:

Closure: For all x, y ∈ G we have x ∗ y ∈ G.

Associativity: For all x, y, z ∈ G we have (x ∗ y) ∗ z = x ∗ (y ∗ z).

Identity: There exists a distinguished element e such that for all x ∈ G we have
x ∗ e = e ∗ x = x.

Inverses: For every x ∈ G there is a distinguished element x−1 ∈ G such that
x ∗ x−1 = x−1 ∗ x = e.

Notation 2.2. The symbol one uses to denote the operation is unimportant. When
we want to emphasise it, we will use ∗; at other times we will use ordinary multi-
plication notation, writing x · y, or even xy, instead of x ∗ y. From time to time
we will use other symbols, such as ◦ and ⋄. Probably the most confusing of all is
the usage of +; in that case one denotes the identity element by 0 instead of e, and
calls it the neutral element, or the zero; the inverse of an element is denoted by −x,
rather than x−1, and is called the negative of x.

Definition 2.3. A group G is said to be commutative, or abelian, if the operation
∗, in addition to the above four axioms, satisfies

Commutativity: For all x, y ∈ G we have x ∗ y = y ∗ x.

Examples 2.4. Each of the sets Z, Q, R and C is a group with respect to addition.
The set N is not a group with respect to addition, because no element apart from
0 has an inverse (negative). None of the above sets is a group with respect to mul-
tiplication, because 0 does not have a (multiplicative) inverse (there is no number
x such that 0x = 1!). However, the sets Q \ {0}, R \ {0} and C \ {0} are groups,
while N \ {0} and Z \ {0} are not (why?). All the above groups are abelian.

Next we give two examples of finite groups. For a finite group G we denote by
|G| the number of elements in G. A finite group can be given by its multiplication
table (also called the Cayley table). This is a square table of size |G|× |G|; the rows
and columns are indexed by the elements of G; the entry in the row g and column
h is g ∗ h.

Example 2.5. The table
∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

defines a group. Indeed, closure is immediate, e is the identity, and every element is
its own inverse. It is not so obvious that the operation is associative, but it is. (The
brute force method would involve checking the equality of 4 · 4 · 4 = 64 products of
any three elements in any order. One can actually significantly reduce this number,
but you can equally take it for granted at this stage. It is worth remembering that
associativity is difficult to check from the table, and consequently Cayley tables are
not as good a method for defining groups, as it might at first seem.) The above
group is called the Klein four group, and is denoted by K4. It is abelian.
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Example 2.6. The table

∗ e p q r s t
e e p q r s t
p p e t s r q
q q s e t p r
r r t s e q p
s s q r p t e
t t r p q e s

defines a group. (What is the identity? For each element find its inverse.) It is not
abelian, since, for example, p ∗ q = t 6= s = q ∗ p.

Definition 2.7. For a group G, the number of elements of G is called the order of
G.

We are now going to list some basic consequences of our defining axioms for
groups. First of all, we note that associativity implies that in a product of any
number of elements x1, . . . , xn in that order, the arrangement of brackets does not
matter. For example, we have (x1(x2x3))(x4x5) = (x1x2)((x3x4)x5), since

(x1(x2x3))(x4x5) = ((x1x2)x3)(x4x5) = (x1x2)(x3(x4x5)) = (x1x2)((x3x4)x5).

We can therefore omit the brackets altogether and write simply x1x2 . . . xn. (A
rigorous proof of this is a somewhat tedious induction on n.) This, in turn means
that we can use the power notation:

an = aa . . . a
︸ ︷︷ ︸

n

(n > 0).

The existence of inverses implies that we can extend this (as we do in Q) to

a0 = e, a−n = (a−1)n.

With this in mind, we have the following natural rules:

aiaj = ai+j ,

(ai)j = aij .

The proof follows straight from the definition, but one has to consider all possible
cases, depending on the signs of i and j.

Theorem 2.8. The following statements are true in any group G.

(i) For all e1, x ∈ G, e1x = x (or xe1 = x) implies e1 = e. (The identity is
unique.)

(ii) For all x, y ∈ G, xy = e (or yx = e) implies y = x−1. (The inverse of every
element is unique.)

(iii) For every x ∈ G we have (x−1)−1 = x.

(iv) For all a, b, x ∈ G, ax = bx (or xa = xb) implies a = b (cancellation laws).

(v) For all a, b ∈ G we have (ab)−1 = b−1a−1. More generally, for a1, . . . , an ∈ G
we have (a1a2 . . . an)−1 = a−1

n . . . a−1
2 a−1

1 .
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Proof. (i) e = xx−1 = (e1x)x−1 = e1(xx−1) = e1e = e1.
(ii) y = ey = (x−1x)y = x−1(xy) = x−1e = x−1.
(iii) x = xe = x(x−1(x−1)−1) = (xx−1)(x−1)−1 = e(x−1)−1 = (x−1)−1.
(iv) a = ae = a(xx−1) = (ax)x−1 = (bx)x−1 = b(xx−1) = be = b.
(v) Since abb−1a−1 = aea−1 = aa−1 = e, it follows from (ii) that (ab)−1 =

b−1a−1. Now we have

(a1a2 . . . an)−1 = (a2 . . . an)−1a−1
1 = . . . = a−1

n . . . a−1
2 a−1

1 ,

as required. �

3. Modular arithmetic

In this and the following two sections we introduce some important examples of
groups.

Let n > 0 be a natural number, and consider the set Zn = {0, 1, . . . , n − 1}.
For a, b ∈ Zn define a + b and ab by performing these operations in Z, and the
subtracting multiples of n until the result is in Zn. (In other words, form the sum
and product of a and b as integers, divide them by n and take the remainders.)
These operations are called the addition and multiplication modulo n.

Example 3.1. Let us work modulo 7. We have

1 + 1 = 2

4 + 6 = 3

3 + 4 = 0

2 · 5 = 3,

and so on.

One can relatively easy see that the addition and multiplication modulo n satisfy
the following properties:

(x + y) + z = x + (y + z), (xy)z = x(yz),

x + 0 = 0 + x = x, 1 · x = x · 1 = x,

x + (n − x) = (n − x) + x = x,

x + y = y + x, xy = yx,

x · 0 = 0 · x = 0.

Therefore, we immediately have

Theorem 3.2. The set Zn with the operation of addition modulo n is an abelian
group.

As for the multiplication modulo n, we have a more subtle situation. First of
all we can notice that Zn is never a group under multiplication modulo n, because
0 does not have an inverse. Still, with Q, R and C in mind, we may ask whether
Zn \ {0} is a group.

Example 3.3. Let us write down the Cayley table for multiplication modulo 7 on
the set Z7 \ {0}:

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1
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We see that the set is closed under the operation. We also see that the inverses of 1,
2, 3, 4, 5, 6 are respectively 1, 4, 5, 2, 3, 6. We already know that the multiplication
modulo n is associative and commutative, and that 1 is the identity element. We
conclude that Z7 \ {0} is a group under multiplication modulo 7.

Example 3.4. Working modulo 10 we have, for example, 2 ·5 = 0. So we conclude
that Z10 \{0} is not closed for multiplication modulo 10, and that it cannot possibly
be a group. Also, note that there is no x ∈ Z10 such that 2x = 1, because 2x is
always even. Hence, 2 does not have an inverse.

So, a natural question is to try and determine for which n the set Zn \ {0}
forms a group under multiplication modulo n. As the previous two examples show,
problems arise when considering closure and inverses. It will actually turn out that
the latter is a more serious than the former, and to sort it out we need to make a
small detour into elementary number theory.

The first fact is the well known fact about the division of integers with a quotient
and remainder.

Theorem 3.5. For any two integers a, b, with b > 0, there are unique integers q, r
such that a = bq + r and 0 ≤ r ≤ b − 1.

Next we recall that for two non-zero integers a and b, their greatest common
divisor gcd(a, b) is the largest positive integer which divides (with remainder 0)
both a and b. Next we give an alternative description of this number:

Theorem 3.6. The greatest common divisor d of two non-zero integers a and b is
equal to the smallest positive integer d1 which can be written in the form αa + βb
with α and β integers.

Proof. Since d1 = αa + βb, and since d divides both a and b (we usually write
this as d|a and d|b), it follows that d also divides d1.

Next divide a by d1: a = qd1 + r, 0 ≤ r < d1. Since d1 = αa + βb it follows
that r = (1− qα)a + (−qβ)b. Since d1 is the smallest positive number which can be
written as an integral linear combination of a and b it follows that r must be equal
to 0. In other words, we have d1|a, and, by a similar argument, d1|b. Since d is the
largest positive integer dividing both a and b, it follows that d ≥ d1.

