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I: WEIRD MULITPLICATION!                                    
 

MULTIPLICATION 1:  

Here’s a new type of math called intersection math. To compute the product of two 
numbers, say four times three, draw two horizontal lines, place four dots on the top line, 
three on the bottom, and then connect each dot on the top line to each and every dot on 
the bottom line. The number of intersections that occur between the two horizontal lines 
is the product. (One must make sure that the dots are sufficiently spaced so that no point 
of intersection is crossed multiple times.)  In intersection math, 4 3 18× = . 

 

 
 
a) Is 3 4×  also 18 in intersection math? If so, why? 
b) What is 1 107×  in intersection math? 
c) Draw a six-by-six multiplication table for intersection math. What patterns do you 
notice? 
d) What’s 963 4036×  in intersection math?  

 

MULTIPLICATION 2:  

Here’s another mathematical invention called rectangle math. To compute the product of 
two numbers, say, four times three, draw a four-by-three array of dots and count the 
number of (horizontal/vertical) rectangles one can draw with vertices on the grid. 
(Squares are also considered rectangles.)  
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Here there are six 1 1×  rectangles, three 1 2× s, four 2 1× s, two 2 2× s, two 3 1× s, and one 
3 2× , giving a total of eighteen rectangles: 

 
4 3 18× = . 

 
a) Is it a coincidence that four times three in rectangle math is the same as four times 
three in intersection math?  
b) Draw a six-by-six multiplication table for rectangle math. What do you notice? 
c) What’s 963 4036×  in rectangle math? 

 

 

 

 

MULTIPLICATION 3:  

Here’s yet another type of math, called dinner party math. To compute the product of two 
numbers, say, four times three(!), imagine you are the host of a dinner party. You have 
four male friends (Albert, Bilbert, Cuthbert, and Dilbert) and three female friends 
(Edwina, Fellina, and Gina) but can only invite two men and two women to your party. Now 
ask: How many different dinner parties could you host? Here’s a list of all the options: 
 

AB|EF AB|EG AB|FG AC|EF AC|EG AC|FG AD|EF AD|EG AD|FG  
BC|EF BC|EG BC|FG BD|EF BD|EG BD|FG  
CD|EF CD|EG CD|FG 

 

That’s eighteen possibilities. We thus say, in dinner party math, four times three is 
eighteen! 
 

a) Coincidence? 
b) Is 3 4×  also 18 in dinner party math? 
c) Draw a six-by-six multiplication table for dinner party math. 
d) What’s 963 4036×  in dinner party math? 
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TOWARDS SOLUTIONS:  

a) List all the ways to select two friends from the list: A B C D E F G H. 
Do this in a systematic way so that you can see that the answer is the number 
7 6 5 4 3 2 1+ + + + + + . 

 

b) Explain why each “product” in dinner party math is the ordinary product of two 
numbers of this type.   

 

c) Show how to convert a rectangle math problem into a dinner party math problem. 
Give each row of the rectangular array of dots a label, A, B, C, … and give each 
column a label E, F, G, … 

. 
d) Show how to convert an intersection math problem into a dinner party problem. Give 

each dot on the top line a label A, B, C, … and each dot on the bottom line a label E, 
F, G… . 
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II: BRIEF ASIDE ON TRIANGLE NUMBERS 
 
[A fuller version of these concepts appears in THINKING MATHEMATICS! Volume 1.] 
 
The triangle numbers and square numbers are the numbers that arise from arranging dots 
into triangular and square configurations: 
 

 
 

 
 

The N -th square number is given by 2

N
S N=  and the N -th triangle number is the sum of 

the first N counting numbers:  

1 2 3
N
T N= + + + +⋯  

Write this sum forwards and backwards and sum column-wise: 
 

 
 
This shows that ( 1) 2

N
N N T+ =  yielding:  

 
( 1)

2
N

N N
T

+
=  
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There are some remarkable relationships twixt square and triangular numbers. 
  
Two consecutive triangle numbers always sum to a square number. 

A single picture reveals why. 

 
Here we see that the fourth triangular number and the fifth triangular number fit 
together to make a 5 5×  square. 
 
Doubling a triangle number and adding its matching square number always yields 

another triangle number.  

 
Reason: Two triangles and square make another triangle! 

 
Multiply any triangle number by 8 and add1. The result is always an (odd) square 

number. 

 
EXERCISE:  Here’s a 9 9×  square array.  

 
Can you find in this grid eight copies of the fourth triangular number  

 
leaving behind one single dot? 
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Try to come up with a design of eight triangles and a single dot that has a sense of 
symmetry to it and would clearly and easily generalize to 11 11× , 13 13× , and other square 
arrays of odd side-length. (HINT: Before you begin, what dot in the square array do you 
think might be the one singled out as special?) 
 

