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1 Erdős multiplication table theorem

Suppose we form the N × N multiplication table, containing all the N2

products ab, where 1 ≤ a, b ≤ N . Not all these products will be distinct,
since for example ab = ba; and, for example 2 · 3 = 3 × 2 = 6 × 1 = 1 × 6.
But we might hope that there are enough of them to where these products
take up a “positive proportion” of the numbers up to N2 as N → ∞. That
is, one might guess that:

Question. Let m(N) denote the number of integers of the form ab, where
1 ≤ a, b ≤ N . Does limN→∞ m(N)/N2 exist, and is it equal to some non-zero
(positive) constant?

P. Erdős showed that the answer is ‘no’; that, in fact, limN→∞ m(N)/N2 =
0. In other words, as N gets bigger and bigger, the set of products ab as above
“eat up” a smaller and smaller proportion – tending to 0, in fact – of the
integers up to N2. What was innovative about Erdős’s proof was that he did
this using probabilistic arguments; and here we will trace through his proof.

2 Markov’s inequality and Chebyshev’s in-

equality

The main tools we will need are some elementary estimates in prime number
theory, in combination with the following inequality:
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Chebyshev’s Inequality. Suppose that X is a random variable having
finite variance σ2 and expected value µ (i.e. E(X) = µ and V (X) = σ2).
Then,

P(|X − µ| ≥ t) ≤ σ2/t2.

Another way to express the conclusion here is:

P(|X − µ| ≥ tσ) ≤ 1/t2.

The proof of this inequality relies on another inequality called Markov’s
inequality, stated as follows:

Markov’s Inequality. Suppose that X ≥ 0 and has expected value µ > 0.
Then, for t > 0 we have

P(X ≥ t) ≤ µ/t.

2.1 Proof of Markov’s inequality

We will prove it in the case where X is a continuous random variable having
pdf f(x); the discrete case can be handled similarly.

We begin by letting 1[t,∞)(x) denote the indicator function for the interval
[t,∞), so that the function is 0 if x < t, and is 1 if x ≥ t. Then, we observe
that

1[t,∞)(x) ≤ x/t, for x > 0.

We have

P(X ≥ t) =

∫ ∞

0

1[t,∞)(x)f(x)dx ≤

∫ ∞

0

xf(x)/tdx =

∫ ∞

0
xf(x)dx

t
= µ/t,

as claimed.
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2.2 Proof of Chebyshev’s inequality

We first note that if σ2 = 0, then with probability 1 we have that X = µ,
since X is a continuous r.v. So we may assume σ2 > 0.

Given X, let Y = |X − µ|2. Then, Y ≥ 0 and E(Y ) = E(|X − µ|2) =
σ2 > 0. It follows that

P(|X − µ| ≥ t) = P(Y ≥ t2) ≤ σ2/t2,

where the last equality is a consequence of Markov’s inequality.

3 Sums over prime numbers

We will also need the following well-known result in elementary prime number
theory, which we will not bother to prove:

Theorem 1 We have that
∑

p≤x

p prime

1

p
= log log x + C + O(1/ logx),

where C is some constant.

Using the fact that
∑

pa≥2, a≥2

p prime

1

pa
= D,

for some constant D > 0, one can easily deduce from the above theorem that

Theorem 2 We have that
∑

pa≤x, a≥1

p prime

1

pa
= log log x + E + O(1/ logx),

for some constant E > 0.

We will not bother to supply the proof of this.
One more fact we will need is given as follows:

Theorem 3
∑

pa,qb≤x, a,b≥1

p,q prime

1

paqb
≤ (log log x + E + O(1/ logx))2.

Basically, we get this by squaring out the sum in Theorem 2.
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4 The proof

Let Ω(n) denote the number of prime power divisors of n, and let ω(n) denote
the number of prime divisors of n. So, for example, Ω(12) = 3, because 2, 4,
and 3 are all the prime powers dividing 12; while, ω(12) = 2, since 2 and 3
are the only prime divisors of 12.

It is an easy exercise to check that

Ω(ab) = Ω(a) + Ω(b), for a, b ≥ 1.

A common way of expressing Ω(n) and ω(n) with sum notation is as
follows:

Ω(n) =
∑

pa|n
p prime

1, and ω(n) =
∑

p|n
p prime

1.