Now from d|d1 and d ≥ d1 we conclude that d = d1, as required. �

The above proof suggests the following algorithm for finding the greatest com-
mon divisor of two numbers a and b:

1. Divide: a = qb + r.

2. Rename: a := b, b := r.

3. Loop: If r 6= 0 then go to 1, otherwise b is the required greatest common
divisor.

If at every stage you also keep track how r is expressed as a linear combination
of (the original) a and b, at the end you will obtain the greatest common divisor
expressed in that form as well.

Example 3.7. Let us compute gcd(534, 81).

a = 534
6b = 486 81 = b

a − 6b = 48 48 = a − 6b
−a + 7b = 33 33 = −a + 7b
2a − 13b = 15 30 = 4a − 26b

15 3 = −5a + 33b
0
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We conclude that gcd(534, 81) = 3 = −5 · 534 + 33 · 81.

We now start returning to Zn.

Theorem 3.8. For a ∈ Zn there exists b ∈ Zn such that ab = 1 if and only if
gcd(a, n) = 1.

Proof. If you recall the definition of multiplication modulo n, you see that ab = 1
modulo n if and only if ab = qn + 1 (as integers), which is satisfied if and only if
gcd(a, n) = 1 by Theorem 3.6. �

Example 3.9. Let us find the multiplicative inverse of 57 modulo 100.

100 = n
a = 57 57 = a

−a + n = 43 43 = −a + n
2a − n = 14 42 = 6a − 3n

14 1 = −7a + 4n
0

So we see that (−7) · 57 + 4 · 100 = 1, so that (57)−1 = −7 = 93 modulo 100.

Theorem 3.10. The set Un = {x ∈ Zn : gcd(x, n) = 1} is a group under multi-
plication modulo n.

Proof. Multiplying two numbers co-prime to n gives a number co-prime to n;
subtracting a multiple of n will again yield a number co-prime to n. Hence Un is
closed. Multiplication modulo n is associative. The identity element is 1 (note that
1 ∈ Un!). The existence of inverses follows from Theorem 3.8. �

Theorem 3.11. The set Zn \ {0} is a group under the multiplication modulo n if
and only if n is a prime number.

Proof. (⇒) Assume that n is not a prime number, say n = qr. But then, in Zn

we have qr = n = 0, i.e. closure is not satisfied.
(⇐) If n is a prime then Un = Zn \ {0}. �

4. Permutations

In Section 1 we considered the set T (X) of all mappings X −→ X . We saw there
that the composition of mappings is associative, and that the identity mapping id is
an identity for composition. However, T (X) is not a group, since not every mapping
has an inverse, as the next example shows.

Example 4.1. Choose two arbitrary distinct elements a, b ∈ X , and let f : X −→
X be any mapping such that f(a) = f(b) = b. Then for any other mapping
g ∈ T (X) we have (g ◦ f)(a) = g(f(a)) = g(b) = g(f(b)) = (g ◦ f)(b). In particular
g ◦ f 6= id, and hence f does not have an inverse.

As in the previous section, we can hope that the subset of all mappings which
do have inverses will form a group. So we want to find out which mappings have
inverses. To this end we have to recall certain special kinds of mappings.

Definition 4.2. Let f : X −→ Y be a mapping. We say that f is an onto mapping
(or a surjection) if

(∀y ∈ Y )(∃x ∈ X)(f(x) = y),
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i.e. if every element of Y is the image of some element of X . We say that f is a
one-one mapping (or an injection) if

(∀x1, x2 ∈ X)(f(x1) = f(x2) =⇒ x1 = x2),

i.e. if different originals from X have different images in Y . Finally, we say that f is
a bijection (or a one-one correspondence) if it is both a surjection and an injection.

Examples 4.3. The mapping f : Z −→ Z2 defined by f(x) = 0 if x is even and
f(x) = 1 if x is odd is a surjection. It is not an injection because, for example,
f(3) = f(1) = 1. The mapping f : Z −→ Z defined by f(x) = 2x is an injection
because

f(x) = f(y) ⇒ 2x = 2y ⇒ x = y.

It is not an injection because, for example, f(x) 6= 1 for any x ∈ Z. The mapping
f : Z −→ Z defined by f(x) = −x is a bijection.

Exercise 4.4. Prove that the composition of two bijections is again a bijection.

Theorem 4.5. For a mapping f ∈ T (X) there exists a mapping g ∈ T (X) such
that f ◦ g = g ◦ f = id if and only if f is a bijection.

Proof. (⇒) Assume that f ◦ g = g ◦ f = id. Then for every y ∈ X , define
x = g(y), so that

f(x) = f(g(y)) = (f ◦ g)(y) = id(y) = y;

hence f is onto. Also, for x1, x2 ∈ X we have

f(x1) = f(x2) ⇒ g(f(x1)) = g(f(x2)) ⇒ (g ◦ f)(x1) = (g ◦ f)(x2)

⇒ id(x1) = id(x2) ⇒ x1 = x2;

hence f is one-one as well.
(⇐) Let f be a bijection. We define g : X −→ X by setting g(x) to be the

unique element y ∈ X such that f(y) = x. It is now a routine matter to check that
f ◦ g = g ◦ f = id. �

Exercise 4.6. Prove that the inverse of a bijection is again a bijection.

Theorem 4.7. The set S(X) of all bijections X −→ X is a group under the com-
position of mappings.

Proof. Closure follows from Exercise 4.4, we already know that the composition
of mappings is associative, the identity mapping id is a bijection, and the existence
of inverses follows from Theorem 4.5 and Exercise 4.6. �

Definition 4.8. The group S(X) is called the symmetric group on X . Its elements
are called permutations.

If X is a finite set of size n, then without loss of generality we may take X =
{1, . . . , n}. In this case we denote T (X) by Tn and S(X) by Sn. A mapping f ∈ Tn

can be conveniently written as a 2 × n array of originals and their images:

f =

(
1 2 . . . n

f(1) f(2) . . . f(n)

)

.

It is easy to see whether such a mapping is a permutation or not: just check whether
the sequence of images f(1), f(2), . . . , f(n) contains every element of {1, 2, . . . , n}
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(and so contains it only once). In particular, we see that a mapping from Tn which
is surjective must also be injective, and that a mapping that is injective must also
be surjective. It is also easy to find the inverse of a permutation written in this
way: you just swap the rows (and re-order, if you are tidy!):

f−1 =

(
f(1) f(2) . . . f(n)

1 2 . . . n

)

.

Example 4.9. Consider the mappings

f =

(
1 2 3 4 5
2 4 3 2 5

)

, g =

(
1 2 3 4 5
2 4 3 1 5

)

, h =

(
1 2 3 4 5
1 4 3 2 5

)

,

from T5. Then f is not a permutation, while g and h are. Let us calculate some
products and inverses:

g−1 =

(
2 4 3 1 5
1 2 3 4 5

)

=

(
1 2 3 4 5
4 1 3 2 5

)

g ◦ h =

(
1 2 3 4 5
2 4 3 1 5

)

◦

(
1 2 3 4 5
1 4 3 2 5

)

=

(
1 2 3 4 5
2 1 3 4 5

)

,

h ◦ g =

(
1 2 3 4 5
1 4 3 2 5

)

◦

(
1 2 3 4 5
2 4 3 1 5

)

=

(
1 2 3 4 5
4 2 3 1 5

)

.

(Remember that we are multiplying mappings, and hence permutations as well,
from right to left.) We see that the group S5 is not abelian.

Exercise 4.10. Prove that the group Sn is abelian only for n = 1, 2.

Exercise 4.11. Prove that the order of Sn is n!(= n · (n − 1) · . . . · 2 · 1).

Now we describe another useful way of writing down permutations.

Definition 4.12. Let i1, i2, . . . , ik be k distinct elements from {1, . . . , n}. The k-
cycle (i1 i2 . . . ik) is the permutation mapping i1 into i2, i2 into i3, and so on,
mapping ik−1 into ik, mapping ik back to i1, and leaving all the other elements of
{1, . . . , n} fixed.

Example 4.13. In S5 we have

(2 4 5) =

(
1 2 3 4 5
1 4 3 5 2

)

.

Definition 4.14. Two cycles (i1 i2 . . . ik) and (j1 j2 . . . jl) are said to be disjoint
if {i1, . . . , ik} ∩ {j1, . . . , jl} = ∅.

Theorem 4.15. Every permutation can be written as a composition of disjoint
cycles. This decomposition is unique up to the order of cycles and presence of
1-cycles.

The proof of the above theorem, though not difficult, requires some technical
attention, and it would probably not give you deeper insight then a particular
example:

Example 4.16. Consider the following permutation

(
1 2 3 4 5 6 7 8
3 1 6 4 7 2 5 8

)

12



a A

B

C

f(A)

f(C)

f(B)

Figure 1: Translation by the vector ~a.

from S8. We see that f(1) = 3, f(3) = 6, f(6) = 2 and f(2) = 1; similarly, f(5) = 7,
f(7) = 8 and f(8) = 5, while f(4) = 4. Hence

f = (1 3 6 2)(4)(5 7 8),

and also
f = (5 7 8)(3 6 2 1).

