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CHAPTER 11

SUMS OVER FINITE FIELDS

11.1. Introduction.

In this chapter we consider a special type of exponential and character sums,
called sometimes “complete sums”, which can be seen as sums over the elements of
a finite field. Although the methods of Chapter 8 can still be applied to the study
of such sums, disregarding this special feature, the deepest understanding and the
strongest results are obtained when the finite field aspect is taken into account and
the powerful techniques of algebraic geometry are brought to bear.

We have already encountered in the previous chapters some examples of expo-
nential sums which can be interpreted as sums over finite fields, for example, the
quadratic Gauss sums

Ga(p) =
∑

x mod p

(x
p

)
e
(ax
p

)
or the Kloosterman sums (1.56)

S(a, b; p) =
∑?

x mod p

e
(ax+ bx̄

p

)
.

In this chapter we will study these sums in particular. The culminating point of
our presentation is the elementary method of Stepanov which we apply for proving
Weil’s bound for Kloosterman sums

|S(a, b; p)| 6 2
√
p

and Hasse’s bound for the number of points of an elliptic curve over a finite field.
Then we survey briefly, without proofs, the powerful formalism of `-adic cohomology
developed by Grothendieck, Deligne, Katz, Laumon and others, hoping to convey
a flavor of the tools involved and to give the reader enough knowledge to make
at least a preliminary analysis of any exponential sum he or she may encounter in
analytic number theory.

11.2. Finite fields.

We first recall briefly some facts about finite fields, and establish the notations
used in this chapter. For every prime p, the finite ring Z/pZ of residue classes
modulo p is a field, which we denote Fp. The Galois theory of Fp is very easy to
describe: for any n > 1, there exists a unique (up to isomorphism) field extension
of Fp of degree n, written Fpn . Conversely, any finite field F with q elements is
isomorphic (but not canonically) to a unique field Fpd , so q = pd, and F admits also
a unique finite extension of degree n for any n > 1, namely Fpdn .

Let now F = Fq be a finite field with q = pd elements. In most of the chapter,

p is fixed and we change notation slightly, denoting by F an algebraic closure of F
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270 11. SUMS OVER FINITE FIELDS

and by Fn ⊂ F the unique extension of degree n of F for n > 1. The context will
always indicate clearly that the cardinality of Fn is qn and not n.

The extension Fn/F is a Galois extension, with Galois group Gn canonically
isomorphic to Z/nZ, the isomorphism being the map Z/nZ→ Gn defined by 1 7→ σ,
where σ is the Frobenius automorphism of Fn given by σ(x) = xq.

Let F̄ be a given algebraic closure of F, so by the above,

F̄ =
⋃
n>1

Fn.

By Galois theory, for any x ∈ F̄, we have x ∈ F ⇐⇒ σ(x) = x if and only if
xq = x and more generally

(11.1) x ∈ Fn ⇐⇒ σn(x) = x⇐⇒ xq
n

= x.

From this we can deduce that Fn is the splitting field of the polynomial Xqn −X ∈
F[X]. More precisely, one can state the following result of Gauss:

Lemma 11.1. For any integer n > 1, we have

(11.2)
∏
d|n

∏
deg(P )=d

P = Xqn −X

where the product ranges over all irreducible monic polynomials P of degree d di-
viding n.

Proof. This is an immediate consequence of the description of finite fields:
the roots of the polynomial on the right side (in an algebraic closure) are exactly the
elements x ∈ Fn with multiplicity one and, conversely, every such x has a minimal
polynomial which must occur, exactly once, among the polynomials P on the left
side. �

Associated to the extension Fn/F are the trace map and the norm map. Because
of the above description of the Galois group of Fn/F, the trace map Tr = Tr Fn/F :
Fn → F is given by

(11.3) Tr (x) =
∑

06i6n−1

σi(x) =
∑

06i6n−1

xq
i

while the norm map N = NFn/F : F∗n → F∗ is similarly

(11.4) N(x) =
∏

06i6n−1

σi(x) =
∏

06i6n−1

xq
i

= x
qn−1
q−1 .

The equations Tr (x) = y and N(x) = y, for a fixed y ∈ F are very important.
Because the extension Fn/F is separable, the equation Tr (x) = y always has a
solution. If x0 is a given solution, then all solutions are in one-to-one correspondence
with solutions of Tr (a) = 0, by x = x0 + a. Moreover, any solution of Tr (a) = 0
is of the form a = σ(b) − b = bq − b for some b ∈ Fn, unique up to addition of an
element in F.

Similarly, for any y ∈ F∗, the equation N(x) = y has a solution, and if x0 is a
given solution, the set of solutions is in one-to-one correspondence with solutions
of N(a) = 1, which by Hilbert’s Theorem 90 (or by direct proof) are all given by
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a = σ(b)b−1 = bq−1 for some b ∈ F∗n, unique up to multiplication by an element in
F∗.

As the additive group of F is finite, the general theory of characters of a finite
abelian group (see Chapter 3) can be applied. Characters of F are called additive
characters, and they are all of the form x 7→ ψ(ax) for some a ∈ F, where ψ is some
fixed non-trivial additive character. For instance, let Tr : F→ Z/pZ be the trace
map to the base-field, then

(11.5) ψ(x) = e(Tr (x)/p)

is a non-trivial additive character of F. For a given additive character ψ and a ∈ F,
we denote by ψa the character x 7→ ψ(ax).

Applying the general theory of characters of finite abelian groups, we get the
orthogonality relations ∑

ψ

ψ(x) =

{
q if x = 1,

0 otherwise

(which is used to “solve” the equation x = 0 in F) and∑
x∈F

ψ(x) =

{
q if ψ = 1 is the trivial character,

0 otherwise.

The description of characters of the multiplicative group F∗ (also called multi-
plicative characters of F) is not so explicit. The group structure of F∗ is well-known
(dating back to Gauss): it is a cyclic group of order q − 1. Generators of F∗ are
called primitive roots, and there are ϕ(q − 1) of them, but no useful formula for a
primitive root exists. Fixing one, say z ∈ F∗, one has an isomorphism

log :

{ F∗ ' Z/(q − 1)Z
x 7→ n such that zn = x

and all multiplicative characters of F are expressed as

χ(x) = e
(a log(x)

q − 1

)
for some a ∈ Z/(q − 1)Z, but such a description is usually of no use in analytic
number theory.

As examples of multiplicative characters, suppose F = Z/pZ and p 6= 2. Then
the Legendre symbol

x 7→
(x
p

)
is a non-trivial quadratic character. In general, if δ | (q− 1), there is a cyclic group
of order δ consisting of characters χ of F∗ of order δ.

The orthogonality relations become∑
χ

χ(x) =

{
q − 1 if x = 1,

0 otherwise,
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(the sum over all multiplicative characters), and∑
x∈F∗

χ(x) =

{
q − 1 if χ = 1 is the trivial character,

0 otherwise.

It is usual to extend multiplicative characters to F by defining χ(0) = 0 if χ 6= 1,
and χ(0) = 1 if χ = 1. Notice then that for any δ | q − 1 the formula

(11.6)
∑
χδ=1

χ(x) = |{y ∈ F | yδ = x}|

(also a particular case of the orthogonality relations for the group F∗/(F∗)d, as
described in Chapter 3) is true for all x ∈ F.

11.3. Exponential sums.

Let F = Fq be a finite field with q = pm elements, p a prime. Exponential
sums over F can be of various kinds. For the simplest case, consider a polynomial
P ∈ F[X] and an additive character ψ, and define the sum

S(P ) =
∑
x∈F

ψ(P (x)).

Slightly more generally, take a non-zero rational function f = P/Q ∈ F(X) and
consider

S(f) =
∑
x∈F

Q(x)6=0

ψ(f(x));

for instance, taking q = p and f(x) = ax + bx−1, we have S(f) = S(a, b; p).
Multiplicative characters can also be used, getting sums of the type

Sχ(f) =
∑?

x∈F
χ(f(x))

(where the star in
∑?

means here and henceforth that the summation extends
to all x which are not poles of f). For q = p, χ =

( ·
p

)
(the Legendre symbol)

and f(x) ∈ Z[X] a cubic polynomial without multiple roots modulo p, we see that
−Sχ(f) is the p-th coefficient ap of the Hasse-Weil zeta function of the elliptic curve
with equation y2 = f(x) (see Section 14.4).

Still more generally, one can mix additive and multiplicative characters, and
define sums such as

(11.7) Sχ(f, g) =
∑?

x∈F
χ(f(x))ψ(g(x)),

an example of which is the Salié sum T (a, b; p) defined by

T (a, b; p) =
∑?

x mod p

(x
p

)
e
(ax+ bx̄

p

)
which occurs in the Fourier expansion of half-integral weight modular forms; see [I6]
for instance. In contrast with the seemingly simpler Kloosterman sums S(a, b; p),
the Salié sums T (a, b; p) can be explicitly computed (see Lemma 12.4, and Corollary
21.9 for the uniform distribution of the “angles” of the Salié sums).
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To end this list, we mention that all these definitions can again be generalized to
sums in more than one variable, and that the summation variables can be restricted
to the rational points of an algebraic variety defined over F: some examples will
appear in the survey sections of this chapter.

The exponential sums which directly arise in analytic number theory are sums
over the prime field Z/pZ. However, the deeper understanding naturally requires
considering sums over the extension fields Fpn . Indeed, the very reason for the
success of algebraic methods lies in the fact that an exponential sum over Fp doesn’t
really come alone, but has natural “companions” over all the extension fields Fpn ,
and it is really the whole family which is investigated and which is the natural
object of study. Those companion sums are easily defined: take the most general
sum S = Sχ(f, g) we have introduced, then for n > 1 let

(11.8) Sn =
∑?

x∈Fn

χ(NFn/F(f(x)))ψ(Tr Fn/F(g(x)))

where we use the multiplicative character χ◦N and the additive character ψ◦Tr of
Fn. All the sums Sn are incorporated into a single object, the zeta function of the
exponential sum, which is the formal power series Z = Zχ(f, g) ∈ C[[T ]] defined by
the formula

Z = exp
(∑
n>1

Sn
n
Tn
)
.

Justification for the introduction of the zeta function comes from the following
rationality theorem, conjectured by Weil, and proved by Dwork.

Theorem 11.2 (Dwork). The zeta function Z is the power series expansion
of a rational function; more precisely, there exist coprime polynomials P and Q in
C[T ], with P (0) = Q(0) = 1, such that Z = P

Q .

As a corollary, denote by (αi) (resp. (βj)) the inverse of the roots (with mul-
tiplicity) of P (resp. Q), so

P =
∏
i

(1− αiT ), Q =
∏
j

(1− βjT ).

Then using the power-series expansion

log
1

1− T
=
∑
n>1

Tn

n

we find that the formula Z = P/Q is equivalent to the formula

Sn =
∑
j

βnj −
∑
i

αni

for any n > 1, which shows how the various sums Sn are related. In particular,
note that they satisfy a linear recurrence relation of order d equal to the number
degP + degQ of roots αi, βj .
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Corollary 11.3. We have for any n > 1 the upper bound

|Sn| 6
∑
j

|βj |n +
∑
i

|αi|n.

In particular,

(11.9) |S| 6
∑
j

|βj |+
∑
i

|αi|.

A common abuse of language is to speak of the αi and βj as the roots of the
exponential sum S. We will describe in Section 11.11 a number of general facts
about these roots. In the intervening sections, we will prove Dwork’s Theorem and
estimate the modulus of the roots in the important special cases of Gauss sums,
Kloosterman sums and for the local zeta function of elliptic curves.

Remarks. We have called the sums Sn, n > 1, “companions” of the original
exponential sum S. However, one can consider other companions of S as well. If S
involves an additive character, it can also be very useful sometimes to consider S as
just one element of the family of sums obtained by varying the additive character,
specifically if

S =
∑?

x∈F
χ(f(x))ψ(g(x)),

we also introduce for a ∈ F,

Sa =
∑?

x∈F
χ(f(x))ψa(g(x)) =

∑?

x∈F
χ(f(x))ψ(ag(x)).

Estimates on average over a for the first few power moments of Sa are often easily
derived by elementary means, and they can be of great use in estimating S, even
in addition to the methods of algebraic geometry. See the proof of Weil’s bound
for Kloosterman sums in Section 11.7 and the examples in Section 11.11. More
general types of families have been (and still are) extensively studied by Katz; see
for instance [K1].

11.4. The Hasse-Davenport relation.

We consider general Gauss sums over a finite field. Let F = Fq be a finite field
with q = pm elements, and let ψ be an additive character and χ a multiplicative
character of F. The Gauss sum G(χ, ψ) is

(11.10) G(χ, ψ) =
∑
x∈F

χ(x)ψ(x).

(recall that χ is extended to F by χ(0) = 1, 0 according to whether χ is trivial or
not). When χ is the Legendre symbol, one recovers quadratic Gauss sums.

The associated sums over the extensions fields are

Gn(χ, ψ) =
∑
x∈Fn

χ(NFn/F(x))ψ(Tr Fn/F(x))

and the zeta function is

(11.11) Z(χ, ψ) = exp
(∑
n>1

Gn(χ, ψ)

n
Tn
)
.
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In this case, Dwork’s Theorem was proved by Hasse and Davenport and is
known as the Hasse-Davenport Relation.

Theorem 11.4 (Hasse-Davenport). Assume χ and ψ are non-trivial. Then
we have for any n > 1,

−Gn(χ, ψ) = (−G(χ, ψ))n

or equivalently the zeta function is a linear polynomial

Z(χ, ψ) = 1 +G(χ, ψ)T.

Hence the only “root” for the Gauss sum is G(χ, ψ) itself. This can be estimated
elementarily, as was done for the Gauss sums considered in Chapter 3.

Proposition 11.5. We have

|G(χ, ψ)| = √q

if neither χ nor ψ is trivial, while

|G(1, ψ)| =
{

0 if ψ non-trivial,

q if ψ = 1

|G(χ, 1)| =
{

0 if χ non-trivial,

q if χ = 1.

Proof. The last two statements are immediate, so assume neither χ nor ψ is
trivial. We have

|G(χ, ψ)|2 =
∑

x,y∈F∗

χ(x)χ̄(y)ψ(x)ψ(−y)

=
∑
z∈F

χ(z)
∑
y∈F∗

ψ((z − 1)y) (on writing z = xy−1)

= q (by orthogonality, applied twice.)

�

We now turn to the proof of the Hasse-Davenport Relation. We consider the
field F = F(X) of rational functions on F and the ring R = F[X] of polynomials.
Recall that R is a principal ideal domain. For h ∈ R of degree d > 0, we define the
norm

N(h) = qd.

The zeta function of F is the Dirichlet series (analogous to the Riemann zeta
function)

ζF (s) =
∑
h∈R

h monic

N(h)−s.

