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Solidification of Fluids
M. G. WORSTER

1 Introduction

It is a matter of common experience that liquids become solid when cooled
sufficiently. Rain falls as hail or snow when the weather is cold, frozen
ponds can be walked upon, toffee becomes hard and brittle when removed
from the heated pan, and hot lava flowing destructively over the landscape
cools to form a new passive terrain of solid rock. Moreover, the production
of solids from liquids has been important technologically since the earliest
ages of mankind, as tools, weapons and ornaments began to be fashioned
from bronze, iron and gold. And as we enter the 21st century, the produc-
tion and processing of materials from melts has increasing prominence, for
example in the growth of large, single crystals for the fabrication of semi-
conductor wafers and in the casting of high-performance turbine blades for
the aerospace industry.

Solidification, the transformation of liquid into solid, requires the removal
of heat, first to cool the liquid to its freezing temperature, then to effect the
transformation itself. Because heat can be carried by a flowing liquid, we
can appreciate immediately that fluid mechanics plays a significant role in
the solidification of fluids.

But this is only part of the interest that solidification can hold for fluid
dynamicists. The dynamical behaviour of fluids is determined by the forces
that act on them and the geometry of the domains in which they flow. The
cooling associated with solidification creates density gradients and hence
buoyancy forces that can drive convection of the liquid being solidified. At
the same time, the interface between solid and liquid forms a free boundary
that deforms in response to the heat transferred to it and hence responds
to the flow. Indeed, in many circumstances the interface is unstable, prone
to form corrugations that can develop into the sort of branched structures
typical of snowflakes.
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394 M. G. Worster

This is particularly true when the liquid is not pure. When a second
component is dissolved in the liquid, the solid that forms usually has a
different composition than the liquid (ice grown from salt water is almost
pure), and the rejected component must be transported away from the
solidification front. Such transport is enhanced near protrusions of the solid
into the liquid, which therefore grow more rapidly; the interface is unstable.
Fluid flow influences this transport, and there have been many attempts to
use fluid flow to control the morphology of the phase boundary.

A consequence of these instabilities can be the formation of a mushy
region, a region in which the solid-liquid interface has become so convoluted
that the solid forms a matrix of crystals bathed in the remaining liquid. From
a macroscopic, fluid-mechanical point of view, the mushy layer is a porous
medium. It is a reactive porous medium because continued solidification
of the solid matrix or, indeed, its dissolution changes its permeability. In
many solidification problems of practical interest it is necessary to solve the
equations of fluid motion in a liquid region and couple that flow with the flow
calculated in a neighbouring mushy region. It is the intimate coupling of fluid
mechanics, heat and mass transfer in different media and the determination
of the free boundaries between them that makes solidification such a rich
and fascinating subject for fluid dynamicists.

2 Some fundamentals of solidification
2.1 The Stefan condition

During solidification, randomly moving liquid molecules become attached
and incorporated into the crystalline lattice of the solid. Their loss of entropy
results in the liberation of heat which must be transported away if solidifi-
cation is to proceed. If the local rate of solidification is ¥, (see figure 1)
then the rate of release of latent heat per unit area is psLV, where p; is the
density of the solid and L is the latent heat per unit mass. Conservation
of heat requires that this be balanced by the net heat flux away from the
interface, which gives us the Stefan condition

psLVy =n-q,—n-q, (2.1)

where ¢ is the local heat flux vector, n is a unit normal pointing into the
liquid and subscripts s and [ refer to properties of the solid and liquid
respectively. Throughout the solid, heat transfer is by conduction alone and

g;=—ksVT, (2.2)
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Figure 1. Schematic diagram of the local heat balance at a solidification front. The
latent heat released per unit area in time ¢ is p;V, Lot while the heat transported

away is (n-q; —n- g,)ot.

where k is the thermal conductivity and T is the temperature field. In the
liquid, heat transfer may be enhanced by convection. Though q; is given by
an expression similar to (2.2) at the solidification front, often the convective
heat flux is parameterized and we shall leave equation (2.1) in its general
form for the time being.

2.2 Two simple Stefan problems

As a simple illustration of the role of latent heat, consider the solidification
from a cooled boundary of a pure melt initially at its equilibrium freezing
temperature T,, (figure 2a). For simplicity, in this section, the material
properties of the solid and liquid phases are assumed to be equal, and the
defining subscripts are omitted. Solid occupies the region 0 < z < h(z), the
boundary z = 0 is maintained at temperature Tp < Tp, and the solid—liquid
interface is assumed to be at temperature T,,. The temperature field in the
solid satisfies the diffusion equation

oT K62T

ot 0z2
where x = k/pC, is the thermal diffusivity of the solid and C, is its specific
heat capacity, and boundary conditions

(2.3)

T=Tz (z=0), T=Tn (z=h@). (2.4a, b)

The moving position of the solid-liquid interface h(t) is determined by heat
conservation as expressed by equation (2.1), which can be written

pLh = kaa—: . (2.5)

z=h—
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Figure 2. (a) Solidification of a melt from a cooled boundary at z = 0. The latent
heat is conducted back through the solid to the boundary. (b) In contrast, when a
crystal nucleates and grows into a supercooled melt, the latent heat is conducted
into the liquid. Here, the line z = 0 is a symmetry plane of the one-dimensional
crystal.

Equations (2.3)—(2.5) admit a similarity solution

T= TB = (Tm - TB):E—?} ) I‘l(t) = 2}»@, (26(1,b)
where
2 [,
erfx = — e du
JT Jo
is the error function and
= .7

LW

is a similarity variable. The coefficient A, which is a measure of the solidifi-
cation rate, satisfies the transcendental equation

G(1) = Jmae"erfl = S7! (2.8)

where the Stefan number

L

| SR  B—
Cp( Tm - TB )

(2.9)
is the ratio of the latent heat of solidification to the sensible heat required
to cool the newly formed solid to the boundary temperature. The solution
to equation (2.8) is displayed in figure 3(a). We see that 1 decreases as S
increases; the solidification rate is slow when the latent heat is large.

A useful approximation can be made when the Stefan number is large.
Because the solidification rate is then small, the temperature field in the solid
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Figure 3. The scaled growth rates A as functions of the Stefan number § predicted
from the models illustrated in figure 2. The dashed curve in (a) is the result of the
quasi-stationary model. The asymptote in (b) is at § = 1.

region is quasi-steady, hence linear, and the Stefan condition (2.5) can be
approximated by
(Tm - TB )

- (2.10)

pLh ~k

This equation is readily solved to give

[21ct 1
he~ oy —, ie. Ay —— . 2.11

The dashed curve in figure 3(a) shows that this gives a good approximation,
with less than 7% relative error for § > 2.

A similar, one-dimensional solution can be found when the liquid is
initially supercooled with temperature To, < Tp. In this case (depicted in
figure 2b), the solid is isothermal, with temperature T, the temperature in
the liquid satisfies the diffusion equation (2.3), and the Stefan condition gives

pLh = —ka—T ) (2.12)
0z z=h+

There is again a similarity solution

erfcy
T—To=Tn—To)_77> h= 20Kt (2.13)
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with, now,

_ 2 1 L
F(4) = \/mie* erfcd =571, where S T =T (2.14)
and the complementary error function erfcx = 1 — erfx.

The solution for 1 is displayed in figure 3(b), where we see that no solution
exists for § < 1. It is certainly possible to devise an experiment with S < 1
so the question remains: what happens in this case and why is the present
mathematical formulation inadequate?

2.3 Kinetic undercooling

The problem lies in the assumption that the solid-liquid interface has tem-
perature T),. The freezing temperature T}, is an equilibrium temperature at
which solid and liquid can coexist without change of phase. For solidifica-
tion to proceed, the phase boundary must have a temperature below T,
which is found to be related to the rate of solidification. The simplest case,
appropriate to interfaces that are molecularly rough (unfacetted), is that

Vn = g(Tm - T), (215)

where the kinetic coefficient ¢ is constant (Kirkpatrick 1975). With this new
boundary condition replacing (2.4b), there is no closed-form solution of the
equations for general values of the Stefan number but it is straightforward
to show that

h~% (T, — Ty, 1. (2.16)
Further, it can be shown that

h ~ 21\/5 as t—oo when §>1 (2.17)

and that
h~(1—-8)9(Ty—Tyw)t as t—o when S <1 (2.18)

(Umantsev 1985). Kinetic undercooling gives a finite solidification rate at
time zero, solidification rates remain finite for all time, and the similarity
solution is recovered asymptotically where it exists (S > 1). In general terms
we can say that when § > 1 the rate of solidification is controlled by the
rate of removal of latent heat, while for S < 1 the kinetics of molecular
attachment is rate controlling.

In the first case described above, of solidification from a cooled boundary,
kinetics plays a minor role, simply regularizing the solution at early times.
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We shall see later, however, that kinetics can play a major role when coupled
with convection of the liquid.

2.4 The Gibbs—Thomson effect

Solidification is intrinsically concerned with interfaces, and one of the funda-
mental properties of interfaces is that intermolecular forces acting between
the materials either side of them result in a surface energy. This manifests
itself at a fluid—fluid interface as a surface tension, which creates a pressure
jump across the interface when it is curved (see Chapter 1). The pressure
variations generated at a corrugated fluid—fluid interface drive flows in both
fluids that tend to restore the interface to a planar state. Excess surface
energy associated with a corrugated solid—melt interface similarly drives the
interface towards a planar state but the mechanism is different. Although
there is a pressure jump across a curved solid—melt interface, it is taken up
by elastic stresses in the solid and does not drive any flow. However, the
same intermolecular forces that give rise to surface tension change the phase
equilibria causing, in particular, the equilibrium freezing temperature to be
depressed when the interface is convex towards the liquid (at a crest). This
is expressed mathematically by the Gibbs-Thomson relationship

T,=Ty—IV-n, (2.19)

where T, is the equilibrium freezing temperature, n is the normal to the
interface pointing into the liquid, I' = yTy/psL, and y is the surface energy.
Note that V-n is the curvature of the interface. Thus heat flows from troughs
to crests, promoting solidification at the troughs and melting at the crests,
and the interface is driven towards a planar state.