Remark 4.17. Note that although disjoint cycles commute, arbitrary cycles do
not necessarily do so (find an appropriate example).

You should be able to multiply permutations written as products of cycles, with-
out reverting them into the two-row format. As for finding inverses, the following
is of help:

(i1 i2 . . . ik)−1 = (ik . . . i2 i1).

Example 4.18.

(1 2 3)(4 5)(1 5)(2 4) = (1 4 3)(2 5)

((1 2 3)(4 5))−1 = (4 5)−1(1 2 3)−1 = (5 4)(3 2 1).

5. Symmetries

We have seen number-theoretical and combinatorial examples of groups. Now we
look at some geometrical ones.

Definition 5.1. A symmetry (or isometry) of the real plane R2 is a mapping f :
R2 −→ R2 which preserves distances, i.e. a mapping satisfying that for any two
points X, Y ∈ R2 we have d(X, Y ) = d(f(X), f(Y )) (where d(A, B) denotes the
distance between A and B).

Examples 5.2. Translation by a vector (see Figure 1), rotation about a point
by an angle (see Figure 2) and reflection in a line (see Figure 3) are well known
symmetries.

Below we list some facts about symmetries.

1) Every symmetry is a bijection.

2) The composition of two symmetries is again a symmetry.

3) The inverse of a symmetry is again a symmetry.

4) The set of all symmetries is a group under composition of mappings.

5) A symmetry preserves angles.

13



A

B

C
f(A)

f(C)

f(B)

O

α

Figure 2: Rotation about the point P by the angle α.

A

B

C

f(A)

f(C)

f(B)

l

Figure 3: Reflection in the line l.

6) Every symmetry is either a translation, or a rotation, or a reflection, or a
product of a translation and a reflection (called a glide-reflection).

Now, if we are given a figure F in the plane (i.e. a set of points, like a line, or a
triangle or a square, etc.) we can consider those symmetries of the plane which map
this figure onto itself. It is easy to see that these symmetries also form a group;
this group is called the group of symmetries of F . It is worth remarking here that
if F is a finite (bounded) figure, then it follows from 6) that every symmetry of F
is either a rotation or a reflection.

Example 5.3. Consider an equilateral triangle T (see Figure 4). It obviously has
six symmetries: reflections σa, σb, σc in the lines a, b, c respectively, rotations ρ120,
ρ240 about O for 1200 and 2400 clockwise respectively, and the identity transforma-
tion id. The multiplication table is:

id σa σb σc ρ120 ρ240

id id σa σb σc ρ120 ρ240

σa σa id ρ120 ρ240 σb σc

σb σb ρ240 id ρ120 σc σa

σc σc ρ120 ρ240 id σa σb

ρ120 ρ120 σc σa σb ρ240 id
ρ240 ρ240 σb σc σa id ρ120

Example 5.4. An isosceles triangle (Figure 5) has only two symmetries: the iden-
tity transformation id and the reflection σ. The multiplication table is

id σ
id id σ
σ σ id

14



A

B C

a

b
c ρ120

ρ240

Figure 4: Symmetries of an equilateral triangle.

A

B C

Figure 5: Symmetries of an isosceles triangle.

Example 5.5. A scalene triangle has a unique symmetry – the identity mapping
id.

Example 5.6. A circle has infinitely many symmetries: all the rotations about the
centre of the circle and all the reflections in all the lines passing through the centre
of the circle.

Example 5.7. A non-square rectangle (Figure 6) has four symmetries – two re-
flections, one rotation and the identity mapping – with the multiplication table

id σx σy ρ
id id σx σy ρ
σx σx id ρ σy

σy σy ρ id σx

ρ ρ σy σx id

Example 5.8. A regular n-gon (Figure 7, for n = 6) has 2n symmetries: n rota-
tions about the centre for multiples of 3600/n, and n reflections in lines through the
centre. The group of these symmetries is called the dihedral group and is denoted
by Dn. If ρ denotes the ‘basic’ rotation for 3600/n, then all the other rotations are
powers of ρ: ρ0 = id, ρ1 = ρ, ρ2,. . . , ρn−1, ρn = id. Moreover, if σ is one reflection,

15



x

y

Figure 6: Symmetries of a rectangle.

then all the other reflections can be written as ρiσ (0 ≤ i ≤ n−1). In particular, we
have σρ = ρn−1σ = ρ−1σ. This, together with the obvious equalities ρn = id and
σ2 = id can be used to compute products in Dn without working with symmetries
at all. For example, in D6 we have

(ρ2σ)ρ3 = ρ2ρ−1σρ2 = ρ2ρ−1ρ−1σρ = ρ2ρ−1ρ−1ρ−1σ = ρ−1σ = ρ5σ.

Groups of symmetries of infinite figures are also of interest. Here one often
considers a repeating pattern which fills a plane, rather like a wallpaper patterns.
It is possible to classify all these groups, and it turns out that there are precisely
17 of them.

One can also consider the symmetries of the 3-dimensional space, rather than
the plane, and also symmetries of 3-dimensional figures. Here, the analogue of
wallpapers are crystals, and the classification of all possible groups arising here
(there 230 of them) is a significant piece of information in the study of crystals
(called crystallography).

6. Order of an element

We now set on to investigate the elements and properties of general groups.

Definition 6.1. Let a be an element of a group G. The order of a is the smallest
positive integer n such that an = e if there is such a number, or infinite otherwise.

Examples 6.2. Every reflection has order 2. Rotation ρ in the dihedral group Dn

has order n. Every non-zero element of Z, Q, R or C has an infinite (additive)
order. The identity is the only element of order 1 in any group.

Example 6.3. The orders of the elements of Z10 (under addition modulo 10) are
1, 10, 5, 10, 5, 2, 5, 10, 5, 10 respectively.

Example 6.4. Consider the permutation α = (1 2)(3 4 5) from S5. Its powers are:

α2 = (3 5 4)

α3 = (1 2)

α4 = (3 4 5)

α5 = (1 2)(3 5 4)

α6 = id.

Hence, the order of α is 6.
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ρ

ρ2

ρ3

ρ5

ρ4

σ ρσ

ρ2σ

ρ3σ

ρ4σ

ρ5σ

Figure 7: Symmetries of a regular hexagon.

Exercise 6.5. Find the orders of the elements of the multiplicative group Z7 \{0}.

Exercise 6.6. Find the orders of elements of the dihedral group D6.

Theorem 6.7. If G is a finite group, then every element of G has finite order.

Proof. Let a ∈ G be arbitrary. Consider the elements a, a2, a3, . . .. They
certainly all belong to G. Since G is finite, there must exist two distinct i, j (say
i > j) such that ai = aj . But then, multiplying by a−j , we obtain ai−j = e. We
see that there exists a positive integer m = i − j such that am = e, and it then
follows that there exists the smallest such positive integer, which is then the order
of a. �

Theorem 6.8. Let G be a group, and let a be an element of order n in G. Then
for any i, j ∈ Z we have ai = aj if and only if n|(i− j). (In particular ai = e if and
only if n|i.)

Proof. (⇐) If n|(i − j) then write i − j = qn, so that

ai = aj+qn = aj(an)q = ajeq = aj.

(⇒) Assume that ai = aj. Write i − j = qn + r, with 0 ≤ r < n. But then

ar = ai−j−qn = ai(aj)−1(an)−q = ai(ai)−1e = e.

Since n is the order of a and r < n, we conclude that r = 0, and hence n|(i − j).
�

We are now going to see how to find the orders of elements in various specific
groups introduced earlier.

Theorem 6.9. The order of an element a ∈ Zn (under addition modulo n) is
n/ gcd(a, n).
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Proof. Let the order of a be m; this means that, modulo n, we have ma = 0,
i.e. ma = qn as integers for some q.

Next let d = gcd(a, n), and write a = a1d and n = n1d. Note that n/ gcd(a, n) =
n1, and also that gcd(n1, a1) = 1.

Now we have
n1a = n1a1d = na1 = 0 (mod n).

Therefore m ≤ n1. Also, we have

ma = qn ⇒ ma1d = qn1d ⇒ ma1 = qn1 ⇒ n1|ma1 ⇒ n1|m ⇒ n1 ≤ m.

We conclude that m = n1 = n/ gcd(a, n), as required. �

Theorem 6.10. The order of an l-cycle γ = (i1 i2 . . . il) in the symmetric group
Sn is equal to l. The order of an arbitrary permutation α ∈ Sn, written as a product
of disjoint cycles

α = γ1γ2 . . . γm,

where γi has length li, is equal to q = lcm (l1, . . . , lm).

Proof. Clearly γl = id. For j < l we have γj(i1) = ij+1 6= i1, so that γj 6= id.
Write q = liqi (i = 1, . . . , m). Denote the order of α be r. Since the disjoint

cycles commute, we have

αq = γq
1γq

2 . . . γq
m = (γl1

1 )q1(γl2
2 )q2 . . . (γlm

m )qm = id ◦ id ◦ . . . ◦ id
︸ ︷︷ ︸

n

= id.