Remark. This could also be written as a sum over the non-zero ideals a in R,

ζF (s) =
∑
a

N(a)−s

where N(a) = |R/a| = N(h) for any polynomial h such that a = (h). But we will
work with polynomials to emphasize the elementary spirit here.
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The Dirichlet series ζF (s) converges absolutely for Re (s) > 1. Indeed, putting

n(d) = {h ∈ R | deg(h) = d, h is monic} = qd

we obtain immediately

ζF (s) =
∑
d>0

n(d)q−ds =
∑
d>0

q(1−s)d = (1− q1−s)−1.

On the other hand, unique factorization into irreducible polynomials yields an
expression of ζF as an Euler product

ζF (s) =
∏
P∈R

P monic irreducible

(1−N(P )−s)−1

which is convergent for Re (s) > 1.
The first step in the proof of the Hasse-Davenport Relation consists of writing

the zeta function of Gauss sums as an L-function for the field F . Let H ⊂ F ∗ be
the subgroup of rational functions which are quotients of monic polynomials, and
G ⊂ H a subgroup with the property

h1h2 ∈ G⇒ h1, h2 ∈ G.

Then if α : G→ C∗ is a character of the group G, it can be extended to a totally
multiplicative function of the set of monic polynomials h ∈ R by putting α(h) = 0
if h 6∈ G. The corresponding L-function is defined analogously to the classical
L-functions by the Dirichlet series

L(s, α) =
∑
h∈R

h monic

α(h)N(h)−s =
∏
P

(1− α(P )N(P )−s)−1

for Re (s) > 1.
For dealing with Gauss sums we consider the subgroup G ⊂ H of rational

functions f defined and non-vanishing at 0. Define a character λ on G by

λ(h) = χ(ad)ψ(a1)

for h = Xd − a1X
d−1 + · · · + (−1)dad ∈ R. Clearly λ is multiplicative on monic

polynomials, and extends to a character of G. In this case we get the following:

Lemma 11.6. We have L(s, λ) = 1 +G(χ, ψ)q−s.

Proof. We arrange the Dirichlet series for L(s, λ) according to the degree of
h:

L(s, λ) =
∑
d>0

( ∑
deg(h)=d

λ(h)
)
q−ds

and evaluate each term in turn. For d = 0, the only monic polynomial occurring is
h = 1, and λ(1) = 1. For d = 1, we have h = X − a so that∑

deg(h)=1

λ(h) =
∑
a∈F

λ(X − a) =
∑
a∈F

χ(a)ψ(a) = G(χ, ψ).
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For any d > 2 we have∑
deg(h)=d

λ(h) =
∑

a1,... ,ad∈F
λ(Xd − a1X

d−1 + · · ·+ (−1)dad)

= qd−2
∑

a1,ad∈F
χ(ad)ψ(a1) = 0

by orthogonality, because at least one of the characters χ, ψ is non-trivial. �

On the other hand, appealing to the Euler product we will prove:

Lemma 11.7. We have L(s, λ) = Z(q−s), where Z = Z(χ, ψ) is the zeta func-
tion (11.11) associated with Gauss sums.

Theorem 11.4 follows from Lemmas 11.6 and 11.7.

Proof of Lemma 11.7. Taking the logarithmic derivative of the Euler prod-
uct, we get

− 1

log q

L′(s, λ)

L(s, λ)
=
∑
P

deg(P )
∑
r>1

λ(P )rq−rds

=
∑
n>1

(∑
rd=n

d
∑
P

deg(P )=d

dλ(P )r
)
q−ns

while, on the other hand,

− 1

log q

Z ′(q−s)

Z(q−s)
=
∑
n>1

Gn(χ, ψ)q−ns.

It therefore suffices to prove the formula

(11.12)
∑
P

d=deg(P )|n

dλ(P )n/d = Gn(χ, ψ)

for n > 1, the equality of the logarithmic derivatives being sufficient to imply
Lemma 11.7 since both sides are Dirichlet series with leading coefficient 1.

To prove (11.12), let P be one of the irreducible polynomials appearing on the
left side, of degree d | n. Its roots, say x1,..., xd, are in Fn. Fix one root x = xj
and write

P = Xd − a1X
d−1 + · · ·+ (−1)dad.

We get

N(x) = (NFd/F(x))n/d = a
n/d
d ,

Tr (x) =
n

d
Tr Fd/F(x) =

n

d
a1

hence

λ(P )n/d = (χ(ad)ψ(a1))n/d = χ(a
n/d
d )ψ

(n
d
a1

)
= χ(N(x))ψ(Tr (x)).
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Summing over all roots of P we derive

dλ(P )n/d =

d∑
i=1

χ(N(xi))ψ(Tr (xi)),

and summing over all P with deg(P ) | n, we get (11.12) by Lemma 11.1 since every
element in Fn will appear exactly once as one of the roots xi for some P . �

11.5. The zeta function for Kloosterman sums.

Next we consider Kloosterman sums. Let F be a finite field with q = pm

elements and this time consider additive characters ψ and ϕ. We define the Kloost-
erman sum associated to ψ and ϕ by

(11.13) S(ψ,ϕ) = −
∑
x∈F∗

ψ(x)ϕ(x−1),

(the minus factor is only for cosmetic reasons). When q = p is prime, and ψ(x) =
e(ax/p), ϕ(x) = e(bx/p), we have therefore S(ψ,ϕ) = −S(a, b; p).

The companion sums over the extension fields Fn are

Sn(ψ,ϕ) = −
∑
x∈F∗

n

ψ(Tr (x))ϕ(Tr (x−1))

and the Kloosterman zeta function is

Z = Z(ψ,ϕ) = exp
(∑
n>1

Sn(ψ,ϕ)

n
Tn
)
.

We will prove Dwork’s Theorem in this case, which is due to Carlitz.

Theorem 11.8. Assume that ψ and ϕ are both non-trivial. Then

Z(ψ,ϕ) =
1

1− S(ψ,ϕ)T + qT 2
.

The proof is very similar to that of Theorem 11.4. We put R = F[X], F = F(X)
as before, and consider the same group G ⊂ F ∗ of quotients of monic polynomials
defined and non-vanishing at 0. We define a character η : G→ C∗ by putting

η(h) = ψ(a1)ϕ(ad−1/ad)

for a monic polynomial h ∈ G, where we write (compare the previous section)

h = Xd + a1X
d−1 + · · ·+ ad−1X + ad

(with ad 6= 0 since h ∈ G). The following computation verifies that η is indeed a
character of G: let h′ = Xe + b1X

e−1 + · · ·+ be−1X + be with be 6= 0, then

hh′ = Xd+e + (a1 + b1)Xd+e−1 + · · ·+ (ad−1be + adbe−1)X + adbe

and

η(hh′) = ψ(a1 + b1)ϕ
(ad−1be + adbe−1

adbe

)
= ψ(a1)ϕ(ad−1/ad)ψ(b1)ϕ(be−1/be)

= η(h)η(h′).
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Recall that we extend η to all h ∈ R by putting η(h) = 0 for h 6∈ G.

Lemma 11.9. For ψ and ψ non-trivial, the L-function associated to η is given
by

L(s, η) =
∑
h

η(h)N(h)−s = 1− S(ψ,ϕ)q−s + q1−2s.

Proof. By arranging terms according to the degree of h, we write

L(s, η) =
∑
d>0

( ∑
deg(h)=d

η(h)
)
q−ds

and evaluate the inner sums. For d = 0, we have only h = 1 and η(1) = 1. For
d = 1, we have h = X + a with a 6= 0, hence∑

deg(h)=1

η(h) =
∑
a∈F∗

η(X + a) =
∑
a∈F∗

ψ(a)ϕ(a−1) = −S(ψ,ϕ).

For d = 2, we get∑
deg(h)=2

η(h) =
∑
a∈F
b∈F∗

η(X2 + aX + b) =
∑
a∈F
b∈F∗

ψ(a)ϕ(ab−1)

= q − 1 +
(∑
a∈F∗

ψ(a)
)(∑

b∈F∗

ϕ(b)
)

= q

by applying twice the orthogonality of characters, since neither ψ nor ϕ is trivial.
Finally, for d > 3, we get∑

deg(h)=d

η(h) =
∑
a∈F∗

∑
a1,... ,ad−1∈F

η(Xd + a1X
d−1 + · · ·+ ad−1X + a)

= qd−3
∑

a1,ad−1∈F
a∈F∗

ψ(a1)ϕ(ad−1a
−1) = 0

since there is free summation over a1 ∈ F. �

Lemma 11.10. For ψ and ϕ non-trivial, we have the identity

Z(ψ,ϕ)(q−s) = L(s, η)−1 =
1

1− S(ψ,ϕ)q−s + q1−2s
.

This lemma completes the proof of Theorem 11.8.

Proof. The L-function has an Euler product

L(s, η) =
∏
P

(1− η(P )N(P )−s)−1.

Taking the logarithmic derivative we get

− 1

log q

L′(s, η)

L(s, η)
=
∑
P

deg(P )
∑
r>1

η(P )rq−r deg(P )s

=
∑
n>1

(∑
rd=n

d
∑

deg(P )=r

η(P )r
)
q−ns
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and as before it suffices to prove the formula

(11.14)
∑

d=deg(P )|n

dη(P )n/d = −Sn(ψ,ϕ)

for n > 1. Let

P = Xd + a1X
d−1 + · · ·+ ad−1X + ad

be one of the irreducible polynomials on the left side of (11.14), of degree d | n, and
x1,..., xd its roots, which lie in Fd. We have for each i,

Tr (xi) =
n

d
Tr Fd/F(xi) = −n

d
a1

(since a−1
d XdP (X−1) = Xd + ad−1

ad
Xd−1 + · · ·+ a−1

d ) and

Tr (x−1
i ) =

n

d
Tr Fd/F(x−1

i ) = −n
d

ad−1

ad
.

Hence

η(P )n/d = ψ
(n
d
a1

)
ϕ
(n
d

ad−1

ad

)
= ψ(−xi)ϕ(−x−1

i )

and summing over the roots xi, then over the polynomials P of degree d | n, we
obtain (11.14) by Gauss’s Lemma again. �

Theorem 11.8 allows us to factor the Kloosterman zeta function

Z(ψ,ϕ) = (1− S(ψ,ϕ)T + qT 2)−1 = (1− αT )−1(1− βT )−1

where α and β are complex numbers, and of course α + β = S(ψ,ϕ), αβ = q. In
sharp contrast to the case of Gauss sums, however, the roots α and β cannot be
explicitly computed.

Theorem 11.11 (Weil). Assume that ψ and ϕ are non-trivial and p 6= 2.
Then the roots α and β for the Kloosterman sum S(ψ,ϕ) satisfy |α| = |β| =

√
q,

and therefore we have

(11.15) |S(ψ,ϕ)| 6 2
√
q.

We will prove Theorem 11.11 in the next two sections.

Corollary 11.12. Let a, b, c be integers, c positive. We have

(11.16) |S(a, b; c)| 6 τ(c)(a, b, c)1/2c1/2.

Proof. By the twisted multiplicativity (1.59) for Kloosterman sums, it suffices
to consider c = pν with p prime and ν > 1. If p | ab, we have Ramanujan sums
for which the result is easy (see (3.2), (3.3)). Otherwise, the case ν = 1 follows
from Theorem 11.11 for p > 3, and for p = 2 one checks immediately that the
Kloosterman sums modulo 2 satisfy Theorem 11.11: we have S(1, 1; 2) = 1, and

the associated zeta function is therefore Z(T ) = 1+T+2T 2, with roots (−1±i
√

7)/4

of modulus 1/
√

2.
The case p - ab and β > 2 can be dealt with elementarily; see Exercise 1 of

Chapter 12. �
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Exercise 1. Consider a general Kloosterman-Salié sum

S(χ;ψ,ϕ) = −
∑
x∈F

χ(x)ψ(x)ϕ(x−1)

and its associated companions Sn and zeta function Z, where ψ and ϕ are additive
characters of F and χ is multiplicative (so χ = 1 is the case of Kloosterman sums).
Show that

Z = (1− S(χ;ψ,ϕ)q−s + χ̄(−a)χ(b)q1−2s)−1

where

ψ(x) = e
(Tr (ax)

p

)
, ϕ(x) = e

(Tr (bx)

p

)
.

11.6. Stepanov’s method for hyperelliptic curves.

We will prove Theorem 11.11 by deducing it from the Riemann Hypothesis for
certain algebraic curves over finite fields. However, we use Stepanov’s elementary
method (see [Ste], [Sch], [Bo3]) instead of Weil’s arguments.

Let F be a finite field with q element, of characteristic p. We will only consider
algebraic curves Cf over F given by equations of the type

(11.17) Cf : y2 = f(x)

for some polynomial f ∈ F[X] of degree m > 3. We assume moreover the following
condition

(11.18) The polynomial Y 2 − f(X) ∈ F[X,Y ] is absolutely irreducible

(i.e. it is irreducible over the algebraic closure of F). This is a minimal regularity
assumption on the curve Cf . It is easily seen to be equivalent to the condition that
f is not a square in F̄[X], and we will use it in this form.

Remark. Stepanov’s method has been refined by Schmidt [Sch] and Bombieri
[Bo3] and is capable of handling the general case of the Riemann Hypothesis for
curves; the case of curves with equation of the type yd = f(x) is not much harder
than the one treated here. We limit ourselves to the curves Cf for simplicity, and
because it suffices for the application to Kloosterman sums and elliptic curves.
Note that curves of the type y2 = f(x) are instances of so-called hyperelliptic
curves, which are quite naturally distinguished among algebraic curves (but not all
hyperelliptic curves are of this form; see for instance elliptic curves in characteristics
2 and 3).

The problem we consider is that of estimating the number |Cf (F)| of F-rational
points of Cf , i.e., the number N of solutions (x, y) ∈ F2 to the equation y2 = f(x).
We are especially interested in this question when q is large (typically, as with
exponential sums, the polynomial f ∈ F[X] is fixed, and we consider the Fn-rational
points for all n > 1), although we will obtain completely explicit inequalities.

Theorem 11.13. Assume that f ∈ F[X] satisfies (11.18), and m = deg(f) >
3. If q > 4m2, then N = |Cf (F)| satisfies

|N − q| < 8m
√
q.
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Clearly we can assume that p > 2, as otherwise the map y 7→ y2 is an auto-
morphism of F and N = q.

Stepanov’s idea, which was inspired by results of Thue [Thu] in diophantine
approximation, is to construct an auxiliary polynomial of degree r, say, having zeros
of high multiplicity (at least `, say) at the x-coordinates of points of Cf (F). Hence
one gets easily the inequality

N 6 2r`−1,

the factor two being the highest possible multiplicity of a given x-coordinate among
points in Cf (F). This inequality turns out to be so strong that it gives the upper-
bound of the theorem (certainly a surprising fact!). A trick then deduces the
lower-bound from this.

We first distinguish among the points (x, y) these with y = 0. Let N0 be the
number of distinct zeros of f in F, which is also the number of points (x, 0) ∈ Cf (F).
If (x, y) is a point of Cf with y 6= 0, it follows that f(x) is a square in F, which is
true if and only if g(x) = 1 where

g = f c with c = 1
2 (q − 1).