2.5 Morphological instability

The ideas of diffusion-limited solidification and surface energy combine in
determining the stability of the one-dimensional solutions presented earlier.
As a simple illustration of the principal ideas,! consider a temperature field
given by

T(x,z,t) = Ty + Gz + felws—ertal (2.20)

! The analysis is presented here rather informally but can be derived rigorously from an asymptotic
analysis of the full governing equations when the characteristic wavelength of the disturbance is much
shorter than the diffusion length, i.e. in the limit & 3> AT /G = V /x. This can be justified a posteriori
as shown below.
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in the liquid region
z > {(x, 1) = Lelxtor (2.21)

These represent a sinusoidal perturbation to a planar solid—liquid interface
at z = 0 in a frame of reference fixed to the undisturbed interface and
the corresponding perturbation to the temperature field satlsfymg the quasi-
steady diffusion equation. The perturbation coefficients 6 and { are related
by the Stefan condition and linearized Gibbs—Thomson relationship,

,DL(V = Ct) =—kT, and T =Ty+TI{x (Z = () . (2-22aa b)

By substituting expressions (2. 20) and (2.21) into (2.22), and keeping only
those terms that are linear in 6 and C we obtain

pLol =ked and O+ GE=—To?¢, (2.23)

pL

There is a close mathematical analogy between this instability and the
Saffman-Taylor instability that occurs when a viscous fluid displaces a
more-viscous fluid in a porous medium or Hele-Shaw cell. The dispersion
relation (2.24) is identical in form to equation (2.26) of Chapter 2 and is
represented by a graph similar to figure 5 of that chapter.

We see that if G is positive (the temperature increases into the liquid) then
the growth rate of the perturbations o is negative; all disturbances decay
and the interface is stable. On the other hand, if G is negative then there is a
range of wavenumbers 0 < « < o, = 1/—G/I" in which the growth rate o is
positive. Disturbances with wavenumbers less than o. (wavelengths greater
than 27t/a.) will grow to form corrugations of the solid—liquid interface: the
interface is said to be morphologically unstable.

The instability arises because diffusion of heat between the interface and
the liquid is enhanced where the interface protrudes into the liquid, as
described in Chapter 2, figure 2, and in a review by Langer (1980). When the
liquid is supercooled (G < 0), heat is diffused away from the interface into
the liquid, preferentially at protrusions, which causes them to grow. Opposing
this tendency is the Gibbs—Thomson effect that causes perturbations to a
planar interface to decay, as we saw in the previous section.

The competition between these two effects selects a length scale for the
most unstable perturbations: diffusion is more rapid on small length scales,
which causes ¢ to increase with o; surface energy acts even more strongly



8 Solidification of Fluids 401

on smaller length scales, which causes ¢ ultimately to decrease with o.
The maximum growth rate is readily determined from (2.24) to occur at
o = o/~/3. This corresponds to a wavelength

AoC \/F/(—G) =/ Irlr, (2.25)

where It = AT /(—G) is a characteristic length scale for temperature varia-
tions and I = I' /AT is the so-called capillary length corresponding to an
undercooling of AT. Typical values of I7 and I are a few centimetres and a
few nanometres respectively, so I > Ir. Equation (2.25) expresses the rule
of thumb that the length scale characteristic of morphological instabilities is
the geometric mean of the diffusion length and the capillary length.

In this section we have seen how the rate of solidification of a pure melt
is usually constrained by the rate at which latent heat can be transported,
since the rate of molecular attachment is usually much faster than thermal
transport rates. In consequence, we have seen that when the Stefan number
is large, as is true in many practical applications, thermal diffusion fields
can be approximated as being quasi-steady. Finally, we have seen that
planar solidification fronts are morphologically unstable when the liquid is
supercooled. The rest of this chapter will build on these ideas to examine
the influence of fluid flow and to study the effects of dissolved solutes.

3 Convective heat transfer

The Stefan condition (2.1) expresses a balance between conductive heat
transfer through the solid phase, heat transfer through the melt and the
latent heat released at a solidification front. The heat flux carried by the melt
is enhanced by fluid motions, which may be forced by external agents (e.g.
stirring) or induced by buoyancy forces arising as the melt is cooled prior to
being solidified. In this section we shall explore the role of convective heat
transfer in determining the rate of solidification.

3.1 Flow near a stagnation point
One of the fundamental flows near a rigid boundary is the flow near a stag-
nation point, which is a ubiquitous feature of bounded flows and is therefore
important to understand in its own right. It is, in addition, convenient for
our present purpose since the heat transfer it induces is independent of
position parallel to the boundary and so its influence on solidification is
one-dimensional.

Consider a solid of uniform temperature T,, growing into a supercooled
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melt of temperature To, < T,,. Near a two-dimensional stagnation point at
the phase boundary, the stream function can be written as

w = Exd f(2/9) (3.1)

(Batchelor 1967, pp. 285 ff), where (x, z) are coordinates parallel and normal
to the boundary, with origin at the stagnation point, E represents the
strength of the (extensional) flow, § is a length scale normal to the interface
and f is a dimensionless function. Throughout this section we shall employ
the quasi-stationary approximation that the rate of solidification is slow
compared both with the fluid velocities involved and with the rate of heat
conduction. The velocity u = (1, —y) influences heat transfer via the steady
advection—diffusion equation

u-VT =«V?T. (3.2)

We can choose 6 = 1/ /E to balance the terms representing vertical advec-
tion and diffusion of heat, and write

T —Te =(Tm— Te)g(z/d). (3.3)

The dimensionless functions f and g satisfy the ordinary-differential equa-
tions

P"f”/ +ff” _flz —— , g// +fg’ — 0’ (3.461, b)

with respect to the single independent variable # = z/§ in which the Prandtl
number Pr = v/k, is the the ratio of the kinematic viscosity v to the thermal
diffusivity x. These equations are subject to the boundary conditions

f=f=0, g=1 n=0), (3.5a—c)

ff>1, g—=0 (n— o). (3.6a,b)

Conditions (3.5a—c) express the facts that there is no flow through the
boundary, that there is no slip and that the temperature is fixed, respectively.
The far-field conditions (3.6a, b) describe the imposed linear irrotational flow
u = (Ex,—Ez), p = Exz, and the far-field temperature. Once the equations
have been solved (see figure 4), the Stefan condition (2.1) can be used to
determine the rate of solidification as

V=—{?ﬁm. (3.7)

Note that g'(0) is negative, so the solidification rate is positive and increases
with the strength of the flow E. Note too that the ratio of the vertical
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Figure 4. (a) The horizontal velocity f' and (b) the temperature g as functions of
the similarity variable 5. Notice the reduction in thickness of the viscous boundary
layer relative to the thermal boundary layer as the Prandtl number Pr decreases.
(¢) The dimensionless solidification rate of a one-dimensional crystal growing into
a supercooled melt, towards an oncoming stagnation point, as a function of the

Prandtl number Pr. The solidification rate —g’(0) — /2/7t ~ 0.798 as Pr — 0. It
decreases as the Prandtl number increases and the influence of the flow diminishes.

velocity, —py ~ \/IC_E, to the solidification rate V is O(S), so the quasi-steady
approximation is valid when the Stefan number S is large.

The essential result, that in this case solidification is enhanced by the flow
(equation (3.7) shows that V oc +/E), can be understood as follows. Since the
solid is of uniform temperature T, all of the latent heat of solidification must
be transported through the melt. The effect of the flow towards the boundary
is to diminish the thickness of the thermal boundary layer 6 = 1/x/E, which
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steepens the thermal gradients, and increases the rate of heat transfer and,
hence, of solidification.

An important dimensionless parameter determining the strength of inter-
action between the velocity and thermal fields and hence the strength of
interaction between fluid flow and solidification is the Prandtl number Pr. In
a stagnation-point flow, vorticity is confined to a viscous boundary layer of
thickness 8, ~ /v/E = Pr'/25. Outside the viscous boundary layer the flow
is irrotational, w ~ (Ex,—Ez), and the vertical velocity varies linearly with
distance from the boundary. It is inside the viscous boundary layer that the
effects of the no-slip condition are felt: the vertical velocity is smaller there,
ultimately decreasing quadratically with distance from the boundary as the
boundary is approached. Thus when the Prandtl number is large, the thermal
boundary layer sits inside the viscous boundary layer and the influence of
the flow is weaker than when the Prandtl number is small. In the latter
case there is negligible change in temperature across the viscous boundary
layer, and the thermal field (and hence the solidification) is controlled by the
irrotational flow. It is straightforward then to show that, outside the viscous
boundary layer,

f~n, g ~ erfc (17/\/5) (3.8)
so that
' 2 1 /2xE
— _alZ ~ g 2 3.9
g(0) T and ¥ S T (39)

This result is valid for Pr < 1. Results for a range of Prandtl numbers are
displayed in figure 4, showing that indeed the influence of flow diminishes
as Pr increases, as has also been found for the more complex flow past a
needle crystal growing into a supercooled melt (see Xu 1994 for example).

The results of this simple analysis are fundamental to the understanding of
the influence of flow on morphological instabilities (§ 5) and the enhancement
by flow of the growth of isolated dendrites (see Glicksman & Marsh 1993
for a review).

3.2 Changing balances

When a melt is solidifying against a cooled boundary, all the heat lost
from the system is conducted through the solid to the boundary. The Stefan
condition (2.1) is best interpreted, in this case, by writing it in the form

n-q,=pLV,+n-q, (3.10)
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where 7 = —n is the unit normal pointing into the solid. Thus, instead
of thinking of the rate of solidification being controlled by the mismatch
between heat fluxes either side of the interface, we can think of the heat flux
through the solid towards the boundary being the sum of the latent heat
released and the heat flux from the melt. We shall see that most of the time
one or other of these dominates.

As an example, consider a simple model of ice growing on the surface of
the ocean. The upper boundary of the ice, in contact with the atmosphere, is
assumed to be at fixed temperature T, while the ocean is assumed to deliver
a constant flux of heat 7i- ¢, = F to the underside of the ice. By using the
quasi-stationary assumption for the heat flow in the solid, equation (3.10)
can be written in dimensionless form as

1 .
s=Sh+1, (3.11)

where the thickness of the layer i has been scaled with H = kAT /F, time
has been scaled with H?>/x and AT = T,, — Tg. The full solution of (3.11)
for h(t) is given implicitly by

—h=— (3.12)

but the inherent physical balances can most readily be understood in terms
of its asymptotic limits. At early times, solidification is rapid, and the release
of latent heat overwhelms the heat flux from the ocean. Equation (3.11) can
then be approximated by

1 :
7w~ Sh, (3.13)
which has the simple solution h ~ /2t/S, as we have seen before. At late
times, solidification is slow, latent heat release becomes negligible and there
is a balance between the heat flux from the ocean and that conducted back
through the solid. Equation (3.11) shows simply that & ~ 1 at this stage. In
practice, as Tg and F vary diurnally and seasonally, this thermal balance
is maintained; the thickness of the ice varies secularly with the changing
boundary conditions, little influenced by considerations of latent heat.

