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Abstract

The goal of this paper is face recognition – from either a single photograph or from a
set of faces tracked in a video. Recent progress in this area has been due to two factors:
(i) end to end learning for the task using a convolutional neural network (CNN), and (ii)
the availability of very large scale training datasets.

We make two contributions: first, we show how a very large scale dataset (2.6M im-
ages, over 2.6K people) can be assembled by a combination of automation and human
in the loop, and discuss the trade off between data purity and time; second, we traverse
through the complexities of deep network training and face recognition to present meth-
ods and procedures to achieve comparable state of the art results on the standard LFW
and YTF face benchmarks.

1 Introduction
Convolutional Neural Networks (CNNs) have taken the computer vision community by
storm, significantly improving the state of the art in many applications. One of the most
important ingredients for the success of such methods is the availability of large quantities
of training data. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [16]
was instrumental in providing this data for the general image classification task. More re-
cently, researchers have made datasets available for segmentation, scene classification and
image segmentation [12, 33].

In the world of face recognition, however, large scale public datasets have been lacking
and, largely due to this factor, most of the recent advances in the community remain restricted
to Internet giants such as Facebook and Google etc. For example, the most recent face
recognition method by Google [17] was trained using 200 million images and eight million
unique identities. The size of this dataset is almost three orders of magnitude larger than any
publicly available face dataset (see Table 1). Needless to say, building a dataset this large is
beyond the capabilities of most international research groups, particularly in academia.

This paper has two goals. The first one is to propose a procedure to create a reasonably
large face dataset whilst requiring only a limited amount of person-power for annotation. To
this end we propose a method for collecting face data using knowledge sources available on
the web (Section 3). We employ this procedure to build a dataset with over two million faces,
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Dataset Identities Images
LFW 5,749 13,233
WDRef [4] 2,995 99,773
CelebFaces [25] 10,177 202,599

Dataset Identities Images
Ours 2,622 2.6M
FaceBook [29] 4,030 4.4M
Google [17] 8M 200M

Table 1: Dataset comparisons: Our dataset has the largest collection of face images outside
industrial datasets by Goole, Facebook, or Baidu, which are not publicly available.

and will make this freely available to the research community. The second goal is to inves-
tigate various CNN architectures for face identification and verification, including exploring
face alignment and metric learning, using the novel dataset for training (Section 4). Many
recent works on face recognition have proposed numerous variants of CNN architectures for
faces, and we assess some of these modelling choices in order to filter what is important
from irrelevant details. The outcome is a much simpler and yet effective network architec-
ture achieving near state-of-the-art results on all popular image and video face recognition
benchmarks (Section 5 and 6). Our findings are summarised in Section 6.2.

2 Related Work
This paper focuses on face recognition in images and videos, a problem that has received
significant attention in the recent past. Among the many methods proposed in the literature,
we distinguish the ones that do not use deep learning, which we refer as “shallow”, from
ones that do, that we call “deep”. Shallow methods start by extracting a representation of the
face image using handcrafted local image descriptors such as SIFT, LBP, HOG [5, 13, 22,
23, 32]; then they aggregate such local descriptors into an overall face descriptor by using a
pooling mechanism, for example the Fisher Vector [15, 20]. There are a large variety of such
methods which cannot be described in detail here (see for example the references in [15] for
an overview).

