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Notes: Where applicable, page numbers are listed in parentheses at the end of a note.

Def: A group is a nonempty set G together with a binary operation * on GXG satisfying the
following four properties:

1. G is closed under the operation * .

2. The operation * is associative.

3. G contains an identity element, e, for the operation * .

4. Each element in G has an inverse in G under the operation * .

Proposition 1: A group has exactly one identity element.

Proposition 2: Each element of a group has exactly one inverse element.
Proposition 3: (axb) '=b 'xa' Va, be(G, *).

Proposition4: (a ') '=a Va€(G, *).

Proposition 5: (Z,, +,) isa group VnelN.

Proposition 6: In a group table, every element occurs exactly once in each row and exactly once in each
column.

Def: The order of a group (G, ) is the number of elements in the set G. (Written as |G| .) (36)

Def: A dihedral group of order 2n is the set of symmetric transformations of a regular n-gon .
(Written as D, .) (36)

Def: An abelian (or commutative) group has the property that axb=bxa Y a,be(G, * ). (37)

Def: (H, *) is asubgroup of (G, x) iff H€G and (H, *) is a group under the same operation. (37)
To show that (H, *) is a subgroup, show that H €G and then show closure and existence of inverses.

Lagrange’s Theorem: Let (H, *) be a subgroup of a finite group, (G, *). |H| divides |G| .

’...} is the cyclic subgroup generated by a.

Def: (a)={a",a',a ", a*,a *,a’,a
Def: The order of an element, a, is the order of (a).

Def: A cyclic group is a group that can be generated entirely by repeatedly combining a single element
with itself. In other words, if for a cyclic group G={a), then a is the generator of G.

Def: Prime Order Proposition. For every prime p, there is exactly one group of order p.
Proposition 8: Cancellation Laws. Let a, b, c€(G, * ).

1. (axb=axc)—(b=c)
2. (bxa=c*a)—(b=c)
3. If G is abelian, (axb=c*a)—(b=c)

Proposition 9: The only solution to a*a=a is a=e.

Proposition 10: Let a, beG . If axb#bxa,then e, a,b,a*xb, bxa are all distinct elements. (50)



Proposition 11: Any non-abelian group has at least six elements. (51)

Def: The center of a group is Z(G)={all g€G such that (g*xa=ax*g VaEG)} :

Proposition 12: (Z(G), *) is a subgroup of G. (52)

Def: Two integers, a and b, are relatively prime iff gcd(a, b)=1. (54)

Def. Vn€eIN, the set of units of n, U(n), is the set of all natural numbers relatively prime to n. (54)
Proposition 13: Y nelN, (U(n),-,) is a group. (54)

Def: For any set S and subsets A, BE S, the symmetric difference of A and B (written as AA B) is the

set of all elements that are in A or B, but are not in both A and B. In other words,
AAB=(A—B)U(B—A).(55)

Def: The power set of S (written as P(S) ) is the set of all subsets of S, including & and the original
set S. (55)

Proposition 14: For any nonempty set S, (P(S), A ) is a group. (55)

Def: Let (G, *) and (K, ) be two groups. Let f be a function from G to K. fis a homomorphism (or
operation preserving function) from (G, *) to (K, o) iff Va,beG f(axb)=f(a)f(b).(59)

Proposition 15: Let f: G — K be a homomorphism. Let e be the identity of (G, *) and e’ be the
identity of (K, © ). (60)

1. f(e)=e’
2. flg7")=(f(g)" VgeG
3. flg")=(f(g)" Vnez

Def: Given nonempty sets S and 7, with x, y€ S, and a function f:S—T (63)

1. fis a one-to-one (1-1) function iff (x#7y)—(f(x)#f(y)).
2. fisonto Tiff ¥V zeT 3IxeS suchthat f(x)=z.

Proposition 16: Let f:S —T be an onto function. (65)

. f(f'(v))=v Yver

2. wef(f'(w)) vwes

Proposition 17: Let f be a homomorphism from (G, *) to (K, o). (68)

1. If (H, *) is a subgroup of (G, *),then (f(H), o) is a subgroup of (K, o).

2. If (L, o) is a subgroup of (K, ° ), then (f’l(L), *) is a subgroup of (G, *).

Def: (Using the previous example,) the image of H under fis f(H ) . The inverse image of L under f is
(L) - (68)

Proposition 18: Let f be a homomorphism from (G, *) to (K, ). fis one-to-one iff ker(f)={e] .
(72)

Def: Two groups, (G, *) and (K, o), are isomorphic iff there exists a one-to-one homomorphism f
from (G, *) onto (K, o) —thatis, f(G)=K .In this case, fis called an isomorphism or isomorphic
mapping. (73)

Proposition 19: Every finite cyclic group of order 7 is isomorphic to (Z, +,) and every infinite cyclic
group is isomorphic to (Z, +). (75)

Proposition 20: Every subgroup of a cyclic group is cyclic. (76)



Theorem: If G is a finite group, p is a prime, and p* is the largest power of p which divides |G|, then

G has a subgroup of order p*.
Def: A permutation is a one-to-one and onto function from a set to itself. (77)
Note: See pages 78 and 81 for examples of how to notate permutations.

