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1. Motion, flow 11

Xi

T (x1i , t1)

T (x2i , t2)

T (Xi, t1)

T (Xi, t2)

Figure 1.1: The temperature of a fluid particle described in Lagrangian, T (Xi, t), or

Eulerian, T (xi, t), approach.

1 Motion, flow

1.1 Eulerian, Lagrangian, material derivative

S
EE also [1], Chapt. 3.2.

Assume a fluid particle is moving along the line in Fig. 1.1. We can choose to study

its motion in two ways: Lagrangian or Eulerian. In the Lagrangian approach we keep

track of its original position (Xi) and follow its path which is described by xi(Xi, t).
For example, at time t1 the temperature of the particle is T (Xi, t1), and at time t2 its

temperature is T (Xi, t2), see Fig. 1.1. This approach is not used for fluids because it

is very tricky to define and follow a fluid particle. It is however used when simulating

movement of particles in fluids (for example soot particles in gasoline-air mixtures in

combustion applications). The speed of the particle is then expressed as a function of

time and its position at time zero, i.e. vi = vi(Xi, t).
In the Eulerian approach we pick a position, e.g. x1i , and watch the particle pass

by. This approach is used for fluids. The temperature of the fluid, T , for example, is

expressed as a function of the position, i.e. T = T (xi), see Fig. 1.1. It may be that the

temperature at position xi, for example, varies in time, t, and then T = T (xi, t).
Now we want to express how the temperature of a fluid particle varies. In the

Lagrangian approach we first pick the particle (this gives its starting position, Xi).

Once we have chosen a particle its starting position is fixed, and temperature varies

only with time, i.e. T (t) and the temperature gradient can be written dT/dt.
In the Eulerian approach it is a little bit more difficult. We are looking for the

temperature gradient, dT/dt, but since we are looking at fixed points in space we

need to express the temperature as a function of both time and space. From classical

mechanics, we know that the velocity of a fluid particle is the time derivative of its

space location, i.e. vi = dxi/dt. The chain-rule now gives

dT

dt
=
∂T

∂t
+
dxj
dt

∂T

∂xj
=
∂T

∂t
+ vj

∂T

∂xj
(1.1)

The discrete form is derived in Eq. L.4 at p. 293. Note that we have to use partial

derivative on T since it is a function of more than one (independent) variable. The first

term on the right side is the local rate of change; by this we mean that it describes the local rate

of changevariation of T in time at position xi. The second term on the right side is called the



1.2. What is the difference between
dv2
dt

and
∂v2
∂t
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convective rate of change, which means that it describes the variation of T in space Conv. rate

of changewhen is passes the point xi. The left side in Eq. 1.1 is called the material derivative

and is in this text denoted by dT/dt.
Equation 1.1 can be illustrated as follows. Put your finger out in the blowing wind.

The temperature gradient your finger experiences is ∂T/∂t. Imagine that you are a fluid

particle and that you ride on a bike. The temperature gradient you then experience is

the material derivative, dT/dt.

Exercise 1 Write out Eq. 1.1, term-by-term.

1.2 What is the difference between
dv2
dt

and
∂v2
∂t

?

Students sometimes get confused about the difference between
dv2
dt

and
∂v2
∂t

. Here we

give a simple example. Figure 1.2 shows a flow path of the fluid particles which can be

expressed in time as

x1 = exp(t), x2 = exp(−t) (1.2)

and hence x2 = 1/x1. The flow path is steady in time and it starts at (x1, x2) = (0.5, 2)
and ends at (x1, x2) = (2, 0.5). Equation 1.2 gives the velocities

vL1 =
dx1
dt

= exp(t), vL2 =
dx2
dt

= − exp(−t) (1.3)

and Eqs. 1.2 and 1.3 give

vE1 = x1, vE2 = −x2 (1.4)

(cf. Eq. 4.52). The superscriptsE and L denote Eulerian and Lagrangian, respectively.

Note that vL1 = vE1 and vL2 = vE2 ; the only difference is that vEi is expressed as function

of (t, x1, x2) and vLi as function of t (and in general also starting location, X1, X2).

Now we can compute the time derivatives of the v2 velocity as

dvL2
dt

= exp(−t)

dvE2
dt

=
∂vE2
∂t

+ vE1
∂vE2
∂x1

+ vE2
∂vE2
∂x2

= 0+ x1 · 0− x2 · (−1) = x2

(1.5)

We find, of course, that
dv2
dt

=
dvE2
dt

=
dvL2
dt

= x2 = exp(−t).
Consider, for example, the point (x1, x2) = (1, 1) in Fig. 1.2. The difference bet-

ween
dv2
dt

and
∂v2
∂t

is now clearly seen by looking at Eq. 1.5. The velocity at the point

(x1, x2) = (1, 1) does not change in time and hence
∂vE2
∂t

=
∂v2
∂t

= 0. However, if we

sit on a particle which passes the location (x1, x2) = (1, 1), the velocity, vL2 , increases

by time,
dvL2
dt

=
dv2
dt

= 1 (the velocity, v2, gets less negative) . Actually it increases

all the time from the starting point where
dv2
dt

= 2 and v2 = −2 until the end point

where
dv2
dt

= 0.5 and v2 = −0.5.
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0 1 2
0

1

2 ▽

△

x1

x2

Figure 1.2: Flow path x2 = 1/x1. The filled circle shows the point (x1, x2) = (1, 1).
▽: start (t = ln(0.5)); △: end (t = ln(2)).

1.3 Viscous stress, pressure

See also [1], Chapts. 6.3 and 8.1.

We have in Part I [2] derived the balance equation for linear momentum which

reads

ρv̇i − σji,j − ρfi = 0 (1.6)

Switch notation for the material derivative and derivatives so that

ρ
dvi
dt

=
∂σji
∂xj

+ ρfi (1.7)

where the first and the second term on the right side represents, respectively, the net

force due to surface and volume forces (σij denotes the stress tensor). Stress is force

per unit area. The first term includes the viscous stress tensor, τij . As you have learnt

earlier, the first index relates to the surface at which the stress acts and the second

index is related to the stress component. For example, on a surface whose normal is

ni = (1, 0, 0) act the three stress components σ11, σ12 and σ13, see Fig. 1.3a; the

volume force acts in the middle of the fluid element, see Fig. 1.3b.

In the present notation we denote the velocity vector by v = vi = (v1, v2, v3)
and the coordinate by x = xi = (x1, x2, x3). In the literature, you may find other

notations of the velocity vector such as ui = (u1, u2, u3). If no tensor notation is used

the velocity vector is usually denoted as (u, v, w) and the coordinates as (x, y, z).
The diagonal components of σij represent the normal stresses and the off-diagonal

components of σij represent the shear stresses. In Part I [2] you learnt that the pressure

is defined as minus the sum of the normal stress, i.e.

P = −σkk/3 (1.8)
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x1

x2

σ11

σ12

σ13

t
(ê1)
i

(a) Stress components and stress vector on a surface.

x1

x2
fi

(b) Volume force, fi = (0,−g, 0), acting in

the middle of the fluid element.

Figure 1.3: Stress tensor, volume (gravitation) force and stress vector, t
(ê1)
i , see

Eq. B.2.

The pressure, P , acts as a normal stress. In general, pressure is a thermodynamic

property, pt, which can be obtained – for example – from the ideal gas law. In that

case the thermodynamics pressure, pt, and the mechanical pressure, P , may not be the

same but Eq. 1.8 is nevertheless used. The viscous stress tensor, τij , is obtained by

subtracting the trace, σkk/3 = −P , from σij ; the stress tensor can then be written as

σij = −Pδij + τij (1.9)

τij is the deviator of σij . The expression for the viscous stress tensor is found in Eq. 2.4

at p. 24. The minus-sign in front of P appears because the pressure acts into the surface.

When there is no movement, the viscous stresses are zero and then of course the normal

stresses are the same as the pressure. In general, however, the normal stresses are the

sum of the pressure and the viscous stresses, i.e.

σ11 = −P + τ11, σ22 = −P + τ22, σ33 = −P + τ33, (1.10)

Exercise 2 Consider Fig. 1.3. Show how σ21, σ22, σ23 act on a surface with normal

vector ni = (0, 1, 0). Show also how σ31, σ32, σ33 act on a surface with normal vector

ni = (0, 0, 1).

Exercise 3 Write out Eq. 1.9 on matrix form.

1.4 Strain rate tensor, vorticity

See also [1], Chapt. 3.5.3, 3.6.

We need an expression for the viscous stresses, τij . They are needed in the mo-

mentum equations, Eq. 1.7 (see also Eq. 1.9). They will be expressed in the velocity

gradients, ∂vi
∂xj

. Hence we will now discuss the velocity gradients.
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The velocity gradient tensor can be split into two parts as

∂vi
∂xj

=
1

2



∂vi
∂xj

+
∂vi
∂xj

2∂vi/∂xj

+
∂vj
∂xi

− ∂vj
∂xi

=0




=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
+

1

2

(
∂vi
∂xj

− ∂vj
∂xi

)
= Sij +Ωij

(1.11)

where

Sij is a symmetric tensor called the strain-rate tensor Strain-rate

tensor
Ωij is a anti-symmetric tensor called the vorticity tensor vorticity ten-

sorThe vorticity tensor is related to the familiar vorticity vector which is the curl of

the velocity vector, i.e. ω = ∇× v, or in tensor notation

ωi = ǫijk
∂vk
∂xj

(1.12)

where ǫijk is the permuation tensor, see lecture notes of Toll & Ekh [2]. If we set, for

example, i = 3 we get

ω3 = ∂v2/∂x1 − ∂v1/∂x2. (1.13)

The vorticity represents rotation of a fluid particle. Inserting Eq. 1.11 into Eq. 1.12

gives

ωi = ǫijk(Skj +Ωkj) = ǫijkΩkj (1.14)

since ǫijkSkj = 0 because the product of a symmetric tensor (Skj) and an anti-

symmetric tensor (εijk) is zero. Let us show this for i = 1 by writing out the full

equation. Recall that Sij = Sji (i.e. S12 = S21, S13 = S31, S23 = S32) and

ǫijk = −ǫikj = ǫjki etc (i.e. ε123 = −ε132 = ε231 . . . , ε113 = ε221 = . . . ε331 = 0)

ε1jkSkj = ε111S11 + ε112S21 + ε113S31

+ ε121S12 + ε122S22 + ε123S32

+ ε131S13 + ε132S23 + ε133S33

= 0 · S11 + 0 · S21 + 0 · S31

+ 0 · S12 + 0 · S22 + 1 · S32

+ 0 · S13 − 1 · S23 + 0 · S33

= S32 − S23 = 0

(1.15)

Now let us invert Eq. 1.14. We start by multiplying it with εiℓm so that

εiℓmωi = εiℓmǫijkΩkj (1.16)

The ε-δ-identity gives (see Table A.1 at p. 244)

εiℓmǫijkΩkj = (δℓjδmk − δℓkδmj)Ωkj = Ωmℓ − Ωℓm = 2Ωmℓ (1.17)

This can easily be proved by writing out all the components, see Table A.1 at p. 244.

Now Eqs. 1.16 and 1.17 give

Ωmℓ =
1

2
εiℓmωi =

1

2
εℓmiωi = −1

2
εmℓiωi (1.18)
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or, switching indices

Ωij = −1

2
εijkωk (1.19)

It turns out that is is much easier to go from Eq. 1.14 to Eq. 1.19 by writing out the

components of Eq. 1.14 (here we do it for i = 1)

ω1 = ε123Ω32 + ε132Ω23 = Ω32 − Ω23 = −2Ω23 (1.20)

and we get

Ω23 = −1

2
ω1 (1.21)

which indeed is identical to Eq. 1.19.

Exercise 4 Write out the second and third component of the vorticity vector given in

Eq. 1.12 (i.e. ω2 and ω3).

Exercise 5 Complete the proof of Eq. 1.15 for i = 2 and i = 3.

Exercise 6 Write out Eq. 1.20 also for i = 2 and i = 3 and find an expression for Ω12

and Ω13 (cf. Eq. 1.21). Show that you get the same result as in Eq. 1.19.

Exercise 7 In Eq. 1.21 we proved the relation between Ωij and ωi for the off-diagonal

components. What about the diagonal components of Ωij? What do you get from

Eq. 1.11?

Exercise 8 From your course in linear algebra, you should remember how to compute

a vector product using Sarrus’ rule. Use it to compute the vector product

ω = ∇× v =




ê1 ê2 ê3
∂

∂x1

∂
∂x2

∂
∂x3

v1 v2 v3




Verify that this agrees with the expression in tensor notation in Eq. 1.12.

1.5 Product of a symmetric and antisymmetric tensor

In this section we show the proof that the product of a symmetric and antisymmetric

tensor is zero. First, we have the definitions:

• A tensor aij is symmetric if aij = aji;

• A tensor bij is antisymmetric if bij = −bji.

It follows that for an antisymmetric tensor all diagonal components must be zero;

for example, b11 = −b11 can only be satisfied if b11 = 0.

The (inner) product of a symmetric and antisymmetric tensor is always zero. This

can be shown as follows

aijbij = ajibij = −ajibji,
where we first used the fact that aij = aji (symmetric), and then that bij = −bji
(antisymmetric). Since the indices i and j are both dummy indices we can interchange

them in the last expression (−ajibji = −aijbij), which gives

aijbij = −aijbij
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This expression says thatA = −Awhich can be only true if A = 0 and hence aijbij =
0.

This can of course also be shown be writing out aijbij on component form, i.e.

aijbij = a11b11 + a12b12
I

+ a13b13
II

+ a21b21
I

+a22b22 + a23b23
III

+ a31b31
II

+ a32b32
III

+a33b33 = 0

The underlined terms are zero (b11 = b22 = b33 = 0); terms I cancel each other

(a12 = a21, b12 = −b21) as do terms II and III.

1.6 Deformation, rotation

See also [1], Chapt. 3.3.

The velocity gradient can, as shown above, be divided into two parts: Sij and Ωij .

We have shown that the latter is connected to rotation of a fluid particle. During rotation rotation

the fluid particle is not deformed. This movement can be illustrated by Fig. 1.4. The

vertical movement (v2) of the lower-right corner (x1 +∆x1) of the particle in Fig. 1.4

is estimated as follows. The velocity at the lower-left corner is v2(x1). Now we need

the velocity at the lower-right corner which is located at x1 + ∆x1. It is computed

using the first term in the Taylor series as1

v2(x1 +∆x1) = v2(x1) + ∆x1
∂v2
∂x1

It is assumed that the fluid particle in Fig. 1.4 is rotated the angle α during the

time ∆t. The angle rotation per unit time can be estimated as dα/dt = −∂v1/∂x2 =
∂v2/∂x1; if the fluid element does not rotate as a solid body, the rotation is computed

as the average, i.e. dα/dt = (∂v2/∂x1 − ∂v1/∂x2)/2. The vorticity is computed as

ω3 = ∂v2/∂x1 − ∂v1/∂x2 = −2Ω12 = 2dα/dt, see Eq. 1.13 and Exercise 4. Hence,

the vorticity ω3 can be interpreted as twice the average rotation per unit time of the

horizontal edge (∂v2/∂x1) and vertical edge (−∂v1/∂x2).