Conversely, given x ∈ F with g(x) = 1, there are exactly two elements y ∈ F∗
with y2 = f(x). Hence, writing

(11.19) N1 = |{x ∈ F | g(x) = 1}|

it follows that

(11.20) N = N0 + 2N1.

We will estimate N1 by following the strategy sketched above, but in order to handle
the lower bound later, we generalize slightly and consider for any a ∈ F the set

(11.21) Sa = {x ∈ F | f(x) = 0 or g(x) = a}.

To produce polynomials vanishing to a large order, we wish to use derivatives
to characterize when this occurs. In characteristic 0, a polynomial P has a zero of
order ` at x0 if and only if all the derivatives P (i) with 0 6 i < ` vanish at x0. In
characteristic p > 0, however, this is no longer true if ` > p, as the example of the
polynomial P = Xp shows, since P (k) = 0 for all k > 1, in particular, P (p)(0) = 0.
A satisfactory solution follows by considering other differential operators.

Definition. Let K be any field. For any k > 0, the k-th Hasse derivative is
the linear operator Ek : K[X]→ K[X] defined by

EkXn =

(
n

k

)
Xn−k

for all n > 0, and extended to K[X] by linearity. We also write E = E1 (but
beware that Ek 6= E ◦ E ◦ · · · ◦ E).

Remark. From the binomial expansion

Xn = (X − a+ a)n =

n∑
k=0

(
n

k

)
an−k(X − a)k,

and by linearity, we see that the value of EkP at a point a ∈ K, for P ∈ K[X],
is simply the coefficient of (X − a)k in the Taylor expansion of P around a. This
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explains the properties of the Hasse derivatives, but we cannot take this as a defi-
nition, because the values of a polynomial over a finite field do not characterize the
polynomial.

Note that for K of characteristic p > 0, we get EXp = E2Xp = · · · =
Ep−1Xp = 0, but EpXp = 1 6= 0 and we see that the Hasse derivatives detect
the zero of Xp of order exactly p at 0. This is a general fact, as Lemma 11.16 will
show.

Lemma 11.14. The Hasse derivatives satisfy

Ek(fg) =

k∑
j=0

(Ejf)(Ek−jg)

for all f , g ∈ K[X], and more generally,

(11.22) Ek(f1 · · · fr) =
∑

j1+···+jr=k

(Ej1f1) · · · (Ejrfr)

for f1, ..., fr ∈ K[X].

Proof. It suffices to consider f = Xm, g = Xn, and the first formula follows
from the identity (

n+m

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)
which is obvious from the combinatorial interpretation of the binomial coefficients.
Then the second formula follows by induction. �

Corollary 11.15. (1) For all k, r > 0, and all a ∈ K, we have

Ek(X − a)r =

(
r

k

)
(X − a)r−k.

(2) For all k, r > 0 with k 6 r, and all f , g ∈ K[X], we have

Ek(fgr) = hgr−k

for some polynomial h such that

deg(h) 6 deg(f) + k deg(g)− k.

Proof. For (1), we apply (11.22) to f1 = · · · = fr = X − a, getting

Ek(X − a)r =
∑

j1+···+jr=k

Ej1(X − a) · · ·Ejr (X − a)

and only terms with all ji ∈ {0, 1}, 1 6 i 6 r, give non-zero contributions since
Ej(X − a) = 0 for j > 2, from the definition. Hence (1) follows.

For (2), we observe that if k 6 r, we have ji = 0 for at least r − k indices
in (11.22), which gives (2). �

Lemma 11.16. Let f ∈ K[X] and a ∈ K. Suppose that (Ekf)(a) = 0 for all
k < `. Then f has a zero of order > ` at a, i.e., is divisible by (X − a)`.
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Proof. Let
f =

∑
06i6d

αi(X − a)i

be the Taylor expansion of f around a. By (1) of Corollary 11.15, we obtain

Ekf =
∑
k6i6d

αi

(
i

k

)
(X − a)i−k

and evaluating at a we get αk = 0 for all k < `, hence f is divisible by (X − a)` as
claimed. �

We need another technical lemma.

Lemma 11.17. Let K = F be a finite field of characteristic p with q elements,
and let r = h(X,Xq) ∈ F[X], where h ∈ F[X,Y ]. Then

Ekr = (EkXh)(X,Xq)

for all k < q, where on the right side EkXh denotes the Hasse derivative of h
performed with respect to X.

Proof. It suffices to consider h = XnY m, so we must prove that EkXn+mq =
(EkXn)Xmq. From Lemma 11.14, we get

EkXn+mq =

k∑
j=0

Ek−jXnEjXmq

so it suffices to show that EjXmq = 0 for 0 < j < q to prove the lemma. But(
mq

j

)
=
mq

j

(
mq − 1

j − 1

)
= 0

in characteristic p, and the result follows. �

We come to the heart of Stepanov’s method, the construction of the auxiliary
polynomial.

Proposition 11.18. Assume that q > 8m, and let ` be an integer satisfying
m < ` 6 q/8. Then there exists a polynomial r ∈ F[X] of degree

deg(r) < c`+ 2m`(`− 1) +mq

which has a zero of order at least ` at all points x ∈ Sa (recall c = 1
2 (q − 1)).

We will look, by the method of indeterminate coefficients, for a polynomial r
of the special form

(11.23) r = f `
∑

06j<J

(rj + sjg)Xjq

for some polynomials rj , sj ∈ F[X], to be constructed, each of which has degree
bounded by c−m. Hence such a polynomial r has degree bounded by

(11.24) deg(r) 6 `m+ c−m+ cm+ Jq 6 (J +m)q.

The next lemma is crucial to ensure that r 6= 0. This is where we need the
assumption (11.18).
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Lemma 11.19. We have r = 0 ∈ F[X] if and only if rj = sj = 0 ∈ F[X] for
all j.

Proof. We can assume (by a shift X 7→ X + a if necessary) that f(0) 6= 0.
Suppose that r = 0 but not all rj , sj are zero; let k be the smallest index for which
one of rk, sk is non-zero. Dividing by f `Xkq, we get from (11.22) the identity∑

k6j<J

(rj + sjg)X(j−k)q = 0

which we write in the form h0 + h1g = 0, where

h0 =
∑

k6j<J

rjX
(j−k)q, h1 =

∑
k6j<J

sjX
(j−k)q.

We square this equation, then multiply both sides by f , getting

h2
0f = h2

1f
q.

Since f ∈ F[X], we have

f(X)q = f(Xq) ≡ f(0) (mod Xq)

hence
r2
kf ≡ s2

kf(0) (mod Xq).

However, the degree s of the polynomials in this congruence are bounded by
2 deg(rk) + m 6 2(c − m) + m < q, and 2 deg(sk) < 2(c − m) < q, respectively.
So there must be equality r2

kf = s2
kf(0), which contradicts the assumption (11.18)

that f is not a square in F̄[X]. �

We now evaluate the Hasse derivatives of r.

Lemma 11.20. Let k 6 `. Then there exist polynomials r
(k)
j , s

(k)
j each one of

degree 6 c−m+ k(m− 1) such that

Ekr = f `−k
∑

06j<J

(r
(k)
j + s

(k)
j g)Xjq.

Proof. We can write r = h(X,Xq) where h ∈ F[X,Y ] is the polynomial

h = f `
∑

06j6J

(rj + sjf
c)Y jq.

Hence by Lemma 11.17, we have

Ekr = (EkXh)(X,Xq) =
∑

06j<J

(Ek(f `rj) + Ek(f `+csj))X
jq.

By (2) of Corollary 11.15 there exist polynomials r
(k)
j and s

(k)
j satisfying Ek(f `rj) =

f `−kr
(k)
j and Ek(f `+csj) = f `−k+cs

(k)
j with deg(r

(k)
j ) 6 deg(rj) + k deg(f) − k 6

c−m+ k(m− 1) and deg(s
(k)
j ) 6 c−m+ k(m− 1). This is the desired result. �

Recall that we wish r to have zeros of order > ` at points in Sa (see (11.20)).
If f(x) = 0, clearly this is the case. So let x ∈ Sa, with f(x) 6= 0. Applying Lemma
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11.21, we evaluate Ekr at a point x ∈ Sa, using g(x) = a, and most importantly
xq = x:

Ekr(x) = f(x)`−k
∑

06j<J

(r
(k)
j (x) + as

(k)
j (x))xj

= f(x)`−kσ(k)(x)

where σ(k) ∈ F[X] is the polynomial

σ(k) =
∑

06j<J

(r
(k)
j + as

(k)
j )Xj .

We can now prove Proposition 11.18: if σ(k) = 0 for all k < `, Lemma 11.16
shows that r has a zero of order > ` at all points in Sa. The system of equations

(11.25) σ(k) = 0, for all k < `

is a homogeneous system of linear equations, the unknowns being the coefficients of
the polynomials rj , sj , the equations corresponding to the coefficients of the σ(k).
We observe that

deg(σ(k)) < c−m+ k(m− 1) + J,

so the number of equations does not exceed B = `(c−m+ J) + 1
2`(`− 1)(m− 1)

while, on the other hand, the number of coefficients of the rj and sj is at least
A = 2(c − m)J. By choosing J large enough, we can make A > B. Then the
system (11.25) has a non-trivial solution, and by Lemma 11.19 this produces r 6= 0
such that r has zeros of order > ` at all points x ∈ Sa. Taking

J =
`

q
(c+ 2m(`− 1))

one can check that A > B (recall that 2c = q − 1 and 8` 6 q). The degree of r is
bounded by (11.24), which gives Proposition 11.18.

We now prove Stepanov’s Theorem 11.13. First, let a be arbitrary, and apply
Proposition 11.18. Since the auxiliary polynomial r is non-zero and vanishes to
order > ` at points in Sa, we have `|Sa| 6 deg(r) 6 c` + 2m`(` − 1) + mq so
|Sa| 6 c+ 2m(`− 1) +mq`−1. We choose ` = 1 + [

√
q/2], which gives the bound

(11.26) |Sa| < c+ 4m
√
q.

To prove Theorem 11.13, take first a = 1 getting

N0 +N1 = |Sa| <
q

2
+ 4m

√
q

hence the upper bound

(11.27) N = N0 + 2N1 < 2(N0 +N1) < q + 8m
√
q.

To get a lower bound, by the factorization Xq −X = X(Xc − 1)(Xc + 1) we have

f(x)(g(x)− 1)(g(x) + 1) = 0

for all x ∈ F, hence N0 + N1 + N2 = q where N2 = |{x ∈ F | g(x) = −1}|.
By (11.26) applied to S−1, we have

N0 +N2 = |S−1| <
q

2
+ 4m

√
q
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hence

N1 = q −N0 −N2 >
q

2
− 4m

√
q,

and finally,

(11.28) N = N0 + 2N1 > 2N1 > q − 8m
√
q.

Clearly (11.27) and (11.28) prove Theorem 11.13.

11.7. Proof of Weil’s bound for Kloosterman sums.

Let F be a finite field with q elements, of characteristic p 6= 2. Let ψ be any
fixed non-trivial additive character of F. For any additive character ϕ there exists
a unique a ∈ F such that ϕ = ψa, hence any Kloosterman sum S(ψ,ϕ) is of the
form

S(ψa, ψb) = −
∑
x∈F∗

ψ(ax+ bx−1)

for some a, b ∈ F. We consider a and b as fixed and write g = aX + bX−1. We
will prove Weil’s bound (11.15) by relating the average of the Kloosterman sums
S(ψa, ψb) over ψ to the number of points on an hyperelliptic curve, where the
contribution of the trivial character ψ0 = 1 will be the main term.

Lemma 11.21. For any n > 1 and any x ∈ Fn, we have

(11.29) |{x ∈ Fn | yq − y = x}| =
∑
ψ

ψ(Tr(x))

where the sum ranges over all additive characters of F and Tr is the trace Fn → F.

Proof. If Tr (x) = 0, then the equation yq − y = x has q solutions exactly, as
recalled in Section 11.2, and in this case we have ψ(Tr (x)) = 1 for all ψ, hence the
right side of (11.29) is also equal to q. On the other hand, if Tr (x) 6= 0, the equation
yq − y = x has no solution, and the character sum is zero by orthogonality. �

From this lemma we deduce that

−
∑
ψ

Sn(ψa, ψb) =
∑
ψ

∑
x∈F∗

n

ψ(Tr g(x))

= |{(x, y) ∈ F∗n × Fn | yq − y = g(x)}| = Nn, say,(11.30)

for n > 1. If ψ = ψ0, the trivial character, we have

S(ψa, ψb) = S(ψ0, ψ0) = 1− qn.

For ψ 6= ψ0, let αψ, βψ be the “roots” of the Kloosterman sum S(ψa, ψb), so by
Theorem 11.8 we have αψβψ = q and

Sn(ψa, ψb) = αnψ + βnψ,

for all n > 1.
We can therefore write

Nn = qn − 1−
∑
ψ 6=ψ0

(αnψ + βnψ).
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The equation yq − y = g(x) does not obviously describe a curve, since g is not a
polynomial, but multiplying by x it is equivalent with

Ca,b : ax2 − (yq − y)x+ b = 0

(note that x = 0 is not possible since b 6= 0). Because p 6= 2, the number of solutions
is equal to the number of solutions of the discriminant equation of this quadratic
equation

Da,b : (yq − y)2 − 4ab = v2,

i.e., Nn = |Da,b(Fn)|. This is of the form (11.17) with deg(f) = 2q, and because
4ab 6= 0 it satisfies (11.18). Hence by Theorem 11.13 we have

|Nn − qn| < 16q1+n/2

if n is large enough, so that qn > 16q.
By (11.30) we get a sharp estimate for the roots αψ, βψ, on average

(11.31)
1

q

∣∣∣ ∑
ψ 6=ψ0

(αnψ + βnψ)
∣∣∣ 6 16qn/2

for n large enough. The following simple lemma shows that the individual roots
must be of modulus 6

√
q:

Lemma 11.22. Let ω1, ..., ωr be complex numbers, A, B positive real numbers
and assume that ∣∣∣ r∑

j=1

ωnj

∣∣∣ 6 ABn
holds for all integers n large enough. Then |ωj | 6 B for all j.

Proof. One can do this by hand (using Dirichlet’s box principle), but a nice
trick gives the result immediately: consider the complex power series

f(z) =
∑
n>1

(∑
j

ωnj

)
zn =

∑
j

1

1− ωjz
.

The hypothesis implies that f converges absolutely in the disc |z| < B−1, hence f
is analytic in this region. In particular, it has no poles there, which means that we
must have |ωj |−1 > B−1 for all j. �

From this lemma applied with A = 16q, B =
√
q, we deduce the upper bounds

|αψ| 6
√
q, |βψ| 6

√
q for all ψ 6= ψ0. Since αψβψ = q, we have in fact |αψ| =

|βψ| =
√
q, and so Theorem 11.11 is proved.