Hence r ≤ q. On the other hand, from αr = id, and the fact that the cycles
are disjoint, it follows that γr

j = id. By Theorem 6.8 it follows that lj |r for all
j = 1, . . . , m, and hence q ≤ r. �

Exercise 6.11. List the elements of S3 and their orders.

7. Subgroups

A group may contain other groups within it. For example, the group Q (with respect
to addition) contains the group Z, in the sense that Z ⊆ Q and that the addition
in Z is the same as the addition in Q restricted to Z.

Definition 7.1. Let G be a group. A non-empty set H ⊆ G is a subgroup of G if
it forms a group under the same operation; we denote this by H ≤ G.

Example 7.2. Z ≤ Q ≤ R ≤ C.

Example 7.3. The multiplicative group Q \ {0} is not a subgroup of the additive
group Q, because the operations are different. Similarly, Zm is not a subgroup of
Zn (m < n).

Example 7.4. Every group G has {e} as a subgroup; this is called the trivial
subgroup of G. Also G itself is a subgroup of G. Any subgroup different from {e}
and G is called a proper subgroup.

On the face of it, to check whether a subset H of a group G is a subgroup, we
have to check the four axioms for groups. In fact, this can be reduced to checking
two conditions:

Theorem 7.5. Let H be a non-empty subset of a group G. Then H is a subgroup
of G if and only if for all x, y ∈ H we have xy ∈ H and x−1 ∈ H (i.e. if and only
if H is closed under multiplication and taking inverses).
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Proof. (⇒) This follows immediately from the definition.
(⇐) Assume that H is closed under multiplication and taking inverses. It means

that for any a ∈ H we also have a−1 ∈ H , and hence e = aa−1 ∈ H . So, H contains
the identity e. Finally, the operation is associative, because it is associative in G.
�

Example 7.6. The set GL(n, R) of all n × n invertible matrices (i.e. the matrices
with non-zero determinant) with real entries forms a group (called the general linear
group over the reals). Consider the subset SL(n, R) = {A ∈ GL(n, R) : |A| = 1},
where |A| denotes the determinant of A. For A, B ∈ SL(n, R) we have

|AB| = |A||B| = 1, |A−1| = 1/|A| = 1.

Hence SL(n, R) ≤ GL(n, R). The group SL(n, R) is called the special linear group
over R. Analogous constructions can be done over C and Q, giving the general and
special linear groups over these sets.

Note that Q \ {0} ≤ GL(2, Q).

Example 7.7.

{(
1 n
0 1

)

: n ∈ Z

}

≤ GL(2, Q).

Example 7.8. {0, 2, 4} is a subgroup of Z6 under +.

Exercise 7.9. Let G = Q \ {0} under multiplication. Show that H = {2n : n ∈ Z}
is a subgroup.

8. Cyclic groups

Theorem 8.1. Let G be a group, and let a ∈ G be an arbitrary element. The set
H = {ai : i ∈ Z} of all powers of a is a subgroup of G. Its order is equal to the
order of a.

Proof. For ai, aj ∈ H we clearly have aiaj = ai+j ∈ H and (ai)−1 = a−i ∈ H ,
so that H ≤ G by Theorem 7.5. If a has infinite order, then we have ai 6= aj for
i 6= j, for otherwise ai−j = e. If a has order n, then, by Theorem 6.8, the only
distinct powers of a are e = a0, a, . . . , an−1, so that |H | = n. �

Definition 8.2. The subgroup H from the above theorem is called the cyclic sub-
group generated by a. If G = H then G is said to be a cyclic group (generated by
a).

Example 8.3. The additive group Z is cyclic, generated by 1 (and also by −1!).
Similarly Zn is cyclic for every n. By Theorem 6.9 a ∈ Zn generates Zn if and only
if (a, n) = 1.

Example 8.4. Consider the group Z7 \ {0} under multiplication modulo 7. We
have 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1. So, this group is cyclic, generated
by 3. In fact, every group Zp \ {0} (p prime) is cyclic – this is a non-trivial (and
important) fact in number theory. It is far from obvious what its generators are.

Theorem 8.5. Every cyclic group is abelian.

Proof. Suppose G = 〈a〉. Then if x, y ∈ G, x = ai, y = aj for some i, j so
xy = aiaj = ai+j = ajai = yx and G is abelian. �

Example 8.6. Q is not cyclic. For if q ∈ Q and H is the cyclic subgroup generated
by q then H = {nq : n ∈ Z}. Hence, for x ∈ H , |x| ≥ |q|. Thus |q/2| 6∈ H .
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Theorem 8.7. Every subgroup of a cyclic group is cyclic.

Proof. Let G be a cyclic group generated by a, and let H ≤ G. If H is trivial
there is nothing to prove. Otherwise, let m be the smallest positive integer such
that am ∈ H . We shall prove that H is cyclic generated by am. Let ai be an
arbitrary element of H . Write i = mq + r with 0 ≤ r ≤ m − 1. Then

ar = ai−mq = ai(am)−q ∈ H.

By the choice of m, it follows that r = 0, and hence ai = (am)q, a power of am.
�

Example 8.8. Let us list all subgroups of the group Z12:

{0}, Z12, {0, 2, 4, 6, 8, 10}, {0, 3, 6, 9}, {0, 4, 8}, {0, 6}.

9. Alternating groups

We are now going to introduce an important subgroup of the symmetric group Sn.
First we introduce another way of writing permutations.

Theorem 9.1. Every permutation can be written as a product of 2-cycles (also
called transpositions).

Proof. We already know that a permutation can be written as a product of
(disjoint) cycles, and a cycle can be written as a product of transpositions:

(i1 i2 . . . ik) = (i1 i2)(i2 i3) . . . (ik−1 ik);

this proves the theorem. �

A decomposition of a permutation into a product of transpositions is by no
means unique; for instance

(2 3) = (1 2)(2 3)(1 3).

However, the parity of the number of transpositions in any decomposition of a given
permutation does not change.

Definition 9.2. A permutation is even (respectively odd) if it can be written as a
product of an even (respectively odd) number of transpositions.

Theorem 9.3. A permutation cannot be both even and odd.

Proof. Consider the polynomial of n variables:

P = P (x1, . . . , xn) =
∏

1≤i<j≤n

(xi − xj).

For a permutation σ let

σ(P ) = P (xσ(1), . . . , xσ(n)).

Note that
(στ)(P ) = σ(τ(P )).

Also note that if γ = (k l) (k < l) is a transposition, then

γ(P ) = −P.

20



Indeed, the only factors of P that change sign when swapping xk and xl are (xk−xl),
(xk − xi) and (xi − xl) (k < i < l) and there is an odd number of them.

Now assume that a permutation σ ∈ Sn can be written both as a product of an
even number of transpositions σ = γ1 . . . γ2q and as a product of an odd number of
transpositions σ = δ1 . . . δ2r+1. But then

P = γ1(. . . (γ2q(P ))) = σ(P ) = δ1(. . . (δ2r+1(P ))) = −P,

which is a contradiction. �

Exercise 9.4. A k-cycle is even if and only if k is odd! Hint: see the proof of
Theorem 9.1.

Theorem 9.5. The set An of all even permutations in Sn is a subgroup of Sn of
order n!/2.

Proof. For σ = γ1 . . . γ2k ∈ An and τ = δ1 . . . δ2l ∈ An we have

στ = γ1 . . . γ2kδ1 . . . δ2l ∈ An,

σ−1 = γ−1
2k . . . γ−1

1 = γ2k . . . γ1 ∈ An.

Hence An ≤ Sn.
Let On be the set of all odd permutations of Sn. Then clearly Sn = An∪On and

An ∩ On = ∅ by Theorem 9.3. Define a mapping f : Sn −→ Sn by f(σ) = σ(1 2).
Then f is a bijection:

σ = σ(1 2)(1 2) = f(σ(1 2)),

f(σ1) = f(σ2) ⇒ σ1(1 2) = σ2(1 2) ⇒ σ1 = σ2.

Also f maps An into On and On into An. Finally f◦f is the identity transformation.
We conclude that f is a bijection between An and On, so that |An| = |On|. Now
we have n! = |Sn| = |An| + |On| = 2|An|, and hence |An| = n!/2. �

Definition 9.6. An is called the alternating group on {1, . . . , n}.

Exercise 9.7. List the elements of A4.

Exercise 9.8. Prove that On is not a subgroup of Sn.

10. Cosets and Lagrange’s Theorem

Every subgroup of a group G induces an important decomposition of G.

Definition 10.1. Let G be a group, let H be a subgroup of G, and let a ∈ G be
any element. The left coset of H in G determined by a is the set

aH = {ah : h ∈ H}.