Next let us have a look at the deformation caused by Sij . It can be divided into two

parts, namely shear and elongation (also called extension or dilatation). The deforma-

tion due to shear is caused by the off-diagonal terms of Sij . In Fig. 1.5, a pure shear de-

formation by S12 = (∂v1/∂x2 + ∂v2/∂x1)/2 is shown. The deformation due to elon-

gation is caused by the diagonal terms of Sij . Elongation caused by S11 = ∂v1/∂x1 is

illustrated in Fig. 1.6.

In general, a fluid particle experiences a combination of rotation, deformation and

elongation as indeed is given by Eq. 1.11.

Exercise 9 Consider Fig. 1.4. Show and formulate the rotation by ω1.

Exercise 10 Consider Fig. 1.5. Show and formulate the deformation by S23.

Exercise 11 Consider Fig. 1.6. Show and formulate the elongation by S22.

1this corresponds to the equation for a straight line y = kx+ ℓ where k is the slope which is equal to the

derivative of y, i.e. dy/dx, and ℓ = v2(x1)
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Figure 1.4: Rotation of a fluid particle during time ∆t. Here ∂v1/∂x2 = −∂v2/∂x1
so that −Ω12 = ω3/2 = ∂v2/∂x1 > 0.
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Figure 1.5: Deformation of a fluid particle by shear during time ∆t. Here ∂v1/∂x2 =
∂v2/∂x1 so that S12 = ∂v1/∂x2 > 0.
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Figure 1.6: Deformation of a fluid particle by elongation during time ∆t.
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Figure 1.7: The surface, S, is enclosing by the line ℓ. The vector, ti, denotes the unit

tangential vector of the enclosing line, ℓ.

1.7 Irrotational and rotational flow

In the previous subsection we introduced different types of movement of a fluid parti-

cle. One type of movement was rotation, see Fig. 1.4. Flows are often classified based

on rotation: they are rotational (ωi 6= 0) or irrotational (ωi = 0); the latter type is also

called inviscid flow or potential flow. We will talk more about that later on, see Sec-

tion 4.4. In this subsection we will give examples of one irrotational and one rotational

flow. In potential flow, there exists a potential, Φ, from which the velocity components

can be obtained as

vk =
∂Φ

∂xk
(1.22)

Before we talk about the ideal vortex line in the next section, we need to introduce

the concept circulation. Consider a closed line on a surface in the x1 − x2 plane, see

Fig. 1.7. When the velocity is integrated along this line and projected onto the line we
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obtain the circulation

Γ =

∮
vmtmdℓ (1.23)

Using Stokes’s theorem we can relate the circulation to the vorticity as

Γ =

∮
vmtmdℓ =

∫

S

εijk
∂vk
∂xj

nidS =

∫

S

ωinidS =

∫

S

ω3dS (1.24)

where ni = (0, 0, 1) is the unit normal vector of the surface S. Equation 1.24 reads in

vector notation

Γ =

∮
v · tdℓ =

∫

S

(∇× v) · ndS =

∫

S

ω · ndS =

∫

S

ω3dS (1.25)

The circulation is useful in, for example, aeronautics and windpower engineering

where the lift of a 2D section of an airfoil or a rotorblade is expressed in the circulation

for that 2D section. The lift force is computed as (see Eqs. 4.85 and 4.86)

L = ρV Γ (1.26)

where V is the velocity around the airfoil (for a rotorblade it is the relative velocity,

since the rotorblade is rotating). In an PhD project, an inviscid simulation method

(based on the circulation and vorticity sources) is used to compute the aerodynamic

loads for windturbine rotorblades [3].

Exercise 12 In potential flow ωi = εijk∂vk/∂xj = 0. Multiply Eq. 1.22 by εijk and

derivate with respect to xk (i.e. take the curl of) and show that the right side becomes

zero as it should, i.e. εijk∂
2Φ/(∂xk∂xj) = 0.

1.7.1 Ideal vortex line

The ideal vortex line is an irrotational (potential) flow where the fluid moves along

circular paths, see Fig. 1.8. The governing equations are derived in Section 4.4.5. The

velocity field in polar coordinates reads

vθ =
Γ

2πr
, vr = 0 (1.27)

where Γ is the circulation. Its potential reads

Φ =
Γθ

2π
(1.28)

The velocity, vθ , is then obtained as

vθ =
1

r

∂Φ

∂θ
=

Γ

2πr
(1.29)

To transform Eq. 1.27 into Cartesian velocity components, consider Fig. 1.9. The

Cartesian velocity vectors are expressed as

v1 = −vθ sin(θ) = −vθ
x2
r

= −vθ
x2

(x21 + x22)
1/2

v2 = vθ cos(θ) = vθ
x1
r

= vθ
x1

(x21 + x22)
1/2

(1.30)
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Figure 1.8: Ideal vortex. The fluid particle (i.e. its diagonal, see Fig. 1.4) does not

rotate. The locations of the fluid particle is indicated by black, filled squares. The

diagonales are shown as black dashed lines. The fluid particle is shown at θ = 0, π/4,

3π/4, π, 5π/4, 3π/2 and −π/6.

Inserting Eq. 1.30 into Eq. 1.27 we get

v1 = − Γx2
2π(x21 + x22)

, v2 =
Γx1

2π(x21 + x22)
. (1.31)

To verify that this flow is a potential flow, we need to show that the vorticity, ωi =
εijk∂vk/∂xj is zero. Since it is a two-dimensional flow (v3 = ∂/∂x3 = 0), ω1 =
ω2 = 0, we only need to compute ω3 = ∂v2/∂x1 − ∂v1/∂x2. The velocity derivatives

are obtained as

∂v1
∂x2

= − Γ

2π

x21 − x22

(x21 + x22)
2 ,

∂v2
∂x1

=
Γ

2π

x22 − x21

(x21 + x22)
2 (1.32)

and we get

ω3 =
Γ

2π

1

(x21 + x22)
2 (x

2
2 − x21 + x21 − x22) = 0 (1.33)

which shows that the flow is indeed a potential flow, i.e. irrotational (ωi ≡ 0). Note

that the deformation is not zero, i.e.

S12 =
1

2

(
∂v1
∂x2

+
∂v2
∂x1

)
=

Γ

2π

x22

(x21 + x22)
2 (1.34)

Hence a fluid particle in an ideal vortex does deform but it does not rotate (i.e. its

diagonal does not rotate, see Fig. 1.8).

It may be little confusing that the flow path forms a vortex but the flow itself has no

vorticity. Thus one must be very careful when using the words “vortex” and ”vorticity”. vortex vs.

vorticityBy vortex we usually mean a recirculation region of the mean flow. That the flow has

no vorticity (i.e. no rotation) means that a fluid particle moves as illustrated in Fig. 1.8.

As a fluid particle moves from position a to b – on its counter-clockwise-rotating path

– the particle itself is not rotating. This is true for the whole flow field, except at the

center where the fluid particle does rotate. This is a singular point as is seen from

Eq. 1.27 for which vθ → ∞.

Note that generally a vortex has vorticity, see Section 4.2. The ideal vortex is a very

special flow case.
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Figure 1.9: Transformation of vθ into Cartesian components.
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Figure 1.10: A shear flow. The fluid particle rotates. v1 = cx22.

1.7.2 Shear flow

Another example – which is rotational – is the lower half of fully-developed channel

flow for which the velocity reads (see Eq. 3.28)

v1
v1,max

=
4x2
h

(
1− x2

h

)
, v2 = 0 (1.35)

where x2 < h/2, see Fig. 1.10. The vorticity vector for this flow reads

ω1 = ω2 = 0, ω3 =
∂v2
∂x1

− ∂v1
∂x2

= − 4

h

(
1− 2x2

h

)
(1.36)

When the fluid particle is moving from position a, via b to position c it is indeed

rotating. It is rotating in clockwise direction. Note that the positive rotating direction

is defined as the counter-clockwise direction, indicated by α in Fig. 1.10. This is why

the vorticity, ω3, in the lower half of the channel (x2 < h/2) is negative. In the upper

half of the channel the vorticity is positive because ∂v1/∂x2 < 0.

1.8 Eigenvalues and and eigenvectors: physical interpretation

See also [1], Chapt. 2.5.5.
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Figure 1.11: A two-dimensional fluid element. Left: in original state; right: rotated to

principal coordinate directions. λ1 and λ2 denote eigenvalues; v̂1 and v̂2 denote unit

eigenvectors.

Consider a two-dimensional fluid (or solid) element, see Fig. 1.11. In the left figure

it is oriented along the x1 − x2 coordinate system. On the surfaces act normal stresses

(σ11, σ22) and shear stresses (σ12, σ21). The stresses form a tensor, σij . Any tensor has

eigenvectors and eigenvalues (also called principal vectors and principal values). Since

σij is symmetric, the eigenvalues are real (i.e. not imaginary). The eigenvalues are

obtained from the characteristic equation, see [1], Chapt. 2.5.5 or Eq. 13.5 at p. 148.

When the eigenvalues have been obtained, the eigenvectors can be computed. Given

the eigenvectors, the fluid element is rotated α degrees so that its edges are aligned

with the eigenvectors, v̂1 = x̂1′ and v̂2 = x̂2′ , see right part of Fig. 1.11. Note that the

sign of the eigenvectors is not defined, which means that the eigenvectors can equally

well be chosen as −v̂1 and/or −v̂2. In the principal coordinates x1′ − x2′ (right part

of Fig. 1.11), there are no shear stresses on the surfaces of the fluid element. There

are only normal stresses. This is the very definition of eigenvectors. Furthermore, the

eigenvalues are the normal stresses in the principal coordinates, i.e. λ1 = σ1′1′ and

λ2 = σ2′2′ .
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2 Governing flow equations

S
EE also [1], Chapts. 5 and 8.1.

2.1 The Navier-Stokes equation

2.1.1 The continuity equation

The first equation is the continuity equation (the balance equation for mass) which

reads [2]

ρ̇+ ρvi,i = 0 (2.1)

Change of notation gives
dρ

dt
+ ρ

∂vi
∂xi

= 0 (2.2)

For incompressible flow (ρ = const) we get

∂vi
∂xi

= 0 (2.3)

2.1.2 The momentum equation

The next equation is the momentum equation. We have formulated the constitutive law

for Newtonian viscous fluids [2]

σij = −Pδij + 2µSij −
2

3
µSkkδij

τij = 2µSij −
2

3
µSkkδij

(2.4)

Inserting Eq. 2.4 into the balance equations, Eq. 1.7, we get

ρ
dvi
dt

= − ∂P

∂xi
+
∂τji
∂xj

+ ρfi = − ∂P

∂xi
+

∂

∂xj

(
2µSij −

2

3
µ
∂vk
∂xk

δij

)
+ ρfi (2.5)

where µ denotes the dynamic viscosity. This is the Navier-Stokes equations (sometimes

the continuity equation is also included in the name “Navier-Stokes”). It is also called

the transport equation for momentum. If the viscosity, µ, is constant it can be moved

outside the derivative. Furthermore, if the flow is incompressible the second term in

the parenthesis on the right side is zero because of the continuity equation. If these two

requirements are satisfied we can also re-write the first term in the parenthesis as

∂

∂xj
(2µSij) = µ

∂

∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
= µ

∂2vi
∂xj∂xj

(2.6)

because of the continuity equation, i.e.

µ
∂

∂xj

(
∂vj
∂xi

)
= µ

∂

∂xi

(
∂vj
∂xj

)
= 0. (2.7)

Equation 2.5 can now – for constant µ and incompressible flow – be written

ρ
dvi
dt

= − ∂P

∂xi
+ µ

∂2vi
∂xj∂xj

+ ρfi (2.8)
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In inviscid (potential) flow, there are no viscous (friction) forces. In this case, the

Navier-Stokes equation reduces to the Euler equations Euler

equations

ρ
dvi
dt

= − ∂P

∂xi
+ ρfi (2.9)

Exercise 13 Equation 1.7 states that mass times acceleration is equal to the sum of

forces forces (per unit volume). Write out the momentum equation (without using the

summation rule) for the x1 direction and show the surface forces and the volume force

on a small, square fluid element (see lecture notes of Toll & Ekh [2]). Now repeat it for

the x2 direction.

Exercise 14 Formulate the Navier-Stokes equation for incompressible flow but non-

constant viscosity.

2.2 The energy equation

See also [1], Chapts. 6.4 and 8.1.

We have in Part I [2] derived the energy equation which reads

ρu̇− vi,jσji + qi,i = ρz (2.10)

where u denotes internal energy. qi denotes the conductive heat flux and z the net

radiative heat source. For simplicity, we neglect the radiation from here on. Change of

notation gives

ρ
du

dt
= σji

∂vi
∂xj

− ∂qi
∂xi

(2.11)

In Part I [2] we formulated the constitutive law for the heat flux vector (Fourier’s

law)

qi = −k ∂T
∂xi

(2.12)

Inserting the constitutive laws, Eqs. 2.4 and 2.12, into Eq. 2.11 gives

ρ
du

dt
= −P ∂vi

∂xi
+ 2µSijSij −

2

3
µSkkSii

Φ

+
∂

∂xi

(
k
∂T

∂xi

)
(2.13)

where we have used Sij∂vi/∂xj = Sij(Sij + Ωij) = SijSij because the product of a

symmetric tensor, Sij , and an anti-symmetric tensor, Ωij , is zero. Two of the viscous

terms (denoted by Φ) represent irreversible viscous heating (i.e. transformation of

kinetic energy into thermal energy); these terms are important at high-speed flow2 (for

example re-entry from outer space) and for highly viscous flows (lubricants). The first

term on the right side represents reversible heating and cooling due to compression and

expansion of the fluid. Equation 2.13 is the transport equation for (internal) energy, u.

Now we assume that the flow is incompressible (i.e. the velocity should be smaller

than approximately 1/3 of the speed of sound) for which

du = cpdT (2.14)

2High-speed flows relevant for aeronautics will be treated in detail in the course “TME085 Compressible

flow” in the MSc programme.
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where cp is the heat capacity (see Part I) [2] so that Eq. 2.13 gives (cp is assumed to be

constant)

ρcp
dT

dt
= Φ +

∂

∂xi

(
k
∂T

∂xi

)
(2.15)

The dissipation term is simplified to Φ = 2µSijSij because Sii = ∂vi/∂xi = 0. If we

furthermore assume that the heat conductivity coefficient is constant and that the fluid

is a gas or a common liquid (i.e. not an lubricant oil), we get

dT

dt
= α

∂2T

∂xi∂xi
(2.16)

where α = k/(ρcp) is the thermal diffusivity. The Prandtl number is defined as thermal

diffusivity

Pr =
ν

α
(2.17)

where ν = µ/ρ is the kinematic viscosity. The physical meaning of the Prandtl number

is the ratio of how well the fluid diffuses momentum to how well it diffuses internal

energy (i.e. temperature).

The dissipation term, Φ, is neglected in Eq. 2.16 when one of two assumptions are

valid:

1. The fluid is a gas with low velocity (lower than 1/3 of the speed of sound); this

assumption was made when we assumed that the fluid is incompressible

2. The fluid is a common liquid (i.e. not an lubricant oil). In lubricant oils the

viscous heating (i.e. the dissipation, Φ) is large. One example is the oil flow in a

gearbox in a car where the temperature usually is more than 100oC higher when

the car is running compared to when it is idle.