Remarks. (1) We see here twice how crucial the introduction of the companion
sums Kn is: first because the curve Da,b has very high degree, so Stepanov’s bound
|N−q| < 8m

√
q is trivial when applied to F itself, and secondly because only by the

consideration of all extension fields can we determine the exact order of magnitude
of the roots, and obtain Weil’s bound S(ψ,ϕ) 6 2

√
q with the sharp constant 2.

(2) The constant 2 is optimal in Weil’s bound for fixed a, b and q. Indeed we
have ∑

n>1

Sn(ψa, ψb)z
n =

1

1− αψz
+

1

1− βψz
.
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This is a non-zero rational function with poles on the circle |z| = 1/
√
q, hence this

is its radius of convergence. Therefore

lim sup
n→+∞

|Sn(ψa, ψb)|−1/n =
1
√
q
.

This means that for any ε > 0 there exist infinitely many n such that

|Sn(ψa, ψb)| > (2− ε)qn/2.

It is conjectured (this follows from the Sato-Tate Conjecture for the angles of Kloost-
erman sums described in Chapter 21) that the Weil bound is also optimal when
a, b are fixed, n = 1, and q = p → +∞. However, this remains very much open.
See the remark at the end of the introduction to Section 11.8 for the case of elliptic
curves.

(3) Using the extension of Stepanov’s method to curves of the type yd = f(x)
and an analysis of the corresponding zeta function, one can prove the following
estimate for complete character sums:

Theorem 11.23. Let F be a finite field with q elements and let χ be a non-
trivial multiplicative character of F? of order d > 1. Suppose f ∈ F[X] has m
distinct roots and f is not a d-th power. Then for n > 1 we have∣∣∣∑

x∈Fn

χ(N(f(x)))
∣∣∣ 6 (m− 1)qn/2.

This is Theorem 2C’, p. 43, of [Sch]. In particular, we get the following
corollary which will be used in proving the Burgess bound for short character sums
(Theorem 12.6).

Corollary 11.24. Let χ (mod p) be a non-principal multiplicative character.
If one of the classes bv (mod p), v = 1, . . . , 2r is different from the remaining ones
then ∣∣∣ ∑

x(mod p)

χ((x+ b1) . . . (x+ br))χ̄((x+ br+1) . . . (x+ b2r))
∣∣∣ 6 2rp

1
2 .

Proof. Observe that

χ((x+ b1) . . . (x+ br))χ̄((x+ br+1) . . . (x+ b2r) = χ(f(x))

with

f(x) =
∏

16j6r

(x+ bj)
∏

r+16j62r

(x+ bj)
p−2.

From the assumption, one of the bi is a root of f of order either 1 or p− 2, which
is coprime with the order d | (p− 1) of χ, so we can apply Theorem 11.23. �
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11.8. The Riemann Hypothesis for elliptic curves over finite fields.

A particularly important case of the Riemann Hypothesis is that of elliptic
curves. Historically this was first established by Hasse using global methods. In
the notation of Section 11.6, this means that we consider curves Cf with deg f = 3,
so the equation is of the form

(11.32) C : y2 = x3 + a2x
2 + a4x+ a6

(the numbering reflects the traditional notation for elliptic curves, see Section 14.4).
In contrast with that section, we emphasize that we are considering the affine curve,
without the point at infinity. The cubic polynomial f(x) = x3 + a2x

2 + a4x + a6

cannot be a square, so this curve satisfies the assumption (11.18). Moreover, we
assume that f does not have a double root; this means that the curve C is smooth
(see Section 11.9), and it is a necessary condition for what follows.

In this case, Theorem 11.13 implies that for q > 36 the number N = |C(F)|
satisfies

|N − q| < 24
√
q.

In Section 11.10 we will prove, as before for Kloosterman sums, the rationality
and the functional equation of the corresponding zeta function, from which we will
deduce:

Theorem 11.25. Let C be an elliptic curve over F given by

C : y2 = x3 + a2x
2 + a4x+ a6

with ai ∈ F. Then for all n > 1 we have

(11.33)
∣∣|C(Fn)| − qn

∣∣ 6 2qn/2.

Remarks. Theorem 11.25 is optimal. Indeed letting n→ +∞, this follows as
for Kloosterman sums from Lemma 11.22. However, it is also true in the horizontal
sense as the following example shows: let E/Q be the elliptic curve with equation

E : y2 = x3 − x

which has complex multiplication by Z[i]. As before we consider the affine points,
not the projective ones. The discriminant of E is 64 so E can be reduced modulo
p to an elliptic curve over Z/pZ for any odd prime p. One shows (for instance by
relating E to the curve y2 = x4 + 4 by changing (x, y) 7→ (yx−1, 2x − y2x−2) for
(x, y) 6= (0, 0), see e.g. [I4] or [IR]) that |E(Z/pZ)| = p if p ≡ 3 (mod 4) and
|E(Z/pZ)| = p− 2ap if p ≡ 1 (mod 4), where

p = a2
p + b2p

with π = ap + ibp ≡ 1 (mod 2(1 + i)) (this congruence determines π up to conjuga-
tion). For any ε > 0, Theorem 5.36 (generalized slightly to add the congruence con-
dition) shows that there exist infinitely many Gaussian primes π ≡ 1 (mod 2(1+i))
such that | arg π| < ε. Hence |Im (π)| 6 ε|π| and

|p− |E(Z/pZ)|| = 2|ap| > 2(1− ε2)
√
p

for infinitely many p.
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Theorem 11.25 will be proved in Section 11.10 after some geometric and alge-
braic preliminaries. This goes a bit further away from the heart of analytic number
theory, yet we include full details because the Hasse bound is also important as
being the simplest case of the very important Deligne bound for Fourier coefficients
of modular forms. The reader will also certainly appreciate the elegance and beauty
of the geometry involved.

11.9. Geometry of elliptic curves.

In explaining the special geometric features of elliptic curves, we may as well
consider a more general case. So let k be an arbitrary field, k̄ an algebraic closure,
and let C be the curve given by the equation

C : y2 = f(x), with f = X3 + a2X
2 + a4X + a6 ∈ k[X],

identified with the set of solutions (x, y) ∈ k̄2. We assume as before that f does
not have a double root. If k′/k is any extension, we let C(k′) be the set of solutions
in (k′)2.

The geometry of the elliptic curve becomes much clearer if we work with the
projective version of the curve C, namely the curve E in the projective plane given,
in homogeneous coordinates (x : y : z), by the equation

E : y2z = x3 + a2x
2z + a4xz

2 + a6z
3.

Putting z = 1 gives back C; on the other hand, “at infinity”, we are only adding
one point: taking z = 0 yields x = 0, and all elements (0 : y : 0) (with y 6= 0)
correspond to a single point ∞ = (0 : 1 : 0) in the projective plane. Notice that
this point∞ is rational over the base field k, so that for all extensions k′/k we have

E(k′) = C(k′) ∪ {∞}.

The main property of the curve E that we will use is the beautiful fact that its
points form an abelian group, with identity element ∞. Throughout, p denotes
points on E, not the characteristic of the field k. The group law (denoted by +) is
described by the geometric condition that for any three (distinct) points p1, p2 and
p3 in E, we have p1 + p2 + p3 = 0 if and only if the three points are collinear (in
the projective plane), and the opposite of a point (x : y : z) is the point (x : −y : z)
(symmetry with respect to the x-axis). This way one can construct the sum of any
two distinct points, by computing the equation of the line joining them, and taking
the opposite (in the sense above) of the third intersection point with the curve.
That there are exactly three intersection points follows immediately from the fact
that the polynomial f is of degree 3. In addition, to compute the double p + p of
a point p, the same construction is done with the tangent line at p; the condition
that f has no double root ensures that this tangent line always exists.

Also, because f ∈ k[X], it follows easily that the k′-rational points E(k′), for
any extension k′/k, form a subgroup of E(k̄).

We do not prove those facts here; completely elementary proofs, by computing
explicitly the coordinates of the sum p1 + p2 of two points according to the recipe
above and checking the abelian group axioms (associativity is the only difficulty),
are fairly straightforward (see for instance [IR], ch. 18, 19).
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We now introduce some further geometric objects related to E or, more gen-
erally, to any smooth, projective, algebraic curve1. Thus consider again a more
general case: let k̄ be an algebraically closed field, and let E be a plane algebraic
curve over k̄, i.e. given by an equation

f(x, y, z) = 0

for some homogeneous f ∈ k̄[X,Y, Z]. We identify E with the set of points in the
projective plane. We assume that E is smooth, which means here that for any point
p = (x : y : z) of E, not all partial derivatives ∂f/∂X(p), ∂f/∂Y (p), ∂f/∂Z(p),
are zero. In this case the line with equation

∂f

∂X
(p)(X − x) +

∂f

∂Y
(p)(Y − y) +

∂f

∂Z
(p)(Z − z) = 0

is well-defined and is the tangent line to E at p. For elliptic curves y2 = f(x), this
smoothness condition is equivalent to the fact that the polynomial f has no double
roots, by a simple calculation.

Let C be the affine curve corresponding to E given by

C : f(x, y, 1) = 0

in k̄2. Let g(X,Y ) = f(X,Y, 1) ∈ k̄[X,Y ]. We define k̄[C] = k̄[X,Y ]/(g). Elements
of k̄[C] can be interpreted as functions on C. We assume that (g) is a prime ideal
(this is easily checked in the case of elliptic curves) so that k̄[C] is an integral
domain, and we let k̄(C) or k̄(E) be its quotient field, called the function field of
C or of E. It is a finite extension of the field k̄(X) of rational functions over k̄
(for elliptic curves y2 = f(x), it is a quadratic extension k̄(X)(

√
f)). We interpret

elements of the function field as rational functions on E, so given a point p ∈ E
and an element ϕ ∈ k̄(E), either ϕ has a pole at p or ϕ(p) ∈ k̄ is defined.

Now the important point is that because E is smooth it is possible to define
the order of ϕ at p for every p in E and every non-zero rational function ϕ ∈ k̄(E)?.
As expected, this order behaves like its analogue for holomorphic functions theory
or rational functions. Precisely, for every p ∈ R, there is a discrete valuation

ordp : k̄(E)× → Z,

which gives the order of the zero (if > 0) or pole (if < 0) of a rational function at
p. As a discrete valuation, it satisfies

ordp(c) = 0, for c ∈ k̄?,
ordp(ϕψ) = ordp(ϕ) + ordp(ψ),

ordp(ϕ+ ψ) > min(ordp(ϕ), ordp(ψ)).

We sketch a proof (see also [Sil], Prop. II.1.1): consider the ring Op = {ϕ ∈
k̄(E) | ϕ is defined at p}. This is a noetherian local domain with maximal ideal
mp = {ϕ ∈ Op | ϕ(p) = 0} and residue field Op/mp ' k̄ (by evaluation at p).
Because E is smooth at p (there is a tangent line), the k̄-vector space mp/m

2
p is of

dimension 1 (because the curve is in the plane, it is of dimension 6 2; the equation
of the tangent line gives a relation, and it is easy to see that mp/m

2
p 6= 0). By

Nakayama’s Lemma (see for instance [AM], p. 21), it follows that mp is a principal

1The reader can without damage assume that we are just dealing with the elliptic curves
described before, with k = F̄. In this case every incomplete assertion can be checked by hand.
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ideal. Let π be a generator; then mdp is generated by πd for any d > 1. The order
ordp can be defined for ϕ in Op, ϕ 6= 0, by

ordp(ϕ) = max{d > 0 | ϕ ∈ mdp}

and extended to a homomorphism k̄(E)? → Z. The properties above are then quite
easy to check.

For elliptic curves y2 = f(x), one can easily see that if p 6= ∞, and p = (x, y)
with y 6= 0, it is possible to take π = X − x. For p = ∞, one can take π = X/Y ,
and one finds that ord∞(x) = −2, ord∞(y) = −3.

Every non-zero element ϕ ∈ k̄(E) has finitely many zeros and poles, and to
package them conveniently we define a divisor on E to be a formal finite linear
combination with coefficients in Z of symbols [p], one for each point p ∈ E. Divi-
sors form a free abelian group Div(E). Two homomorphisms are important. One
associates to a non-zero rational function ϕ the divisor (denoted (ϕ)) of its zeros
and poles: 

k̄(E)× → Div(E)

ϕ 7→ (ϕ) =
∑
p∈E

ordp(ϕ)

and the second gives the degree of a divisor:

deg

{
Div(E)→ Z,
[p] 7→ 1.

As suggested by the notation, divisors of the type (ϕ) are called principal divisors.
Ordinary rational functions have as many zeros as poles, with multiplicity,

and the same holds for ϕ ∈ k̄(E)?: this means that for all ϕ ∈ k̄(E)×, we have
deg((ϕ)) = 0 (see for instance [Sil], II-3). For elliptic curves y2 = f(x), an easy
proof can be derived by observing that k̄(E) is a quadratic extension of k̄(X). The
non-trivial element in the Galois group is ϕ 7→ ϕ̄ defined by ϕ̄(p) = ϕ(−p). It is
clear that ordp(ϕ) = ord−p(ϕ̄), hence deg(ϕ) = deg(ϕ̄). Now ϕϕ̄ is in k̄(X). One
can check the following compatibility: if ψ ∈ k̄(X), with divisor (ψ)1 =

∑
nixi

(as an ordinary rational function), then its divisor as an element of k̄(E) is (ψ) =∑
ni([pi] + [−pi]), where pi is any point of E with x-coordinate xi. In particular,

0 = deg((ψ)1) = 2 deg((ψ)). Applying this to ϕϕ̄ gives

0 = deg(ϕϕ̄) = deg(ϕ) + deg(ϕ̄) = 2 deg(ϕ).

Definition. 1. Two divisors D1 and D2 such that D1 − D2 = (ϕ) for some
ϕ ∈ k̄(E)× are called linearly equivalent. This is denoted D1 ∼ D2, and is an
equivalence relation on Div(E).

2. The group Div(E) carries a partial ordering, compatible with the group
structure, defined by D > 0 if and only if all the coefficients in the formal sum
giving D are > 0. Such divisors are called effective divisors.

3. For a divisor D ∈ Div(E), let

L(D) = {0} ∪ {ϕ ∈ k̄(E) | (ϕ) +D > 0};

this is a k̄-vector space. Let `(D) = dimL(D), an integer or +∞.

If D = n1[p1]+...+nk[pk]−m1[q1]−...−mj [qj ] with ni, mi > 0, then ϕ ∈ L(D),
ϕ 6= 0, means simply that ϕ has
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(1) Poles of order at most ni at pi, 1 6 i 6 k;
(2) Zeros of order at least mi at qi, 1 6 i 6 j.

It follows immediately that if D2 6 D1, then L(D2) ⊂ L(D1). Also, if D1 ∼ D2,
then writing D1 = D2 + (ψ), the map ϕ 7→ ψϕ induces an isomorphism L(D1) →
L(D2), in particular, `(D1) = `(D2) only depends on the linear equivalence class
of the divisor.