This work is concerned mainly with deep architectures for face recognition. The defining
characteristic of such methods is the use of a CNN feature extractor, a learnable function
obtained by composing several linear and non-linear operators. A representative system of
this class of methods is DeepFace [29]. This method uses a deep CNN trained to classify
faces using a dataset of 4 million examples spanning 4000 unique identities. It also uses
a siamese network architecture, where the same CNN is applied to pairs of faces to obtain
descriptors that are then compared using the Euclidean distance. The goal of training is to
minimise the distance between congruous pairs of faces (i.e. portraying the same identity)
and maximise the distance between incongruous pairs, a form of metric learning. In addition
to using a very large amount of training data, DeepFace uses an ensemble of CNNs, as well
as a pre-processing phase in which face images are aligned to a canonical pose using a 3D
model. When introduced, DeepFace achieved the best performance on the Labelled Faces
in the Wild (LFW; [8]) benchmark as well as the Youtube Faces in the Wild (YFW; [32])
benchmark. The authors later extended this work in [30], by increasing the size of the dataset
by two orders of magnitude, including 10 million identities and 50 images per identity. They
proposed a bootstrapping strategy to select identities to train the network and showed that
the generalisation of the network can be improved by controlling the dimensionality of the
fully connected layer.

The DeepFace work was extended by the DeepId series of papers by Sun et al. [24, 25,
26, 27], each of which incrementally but steadily increased the performance on LFW and
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Figure 1: Example images from our dataset for six identities.

YFW. A number of new ideas were incorporated over this series of papers, including: using
multiple CNNs [25], a Bayesian learning framework [4] to train a metric, multi-task learning
over classification and verification [24], different CNN architectures which branch a fully
connected layer after each convolution layer [26], and very deep networks inspired by [19,
28] in [27]. Compared to DeepFace, DeepID does not use 3D face alignment, but a simpler
2D affine alignment (as we do in this paper) and trains on combination of CelebFaces [25]
and WDRef [4]. However, the final model in [27] is quite complicated involving around 200
CNNs.

Very recently, researchers from Google [17] used a massive dataset of 200 million face
identities and 800 million image face pairs to train a CNN similar to [28] and [18]. A point
of difference is in their use of a “triplet-based” loss, where a pair of two congruous (a,b) and
a third incongruous face c are compared. The goal is to make a closer to b than c; in other
words, differently from other metric learning approaches, comparisons are always relative
to a “pivot” face. This matches more closely how the metric is used in applications, where
a query face is compared to a database of other faces to find the matching ones. In training
this loss is applied at multiple layers, not just the final one. This method currently achieves
the best performance on LFW and YTF.

3 Dataset Collection
In this section we propose a multi-stage strategy to effectively collect a large face dataset
containing hundreds of example images for thousands of unique identities (Table 1). The
different stages of this process and corresponding statistics are summarised in Table 2. Indi-
vidual stages are discussed in detail in the following paragraphs.

Stage 1. Bootstrapping and filtering a list of candidate identity names. The first stage
in building the dataset is to obtain a list of names of candidate identities for obtaining faces.
The idea is to focus on celebrities and public figures, such as actors or politicians, so that
a sufficient number of distinct images are likely to be found on the web, and also to avoid
any privacy issue in downloading their images. An initial list of public figures is obtained
by extracting males and females, ranked by popularity, from the Internet Movie Data Base
(IMDB) celebrity list. This list, which contains mostly actors, is intersected with all the
people in the Freebase knowledge graph [1], which has information on about 500K different
identities, resulting in a ranked lists of 2.5K males and 2.5K females. This forms a candidate
list of 5K names which are known to be popular (from IMDB), and for which we have
attribute information such as ethnicity, age, kinship etc. (from the knowledge graph). The
total of 5K images was chosen to make the subsequent annotation process manageable for a
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small annotator team.
The candidate list is then filtered to remove identities for which there are not enough

distinct images, and to eliminate any overlap with standard benchmark datasets. To this end
200 images for each of the 5K names are downloaded using Google Image Search. The
200 images are then presented to human annotators (sequentially in four groups of 50) to
determine which identities result in sufficient image purity. Specifically, annotators are asked
to retain an identity only if the corresponding set of 200 images is roughly 90% pure. The
lack of purity could be due to homonymy or image scarcity. This filtering step reduces the
candidate list to 3,250 identities. Next, any names appearing in the LFW and YTF datasets
are removed in order to make it possible to train on the new dataset and still evaluate fairly
on those benchmarks. In this manner, a final list of 2,622 celebrity names is obtained.