Exercise 15 Write out and simplify the dissipation term, Φ, in Eq. 2.13. The first term

is positive and the second term is negative; are you sure that Φ > 0?

2.3 Transformation of energy

Now we will derive the equation for the kinetic energy, k = vivi/2. Multiply Eq. 1.7

with vi

ρvi
dvi
dt

− vi
∂σji
∂xj

− viρfi = 0 (2.18)

Using the product rule backwards (Trick 2, see Eq. 8.4), the first term on the left side

can be re-written

ρvi
dvi
dt

=
1

2
ρ
d(vivi)

dt
= ρ

dk

dt
(2.19)

(vivi/2 = k) so that

ρ
dk

dt
= vi

∂σji
∂xj

+ ρvifi (2.20)

Re-write the stress-velocity term so that (Trick 1, see Eq. 8.2)

ρ
dk

dt
=
∂viσji
∂xj

− σji
∂vi
∂xj

+ ρvifi (2.21)
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This is the transport equation for kinetic energy, k. Adding Eq. 2.21 to Eq. 2.11 gives

ρ
d(u+ k)

dt
=
∂σjivi
∂xj

− ∂qi
∂xi

+ ρvifi (2.22)

This is an equation for the sum of internal and kinetic energy, u + k. This is the

transport equation for total energy, u+ k.

Let us take a closer look at Eqs. 2.11, 2.21 and 2.22. First we separate the term

σji∂vi/∂xj in Eqs. 2.11 and 2.21 into work related to the pressure and viscous stresses

respectively (see Eq. 1.9), i.e.

σji
∂vi
∂xj

= −P ∂vi
∂xi
a

+ τji
∂vi
∂xj

b=Φ

(2.23)

The following things should be noted.

• The physical meaning of the a-term in Eq. 2.23 – which includes the pressure, P
– is heating/cooling by compression/expansion. This is a reversible process, i.e.

no loss of energy but only transformation of energy.

• The physical meaning of the b-term in Eq. 2.23 – which includes the viscous

stress tensor, τij – is a dissipation, which means that kinetic energy is trans-

formed to thermal energy. It is denoted Φ, see Eq. 2.13, and is called viscous

dissipation. It is always positive and represents irreversible heating.

• The dissipation, Φ, appears as a sink term in the equation for the kinetic energy, k
(Eq. 2.21) and it appears as a source term in the equation for the internal energy,

u (Eq. 2.11). The transformation of kinetic energy into internal energy takes

place through this source term. In incompressible flow for which the viscous

term in Navier-Stokes can be simplified (see Eq. 2.8), the viscous term reads

τji
∂vi
∂xj

= µ
∂vi
∂xj

∂vi
∂xj

(2.24)

This quantity is very important in turbulent flow, cf. Eqs. 8.14 and 8.35.

• Φ does not appear in the equation for the total energy u+k (Eq. 2.22); this makes

sense since Φ represents a energy transfer between u and k and does not affect

their sum, u+ k.

Dissipation is very important in turbulence where transfer of energy takes place at

several levels. First energy is transferred from the mean flow to the turbulent fluctua-

tions. The physical process is called production of turbulent kinetic energy. Then we

have transformation of kinetic energy from turbulence kinetic energy to thermal en-

ergy; this is turbulence dissipation (or heating). At the same time we have the usual

viscous dissipation from the mean flow to thermal energy, but this is much smaller than

that from the turbulence kinetic energy. For more detail, see Section 5.

2.4 Left side of the transport equations

So far, the left sides in transport equations have been formulated using the material

derivative, d/dt. Let ψ denote a transported quantity (i.e. ψ = vi, u, T . . .); the left
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side of the equation for momentum, thermal energy, total energy, temperature etc reads

ρ
dψ

dt
= ρ

∂ψ

∂t
+ ρvj

∂ψ

∂xj
(2.25)

This is often called the non-conservative form. Using the continuity equation, Eq. 2.2, non-

conser-

vative

it can be re-written as

ρ
dψ

dt
= ρ

∂ψ

∂t
+ ρvj

∂ψ

∂xj
+ ψ

(
dρ

dt
+ ρ

∂vj
∂xj

)

=0

=

ρ
∂ψ

∂t
+ ρvj

∂ψ

∂xj
+ ψ

(
∂ρ

∂t
+ vj

∂ρ

∂xj
+ ρ

∂vj
∂xj

) (2.26)

The two underlined terms will form a time derivative term, and the other three terms

can be collected into a convective term, i.e.

ρ
dψ

dt
=
∂ρψ

∂t
+
∂ρvjψ

∂xj
(2.27)

Thus, the left side of the temperature equation and the Navier-Stokes, for example, can

be written in three different ways (by use of the chain-rule and the continuity equation)

ρ
dvi
dt

= ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

=
∂ρvi
∂t

+
∂ρvjvi
∂xj

ρ
dT

dt
= ρ

∂T

∂t
+ ρvj

∂T

∂xj
=
∂ρvi
∂t

+
∂ρvjT

∂xj

(2.28)

The continuity equation can also be written in three ways (by use of the chain-rule)

dρ

dt
+ ρ

∂vi
∂xi

=
∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi
∂xi

=
∂ρ

∂t
+
∂ρvi
∂xi

(2.29)

The relation dv1/dt = vj∂v1/∂xj is derived in discrete form in Eq. L.4 at p. 293. The

forms on the right sides of Eqs. 2.28 and 2.29 are called the conservative form. When conser-

vativesolving transport equations (such as the Navier-Stokes) numerically using finite volume

methods, the left sides in the transport equation are always written as the expressions

on the right side of Eqs. 2.28 and 2.29; in this way Gauss law can be used to transform

the equations from a volume integral to a surface integral and thus ensuring that the

transported quantities are conserved. The results may be inaccurate due to too coarse

a numerical grid, but no mass, momentum, energy etc is lost (provided a transport

equation for the quantity is solved): “what comes in goes out”.

2.5 Material particle vs. control volume (Reynolds Transport The-

orem)

See also lecture notes of Toll & Ekh [2] and [1], Chapt. 5.2.

In Part I [2] we initially derived all balance equations (mass, momentum and en-

ergy) for a collection of material particles. The conservation of mass, d/dt
∫
ρdV = 0,

Newton’s second law, d/dt
∫
ρvi = Fi etc were derived for a collection of particles in

the volume Vpart, where Vpart is a volume that includes the same fluid particles all the
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time. This means that the volume, Vpart, must be moving and it may expand or contract

(if the density is non-constant), otherwise particles would move across its boundaries.

The equations we have looked at so far (the continuity equation 2.3, the Navier-Stokes

equation 2.8, the energy equations 2.13 and 2.21) are all given for a fixed control vol-

ume. How come? The answer is the Reynolds transport theorem, which converts the

equations from being valid for a moving, deformable volume with a collection of parti-

cles, Vpart, to being valid for a fixed volume, V . The Reynolds transport theorem reads

(first line)

d

dt

∫

Vpart

ΦdV =

∫

V

(
dΦ

dt
+Φ

∂vi
∂xi

)
dV

=

∫

V

(
∂Φ

∂t
+ vi

∂Φ

∂xi
+Φ

∂vi
∂xi

)
dV =

∫

V

(
∂Φ

∂t
+
∂viΦ

∂xi

)
dV

=

∫

V

∂Φ

∂t
dV +

∫

S

viniΦdS

(2.30)

where V denotes a fixed non-deformable volume in space. The divergence of the ve-

locity vector, ∂vi/∂xi, on the first line represents the increase or decrease of Vpart
during dt. The divergence theorem was used to obtain the last line and S denotes the

bounding surface of volume V . The last term on the last line represents the net flow

of Φ across the fixed non-deformable volume, V . Φ in the equation above can be ρ
(mass), ρvi (momentum) or ρu (energy). This equation applies to any volume at every

instant and the restriction to a collection of a material particles is no longer necessary.

Hence, in fluid mechanics the transport equations (Eqs. 2.2, 2.5, 2.11, . . . ) are valid

both for a material collection of particles as well as for a volume; the latter is usually

fixed (this is not necessary).
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Figure 3.1: The plate moves to the right with speed V0 for t > 0.
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Figure 3.2: The v1 velocity at three different times. t3 > t2 > t1.

3 Solutions to the Navier-Stokes equation: three exam-

ples

3.1 The Rayleigh problem

I
MAGINE the sudden motion of an infinitely long flat plate. For time greater than

zero the plate is moving with the speed V0, see Fig. 3.1. Because the plate is in-

finitely long, there is no x1 dependency. Hence the flow depends only on x2 and t, i.e.

v1 = v1(x2, t) and p = p(x2, t). Furthermore, ∂v1/∂x1 = ∂v3/∂x3 = 0 so that the

continuity equation gives ∂v2/∂x2 = 0. At the lower boundary (x2 = 0) and at the

upper boundary (x2 → ∞) the velocity component v2 = 0, which means that v2 = 0
in the entire domain. So, Eq. 2.8 gives (no body forces, i.e. f1 = 0) for the v1 velocity

component

ρ
∂v1
∂t

= µ
∂2v1
∂x22

(3.1)

We will find that the diffusion process depends on the kinematic viscosity, ν = µ/ρ,

rather than the dynamic one, µ. The boundary conditions for Eq. 3.1 are

v1(x2, t = 0) = 0, v1(x2 = 0, t) = V0, v1(x2 → ∞, t) = 0 (3.2)

The solution to Eq. 3.1 is shown in Fig. 3.2. For increasing time (t3 > t2 > t1), the

moving plate affects the fluid further and further away from the plate.

It turns out that the solution to Eq. 3.1 is a similarity solution; this means that the similarity

solutionnumber of independent variables is reduced by one, in this case from two (x2 and t) to

one (η). The similarity variable, η, is related to x2 and t as

η =
x2

2
√
νt

(3.3)
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If the solution of Eq. 3.1 depends only on η, it means that the solution for a given fluid

will be the same (“similar”) for many (infinite) values of x2 and t as long as the ratio

x2/
√
νt is constant. Now we need to transform the derivatives in Eq. 3.1 from ∂/∂t

and ∂/∂x2 to d/dη so that it becomes a function of η only. We get

∂v1
∂t

=
dv1
dη

∂η

∂t
= −x2t

−3/2

4
√
ν

dv1
dη

= −1

2

η

t

dv1
dη

∂v1
∂x2

=
dv1
dη

∂η

∂x2
=

1

2
√
νt

dv1
dη

∂2v1
∂x22

=
∂

∂x2

(
∂v1
∂x2

)
=

∂

∂x2

(
1

2
√
νt

dv1
dη

)
=

1

2
√
νt

∂

∂x2

(
dv1
dη

)
=

1

4νt

d2v1
dη2

(3.4)

We introduce a non-dimensional velocity

f =
v1
V0

(3.5)

Inserting Eqs. 3.4 and 3.5 in Eq. 3.1 gives

d2f

dη2
+ 2η

df

dη
= 0 (3.6)

We have now successfully transformed Eq. 3.1 and reduced the number of independent

variables from two to one. Now let us find out if the boundary conditions, Eq. 3.2, also

can be transformed in a physically meaningful way; we get

v1(x2, t = 0) = 0 ⇒ f(η → ∞) = 0

v1(x2 = 0, t) = V0 ⇒ f(η = 0) = 1

v1(x2 → ∞, t) = 0 ⇒ f(η → ∞) = 0

(3.7)

Since we managed to transform both the equation (Eq. 3.1) and the boundary conditions

(Eq. 3.7) we conclude that the transformation is suitable.

Now let us solve Eq. 3.6. Integration once gives

df

dη
= C1 exp(−η2) (3.8)

Integration a second time gives

f = C1

∫ η

0

exp(−η′2)dη′ + C2 (3.9)

The integral above is the error function

erf(η) ≡ 2√
π

∫ η

0

exp(−η′2)dη′ (3.10)

At the limits, the error function takes the values 0 and 1, i.e. erf(0) = 0 and erf(η →
∞) = 1. Taking into account the boundary conditions, Eq. 3.7, the final solution to

Eq. 3.9 is (with C2 = 1 and C1 = −2/
√
π)

f(η) = 1− erf(η) (3.11)
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Figure 3.3: The velocity, f = v1/V0, given by Eq. 3.11.
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Figure 3.4: The shear stress for water (ν = 10−6) obtained from Eq. 3.12 at time

t = 100 000.

The solution is presented in Fig. 3.3. Compare this figure with Fig. 3.2 at p. 30; all

graphs in that figure collapse into one graph in Fig. 3.3. To compute the velocity, v1,

we pick a time t and insert x2 and t in Eq. 3.3. Then f is obtained from Eq. 3.11 and

the velocity, v1, is computed from Eq. 3.5. This is how the graphs in Fig. 3.2 were

obtained.

From the velocity profile we can get the shear stress as

τ21 = µ
∂v1
∂x2

=
µV0

2
√
νt

df

dη
= − µV0√

πνt
exp

(
−η2

)
(3.12)

where we used ν = µ/ρ. Figure 3.4 presents the shear stress, τ21. The solid line is

obtained from Eq. 3.12 and circles are obtained by evaluating the derivative, df/dη,

numerically using central differences (fj+1 − fj−1)/(ηj+1 − ηj−1). As can be seen

from Fig. 3.4, the magnitude of the shear stress increases for decreasing η and it is

largest at the wall, τw = −ρV0/
√
πt

The vorticity,ω3, across the boundary layer is computed from its definition (Eq. 1.36)

ω3 = − ∂v1
∂x2

= − V0

2
√
νt

df

dη
=

V0√
πνt

exp(−η2) (3.13)

From Fig. 3.2 at p. 30 it is seen that for large times, the moving plate is felt further

and further out in the flow, i.e. the thickness of the boundary layer, δ, increases. Often
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Figure 3.5: Flow in a horizontal channel. The inlet part of the channel is shown.

the boundary layer thickness is defined by the position where the local velocity, v1(x2),
reaches 99% of the freestream velocity. In our case, this corresponds to the point where

v1 = 0.01V0. Find the point f = v1/V0 = 0.01 in Fig. 3.3; at this point η ≃ 1.8 (we

can also use Eq. 3.11). Inserting x2 = δ in Eq. 3.3 gives

η = 1.8 =
δ

2
√
νt

⇒ δ = 3.6
√
νt (3.14)

It can be seen that the boundary layer thickness increases with t1/2. Equation 3.14 can

also be used to estimate the diffusion length. After, say, 10 minutes the diffusion length diffusion

lengthfor air and water, respectively, are

δair = 10.8cm

δwater = 2.8cm
(3.15)

As mentioned in the beginning of this section, the diffusion length is determined by

the kinematic viscosity, ν = µ/ρ rather than by the dynamic one, µ. The diffusion

length can also be used to estimate the thickness of a developing boundary layer, see

Section 4.3.1.

Exercise 16 Consider the graphs in Fig. 3.3. Create this graph with Matlab.