The following interpretation is also clear: there is a bijection

(11.34)

{
P(L(D))→ {Effective divisors linearly equivalent to D},
ϕ 7→ (ϕ) +D

between the projective space P(L(D)) of L(D) and the effective divisors linearly
equivalent to D (by definition of L(D), the map has image in the set of effective
divisors). This also requires the important fact that

(11.35) L(0) = k̄, `(0) = 1.

In other words, an everywhere defined rational function on E is constant: this is
obvious for elliptic curves, since regularity on C forces such a ϕ to be a polynomial
g(X) + Y h(X), and regularity at ∞ then forces h = 0, g ∈ k̄.

We first notice the following simple lemma:

Lemma 11.26. Let D be a divisor on E such that `(D) > 0. Then either
deg(D) > 0 or D ∼ 0.

Proof. If `(D) > 0, there is a non-zero element ϕ ∈ L(D), so that (ϕ)+D > 0.
Taking the degree we find that deg(D) > 0. So we need only show now that if
deg(D) = 0, then D ∼ 0. But (ϕ) + D is then an effective divisor of degree 0;
clearly it must be = 0, so D = −(ϕ) = (ϕ−1) ∼ 0. �

To prove the rationality of the local zeta function of elliptic curves, we will
need to know the value of `(D) for effective divisors. This is computed by the
Riemann-Roch Theorem.

Theorem 11.27. Let E be an elliptic curve over an algebraically closed field
k̄. For any divisor D on E, `(D) is finite and we have the formula

(11.36) `(D)− `(−D) = degD.

Equivalently, by Lemma 11.26, we can compute `(D) for any D by:
1. If deg(D) > 0, and D 6∼ 0, then `(D) = deg(D).
2. If D ∼ 0, then `(D) = 1.
3. If deg(D) < 0, then `(D) = 0.

This is the Riemann-Roch theorem specialized for elliptic curves. See the re-
mark below for the general case.

The simple proof for the Riemann-Roch theorem hinges on the remarkable
interaction of the group structure on E with the divisor group. Indeed, consider
the map

σ : Div(E)→ E

defined by σ(n1[p1] + ... + nk[pk]) = n1p1 + ... + nkpk, the + on the right side
corresponding to the group law on E.
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Proposition 11.28. Let D be a divisor on E. Then we have

D ∼ [σ(D)] + (deg(D)− 1)[∞].

Proof. In essence this “is” the group law itself: by induction, we need only
consider D = [p] + [q] and D = [p] − [q] for some points p and q. If p or q is the
origin ∞, the result is obvious.

So consider first the case of D = [p] + [q] with p, q 6= ∞ and p 6= q. Then
the equation aX + bY + c = 0 of the line joining p and q defines an element
ϕ = aX + bY + c ∈ k̄(E), which by definition of the group law satisfies

(ϕ) = [p] + [q] + [r]− 3[∞]

where −r = p+ q = σ(D). Since (ϕ) ∼ 0 we get

D = [p] + [q] ∼ (ϕ)− [σ(D)] + 3[∞] ∼ −[σ(D)] + 3[∞].

But similarly for any point p in E, the equation of the line joining p and −p gives
a function with divisor [p] + [−p]− 2[∞] so that for any p

(11.37) −[p] + [∞] ∼ [−p]− [∞]

and hence D ∼ [σ(D)] + [∞], as desired.
If p = q, the equation of the tangent line gives 2[p] + [2p]− 2[∞] ∼ 0, and the

result again follows. Finally if D = [p] − [q], use (11.37) to reduce to the previous
case:

[p]− [q] = [p] + (−[q] + [∞])− [∞] ∼ [p] + [−q]− 2[∞] ∼ [p+ q]− [∞].

�

Proof of the Riemann-Roch theorem. Notice that (11.36) for D or −D
are equivalent. By Proposition 11.28, we have

`(D) = `([σ(D)] + (degD − 1)[∞]),

`(−D) = `([−σ(D)] + (1− degD)[∞]).

One of the two divisors on the right is effective, so we can assume that D is effective
and of the form D = [p] + n[∞] with P ∈ E and n > 0.

If p =∞, then D = m[∞] with m > 1. We must prove `(D) = m. Any element
ϕ of L(m[∞]) has no poles on C, hence is a polynomial ϕ ∈ k̄[X,Y ], which satisfies
ord∞(ϕ) > −m. Since ord∞(X) = −2 and ord∞(Y ) = −3, we have

ord∞(ϕ) = max(−2 deg(g),−3− 2 deg(h)) for ϕ = g(X) + Y h(X).

Let V = {2 deg(g), 3 + 2 deg(h)} where g and h are polynomials in X. One
sees immediately that V is the set of all positive integers, except 1. Now using
monomials Xa or Y Xb as basis elements, we check that

`(m[∞]) = |{n ∈ V | n 6 m}| = m.

Now we consider D = [p]+n[∞] with n > 0 and p 6=∞. If n = 0, we can use the
automorphism q 7→ q−p which sends p to∞ to get an isomorphism L([p]) ' L([∞])
which implies `([p]) = 1.
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If n > 1, we have D > n[∞] hence L(n[∞]) ⊂ L(D). Thus n 6 `(D). Moreover,
because only a simple pole is allowed at p, we have `(D) 6 n+ 1: if πp is a function
with a simple zero at p, we have a k̄-linear map{

L(D)/L(n[∞])→ k̄

ϕ 7→ (πpϕ)(p)

which is tautologically injective. Thus we must show that there is in L(D) one
more k̄-linearly independent element not in L(n[∞]).

Write p = (x, y) in affine coordinates. We have the following divisors:

(X − x) = [p] + [−p]− 2[∞],

(Y + y) = [−p] + [p′] + [p′′]− 3[∞]

for some p′ and p′′. Let ϕ = (Y +y)/(X−x), then (ϕ) = −[p]+[p′]+[p′′]−[∞] > −D.
We claim that p 6= p′, p′′. Indeed p′ and p′′, by definition, are of the form (x1,−y),
(x2,−y). This can be equal to p only if y = 0, but for y = 0 by assumption there are
three distinct roots of f(x) = 0. Hence ϕ has a simple pole at p, so ϕ 6∈ L(n[∞]),
and we obtain the required formula `(D) = n+ 1 = deg(D). �

We must now consider some rationality questions. We assume that we have
an elliptic curve E given by y2 = f(x) with f ∈ k[X,Y ]. The preceding analysis
applies to an algebraic closure k̄ of k. There is a natural action of the Galois group
Gk of k on E (on the coordinates), and on the divisors. A point or a divisor is
called k-rational if it is Gk-fixed. Notice that for a divisor D = n1p1 + ...+njpj this
does not mean that the pi are in E(k). Also Gk acts on k̄(E) and the field fixed by
Gk is k(E), the fraction field of k[X,Y ]/(f). The divisor of a function ϕ ∈ k(E) is
obviously k-rational.

If D is defined over k, we define

Lk(D) = {0} ∪ {ϕ ∈ k(E) | (ϕ) +D > 0}

and we let `k(D) = dimk Lk(D). It is clear that `k(D) 6 `(D).

Theorem 11.29. For any k-rational divisor D, we have

`k(D) = `(D).

In particular the Riemann-Roch formula holds with `k(D) instead of `(D).

Proof. This is a special case of the following theorem, which is a formulation
of Hilbert’s Theorem 90 for GL(n): let k be a field, k̄ an algebraic closure, V a k̄-
vector space with an action of Gk. Then there is a basis of V made of elements which
are Gk-fixed (equivalently, let Vk = V Gk , then V = Vk ⊗ k̄, or dimk Vk = dimk̄ V ).
For a proof, see for instance [Sil], Lemma II.5.8.1. �

Remark. This theory adapts in the following way to more general algebraic
curves (see for instance [Ha], IV): if E is smooth and projective over k̄, one can
define a certain divisor class K (called the canonical class, and related to differen-
tials on E). It has degree deg(K) = 2g− 2 for some integer g > 0, called the genus
of E, and the Riemann-Roch Theorem takes the form

(11.38) `(D)− `(K −D) = deg(D) + 1− g.
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Elliptic curves correspond to g = 1; in this case the canonical class is trivial, and
this reduces to Theorem 11.27. The case g = 0 corresponds to the projective line,
and is also very easy. The proof of (11.38) is much more involved than the one for
elliptic curves, since there is no group law on the curve which would help.

11.10. The local zeta function of elliptic curves.

Let C be an elliptic curve over F given by (11.32). It is more convenient to use
here the corresponding projective curve E, as described in Section 11.9. The zeta
function of E is defined as the formal power series

(11.39) Z(E) = exp
(∑
n>1

|E(Fn)|
n

Tn
)
.

We first relate Z(E) to points on the curve, by giving its Euler product (com-
pare Lemma 11.7). To do this we introduce some terminology, which comes from
the language of schemes.

Definition. Let E be an elliptic curve over a finite field F with q elements.
A closed point of E is the Galois orbit of a point x0 ∈ E(F̄). The degree deg(x) of
a closed point x is the cardinality (necessarily finite) of the orbit and its norm is
Nx = qdeg(x). The set of closed points of E is denoted |E|.

This notion is analogue to that of an irreducible polynomial in F[X] used for
the zeta functions of Gauss sums and Kloosterman sums. To every closed point
x ∈ |E| is associated an F-rational divisor which is simply the formal sum of all the
elements in the orbit. The degree of this divisor is the degree of x. Moreover, it is
easy to see that the group of F-rational divisors is the free abelian group generated
by the divisors associated to closed points.

Lemma 11.30. We have the Euler product expansion

(11.40) Z(E) =
∏
x∈|E|

(1− T deg(x))−1,

where the product is over all closed points of E.

Proof. This is very close to Lemmas 11.7 and 11.9. First by decomposing the
points in E(Fn) in Galois orbits we obtain

|E(Fn)| =
∑
d|n

d
∑
x∈|E|

deg(x)=d

1,

which is the analogue of Lemma 11.1. Then we have

−T Z
′(E)

Z(E)
=
∑
n>1

|E(Fn)|Tn

and, on the other hand, this operator applied to the right side of (11.40) yields∑
x∈|E|

deg(x)
∑
n>1

Tn deg(x) =
∑
n>1

Tn
(∑
d|n

d
∑
x∈|E|

deg(x)=d

1
)

hence the result. �
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Using the Riemann-Roch Theorem, we now prove the rationality and functional
equation of the zeta function.

Theorem 11.31. The zeta function Z(E) of an elliptic curve is a rational
function. More precisely, it is of the form

(11.41) Z(E) =
1− aT + qT 2

(1− T )(1− qT )

where a ∈ Z is defined by the relations |E(F)| = q+1−a or, in terms of C, |C(F)| =
q − a. The zeta function satisfies the functional equation Z(E, (qT )−1) = Z(E, T ).

Lemma 11.32. Let d > 0 and let hd(C) be the set of linear equivalence classes
of F-rational divisors of degree d. Then hd(C) is finite and |hd(C)| = |h0(C)| 6
|E(F)|.

Proof. For any rational divisor D, we have by Proposition 11.28 the equiv-
alence D ∼ [σ(D)] + (degD − 1)[∞], thus the linear equivalence class of D only
depends on σ(D). If D is F-rational, it follows that σ(D) ∈ E(F), and therefore
the inequality |hd(C)| 6 |E(F)| holds.

Moreover, it is clear that the map D 7→ D + d[∞] with inverse D 7→ D − d[∞]
induces a bijection between hd(C) and h0(C). �

Proof of Theorem 11.31. Since F-rational divisors on E are simply com-
binations with integer coefficients of divisors associated to closed points, the Euler
product (11.40) gives the formal power series expression

Z(E) =
∑
D>0

T deg(D)

where the sum is over all effective F-rational divisors on E.
Split the sum according to the degree d of D; for d = 0, the only effective

divisor is D = 0 so
Z(E) = 1 +

∑
d>1

T d
∑
D>0

deg(D)=d

1.

For each d, split further the sum over divisors of degree d in linear equivalence
classes. By Lemma 11.32, there are h0(C) equivalence classes for each d. For a
given class (that of D say), the contribution is the number of effective (F-rational)
divisors linearly equivalent to D. By (11.34) and Theorem 11.29, this is equal to

|P(L(D))| = q`F(D) − 1

q − 1
=
q`(D) − 1

q − 1
.

Since d > 1, the Riemann-Roch theorem implies `(D) = deg(D) = d, so the
computation of Z(E) is now straightforward

Z(E) = 1 +
∑
d>1

T d
∑
D>0

deg(D)=d

1 = 1 +
h0(C)

q − 1

∑
d>1

(qd − 1)T d

= 1 +
h0(C)

q − 1

( T d

1− qT
− T

1− T

)
= 1 +

h0(C)T

(1− T )(1− qT )

=
1− bT + qT 2

(1− T )(1− qT )
(11.42)
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where b is defined by h0(C) = q + 1− b.
This proves the rationality, and gives the precise form, except that we need to

prove that a = b, where |E(F)| = q+1−a, or equivalently h0(C) = |E(F)| (actually
in Lemma 11.32, we have already shown |h0(C)| 6 |E(F)|, but we do not need it any
more). To obtain this equality, start from the original definition (11.39) of Z(E),
and compare with (11.42): the latter is seen to imply that |E(F)| = q+1−b = h0(C).

Finally the functional equation of Z(E) is a formal consequence of (11.42). �

It is worth recording separately one of the last steps of the proof.

Proposition 11.33. Let E be an elliptic curve over a finite field F, let D be
a divisor on E. Then D is principal if and only if deg(D) = 0 and σ(D) = 0 ∈ E.
More precisely, the map j : D 7→ σ(D) is an isomorphism between the group of
divisor classes of degree 0 and E(F).

Proof. A divisor D is Fn-rational for some n > 1; looking at E over Fn, it
suffices to prove the isomorphism between classes of F-rational divisors of degree 0
and F-rational points. But j is a surjective (j([x] − [∞]) = x) map between finite
sets with the same cardinality (|h0(C)| = |E(F)|). �

This is the special case of the so-called Abel-Jacobi Theorem, for an elliptic
curve over a finite field. It actually holds over any field, and a generalization to
all (smooth projective) curves is the content of the theory of jacobian varieties
associated to curves.

To conclude the proof of Theorem 11.25, we proceed as in the case of Kloost-
erman sums: from (11.41), we derive

|E(Fn)| − (qn + 1) = αn + βn

where 1 − aT + qT 2 = (1 − αT )(1 − βT ). Then Lemma 11.22, applied with the
input from Stepanov’s Theorem 11.13, shows that |α| 6 √q, |β| 6 √q, and since
αβ = q, this concludes the proof.

Exercise 2. Assuming the general Riemann-Roch formula (11.38), prove that
for a smooth projective algebraic curve E of genus g over a finite field F with q
elements, the zeta function

Z(E) = exp
(∑
n>1

|E(Fn)|
n

Tn
)

is a rational function of the form

Z(E) =
P (T )

(1− T )(1− qT )

for some polynomial P with integral coefficients and degree 2g.
[Hint: The question will arise whether there exist F-rational divisor classes on

E of degree 1 (which is obvious for elliptic curves since the point ∞ is F-rational).
The image of the degree map is δZ for some δ | (2g−2) (the degree of the canonical
class). Using this fact, find a preliminary form of the zeta function and analyze the
poles to show that actually δ = 1 (see [Mor2], 3.3).]