TOUGH CHALLENGE: The numbers 1, 36 and 1225 are both square and triangular. Any 
more? 
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III: SOLUTIONS TO WEIRD MULTIPLICATION 
 
The three different weird multiplications – intersection math, rectangle math, and dinner 
party math - are identical!  To explain …  
 
To compute 4x3 in intersection math imagine we labeled the four points on one line Albert, 
Bilbert, Cuthbert and Dilbert, and the three points on the second line, Edwina, Fellina and 
Gina:  
 

 
 
Choosing a dinner party arrangement – two men and two women – identifies a unique 
intersection point and, conversely, each intersection point corresponds to a unique dinner 
party arrangement. (Check this! Choose a random intersection point and be clear that it 
does determine a specific dinner party arrangement.)   
 
This shows that the number of intersection points matches the number of dinner parties. 
These two types of math are the same. 
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To compute 4x3 in rectangle math imagine we label the four rows of the diagram Albert, 
Bilbert, Cuthbert and Dilbert, and the three columns Edwina, Fellina and Gina.  

 
 
Each dinner party configuration corresponds to a rectangle in the grid and each rectangle 
to a dinner party! Thus rectangle math is identical to dinner party math. 
 
Here’s the multiplication table for each type of math: 
 

 
 
If you are observant you may have noticed an ordinary multiplication table sitting inside 
the design. It looks like intersection/rectangle/dinner-party math is the ordinary 
multiplication of triangle numbers! 
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To be clear about this, notice that the number of ways to select two people from a group 
of four really corresponds to the sum 1 2 3+ + , the third triangle number: 

 
In general, systematically listing pairs of men from a group of N  options corresponds to 

the sum ( )1 2 3 1N+ + + + −⋯ , the ( )1N − th triangle number.  

 
In dinner party math with N  men and M  women to choose from there are 1N

T −  pairs of 

men to consider and 1M
T −  pairs of women. The number of possible dinner party options in 

all is:  
 
   1 1N M

T T− −×  

 
indeed the ordinary product of two triangle numbers! 
 

 
 

In particular, in any of these maths: 
 

 962 4035

962 963 4035 4036
963 4036 3,771,690,643,890

2 2
T T

× ×
× = × = × =  

 
 

 

EXTRA CHALLENGES:  

These maths are commutative: a b b a× = × .  Does the associative law also hold: 

( ) ( )a b c a b c× × = × × ? Is there a multiplicative identity? That is, a special number e with 

the property that a e a× =  for all a ?  
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IV: WILD EXPLORATIONS 
 
Let’s go back to intersection math, but instead of counting points of intersection, let’s 
count other things!  Here again is the diagram for 4 3× :  
 

 
 
How many lines (apart from the original horizontal pair) did we draw in this diagram? 
Answer: 12. 
 
Let’s say:    In line math we have 4 3 12× = . 
 
 

CHALLENGE 1: Work out other products in “line math.” Is there anything to observe? 

 

How many spaces appear between the horizontal lines in the diagram for 4 3× ? 
 

There is an issue here: Do we wish to include the infinitely long regions to the left and to 
the right, or just count the finite regions? Since I need to continue writing this essay I 
need to make a choice now(!), but do not feel you have to go with what I do here!  
 
Here’s my choice: I will only count the finite regions.  
 
In this case I see 29 regions.  I will say:  
 
    In region math we have 4 3 29× = . 
 

 

CHALLENGE 2: Work out other products in “region math.” Any patterns? 
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ALL THREE TOGETHER! 
 

In the previous diagram for 4 3×  we have: 
 
  Intersections 18I =  
  Lines 12L =  
  Regions 29R =  
 

Collect data of this type for other product diagrams.  
 

CHALLENGE 3: Is there a remarkable formula that seems to always hold true for the 
numbers I , L  and R ? Can you prove your formula must be true? (See challenge 4.) 

 
 

OKAY … GOING WILD! 
 
Who said lines have to be straight? Do we really have to connect each dot on the top line 
with each and every top on the bottom line?  
 
Consider the following diagram:  
 

 
It has:  

  

8

4

11

I

L

R

=

=

=

 

 
Does this fit your formula from challenge 3? 
 

CHALLENGE 4: My personal instinct suggests it might be easier to prove the formula for 
challenge 3 in this context of allowing non-straight lines. Am I right? Try considering the 
results of adding one line at a time to the diagram. 
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What about multiple intersections? 
 

 
 
Should these intersections still count as “one intersection” or should they be worth more? 
 

CHALLENGE 5: Is there a good way to count multiple intersections so that your formula 
from challenge 3 is still appropriate?  

 
  
What about curvy lines that connect dots on the same horizontal line?  
What about lines that wander outside the space between the horizontal lines? 

 
 

CHALLENGE 7: Is there an ultimate general formula that makes good and appropriate 
sense for all possible scenarios?   

 
 
And one final question …  
 

CHALLENGE 8: What about those two infinite regions?  
How does everything change if you do decide to include them in your counting? 

 