Exercise 17 Consider the graphs in Fig. 3.2. Note that no scale is used on the x2 axis

and that no numbers are given for t1, t2 and t3. Create this graph with Matlab for both

air and engine oil. Choose suitable values on t1, t2 and t3.

Exercise 18 Repeat the exercise above for the shear stress, τ21, see Fig. 3.4.

3.2 Flow between two plates

Consider steady, incompressible flow in a two-dimensional channel, see Fig. 3.5, with

constant physical properties (i.e. µ = const).

3.2.1 Curved plates

Provided that the walls at the inlet are well curved, the velocity near the walls is larger

than in the center, see Fig. 3.5. The reason is that the flow (with velocity V ) following

the curved wall must change its direction. The physical agent which accomplish this
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Figure 3.6: Flow in a channel bend.

is the pressure gradient which forces the flow to follow the wall as closely as possible

(if the wall is not sufficiently curved a separation will take place). Hence the pressure

in the center of the channel, P2, is higher than the pressure near the wall, P1. It is thus

easier (i.e. less opposing pressure) for the fluid to enter the channel near the walls than

in the center. This explains the high velocity near the walls.

The same phenomenon occurs in a channel bend, see Fig. 3.6. The flow V ap-

proaches the bend and the flow feels that it is approaching a bend through an increased

pressure. The pressure near the outer wall, P2, must be higher than that near the inner

wall, P1, in order to force the flow to turn. Hence, it is easier for the flow to sneak

along the inner wall where the opposing pressure is smaller than near the outer wall:

the result is a higher velocity near the inner wall than near the outer wall. In a three-

dimensional duct or in a pipe, the pressure difference P2 − P1 creates secondary flow

downstream the bend (i.e. a swirling motion in the x2 − x3 plane).

3.2.2 Flat plates

The flow in the inlet section (Fig. 3.5) is two dimensional. Near the inlet the velocity is

largest near the wall and further downstream the velocity is retarded near the walls due

to the large viscous shear stresses there. The flow is accelerated in the center because

the integrated mass flow (from x2 = 0 to h) at each x1 must be constant because of

continuity. The acceleration and retardation of the flow in the inlet region is “paid for ”

by a pressure loss which is rather high in the inlet region; if a separation occurs because

of sharp corners at the inlet, the pressure loss will be even higher. For large x1 the flow

will be fully developed; the region until this occurs is called the entrance region, and

the entrance length can, for moderately disturbed inflow, be estimated as [4]

x1,e
Dh

= 0.016ReDh
≡ 0.016

VDh

ν
(3.16)

where V denotes the bulk (i.e. the mean) velocity, and Dh = 4A/Sp where Dh,

A and Sp denote the hydraulic diameter, the cross-sectional area and the perimeter,

respectively. For flow between two plates we get Dh = 2h.

Let us find the governing equations for the fully developed flow region; in this

region the flow does not change with respect to the streamwise coordinate, x1 (i.e.

∂v1/∂x1 = ∂v2/∂x1 = 0). Since the flow is two-dimensional, it does not depend

on the third coordinate direction, x3 (i.e. ∂/∂x3), and the velocity in this direction is

zero, i.e. v3 = 0. Taking these restrictions into account the continuity equation can be
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simplified as (see Eq. 2.3)
∂v2
∂x2

= 0 (3.17)

Integration gives v2 = C1 and since v2 = 0 at the walls, it means that

v2 = 0 (3.18)

across the entire channel (recall that we are dealing with the part of the channel where

the flow is fully developed; in the inlet section v2 6= 0, see Fig. 3.5).

Now let us turn our attention to the momentum equation for v2. This is the vertical

direction (x2 is positive upwards, see Fig. 3.5). The gravity acts in the negative x2
direction, i.e. fi = (0,−g, 0). The momentum equation can be written (see Eq. 2.8 at

p. 24)

ρ
dv2
dt

≡ ρv1
∂v2
∂x1

+ ρv2
∂v2
∂x2

= − ∂P

∂x2
+ µ

∂2v2
∂x22

− ρg (3.19)

Since v2 = 0 we get
∂P

∂x2
= −ρg (3.20)

Integration gives

P = −ρgx2 + C1(x1) (3.21)

where the integration “constant”C1 may be a function of x1 but not of x2. If we denote

the pressure at the lower wall (i.e. at x2 = 0) as p we get

P = −ρgx2 + p(x1) (3.22)

Hence the pressure, P , decreases with vertical height. This agrees with our experience

that the pressure decreases at high altitudes in the atmosphere and increases the deeper

we dive into the sea. Usually the hydrodynamic pressure, p, is used in incompressible hydrodynamic

pressureflow. This pressure is zero when the flow is static, i.e. when the velocity field is zero.

However, when you want the physical pressure, the ρgx2 as well as the surrounding

atmospheric pressure must be added.

We can now formulate the momentum equation in the streamwise direction

ρ
dv1
dt

≡ ρv1
∂v1
∂x1

+ ρv2
∂v1
∂x2

= − dp

dx1
+ µ

∂2v1
∂x22

(3.23)

where P was replaced by p using Eq. 3.22. Since v2 = ∂v1/∂x1 = 0 the left side is

zero so

µ
∂2v1
∂x22

=
dp

dx1
(3.24)

Since the left side is a function of x2 and the right side is a function of x1, we conclude

that they both are equal to a constant (i.e. Eq. 3.24 is independent of x1 and x2) . The

velocity, v1, is zero at the walls, i.e

v1(0) = v1(h) = 0 (3.25)

where h denotes the height of the channel, see Fig. 3.5. Integrating Eq. 3.24 twice and

using Eq. 3.25 gives

v1 = − h

2µ

dp

dx1
x2

(
1− x2

h

)
(3.26)
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Figure 3.7: The velocity profile in fully developed channel flow, Eq. 3.28.

The minus sign on the right side appears because the pressure is decreasing for increas-

ing x1; the pressure is driving the flow. The negative pressure gradient is constant (see

Eq. 3.24) and can be written as −dp/dx1 = ∆p/L.

The velocity takes its maximum in the center, i.e. for x2 = h/2, and reads

v1,max =
h

2µ

∆p

L

h

2

(
1− 1

2

)
=
h2

8µ

∆p

L
(3.27)

We often write Eq. 3.26 on the form

v1
v1,max

=
4x2
h

(
1− x2

h

)
(3.28)

The mean velocity (often called the bulk velocity) is obtained by integrating Eq. 3.28

across the channel, i.e.

v1,mean =
v1,max

h

∫ h

0

4x2

(
1− x2

h

)
dx2 =

2

3
v1,max (3.29)

The velocity profile is shown in Fig. 3.7

Since we know the velocity profile, we can compute the wall shear stress. Equa-

tion 3.26 gives

τw = µ
∂v1
∂x2

= −h
2

dp

dx1
=
h

2

∆p

L
(3.30)

Actually, this result could have been obtained by simply taking a force balance of a

slice of the flow far downstream.

This flow is analyzed in Appendix B.

3.2.3 Force balance

We continue to consider fully developed flow between two parallel plates. To formulate

a force balance in the x1 direction, we start with Eq. 1.7 which reads for i = 1

ρ
dv1
dt

=
∂σj1
∂xj

(3.31)
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Figure 3.8: Force balance of the flow between two plates.

The left hand side is zero since the flow is fully developed. Forces act on a volume and

its bounding surface. Hence we integrate Eq. 3.31 over the volume of a slice (length

L), see Fig. 3.8

0 =

∫

V

∂σj1
∂xj

dV (3.32)

Recall that this is the form on which we originally derived the momentum balance

(Newton’s second law) in Part I. [2] Now use Gauss divergence theorem

0 =

∫

V

∂σj1
∂xj

dV =

∫

S

σj1njdS (3.33)

The bounding surface consists in our case of four surfaces (lower, upper, left and right)

so that

0 =

∫

Sleft

σj1njdS+

∫

Sright

σj1njdS+

∫

Slower

σj1njdS+

∫

Supper

σj1njdS (3.34)

The normal vector on the lower, upper, left and right are ni,lower = (0,−1, 0), ni,upper =
(0, 1, 0), ni,left = (−1, 0, 0), ni,right = (1, 0, 0). Inserting the normal vectors and us-

ing Eq. 1.9 give

0 = −
∫

Sleft

(−p+ τ11)dS +

∫

Sright

(−p+ τ11)dS −
∫

Slower

τ21dS +

∫

Supper

τ21dS

(3.35)

τ11 = 0 because ∂v1/∂x1 = 0 (fully developed flow). The shear stress at the upper and

lower surfaces, τ21, have opposite sign becauseµ(∂v1/∂x2)lower = −µ(∂v1/∂x2)upper .

Using this and Eq. 3.22 give (p = p(x1) and τw is constant and can thus be taken out

in front of the integration)

0 = p1Wh− p2Wh− 2τwLW (3.36)

where τw = µ(∂v1/∂x2)lower and W is the width (in x3 direction) of the two plates

(for convenience we set W = 1). With ∆p = p1 − p2 we get Eq. 3.30.

3.2.4 Balance equation for the kinetic energy

In this subsection we will use the equation for kinetic energy, Eq. 2.21. Let us integrate

this equation in the same way as we did for the force balance. The left side of Eq. 2.21
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is zero because we assume that the flow is fully developed; using Eq. 1.9 gives

0 =
∂viσji
∂xj

− σji
∂vi
∂xj

+ ρvifi
=0

= −∂vjp
∂xj

+
∂viτji
∂xj

+ pδij
∂vi
∂xj

− τji
∂vi
∂xj
Φ

(3.37)

On the first line vifi = v1f1 + v2f2 = 0 because v2 = f1 = 0. The third term on

the second line pδij∂vi/∂xj = p∂vi/∂xi = 0 because of continuity. The last term

corresponds to the viscous dissipation term, Φ (i.e. loss due to friction), see Eq. 2.23

(term b). Now we integrate the equation over a volume

0 =

∫

V

(
−∂pvj
∂xj

+
∂τjivi
∂xj

− Φ

)
dV (3.38)

Gauss divergence theorem on the two first terms gives

0 =

∫

S

(−pvj + τjivi)njdS −
∫

V

ΦdV (3.39)

where S is the surface bounding the volume. The unit normal vector is denoted by nj

which points out from the volume. For example, on the right surface in Fig. 3.8 it is

nj = (1, 0, 0) and on the lower surface it is nj = (0,−1, 0). Now we apply Eq. 3.39

to the fluid enclosed by the flat plates in Fig. 3.8. The second term is zero on all

four surfaces and the first term is zero on the lower and upper surfaces (see Exercises

below). We replace the pressure P with p using Eq. 3.22 so that
∫

Sleft&Sright

(−pv1 + ρgx2v1)n1dS = −(p2 − p1)

∫

Sleft&Sright

v1n1dS

= ∆pv1,meanWh

because ρgx2n1v1 on the left and right surfaces cancels; p can be taken out of the

integral as it does not depend on x2. Finally we get

∆p =
1

Whv1,mean

∫

V

ΦdV (3.40)

3.3 Two-dimensional boundary layer flow over flat plate

The equations for steady, two-dimensional, incompressible boundary layer flow reads

(x1 and x2 denote streamwise and wall-normal coordinates, respectively)

v1
∂v1
∂x1

+ v2
∂v1
∂x2

= ν
∂2v1
∂x22

∂p

∂x2
= 0

∂v1
∂x1

+
∂v2
∂x2

= 0

(3.41)

where the pressure gradient is omitted in the v1 momentum equation because ∂p/∂x =
0 along a flat plate in infinite surroundings. The boundary conditions are

x2 = 0 : v1 = v2 = 0 (at the wall)

x2 → ∞ : v1 → V1,∞, v2 = 0 (far from the wall)
(3.42)
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Let’s introduce the streamfunction Ψ, which is useful when re-writing the two- stream-

functiondimensional Navier-Stokes equations. It is defined as

v1 =
∂Ψ

∂x2
, v2 = − ∂Ψ

∂x1
(3.43)

With the velocity field expressed in Ψ, the continuity equations is automatically satis-

fied which is easily shown by inserting Eq. 3.43 into the continuity equation

∂v1
∂x1

+
∂v2
∂x2

=
∂2Ψ

∂x1∂x2
− ∂2Ψ

∂x2∂x1
= 0 (3.44)

Inserting Eq. 3.43 into the streamwise momentum equation gives

∂Ψ

∂x2

∂2Ψ

∂x1∂x2
− ∂Ψ

∂x1

∂2Ψ

∂x22
= ν

∂3Ψ

∂x32
(3.45)

The boundary conditions for the streamfunction read

x2 = 0 : Ψ =
∂Ψ

∂x2
= 0 (at the wall)

x2 → ∞ :
∂Ψ

∂x2
→ V1,∞ (far from the wall)

(3.46)

As in Section 3.1 we want to transform the partial differential equation, Eq. 3.45,

into an ordinary differential equation. In Section 3.1 we replaced x1 and t with the new

non-dimensional variable η. Now we want to replace x1 and x2 with a new dimension-

less variable, say ξ. At the same time we define a new dimensionless streamfunction,

g(ξ), as

ξ =

(
V1,∞
νx1

)1/2

x2, Ψ = (νV1,∞x1)
1/2

g (3.47)

First we need the derivatives ∂ξ/∂x1 and ∂ξ/∂x2

∂ξ

∂x1
= −1

2

(
V1,∞
νx1

)1/2
x2
x1

= − ξ

2x1

∂ξ

∂x2
=

(
V1,∞
νx1

)1/2

=
ξ

x2

(3.48)

Now we express the first derivatives of Ψ in Eq. 3.45 as derivatives of g, i.e. (g′

denotes dg/dξ)

∂Ψ

∂x1
=

∂

∂x1

(
(νV1,∞x1)

1/2
)
g + (νV1,∞x1)

1/2
g′
∂ξ

∂x1

=
1

2

(
νV1,∞
x1

)1/2

g − (νV1,∞x1)
1/2

g′
ξ

2x1

=
1

2

(
νV1,∞
x1

)1/2

(g − ξg′)

∂Ψ

∂x2
=

∂

∂x2

(
(νV1,∞x1)

1/2
)
g + (νV1,∞x1)

1/2 ∂ξ

∂x2
g′ = V1,∞g

′

(3.49)
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The second and third derivatives of Ψ read

∂2Ψ

∂x22
= V1,∞g

′′
∂ξ

∂x2
= V1,∞

(
V1,∞
νx1

)1/2

g′′ = V1,∞
ξ

x2
g′′

∂3Ψ

∂x32
= V1,∞

(
V1,∞
νx1

)1/2

g′′′
∂ξ

∂x2
= V1,∞

V1,∞
νx1

g′′′ = V1,∞

(
ξ

x2

)2

g′′′

∂2Ψ

∂x1∂x2
= V1,∞g

′′
∂ξ

∂x1
= − ξ

2x1
V1,∞g

′′

(3.50)

Inserting Eqs. 3.49 and 3.50 into Eq. 3.45 gives

−V1,∞g′
ξ

2x1
V1,∞g

′′ −
(
1

2

(
νV1,∞
x1

)1/2

(g − ξg′)

)
V1,∞

(
V1,∞
νx1

)1/2

g′′

= ν
V 2
1,∞

νx1
g′′′

(3.51)

Divide by V 2
1,∞ and multiply by x1 gives

− g′
ξ

2
g′′ − 1

2
(g − ξg′) g′′ = g′′′ (3.52)

so that
1

2
gg′′ + g′′′ = 0 (3.53)

This equation was derived (and solved numerically!) by Blasius in his PhD thesis

1907 [5, 6]. The numerical solution is given in Table 3.1. The flow is analyzed in

Appendix C.