300 11. SUMS OVER FINITE FIELDS

11.11. Survey of further results: a cohomological primer.

The methods of Stepanov are very useful and, in certain circumstances they
provide the best tools available today, especially when the genus of the curve is
large compared to the cardinality of the finite field (see for instance the proof by
Heath-Brown of non-trivial estimates for Heilbronn sums [HB2]).

However, the deepest understanding of exponential sums over finite fields and
the greatest impact on classical problems of analytic number theory comes from the
sophisticated concepts of algebraic number theory, especially the `-adic cohomol-
ogy theory as developed by Grothendieck and his collaborators, which give a very
powerful and flexible framework for working with very general exponential sums.

The proof of the Riemann Hypothesis for varieties by Deligne [De1], and even
more his far-reaching generalization [De2], are the basis for the extensive work of
Katz, Laumon and others. It is beyond the scope of this book to discuss this theory
in great detail. Let us direct the interested reader to the survey articles [Lau], [K2].
Study of the foundational basis of the `-adic theory can be started in [De3] and
continued together with applications in the books of Katz, for instance [K3], [K4].

We will limit this section to a short introduction of the basic vocabulary and we
will state a few of the most fundamental results in this language. We then include
examples to show that such knowledge can already be very useful even when one is
not familiar with the details and background of algebraic geometry.

In Sections 11.4 and 11.5, we have shown that Gauss sums and Kloosterman
sums can be related to analogues of Dirichlet characters over finite fields. The
`-adic cohomological formalism which we now discuss can be thought as relating
exponential sums, dually, to objects which are Galois-theoretic in nature.

The exponential sums Sn defined by (11.8) can be interpreted as sums over the

algebraic curve Uf,g consisting of F∗p minus the poles of the rational functions f and
g. More generally, one wishes to consider exponential sums not only over curves
but over more general varieties. We will use some basic vocabulary of algebraic
geometry to describe such situations, but will illustrate them in the simpler case of
curves. Already the case of (11.8) and Uf,g are quite interesting.

Let F be a finite field and U/F be a smooth algebraic variety of dimension
d > 0 (technically, we assume as part of the smoothness assumption that U is
geometrically connected, and as part of being a variety that U is quasi-projective).
The simplest examples in dimension 1 are Uf,g, or smooth projective curves. In
dimension d > 1, the most important examples are the affine d-space Ad, with set
of points Ad(F̄) = F̄d, and the projective d-space. The exponential sums over U
will be of the type

(11.43) Sn =
∑

x∈U(Fn)

χ(N(f(x)))ψ(Tr (g(x)))

where f and g are F-rational functions defined on U .

To U/F is associated the so-called arithmetic étale fundamental group π1(U)
which “classifies” étale coverings V → U of U , and is the analogue both of the
Galois group of a field, or of the “ordinary” topological fundamental group. A
morphism of algebraic varieties is étale if it is flat and unramified; if U is a curve,
this means V is a curve, f is non-constant and unramified. For the simpler purposes
of exponential sums, the fundamental group can be considered somewhat as a black
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box in what follows, but one should keep in mind that the elements of V in π1(U)
act as automorphisms of any étale covering π : V → U (i.e. π(γx) = π(x) for
any γ ∈ π1(U) and x ∈ V ), and that it is a functor: any map U → V between
varieties induces a continuous group homomorphism π1(U)→ π1(V ). (One should
fix a base-point in defining π1(U), but a more or less canonical choice exists, the
so-called “generic point” of the scheme U .)

Examples. (1) Let U be a single point {x} defined over F. Then π1(U) is the
Galois group Gal(F̄/F).

(2) Let U/F be a smooth curve, not necessarily projective. There is a an
associated smooth projective curve C/F such that U ⊂ C with complement a finite

set T of points. If U = F∗ for instance, then C = P1 is the projective line, and
T = {0,∞}.

The fundamental group can be described concretely as follows: let K = F(U) =
F(C) be the function field of U , i.e. the field of rational functions on U or C (if
C = P1, then K = F(t) is the usual field of rational fractions). We have the
Galois group GK = Gal(K̄/K) of K. For every closed point x of C, there is
the corresponding discrete valuation ordx of K. This extends to the separable
closure K̄ of K, and gives rise to a decomposition group Dx < GK and an inertia
group Ix < Dx as in classical algebraic number theory, with the property that
Dx/Ix ' Gal(F̄q/Fq), where Fq is the residue field of x, a finite field with q = Nx
elements. Then π1(U) “is” the quotient of GK by the smallest closed normal
containing all inertia groups Ix for x a closed point of U .

Fix a prime number ` 6= p. The objects used to interpret exponential sums
over U are the so-called `-adic sheaves on U . In the simpler cases, those will be
“lisse”, in which case there is a simpler alternate Galois-theoretic description which
we take as definition.

Definition. Let U/F be a smooth variety over a finite field. A lisse `-adic
sheaf on U is a continuous representation ρ : π1(U) −→ GL(V ) where V is a finite
dimensional Q̄`-vector space. Continuity refers to the profinite topology on π1(U)
and the `-adic topology on V .

Note the similarity with the definition of Galois representations of number
fields (see Section 5.13). Because of the original definition of a sheaf, one usually
denotes `-adic sheaves by curly letters F , G, etc. Notice that one can obviously
speak of direct sums, tensor product, symmetric powers, etc., of lisse `-adic sheaves
by performing the corresponding operations on the representations. Also one can
speak of irreducible sheaves, etc.

An important `-adic sheaf, denoted Q̄`(1), is obtained by considering the natu-
ral action of π1(U) on `-power roots of unity, which arises from the étale coverings
where one simply extends the base field from F to its extension by roots of unity.
This action is given by a certain character χ` : π1(U)→ Q̄∗` . Using this sheaf, one
defines Tate twists: if F is a lisse `-adic sheaf and i ∈ Z, then one denotes F(i) (F
twisted i times) the sheaf which corresponds to the action ρ′ of π1(U) on the same
vector space but with

ρ′(γ) = χi`(γ)ρ(γ);

in other words, F(1) = F ⊗ Q̄`(1) for instance.
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Exponential sums arise by looking at the action of the Frobenius elements at
points of U . Let x be a closed point x of U , which can be seen as a Galois orbit
of points in U(F̄). The fundamental group of the “point” x is the Galois group
Dx of the residue field of U at x, isomorphic to Fn where n is the degree of x. By
functoriality there is a map Dx → π1(U). We have Dx ' Gal(F̄n/Fn) and the latter
is generated (topologically) by the Frobenius morphism σ, so taking the image
we get in π1(U) a well-defined conjugacy class, called the arithmetic Frobenius
conjugacy class at x. In particular, for any `-adic sheaf one can speak of the trace
Tr ρ(σx) without ambiguity. However, it turns out that it is the inverse F of σ
(the so-called geometric Frobenius) which appears naturally in the cohomological
description of exponential sums. We denote by Fx the corresponding conjugacy
class; it is called simply the Frobenius conjugacy class at x (omitting the adjective
geometric).

Theorem 11.34. Let U/F be a smooth variety, let f 6= 0 and g be F-rational
functions on U , let ψ be an additive character and χ a multiplicative character of
F. Let Sn = Sn(U, f, g, χ, ψ) be the associated exponential sums over U(Fn) as in
(11.43). Then there exists a lisse `-adic sheaf F on U of degree 1 with the property
that for all n > 1 we have

(11.44) Sn =
∑

x∈U(Fn)

Tr (Fx | F)

where we denote Tr (g | F) = Tr (ρ(g) | V ), F corresponding to the representation
ρ : π1(U)→ GL(V ).

To compare with the characters used to describe Gauss sums and Klooster-
man sums, one should think of the latter as analogues of Dirichlet characters or
Hecke characters, whereas the `-adic sheaves given by this theorem are analogues
of Galois characters. The correspondence between the two concepts is an instance
of reciprocity or class-field theory.

We sketch the construction of F in the case where χ = 1 and g is a non-zero
rational function on U = A1 − {poles of g}, over F, which makes it clear that this
is very closely related to the argument in Section 11.7. Consider the curve

(11.45) C : yq − y = g(x)

and notice that there is a surjective map π : (x, y) 7→ x from C to U . For any
a ∈ F̄, the equation yq − y − a = 0 is separable, hence it has q distinct roots in
F̄. In fact the additive group of F acts on the roots by translation: if y is a root
and z ∈ F, then (y + z)q − (y + z) = yq − y = a. Moreover, π : C → U is an
étale covering (we’ve just seen it is everywhere unramified and surjective). In other
words, π is an étale Galois covering with Galois group isomorphic to the additive
group F (coverings given by such equations are called Artin-Shreier coverings).

The fundamental group π1(U) acts on C by automorphisms of the covering,
which means as translations by elements of F as above. This defines a surjective
map ϕ : π1(U)→ F such that ϕ(γ) = γy − y for any y ∈ C. (This doesn’t depend
on the choice of y because the action of γ on C must be a morphism of curves.)

Consider the trivial `-adic sheaf Q̄` on C, or equivalently the trivial represen-
tation of π1(C). By the above we can construct the induced representation ρ from
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π1(C) to π1(U), which can be described as the space

V = {f : π1(U)→ Q̄` | f(τγ) = f(γ) for any τ ∈ π1(C)}

(where τ ∈ π1(C) is seen through the map π1(C) → π1(U) coming from π), on
which π1(U) acts by translation on the right

ρ(γ)f(τ) = f(τγ).

The elements f ∈ V depend only on π1(C)\π1(U) ' F (i.e. on the automorphisms
of the covering C → U), which implies that V ' Q̄q` is an `-adic sheaf on U of degree
q. The representation space V can be decomposed over the additive characters ψ
of F,

V =
⊕
ψ

Lψ

where Lψ is the ψ-eigencomponent of V , namely

Lψ = {f ∈ V | ρ(γ)f = ψ(ϕ(γ))f for all γ ∈ π1(U)}.

It is easy to see that each Lψ is an `-adic sheaf on U , and because ρ is induced
from the trivial representation, each Lψ is of degree 1.

Then for every additive character ψ, the `-adic sheaf on U corresponding to Lψ̄
is the sheaf satisfying (11.44) for the exponential sums Sn(U, g, ψ).

Indeed, if x ∈ U(Fn), and y satisfies yq − y = g(x), then the Frobenius of x
acts on y by yq

n

= y + Tr Fn/F(g(x)) since

yq
n

− y = yq
n

− yq
n−1

+ yq
n−1

− · · ·+ yq − y

= (yq − y)q
n−1

+ · · ·+ yq − y = Tr (yq − y) = Tr g(x).

Hence ϕ(σx) = Tr g(x) and by definition of Lψ it follows that σx acts on Lψ
by multiplication by ψ(Tr g(x)), hence Fx = σ−1

x acts by ψ̄(Tr g(x)), which gives
(11.44).

In particular, note that taking the trace for Q` on C we derive

|C(Fn)| =
∑
ψ

Sn(U, f, ψ),

as in (11.30).

Exercise 3. (1) Let Sn be the character sum (11.8) with g = 0 for some
multiplicative character χ of F? and some non-zero rational function f ∈ F(x), on
the variety U = A1−{zeros and poles of f}. Describe as above the construction of
the sheaf L satisfying (11.44) in this case. [Hint: Use the cover yd = f(x), where
d is the order of the multiplicative character χ.]

(2) Let Sn be as in (11.8), U ⊂ A1 the complement of the zeros and poles of
f and the poles of g. If Lψ is the sheaf satisfying (11.44) for f = 1 and Lχ is the
sheaf satisfying (11.44) for g = 0, show that L = Lψ ⊗ Lχ satisfies (11.44) for Sn.

Examples. (1) Even the case ρ = 1 is interesting when dealing with a general
variety U . This “trivial” `-adic sheaf is denoted Q̄`, and one has Sn = |U(Fn)|.

(2) For the sheaf Q̄`(1), notice that σx acts by ξ 7→ ξq for any root of unity if
Nx = q. Therefore Fx acts by ξ 7→ ξ1/q and in particular the only eigenvalue of Fx
is q−1.
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Now in addition to U/F we consider its “extension of scalars” Ū/F̄ over the
algebraic closure of F. There is a corresponding geometric fundamental group
π1(Ū), which sits in an exact sequence

(11.46) 1→ π1(Ū)→ π1(U)→ Gal(F̄/F)→ 1.

To every `-adic sheaf F on U are associated the `-adic cohomology groups with
compact support of Ū with coefficients in F . Those are finite-dimensional Q̄`-
vector spaces, denoted, Hi

c(Ū ,F) for i > 0. The key point is that the Galois group
of F acts naturally on Hi

c(Ū ,F), and in particular, so do the Frobenius σ and its
inverse F , the geometric Frobenius. The key to the cohomological interpretation of
exponential sums is the

Grothendieck-Lefschetz Trace Formula. Let U/F be a smooth variety
of dimension d > 0, F an `-adic sheaf on U . We have Hi

c(Ū ,F) = 0 if i > 2d and
for any n > 1

(11.47)
∑

x∈U(Fn)

Tr (Fx | F) = Tr (Fn | H0
c (Ū ,F))− Tr (Fn | H1

c (Ū ,F)) + · · ·

− Tr (Fn | H2d−1
c (Ū ,F)) + Tr (Fn | H2d

c (Ū ,F)).

Therefore to evaluate the exponential sums (11.43) using the associated sheaf,
we need to know the traces, or equivalently the eigenvalues, of F (equivalently, of
σ = F−1) acting on Hi

c for 0 6 i 6 2d. It turns out that in most cases H0
c and H2d

c

are easy to compute:

Proposition 11.35. Let F be a lisse `-adic sheaf on a smooth variety U/F,
corresponding to the representation ρ of π1(U) on the Q̄`-vector space V . We have

(11.48) H0
c (Ū ,F) '

{
V π1(Ū) if U is projective,

0 if U is not projective,

and

(11.49) H2d
c (Ū ,F) ' Vπ1(Ū)(−2d)

where V G denotes the space of vectors invariant under the action of a group G on
an abelian group, and VG denotes the space of co-invariants, the largest quotient
of V on which G acts trivially. In both cases, the isomorphisms are canonical
isomorphisms of vector spaces with an action of the Galois group of F.

Since V is a representation of π1(U), the exact sequence (11.46) shows that

V π1(Ū) and Vπ1(Ū) are acted on by Gal(F̄/F), “through” the given representation
ρ.

This proposition shows that for a curve U/F, the only “difficult” cohomology
group is H1

c (Ū ,F).

Example. Let U = E/Fp be an elliptic curve, F = Q̄` the trivial sheaf. By
the proposition one has

(1) H0
c (Ē, Q̄`) = Q̄`, with trivial action of F (since Q̄` is the trivial sheaf).

