
awk Quick Ref
compiled by v.ledos

rel 1.0 feb-2010

Usage

awk [-v var=val] 'program' [file1 file2...]
awk [-v var=val] -f progfile [file1 file2...]

Structure of an awk program
comments
pattern { action }
pattern { action }
…

A sequence of
pattern-action
statements

For each file,
 For each input line,
 For each pattern,
 If pattern matches input line, do the action.

"pattern"
BEGIN : executes “action” before starting to view the input file
END : executes “action” after ending to view the input file
Other : regular, numeric or string expression or combination

"action" is executable code
if (expression) statement1 else statement2
while (expression) statement
for (expr1;expr2;expr3) statement
do statement while (expression)
break / continue : immediately leave / start next iteration
of innermost enclosing loop
exit / exit expression : go immediately to the END
action; if within the END action, exit program

Built-in variables

$0
$1, $2 … $NF

Whole line,
first, second… last field

ARGC Number of command line arguments
ARGV Array of command line arguments
FILENAME Name of current input file
FS, RS Input field / record separator (def: one space, \n)
NF Number of fields in current record
NR, FNR Number of record read so far / in current file
OFMT Output format for numbers (default: %.6g)

OFS, ORS Output field / rec. separator (def: one space, \n)
RESTART,
RLENGTH

Start / Length of string matched by
match function (see below)

SUBSEP Subscript separator (default: \034)

Main built-in functions

r: regex ; s,t: strings ; n,p: integers

int(n), sqrt(n), exp(n), log(n),
sin(n), cos(n)

rand() Random number between 0 and 1

close(file or command)
getline [var]
getline [var] < file

Read next line from input file,
from a specific file,

command | getline [var] or from a pipe
 Return 1 (record found), 0 (end of file), -1 (error)
gsub(r,s)
gsub(r,s,t)

Substitute s for r globally in $0 / string t;
return # of subs made

index(s,t) Return first position of string t in s, or 0
if t is not present

length(s) Return number of characters in s
match(s,r) Test whether s contains a substring

matched by r; return index or 0; sets
RSTART and RLENGTH

split(s,a)
split(s,a,fs)

Split s into array a on FS / field
separaror fs; return # of fields

sprintf(fmt,expr-list)
 Return expr-list formatted according to format string fmt

sub(r,s)
sub(r,s,t)

Substitute s for the leftmost longest
substring of $0 / t matched by r; return #

of subs made
substr(s,p)
substr(s,p,n)

Return substring of s (of length n)
starting at position p

tolower(s), toupper(s) Lower and upper cases

Formatted output

{ printf (“FORMAT”,value1,value2,value3,…) }

%c %s Print as character, as string
%-8s Print as 8 characters, left aligned
%f
%6.2f

Print as float number,
with 6 digits (4 as integer, 2 as decimal)

\n Line feed and carriage return

Operators

&& || ! Logical operators. Ex: !($2<4 || $3<20)
< <= == != >= >
~ !~

Comparing operators
matched by, not

selector?if-true-exp:if-false-exp

Basic programs

{ print NR, $0 } Precede each line by line #
{ $1 = NR; print } Replace first field by line #
{ $2 = log($2); $3 =”” ; print }

Replace the 2nd field by its logarithm, zap field 3
NF > 0 Print non-empty lines
NF > 0 {print $1, $NF}

Print first field and last one of non-empty lines
NF > 4 Print records containing more than 4 fields
$NF > 4 Print if last field greater than 4
NR%2==0 Print even-numbered lines
NR==10, NR==20 Print lines 10 to 20
/start/, /end / Print lines between patterns
/regex/, EOF Print from pattern to end of file
/regex/ {print $1}

Print first field of lines matching regex
$1 ~ /regex/ Print lines where first field matches
ORS=NR%5?”,”:”\n”

Concatenate every 5 lines of input, using comma separator
/regex/ {x++}
END {print x}

Count and print the number
of lines matching /regex/

{ nc += length($0) + 1; nw += NF }
END { print NR, "lines", nw, "words", nc,
"characters" } wc command
{ sum += $1 }
END { print sum, sum/NR }

Print sum and
average

{ x[NR] = $0 }
END {for (i = NR; i > 0; i--) print x[i]}

Reverse a file
{ a[$1] += $2 }
END { for (i in a) print (i,":",a[i]) }

Group by field 1, and sum field 2
function pwr(a,b) { return exp(b*log(a)) }
NF >= 2 { print pwr($1,$2) }

User defined function
BEGIN { RS=””; FS=”\n” }
{ print “Name: “,$1
 print “Address: “,$2 }

Multi-line records.
Leading and trailing
newlines are ignored