Exercise 19 For the fully developed flow, compute the vorticity, ωi, using the exact

solution (Eq. 3.28).

Exercise 20 Show that the first and second terms in Eq. 3.39 are zero on the upper and

the lower surfaces in Fig. 3.8.

Exercise 21 Show that the second term in Eq. 3.39 is zero also on the left and right

surfaces in Fig. 3.8 (assume fully developed flow).

Exercise 22 Using the exact solution, compute the dissipation, Φ, for the fully devel-

oped flow.

Exercise 23 From the dissipation, compute the pressure drop. Is it the same as that

obtained from the force balance (if not, find the error; it should be!).
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ξ g g′ g′′

0 0.000000000E+00 0.000000000E+00 3.320573362E-01

0.2 6.640999715E-03 6.640779210E-02 3.319838371E-01

0.4 2.655988402E-02 1.327641608E-01 3.314698442E-01

0.6 5.973463750E-02 1.989372524E-01 3.300791276E-01

0.8 1.061082208E-01 2.647091387E-01 3.273892701E-01

1.0 1.655717258E-01 3.297800312E-01 3.230071167E-01

1.2 2.379487173E-01 3.937761044E-01 3.165891911E-01

1.4 3.229815738E-01 4.562617647E-01 3.078653918E-01

1.6 4.203207655E-01 5.167567844E-01 2.966634615E-01

1.8 5.295180377E-01 5.747581439E-01 2.829310173E-01

2.0 6.500243699E-01 6.297657365E-01 2.667515457E-01

2.2 7.811933370E-01 6.813103772E-01 2.483509132E-01

2.4 9.222901256E-01 7.289819351E-01 2.280917607E-01

2.6 1.072505977E+00 7.724550211E-01 2.064546268E-01

2.8 1.230977302E+00 8.115096232E-01 1.840065939E-01

3.0 1.396808231E+00 8.460444437E-01 1.613603195E-01

3.2 1.569094960E+00 8.760814552E-01 1.391280556E-01

3.4 1.746950094E+00 9.017612214E-01 1.178762461E-01

3.6 1.929525170E+00 9.233296659E-01 9.808627878E-02

3.8 2.116029817E+00 9.411179967E-01 8.012591814E-02

4.0 2.305746418E+00 9.555182298E-01 6.423412109E-02

4.2 2.498039663E+00 9.669570738E-01 5.051974749E-02

4.4 2.692360938E+00 9.758708321E-01 3.897261085E-02

4.6 2.888247990E+00 9.826835008E-01 2.948377201E-02

4.8 3.085320655E+00 9.877895262E-01 2.187118635E-02

5.0 3.283273665E+00 9.915419002E-01 1.590679869E-02

5.2 3.481867612E+00 9.942455354E-01 1.134178897E-02

5.4 3.680919063E+00 9.961553040E-0 1 7.927659815E-03

5.6 3.880290678E+00 9.974777682E-0 1 5.431957680E-03

5.8 4.079881939E+00 9.983754937E-0 1 3.648413667E-03

6.0 4.279620923E+00 9.989728724E-01 2.402039844E-03

6.2 4.479457297E+00 9.993625417E-01 1.550170691E-03

6.4 4.679356615E+00 9.996117017E-01 9.806151170E-04

6.6 4.879295811E+00 9.997678702E-01 6.080442648E-04

6.8 5.079259772E+00 9.998638190E-01 3.695625701E-04

7.0 5.279238811E+00 9.999216041E-01 2.201689553E-04

7.2 5.479226847E+00 9.999557173E-01 1.285698072E-04

7.4 5.679220147E+00 9.999754577E-01 7.359298339E-05

7.6 5.879216466E+00 9.999866551E-01 4.129031111E-05

7.8 6.079214481E+00 9.999928812E-01 2.270775140E-05

8.0 6.279213431E+00 9.999962745E-01 1.224092624E-05

8.2 6.479212887E+00 9.999980875E-01 6.467978611E-06

8.4 6.679212609E+00 9.999990369E-01 3.349939753E-06

8.6 6.879212471E+00 9.999995242E-01 1.700667989E-06

8.8 7.079212403E+00 9.999997695E-01 8.462841214E-07

Table 3.1: Blasius numerical solution of laminar flow along a flat plate.
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v1(x2)

x1

x2

(x1, x2)

τ12(x1 − 0.5∆x1)n1

τ12(x1 + 0.5∆x1)n1

τ21(x2 − 0.5∆x2)n2

τ21(x2 + 0.5∆x2)n2

P (x1 − 0.5∆x1) P (x1 + 0.5∆x1)

Figure 4.1: Surface forces acting on a fluid particle. The fluid particle is located in the

lower half of fully developed channel flow. The v1 velocity is given by Eq. 3.28 and

v2 = 0. Hence τ11 = τ22 = ∂τ12/∂x1 = 0 and ∂τ21/∂x2 > 0. The v1 velocity field

is indicated by dashed vectors.

4 Vorticity equation and potential flow

4.1 Vorticity and rotation

V
ORTICITY, ωi, was introduced in Eq. 1.12 at p. 15. As shown in Fig. 1.4 at p. 18,

vorticity is connected to rotation of a fluid particle. Figure 4.1 shows the surface

forces acting on a fluid particle in a shear flow. Looking at Fig. 4.1 it is obvious that

only the shear stresses are able to rotate the fluid particle; the pressure acts through the

center of the fluid particle and is thus not able to affect rotation of the fluid particle.

Note that the v2 momentum equation (see Eqs. 2.4 and 3.32) requires that the vertical

viscous stresses in Fig. 4.1 are in balance. The v1 momentum equation requires that

the horizontal viscous stresses balance the pressure difference.

Let us have a look at the momentum equations in order to show that the viscous

terms indeed can be formulated with the vorticity vector, ωi. In incompressible flow

the viscous terms read (see Eqs. 2.4, 2.5 and 2.6)

∂τji
∂xj

= µ
∂2vi
∂xj∂xj

(4.1)

The right side can be re-written using the tensor identity

∂2vi
∂xj∂xj

=
∂2vj
∂xj∂xi

−
(

∂2vj
∂xj∂xi

− ∂2vi
∂xj∂xj

)

=
∂

∂xi

(
∂vj
∂xj

)

=0

−εinmεmjk
∂2vk
∂xj∂xn

= −εinmεmjk
∂2vk
∂xj∂xn

(4.2)
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where the first on the the second line is zero because of continuity. Let’s verify that

(
∂2vj
∂xj∂xi

− ∂2vi
∂xj∂xj

)
= εinmεmjk

∂2vk
∂xj∂xn

(4.3)

Use the ε− δ-identity (see Table A.1 at p. 244)

εinmεmjk
∂2vk
∂xj∂xn

= (δijδnk − δikδnj)
∂2vk
∂xj∂xn

=
∂2vk
∂xi∂xk

− ∂2vi
∂xj∂xj

(4.4)

which shows that Eq. 4.3 is correct. At the right side of Eq. 4.3 we recognize the

vorticity, ωm = εmjk∂vk/∂xj , so that

∂2vi
∂xj∂xj

= −εinm
∂ωm

∂xn
(4.5)

In vector notation the identity Eq. 4.5 reads

∇2v = ∇(∇ · v) −∇×∇× v = −∇× ω (4.6)

Using Eq. 4.5, Eq. 4.1 reads

∂τji
∂xj

= −µεinm
∂ωm

∂xn
(4.7)

Thus, there is a one-to-one relation between the viscous term and vorticity: no viscous

terms means no vorticity and vice versa. An imbalance in shear stresses (left side of

Eq. 4.7) causes a change in vorticity, i.e. generates vorticity (right side of Eq. 4.7).

Hence, inviscid flow (i.e. friction-less flow) has no rotation. (The exception is when

vorticity is transported into an inviscid region, but also in that case no vorticity is

generated or destroyed: it stays constant, unaffected.) Inviscid flow is often called

irrotational flow (i.e. no rotation) or potential flow. The vorticity is always created at potential

boundaries, see Section 4.3.1.

The main points that we have learnt in this section are:

1. The viscous terms are responsible for creating vorticity; this means that the vor-

ticity can not be created or destroyed in inviscid (friction-less) flow

2. The viscous terms in the momentum equations can be expressed in ωi; consider-

ing Item 1 this was to be expected.

Exercise 24 Prove the first equality of Eq. 4.5 using the ε-δ-identity.

Exercise 25 Write out Eq. 4.7 for i = 1 and verify that it is satisfied.

4.2 The vorticity transport equation in three dimensions

Up to now we have talked quite a lot about vorticity. We have learnt that physically

it means rotation of a fluid particle and that it is only the viscous terms that can cause

rotation of a fluid particle. The terms inviscid (no friction), irrotational and potential

flow all denote frictionless flow which is equivalent to zero vorticity. There is a small friction-

lessdifference between the three terms because there may be vorticity in inviscid flow that

is convected into the flow at the inlet(s); but also in this case the vorticity is not affected
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once it has entered the inviscid flow region. However, usually no distinction is made

between the three terms.

In this section we will derive the transport equation for vorticity in incompressible

flow. As usual we start with the Navier-Stokes equation, Eq. 2.8 at p.24. First, we

re-write the convective term of the incompressible momentum equation (Eq. 2.8) as

vj
∂vi
∂xj

= vj(Sij +Ωij) = vj

(
Sij −

1

2
εijkωk

)
(4.8)

where Eq. 1.19 on p. 16 was used. Inserting Sij = (∂vi/∂xj + ∂vj/∂xi)/2 and

multiplying by two gives

2vj
∂vi
∂xj

= vj

(
∂vi
∂xj

+
∂vj
∂xi

)
− εijkvjωk (4.9)

The second term on the right side can be written as (Trick 2, see Eq. 8.4)

vj
∂vj
∂xi

=
1

2

∂(vjvj)

∂xi
=

∂k

∂xi
(4.10)

where k = vjvj/2. Equation 4.9 can now be written as

vj
∂vi
∂xj

=
∂k

∂xi
no rotation

− εijkvjωk

rotation

(4.11)

The last term on the right side is the vector product of v and ω, i.e. v × ω.

The trick we have achieved is to split the convective term into one term without

rotation (first term on the right side of Eq. 4.11) and one term including rotation (second

term on the right side). Inserting Eq. 4.11 into the incompressible momentum equation

(Eq. 2.8) yields

∂vi
∂t

+
∂k

∂xi
no rotation

− εijkvjωk

rotation

= −1

ρ

∂P

∂xi
+ ν

∂2vi
∂xj∂xj

+ fi (4.12)

The volume source is in most engineering flows represented by the gravity, i.e. fi = gi.
From Eq. 4.12 we get Crocco’s theorem for steady inviscid flow

εijkvjωk =
∂

∂xi

(
P

ρ
+ k

)
− fi =

∂

∂xi

(
P

ρ
+ k + φ

)

P0/ρ

(4.13)

where ∂φ/∂xi = −fi is the potential of the body force. In vector notation, Eq. 4.13

reads

v × ω =
1

ρ
∇(P0) (4.14)

These equations states that the gradient of stagnation pressure, P0, is orthogonal to

both the velocity and vorticity vector.

Since the vorticity vector in Eq. 4.12 is defined by the cross product εpqi∂vi/∂xq
(∇×v in vector notation, see Exercise 8), we start by applying the operator εpqi∂/∂xq
to the Navier-Stokes equation (Eq. 4.12) so that

εpqi
∂2vi
∂t∂xq

+ εpqi
∂2k

∂xi∂xq
− εpqiεijk

∂vjωk

∂xq

= −εpqi
1

ρ

∂2P

∂xi∂xq
+ νεpqi

∂3vi
∂xj∂xj∂xq

+ εpqi
∂gi
∂xq

(4.15)
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where the body force fi was replaced by gi. We know that εijk is anti-symmetric in

all indices, and hence the second term on line 1 and the first term on line 2 are zero

(product of a symmetric and an anti-symmetric tensor). The last term on line 2 is zero

because the gravitation vector, gi, is constant. The last term on line 1 is re-written using

the ε-δ identity (see Table A.1 at p. 244)

εpqiεijk
∂vjωk

∂xq
= (δpjδqk − δpkδqj)

∂vjωk

∂xq
=
∂vpωk

∂xk
− ∂vqωp

∂xq

= vp
∂ωk

∂xk
+ ωk

∂vp
∂xk

− vq
∂ωp

∂xq
− ωp

∂vq
∂xq

(4.16)

Using the definition of ωi we find that its divergence

∂ωi

∂xi
=

∂

∂xi

(
εijk

∂vk
∂xj

)
= εijk

∂2vk
∂xj∂xi

= 0 (4.17)

is zero (product of a symmetric and an anti-symmetric tensor). Using the continuity

equation (∂vq/∂xq = 0) and Eq. 4.17, Eq. 4.16 can be written

εpqiεijk
∂vjωk

∂xq
= ωk

∂vp
∂xk

− vk
∂ωp

∂xk
(4.18)

The second term on line 2 in Eq. 4.15 can be written as

νεpqi
∂3vi

∂xj∂xj∂xq
= ν

∂2

∂xj∂xj

(
εpqi

∂vi
∂xq

)
= ν

∂2ωp

∂xj∂xj
(4.19)

Inserting Eqs. 4.18 and 4.19 into Eq. 4.15 gives finally

dωp

dt
≡ ∂ωp

∂t
+ vk

∂ωp

∂xk
= ωk

∂vp
∂xk

+ ν
∂2ωp

∂xj∂xj
(4.20)

We recognize the usual unsteady term, the convective term and the diffusive term.

Furthermore, we have got rid of the pressure gradient term. That makes sense, because

as mentioned in connection to Fig. 4.1, the pressure cannot affect the rotation (i.e. the

vorticity) of a fluid particle since the pressure acts through its center. Equation 4.20

has a new term on the right-hand side which represents amplification and bending or

tilting of the vorticity lines. If we write it term-by-term it reads

ωk
∂vp
∂xk

=





ω1
∂v1
∂x1

+ω2
∂v1
∂x2

+ ω3
∂v1
∂x3

, p = 1

ω1
∂v2
∂x1

+ω2
∂v2
∂x2

+ ω3
∂v2
∂x3

, p = 2

ω1
∂v3
∂x1

+ω2
∂v3
∂x2

+ ω3
∂v3
∂x3

, p = 3

(4.21)

The diagonal terms in this matrix represent vortex stretching. Imagine a slender, Vortex

stretchingcylindrical fluid particle with vorticity ωi and introduce a cylindrical coordinate system

with the x1-axis as the cylinder axis and r2 as the radial coordinate (see Fig. 4.2) so

that ωi = (ω1, 0, 0). We assume that a positive ∂v1/∂x1 is acting on the fluid cylinder;

it will act as a source in Eq. 4.20 increasing ω1 and it will stretch the cylinder. The vol-

ume of the fluid element must stay constant during the stretching (the incompressible

continuity equation), which means that the radius of the cylinder will decrease. Hence
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v1 v1ω1

x1

x2

Figure 4.2: Vortex stretching. Dashed lines denote fluid element before stretching.
∂v1
∂x1

> 0.