The right coset of H in G determined by a is the set

Ha = {ha : h ∈ H}.

Example 10.2. Let us find all the (left and right) cosets of the cyclic subgroup
H = {id, (1 2)} of the symmetric group S3:

L1 = idH = {id, (1 2)} R1 = H id = {id, (1 2)},
L2 = (1 2)H = {(1 2), id} R2 = H(1 2) = {(1 2), id},
L3 = (1 3)H = {(1 3), (1 2 3)} R3 = H(1 3) = {(1 3), (1 3 2)},
L4 = (2 3)H = {(2 3), (1 3 2)} R4 = H(2 3) = {(2 3), (1 2 3)},
L5 = (1 2 3)H = {(1 2 3), (1 3)} R5 = H(1 2 3) = {(1 2 3), (2 3)},
L6 = (1 3 2)H = {(1 3 2), (2 3)} R6 = H(1 3 2) = {(1 3 2), (1 3)}.
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Exercise 10.3. Write down the cosets of the subgroup {0, 3, 6, 9} in Z12.

Exercise 10.4. What are the cosets of the trivial subgroup {e} in G? What are
the cosets of G in G?

Exercise 10.5. Prove that the cosets of An in Sn are An and On.

We see that the left and the right coset determined by the same element need
not be equal. We may also notice some interesting regularities: all the cosets have
equal sizes; some of them are equal (e.g. L3 = L5), and the others are disjoint (e.g.
L3 ∩ L6 = ∅). These are not accidents.

Theorem 10.6. Let G be a group, and let H be a subgroup of G.

(i) H is a left coset of itself.

(ii) For every a ∈ G we have a ∈ aH. (Every element belongs to the left coset
determined by it.)

(iii) G =
⋃

a∈G aH. (G is the union of the left cosets of H.)

(iv) For any two left cosets aH and bH we either have aH = bH, or else aH∩bH =
∅. (Any two left cosets of H are either equal or disjoint.)

(v) For all a ∈ G we have |aH | = |H |. (All the left cosets of H have equal size.)

Analogous statements hold for right cosets.

Proof. (i) H = eH .
(ii) a = ae ∈ aH , since e ∈ H .
(iii) Clearly aH ⊆ G for every a ∈ G because of closure. Therefore

⋃

a∈G aH ⊆
G. Conversely, since b ∈ bH ⊆

⋃

a∈G aH , it follows that G ⊆
⋃

a∈G aH .
(iv) Assume that aH ∩ bH 6= ∅, with z = ah1 = bh2 ∈ aH ∩ bH . We are going

to prove that aH = bH . Let x = ah ∈ aH be arbitrary. Write x = ah = zh−1
1 h =

bh2h
−1
1 h. Since h, h1, h2 ∈ H , it follows that x ∈ bH . This shows that aH ⊆ bH ,

and the reverse inclusion can be proved by a similar argument.
(v) Define a mapping f : H −→ aH be f(x) = ax. Then f is a bijection. Indeed,

an arbitrary element of aH can be written as ah = f(h) by the very definition of
cosets; hence f is onto. Also

f(x) = f(y) ⇒ ax = ay ⇒ x = y,

and f is one-one. �

Theorem 10.7 (Lagrange) Let G be a group of finite order, and let H be a sub-
group of G. Then the order of H divides the order of G.

Proof. Let C1, . . . , Ck be the distinct cosets of H . By Theorem 10.6 (v) we
have |C1| = . . . = |Ck| = |H |. Also, by Theorem 10.6 (iii) and (iv) the cosets of H
partition G, so that

|G| = |C1| + . . . + |Ck| = |H | + . . . + |H |
︸ ︷︷ ︸

k

= k|H |,

and the theorem follows. �

Theorem 10.8. Let G be a finite group, and let a ∈ G be arbitrary. Then the order
of a divides the order of G.
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Proof. The order of a is equal to the order of the cyclic subgroup of G generated
by a. �

We give one interesting application.

Theorem 10.9. Every group of prime order is cyclic.

Proof. Let G be a group of prime order p, and let a ∈ G be any non-identity
element. The order n of a divides p, so that n = p. It follows that G is cyclic
generated by a. �

11. Homomorphisms of groups

Here we study mappings between groups which respect the operations.

Definition 11.1. Let G and H be groups with operations ∗ and • respectively. A
mapping f : G −→ H is a homomorphism if for all x, y ∈ G we have f(x ∗ y) =
f(x) • f(y).

If the operation in both groups is denoted as multiplication, then the above rule
becomes f(xy) = f(x)f(y). (The image of the product is the product of images.)

Example 11.2. The mapping f : Z −→ Zn defined by f(x) = x (mod n) is a
homomorphism.

Example 11.3. For any two groups G and H the mapping f : G −→ H defined by
f(x) = eH (the identity of H) is a homomorphism. Indeed f(xy) = eH = eHeH =
f(x)f(y).

Example 11.4. For any group G the identity mapping G −→ G is a homomor-
phism.

Example 11.5. The mapping f : GL(n, R) −→ R \ {0}, given by f(A) = |A| (the
determinant of A, is a homomorphism from GL(n, R) into the multiplicative group
R \ {0}, because |AB| = |A||B|.

Example 11.6. The mapping f : Sn −→ Z2 defined by

f(σ) =

{
0 if σ is even
1 if σ is odd

is a homomorphism. Indeed, note that the even and odd permutations multiply
according to the rule

even odd
even even odd
odd odd even

Therefore, for σ, τ ∈ Sn we have

f(στ) =







0 σ even, τ even
0 σ odd, τ odd
1 σ even, τ odd
1 σ odd, τ even







= f(σ) + f(τ).

Next we derive some basic properties of homomorphisms.
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Theorem 11.7. Let G and H be two groups with identities eG and eH respectively.
If f : G −→ H is a homomorphism then

(i) f(eG) = eH ;

(ii) f(a)−1 = f(a−1) for every a ∈ G.

Proof. (i) Take arbitrary x ∈ G. Since xeG = x, it follows that f(x) = f(xeG) =
f(x)f(eG). Canceling (in H !) f(x) we obtain f(eG) = eH .

(ii) From f(a)f(a−1) = f(aa−1) = f(eG) = eH , and the uniqueness of inverses,
it follows that f(a−1) = f(a)−1. �

We also note that there are certain natural subgroups related to homomor-
phisms.

Definition 11.8. Let f : G −→ H be a homomorphism of groups. The set

ker (f) = {x ∈ G : f(x) = eH}

is called the kernel of f . Also for any subset X ⊆ G we write

f(X) = {f(x) : x ∈ X}

for its image under f . The set f(G) is also denoted by im (f) and is called the
image of f .

Example 11.9. Let f : Z −→ Zn be the homomorphism from Example 11.2.
Then

m ∈ ker (f) ⇔ f(m) = 0 ⇔ m = 0 (mod n) ⇔ n|m,

and hence ker (f) = nZ = {na : a ∈ Z} consists of all integer multiples of n. The
image of f is whole Zn (i.e. f is onto).

Exercise 11.10. Prove that for the homomorphism f from Example 11.5 we have
ker (f) = SL(n, R), and that im (f) = R \ {0}.

Exercise 11.11. Prove that for the homomorphism f from Example 11.6 we have
ker (f) = An and im (f) = Z2.

Theorem 11.12. Let f : G −→ H be a homomorphism of groups.

(i) ker (f) is a subgroup of G.

(ii) The image f(K) of any subgroup K of G is a subgroup of H.

Proof. (i) Let a, b ∈ ker (f), so that f(a) = f(b) = eH . Then we have

f(ab) = f(a)f(b) = eHeH = eH ⇒ ab ∈ ker (f),

f(a−1) = f(a)−1 = e−1
H = eH ⇒ a−1 ∈ ker (f).

Thus ker (f) is closed for multiplication and inverses, and hence it is a subgroup.
(ii) Let u, v ∈ f(K), and write u = f(x) and v = f(y), where x, y ∈ K. Since

K is a subgroup, it follows that xy ∈ K and x−1 ∈ K. But then

uv = f(x)f(y) = f(xy) ∈ f(K),

u−1 = (f(x))−1 = f(x−1) ∈ f(K).

Hence f(K) ≤ H . �
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Exercise 11.13. For a homomorphism f : G −→ H of groups and a subset Y ⊆ H
define the inverse image of Y to be

f−1(Y ) = {x ∈ G : f(x) ∈ Y }.

Prove that the inverse image of a subgroup of H is a subgroup of G. Also, prove
that ker (f) = f−1({eH}).

Exercise 11.14. Prove that a homomorphism f : G −→ H of groups is one-one
if and only if ker (f) = {eG}.

12. Isomorphisms

Let us compare the group Z3 under addition modulo 3 with the cyclic subgroup H
of S3 generated by (1 2 3):

Z3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

H id (1 2 3) (1 3 2)
id id (1 2 3) (1 3 2)

(1 2 3) (1 2 3) (1 3 2) id
(1 3 2) (1 3 2) id (1 2 3)

.