Stage 2. Collecting more images for each identity. Each of the 2,622 celebrity names is
queried in both Google and Bing Image Search, and then again after appending the keyword
“actor” to the names. This results in four queries per name and 500 results for each, obtaining
2,000 images for each identity.

Stage 3. Improving purity with an automatic filter. The aim of this stage is to remove
any erroneous faces in each set automatically using a classifier. To achieve this the top 50
images (based on Google search rank in the downloaded set) for each identity are used as
positive training samples, and the top 50 images of all other identities are used as negative
training samples. A one-vs-rest linear SVM is trained for each identity using the Fisher
Vector Faces descriptor [15, 20]. The linear SVM for each identity is then used to rank
the 2,000 downloaded images for that identity, and the top 1,000 are retained (the threshold
number of 1,000 was chosen to favour high precision in the positive predictions).

Stage 4. Near duplicate removal. Exact duplicate images arising from the same image
being found by two different search engines, or by copies of the same image being found at
two different Internet locations, are removed. Near duplicates (e.g. images differing only in
colour balance, or with text superimposed) are also removed. This is done by computing the
VLAD descriptor [2, 9] for each image, clustering such descriptors within the 1,000 images
for each identity using a very tight threshold, and retaining a single element per cluster.

Stage 5. Final manual filtering. At this point there are 2,622 identities and up to 1,000
images per identity. The aim of this final stage is to increase the purity (precision) of the data
using human annotations. However, in order to make the annotation task less burdensome,
and hence avoid high annotation costs, annotators are aided by using automatic ranking once
more. This time, however, a multi-way CNN is trained to discriminate between the 2,622
face identities using the AlexNet architecture of [10]; then the softmax scores are used to
rank images within each identity set by decreasing likelihood of being an inlier. In order to
accelerate the work of the annotators, the ranked images of each identity are displayed in
blocks of 200 and annotators are asked to validate blocks as a whole. In particular, a block is
declared good if approximate purity is greater than 95%. The final number of good images
is 982,803, of which approximately 95% are frontal and 5% profile.

Discussion. Overall, this combination of using Internet search engines, filtering data using
existing face recognition methods, and limited manual curation is able to produce an accurate
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Stage Aim Type # of # of images total # Annotation 100%-
persons per person images effort EER

1 Candidate list generation A 5,000 200 1,000,000 – –
2 Image set expansion M 2,622 2,000 5,244,000 4 days –
3 Rank image sets A 2,622 1,000 2,622,000 – 96.90
4 Near dup. removal A 2,622 623 1,635,159 – –
5 Final manual filtering M 2,622 375 982,803 10 days 92.83

Table 2: Dataset statistics after each stage of processing. A considerable part of the ac-
quisition process is automatically carried out. Type A and M specify whether the processing
stage was carried out automatically or manually. The EER values are the performance on
LFW for CNN configuration A trained on that stage of the dataset and compared using l2
distance.

large-scale dataset of faces labelled with their identities. The human annotation cost is quite
small – the total amount of manual effort involved is only around 14 days, and only four days
up to stage 4. Table 1 compares our dataset to several existing ones.

A number of design choices have been made in the process above. Here we suggest some
alternatives and extensions. The Freebase source can be replaced by other similar sources
such as DBPedia (Structured WikiPedia) and Google Knowledge Graph. In fact, Freebase
will be shut down and replaced by Google Knowledge Graph very soon. On the image col-
lection front, additional images can be collected from sources like Wikimedia Commons,
IMDB and also from search engines like Baidu and Yandex. The removal of identities over-
lapping with LFW and YTF in stage 1 could be removed in order to increase the number
of people available for the subsequent stages. The order of the stages could be changed to
remove near duplicates before stage 2. In terms of extensions, the first stage of collection can
be automated by looking at the distribution of pairwise distances between the downloaded
images. An image class with high purity should exhibit a fairly unimodal distribution.