ω2
v1(x2)

∂v1
∂x2

> 0

x1

x2

Figure 4.3: Vortex tilting. Dashed lines denote fluid element before bending or tilting.

vortex stretching will either make a fluid element longer and thinner (as in the example

above) or shorter and thicker (when ∂v1/∂x1 < 0).

The off-diagonal terms in Eq. 4.21 represent vortex tilting. Again, take a slender Vortex

tiltingfluid particle, but this time with its axis aligned with the x2 axis, see Fig. 4.3. Assume

is has a vorticity, ω2, and that the velocity surrounding velocity field is v1 = v1(x2).
The velocity gradient ∂v1/∂x2 will tilt the fluid particle so that it rotates in clock-wise

direction. The second term ω2∂v1/∂x2 in line one in Eq. 4.21 gives a contribution to

ω1. This means that vorticity in the x2 direction, through the source term ω2∂v1/∂x2,

creates vorticity in the x1 direction..

Vortex stretching and tilting are physical phenomena which act in three dimensions:

fluid which initially is two dimensional becomes quickly three dimensional through

these phenomena. Vorticity is useful when explaining why turbulence must be three-

dimensional, see Section 5.4.
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4.3 The vorticity transport equation in two dimensions

It is obvious that the vortex stretching/tilting has no influence in two dimensions; in

this case the vortex stretching/tilting term vanishes because the vorticity vector is or-

thogonal to the velocity vector (for a 2D flow the velocity vector reads vi = (v1, v2, 0)
and the vorticity vector reads ωi = (0, 0, ω3) so that the vector ωk∂vp/∂xk = 0). Thus

in two dimensions the vorticity equation reads

dω3

dt
= ν

∂2ω3

∂xα∂xα
(4.22)

(Greek indices are used to indicate that they take values 1 or 2). This equation is exactly

the same as the transport equation for temperature in incompressible flow, see Eq. 2.16.

This means that vorticity convects and diffuses in the same way as temperature does. In

fully developed channel flow, for example, the vorticity and the temperature equations

reduce to

0 = ν
∂2ω3

∂x22
(4.23a)

0 = k
∂2T

∂x22
(4.23b)

For the temperature equation the heat flux is given by q2 = −k∂T/∂x2; with a hot

lower wall and a cold upper wall (constant wall temperatures) the heat flux is constant

for all x2 and goes from the lower wall to the upper wall. We have the same situation for

the vorticity. Its gradient, i.e. the vorticity flux, γ2 = −ν∂ω3/∂x2, is constant across

the channel (you have plotted this quantity in TME225 Assignment 1). Equation 4.23

is turned into relations for q2 and γ2 by integration

γwall = γ2 (4.24a)

qwall = q2 (4.24b)

If the wall-normal temperature derivative ∂T/∂x2 = 0 at both walls (adiabatic

walls), the heat flux at the walls, qwall, will be zero and the temperature will be equal to

an arbitrary constant in the entire domain. It is only when the wall-normal temperature

derivative at the walls are non-zero that a temperature field is created in the domain.

The same is true for ω3: if ν∂ω3/∂x2 = −γ2 = 0 at the walls, the flow will not include

any vorticity. Hence, vorticity is – in the same way as temperature – generated at the

walls.

4.3.1 Boundary layer thickness from the Rayleigh problem

In Section 3.1 we studied the Rayleigh problem (unsteady diffusion). As shown above,

the two-dimensional unsteady temperature equation is identical to the two-dimensional

unsteady equation for vorticity. The diffusion time, t, or the diffusion length, δ, in

Eq. 3.14 can now be used to estimate the thickness of a developing boundary layer

(recall that the limit between the boundary layer and the outer free-stream region can

be defined by vorticity: inside the vorticity is non-zero and outside it is zero).

In a boundary layer, the streamwise pressure gradient is zero. This means that

µ
∂2v1
∂x22

∣∣∣∣
wall

= 0
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Figure 4.4: Boundary layer. The boundary layer thickness, δ, increases for increasing

streamwise distance from leading edge (x1 = 0).

because, at the wall, the only non-zero terms in the Navier-Stokes equation are the

streamwise pressure gradient and the wall-normal diffusion term (see, for example,

Eqs. 2.8 and 3.23). Hence, the flux of vorticity

γ2 = −ν ∂ω3

∂x2

∣∣∣∣
wall

= ν
∂2v1
∂x22

∣∣∣∣
wall

= 0 (4.25)

(recall that (∂v2/∂x1)wall = 0) along the wall which means that no vorticity is created

along the boundary. The vorticity in a developing boundary layer is created at the

leading edge of the plate (note that in channel flow, vorticity is indeed created along the

walls because in this case the streamwise pressure gradient is not zero). The vorticity

generated at the leading edge is transported along the wall by convection and at the

same time it is transported by diffusion away from the wall.

Below we will estimate the boundary layer thickness using the expression derived

for the Rayleigh problem. In a boundary layer there is vorticity and outside the bound-

ary layer it is zero (in the Rayleigh flow problem, the vorticity is created at time t = 0+

when the plate instantaneously accelerates from rest to velocity V0). Hence, if we can

estimate how far from the wall the vorticity diffuses, this gives us an estimation of the

boundary layer thickness.

Consider the boundary layer in Fig. 4.4. The boundary layer thickness at the end of

the plate is δ(L). The time it takes for a fluid particle to travel from the leading edge of

the plate to x = L is L/V0 (in the Rayleigh problem this corresponds to the flow field

after time t = L/V0). During this time vorticity will be transported by diffusion in the

x2 direction the length δ according to Eq. 3.14. If we assume that the fluid is air with

the speed V0 = 3m/s and that the length of the plate L = 2m we get from Eq. 3.14

that δ(L) = 1.2cm.

Exercise 26 Note that the estimate above is not quite accurate because in the Rayleigh

problem we assumed that the convective terms are zero, but in a developing boundary

layer, as in Fig. 4.4, they are not (v2 6= 0 and ∂v1/∂x1 6= 0). The proper way to

solve the problem is to use Blasius solution, see Section 3.3. Blasius solution gives (see

Eq. C.1)
δ

L
=

5

Re
1/2
L

, ReL =
V0L

ν
(4.26)

Compute what δ(L) you get from Eq. 4.26.

Exercise 27 Assume that we have a developing flow in a pipe (radius R) or between

two flat plates (separation distance h). We want to find out how long distance it takes

for the the boundary layers to merge. Equation 3.14 can be used with δ = R or h.

Make a comparison with this and Eq. 3.16.
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4.4 Potential flow

I
N potential flow, the velocity vector can be expressed as the gradient of its poten-

tial Φ, see Eq. 1.22. The vorticity is then zero by definition since the curl of the

divergence is zero. This is easily seen by inserting Eq. 1.22 (vi = ∂Φ/∂xi) into the

definition of the vorticity, Eq. 1.12, i.e.

ωi = ǫijk
∂vk
∂xj

= ǫijk
∂2Φ

∂xj∂xk
= 0 (4.27)

since ǫijk is anti-symmetric in indices j and k and ∂2Φ/∂xj∂xk is symmetric in j and

k. Inserting Eq. 1.22 into the continuity equation, Eq. 2.3, gives

0 =
∂vi
∂xi

=
∂

∂xi

(
∂Φ

∂xi

)
=

∂2Φ

∂xi∂xi
(4.28)

i.e. the potential satisfies the Laplace equation. This is of great important since many

analytical methods exist for the Laplace equation.

4.4.1 The Bernoulli equation

The velocity field in potential flow is thus given by the continuity equation, Eq. 4.28

(together with Eq. 1.22). Do we have any use of the Navier-Stokes equation? The

answer is yes: this equation provides the pressure field. We use the Navier-Stokes

equation (Eq. 4.12) with the viscous term expressed as in Eq. 4.5

∂vi
∂t

+
∂k

∂xi
− εijkvjωk = −1

ρ

∂P

∂xi
− νεinm

∂ωm

∂xn
+ fi (4.29)

Since ωi = 0 in potential (irrotational) flow, we get (with fi = gi) and using k =
vivi/2 = v2/2

∂

∂xi

(
∂Φ

∂xi

)
+

1

2

∂v2

∂xi
= −1

ρ

∂P

∂xi
+ gi (4.30)

where vi in the unsteady term was replaced by its potential (Eq. 1.22). The gravity

force can be expressed as a force potential, gi = −∂Φ̂/∂xi (see Eq. 4.13), because it is

conservative. The gravity force is conservative because when integrating this force, the conservative

forcework (i.e. the integral) depends only on the starting and ending points of the integral:

in mathematics this is called an exact differential.

Inserting gi = −∂Φ̂/∂xi in Eq. 4.30 gives

∂

∂xi

(
∂Φ

∂t
+
v2

2
+
P

ρ
+ Φ̂

)
= 0 (4.31)

Integration gives the famous Bernoulli equation

∂Φ

∂t
+
v2

2
+
P

ρ
+ Φ̂ = C(t) (4.32)

where Φ̂ = −gixi. In steady flow, we get

v2

2
+
P

ρ
− g3x3 = C (4.33)

where gi = (0, 0, g3). Using the height, gh = −g3x3, we get the more familiar form

v2

2
+
P

ρ
+ gh = C (4.34)
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4.4.2 Complex variables for potential solutions of plane flows

Complex analysis is a suitable tool for studying potential flow. We start this section by

repeating some basics of complex analysis. For real functions, the value of a partial

derivative, ∂f/∂x, at x = x0 is defined by making x approach x0 and then evaluating

(f(x+x0)−f(x))/x0. The total derivative, df/dt, is defined by approaching the point

x10, x20, x30, t as a linear combination of all independent variables (cf. Eq. 1.1).

A complex derivative of a complex variable is defined as (f(z + z0) − f(z))/z0
where z = x+iy and f = u+iv. We can approach the point z0 both in the real coordi-

nate direction, x, and in the imaginary coordinate direction, y. The complex derivative

is defined only if the value of the derivative is independent of how we approach the

point z0. Hence

df

dz
= lim

∆z→0

f(z0 +∆z)− f(z0)

∆z

= lim
∆x→0

f(x0 +∆x, iy0)− f(x0, iy0)

∆x
= lim

∆y→0

f(x0, iy0 + i∆y)− f(x0, iy0)

i∆y
.

(4.35)

The second line can be written as

∂f

∂x
=

1

i

∂f

∂y
=

i

i2
∂f

∂y
= −i∂f

∂y
(4.36)

since i2 = −1. Inserting f = u+ iv and taking the partial derivative of f we get

∂f

∂x
=
∂u

∂x
+ i

∂v

∂x

i
∂f

∂y
= i

∂u

∂y
− ∂v

∂y

(4.37)

Using Eq. 4.36 gives
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(4.38)

Equations 4.38 are called the Cauchy-Riemann equations. Another way to derive

Eq. 4.38 is to require that f should depend only on z but not on z̄ [7] (z̄ is the complex

conjugate of z, i.e. z̄ = x− iy).

So far the complex plane has been expressed as z = x+iy. It can also be expressed

in polar coordinates (see Fig. 4.5)

z = reiθ = r(cos θ + i sin θ) (4.39)

Now we return to fluid mechanics and potential flow. Let us introduce a complex

potential, f , based on the streamfunction, Ψ (Eq. 3.43), and the velocity potential, Φ
(Eq. 1.22)

f = Φ+ iΨ (4.40)

Recall that for two-dimensional, incompressible flow, the velocity potential satisfies the

Laplace equation, see Eq. 4.28. The streamfunction also satisfies the Laplace equation

in potential flow where the vorticity, ωi, is zero. This is easily seen by taking the

divergence of the streamfunction, Eq. 3.43

∂2Ψ

∂x21
+
∂2Ψ

∂x22
= − ∂v2

∂x1
+
∂v1
∂x2

= −ω3 = 0 (4.41)
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Figure 4.5: The complex plane in polar coordinates. Real and imaginary axes corre-

spond to the horizontal and vertical axes, respectively.

see Eq. 1.13. Hence the complex potential, f , also satisfies the Laplace equation.

Furthermore, f also satisfies the Cauchy-Riemann equations, Eq. 4.38, since

∂Φ

∂x
=
∂Ψ

∂y
= v1 and

∂Φ

∂y
= −∂Ψ

∂x
= v2 (4.42)

see Eqs. 3.43 and 1.22. Thus we can conclude that f defined as in Eq. 4.40 is differen-

tiable, i.e. df/dz exists.

4.4.3 Analytical solutions as f ∝ zn

Now we will give some examples of f(z) which correspond to useful engineering

flows. We can choose any exponent n and multiply with any constant in order to get a

physical, meaningful flow. The solution

f = C1z
n (4.43)

is one example. Let’s first verify that this is a solution of the Laplace equation. We

write it in polar coordinates

f = C1

(
reiθ

)n
= C1r

neinθ = C1r
n(cos(nθ) + i sin(nθ)) (4.44)

The Laplace operator in polar coordinates reads

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
(4.45)

Taking the first and the second derivatives of Eq. 4.44 with respect to r and θ gives

∂f

∂r
= C1nr

n−1(cos(nθ) + i sin(nθ))

1

r

∂

∂r

(
r
∂f

∂r

)
= C1n

2rn−2(cos(nθ) + i sin(nθ))

∂f

∂θ
= C1nr

n(− sin(nθ) + i cos(nθ))

∂2f

∂θ2
= −C1n

2rn(cos(nθ) + i sin(nθ))

(4.46)
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x
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V∞

Figure 4.6: Parallel flow.

When we divide the fourth line with r2 and add it to the second line we find that the

Laplace equation (Eq. 4.45) is indeed zero, i.e.

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
= 0 (4.47)

4.4.3.1 Parallel flow

When we set n = 1 in Eq. 4.43 we get (C1 = V∞)

f = V∞z = V∞(x+ iy) (4.48)

The streamfunction, Ψ, is equal to the imaginary part, see Eq. 4.40. Equation 4.42

gives the velocity components

v1 =
∂Ψ

∂y
= V∞ and v2 = −∂Ψ

∂x
= 0 (4.49)

The flow is shown in Fig. 4.6.

4.4.3.2 Stagnation flow

When we set n = 2 in Eqs. 4.43 and 4.44 we get (inviscid) stagnation flow onto a wall.