In a confined system, such as in a casting or magma chamber, the balance
of fluxes can change more than once. Imagine, for example, a rectangular
mould which is cooled through its top boundary, while the remaining bound-
aries are insulated. The melt is initially hotter than its freezing temperature
and cools as heat is transferred by thermal convection to the solidification
front and thence by conduction to the cold upper boundary. The convective
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heat flux from the melt can be approximated by

- 1/3
ieay = 2k( ) (1= T, 3.14)
when the Rayleigh number is large (see Chapter 6), where T; is the tempera-
ture of the melt, « is the coefficient of thermal expansion, g is the acceleration
due to gravity and 1 is a constant. Equation (3.10) becomes

]—11 = (S + COh+ FCH*? (3.15)

and is augmented by
(1—h)) =—703, (3.16)

which describes the cooling of the melt (Huppert & Worster 1991). Here, h
has been scaled with the initial depth of the melt H, time with H?/x, and
0 = (T1 — Ty)/(To — Tn), where Ty is the initial temperature of the melt.
The dimensionless parameters are the Stefan number § = L/Cp(Ty, — TB),

TO - Tm

O=t—cn
Tm_TB

(3.17)

_ 3\ 1/3
and EQ/-,-':A(OCg(TO ’1—;71)H > .

KV

The additional term C6 inside the brackets on the right-hand side of (3.15)
represents the sensible heat required to cool the melt to its freezing temper-
ature.

Equations (3.15) and (3.16) are subject to the initial conditions
h=0, 0=1 (8 =0). (3.18)

These equations do not have a closed-form solution but can readily be solved
numerically. At very early times before the melt has cooled significantly (so
0 ~ 1) the dominant heat balance is between conduction through the solid
and latent-heat release,

% ~ (S + C)a, (3.19)

leading to the characteristic growth proportional to the square root of time,

h~ /2t/(S + C).
This growth is quickly arrested by the heat flux from the melt and the
balance becomes

% ~ FCH3 . (3:20)

If the temperature of the melt were to remain fixed then there would be no
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further growth. But the cooling of the melt, determined by
0 ~ —F0*3 (3.21)

(an approximation to (3.16) given that h is still small), allows the secular
growth of solid, according to (3.20). These approximate equations are readily
solved to give

0~ (1+17)7 ., h~ 2 (14 1) (3.22)

’ FC 2 ’

from which we see that the rate of solidification actually increases with time.
Eventually, however, the melt is cooled to a temperature close to T, the
convective heat flux is diminished and a balance between conduction and
latent-heat release is re-established. Since then 0 is close to zero, h ~ /2t/S,
so the continuing growth of solid is faster than it would have been had there
been no convection. The overall result is that, though convection retards
solidification for a while, ultimately it causes a casting to become completely
solidified more quickly, starting from a given initial temperature.

4 Binary alloys

Everything described so far applies strictly only to pure melts: pure water,
pure silicon and pure copper, for example. Yet few liquids are actually pure:
sea water contains many dissolved salts, predominantly sodium chloride;
silicon is deliberately doped with other chemicals during the production of
semi-conducting crystals; and copper is mixed with lead or zinc to produce
bronze or brass. In common parlance, the word alloy is usually only ascribed
to metallic mixtures. But, in terms of the way these liquids solidify, at least as
far as the macroscopic issues of heat and solute transport are concerned, all
multi-component liquids can be considered as alloys. Though many melts of
interest (molten lavas and modern ‘super alloys’, for example) are composed
of several distinct species, much of the fundamental behaviour of solidifying
alloys can be learned from a study of alloys composed of just two species,
so-called binary alloys, and that will be our focus here.

We shall further confine our attention to simple binary eutectics. These are
characterized by having a phase diagram similar to that depicted in figure 5
and include many systems of interest: most aqueous salt solutions; many
metallic alloys; and a number of mineral mixtures. Their predominant char-
acteristic is that they remain liquid at temperatures lower than the freezing
temperature of either of their pure constituents. A well-known example of
this is that salt water remains liquid at sub-zero temperatures, which is why
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Figure 5. The equilibrium phase diagram of a typical eutectic binary alloy. The
shaded regions show what phases exist in equilibrium in a sample of bulk compo-
sition C and uniform temperature T. When the temperature is above the liquidus
curve, the sample is completely liquid. The almost vertical lines in this region of the
diagram are density contours. The density of the liquid decreases as the temperature
increases but increases more strongly as the concentration of the liquid increases.
In the region between the liquidus and the solidus, solid and liquid can co-exist in
equilibrium, with the composition of the liquid phase equal to the liquidus concen-
tration and the composition of the solid phase equal to the solidus concentration at
the given temperature. This is the state of the interior of an ideal mushy layer (§6).
In general the solid phase is a solid solution of the two components of the alloy:
molecules of one component of the alloy are incorporated within the lattice of the
other. In many cases the lattice parameters are such that solid solutions are not
possible and the solid phase is almost pure, as shown on the left of the diagram.
Below the eutectic temperature Tg a composite solid forms composed of crystals of
both of the end members of the alloy. In many mathematical studies the liquidus is
taken to be linear, as shown on the left.

salt is scattered onto icy roads. The temperature at which an alloy begins to
freeze is called the liquidus temperature Tp(C), which is a function of the
composition C of the melt. [Throughout the remainder of this chapter we
shall denote by C the concentration (in weight percentage) of that compo-
nent which makes the melt more dense. In the case of salt water, for example,
C will denote the concentration of salt] Another common experience is that
adding water to salt causes the salt to dissolve — again, the mixture is liquid at
a temperature well below the melting temperature of pure salt (801°C). The
two liquidus curves, that defining the freezing-point depression of water by
the addition of salt and that defining the freezing-point depression of salt
by the addition of water, meet at the eutectic point, which determines the
lowest temperature Tg at which the alloy can be fully molten, and occurs at
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a specific concentration Cg. The eutectic point of salt water, for example has
a temperature of —21.1°C and is achieved at a concentration of 23.3 wt. %
NaCl.

Another characteristic feature of the way that alloys solidify, and the one
that leads to the most interesting fluid-mechanical effects, is that the solid
formed has a composition different from that of the melt: ice growing from
salt water is almost pure, for example. As a result of this, the component that
is rejected by the solid builds up ahead of the solidification front and must
be transported away in order for solidification to proceed. We shall see that
the build-up of solute not only inhibits growth but promotes morphological
instability and can drive compositional convection in the melt.

The solid that forms at temperature T has a composition given by the
solidus relationship C = Cs(T), shown in figure 5. It is often expressed as
Cs(T) = kpCL(T), where Cy, is the liquidus concentration and kp is called
the distribution (or segregation) coefficient.

4.1 An extended Stefan problem

The simple one-dimensional models analysed in §2 can be extended to the
case of a solidifying binary alloy. For simplicity, consider the case that
the distribution coefficient is zero so that the solid formed is pure, with
concentration Cs = 0. The concentration C(z,t) of the melt is governed by

the diffusion equation
oC 0*C

and satisfies boundary conditions
’ e
C=GC, (C—Cs)h=—-D— (z = h(1)), (4.3a,b)
0z z=h+

where C; is the unknown concentration of the melt at the solidification front.
Equation (4.3b) expresses conservation of solute at the front: the left-hand
side gives the rate at which solute is rejected by the advancing solid, while
the right-hand side gives the diffusive flux of solute from the front into the
melt. The temperature field satisfies the diffusion equation (2.3) in both solid
and liquid, and boundary conditions

T=Tg (z=0), T— Ty (z— ), (4.4)
T=T; pLh = ka—T — ka—T (z=n(t)). (4.5a,b)
0z z=h— 0z z=h+
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To close the system, the interfacial temperature and melt concentration are
related by

Ti = TL(CI) = Tm - l?’lC,‘, (46)
where, for simplicity, we have assumed that the liquidus curve is linear with

constant slope —m, as shown on the left in figure 5.
These equations and boundary conditions admit a similarity solution

h=2A/Dt, 4.7)
erfen
= i — 4.
T=Tp+(Ti—To)=r ]  (1<2), (438)
erfcen
= i — — 4.
T =Tot(Ti=To)oer (1> 2, 49)
erfcn
- - ) 4.10
C=Cot+(C—C)r (1> (4.10)
in terms of the similarity variable
z (4.11)

The coefficient 1 is determined from the coupled equations
=G L T,—Tp Tu—T
" FQ) C, G(el) F(el)

derived from (4.3b) and (4.5b) respectively, by eliminating C; and T; using
(4.6), where the functions G and F are as defined in (2.8) and (2.14). Note
that the thickness of the solid h(t) has been scaled with the length scale
for solutal diffusion /Dt. This length scale is much smaller than that for
thermal diffusion, \/ﬁ, since the Lewis number, Le = x/D = €2, is typically
very large (e.g. Le ~ 80 for salt water). In the limit ¢ < 1, F(e) ~ ,/me and
G(e) ~ 2¢€%. Equation (4.12b) then gives

(4.12a, b)

T; ~ Tg + O(e), (4.13)
whence
_Cs—Cp

FQ)= Jmie’erfea~%"",  where %= Co—Cs’

(4.14)

and CB = CL(TB).

This expression is similar to (2.14), obtained for growth of solid from an
undercooled pure melt, but with € replacing the Stefan number S. Note
that & is always greater than unity (except when the melt is pure) so that
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Figure 6. A schematic diagram of the one-dimensional solidification of a binary
alloy. The rate of solidification is limited by the rate of transport of solute away from
the interface where it is rejected. The solute accumulates in a compositional boundary
layer causing a local depression of the freezing temperature. Since heat diffuses much
more rapidly than solute (1 > D), a region of constitutional supercooling results, as
shown.

finite solutions to (4.14) always exist. This confirms that a(t) does indeed
scale with /Dt when D/x is small; the rate of solidification of an alloy is
controlled by the rate of transport of solute.

The concentration ratio € is a very important parameter in alloy solidifi-
cation. It is best described in words as the ratio of the typical difference in
concentration between the solid and the liquid to the scale for concentration
variations with the liquid, though it may have slightly different mathematical
expressions in different circumstances. It is analogous for concentration to
the Stefan number for heat (enthalpy). Recall that the Stefan number is the
ratioof the difference in enthalpy (latent heat) between the solid and the
liquid to the scale for enthalpy variations (sensible heat) within the liquid. The
analogy manifests itself mathematically in the similarity between equations
(2.14) and (4.14), for example. We shall see later that € also plays a dominant
role in determining the fraction of solid present in a partially solidified alloy.