4 Network architecture and training
This section describes the CNNs used in our experiments and their training. Inspired by [19],
the networks are “very deep”, in the sense that they comprise a long sequence of convolu-
tional layers. Such CNNs have recently achieved state-of-the-art performance in some of the
tasks of the ImageNet ILSVRC 2014 challenge [16], as well as in many other tasks [7, 19,
28].

4.1 Learning a face classifier
Initially, the deep architectures φ are bootstrapped by considering the problem of recog-
nising N = 2,622 unique individuals, setup as a N-ways classification problem. The CNN
associates to each training image `t , t = 1, . . . ,T a score vector xt = Wφ(`t)+ b ∈ RN by
means of a final fully-connected layer containing N linear predictors W ∈RN×D, b∈RN , one
per identity. These scores are compared to the ground-truth class identity ct ∈ {1, . . . ,N} by
computing the empirical softmax log-loss E(φ) =−∑t log

(
e〈ect ,xt 〉/∑q=1,...,N e〈eq,xt 〉

)
, where

xt = φ(`t) ∈ RD, and ec denotes the one-hot vector of class c.
After learning, the classifier layer (W,b) can be removed and the score vectors φ(`t) can

be used for face identity verification using the Euclidean distance to compare them. However,
the scores can be significantly improved by tuning them for verification in Euclidean space
using a “triplet loss” training scheme, illustrated in the next section. While the latter is
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layer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
type input conv relu conv relu mpool conv relu conv relu mpool conv relu conv relu conv relu mpool conv
name – conv1_1 relu1_1 conv1_2 relu1_2 pool1 conv2_1 relu2_1 conv2_2 relu2_2 pool2 conv3_1 relu3_1 conv3_2 relu3_2 conv3_3 relu3_3 pool3 conv4_1

support – 3 1 3 1 2 3 1 3 1 2 3 1 3 1 3 1 2 3
filt dim – 3 – 64 – – 64 – 128 – – 128 – 256 – 256 – – 256

num filts – 64 – 64 – – 128 – 128 – – 256 – 256 – 256 – – 512
stride – 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 1
pad – 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1

layer 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
type relu conv relu conv relu mpool conv relu conv relu conv relu mpool conv relu conv relu conv softmx
name relu4_1 conv4_2 relu4_2 conv4_3 relu4_3 pool4 conv5_1 relu5_1 conv5_2 relu5_2 conv5_3 relu5_3 pool5 fc6 relu6 fc7 relu7 fc8 prob

support 1 3 1 3 1 2 3 1 3 1 3 1 2 7 1 1 1 1 1
filt dim – 512 – 512 – – 512 – 512 – 512 – – 512 – 4096 – 4096 –

num filts – 512 – 512 – – 512 – 512 – 512 – – 4096 – 4096 – 2622 –
stride 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
pad 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

Table 3: Network configuration. Details of the face CNN configuration A. The FC layers
are listed as “convolution” as they are a special case of convolution (see Section 4.3). For
each convolution layer, the filter size, number of filters, stride and padding are indicated.

essential to obtain a good overall performance, bootstrapping the network as a classifier, as
explained in this section, was found to make training significantly easier and faster.

4.2 Learning a face embedding using a triplet loss
Triplet-loss training aims at learning score vectors that perform well in the final application,
i.e. identity verification by comparing face descriptors in Euclidean space. This is similar in
spirit to “metric learning”, and, like many metric learning approaches, is used to learn a pro-
jection that is at the same time distinctive and compact, achieving dimensionality reduction
at the same time.