The streamfunction, Ψ, corresponds to the imaginary part of f , see Eqs. 4.40 and 4.44,

so that (C1 = 1)

Ψ = r2 sin(2θ) (4.50)

The solution in form of a vector plot and contour plot of the streamfunction is given in

Fig. 4.7. The flow impinges at the wall at x2 = 0. The streamfunction is zero along the

symmetry line, x1 = 0, and it is negative to the left and positive to the right. The polar

velocity components are obtained as (see. Eq. 4.42)

vr =
1

r

∂Ψ

∂θ
= 2r cos(2θ)

vθ = −∂Ψ
∂r

= −2r sin(2θ)

(4.51)
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Figure 4.7: Potential flow. Stagnation flow.
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Figure 4.8: Potential flow. The lower boundary for x1 < 0 can either be a wall (concave

corner) or symmetry line (wedge).

and in Cartesian components (see Fig. 1.9)

v1 = vr cos θ − vθ sin θ = 2r cos θ cos(2θ) + 2r sin θ sin(2θ)

= 2r cos θ(1− 2 sin2 θ) + 4r sin2 θcosθ = 2r cos θ = 2x1

v2 = vr sin θ + vθ cos θ = 2r sin θ cos(2θ)− 2r cos θ sin(2θ)

= 2r sin θ(2 cos2 θ − 1)− 4r sin θ cos2 θ = −2r sin θ = −2x2

(4.52)

Recall that since the flow is inviscid (no friction), the boundary condition on the wall is

slip, i.e. a frictionless wall (same as a symmetric boundary). Note that this flow is the

same as we looked at in Section 1.2 except that the velocities are here twice as large

because we chose C1 = 1.

Figure 4.7 was generated in Matlab by evaluating Eqs. 4.50, 4.51 and 4.52 on a

polar grid.

4.4.3.3 Flow over a wedge and flow in a concave corner

Next we set n = 6/5 in Eqs. 4.43 and 4.44. This gives us (inviscid) flow over a

wedge and flow over a concave corner (n should be in the interval 1 < n < 2). The

streamfunction, the imaginary part of f , is given by (Eqs. 4.40 and 4.44)

Ψ = r6/5 sin(6θ/5) (4.53)
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x
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Figure 4.9: Line source. ṁ > 0

(C1 = 1) and the velocity components read (see Fig. 4.51)

vr =
1

r

∂Ψ

∂θ
=

6

5
r cos(6θ/5)

vθ = −∂Ψ
∂r

= −6

5
r sin(6θ/5)

(4.54)

The velocity vector field and the streamfunction are presented in Fig. 4.8. The stream-

function is zero along the lower boundary. The angle, α, in Fig. 4.8a is given by

α =
(n− 1)π

n
=
π

6
(4.55)

4.4.4 Analytical solutions for a line source

The complex potential for a line source reads

f =
ṁ

2π
ln z (4.56)

where ṁ is the strength of the source; the physical meaning of ṁ is volume flow

assuming that the extent of the domain in the third coordinate direction, x3, is one.

Writing Eq. 4.56 on polar form gives

f =
ṁ

2π
ln
(
reiθ

)
=
ṁ

2π

(
ln r + ln

(
eiθ
))

=
ṁ

2π
(ln r + iθ) (4.57)
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First, we need to make sure that this solution satisfies the Laplace equation, Eq. 4.45.

The first and second derivatives read

∂f

∂r
=

ṁ

2πr
1

r

∂

∂r

(
r
∂f

∂r

)
= 0

∂f

∂θ
= i

ṁ

2π
∂2f

∂θ2
= 0

(4.58)

which shows that Eq. 4.47 is satisfied.

The streamfunction corresponds to the imaginary part of f and we get (see Eq. 4.51)

vr =
1

r

∂Ψ

∂θ
=

ṁ

2πr

vθ = −∂Ψ
∂r

= 0

(4.59)

We find that the physical flow is in the radial direction, see Fig. 4.9. If ṁ > 0, the flow

is outwards directed and for ṁ < 0 it is going inwards toward origo. When origo is

approached, the velocity, vr, tends to infinity. Hence, Eq. 4.59 gives nonphysical flow

near origo. The reason is that the inviscid assumption (zero viscosity) is not valid in

this region.

It was mentioned above that the physical meaning of ṁ is volume flow. This is

easily seen by integrating vr (Eq. 4.59) over a cylindrical surface as

∫ 1

0

dx3

∫ 2π

0

vrrdθ =

∫ 1

0

dx3

∫ 2π

0

ṁ

2πr
rdθ =

ṁ

2π

∫ 1

0

∫ 2π

0

dx3dθ = ṁ. (4.60)

4.4.5 Analytical solutions for a vortex line

A line vortex is another example of a complex potential; it is very similar to Eq. 4.56

and reads

f = −i Γ
2π

ln z (4.61)

which on polar form reads (cf. Eq. 4.57)

f = − Γ

2π
(i ln r − θ) (4.62)

From the streamfunction (the imaginary part of f ) we get (cf. Eq. 4.59)

vr =
1

r

∂Ψ

∂θ
= 0

vθ = −∂Ψ
∂r

=
Γ

2πr

(4.63)

This flow was introduced in Section 1.7.1 (where we called it an ideal vortex line) as an

example of a flow with no vorticity. The flow is in the positive θ direction along lines

of constant radius, see Fig. 4.10. The circulation, Γ, appears in the expression of vθ . It

was introduced in Section 1.7. It is defined as a closed line integral along line C, see

Eq. 1.23 and can be expressed as an integral of the vorticity over surface S bounded by

line C, see Eq. 1.25 and Fig. 1.7.
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Figure 4.10: Vortex line.
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V∞ θ

Figure 4.11: Flow around a cylinder of radius r0.

4.4.6 Analytical solutions for flow around a cylinder

The complex potential for the flow around a cylinder can be found by combining a

doublet and a parallel flow. A doublet consists of a line source (strength ṁ) and sink

(strength −ṁ) separated by a distance ε in the x1 direction (line sources were intro-

duced in Section 4.4.4). Imagine that we move the source and the sink closer to each

other and at the same time we increase their strength |ṁ| so that the product µ = ṁε
stays constant. The resulting complex potential is

f =
µ

πz
(4.64)

When adding the complex potential of parallel flow, see Eq. 4.48, we get
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Figure 4.12: Flow around a cylinder of radius r0. Integration of surface pressure.
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Figure 4.13: Pressure coefficients.

f =
µ

πz
+ V∞z (4.65)

Now we define the radius of the cylinder, r0, as

r20 = µ/(πV∞) (4.66)

so that

f =
V∞r

2
0

z
+ V∞z (4.67)

On polar form it reads

f =
V∞r

2
0

reiθ
+ V∞re

iθ = V∞

(
r20
r
e−iθ + reiθ

)

= V∞

(
r20
r
(cos θ − i sin θ) + r(cos θ + i sin θ)

) (4.68)

The streamfunction reads (imaginary part)

Ψ = V∞

(
r − r20

r

)
sin θ (4.69)

Now we can compute the velocity components (see Eq. 4.51)

vr =
1

r

∂Ψ

∂θ
= V∞

(
1− r20

r2

)
cos θ

vθ = −∂Ψ
∂r

= −V∞
(
1 +

r20
r2

)
sin θ

(4.70)



4.4. Potential flow 58

We find that vr = 0 for r = r0 as intended (thanks to the definition in Eq. 4.66). We

are not interested in the solution inside the cylinder (r < r0). Furthermore, we see

that the tangential velocity is zero at θ = 0 and π; hence these points correspond to

the stagnation points, see Fig. 4.11. The velocity field at the cylinder surface, r = r0,

reads

vr,s = 0

vθ,s = −2V∞ sin θ
(4.71)

where index s denotes surface. Note that the local velocity gets twice as large as the

freestream velocity at the top (θ = π/2) and the bottom (θ = −π/2) of the cylinder.

The surface pressure is obtained from Bernoulli equation (see Eq. 4.34)

V 2
∞

2
+
P∞

ρ
=
v2θ,s
2

+
ps
ρ

⇒ ps = P∞ + ρ
V 2
∞ − v2θ,s

2
(4.72)

where we neglected the gravitation term. The surface pressure is usually expressed as

a pressure coefficient

Cp ≡ ps − P∞

ρV 2
∞/2

= 1−
v2θ,s
V 2
∞

= 1− 4 sin2 θ (4.73)

using Eq. 4.71.

It should be stressed that although Eqs. 4.71 and 4.73 are exact they are not realistic

because of the strict requirement that the flow should be inviscid. This requirement is

not valid neither in the boundary layers nor in the wake; the boundary layers may

be thin but the wake is a large part of the domain. Figure 4.13 presents the pressure

coefficient for potential flow and accurate unsteady CFD of two-dimensional viscous

flow [8] (the Reynolds number is sufficiently low for the flow to be laminar); Eqs. 2.3

and 2.8 are solved numerically [8]. The potential solution agrees rather well with

viscous flow up to θ ≃ 20o.

How do we find the lift and drag force? The only force (per unit area) that acts

on the cylinder surface is the pressure (in viscous flow there would also be a viscous

stress, but it is usually much smaller). To find the lift force, FL, we simply integrate

the pressure over the surface. Usually the lift force is expressed as a lift coefficient,

CL, which is scaled with the dynamic pressure ρV 2
∞/2. The lift coefficient is obtained

as

CL =
FL

ρV 2
∞/2

= −
∫ 1

0

dx3

∫ 2π

0

ps
ρV 2

∞/2
sin θr0dθ

= −r0
∫ 1

0

dx3

∫ 2π

0

(1− 4 sin2 θ) sin θdθ

= −r0
[
− cos θ − 4

(
1

12
cos(3θ)− 3

4
cos θ

)]2π

0

= 0

(4.74)

The sin θ on the first line appears because we project the pressure force in the vertical

direction (see Fig. 4.12) and minus sign is because pressure acts inwards, see Eq. 1.9

and Fig. 4.1. We assume in Eq. 4.74 that the length of the cylinder in the x3 direction
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Figure 4.14: Flow around a cylinder of radius r0 with additional circulation which give

a (negative) lift force, see Eq. 4.85.

is one. The drag coefficient is computed as

CD =
FD

ρV 2
∞/2

= −
∫ 1

0

dx3

∫ 2π

0

(1 − 4 sin2 θ) cos θr0dθ

= −r0
∫ 1

0

dx3

∫ 2π

0

[
sin θ − 4

3
sin3 θ

]2π

0

= 0

(4.75)

The cos θ on the first line appears because we project the pressure force in the hori-

zontal direction (see Fig. 4.12). Equations 4.74 and 4.75 give CL = CD = 0; hence

we find that inviscid flow around a cylinder creates neither lift nor drag. The reason is

that the pressure is symmetric both with respect to x1 = 0 and x2 = 0. The lift force

on the lower surface side cancels the force on the upper side. Same argument for the

drag force: the pressure force on the upstream surface cancels that on the downstream

surface.

4.4.7 Analytical solutions for flow around a cylinder with circulation

We will now introduce a second example of potential flow around cylinders, which is

by far the most important one from engineering point of view. Here we will introduce

the use of additional circulation which alters the locations of the stagnation points and

creates lift. This approach is used in potential methods for predicting flow around

airfoils in aeronautics (mainly helicopters) and windpower engineering.

We add the complex potential of a vortex line (see Eq. 4.61) to Eq. 4.67 so that

f =
V∞r

2
0

z
+ V∞z − i

Γ

2π
ln z (4.76)

On polar form it reads (see Eqs. 4.62 and 4.68)

f = V∞

(
r20
r
(cos θ − i sin θ) + r(cos θ + i sin θ)

)
− Γ

2π
(i ln r − θ) (4.77)

The imaginary part gives the streamfunction

Ψ = V∞

(
r − r20

r

)
sin θ − Γ

2π
ln r (4.78)
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Figure 4.15: Flow around a cylinder of radius r0 with maximal additional circulation.

We get the velocity components as (see Eqs. 4.63 and 4.70)

vr =
1

r

∂Ψ

∂θ
= V∞

(
1− r20

r2

)
cos θ

vθ = −∂Ψ
∂r

= −V∞
(
1 +

r20
r2

)
sin θ +

Γ

2πr

(4.79)

The effect of the added vortex line is, as expected, to increase vθ while leaving vr
unaffected. The larger the circulation, the larger vθ .

The velocity at the surface, r = r0, reads

vr,s = 0

vθ,s = −2V∞ sin θ +
Γ

2πr0

(4.80)

Now let’s find the location of the stagnation points, i.e. where vθ,s = 0. Equation 4.80

gives

2V∞ sin θstag =
Γ

2πr0
⇒ θstag = arcsin

(
Γ

4πr0V∞

)
(4.81)

The two angles that satisfy this equation are located in the the first and second quad-

rants. The two positions are indicated with a and b in Fig. 4.14. For a limiting value of

the circulation, Γmax, the two locations s and b will merge at θ = π/2, denoted with c
in Fig. 4.15,

Γmax = 4πV∞r0. (4.82)

This corresponds to the maximum value of the circulation for which there is a stag-

nation point on the cylinder surface. For circulation larger than Γmax, the stagnation

point will be located above the cylinder.

The pressure is obtained from Bernoulli equation as (see Eq. 4.73)

Cp = 1−
v2θ,s
V 2
∞

= 1−
(
−2 sin θ +

Γ

2πr0V∞

)2

= 1− 4 sin2 θ +
4Γ sin θ

2πr0V∞
−
(

Γ

2πr0V∞

)2
(4.83)
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Figure 4.16: Table tennis. The loop uses the Magnus effect. Side view.

We found in Section 4.4.6 that a cylinder without circulation gives neither drag nor

lift, see Eqs. 4.74 and 4.75. What about the present case? Let’s compute the lift. We

found in Eq. 4.74 that the two first terms in Eq. 4.83 give no contribution to the lift.

The last term cannot give any contribution to the lift because it is constant on the entire

surface. Hence we only need to include the third term in Eq. 4.83 so that

CL =
FL

ρV 2
∞/2

= −
∫ 1

0

dx3

∫ 2π

0

ps
ρV 2

∞/2
sin θr0dθ

= −r0
∫ 1

0

dx3

∫ 2π

0

2Γ sin θ

πr0V∞
sin θdθ

= −
[

Γθ

πV∞
− Γ

2πV∞
sin(2θ)

]2π

0

= − 2Γ

V∞

(4.84)

We find that the lift force on a unit length of the cylinder can be computed from the

circulation as

FL = −ρV∞Γ (4.85)

This relation is valid for any body and it is called the Kutta-Joukowski law who –

independent of each other – formulated it. The reason to the sign of the lift force can

easily be seen from Fig. 4.14. The stagnation points, where the pressure is largest, are

located at the top of the cylinder and hence the pressure is higher on the top than on the

bottom. The ”lift” force is acting downwards, i.e. in the negative x2 direction.

The drag is, however, still zero. In Eq. 4.75 we found that the first and the second

terms in Eq. 4.83 gives no contribution to drag. Hence, we only need to consider the

third terms. In the drag integral (see Eq. 4.75), this term in Eq. 4.83 gives rise to a term

proportional to sin θ cos θ whose contribution is zero. Hence, the additional circulation

does not give rise to any drag.

4.4.7.1 The Magnus effect

Circulation around a cylinder is very similar to a rotating cylinder. Instead of adding a

circulation, we let the cylinder rotate with speed Ω. A rotating cylinder produces lift.

This has interesting application in sports, for example football, table tennis and golf.