4.2 Constitutional supercooling

The similarity between the solidification of an alloy and the solidification
of a supercooled pure melt does not end with the comparability between
(4.14) and (2.14). The accumulation of rejected solute ahead of the solidifica-
tion front lowers the local freezing temperature there, as shown in figure 6.
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2
190].01
) &3

Figure 7. The shaded region shows the conditions (initial concentration Cy and
boundary temperature Tp) under which constitutional supercooling will occur in
the melt during one-dimensional solidification from a cooled boundary. Very small
amounts of solute lead to constitutional supercooling even when the boundary
temperature is not much below the liquidus and the solidification is rather slow.
The curve shown was calculated with T, = 20°C,m = 0.5°C wt.%!,e = 0.05 and
L/C, = 80°C, which are typical values for ice growing from an aqueous salt solution.

Since the thermal boundary layer is much broader than the compositional
boundary layer, the temperature within the compositional boundary layer
remains close to the interfacial temperature. As a result of this, the temper-
ature is lower than the local freezing temperature throughout most of the
compositional boundary layer; the liquid is said to be locally, constitutionally
supercooled.

Constitutional supercooling is a driving force for morphological instability.
In this case, the thermal field and the surface energy are both stabilizing,
so the criterion for morphological instability (Mullins & Sekerka 1964) is
not coincident with that for constitutional supercooling, though they are
close. In the present case, constitutional supercooling occurs when G =
(0T /0z);=p+ < —m(0C/0z);=p+ = —mG,, i.e. when

(T, —T;) _ m(Ci— Co)
Fel)  ~ F)

(4.15)

A graph of this inequality, figure 7, shows that constitutional supercooling
is a very common occurrence in naturally solidifying systems. The result is
often the formation of a mushy region, which will be described in §6. By
carefully controlling the conditions of the melt and the rate of solidifica-
tion, it is possible to inhibit constitutional supercooling and morphological
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instability. This is a major concern of those producing single crystals for the
semi-conductor industry and forms the topic of the next section.

5 Morphological instability and flow

Industrial crystal growers producing large single semi-conductor crystals are
severely constrained by the need to suppress morphological instability. We
have seen that it is the accumulation of rejected solute ahead of the solidi-
fication front that causes constitutional supercooling and hence promotes
instability. This has given some hope that fluid flow, by enhancing solute
transport, can be used to control instability and allow faster production
rates of purer crystals. Some of the fundamental principles are presented
here. Much fuller accounts can be found in reviews by Glicksman, Coriell &
McFadden (1986) and Davis (1990).

5.1 Morphological instability

Thus far, we have considered situations in which a solid has been growing
from a fixed cooled boundary. In this section we shall concentrate on a
crystal-growing configuration in which a melt is pulled slowly at a constant
speed V through a prescribed linear temperature field with gradient G. Since
crystal growth rates are controlled by solute transport, and we shall therefore
be focusing on the compositional boundary layer, it is convenient to work
with the ‘frozen-temperature’ approximation that the temperature field is
constant and given by T(z,t) = T; + Gz in a frame of reference fixed with
respect to the coolers.

Diffusion of solute in the solid phase is typically very slow, so the con-
centration field is ‘frozen in’ at the solid-liquid interface (z = {(x,t)). The
concentration of the melt, however, is governed by the advection—diffusion
equation

oC oC

S —_— = 2
7 — Vo =DVAL. (5.1)

It is further constrained by the interfacial solute-conservation equation (4.3b),
which becomes

C(1—kp)(V+{)=—Dn-VC (z=1{), (5.2)

and the Gibbs—Thomson relationship (2.19), modified by the liquidus rela-
tionship to become

T=T,—mC—IV-n (z=10). (5.3)
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These equations, together with the far-field condition, C — Cy as z — oo,
have a steady one-dimensional solution with { = 0 and

—k
C=Cy+ c0<1 D>e—VZ/D. (5.4)
kp

Morphological stability of this system can be examined by considering the

perturbed solutions
C=Cy+Cy <%> e—Vz/D + d';e—;tVz/Deiax’—}—at’ , [ = zeia,\"+at’ (55)

where X' = Vx/D, t' = V?t/D, « and ¢ are all dimensionless and the constant
u is determined from (5.1) to be

p=1 [1+\/1+4(a2+a)] o (5.6)

Equations (5.2) and (5.3) are linearized to give

—Geol = kpGel + (1 — 1 +kp)d (5.7)
and
A A A F 2 A

G{ = —mG.L —mp — o2 DI; ¢, (5.8)

where

1l—kpV

=— = 5.9
G, Co kD D <0 ( )

is the concentration gradient in the melt at the undisturbed solid—liquid
interface. These equations combine to give the growth rate implicitly (since
= p(o)) by

a=_kD+(u—1+kD)<1—M—1—;ioﬁ) , (5.10)
(&

where M = —mG,/G is the morphological number, Ic = D/V is the solutal
diffusion length and
. I'kp
r= mC()(l —kD)
is a capillary length. Equation (5.10) gives a rather complicated relationship

for the growth rate 6. However, it can be shown that its key features occur
when o > 1, with ¢ = O(«), whence u ~ « (from (5.6)) and

(5.11)

o~ —kp + oc<1 —M - %az) . (5.12)

Note that the first term on the right-hand side is retained even though a > 1,
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since the term in brackets can be small near marginal stability. From this
simpler expression it is readily determined that morphological instability
occurs (¢ > 0) when
l k
Mig)l— -2, (5.13)
lc o
The minimum value of M for which morphological instability can occur is
therefore M., where

Mll=1-Z(23L) , (5.14)
2 lc
ie. instability occurs when M is slightly larger than unity and the melt is

constitutionally supercooled.!
Equation (5.12) shows further that as M is increased above M. the first
modes to become unstable have wavenumber

kD lc 173
which corresponds to a (dimensional) wavelength
2\ /3 1/3
Ao = 27:(-6> (zgzr> . (5.16)

In contrast, once the stability threshold has been significantly exceeded
the modes with maximum growth rate (dg/do = 0) have a much shorter
wavelength

1/2
Amax = 27{(]\;]Yl> (lclf)l/z . (5-17)
This expresses a result similar to (2.25), namely that the wavelength of
maximum growth is proportional to the geometric mean of a diffusion length
(here the solutal diffusion length) and a capillary length. The disparity in
length scale between the marginally stable modes and the modes of maximum
growth rate can be reconciled using (5.17) by recalling that M is only slightly
larger than unity near marginal stability, as expressed by (5.14).

One of the most important results of this analysis is that instability is
enhanced by increasing the solutal gradient, i.e. by thinning the composi-
tional boundary layer. We shall examine the effects of various flows on the
compositional boundary layer and hence deduce their influence on morpho-
logical instability. Another important result is that the characteristic length
I This situation can be reversed — the interface can be morphologically unstable while the melt is not

constitutionally supercooled — in certain circumstances when the thermal conductivity of the solid is
greater than that of the liquid.
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Figure 8. For caption see facing page.

scale (wavelength) of morphological instabilities is much smaller than the
thickness of the compositional boundary layer (since typically I < I¢),
which often limits the ability of flow to control morphological instability, as
will be described below.
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5.2 Natural compositional convection

The variation in concentration within the compositional boundary layer
causes density gradients that, in a gravitational field, can drive natural
buoyant convection. Consider first the case that solidification is upwards
and the rejected solute is dense, for example by freezing ice from a salt
solution by cooling it from below. The compositional boundary layer is
statically stable to buoyancy-driven convection. However, if the solid-liquid
interface becomes corrugated then the dense fluid flows down into the
valleys, as shown in figure 8(a). A stagnation point with flow towards the
solid is formed at the top of each crest, which, as we saw in § 3.1, thins the
boundary layer and promotes solidification there; morphological instability
is enhanced.

If the rejected solute is buoyant then the compositional boundary layer is
statically unstable but may be dynamically stable if its Rayleigh number is
less than critical (see Chapter 6). In this case, the flow depicted in figure 8(a)
is reversed and morphological instability is delayed.

Once the Rayleigh number associated with the compositional boundary
layer exceeds its critical value, convection occurs regardless of any defor-
mation of the interface. The solute-conservation equation (5.2) shows that
in a steadily convecting state the concentration of the melt at the interface
is greatest where the solute gradient is steepest, i.e. where the boundary
layer is thinnest. Consequently the equilibrium temperature is lowest at such
places and the interface is depressed as shown in figure 8(b). This is not a
morphological instability as such, because morphological changes are not

Figure 8. The effects of flow on morphological instabilities. In all cases solidification
is upwards. (a) If the rejected solute is dense its buoyancy drives a flow from crests to
troughs, which thins the boundary layer above crests and promotes morphological
instability. (b) Steady compositional convection resulting from rejection of a buoyant
solute on scales larger than typical morphological modes depresses the interface
in regions of downflow. Morphological instabilities on smaller length scales are
enhanced slightly within such depressions. (c) A steady shear flow compresses the
compositional boundary layer on the upstream faces of interfacial corrugations
causing them to propagate upstream. (d) The secondary flow arising from the
need to satisfy the no-slip condition at the perturbed interface compresses the
boundary layer on the downstream faces and causes the perturbations to propagate
downstream. The first of these effects dominates at long wavelengths, the second at
short wavelengths. Thus given a pure stagnation-point flow, long waves are found
near diverging stagnation points (e¢) while short waves are found near converging
stagnation points (f). In a completely confined flow, an absolute instability is found
between stagnation points at stationary points of the horizontal components of the
imposed flow (g).
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intrinsic to the instability, but is rather a response of the interface to the
convective flow. Whereas a morphological instability will develop into cel-
lular and ultimately dendritic structures, the interface deformation resulting
from convective motions may become less pronounced as further convective
instabilities occur and turbulent motions ensue.

It is important to note that the length scale of convective instabilities is
comparable to the thickness of the solutal boundary layer I¢c and is therefore
much longer than the scale of morphological instabilities (12Ir)!/3. Conse-
quently any coupling between the two is weak, and it has been found that
natural convection cannot be exploited effectively to control morphological
instabilities during crystal growth. Researchers have therefore turned their
attention to various forced flows in an effort to find a way of controlling
instability.

5.3 Forced flows

Since the Schmidt number S¢ = v/D of most materials is very large, the
compositional boundary layer at a solidification front is normally subsumed
within the viscous boundary layer and the flow is locally linear. Therefore,
away from confining boundaries and stagnation points, all flows can be
approximated by a simple parallel shear flow on the scale of morphological
instabilities.