Our triplet-loss training scheme is similar in spirit to that of [17]. The output φ(`t) ∈RD

of the CNN, pre-trained as explained in Section 4.1, is l2-normalised and projected to a L�
D dimensional space using an affine projection xt =W ′φ(`t)/‖φ(`t)‖2, W ′ ∈ RL×D. While
this formula is similar to the linear predictor learned above, there are two key differences.
The first one is that L 6=D is not equal to the number of class identities, but it is the (arbitrary)
size of the descriptor embedding (we set L = 1,024). The second one is that the projection
W ′ is trained to minimise the empirical triplet loss

E(W ′) = ∑
(a,p,n)∈T

max{0,α−‖xa−xn‖2
2 +‖xa−xp‖2

2}, xi =W ′
φ(`i)

‖φ(`i)‖2
. (1)

Note that, differently from the previous section, there is no bias being learned here as the
differences in (1) would cancel it. Here α ≥ 0 is a fixed scalar representing a learning
margin and T is a collection of training triplets. A triplet (a, p,n) contains an anchor face
image a as well as a positive p 6= a and negative n examples of the anchor’s identity. The
projection W ′ is learned on target datasets such as LFW and YTF honouring their guidelines.
The construction of the triplet training T set is discussed in Section 4.4.

4.3 Architecture
We consider three architectures based on the A, B, and D architectures of [19]. The CNN
architecture A is given in full detail in Table 3. It comprises 11 blocks, each containing a
linear operator followed by one or more non-linearities such as ReLU and max pooling. The
first eight such blocks are said to be convolutional as the linear operator is a bank of linear
filters (linear convolution). The last three blocks are instead called Fully Connected (FC);
they are the same as a convolutional layer, but the size of the filters matches the size of the
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input data, such that each filter “senses” data from the entire image. All the convolution
layers are followed by a rectification layer (ReLU) as in [10]; however, differently from [10]
and similarly to [19], they do not include the Local Response Normalisation operator. The
first two FC layers output are 4,096 dimensional and the last FC layer has either N = 2,622
or L = 1,024 dimensions, depending upon the loss functions used for optimisation, either
N-way class prediction (Section 4.1 or L-dimensional metric embedding (Section 4.2). In
the first case, the resulting vector is passed to a softmax layer to compute the class posterior
probabilities. Networks B and D are similar to A but include 2 and 5 additional convolution
layers respectively.

The input to all networks is a face image of size 224×224 with the average face image
(computed from the training set) subtracted – this is critical for the stability of the optimisa-
tion algorithm.

4.4 Training
Learning the N-way face classifier (Section 4.1) follows the steps of [10] with the modifica-
tions suggested by [19]. The goal is to find the parameters of the network that minimise the
average prediction log-loss after the softmax layer.

We describe the procedure for the CNN A configuration first, and then the variants for the
B and D configurations. Optimisation is by stochastic gradient descent using mini-batches of
64 samples and momentum coefficient of 0.9 [11]. The model is regularised using dropout
and weight decay; the coefficient of the latter was set to 5× 10−4, whereas dropout was
applied after the two FC layers with a rate of 0.5. The learning rate was initially set to 10−2

and then decreased by factor of 10 when the validation set accuracy stopped increasing.
Overall, the model was trained using three decreasing learning rates.

The weights of the filters in the CNN were initialised by random sampling from a Gaus-
sian distribution with zero mean and 10−2 standard deviation. Biases were initialised to
zero. The training images were rescaled such that the smaller of width and height was equal
to 256. During training, the network is fed with random 224× 224 pixel patches cropped
from these images (where crops change every time an image is sampled). The data was fur-
ther augmented by flipping the image left to right with 50% probability; however, we did not
perform any colour channel augmentation as described in [19] and [10].

The CNN configuration A is trained from scratch, whereas configurations B and D are
trained by starting from the the trained A. This is obtained by appending additional fully
connected layers to A, randomly initialised, and then training the latter as well as fine-tuning
(train with a lower learning rate) the network again.

For learning the embeddings using triplet loss (Section 4.2), the nework is frozen except
the last fully-connecte layer implementing the discriminative projection. This layer is then
learnt for 10 epochs using SGD with a fixed learning rate of 0.25. An epoch here contains
all the possible positive pairs (a, p), where image a is considered the anchor and p its paired
positive example. Choosing good triplets is crucial and should strike a balance between
selecting informative (i.e. challenging) examples and swamping training with examples that
are too hard. This is achieve by extending each pair (a, p) to a triplet (a, p,n) by sampling
the image n at random, but only between the ones that violate the triplet loss margin. The
latter is a form of hard-negative mining, but it is not as aggressive (and much cheaper) than
choosing the maximally violating example, as often done in structured output learning.