We see that the two tables differ only in the names of the symbols, and not in
their positions. More formally, there is mapping f : Z3 −→ H (namely f(0) = id,
f(1) = (1 2 3), f(2) = (1 3 2)) which is a bijection and satisfies f(i+j) = f(i)◦f(j).

Definition 12.1. Let G and H be two groups. A mapping f : G −→ H is an
isomorphism if it is a bijection and a homomorphism. We say that G and H are
isomorphic if there is an isomorphism f : G −→ H ; this is denoted G ∼= H .

Theorem 12.2. Let G, H and K be three groups. Then:

(i) G ∼= G;

(ii) G ∼= H =⇒ H ∼= G;

(iii) G ∼= H & H ∼= K =⇒ G ∼= K.

Proof. (i) The identity mapping on G is an isomorphism. (ii) If f : G −→ H is
an isomorphism, then so is f−1 : H −→ G. (iii) If f : G −→ H and g : H −→ K
are isomorphisms, then so is their composition g ◦ f : G −→ K. �

It makes sense to regard isomorphic groups as identical. The main general task
of group theory can be formulated as: classify all non-isomorphic groups. In general
this is impossible, and one has to settle for various partial results in this direction.
Probably the easiest such is the following:

Theorem 12.3. Let G be a cyclic group. If G is infinite then G ∼= Z; if G is finite
of order n then G ∼= Zn.

Proof. Let a be a generator for G. Assume first that G is infinite, so that all
powers of a are distinct. Define f : Z −→ G by f(i) = ai. Then f is onto, because
G consists of powers of a; it is also one-one and a homomorphism because

f(i) = f(j) ⇒ ai = aj ⇒ i = j,

f(i + j) = ai+j = aiaj = f(i)f(j).

Hence f is an isomorphism.
If G is finite of order n then G = {e, a, . . . , an−1} by Theorem 6.8. Define a

mapping f : Zn −→ G by f(i) = ai. As above, this mapping is an isomorphism.
�
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In order to prove that two groups g and H are not isomorphic, one needs to
demonstrate that there is no isomorphism from G onto H . Usually, in practice,
this is much easier than it sounds in general, and is accomplished by finding some
property that holds in one group, but not in the other.

Example 12.4. The groups Z4 and Z6 are not isomorphic because they have dif-
ferent orders.

Example 12.5. Z6 6∼= S3 because Z6 is abelian and S3 is not (although they both
have order 6).

Example 12.6. The dihedral group D12 is not isomorphic to S4 because D12 has
13 elements of order 2 (12 reflections, and the rotation for 1800), while S4 has only
9 such elements (transpositions, and products of two disjoint transpositions). (Note
that |D12| = |S4| = 24 and that they are both non-abelian.)

Exercise 12.7. Consider the group Q8 = {1,−1, i,−i, j,−j, k,−k}, where the mul-
tiplication naturally extends the rules

i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

The full Cayley table is

1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i −1 1
−k −k k −j j i −i 1 −1

.

This group is called the quaternion group. Prove that Q8 is not isomorphic to D4

and Z8.

Finally, we prove the so called Cayley’s theorem, which suggests a prominent
role of the symmetric groups among all groups.

Theorem 12.8 (Cayley) Every group G is isomorphic to a subgroup of the sym-
metric group S(G).

Proof. For each a ∈ G define a mapping τa : G −→ G by

τa(x) = ax.

Then τa is a permutation (i.e. bijection):

b = aa−1b = τa(a−1b),

τa(x) = τa(y) ⇒ ax = ay ⇒ x = y.

Now define a mapping f : G −→ S(G) by

f(a) = τa.

First we prove that f is one-one:

f(a) = f(b) ⇒ τa = τb ⇒ (∀x ∈ G)(τa(x) = τb(x)) ⇒ ae = be ⇒ a = b.
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Next we note that

(τaτb)(x) = τa(τb(x)) = a(bx) = (ab)x = τab(x),

so that the mappings τaτb and τab are equal. Now we have

f(a)f(b) = τaτb = τab = f(ab),

and hence f is a homomorphism.
Now by Theorem 11.12 (ii), im (f) = {τa : a ∈ G} is a subgroup of S(G).

Moreover, if we now consider f as a mapping from G into im (f), then it also
becomes onto, and we conclude that G ∼= im (f) ≤ S(G). �

Remark 12.9. The permutations τa can be read off easily from the Cayley table
for G – they correspond to the rows of it. Of course, if G is finite of order n, you
can rename the elements of G by numbers 1, . . . , n (in an arbitrary fashion), and
thus represent G as a subgroup of Sn.

Example 12.10. In the quaternion group Q8, we have, for example,

τi =

(
1 −1 i −i j −j k −k
i −i −1 1 k −k −j j

)

,

or, after renaming,

τi =

(
1 2 3 4 5 6 7 8
3 4 2 1 7 8 6 5

)

.

The practical use of Cayley’s Theorem is limited: it is not very likely that one
can obtain much useful information about groups of order, say, eight, by considering
subgroups of the group S8 of order 40320.

13. Normal subgroups

We have seen that to every homomorphism f : G −→ H we can associate two
distinguished subgroups: ker (f) ≤ G and im (f) ≤ H . It is natural to ask a
converse question: given a subgroup of a group G, is this subgroup the kernel or
the image of some homomorphism?

It is easy that every subgroup is the image of some homomorphism. Indeed, if
K ≤ G, define f : K −→ G by f(x) = x. Then it is clear that im (f) = K.

The situation for kernels is different. In order to describe it, we introduce a
special class of subgroups.

Theorem 13.1. The following conditions are equivalent for a subgroup N of a
group G:

(i) every left coset of N is also a right coset (and vice versa);

(ii) aN = Na for every a ∈ G;

(iii) for all a ∈ G and all n ∈ N we have ana−1 ∈ N ;

(iv) For every a ∈ G we have aNa−1 = {a−1na : n ∈ N} = N .

Proof. (i)⇒(ii) Let a ∈ G. By (i), we have aN = Nb for some b ∈ G. But then
we have a ∈ aN = Nb, and also a ∈ Na. By Theorem 10.6 (iv) (for right cosets!),
we conclude that Nb = Na, and hence aN = Na.
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(ii)⇒(iii) Let a ∈ G and n ∈ N . By (ii) we have aN = Na; hence we can write
an = n1a, with n1 ∈ N . But then

ana−1 = aa−1n1 = n1 ∈ N,

as required.
(iii)⇒(iv) It follows immediately from (iii) that aNa−1 ⊆ N . Let now n ∈ N be

arbitrary. From (iii) (applied to a−1 instead of a) it follows that a−1na = n1 ∈ N .
But then

n = aa−1naa−1 = an1a
−1 ∈ aNa−1.

Hence N = aNa−1.
(iv)⇒(i) Let a ∈ G and n ∈ N be arbitrary. By (iv) we have ana−1 = n1 ∈ N .

But then an = n1a ∈ Na. This shows that aN ⊆ Na. A similar argument shows
the converse inclusion. Hence aN = Na, and so every left coset is also a right coset.
�

Definition 13.2. A subgroup N of a group G is normal if it satisfies any (and
hence all) of the equivalent conditions of the above theorem; this is denoted N �G.

Example 13.3. {e} � G; G � G, as left and right cosets are obviously equal.

Example 13.4. Every subgroup of an abelian group is normal, since aN = Na is
obviously satisfied.

Example 13.5. The cyclic subgroup of S3 generated by (1 2) is not normal in S3

because the left and right cosets do not coincide; see Example 10.2.

Example 13.6. If N is a subgroup of G with exactly two left cosets, then N is
normal. Indeed the left cosets are N and G \ N . But then N also must have only
two right cosets, and they must be N and G \N as well. In particular An � Sn; see
Exercise 10.5.

Example 13.7. Consider the quaternion group Q8; see Exercise 12.7. The set
N = {1,−1} is clearly a subgroup. Note that both 1 and −1 commute with every
element of Q8. Hence we have aN = Na for every a ∈ Q8, and N is normal.

We now return to our investigation of the kernels.

Theorem 13.8. If f : G −→ H is a homomorphism then ker (f) � G.

Proof. Let a ∈ G and n ∈ ker (f). From f(n) = eH it follows that

f(a−1na) = f(a−1)f(n)f(a) = f(a)−1eHf(a) = f(a)−1f(a) = eH .

Hence a−1na ∈ ker (f). �

14. Quotient groups

We now introduce a new construction for groups, which will enable us to prove that
the kernels of homomorphisms are precisely normal subgroups.

Theorem 14.1. Let G be a group, and let N �G. On the set G/N = {aN : a ∈ G}
of all cosets of N we define a binary operation by

(aN)(bN) = (ab)N.