The proof of Erdős’s multiplication table theorem will amount to proving
the following theorem.

Theorem 4 For all but at most o(N) of the integers n ≤ N we have that

log log N − (log log N)2/3 < Ω(n) < log log N + (log log N)2/3. (1)

That is to say: For every ε > 0, there exists N0(ε) > 0, such that if N >
N0(ε) then (1) holds for at least (1 − ε)N of the integers in {1, 2, ..., N}.

Note. We get the same conclusion for the function ω(n).

Given this theorem, let us see how to prove Erdős’s theorem: Basically,
an easy consequence of this theorem is that all but at most o(N2) of the
products ab, 1 ≤ a, b ≤ N , have the property that (1) holds for both n = a
and n = b. Thus, all but at most o(N2) entries ab in the N×N multiplication
table will satisfy

2 log log N − 2(log log N)2/3 < Ω(ab) < 2 log log N + 2(log log N)2/3.

But now how likely is it for a number n ≤ N2 to satisfy this inequality?
Well, note that

log log(N2) = log(2 logN) = log log N + log 2;
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so, Theorem 4 is telling us that only o(N2) numbers n ≤ N2 have the property
that Ω(n) is near 2 log log N . What this means is that most pairs (a, b)
lead to numbers ab with an atypically large number of prime power divisors,
compared to most numbers of size at most N2; and so, there can be only
o(N2) numbers in the table, which proves Erdős’s theorem.

4.1 Proof of Theorem 4

It remains, therefore, to prove Theorem 4. The idea is to use some prob-
ability: Basically, we let X ≤ N be a randomly selected number where
every number up to N is chosen with equal probability 1/N ; and then we let
Y = Ω(X). We have that

E(Y ) =
∑

x≤N

Ω(x)P(X = x) =
1

N

∑

x≤N

∑

pa|x
p prime

1 =
1

N

∑

pa≤N

p prime

∑

x≤N

pa|x

1

=
∑

pa≤N

p prime

1

N
⌊N/pa⌋

Now, ⌊N/pa⌋ = N/pa − δpa , where 0 ≤ δpa < 1; and so, we have that

E(Y ) =
∑

pa≤N

p prime

1

pa
−

1

N

∑

pa≤N

p prime

δpa .

This last expression (the factor 1/N and sum multiplied together) clearly is
bounded from above by 1; and so, E(Y ) = log log N + O(1).

To compute the variance of Y , recall that

V (Y ) = E(Y 2) − E(Y )2 = E(Y 2) − (log log N + O(1))2.

For our purposes all we need is an upper bound here on V (Y ); and that is
all we shall bother to prove: We have that

NE(Y 2) =
∑

x≤N







∑

pa|x
p prime

1







2

=
∑

x≤N

∑

pa,qb|x
p,q prime

1 =
∑

pa,qb≤N

p,q prime

∑

x≤N

pa|n, qb|n

1.

If p and q are distinct, then the number of x ≤ N divisible by pa and qb

at the same time is just ⌊N/paqb⌋; on the other hand, if p = q and a < b,
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then the count is just ⌊N/pb⌋. Let us consider the contribution of this second
case (dropping the floors ⌊ and ⌋, since after all we are only interested in an
upper bound):

∑

pa,pb≤N

p prime, a≤b

1

pb
≤

∑

pb≤N

p prime, b≥2

b

pb
≤

∑

pb≤N

p prime, b≥2

log2(p
b)

pb
= O(1).

The factor b in the numerator here accounts for the possibilities for a. The
fact that we get O(1) at the end is basically because those pb, b ≥ 2 are
“quadratically thin” – there are at most X1/2 such numbers in an interval
[X, 2X] for X large enough.

So, we get that

E(Y 2) ≤ O(1) +
∑

pa,qb≤N

p,q prime, p6=q

1

paqb
≤ (log log N + O(1))2,

by appealing to Theorem 3. It follows that

V (Y ) ≤ O(log log N);

and therefore, by Chebyshev’s inequality, we have for any c > 0 that

P(|Y − E(Y )| ≥ c(log log N)2/3) ≤ O(c−2(log log N)−1/3).

Since E(Y ) = log log N + O(1) it is clear that this implies Theorem 4.
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