At test time, the embedded descriptors W ′φ(`t) are compared in Euclidean distance for
the purpose of face verification. In verification the goal is to tell wether two face images
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`1 and `2 have the same identity or not; this is obtained by testing whether the distance
‖W ′φ(`1)−W ′φ(`2)‖2 between embedded descriptors is smaller than a threshold τ . This
threshold is not provided by the training procedure outlined above and is instead learned
separately to maximise the verification accuracy (Acc.– or rate of correctly classified pairs)
on suitable validation data.

5 Datasets and evaluation protocols
In order to allow for a direct comparison to previous work, while our CNNs are trained on
the new dataset of Section 3, evaluation is performed on existing benchmark datasets (which,
by construction, contain different identities from our dataset).

The first dataset is Labeled Faces in the Wild dataset (LFW) [8]. It contains 13,233
images with 5,749 identities, and is the standard benchmark for automatic face verification.
We follow the standard evaluation protocol defined for the “unrestricted setting” using data
external to LFW for training, which in our case is the new face dataset. In addition to
the verification accuracy Acc., we use the Equal Error Rate (EER) as an evaluation metric,
defined as the error rate at the ROC operating point where the false positive and false negative
rates are equal. The advantage on Acc. is that this measure is independent on the distance
threshold τ .

The second dataset is YouTube Faces (YTF) [32]. It contains 3,425 videos of 1,595
people collected from YouTube, with an average of 2 videos per identity, and is a standard
benchmark for face verification in video. Again, we follow the standard evaluation protocol
defined for the “unrestricted setting”, and report EER.

6 Experiments and results
In the following we first test several variations of the proposed models and training data
using the LFW dataset to test performance. Then, we compare the performance of the best
setups with state-of-the-art methods on LFW and YTF.

Implementation details. Our implementation is based on the MATLAB toolbox MatCon-
vNet [31] linked against the NVIDIA CuDNN libraries to accelerate training. All our ex-
periments were carried on NVIDIA Titan Black GPUs with 6GB of onboard memory, using
four GPUs together. This is important due to the very significant memory footprint (and high
complexity) of the very deep networks.

The CNN φ(`t) contains all but the linear class predictor and softmax layers, outputting
D= 4,096 descriptor vectors. Given a face image `, four 224×224 pixel patches are cropped
from the four corners and the centre with horizontal flip (i.e. 10 in total, as in [3]), and the
feature vector from these are averaged. To enable multi-scale testing, the face is first scaled
to three different sizes of 256, 384 and 512 pixels, and the cropping procedure repeated for
each of these [19]. The resulting descriptor for the face is an average over all of these feature
vectors.

Faces are detected using the method described in [14]. If face alignment is used, then
facial landmarks are computed using the method of [6] and a 2D similarity transformation is
applied to map the face to a canonical position.

For the YTF videos, K face descriptors are obtained for each video by ordering the
faces by their facial landmark confidence score, and selecting the top K. Frontal faces are
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No. Config Data Train Align. Test Align. Embedding 100% - EER
1 A C No No No 92.83
2 A F No No No 95.80
3 A F No Yes No 96.70
4 B F No Yes No 97.27
5 B F Yes Yes No 96.17
6 D F No Yes No 96.73
7 B F No Yes Yes 99.13

Table 4: Performance evaluation on LFW, unrestricted setting. Training on the full
dataset (F, stage 3), leads to a better performance than training on the curated dataset (C,
stage 5). 2D alignment at the test time slightly improves the performance. Learning embed-
ding for verification significantly boosts the performance. All results are obtained using l2
distance measure between the test samples.