The primary influence of a simple shear is shown in figure 8(c,d). The
horizontal basic flow compresses the perturbed solutal boundary layer on
the upstream faces of a perturbed interface, as shown in figure 8(c), which
promotes the normal growth of those faces and results in a wave-like
propagation of the perturbation upstream. Countering this tendency is the
secondary flow induced by the need to satisfy the no-slip condition on the
perturbed interface. The secondary flow has stagnation points between crests
and troughs that compress the basic solutal boundary layer on downstream
faces and thus promote a downstream propagation of the interface pertur-
bation (figure 84). The first of these effects dominates at long wavelengths
A > Jq (say), while the second dominates at the shorter wavelengths (1 < Aq)
characteristic of morphological instabilities. Forth & Wheeler (1989) have
calculated the dispersion relation for these travelling waves and have shown
that 4, is typically of the same order of magnitude as the thickness of the
compositional boundary layer Ic. In both cases the enhancement of solidi-
fication is 7t/2 out of phase (either negative or positive) with the interface
perturbation and therefore has a neutral influence on instability. This is the
dominant behaviour for large Schmidt number. At higher orders in inverse
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Schmidt number, more complex interactions result in a weak suppression of
the two-dimensional morphological instability. The flow has no effect on the
conditions for instability of perturbations with crests aligned parallel to the
direction of flow, however, so these are the preferred modes near marginal
conditions.

These results on an infinite domain indicate that morphological instability
in the presence of flow is convective (see Chapter 4) and care is needed to
apply them to an understanding of what will happen in a finite domain.

In confined systems, there are stagnation points at which the tangential
flow is zero. Brattkus & Davis (1988) carried out an analysis restricted to
long-wavelength disturbances and found instabilities at diverging stagnation
points, which is consistent with the fact that long waves travel upstream
towards the stagnation point (figure 8¢). Conversely, Biihler & Davis (1998),
found that disturbances of wavelengths comparable to those of morphologi-
cal instability in the absence of flow (i.e. much smaller than /,) are localized
near converging stagnation points, again consistent with the fact that such
waves travel downstream, towards the stagnation point (figure 8f)!. However,
in a system confined at both ends the most absolutely unstable mode occurs
at wavelengths such that dw/dk = 0 and at positions where dw/dx = 0
(see Chapter 4). Given the dispersion relation derived by Forth & Wheeler
(1989) in which w is directly proportional to the free-stream flow U, the
latter occurs where U /dx = 0, i.e. between stagnation points (figure 8g).

Overall, it seems that steady flows may do little to suppress morphological
instability and can even enhance it in certain circumstances, but it can
alter the characteristics of the unstable modes and may serve to confine
instabilities to a small region of a growing crystal. Certain types of unsteady
flows, for example orbital flows (Schulze & Davis 1995), seem more promising
in controlling morphological instability.

6 Mushy layers

In most natural and metallurgical settings, solidification rates greatly exceed
the critical values required for morphological instability. Planar interfaces
cannot survive the build-up of solute and consequent constitutional super-
cooling ahead of them, and give way to highly convoluted solid structures
that form the matrix of a porous medium called a mushy layer (figure 9).
The solute rejected during solidification no longer needs to be transported

I Strictly figure 8(e, f) and the associated discussion relate to the phase velocity of the perturbations.
The analysis of Forth & Wheeler shows also that the group velocity of long waves is upstream and
for short waves is downstream.
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Figure 9. A close-up view of the interfacial region of a dendritic mushy layer. The
solid phase in this case is ammonium chloride. The spacing between dendrites is
about 0.3 mm while the overall depth of the mushy layer is a few centimetres.

into the bulk liquid region but can be accommodated within the interstices
(pores) of the mushy layer. Local solute transport continues to play a role
on the scale of individual pores, determining the size of the pores and the
occurrence of side branches on the crystals forming the matrix, but the
macroscopic evolution of a mushy layer is controlled predominantly by ther-
mal balances. The structure of a mushy layer is affected by fluid motions in
the melt adjacent to it and in the melt flowing through its interstices.

6.1 Relief of supercooling

We saw in §4 that a region of constitutional supercooling can develop
in an alloy ahead of a solidification front. The effect of morphological
instabilities is to increase the surface area of the phase boundary and thus
to enhance both the liberation of latent heat and the rejection of solute.
The former tends to warm the melt while the latter causes a lowering
of the local freezing temperature (liquidus). These each serve to reduce the
degree of constitutional supercooling. Without surface energy, morphological
instabilities would occur on arbitrarily small length scales given any amount
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of supercooling, and it is not hard to imagine therefore that this process
would continue until the degree of constitutional supercooling were reduced
to zero. In practice, surface energy limits instability at some scale, as we
have seen. But if the surface energy is small (I < I¢) then it is a good
approximation to assume that the temperature and concentration of the
interstitial liquid in a mushy layer lie on the liquidus

T = TL(C). (6.1)

There is some experimental support for this assumption and to date it
has been almost universally adopted in mathematical models of mushy
layers.

6.2 Evolution of a mushy layer without flow

The primary feature of a mushy layer is the accommodation of excess solute
within its interstices and the loss thereby of solutal control on its overall
extent. We can gain an understanding of this by considering a simple model
in which we imagine that the mushy layer has a uniform volume fraction of
solid ¢. When the solid is pure (Cs = 0) and there is no fluid flow, the total
amount of solute within the layer per unit horizontal area is

h(t)
/ (1 — $)CL(T)dz = hCq , (6.2)
0

where h(t) is the depth of the layer and T'(z,t) is the local temperature. If
we make the quasi-stationary approximation then

Z
T ~ Tp + (TL(Co) — TB)m (6.3)
and equation (6.2) then shows that
Cr(Tg)—Co _ 1 (64)

O = CLTa) 1 Co 26—T1

assuming that the liquidus is linear, where & is the important concentration
ratio introduced in equation (4.14).

Note that ¢ = 1 when Co =0 (¢ = 1), corresponding to a pure melt, and
that ¢ is small for large values of %, a fact exploited in many analyses of
mushy layers.

The Stefan condition at the mush-liquid interface is

poLh—FHT| =R LT, (6.5)

0z z=h—
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Figure 10. The rates of diffusion-controlled solidification of a binary alloy from
a cooled boundary. A planar solid-liquid interface is predicted to advance as
h = 2)4/Dt, where J, is determined from (4.14), while a mush-liquid interface is
predicted to advance as h = 21,,,\/5, where /,, is determined by an extension of
the theory leading to (6.7). This theory (Huppert & Worster 1985) gives very good
agreement with the data (crosses) from experiments in which mushy layers of ice
crystals were formed by cooling aqueous solutions of sodium nitrate from below.

where
k(¢) = dpks+(1— )i (6.6)

is a mean thermal conductivity of the mushy layer, and the heat flux from
the melt has been ignored. This mean conductivity is exact for a medium
composed of lamellae oriented parallel to the heat flux vector (Batchelor
1974) and is a good approximation within mushy layers since the crystals
forming the solid matrix have primary branches aligned with the local heat
flux vector. Equation (6.5) is readily integrated to yield

T 1/2

= <§&1€st> , (6.7)

where the Stefan number S = L/Cps[TL(Co) — Tg), 15 = ks/psCps and Cps is

the specific heat capacity of the solid. This result, which can be compared

with (2.11) and contrasted with (4.7), highlights the fact that the growth of

the mushy layer is determined by the rate of thermal diffusion. To make

accurate predictions, care is needed in estimating the appropriate thermal

conductivity of the layer. Note, for example, that the thermal conductivity of

ice is about four times that of water so the mean conductivity of the mushy
layer is sensitive to the solid fraction.

A slightly more detailed model along the lines above (Huppert & Worster

1985) has given results in good agreement with laboratory experiments
(figure 10).
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6.3 Flow in a mushy layer

The interstitial liquid within a mushy layer is free to flow in response to
pressure gradients and buoyancy forces. The characteristics of its flow are
fundamentally those of flows within porous media (Phillips 1991; Nield &
Bejan 1999), the simplest model of which is given by Darcy’s equation

uu =II(—Vp+ pg). (6.8)

Here u is the ‘superficial’ velocity or ‘Darcy’ velocity, which is the volume
flux per unit area flowing through the medium, p is the pressure and g is the
acceleration due to gravity. The permeability II = II(¢, .«/) is a second-rank
tensor, reflecting the fact that the resistance to flow within the medium
may be anisotropic, and is a function both of the void fraction 1 — ¢ and
the specific surface area o/ of the internal phase boundaries as well as
their geometry. In many studies the permeability is assumed to be locally
isotropic and the dependence on .o/ is ignored for no better reason than it
is a difficult quantity both to measure and to predict. We shall assume here
that IT = I1(¢) 1, where I is the identity.

What distinguishes the flow in a mushy layer from that in a passive porous
medium is that the solid fraction and hence its porosity can vary both in
time and in space. This has two significant consequences. The first is that,
as indicated above, the permeability is spatially inhomogeneous and may
vary in time. We shall see later that this can lead to an interesting feedback
between flow and solidification in mushy layers, typically resulting in a
focusing of flows into narrow regions of low (or even zero) solid fraction.
The second is that the velocity field in a mushy layer is non-solendoidal.
Local mass conservation is expressed by

p
L4V (o) =0, (6.9)
ot

where the mean density p = ¢ps + (1 — ¢)p;, which can be rearranged as

ps— p10¢
y=———— 6.10
Veu e (6.10)

This shows that there is a divergence of the flow as solid grows internally
if ps < p; so that there is an expansion on change of phase, as is the case
for water and for silicon, for example. Conversely, many other materials
contract as they solidify, which leads to a convergent flow. Clearly fluid
flow is driven by this mechanism even in the absence of external forces.
It can cause redistribution of solute within a casting and, in the case of
contraction, can cause voids to form (see Beckermann & Wang 1995, for
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example). Though these are interesting effects we shall not explore them
further and set p; = p; so that V-u = 0.