With this operation, G/N is a group.
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Proof. First we have to prove that the above multiplication is well defined. The
point here is that we are defining a product of two sets, by choosing two elements
from them, multiplying them together, and finding the set corresponding to the
product. We have to convince ourselves that the resulting set depends on the
original sets, but not on the particular choices of elements.

More formally, let us assume that we have aN = a1N and bN = b1N . Consider
an arbitrary element abn from abN . Since bN = b1N we can write bn = bn1

(n1 ∈ N). Since N � G we have b1n1 = n2b1 for some n2 ∈ N . From aN = a1N
it follows that an2 = a1n3 for some n3 ∈ N . Finally, normality of N implies that
n3b1 = b1n4 for some n4 ∈ N . Putting all this together, we obtain

abn = ab1n1 = an2b1 = a1n3b1 = a1b1n4 ∈ (a1b1)N.

This shows that (ab)N ⊆ (a1b1)N . An analogous argument shows the converse
inclusion, and hence (ab)N = (a1b1)N , as required.

After this, proving that G/N is a group is easy. Closure follows immediately
from the definition. Associativity follows from associativity in G:

((aN)(bN))(cN) = ((ab)N)(cN) = ((ab)c)N = (a(bc))N = (aN)((bc)N)

= (aN)((bN)(cN)).

The identity element is eN = N :

(eN)(aN) = (ea)N = aN = (ae)N = (aN)(eN).

Finally, the inverse of aN is a−1N since

(aN)(a−1N) = (aa−1)N = eN = (a−1a)N = (a−1N)(aN).

This completes the proof. �

Example 14.2. Consider the quaternion group G and the normal subgroup N =
{1,−1}; see Example 13.7. We are going to describe the quotient Q8/N . First we
determine the cosets:

C1 = 1N = (−1)N = {1,−1},

C2 = iN = (−i)N = {i,−i},

C3 = jN = (−j)N = {j,−j},

C4 = kN = (−k)N = {k,−k}.

According to the multiplication rule given in the theorem, we have, for example

C3C4 = (jN)(kN) = (jk)N = iN = C2,

C4C3 = (kN)(jN) = (kj)N = (−i)N = C2,

C2
2 = (iN)2 = i2N = (−1)N = C1.

(Note that C3C4 = C4C3 although jk 6= kj in Q8; also note that C2 has order 2,
although i has order 4.) The full multiplication table is

C1 C2 C3 C4

C1 C1 C2 C3 C4

C2 C2 C1 C4 C3

C3 C3 C4 C1 C2

C4 C4 C3 C2 C1

.

We see that Q8/N ∼= K4, the Klein four group from Exercise 2.5. (Note that Q8/N
is abelian, although Q8 is not.)
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Exercise 14.3. Describe Sn/An.

We return to the kernels again.

Theorem 14.4. Let G be a group, and let N � G. The mapping f : G −→ G/N
defined by f(x) = xN is a homomorphism and ker (f) = N .

Proof. That f is a homomorphism follows from

f(xy) = (xy)N = (xN)(yN) = f(x)f(y).

For n ∈ N we have f(n) = nN = N (closure!); hence N ⊆ ker (f). Also, for
x ∈ ker (f) we have xN = f(x) = eN = N . In particular x = xe ∈ N . Therefore
ker (f) ⊆ N . �

15. The first isomorphism theorem

The connection between kernels and normal subgroups induces a connection be-
tween quotients and images.

Theorem 15.1 (The first isomorphism theorem) If f : G −→ H is a homo-
morphism then

G/ker (f) ∼= im (f).

Proof. For brevity denote ker (f) by N , and im (f) by K. Define a mapping
φ : G −→ K by φ(aN) = f(a).

Again we have to prove that this mapping is well defined. To this end assume
that aN = a1N . In particular, a = a1n for some n ∈ N . But then

φ(aN) = f(a) = f(a1n) = f(a1)f(n) = f(a1)eH = f(a1) = φ(a1N).

If y ∈ K is arbitrary, then there exists x ∈ G such that f(x) = y. But then
φ(xN) = f(x) = y; hence φ is onto. To prove that f is one-one as well, let
aN, bN ∈ G/N be such that φ(aN) = φ(bN). This means that f(a) = f(b),
and, since f is a homomorphism, we obtain f(a−1b) = eH . This in turn implies
a−1b ∈ ker (f) = N . Write a−1b = n ∈ N , so that b = an ∈ aN . Now we have
b ∈ aN ∩ bN , which implies aN = bN .

Finally, we have

φ((aN)(bN)) = φ((ab)N) = f(ab) = f(a)f(b) = φ(aN)φ(bN).

This completes the proof that φ is an isomorphism. �

The importance of the first isomorphism theorem is that one may consider quo-
tients without working with cosets.

Example 15.2. The (necessarily normal) subgroup nZ = {na : a ∈ Z} of Z is the
kernel of the homomorphism f : Z −→ Zn, f(a) = a (mod n); see Examples 11.2
and 11.9. Therefore, we have

Z/nZ = Z/ker (f) ∼= im (f) = Zn.
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16. Rings: definition and basic properties

We now give an introduction to another type of algebraic structure, called ring.
The exposition here will be faster. The emphasis is on the definition of a ring and
a field, understanding the few basic examples, and realising that the concepts of a
subring, homomorphism and quotient can be defined in a similar way to groups.

Definition 16.1. A set R with two operations + and · defined on it is a ring if the
following properties are satisfied:

(I) R is an abelian group with respect to + (with neutral element 0);

(II) R is closed for ·, and · is associative;

(III) · is distributive over +, i.e. for all x, y, z ∈ R we have

x(y + z) = xy + xz, (x + y)z = xz + yz.

We will see a number of examples of rings in the next section. First we are going
to list some basic consequences of the axioms. We note that many basic properties
involving + (such as x + 0 = 0 + x = x, x + (−x) = 0 and −(−x) = x) follow from
the definition of a group and Theorem 2.8.

Theorem 16.2. The following hold in any ring R:

(i) x0 = 0x = 0 for all x ∈ R;

(ii) (−x)y = x(−y) = −(xy) and (−x)(−y) = xy for all x, y ∈ R.

Proof. (i) x0 = x(0 + 0) = x0 + x0 ⇒ x0 = 0.
(ii) xy + (−x)y = (x + (−x))y = 0y = 0 ⇒ (−x)y = −(xy); (−x)(−y) =

−x(−y) = −(−(xy)) = xy. �

Exercise 16.3. Prove that for all x, y, z, t ∈ R we have

(x + y)(z + t) = xz + xt + yz + yt.

17. Examples of rings

Example 17.1. Each of the number sets Z, Q, R and C forms a ring with respect
to ordinary addition and multiplication.

Exercise 17.2. For every m ∈ Z the set mZ = {ma : a ∈ Z} forms a ring with
respect to ordinary addition and multiplication.

Example 17.3. The set Zn is a ring with respect to addition and multiplication
modulo n.

Example 17.4. A (real) polynomial is a formal expression of the form

p(x) = anxn + an−1x
n−1 + . . . + a1x + a0,

where a0, . . . , an ∈ R and x is a variable. (It is worth emphasising that x is not
considered to be an element of R, but rather a formal variable.) Polynomials can be
added and multiplied as usual. With these operations, the set R[x] of all polynomials
is a ring. In fact, given any ring, one can in a similar way construct the ring R[x]
of polynomials over x.
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Example 17.5. The set Mn(R) of all n × n matrices with entries from R forms
a ring with respect to the usual addition and multiplication of matrices. In fact,
given an arbitrary ring R, one can consider the ring Mn(R) of all n × n matrices
with entries from R.

Exercise 17.6. The set {(
0 a
0 b

)

: a, b ∈ R

}

is a ring with respect to the ordinary matrix addition and multiplication.

Example 17.7. The set

H = {a1 + a2i + a3j + a4k : a1, a2, a3, a4 ∈ R},

where i, j, k come from the quaternion group Q8 (see Exercise 12.7), and multi-
ply accordingly, forms a ring under the natural addition and multiplication. For
instance, we have

(2 + 3i − j + 5k) + (3 − 3i + 2j + 2k) = 5 + 0i + j + 7k,

(2 + 3i − j + 5k)(3 − 3i + 2j + 2k) = 6 − 6i + 4j + 4k + 9i + 9 + 6k − 6j

−3j − 3k + 2 − 2i + 15k − 15j − 10i − 10 = 7 − 9i − 20j + 22k.

Example 17.8. Let G be any abelian group, written additively. On g define a
multiplication by setting xy = 0 for all x, y ∈ G. This makes G into a (not very
interesting!) ring.

18. Special types of rings

Definition 18.1. A ring R is said to be commutative if the multiplication in R is
commutative, i.e. if xy = yx holds for all x, y ∈ R.

Examples 18.2. The rings Z, Q, R, C, Zn and R[x] are all commutative. The
rings H and Mn(R) are not commutative.