(2) H2
c (Ē, Q̄`) = Q̄`(−1), so by definition of the twist, F acts by multi-

plication by p (on roots of unity, i.e. on Q̄`(1), σ acts by ξ 7→ ξp, hence F by
multiplication by p−1).
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The Lefschetz trace formula (11.47) gives

|E(Fn)| = pn + 1− Tr (Fn | H1
c (Ē, Q̄`))

(compare Theorem 11.31).

More generally, one derives the rationality of the zeta function directly from
the Trace Formula.

Corollary 11.36. Let U , Sn and F be as in Theorem 11.34. For 0 6 i 6 2d,
let bi = dimHi

c(Ū ,F) and

Pi(T ) = det(1− FT | Hi
c(Ū ,F)) =

bi∏
j=1

(1− αi,jT ).

We have

Z(F) = exp
(∑
n>1

Sn
n
Tn
)

=
P1(T ) · · ·P2d−1(T )

P0(T ) · · ·P2d(T )
=

2d∏
i=0

∏
j

(1− αi,jT )(−1)i+1

,

and for n > 1,

(11.50) Sn =
∑

06i62d

(−1)iαni,j .

Theorems 11.4, 11.8 and the result of Exercise 1 are all special cases of this
corollary, together with suitable computations of cohomology groups. The numbers
bi are called the `-adic Betti numbers for F .

Of much greater importance, however, is Deligne’s vast generalization of the
Riemann Hypothesis [De2]. One starts with the following “local” definition:

Definition. Let w ∈ Z be an integer. A lisse `-adic sheaf F on U/F is said
to be pure of weight w if for any closed point x of U , all eigenvalues of Fx acting
on the Q̄` vector space V associated to F are algebraic numbers all conjugates of
which have the same absolute value equal to qw/2 where q = Nx is the cardinality
of the residue field.

For instance, the trivial sheaf Q̄` is pure of weight 0 (all eigenvalues 1). For any
i ∈ Z, Q̄`(i) is pure of weight −2i, and if F is pure of weight w, then F(i) is pure of
weight w − 2i. For any exponential sum (11.43), the associated sheaf F is pure of
weight 0 because the only eigenvalue at x is the root of unity χ(Nf(x))ψ(Tr g(x)).

Theorem 11.37 (Deligne). Let U/F be a smooth variety and F a lisse `-adic
sheaf on U , pure of weight w. Let i > 0 and let ξ be any eigenvalue of the geometric
Frobenius F acting on Hi

c(Ū ,F). Then ξ is an algebraic integer, and if α ∈ C is a
conjugate of ξ, we have

(11.51) |α| 6 q(w+i)/2.

The conclusion is also phrased as saying that Hi
c(Ū ,F) is mixed of weights

6 i+w. If there is equality in (11.51), then Hi
c(Ū ,F) is said to be pure (of weight

w + i). In certain cases, one can apply duality theorems (for instance Poincaré
duality) to deduce further that (11.51) is an equality.
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Remark. Although Deligne’s proof is a monumental achievement of very deep
algebraic geometry, it is an interesting fact that a crucial use is made of a generaliza-
tion of the method of Hadamard and de la Vallée Poussin for proving non-vanishing
of L-functions on the line Re (s) = 1 (see Section 5.4). Similarly, in Deligne’s first
proof [De1], the ideas of the classical Rankin-Selberg method for modular forms
are essential (specifically, Deligne acknowledges the influence of [Ra3]).

Example. Let C/F be a smooth connected projective curve (for instance, an
elliptic curve). By Proposition 11.35 as in the previous example, we have easily:

(1) H0
c (C̄, Q̄`) = Q̄`, with F acting trivially.

(2) H2
c (C̄, Q̄`) = Q̄`(−1), with F acting by multiplication by p.

It is more difficult to show that
(3) H1

c (C̄, Q̄`) ' Q̄2g
` , as Q̄` vector spaces (not as Galois-modules!), where

g > 0 is the genus of C̄ (for an elliptic curve g = 1).
Moreover, there is a Galois-invariant perfect pairing

H1
c (C̄, Q̄`)×H1

c (C̄, Q̄`) −→ Q̄`(−1).

It follows that if α is one of (the complex conjugates of) the eigenvalues of F on
H1
c (C̄, Q̄`), then p/α is one also. Hence from Theorem 11.37, since Q̄` is pure of

weight 0, one deduces that |α| = √p. Thus

|C(Fn)| = pn + 1−
2g∑
i=1

αni

where the αi ∈ Q̄ are the eigenvalues of F on H1
c . Estimating trivially now, we get∣∣∣|C(Fn)| − (pn + 1)

∣∣∣ 6 2gpn/2

recovering the Riemann Hypothesis, and in particular, Theorem 11.25 for the case
g = 1.

In the case of exponential sums (11.43), the sheaf F is pure of weight 0, hence
denoting

d(F) = max{i | Hi
c(Ū ,F) 6= 0},

we derive directly from (11.50) and (11.51) the bound

(11.52) |Sn| 6
∑

06i6d(F)

biq
ni/2,

for n > 1 and, in particular,

(11.53) |Sn| 6 qnd(F)/2
(∑

i

bi

)
.

As in the case of Kloosterman sums, the exponent d(F)/2 is best possible in this
inequality. The bound d(F) 6 2d gives a trivial estimate (because U is smooth
of dimension d, it has about qnd points, as proved by the Riemann Hypothesis for
the trivial sheaf Q̄`). Any improvement of this trivial bound is equivalent with
H2d
c (Ū ,F) = 0, and the square root cancellation often expected from heuristic

reasonings is equivalent with Hi
c(Ū ,F) = 0 for i > d. Although not always true,

this turns out to hold “generically”, as the analytic intuition suggests (see for
instance Theorem 11.43 below).
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For the exponential sums (11.43) we have d(F) < 2d, unless F is the trivial
sheaf Q̄`, so there is always a non-trivial bound. This follows from (11.49), since
F is of degree 1 so the space of co-invariants is either the whole space (meaning
the representation is trivial) or 0. However, this small gain is usually insufficient in
applications.

Another surprising consequence of Deligne’s result and the discreteness of in-
tegers is the following “self-improving” statement:

Corollary 11.38. Let Sn be an exponential sum as in (11.43) and F the
associated sheaf. Suppose w > 0 is an integer such that

|Sn| � qw/2+δ

for some δ ∈ [0, 1
2 [ and n > 1. Then we have d(F) 6 w, hence |Sn| � qw/2.

A second issue in applying the estimates (11.52) or (11.53) in the context of
applications to analytic number theory is that we usually have F = Z/pZ, with the
prime number p varying. In this case, whereas the variety U can be defined over
Q (or Z) so that the sum is, for all p, over the Fp-points of the reduction Up of
U modulo p, the sheaves Fp genuinely depend on p (see the equation (11.45)), i.e.
there is no theory of sheaves over U/Z giving each Fp by “reduction modulo p”.
(Katz has asked a number of times for such a theory of “exponential sums over Z”;
see e.g. [K2], but it remains elusive.) Thus, the Betti numbers

bi(p) = dimHi
c(Ūp,Fp)

of the cohomology groups can depend on p, and the applicability of the results
above would be ruined, even with the Riemann Hypothesis, if these dimensions
were not bounded in a reasonable way in terms of p.

This is in fact the case. The first general result in this direction is due to
Bombieri [Bo4] for additive character sums (11.43) where f = 1, and was general-
ized by Adolphson and Sperber [AS1], [AS2] for general sums (their methods are
p-adic, based on Dwork’s original ideas). In general, those results bound the Euler
characteristic

χc(F) =

2d∑
i=0

(−1)i dimHi
c(Ū ,F) =

∑
06i62d

(−1)ibi,

of a sheaf F on U/F, but further arguments of Katz [K5] show how to deduce
bounds for

σc(F) =

2d∑
i=0

dimHi
c(Ū ,F) =

∑
06i62d

bi,

(hence for bi 6 σc(F)) from those for χc(F).

Theorem 11.39. Let U/Q be a smooth variety over Q, f and g functions
on U with f invertible. Let ` be a prime number and for all p 6= ` such that the
reduction Up of U modulo p is smooth, let χ and ψ be any multiplicative and additive
characters of Fp. Let Fp be an `-adic sheaf on Up such that∑

x∈U(Fpn )

χ(Nf(x))ψ(Tr g(x)) =
∑

x∈U(Fpn )

Tr (Fx | Fp)
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for n > 1. We have σc(Fp) 6 C where C is a constant depending only on U , f and
g.

A simple explicit bound is given in [AS3] if f(x) = 1, so only the additive
characters occur, and g is a Laurent polynomial on U = (Q̄−{0})d. The sums over
Z/pZ in question are therefore sums in d variables of the type

(11.54) Sf,p =
∑

x1,... ,xd∈(Z/pZ)?

ψ(f(x1, . . . , xd))

where f ∈ Q[x1, x
−1
1 , . . . , xd, x

−1
d ] is a non-zero Laurent polynomial. Writing

f =
∑
j∈J

ajx
j

for some (finite) set J ⊂ Zd, the Newton polyhedron W (f) of f is defined to be the
convex hull in Rd of J ∪ {0}.

Proposition 11.40. With the above assumptions, denoting by Ff,p the asso-
ciated sheaf for the sums Sf,p, we have

|χc(Ff,p)| 6 d!Vol (W (f)),

σc(Ff,p) 6 10dd!Vol (W (f))

for any p not dividing the denominator of any coefficient of f , where Vol (W (f)) is
the volume of the Newton polyhedron in the subspace spanned by W (f) in Rd, with
respect to Lebesgue measure.

Note that by using exclusion-inclusion and detecting polynomials equations by
means of multiplicative characters, one can use combinations of sums of the type
(11.54) to describe much more general ones. Also, in many cases, one can show that
all the odd (or even) cohomology groups vanish, in which case |χc(F)| = σc(F).
See also Theorems 11 and 12 of [K5] for explicit estimates in quite general cases.

We now give examples of computations using these fundamental results. For
exponential sums arising in analytic number theory, one often needs nothing more, if
one uses skillfully some other simple tricks such as averaging over extra parameters
to analyze the weight of the roots.

Example 1. The Kloosterman sums S(a, b; p) for ab 6= 0 can be treated using
Proposition 11.40 with d = 1 and f(x) = ax + bx−1. Then W (f) is the interval
[−1, 1]. By Proposition 11.35, we have H0

c = H2
c = 0 in this case since U =

P1 − {0,∞} is not projective, so σc = −χc. By Theorem 11.37, H1
c is mixed of

weight 6 1. Hence we recover the Weil bound:

|S(a, b; p)| 6 σcp1/2 6 2p1/2.

(Of course, in fact we have b1 = 2 and the last inequality is an equality).

Example 2. The previous example generalizes to the multiple Kloosterman
sums defined by

(11.55) Kr(a, q) =
∑

x1···xr=a

e
(Tr (x1 + · · ·+ xr)

p

)
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for r > 2 and a 6= 0, so K2(a, p) = S(a, 1; p) (see [Bo4], [De1]). Without appealing
to the L-function, one can nevertheless get some information by averaging over a.
We get

(11.56)
∑
a6=0

|Kr(a, q)|2 = qr − qr−1 − · · · − q − 1.

Hence |Kr(a, q)| 6 qr/2. To improve this elementary bound we appeal to the
following Lemma

Lemma 11.41. Given a finite set of distinct angles θi modulo 2π and complex
numbers αi we have ∑

n6N

∣∣∣∑
i

αie(nθi)
∣∣∣2 = N‖α‖2 +O(1)

where the implied constant does not depend on N . Hence

(11.57) lim sup
n→+∞

∣∣∣∑
i

αie(nθi)
∣∣∣ > ‖α‖.

Proof. We have∑
n6N

∣∣∣∑
i

αie(nθi)
∣∣∣2 = N

∑
i

|αi|2 +
∑∑
i6=j

αiαj
∑
n6N

e(n(θi − θj)).

The inner sum is bounded by a constant independent of N , so the first result follows
and (11.57) is an obvious consequence. �

From (11.56) and (11.57) it follows that among the Kr(a, q), there is at most
one root of weight r, say for Kr(a0, q), and all other roots are of weight 6 r − 1.

Notice that Kr(a0, q) ∈ Q(µp), the cyclotomic field of p-th roots of unity. Using
the Galois action on Q(µp), the conjugates of Kr(a0, q) are Kr(a0v

r, q) for v ∈ F?p.
By the Riemann Hypothesis, this means that the conjugate of the root ξ of weight
r is still a root of weight r for Kr(a0v

r, q). Hence vr = 1 for all v ∈ F?p, which is
only possible if p− 1 | r. In particular all roots are of weight 6 r − 1 if p > r + 1.
One therefore gets by Proposition 11.40

(11.58) Kr(a, q)� q(r−1)/2

where the implied constant depends only on r.
In the case of Kloosterman sum the Newton polyhedron is the simplex with

vertices (1, 0, . . . , 0), . . . , (0, . . . , 0, 1), (−1, . . . ,−1) whose volume is 1/r!. More-
over, it is known that the zeta function is a polynomial so χc = −σc and we get
the precise estimate

|Kr(a, q)| 6 rq(r−1)/2.

This was first proved by Deligne [De3], without any assumption on p and r.
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Example 3. Here is another higher-dimensional example. In [CI1], the fol-
lowing exponential sum over finite fields appears:

(11.59) W (χ, ψ; p) =
∑

x,y mod p

χ(xy(x+ 1)(y + 1))ψ(xy − 1)

where p is prime, χ is a non-trivial quadratic character modulo p and ψ is any
multiplicative character modulo p.

Theorem 11.42 (Conrey-Iwaniec). There exists an absolute positive con-
stant C such that

(11.60) |W (χ, ψ; p)| 6 Cp

for all p and all ψ as above.

The first step of the proof is to apply Theorem 11.34 to say there exists an
`-adic sheaf F on the algebraic surface

U = {(x, y) | xy(x+ 1)(y + 1) 6= 0},

pure of weight 0 for which we have, for q = pn, n > 1, the formula

W (χ, ψ; q) =
∑

x,y∈U(Fq)

χ(N(xy(x+ 1)(y + 1)))ψ(N(xy − 1))

=
∑

x,y∈U(Fq)

Tr (F(x,y) | F).

The Lefschetz trace formula (11.47) takes the form

W (χ, ψ; q) =

4∑
i=0

(−1)iTr (Fn | Hi
c(Ū ,F)).

By Theorem 11.37, each Hi
c(Ū ,F) is mixed of weights 6 i. Let (αν , iν , wν) be the

family of eigenvalues of F acting on the whole cohomology (with multiplicities),
together with their index and weight. We have |αν | = pwν/2 and

W (χ, ψ; q) =
∑
ν

(−1)iναmν .

By Theorem 11.39 in this case, the total number of roots αν is bounded by a
constant independent of p. Thus, we gain on the trivial bound W � p2 if wν 6 3
(instead of 4), and the statement of the theorem is that wν 6 2.