6.4 Response to an external flow

An interesting example of how the interstitial liquid can be driven by external
pressure gradients is provided by a study of the morphological stability of
the mush-liquid interface (the envelope of the solid matrix) in the presence
of an external flow. To focus attention on the interfacial region, consider
a semi-infinite mushy layer of uniform solid fraction ¢ in z < 0, adjacent
to a liquid region (z > 0) flowing with uniform velocity U parallel to the
interface. Consider the response to a small perturbation to the interface,
z = { = {e™+9! and, for simplicity, imagine that the flow in the liquid region
is an irrotational flow u = V& with V2@ = 0. The flow in the mushy region
is much slower than that in the liquid, so to a leading approximation we can
treat the mushy layer as impermeable to the external flow (n+V® = 0 on
z = {) and calculate that

® = Ux —iUle ™. (6.11)

The linearized Bernoulli’s equation then gives the pressure at the interface
to be

p=—paU%C. (6.12)

There is low pressure above the crests and higher pressure above the troughs,
and it is this pressure difference that drives a flow in the mushy layer
(figure 11). In the absence of gravity and with ¢ constant, equation (6.8)
combined with the equation of continuity, V- u = 0, shows that the pressure
in the mushy layer is harmonic, V?p = 0, and equal to

p = —palU?{e*. (6.13)

If we take the temperature field to be T = Gz + OA(z)ei“”‘”, a perturba-
tion from a linear gradient, the quasi-stationary thermal advection—diffusion
' equation gives

k(D* — o?)f = Ggoczsze“z , (6.14)
v
where, here, x = k/ piCp and Cp is the specific heat of the liquid. This has

solution

2
GUAV" s i hers, (6.15)
2KV

since T is fixed at the interface by the liquidus constraint. Finally, the Stefan

=
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Figure 11. A schematic diagram showing the influence of an external flow on the
evolution of a mushy layer. The streamlines in the melt are compressed over crests.
The resulting low pressure there drives a flow in the mushy layer that interacts with
the thermal field to drive a morphological instability of the interface. Note that in
the liquid region away from the neighbourhood of the interface only every fourth
streamline has been plotted for clarity.

condition (6.5) gives

T 2
o= %ch {—1 + %} " (6.16)
This simple analysis shows that there is instability at all wavelengths if the
dimensionless group
nu?
Ky
i.e. if the external flow is sufficiently rapid. A more detailed analysis (Feltham
& Worster 1999) shows that long wavelengths are stable given a mushy layer
of finite depth, that the short wavelengths are stable when the external flow
is a viscous shear rather than an inviscid uniform flow and that the most
unstable wavelengths are comparable to the depth of the layer.
More generally, dimensional analysis shows that a high-Reynolds-number
external flow has a significant influence on the evolution of the mushy layer if

U z oDa”!, (6.18)

>2, (6.17)

where % = U/V, V is the solidification rate and the Darcy number Da =
IT/L? is the ratio of the permeability to the square of the macroscopic
lengthscale L = x/V, which is consistent with (6.17). By contrast, a low-
Reynolds-number external flow can only exert a significant influence if

Uz Dat, (6.19)

which, since Da < 1, requires a much greater external velocity relative to
the solidification rate.
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6.5 Equations governing the internal evolution of a mushy layer

So far we have considered only the gross features of a mushy layer, which is
sufficient to determine the macroscopic envelope of the solid matrix. How-
ever, in order to determine the internal structure of the layer, in particular
how the solid fraction evolves in space and time, we require a set of differ-
ential equations that describe the local distributions of temperature T'(x,t),
concentration of the interstitial fluid C(x,t) and solid fraction ¢(x,t). Such
equations can be derived from considerations of free energy (Hills, Loper &
Roberts 1983) or from considerations of the local conservation of heat and
solute (Worster 1992a).
Conservation of heat is expressed by
0¢

p_c‘,,@—f +u- VT) =V-(kVT)+ psL—rs (6.20)

where the mean conductivity k is defined in equation (6.6),

pCp = ¢psCps + (1 — $)piCpi (6.21)

and Cps and Cp are the specific heat capacities of the solid and liquid
respectively. Equation (6.20) is an advection—diffusion equation forced by
the internal release of latent heat as solid grows within the mushy layer.

When the solid phase is pure (Cs is constant), conservation of solute is
expressed by

(1—(;5)%—?j +u-VC =V°(5VC)+(C—CS)%, (6.22)

where D ~ (1—¢)D. This is an advection—diffusion equation for solute forced
by internal release of solute into the interstices as the solid phase grows.
Advection—diffusion equations in porous media are slightly modified from
their counterparts in a pure phase owing to the fact that the solute is only
transported through the liquid interstices (Phillips 1991).

The two equations (6.20) and (6.22) are coupled by the liquidus constraint
(6.1), and this coupling is sufficient to determine the solid fraction o.

6.6 The mush-liquid interface

Arguably the most difficult aspect of modelling mushy layers is to determine
appropriate equations to describe the interface between a mushy region and
a fully liquid region. Some approaches to the modelling of mushy regions
(especially numerical modelling) utilize equations that blend smoothly from
the mushy regions into the liquid regions, in which case there is no need for
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an explicit treatment of the interfaces (see the review by Beckermann & Wang
1995). However, there are some advantages in treating the regions separately,
particularly that the equations in each region are then simpler and more
amenable to analytic solution from which we can gain physical intuition.
One is, however, then left with the problem of matching the solutions across
the interface between the regions. The interface itself is hard to define. One
can imagine it as the envelope (suitably smoothed) of the solid matrix.
On the other hand, since the mushy layer is described by equations that
govern properties averaged over the scale of interstitial pores, the interface
is perhaps better thought of as a region of thickness comparable to the pore
scale. Interfacial conditions are then expressed as jump conditions across
the interfacial region. Once one appreciates that the interface physically has
finite extent, it is apparent that even continuity of the dependent variables
cannot be taken for granted but must either be deduced in some way or
assumed and the consequences of those assumptions explored.

Two conditions follow immediately from the conservation equations (6.20)
and (6.22) by integrating them across the interface and employing the diver-
gence theorem. They are

psLpVy =kn-VT| —kn-VT| (6.23)

m

and
(C—Cs)pVy=(1—¢)Dn-VC|, —Dn-VC|;. (6.24)

These express conservation of heat and solute across the interface and they
reduce to the Stefan condition (4.5b) and the interfacial solute-conservation
equation (4.3b) at a solid-liquid interface when ¢ = 1. A third condition is
required at mush-liquid interfaces that are solidifying (but not at those that
are melting). A weak condition that suggests itself from considerations of
the relief of supercooling (§6.1) is that

n-VT|,=Zn-VT(C)|, (6.25)

so that the liquid is not supercooled adjacent to the interface.
On the other hand, the conservation relationships (6.23) and (6.24) can be
combined to show, when Cs = 0, that

psLV, mCV, ks
S | — T
W D k")

II'VTL(C)ll—Il‘VTh:(

= <mC1:)V” —n -VT|1> ¢+ (n-VTl,—n-VT|;) (1-¢).
(6.26)
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The right-hand side is positive once mCV,/D is greater than O(n - VT),
ie. when the morphological number is significantly greater than its critical
value. Then (6.25) and (6.26) combine to show that the inequality (6.25) is
in fact an equality and, further, that ¢ = 0 at the interface.!

The three thermodynamic interfacial conditions that apply to a solidifying
mush-liquid interface under sufficiently supercritical conditions are therefore

¢ =0, nVT|,=n-VT|;=n-VT.(C)|; . (6.27a—c)

The fluid-mechanical conditions at a mush-liquid interface are those that
apply at the boundary between a porous medium and a viscous fluid region.
Only one condition is straightforward, namely that the normal mass flux is
continuous, which follows directly from the continuity equation. Two other
conditions are related to the transfer of stress between the two media. The
difficulty is in knowing how much stress is accommodated by the solid phase
of the porous medium. It is usually assumed, for example, that the solid
phase absorbs all the deviatoric normal stress exerted by the fluid region,
leaving the pressure field continuous between the media.

These two conditions, of normal mass flux and continuity of pressure,
are sufficient to determine the flow in the mushy layer, governed by Darcy’s
equation. The flow in the viscous liquid region requires an additional bound-
ary condition, determined by consideration of the tangential stresses. Where
the external liquid makes contact with the solid phase of the mushy layer,
its velocity is zero. Where it makes contact with the liquid phase, its velocity
is continuous with the interstitial velocity. The adjustment from these mixed
boundary conditions to a region where the external flow no longer feels the
effects of individual crystals takes place on the scale of the pores of the
underlying porous medium. Considerations such as these suggest that an
appropriate boundary condition on the external flow is

tou—t-u, =, (6.28)

where % = (n- V)(t - u)) is the local shear rate, ¢ is a unit tangent vector
and A is a constant parameter (Beavers & Joseph 1967). Note that for
many external flows u; is much larger than both u,, and \/ﬁ & so that the
boundary condition (6.28) can often be approximated by the more familiar
no-slip condition.

! Imposing ¢ = 0 as a boundary condition a priori implies (6.27b, ¢) given the conservation relations
(6.23) and (6.24) and the condition of local equilibrium in the interior of the mushy layer (6.1).
However, it can lead to unphysical solutions (with ¢ < 0 in the interior of the mushy layer)
under weakly supercritical conditions when morphological instability precedes the occurrence of
constitutional supercooling (Worster 1986).
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Figure 12. The equations and boundary conditions governing flow and solidification
in a mushy layer growing from a binary melt. The boundary z = 0 is either the
cooled boundary of a mould of fixed temperature Tp or the eutectic front with
Tp = Tg. Lengths are scaled with «/V, times with V2/x and velocities with V,
where V is the rate of solidification. The dimensionless dependent variables are the
velocity u, pressure p, temperature 0 = (T —T1(Co))/(T(Co)—Tp) and concentration
© = (C — Cy)/(Co — Cp). The importance of each of the dimensionless parameters
S,%,0u,%,¢€, 2/, Rn, R, and Da is discussed in the text.

7 Solidification and convection in mushy layers

The equations and boundary conditions discussed in the previous section are
summarized in dimensionless form for a solidifying system in figure 12, with
the dimensionless variables defined in the caption. The equations have been
simplified by taking the thermal properties of the liquid and solid phases to
be equal. There are, nevertheless, a large number of dimensionless parameters
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Figure 13. Solid-fraction profiles in a mushy layer when there is no convection:
(@) € =4,0, =1; (b) € =005, 0, = 1; (c) € = 0.2, 0, = 0.02. In all cases S = 1
and € = 0.

controlling the dynamical behaviour of the system. In this section we shall
simply describe the importance of the different parameters and some of the
phenomena that have been calculated using these equations.

Three parameters govern the structure of the mushy layer in the absence
of flow. As the thickness of the mushy layer is controlled by thermal bal-
ances, it decreases as the far-field temperature 0, increases and as the Stefan
number S increases, since these increase the heat flux from the melt and the
latent heat release respectively. The release of latent heat is further modified
by the concentration ratio € since this, as we have seen, controls the mean
solid fraction. When & is large, the solid fraction is inversely proportional to
% and the total latent heat release is therefore proportional to S/%. This can
be seen from (6.4) to (6.7) which show that the thickness of a mushy layer
h oc \/(%€/S)xt in contrast to a pure solid whose thickness h oc +/ (1/8)xt
(see 2.11). The internal distribution of solid fraction is controlled predom-
inantly by %, as illustrated in figure 13, so this is the most significant
parameter determining the variation of the permeability of the layer to fluid
flow.