Definition 18.3. A ring R is said to be a ring with identity if there is a neutral
element (usually denoted by 1) for multiplication; thus 1x = x1 = x holds for all
x ∈ R.

Examples 18.4. All the rings mentioned in Examples 18.2 are rings with identity.
The rings from Exercises 17.2 and 17.6 are not rings with identity.

Definition 18.5. A ring R is said to be an integral domain if it is commutative
and xy = 0 implies x = 0 or y = 0 for all x, y ∈ R.

Examples 18.6. All Z, Q, R and C are integral domains. Zn is an integral domain
if and only if n is a prime. Mn(R) is not an integral domain.

Definition 18.7. A ring R is a division ring if R \ {0} forms a group with respect
to multiplication, i.e. if it is a ring with identity and every non-zero element of R
has a multiplicative inverse.

Definition 18.8. A ring R is a field if R \ {0} forms an abelian group, i.e. if R is
a commutative division ring.
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Examples 18.9. Q, R and C are fields. H is a division ring, but not a field. Indeed,
it is easy to check that the multiplicative inverse of z = a1 + a2i + a3j + a4k 6= 0 is

z−1 =
1

a2
1 + a2

2 + a2
3 + a2

4

(a1 − a2i − a3j − a4k).

Also H is obviously not commutative (e.g. ij = k 6= −k = ji). Z, Mn(R) and R[x]
are not division rings.

Example 18.10. Zn is a field if and only if n is a prime. Indeed, by Theorem 3.11,
Zn \ {0} is a group if and only if n is a prime.

19. Subrings, ideals and quotients

Definition 19.1. A subring of a ring R is any subset S ⊆ R which forms a ring
under the same operations.

Example 19.2. Z is a subring of Q is a subring of R is a subring of C is a subring
of H.

Example 19.3. Every non-trivial ring R has at least two subrings – {0} and R;
all the other subrings are called proper.

As in groups, we can reduce the number of axioms one has to check when proving
that something is a subring.

Theorem 19.4. A non-empty subset S of a ring R is a subring if and only if S is
closed for addition (x, y ∈ S ⇒ x + y ∈ S), taking negatives (x ∈ S ⇒ −x ∈ S) and
multiplication x, y ∈ S ⇒ xy ∈ S).

Proof. (⇒) This is obvious.
(⇐) The first two conditions ensure that S with respect to + is a subgroup of

R (see Theorem 7.5), and hence is an abelian group. The third assumption gives
us that it is closed under multiplication, while the associativity, and distributivity
laws are then automatically inherited from R. �

Exercise 19.5. Prove that the set of matrices

S =

{(
a b
0 c

)

: a, b, c ∈ R

}

forms a subring of the ring M2(R).

Example 19.6. The set of matrices
{(

a b
c 0

)

: a, b, c ∈ R

}

is closed under addition and taking negatives, but is not a subring of M2(R) because
it is not closed under multiplication (check!). The general linear group GL(2, R) is
closed under multiplication and taking negatives (!), but is not a subring of M2(R)
because it is not closed under addition. For example, for any invertible matrix A
we have A,−A ∈ GL(2, R), but A + (−A) = 0 6∈ GL(2, R).

Definition 19.7. A subring I of a ring R is called an ideal if it satisfies

(∀x ∈ R)(∀y ∈ I)(xy, yx ∈ I);

we say that I is stable under multiplication from R.
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Remark 19.8. Since stability implies closure under multiplication, to check that
a subset I is an ideal in a ring R it is sufficient to check that I is a subgroup of the
additive group R, and that it is stable.

Example 19.9. The set mZ is an ideal of Z. Indeed, if ma ∈ mZ and n ∈ Z the
n(ma) = (ma)n = m(na) ∈ mZ.

Example 19.10. The set xR[x] is an ideal of R[x].

Example 19.11. The subring S of M2(R) from Exercise 19.5 is not an ideal; for
example, we have

(
1 1
0 1

) (
1 1
1 1

)

=

(
2 2
1 1

)

6∈ S.

Example 19.12. {0} and R are ideals of R.

Theorem 19.13. A field F has no proper ideals.

Proof. Let I be an ideal of F , and assume that I 6= {0}. Choose a ∈ I \ {0}.
Let b ∈ F be arbitrary. Then we have

b = b1 = baa−1 = a(ba−1) ∈ I.

This proves that I = F . �

Ideals play for rings the role that normal subgroups play for groups.

Theorem 19.14. Let R be a ring, and let I be an ideal of R. The set

R/I = {a + I : a ∈ R}

of all additive cosets of I forms a ring under the following natural operations:

(a + I) + (b + I) = (a + b) + I, (a + I)(b + I) = (ab) + I.

Proof. By Theorem 14.1 it follows that the above addition is well defined, and
that it turns R/I into an abelian group.

Next we have to show that multiplication is well defined as well. To this end
assume that a + I = a1 + I and b + I = b1 + I. In particular, we have a = a1 + i
and b = b1 + j for some i, j ∈ I. But then we have

(a + I)(b + I) = ab + I = (a1 + i)(b1 + j) + I = (a1b1 + a1j + ib1 + ij) + I

= a1b1 + ((a1j + ib1 + ij) + I) = a1b1 + I,

because a1j, ib1, ij ∈ I.
Proving associativity and distributivity is now easy, and is left for exercise. �

20. Homomorphisms, isomorphisms and the first

isomorphism theorem for rings

Definition 20.1. Let R and S be two rings. A mapping f : R −→ S is a
(ring) homomorphism if for all x, y ∈ R we have f(x + y) = f(x) + f(y) and
f(xy) = f(x)f(y).

Example 20.2. The mapping f : Z −→ Zn defined by f(x) = x (mod n) is a
homomorphism.
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Example 20.3. The mapping f : Z −→ Z defined by f(x) = 2x is not a homo-
morphism. Indeed, although f(x + y) = 2(x + y) = 2x + 2y = f(x) + f(y), we have
f(xy) = 2xy 6= 4xy = f(x)f(y).

Example 20.4. For any two rings R and S the mapping f : R −→ S defined by
f(x) = 0 (the zero of S) is a homomorphism.

Definition 20.5. Let f : R −→ S be a homomorphism of rings. The kernel and
image of f are the sets:

ker (f) = {x ∈ R : f(x) = 0},

im (f) = {f(x) : x ∈ R}.

Next we prove that kernels of homomorphisms are precisely the ideals. (The
corresponding results for groups are Theorems 13.8 and 14.4.)

Theorem 20.6. (I) If f : R −→ S is a homomorphism of rings then its kernel is
an ideal of R.

(II) If I is an ideal of a ring R then the mapping f : R −→ R/I defined by
f(x) = x + I, is a homomorphism with kernel I.

Proof. (I) That ker (f) is a subgroup of the additive group R follows from the
corresponding theorem for groups (Theorem 11.12 (i)). For stability, let x ∈ R and
y ∈ ker (f). Now f(y) = 0 implies f(xy) = f(x)f(y) = f(x)0 = 0, and similarly
f(yx) = 0. Therefore ker (f) is indeed an ideal.

(II) That f is a homomorphism follows from

f(x + y) = (x + y) + I = (x + I) + (y + I) = f(x) + f(y),

f(xy) = (xy) + I = (x + I)(y + I) = f(x)f(y).

Also,

x ∈ ker(f) ⇔ x + I = 0 + I ⇔ x ∈ I,

and so ker (f) = I. �

Exercise 20.7. Prove that if f : R −→ S is a ring homomorphism then im (f) is
a subring of S.

Definition 20.8. A bijective homomorphism of rings is called an isomorphism.
Two rings R and S are isomorphic (R ∼= S) if there is an isomorphism f : R −→ S.

Theorem 20.9. If f : R −→ S is a homomorphism of groups then

R/ker (f) ∼= im (f).

Proof. Denote ker (f) by I and im (f) by K. Let φ : R/I −→ K be defined by
φ(a+ I) = f(a). That this mapping is well defined, that it is bijective and that it is
a homomorphism of additive groups follows from the First Isomorphism Theorem
for groups. We also have

φ((a + I)(b + I)) = φ(ab + I) = f(ab) = f(a)f(b) = φ(a + I)φ(b + I),

and hence φ is a ring isomorphism. �
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21. Conclusion

In this course we have learnt that modern algebra is a study of sets with operations
defined on them. As the main example we have started a systematic study of groups.
Group theory is one of the most important areas of contemporary mathematics, with
applications ranging from physics and chemistry to coding and cryptography. It is
also one of the research interests in this school. Further study of groups can be
undertaken in the appropriate honours modules.

As our second example, we have given a brief introduction to rings and fields.
We have seen that there are some important properties which are very similar to
groups. Further courses on rings are also available at the honours level.

Today, groups, rings and fields, along with vector spaces, are regarded as classical
algebraic disciplines. There is also a wide variety of newer structures: semigroups,
lattices, boolean algebras, etc.
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