The second step is to show that there is at most one root of weight > 3 (actually,
it must be = 3) and, if it exists, then ψ = χ is the non-trivial quadratic character.
This will be derived from the following average formula:

(11.61) A =
1

q − 1

∑
ψ

|W (χ, ψ; q)|2 = q2 − 2q − 2.
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To prove this formula, open the square and sum over ψ first getting by the orthog-
onality of characters

A =
∑∑
u1v1=u2v2

χ(u1v1(u1 + 1)(v1 + 1))χ̄(u2v2(u2 + 1)(v2 + 1))

=
∑∑
u1,v1,u2

χ((u1 + 1)(v1 + 1))χ̄((u2 + 1)(u1v1 + u2))χ(u2)

(where we shorten the notation from χ ◦N to χ). Next the summation over u1 is
performed giving

B(v1, u2) =
∑
u1 6=0

χ(u1 + 1)χ̄(u1v1 + u2) =

{
χ̄(v1)(q − 2) if u2 = v1,

−χ̄(v1)− χ̄(u2) if u2 6= v1.

Then the sum over u2 is performed giving∑
u2 6=0

χ̄(u2 + 1)χ(u2)B(v1, u2) = qχ̄(v1 + 1) + χ̄(v1) + 1,

and finally the sum over v1 gives

A =
∑
v1 6=0

χ(v1 + 1)
(
qχ̄(v1 + 1) + χ̄(v1) + 1

)
= q(q − 2)− 2.

From (11.61), using Lemma 11.41, it is clear that for all ψ and ν we have
wν 6 3 and moreover, wν 6 2 except for at most one root, for one character ψ. If
this case occurs for ψ, it happens for ψ̄ too, so the only possibility is ψ being a real
character. Since

W (χ, 1; q) =
(∑

u

χ(u(u+ 1))
)2

= 1,

we must have ψ = χ.
The last step is to treat the case ψ = χ separately. Precisely, one can show

that

|W (χ, χ; q)| 6 4q

for any p and q = pn. This is done in a purely elementary manner without appealing
to the Riemann Hypothesis, and we refer to [CI1] for the details. In fact, W. Duke
showed that W (χ, χ; p) = 2Re (J2(χ, ξ)), where J(χ, ξ) is the Jacobi sum and ξ
is a quartic character modulo p ≡ 1 (mod 4). Also W (χ, χ; p) is the p-th Fourier
coefficient of the modular form η(4z)6 of weight 3 and level 12.

When U is not a curve, numerous geometric subtleties can be involved in dealing
with the non-trivial cohomology groups Hi

c with i 6= 0, 2d. Here are two general
bounds, among many: the first one is due to Deligne [De1], and the second is the
recent version in [FK] of a general “stratification” theorem of Katz and Laumon.

Theorem 11.43. (1) Let f ∈ Z[X1, . . . , Xm] be a non-zero polynomial of
degree d such that the hypersurface Hf in Pm−1 defined by the equation

Hf : fd(x1, . . . , xm) = 0,



312 11. SUMS OVER FINITE FIELDS

where fd is the homogeneous component of degree d of f , is non-singular. For any
p - d such that the reduction of Hf modulo p is smooth, any non-trivial additive
character ψ modulo p and any n > 1 we have

(11.62)
∣∣∣ ∑ · · ·

∑
x1,... ,xm∈Fpn

ψ(Tr (f(x1, . . . , xm)))
∣∣∣ 6 (d− 1)mqnm/2.

(2) Let d > 1, n > 1 be integers, V a locally closed subscheme of AnZ of dimen-
sion dimV (C) 6 d and f ∈ Z[X1, . . . , Xn] a polynomial.

Then there exists C = C(n, d, V, f) and closed subschemes Xj ⊂ AnZ of relative
dimension 6 n− j such that

Xn ⊂ . . . ⊂ X2 ⊂ X1 ⊂ AnZ

and for any rational function g non-zero on V , any h ∈ (Z/pZ)n −Xj(Z/pZ), any
prime p, any non-trivial additive character ψ and multiplicative character χ modulo
p, we have ∑

x∈V (Z/pZ)

χ(g(x))ψ(f(x) + h1x1 + · · ·hnxn) 6 Cp
d
2 + j−1

2 .

Note that in (1), subject to a geometric condition on Hf , we obtain square root
cancellation in the exponential sum. In (2) the assumptions are much less stringent,
but the conclusion is weaker: we have a family of exponential sums parameterized
by h ∈ An, and roughly speaking we have square root cancellation for “generic”
sums (for h outside an exceptional subvariety X1 of codimension > 1 in An), while
worse and worse bounds can occur only on smaller and smaller subvarieties. We
will give an application of (2) in Chapter 21.

The `-adic theory and formalism are much more developed than what we have
surveyed here. It can also deal with sums over singular varieties, but the necessary
algebraic notions become rather formidable, and we concede being unable to discuss
the perverse sheaves that arise in more advanced situations.

We wish to emphasize, however, that this theory is also particularly well-suited
to the study of families of exponential sums. The parameters defining those, say Sx,
are most naturally themselves points on some algebraic variety X/F. In favorable
circumstances there exists a lisse `-adic sheaf F on X (corresponding to an action
of π1(X) on V ) such that

(11.63) Sx,n = Tr (Fnx | V )

for every value of the parameter x ∈ X and any n > 1. For example a non-zero
polynomial f of degree 6 d over F can be described as an F-rational point of the
affine parameter space X = Ad+1 − {0} by

f =

d∑
i=0

aiX
i 7→ (a0, . . . , ad).

There is an `-adic sheaf F on X such that∑
x∈Fn

ψ(f(x)) = Tr (Fnx | V ).
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Purity of a sheaf satisfying (11.63) depends on a first application of the Riemann
Hypothesis. If it holds, the application of the `-adic theory typically results in
equidistribution statements (following from [De2]) for the arguments of the expo-
nential sums. This equidistribution is in some space of conjugacy classes of the
“monodromy group” of the situation. We refer for instance to [KS] for a very lucid
introduction to these profound aspects.

11.12. Comments.

In this closing section we give some impressions about how the exponential
and character sums over finite fields interact with analytic number theory. There
are more subtle issues between the two subjects than just applications of results
concerning the first one for solving problems of the latter. We could be quite specific
by covering completely a few representative examples, but it would be long and not
transparent enough. Rather we decided to discuss principles, ideas and tricks in
general terms and guide the reader to particular publications.

First of all some exponential sums appear when one uses Fourier analysis to
get a hold on the sequence under investigation. There are no finite fields in the
background, so the resulting sums are not immediately related to objects of alge-
braic geometry. However, one can complete these sums (by another use of Fourier
analysis) and then factor them into sums of prime power moduli. Usually one can
evaluate these local sums explicitly, or give strong estimates by elementary or ad
hoc methods, except when the modulus is prime. But in the prime case one may
naturally consider the sum as being over a finite field. This scheme allows us to
appeal to the powerful results from algebraic geometry. However, the drawback of
finishing by estimates for every complete sum individually is that one cannot exploit
a possible cancellation from extra variables offered by the varying moduli (finite
fields of different characteristics do not interact in algebraic geometry). Sometimes
a kind of reciprocity formula can help turn the modulus into a variable (see for
example [I11] or [M3]). Another scenario is that the sums over modulus appear
in the spectral resolution of a differential operator, in which case the spectral the-
ory produces estimates far stronger than those derived by algebraic geometry. For
example, this is the case of sums of Kloosterman sums; see Chapter 16. One can
also think this way about the real character sums with cubic polynomials; they
are coefficients of a cusp form associated with an elliptic curves, so the modularity
gives extra cancellation in summation over the modulus.

As a rule the exponential/character sum of a given modulus which comes out of
analytic number theory is incomplete. This itself is not a problem because various
completing techniques are available as mentioned above. Completing is a natural
step to take, but is it useful or wasteful? At this point one should realize that a
bound for a complete sum holds essentially the same for the original incomplete
sum. This means that the result is relatively weaker for a shorter sum. Still it is
non-trivial when the length of the original sum is larger than the square root of the
modulus. Very short sums cannot be treated this way. We do not have an absolute
recommendation when to complete or not a given incomplete sum. Our experience
suggests executing the Fourier method as long as the resulting summation over
the frequencies is shorter than the range of the original sum: at least one can feel
that one is progressing. But sometimes it is worth acting otherwise, accepting a
step backwards in this respect while opening a position for a stronger second move.
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For example, imagine that the amplitude in the exponential sum is not a rational
function, but nevertheless becomes one after an application of the stationary phase
method to the relevant Fourier transform. In this case the losses from the range
of summation can be recovered with extra savings by applications of algebraic
arguments (see Section 8 of [CI1], where this game is played in several variables
simultaneously).

Whatever the arguments which lead to complete sums may be, in the final step
one cannot beat the square root saving factor. Therefore to receive a non-trivial
result one must first produce somehow a sum with a number of terms larger than
the square root of the modulus. There are several ways to get started, depending
on the shape of the exponential/character sum. First, one can try to apply a Weyl
shift with the effect of squaring the number of terms. Similarly one may just square
the whole sum, or raise it to a higher power to produce even more points. Note
that shifting the variable and squaring the sum are not the same things; the first
requires some additive features of the variable while the latter nothing at all. These
operations seem to be quite superficial at first glance (we are taking essentially
replicas of the original sum), yet with ingenuity one can rearrange the points so the
summation goes in a skewed direction, the consecutive terms repel violently and
randomly producing a considerable cancellation. This is easy to say, much harder
to execute. In fact one needs many other devices, such as gluing several variables
with small multiplicity in order to arrive at a single variable over a range larger
than the square root of the modulus. One also must smooth out this composite
variable before applying algebraic arguments. Usually an application of Cauchy’s
inequality and enlarging the outer summation (due to positivity) does the job. A
powerful example how this works is given by Burgess [Bur1]. In this paper a short
character sum is estimated by an appeal to the Riemann Hypothesis for algebraic
curves. An interesting point is that after all the tricks one comes to a complete
character sum for a curve of a large genus, although the original sum is over a line
segment.

Different arguments for building one extra large variable are applied in [FI4],
consequently the final complete sum comes in three variables, or equivalently in four
variables over a hypersurface. Here the Deligne theory applies (see the Appendix
by Birch and Bombieri), although the related variety is singular. One should not
be surprised and afraid of that singularity, because, after all, the process of creating
more points of summation at the start is quite superficial. In this game one must
be experienced when mixing the points to be sure that it is quite random. Another
interesting case of creating and estimating exponential sums in three variables is
given by N. Pitt [Pi].

Applications of the Riemann Hypothesis for curves over finite fields are by
now customary. Much less successful are the use of genuinely higher-dimensional
varieties. There are reasons for the difficulties involved. First of all when more
variables appear, stronger restrictions are imposed on them which are harder to
resolve (a kind of uncertainty principle). Just imagine having an abundance of
points to work with, but which are not free because of some side conditions. For
example how would you cope with a requirement that the determinants of a family
of elliptic curves match the conductors?



11. SUMS OVER FINITE FIELDS 315

Of course, there are also direct applications of the Riemann Hypothesis for
varieties to traditional problems of solvability of diophantine equations by means
of the circle method (see examples in Chapter 20). If the number of variables is
sufficiently large, one needs nothing to manipulate, except for completing the sum
by the standard Fourier method. Some ingenuity, however, is required to apply
the circle method (a variant of Kloosterman) to treat diophantine equations with a
relatively small number of variables, an excellent example being the work of Heath-
Brown on cubic forms [HB6].

It is possible in some circumstances to beat the bound for exponential sums
which is derived by the Riemann Hypothesis. This is because the angles of the
roots of the L-function themselves vary so that additional cancellation may occur.
Deligne and Katz have established such occurrences for families parameterized by
points on curves or varieties. In other words, in their cases one is actually con-
sidering exponential sums in more variables. However, the cancellation of roots
can also occur for families parameterized by points over small irregular sets. More
important for analytic number theory is that these sets can be quite general, no
structure of a subvariety is needed, but instead a kind of a bilinear form struc-
ture would suffice. In practice it is not clear how to work with the roots, so one
returns to the corresponding exponential sums where manipulations with the pa-
rameters (grouping, gluing, etc.) can be performed properly according to the shape
of the involved rational function which is seen with the naked eye. In this process
one must not destroy the complete variables since in our mind the corresponding
summations are already executed in terms of the roots. Therefore when applying
Cauchy’s inequality to smooth the one variable composed out of the parameters,
we put all the complete variables to the inner summation, say n of them, together
with some remaining parameters which where not used in the composition. These
inner parameters are critical for enlarging the diagonal. After squaring out we get
a complete exponential sum in 2n + 1 variables which depends on the inner pa-
rameters. Except for a few configurations of those, the complete exponential sum
satisfies the best possible bound derived from the Riemann Hypothesis, thus saving
the factor of square root of the modulus per each variable. Since the number of
variables is larger than twice the original, we win the game. The above recipe is
somewhat oversimplified, yet it reveals the source of extra saving. One can see how
it works in the particular case of [CI1]. Speaking of [CI1] we would like to add that
here the exponential/character sums in several variables emerge after applications
of harmonic analysis with respect to the hyperbolic Laplace operator rather than
by the traditional Fourier analysis.

The profound theory of Deligne and other geometers is being used in analytic
number theory with spectacular effects, yet more ideas need to be invented to
fully exploit its potential. Perhaps one should go beyond borrowing estimates and
penetrate deeply inside the theory. This is a great subject for future research. P.
Michel [M3] made the first significant steps (see also [FK] and [KS1]).



Bibliography

[AS1] A. Adolphson and S. Sperber, On twisted exponential sums, Math. Ann. 290 (1991),

713–726.

[AS2] A. Adolphson and S. Sperber, Character sums in finite fields, Compositio Math. 52
(1984), 325–354.

[AS3] A. Adolphson and S. Sperber, Newton polyhedra and the total degree of the L-function

associated to an exponential sum, Invent. math. 88 (1987), 555–569.
[Ahl] L. Ahlfors, Complex Analysis, McGraw Hill, 1978.

[AM] M. Atiyah and I.G. MacDonald, Introduction to commutative algebra, Addison-Wesley,

1969.
[AL] A.O.L Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann. 185 (1970), 134–

160.

[At] F. V. Atkinson, The mean value of the zeta-function on the critical line, Proc. London
Math. Soc. (2) 47 (1941), 174–200.

[B] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, 1990.
[BH] R. Baker and G. Harman, The difference between consecutive primes, Proc. London

Math. Soc. 72 (1996), 261–280.

[Ba] W. Banks, Twisted symmetric-square L-functions and the nonexistence of Siegel zeros
on GL(3), Duke Math. J. 87 (1997), 343–353.

[Ba] M. B. Barban, The “large sieve” method and its application to number theory, Uspehi

Mat. Nauk 21 (1966), 51–102; English transl. in Russian Math. Surveys 21 (1966),
49–103.

[BG] J. Bernstein and S. Gelbart, An introduction to the Langlands program, Birkhaüser,
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[Rey] É. Reyssat, Quelques aspects des surfaces de Riemann, Progress in Math. 77, Birk-
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