The diffusivity ratio e plays a minor role when there is no flow and can
be set to zero in such cases. However, while this is a regular perturbation in
the mushy layer, it is a singular perturbation of the equations in the liquid
region. There is a compositional boundary layer in the liquid adjacent to the
mush-liquid interface of width §. ~ € in the case of constant solidification
rate or of width 6, ~ €!/2 in the case of solidification from a cooled boundary
with growth proportional to t!/2. This boundary layer can often be resolved
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experimentally and can itself become unstable in a gravitational field to
produce compositional convection.

We have seen how flow in the mushy layer can be generated by an
imposed flow %. However, a more common mechanism for fluid flow during
solidification is natural, buoyancy-driven convection. Within the mushy layer,
this is governed principally by the Rayleigh number

ACgllyl
R, = w (7.1)
KV

which is a porous-medium Rayleigh number for compositional convection,
where f = p~1dp/dC, AC = Cy — Cp is the change in interstitial concentra-
tion across the layer, and Il is a representative value of the permeability.
We see from figure 12 that, since the dimensionless temperature and concen-
tration are equal (6 = @) in the mushy layer, there is effectively only single-
component convection there with an effective Rayleigh number R;,(1 — R,)

where
AT  om
Ry = = — 7.2
is the buoyancy ratio in which AT = T.(Cy) — Tp and o is the thermal
expansion coefficient. Note that, typically, R, < 1 so that convection in the
mushy layer is dictated by the solute field.
In the liquid region, the temperature and solute fields are uncoupled and

convection is better described by the independent Rayleigh numbers

BACgh?

Ky

Rc=R,Dal= (7.3)

for solutal convection and
aATgh?
KV

Ry = —R,Da 'R, = — (7.4)

for thermal convection, as can be seen from the equations in figure 12. Many
interesting double-diffusive effects (Turner 1979) can occur in the melt during
solidification (Huppert 1990) owing to the independence of Rt and Rc.

7.1 Convective regimes

The possible states of natural convection in a solidifying alloy are summar-
ized in figure 14 for the cases where solidification is effected by cooling a
mould either from an upper or a lower horizontal boundary. Other modes
of convection that occur when there is cooling through sidewalls are not
discussed here (but see Huppert 1990). Note that the equations in figure 12
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Figure 14. The different convective regimes that can occur during solidification of a
binary alloy at a cooled, horizontal boundary. The numbered cases 1-6 are discussed
in turn in the text.

and the definitions of Rayleigh numbers therein are written for the case
where gravity acts towards the cooled boundary, i.e. for when cooling is
through the lower boundary. Cases in which the upper boundary of the
mould is cooled are described by changing the sign of the Rayleigh number.
The various boxes in figure 14 are now described in turn.

Case 1. If the melt is pure (Co = 0 or Cy = 100) or if it has exactly the eutectic
concentration (Co = Cg) then the solid formed has the same composition as
the melt, there is no rejected solute and the solute field plays no role in the
solidification or convection. If, in addition, the mould is cooled from below
then the melt is statically stable to thermal convection.! There is therefore
no convection, and solidification proceeds at a planar interface as described
in §2.2.

Case 2. In this case there is again no solute rejection, no mushy layer
can form (provided the melt is not initially supercooled) and there is no
compositional convection. Since the mould is cooled from above, the melt is
unstable to thermal convection and its solidification is described in §3.2.
Case 3. If the melt is neither pure nor of eutectic composition then solute
is rejected during solidification and, in the general case, a mushy layer will
form. When the melt has an initial composition less than eutectic (where C
measures the component that causes the density of the melt to increase) then
the residual melt is denser than the initial melt. The liquid is therefore stable

! Note that in the special case of pure water there is density maximum at 4°C so there is thermal
convection when ice is formed by freezing pure water from below.
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to compositional convection when the mould is cooled from below. In this
case the thermal field is also stable so there is no convection and the mushy
layer grows as described in §6.2.

Case 4. The solute field is also stable in the case that the melt has an initial
composition that is greater than eutectic (so that the residual melt is buoyant)
and the mould is cooled from above. The cooling drives convection in the
liquid region only (the mushy layer remains stagnant) and solidification
proceeds similarly to that in case 2 but with the latent heat release now
distributed throughout the mushy layer (Kerr et al. 1990a). There are some
very interesting additional effects in this case associated with supercooling
at the mush-liquid interface, which will be described in the context of lava
lakes in the next section.

Case 5. When the mould is cooled from above and the residual melt is
denser than the initial melt then thermal and compositional convection act
in concert. Thermal convection in the liquid region is augmented slightly
by the solutal buoyancy from the compositional boundary layer near the
mush-liquid interface but otherwise proceeds similarly to that in cases 2 and
4. The new effect here is that the interstitial liquid in the mushy layer is
now also statically unstable. Convection can be driven from the interior of
the mushy layer leading to interesting modifications of its microstructure, as
described below in general and also in the context of the formation of sea ice.
Case 6. Directional casting of high-performance turbine blades (for exam-
ple) is executed by withdrawing a mould vertically downwards from a hot
furnace, so that the mould is cooled from below and the thermal field is
convectively stable. If the residual melt is less dense, however, then com-
positional convection can occur in both the liquid and mushy regions. The
convection in the mushy layer is similar to that in case 5 with the effective
Rayleigh number simply being R,,(1—R,) rather than R,,(1+R,). The stable
thermal field in the liquid region can, however, modify the compositional
convection there and cause the formation of double-diffusive ‘fingers’ (Turner
1979; Chen & Chen 1991; and see Chapter 6).

7.2 Convection within a mushy layer

The last two cases described above both involve convection of the interstitial
liquid within the mushy layer (reviewed by Worster 1997). To analyse such
convection in detail it is necessary to solve the full set of equations displayed
in figure 12. However, we can make a preliminary estimate of the conditions
under which internal convection will occur by analysing the following much-
reduced model.
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A major simplification is obtained by arbitrarily ignoring the fact that the
mush-liquid interface is a free boundary and fixing it at the dimensionless
position z = 1. The remaining simplifications follow from asymptotic limits
of the governing equations. In particular we take € — 0 and Da — 0.

If € > 1 then ¢ < 1 and the solute-conservation equation is approxi-
mately

g—(:-I-u-VG:— % (7.5)

whence the heat-conservation equation becomes
Q (% +u- \79) =V?%0, (7.6)

where Q = 1+ S/% and we have taken S > 1 with S/% = O(1). The heat
equation is thus decoupled from the solute equation, as derived by Emms
& Fowler (1994). Since ¢ < 1 throughout the mushy layer, the permeability
is approximately constant. If we also assume that R, < 1 then Darcy’s
equation becomes

u=—R,(Vp+ 0k), (77)

where k is a unit vector in the z-direction. The relevant boundary conditions
given the limits stated above are

0=—-1, n-u=0 (z=0), 0=p=0 (z=1). (7.8)

These equations are mathematically identical to the equations for convection
in a passive porous medium. By writing Qu = v and ¢t = Q7, so that

% +u-V0=V20 and »=—(RyQ)(Vp+0k), (7.9)

we see that the Rayleigh number is simply modified by the factor Q. The
stability of this system was analysed by Lapwood (1948) who showed that
convection begins once

QR, > QRyi ~ 27.1. (7.10)

More generally, the critical Rayleigh number for linear convective instabil-
ity Rerit = Rerit(S, €, 00, €, Ry, Da). Some of this parameter space has been
explored (Worster 1992b; Chen, Lu & Yang 1994; Emms & Fowler 1994)
and it has been shown that, over a large range of parameters, provided
one rescales the Rayleigh number in terms of the mean permeability of the
layer and its undisturbed depth, the critical Rayleigh number R is, within
a factor of 2, equal to about 10. This much-reduced model embodies the
interesting feature that systems with large Stefan numbers (or small €) are
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Figure 15. The streamlines (thin solid lines with arrows) and contours of solid
fraction (dashed lines) in a steadily solidifying and convecting mushy layer below a
liquid melt. Streamlines are shown in a frame of reference moving with the phase
boundaries. The mush-liquid interface (thick solid line) is deformed upwards where
the flow towards the mushy layer (relative to the interface) is weaker. Below the
upwardly deflected interface the solid fraction is reduced and has become negative
in the small shaded region near the bottom of the recirculating region interior to the
mushy layer. It is anticipated that the shaded region, which must be liquid, develops
into a chimney (figure 16) as the amplitude of convection increases.

more prone to convection. The reason for this highlights the fact that the
mushy layer is a reactive porous medium. Although the driving buoyancy
results from the solute field, the dissipation of that buoyancy is mediated
by the thermal field as follows. When a parcel of interstitial fluid rises, it
approaches thermal equilibrium with its surroundings by diffusion of heat
but does not similarly exchange solute with its new surroundings. Rather,
since an approach to thermal equilibrium without any phase change would
leave the interstitial liquid undersaturated (above the liquidus), equilibrium
is restored by dissolution of the solid matrix. This causes the interstitial
liquid to become more dense (in case 6), and thus dissipates the buoyancy.
Systems with large Stefan number can dissolve less of the solid matrix for a
given thermal perturbation and are therefore more unstable.

The dissolution just described is manifest in equation (7.5), which shows
that the rate of solidification (0¢/0t) is reduced where the flow has a compo-
nent parallel to the local temperature gradient, i.e. where the interstitial liquid
flows from cooler to warmer regions of the mushy layer. This corresponds
to downflow in case 5 and upflow in case 6 above.
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Figure 16. Photograph of a mushy layer of ammonium-chloride crystals grown from
aqueous solution showing sections through two complete chimneys and the vent of
a third. The black region at the bottom of the photograph is eutectic solid and
shows that the interface of this region with the mushy layer is quite planar. The
mush-liquid interface, by contrast, is deflected upwards at the sites of chimneys to
form a volcano-like vent. A plume of depleted fluid issues from each chimney into
the overlying melt. This picture turned upside down is similar to what is seen in sea
ice, in which case dense brine drains from the chimneys, which are known as brine
channels.

Such dissolution (or reduced solidification) increases with the amplitude of
the convective motion until the solid fraction becomes equal to zero at some
point in the mushy layer. Recent numerical calculations (Schulze & Worster
1999) have shown that this can occur in the interior of the layer, as shown
in figure 15. At even larger convective amplitudes the region of zero solid
fraction can form a narrow cylindrical conduit, or chimney through which
most of the outflow from the mushy layer is channelled (see figure 16).
Convection through fully developed chimneys, particularly the theoretical
determination of the location of the chimney wall, remains a topic of current
research.