2D aligned, but no alignment is used for profiles. Finally, the video is represented by the
average of the K face descriptors.

6.1 Component analysis
This section evaluates the effect of different components of the system when training a net-
work for face verification as in Section 4.4 and evaluating it on the LFW data. Table 4
summarises the results.

Dataset curation: First we analyse the curation effort for its effect on the performance of
the network. We use dataset snapshots at stages 3 and 5 (Section 3), i.e. before and after
curation, and test them using configuration A. The reason for selecting this configurations is
that the networks can be trained from scratch. As can be seen, performance before curation
is better (Table 4 rows 1 and 2). There are probably two reasons for this: first, it is better
to have more data, even with label noise; and second, a more subtle point, some of the hard
positives present in the stage 3 data get removed as a side effect of the curation process, and
so the stage 5 data training does not benefit from these. Alignment: As can be seen from
Table 4 rows 2 and 3, using 2D alignment on test images does improve the performance,
but performing 2D alignment on the training data does not provide an additional boost – see
Table 4 rows 4 and 5. Architecture: Next we vary the architecture of the network. We
observe a slight boost in performance from configuration A to B (Table 4 rows 3,4) while
configuration D fails to improve the results over configuration B (Table 4 rows 4,6). There
are several possible reasons for this: the number of parameters in config. D is much more than
B, due to the greater number of convolution layers. Also since network D is trained using
fine-tuning of the new layers, setting parameters like learning rate and momentum becomes
critical. Training the network from scratch is also an option which needs to be investigated
in the future. Triplet-loss embedding: Learning a discriminative metric by minimising the
triplet loss of Section 4.2 further improves performance by 1.8% (Table 4 row 7 vs. row 4).
Note that this amounts to reducing the error rate by 68%.

6.2 Comparison with the state-of-the-art
LFW: Table 5 compares our results with the best results on LFW dataset, and also shows
these as ROC curves. It can be observed that we achieve comparable results to the state of
the art using much less data and a much simpler network architecture. YTF: Table 6 shows
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No. Method Images Networks Acc.
1 Fisher Vector Faces [21] - - 93.10
2 DeepFace [29] 4M 3 97.35
3 Fusion [30] 500M 5 98.37
4 DeepID-2,3 200 99.47
5 FaceNet [17] 200M 1 98.87
6 FaceNet [17] + Alignment 200M 1 99.63
7 Ours 2.6M 1 98.95 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Table 5: LFW unrestricted setting. Left: we achieve comparable results to the state of
the art whilst requiring less data (than DeepFace and FaceNet) and using a simpler network
architecture (than DeepID-2,3). Note, DeepID3 results are for the test set with label errors
corrected – which has not been done by any other method. Right: ROC curves.

No. Method Images Networks 100%- EER Acc.
1 Video Fisher Vector Faces [15] - - 87.7 83.8
2 DeepFace [29] 4M 1 91.4 91.4
3 DeepID-2,2+,3 200 - 93.2
4 FaceNet [17] + Alignment 200M 1 - 95.1
5 Ours (K = 100) 2.6M 1 92.8 91.6
6 Ours (K = 100) + Embedding learning 2.6M 1 97.4 97.3

Table 6: Results on the Youtube Faces Dataset, unrestricted setting. The value of K
indicates the number of faces used to represent each video.

the performance on the YTF dataset. We achieve the state of the art performance using our
triplet loss embedding method.

Conclusions

In this work we have made two contributions: first, we have designed a procedure that is
able to assemble a large scale dataset, with small label noise, whilst minimising the amount
of manual annotation involved. One of the key ideas was to use weaker classifiers to rank
the data presented to the annotators. This procedure has been developed for faces, but is evi-
dently suitable for other object classes as well as fine grained tasks. The second contribution
was to show that a deep CNN, without any embellishments but with appropriate training,
can achieve results comparable to the state of the art. Again, this is a conclusion that may be
applicable to many other tasks.
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