Def: The set of permutations on {1,2,3,...,n} is written as S, . (79)

Theorem 21: The set of all permutations together with composition, (S, ©), is a nonabelian group
Y n=3.(79)

Theorem 22: The set of all permutations on a set S (its symmetries), together with composition,
(Sym S, o), is a group. (80)

Theorem 23 (Cayley’s Theorem): Every group is isomorphic to a group of permutations. (82)

Proposition 24: Every permutation can be written as a product of disjoint cycles in permutation
notation. (86)

Def: The length of a cycle in a permutation is the number of distinct objects in it. A cycle of length 2 is a
transposition. (86)

Proposition 25: Every cycle can be written as a product of transpositions (not necessarily distinct). (87)

Def: A permutation is even (or odd) if it can be written as a product of an even (or odd) number of
transpositions. (88)

Def: The subset of S, which consists of all the even permutations of S, is called the alternating
group on n and is written as A, . (90)

Def: Matrix multiplication, which is not commutative, is the standard way to combine matrices. To
multiply a 2x2 matrix: (102)

a bl|le f|_|aetbg af+bh

c dllg h cetdg cf+dh
Notes: A 2x2 matrix can be found to represent any linear transformation. The special matrix
M =|:09s x —sin (x]

sinx  cos«
when mulpilied on the left with a vector in IR* will rotate it counterclockwise by the amount « :
M Xinitial= Xrotated . (100)
Def: The inve_erse under multiplication of a 2x2 matrix is computed as follows: (103)
d -b

a b 712 ad—bc ad—bc
c d

—C a

ad—bc ad—bc

Def: The determinant of a 2x2 matrix is computed as follows: (104)

det([a Z )=ad—bc
C

Def: A matrix is invertible iff its determinant is nonzero. (104)

Theorem 29: The set of all invertible 2x2 made from elements of IR, together with matrix
multiplication, forms a group, called the general linear group, which is written as GL(2,R) . (105)



Def: The special linear group is the group of 2x2 matrices with determinants of 1, written as SL(2,RR) .
(106)

Def: To get the transpose of a matrix, swap each element a; ; with the one on the opposite side of the

main diagonal, @, ;. The transpose of a matrix M is written M". (106)
Def: A matrix M is orthogonal iff M'M =1. (106)

Theorem 30: The set of orthogonal 2x2 matrices with determinant 1 together with matrix multiplication
form a the special orthogonal group, which is written as SO (2,IR) . The set of orthogonal matrices

together with matrix multiplication is also a group, the orthogonal group, which is written as O (2,IR) .
SO(2,R) is a subgroup of O(2,R). (107)

Proposition 31: For two matrices A and B, (107)

(AB)'=B'A’

(AT)'=(A7Y)

det (A B)=det A-det B

det(A')=det A

det(A’A)=det A"-det A=det A-det A=(det A)*

ARSI B

Fact 32: SO<2,IR>={[CF’S°‘ —sm "‘] Vangle(x}
S1n X COS X

Def: Given a set G and an operation * : (113)

G is a groupoid iff G is closed under * .

G is a semigroup iff G is a groupoid and * is associative.

G is a semigroup with identity iff G is a semigroup and has an identity under * .
G is a group iff G is a semigroup and each element has an inverse under * .

Def: A ring, written (R, *, o ), consists of a nonempty set R and two opertaions such that (114)

(R, %) is an abelian group,
(R, ©) is a semigroup, and
the semigroup operation, ©, distributes over the group operation, * .

Proposition 33: Let (R, +,-) be aring. (115)

1. 0-ca=a-0=0 Ya€eR
2. (—a)-b=a(—b)=—(a-b) Ya,beR
3. (—a)(—b)=ab VYabeR

Def: A ring with identity is a ring that contains an indentity under the second operation (the
multiplicative operation). (117)
Def: A commutative ring is a ring where the second operation is commutative. (117)

Def: A subring is a nonempty subset S of aring (R, +,-) such that (S, +,-) is aring (under the same
operations as R.) (119)

Proposition 34: To prove that (S, +, o) is a subring of (R, +,-) we need to prove that (119)

1. SSR (set containment)

2. Ya,beS (a+b)eS (closure under additive operation)

3. YabeS (ab)eS (closer under multiplicative operation)
4. YaeS (—a)eS (additive inverses exist in )



Def: Aring (R, +,-) has zero divisors iff Ja, b€ R such that a#0,b#0, and a-b=0 . (120)

Def: Inaring (R, +,-) with identity, an element r is invertible iff 37 '€R such that r-r'=r'r=1

(the multiplicative identity). (121)

Proposition 35: Let R™ be the set of all invertible elements of R. If (R, +, ) is a ring with identity
then (R™,-) is a group, known as the group of invertible elements. (121)

Proposition 36: Let (R, +,-) be a ring with identity such that R#{0} . The elements 0 and 1 are
distinct. (122)

Proposition 37: Aring (R, +,-) has no zero divisors iff the cancellation law for multiplication holds.
(123)

Corollary 38: Let (R, +,-) be aring with identity which has no zero divisors. The only solutions to
x*=x inthe ring are x=0 and x=1. (123)

Def: An integral domain is a commutative ring with identity which has no zero divisors. (124)
Def: A field (F, +,-) is a set F together with two operations such that (125)

(F, +) is an abelian group,
(F—{0},-) is an abelian group, and
- distributes over + .

In other words, a field is a commutative ring with identity in which every nonzero element has an
inverse.
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