7.3 The early evolution of sea ice

Many of the fundamental ideas presented in this chapter are illustrated in
two case studies with which I shall conclude. The first is a study of the
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growth of sea ice on the surface of the polar oceans. The Arctic ocean is
covered with a layer of ice with a mean thickness of about 3 m. Owing to
wind stresses, the ice is in a very dynamic state, being continually fractured
to expose sea water to the atmosphere. The exposed water in these cracks, or
leads, quickly freezes over and the ice begins to grow downwards, reaching
a thickness of about 1 m in the first winter season if left undeformed. It
is in the first 24 hours or so of growth, while the ice is less than about
10 cm thick, that the most significant heat transfer takes place between the
ocean and the atmosphere, and these episodes of lead formation and early
ice growth account for about half the total heat budget. It is therefore very
important to understand the processes controlling the dynamics of this early
growth.

Since sea water is a mixture of water and dissolved salts (an alloy in the
terminology adopted here), sea ice is a mushy layer comprising a matrix of
ice crystals and interstitial brine. Because brine is denser than fresh water,
growing sea ice is an example of case 5 from § 7.1. We can therefore anticipate
that, under appropriate conditions, the interstitial brine will convect out of
the layer of sea ice and contribute to the convective state of the underlying
ocean.

A laboratory study of sea ice (Wettlaufer, Worster & Huppert 1997, il-
lustrated and described in figure 17) has shown that there is no measurable
brine flux from the mushy layer until it has exceeded a critical thickness
h. that depends upon the applied surface temperature (atmospheric tem-
perature) and initial concentration of the salt solution. Before the critical
thickness has been reached, the mushy layer is stagnant and its growth can
be described approximately by the model presented in § 6.2, modified slightly
by the heat flux from the ocean, as described in §3.2. An important param-
eter influencing the remote sensing of sea ice by satellite, using radar, is its
solid fraction, which can be readily calculated from the equations presented
in section § 6.5, as shown in figure 13.

The critical thickness &, can in principal be determined from the stability
analysis described in the previous section. However, a problem with this is
that the permeability of the mushy layer is difficult to measure directly. An
alternative approach is to notice that equation (7.10) implies that

[(Co — CB)he] ™ oc 1T (¢) (7.11)

or that h,AC is a function only of the solid fraction and material parameters.
A plot of the data from many experiments starting with different initial
concentrations and having different surface temperatures (figure 18) shows
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Figure 17. (a) Experimental apparatus used by Wettlaufer et al. (1997) to study the
early growth of sea ice. A mushy layer of ice crystals was grown from aqueous
solutions of NaCl by cooling the upper boundary of the apparatus. Temperatures
were recorded by thermistors A—H and samples of liquid were withdrawn periodically
using syringes in order to measure the evolving concentration C(t) of the liquid
region. These data are plotted against the thickness of the mushy layer Ah(t) in
(b). Initially all the brine rejected by the growing ice crystals remains within the
interstices of the mushy layer but it subsequently drains once the thickness of the
layer has exceeded a critical value h,.
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Figure 18. The critical conditions for brine drainage from sea ice.

that equation (7.11) gives a good collapse of all the data onto a single
curve. This curve gives reasonable values for the permeability as a function
of the solid fraction (increasing rapidly as the solid fraction approaches
zero). In particular, if R is taken to be equal to 10 then the permeability
of typical young sea ice (having a solid fraction between 0.6 and 0.8) is
predicted to be about 10719 m2, which is reasonable given the scale of
observed microstructures (platelets approximately 1 mm thick separated by
about 0.1 mm).

Once the critical thickness is exceeded, brine begins to drain from the
sea ice and does so via narrow brine channels, which are the chimneys
described in the previous section. Brine channels are home to a host of
organisms which feed on nutrients from the sea water that flushes through
them. Theoretical and experimental studies of convection in mushy layers
suggest that the flow permeates the sea ice surrounding brine channels,
originating from the underlying ocean and draining through the channels.
During its passage through the porous sea ice, continued solidification of ice
enriches the remaining liquid both in salt and in nutrients. Brine channels are
therefore rich harvesting grounds in addition, no doubt, to being relatively
safe havens from predators.

The brine draining from sea ice raises the density of the oceanic mixed
layer beneath it and therefore contributes to its deepening during the winter
months. The seasonal dynamics of the mixed layer is a significant factor
affecting climate, so the small-scale processes occurring within the mushy
layer that is sea ice may have important global consequences.
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Figure 19. Photograph of a lava lake in Hawaii.

7.4 Mineral segregation in lava lakes

Nature provides many examples of large-scale casting processes. The largest
is the growth of the inner core of the Earth (see Chapter 9), while numerous
smaller examples are given by the solidification of magmas and lavas to form
igneous rocks. One relatively uncomplicated example is the solidification of
lava that has ponded within the crater of a volcano to form a lava lake
(figure 19). The lake is cooled predominantly by contact with the atmosphere
above it. We can ignore the relatively small heat transfer to the rock beneath
and to the sides of it, which complicate considerations of solidification in
intrusive magmas (dykes and sills). The lava lake therefore fits well the ideal
case 4 of §7.1, the first minerals to solidify typically being the densest.
Examination of solidified lava lakes shows that, in addition to crystals
growing adjacent to the cooled top to form a crust, a significant proportion
of the crystallization occurs in its interior. Similar behaviour occurs in
metallic castings, in which there is also a textural division between columnar
crystals formed adjacent to the boundaries of a mould, being elongated and
aligned normal to the boundaries, and equiaxed crystals that grow in the
interior. The marginal crystals in a lava lake or magma chamber and the
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T1(C)

Figure 20. Schematic diagram of the interfacial region of a mushy layer showing the
mean temperature T and mean liquidus temperature T, (C). The horizontal dashed
line shows the position of maximum undercooling T (C) — T. Dendrites further
into the liquid than this grow slower than the mean and are caught up by the
others. Those that recede from this position grow slower and cease to contribute to
the interfacial conditions. This reasoning suggests that the mush-liquid interface is
located where n-V[T;(C)— T] = 0, which is mathematically identical to the condition
of marginal equilibrium. In systems with slow kinetics the interfacial undercooling
is significant and, coupled with convection of the melt, can have large-scale effects
in a casting.

columnar crystals in a metallic casting form the matrices of mushy layers
during solidification.

There is a problem in describing how the interior crystals can grow
given the theory of solidification presented so far. The assumptions of
internal equilibrium (6.1) and, more importantly, of marginal equilibrium
(6.25) ensure that the liquid region can never be cooled below its liquidus.
Crystals cannot grow in suspension in such a liquid and solidification only
occurs within the mushy layer.

However, as discussed in §2.3, the surface of a growing crystal is at a
temperature below the freezing temperature of the melt. If the local normal
growth of each crystal within a mushy layer obeys an equation of the form
of (2.15) then the solid fraction must evolve according to an equation of
the form

% = #Y[TL(C)— T1, (7.12)

where .o/ is the specific surface area of the internal phase boundaries.
Morphological instabilities within the mushy layer serve to increase .,
and it is clear from (7.12) that if &/% is large then T ~ T (C), which is
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Figure 21. Photograph of an experiment (Kerr et al. 1990b) in which an aqueous
solution of sodium sulphate was solidified by cooling it at the top boundary of a
rectangular mould. At the top of the mould is a white region of eutectic solid above
a mushy layer of hydrated sodium-sulphate crystals Na,SO4.10H,O. Supercooling
of the solution, as explained in the text, allows further crystallization of equiaxed
crystals at the floor of the mould.

the condition of local, internal equilibrium (6.1). However, near the interface
with the liquid region the morphological instabilities on the primary dendrites
leading to side branches are not fully developed and one can anticipate that
higher degrees of supercooling prevail in the interfacial region, as sketched
in figure 20. It is clear, by differentiating the right-hand side of (7.12) that
the maximum rate at which the mush-liquid interface can advance occurs
when the tips of the primary dendrites sit where the undercooling is largest,
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Figure 22. (a) The predicted evolution of a hypothetical lava lake composed of
Diopside (Di) and Anorthite (An) (Worster et al. 1993). A eutectic crust and un-
derlying mushy layer grow downwards from the upper surface of the lake, while
further crystals grow in the interior and settle to the floor. The composition of the
melt evolves as it is depleted of the minerals forming the interior crystals. (b) The
predicted distribution of minerals in the lava lake once it is completely solidified.

i.e. where
n-V[TL(C)—T] =0. (7.13)

This provides further justification of the condition (6.27¢) derived previously
from considerations of marginal equilibrium and applies regardless of the
degree of interfacial supercooling. What is apparent in figure 20 is that
T; + Tr(C;). In consequence, the solid fraction is non-zero at the interface.

All this has negligible influence on the growth of the mushy layer. However,
if the liquid region is flowing then supercooled liquid can be swept from the
neighbourhood of the interface into the bulk of the region. The whole liquid
region can thereby become supercooled, allowing additional solidification
of crystals from any suitable nucleation sites within that region (figure 21,
Kerr et al. 1990b). In the case of lava lakes, there are numerous small
crystals (phenocrysts) that can act as nucleation sites for such secondary
crystallization. In metal castings it is common to add small particles to the
melt to promote such growth in cases where this is desired.

There is a further twist to the tale in that as the suspended crystals grow
and settle they leave the melt depleted of the high-melting point minerals
that form them. The composition of the melt thus evolves and its time history
is frozen into the mushy layer as it grows downwards from the surface of the
lake. The bulk composition of the frozen lake, though the lava was initially
uniform, has a continuous stratification in its upper regions and changes
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abruptly where the mushy layer meets the accumulated equiaxed crystals
(figure 22).

8 Concluding remarks

In this chapter we have visited some of the fundamental ideas involved in the
solidification of fluids. Many problems in this area derive from metallurgy,
and students can gain a fuller background from the texts by Flemings
(1974) and Kurz & Fisher (1986). To gain a better understanding of the
mathematical techniques, useful references are Alexiades & Solomon (1993),
Carslaw & Jaeger (1959), Crank (1984) and Hill (1987). There is a broad
range of excellent reviews covering many of the modern developments in the
subject in the Handbook of Crystal Growth edited by Hurle (1993).

An understanding of the solidification of fluid melts is becoming increas-
ingly important as we try to develop better ways to process more exotic
materials. It is similarly important in many geophysical contexts. There are
many unsolved problems related to solidification from atomic to planetary
scales and the fluid dynamist can make significant contributions in predicting
behaviour and developing controlling strategies for the future.
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