In table tennis, the ball must hit the table on the side of the opponent. One way to

improve the chance that this will happen is to make a loop. This means that you hit the

ball slightly on the top. The ball experiences a force, F , when you hit it (see Fig. 4.16)

and this force makes it rotate with rotation speed Ω (clockwise direction). The rotation

causes a lift, FL, which acts downwards so that the ball drops down quickly and (hope-

fully) hits the table on the other side of the net. The lift force is downwards because
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Figure 4.17: Football. A free-kick uses the Magnus effect. Top view

VwindΩ

FL

α

Vship

x1

x2

Figure 4.18: Flettner rotor (in blue) on a ship. The relative velocity between the ship

and the wind is Vwind + Vship. The ship moves with speed Vship. Top view.

the stagnation points are located on the upper surface. Recall that the relative velocity

of the air is in the negative x1 direction.

Another example where the Magnus effect is important is golf. Here the object is

often vice versa. You want the ball to go as far as possible. Hence you hit it with a

slice so that it spins with a positive Ω (counter-clockwise). The result is a lift force in

the positive x2 direction which makes the ball go further.

A final sports example is football. Here the lift is used sideways. Imagine there is a

free-kick rather close to the opponents’ goal, see Fig. 4.17. The opponents erects a wall

of players between the goal and the location of the free-kick. The player who makes

the free-kick wants to make the ball go on the left side of the wall; after the wall of

players, the ball should turn right towards the goal. The Magnus effect helps to achieve

this. The player hits the ball with his/her left foot on the left side of the ball which

creates a force F on the ball. This makes the ball rotate clockwise, see Fig. 4.17, and

creates a lift force so that the ball after it has passed the wall turns to the right towards

the goal. The reason that the ball turns to the right first after the wall (and not before)

is that the forward momentum created by F (the player) is much larger than FL.

If you are interested in football you may be pleased to learn that by use of fluid

dynamics it is now scientifically proven that it was much harder to make a good freekick

in 2010 worldcup than in 2014 [9]. Figure 7b in that paper is particularly interesting.

As an experiment, two identical freekicks are made with the football used at
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Figure 4.19: Airfoil. The boundary layers, δ(x1), and the wake illustrated in red.

x1 = 0 and x1 = c at leading and trailing edge, respectively.

the 2013 FIFA Confederations. The freekicks are made 25m from the goal. The

initial velocity of the football is 30 m/s. The result of the two freekicks is that the

two footballs reach the goal three meters from each other in the vertical direction.

Why? Because the ball was rotated 45 degrees before the second freekick (see

Figs. 2c,d) in [9].

Finally we give an engineering example of the use of the Magnus effect. The first

Flettner rotors on ships were produced in 1924. It has recently gained new interest as

the cost of fuel is rising. A Flettner rotor is a rotating cylinder (or many) on a ship,

see Fig. 4.18. The diameter of this rotor can be a couple of meter and have a length

(i.e. height) of 10 − 20 meter. The ship is moving to the right with speed Vship. The

wind comes towards the ship from the left-front (relative wind at an angle of π/4).

The Flettner rotor rotates in the clockwise direction. The Magnus effect creates a force

in the orthogonal direction to the relative windspeed, i.e. at an angle of −π/4. Note

that if the wind comes from the right instead of from the left, the rotor should rotate

in the counter-clockwise direction. The additional propulsion force is FL cos(α). The

Division of Fluid Dynamics recently took part in an EU project where we studied the

flow around rotating cylinders in relation to Flettner rotors [10].

4.4.8 The flow around an airfoil

Flow around airfoils is a good example where potential methods are useful. These

methods are still in use in wind engineering and for helicopters. At the Division of

Fluid Dynamics we have an on-going PhD project where we use potential methods for

computing the aerodynamic loads for windturbine rotorblades [11].

The flow around airfoils is a good example where the flow can be treated as inviscid

in large part of the flow. For low angles of attack (which is the case for, for example, an

aircraft in cruise conditions) the boundary layers and the wake are thin. Outside these

regions the flow is essentially inviscid.

Figure 4.19 (see also Fig. 16.1) shows a two-dimensional airfoil. The boundary

layers and the wake are illustrated in red. The boundary layer is thinner on the pres-

sure (lower) side than on the suction (upper) side. It grows slightly thicker towards the

trailing edge (denoted by δ(x1) in Fig. 4.19). When this flow is computed using po-

tential methods, the location of the front stagnation point is reasonably well captured,
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V∞

Figure 4.20: Airfoil. Streamlines from potential flow. Rear stagnation point at the

upper surface (suction side).

Γ

V∞

Figure 4.21: Airfoil. Streamlines from potential flow with added circulation. Rear

stagnation point at the trailing edge.
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see Fig. 4.20. However, the stagnation point near the trailing edge is located on the

suction side which is clearly nonphysical. The flow on the pressure (lower) side cannot

be expected to make a 180o turn at the trailing edge and then go in the negative x1
direction towards the stagnation point located on the suction side.

The solution is to move the stagnation points in the same way as we did for the

cylinder flow in Section 4.4.7. We want to move the rear stagnation point towards

the trailing edge. This is achieved by adding a circulation in the clockwise direction,

see Fig. 4.21. The magnitude of the circulation is determined by the requirement that

the stagnation point should be located at the trailing edge. This is called the Kutta

condition. The added circulation is negative (clockwise). In aeronautics, the sign of

circulation is usually changed so that Γaeronautic = −Γ. The lift of a two-dimensional

airfoil (or a two-dimensional section of a three-dimensional airfoil) is then computed

as (see Eq. 4.85)

FL = ρV∞Γaeronautic (4.86)
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5 Turbulence

5.1 Introduction

A
LMOST all fluid flow which we encounter in daily life is turbulent. Typical exam-

ples are flow around (as well as in) cars, aeroplanes and buildings. The boundary

layers and the wakes around and after bluff bodies such as cars, aeroplanes and build-

ings are turbulent. Also the flow and combustion in engines, both in piston engines

and gas turbines and combustors, are highly turbulent. Air movements in rooms are

turbulent, at least along the walls where wall-jets are formed. Hence, when we com-

pute fluid flow it will most likely be turbulent. In turbulent flow we usually divide the

velocities in one time-averaged part v̄i, which is independent of time (when the mean

flow is steady), and one fluctuating part v′i so that vi = v̄i + v′i.
There is no definition on turbulent flow, but it has a number of characteristic fea-

tures (see Pope [12] and Tennekes & Lumley [13]) such as:

I. Irregularity. Turbulent flow is irregular and chaotic (they may seem random,

but they are governed by Navier-Stokes equation, Eq. 2.8). The flow consists of a

spectrum of different scales (eddy sizes). We do not have any exact definition of an

turbulent eddy, but we suppose that it exists in a certain region in space for a certain turbulent

eddytime and that it is subsequently destroyed (by the cascade process or by dissipation,

see below). It has a characteristic velocity and length (called a velocity and length

scale). The region covered by a large eddy may well enclose also smaller eddies. The

largest eddies are of the order of the flow geometry (i.e. boundary layer thickness, jet

width, etc). At the other end of the spectrum we have the smallest eddies which are

dissipated by viscous forces (stresses) into thermal energy resulting in a temperature

increase. Even though turbulence is chaotic it is deterministic and is described by the

Navier-Stokes equations.

II. Diffusivity. In turbulent flow the diffusivity increases. The turbulence increases

the exchange of momentum in e.g. boundary layers, and reduces or delays thereby

separation at bluff bodies such as cylinders, airfoils and cars. The increased diffusivity

also increases the resistance (wall friction) and heat transfer in internal flows such as

in channels and pipes.

III. Large Reynolds Numbers. Turbulent flow occurs at high Reynolds number.

For example, the transition to turbulent flow in pipes occurs that ReD ≃ 2300, and in

boundary layers at Rex ≃ 500 000.

IV. Three-Dimensional. Turbulent flow is always three-dimensional and unsteady.

However, when the equations are time averaged, we can treat the flow as two-dimensional

(if the geometry is two-dimensional).

V. Dissipation. Turbulent flow is dissipative, which means that kinetic energy in

the small (dissipative) eddies are transformed into thermal energy. The small eddies

receive the kinetic energy from slightly larger eddies. The slightly larger eddies receive

their energy from even larger eddies and so on. The largest eddies extract their energy

from the mean flow. This process of transferring energy from the largest turbulent

scales (eddies) to the smallest is called the cascade process, see Fig. M.4. cascade

processVI. Continuum. Even though we have small turbulent scales in the flow they are

much larger than the molecular scale and we can treat the flow as a continuum.
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1
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Figure 5.1: Cascade process with a spectrum of eddies. The energy-containing eddies

are denoted by v0; ℓ1 and ℓ2 denotes the size of the eddies in the inertial subrange such

that ℓ2 < ℓ1 < ℓ0; ℓη is the size of the dissipative eddies.

5.2 Turbulent scales

The largest scales are of the order of the flow geometry (the boundary layer thickness,

for example), with length scale ℓ0 and velocity scale v0. These scales extract kinetic

energy from the mean flow which has a time scale comparable to the large scales, i.e.

∂v̄1
∂x2

∼ t−1
0 ∼ v0/ℓ0 (5.1)

Part of the kinetic energy of the large scales is lost to slightly smaller scales with which

the large scales interact. Through the cascade process, kinetic energy is in this way

transferred from the largest scale to the smallest scales. At the smallest scales the

frictional forces (viscous stresses) become large and the kinetic energy is transformed

(dissipated) into thermal energy. The kinetic energy transferred per unit time from

eddy-to-eddy (from an eddy to a slightly smaller eddy) is the same for each eddy size.

The dissipation is denoted by ε which is energy per unit time and unit mass (ε =
[m2/s3]). The dissipation is proportional to the kinematic viscosity, ν, times the fluc-

tuating velocity gradient up to the power of two (see Section 8.2). The friction forces

exist of course at all scales, but they are largest at the smallest eddies. In reality a small

fraction is dissipated at all scales. However it is assumed that most of the energy that

goes into the large scales per unit time (say 90%) is finally dissipated at the smallest

(dissipative) scales.

The smallest scales where dissipation occurs are called the Kolmogorov scales

whose velocity scale is denoted by vη, length scale by ℓη and time scale by τη. We

assume that these scales are determined by viscosity, ν, and dissipation, ε. The argu-

ment is as follows.
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viscosity: Since the kinetic energy is destroyed by viscous forces it is natural to assume

that viscosity plays a part in determining these scales; the larger viscosity, the

larger scales.

dissipation: The amount of energy per unit time that is to be dissipated is ε. The more

energy that is to be transformed from kinetic energy to thermal energy, the larger

the velocity gradients must be.

Having assumed that the dissipative scales are determined by viscosity and dissipation,

we can express vη , ℓη and τη in ν and ε using dimensional analysis. We write

vη = νa εb

[m/s] = [m2/s] [m2/s3]
(5.2)

where below each variable its dimensions are given. The dimensions of the left and the

right side must be the same. We get two equations, one for meters [m]

1 = 2a+ 2b, (5.3)

and one for seconds [s]

−1 = −a− 3b, (5.4)

which give a = b = 1/4. In the same way we obtain the expressions for ℓη and τη so

that

vη = (νε)
1/4

, ℓη =

(
ν3

ε

)1/4

, τη =
(ν
ε

)1/2
(5.5)

5.3 Energy spectrum

As mentioned above, the turbulence fluctuations are composed of a wide range of

scales. We can think of them as eddies, see Fig. 5.1. It turns out that it is often conve-

nient to use Fourier series to analyze turbulence. In general, any periodic function, g,

with a period of 2L (i.e. g(x) = g(x+ 2L)), can be expressed as a Fourier series, i.e.

g(x) =
1

2
a0 +

∞∑

n=1

(an cos(κnx) + bn sin(κnx)) (5.6)

where x is a spatial coordinate and

κn =
nπ

L
or κ =

2π

L
. (5.7)

κn is called the wavenumber. The Fourier coefficients are given by

an =
1

L

∫ L

−L

g(x) cos(κnx)dx

bn =
1

L

∫ L

−L

g(x) sin(κnx)dx

Parseval’s formula states that

∫ L

−L

g2(x)dx =
L

2
a20 + L

∞∑

n=1

(a2n + b2n) (5.8)
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Figure 5.2: Spectrum for turbulent kinetic energy, k. I: Range for the large, energy

containing eddies. II: the inertial subrange. III: Range for small, isotropic scales. For

a discussion of εκ vs. ε, see Section 8.2.1. The wavenumber, κ, is proportional to the

inverse of the length scale of a turbulent eddy, ℓκ, i.e. κ ∝ ℓ−1
κ . For a discussion of εκ

vs. ε, see Section 8.2.1.

For readers not familiar to Fourier series, a brief introduction is given in Appendix D.

An example of a Fourier series and spectra are given in Appendix E. Let g be a fluc-

tuating velocity component, say v′1. The left side of Eq. 5.8 expresses v′21 in physical

space (vs. x) and the right side v′21 in wavenumber space (vs. κn). The reader who is

not familiar to the term “wavenumber”, is probably more familiar to “frequency”. In

that case, express g in Eq. 5.6 as a series in time rather than in space. In this case the

left side of Eq. 5.8 expresses v′21 as a function of time and the right side expresses v′21
as a function of frequency.

The turbulent scales are distributed over a range of scales which extends from the

largest scales which interact with the mean flow to the smallest scales where dissipation

occurs, see Fig. 5.1. Let us think about how the kinetic energy of the eddies varies with

eddy size. Intuitively we assume that large eddies have large fluctuating velocities

which implies large kinetic energy, v′iv
′
i/2. It is convenient to study the kinetic energy

of each eddy size in wavenumber space. In wavenumber space the energy of eddies

can be expressed as

E(κ)dκ (5.9)

where Eq. 5.9 expresses the contribution from the scales with wavenumber between κ
and κ+ dκ to the turbulent kinetic energy k. The energy spectrum, E(κ), corresponds

to g2(κ) in Eq. 5.8. The dimension of wavenumber is one over length; thus we can think

of wavenumber as proportional to the inverse of an eddy’s diameter, i.e κ ∝ 1/d. The

total turbulent kinetic energy is obtained by integrating over the whole wavenumber
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space, i.e.

k =

∫ ∞

0

E(κ)dκ = L
∑

g2(κn) (5.10)

Think of this equation as a way to compute the kinetic energy by first sorting all eddies

by size (i.e. wavenumber), then computing the kinetic energy of each eddy size (i.e.

E(κ)dκ), and finally summing the kinetic energy of all eddy sizes (i.e. carrying out the

integration). Note that the physical meaning of E is kinetic energy per unit wavenum-

ber of eddies of size ℓκ ∝ κ−1. Hence the dimension of E is v2/κ, see Eq. 5.10; for a

discussion on the dimension of E, see Appendix E.

The kinetic energy is the sum of the kinetic energy of the three fluctuating velocity

components, i.e.

k =
1

2

(
v′21 + v′22 + v′23

)
=

1

2
v′iv

′
i (5.11)

The spectrum ofE is shown in Fig. 5.2. We find region I, II and III which are discussed

below.

I. In this region we have the large eddies which carry most of the energy. These

eddies interact with the mean flow and extract energy from the mean flow. This

energy transfer takes places via the production term, P k, in the transport equation

for turbulent kinetic energy, see Eq. 8.14. Part of the energy extracted per unit

time by the largest eddies is transferred (per unit time) to slightly smaller scales.

The eddies’ velocity and length scales are v0 and ℓ0, respectively.

III. Dissipation range. The eddies are small and isotropic and it is here that the

dissipation occurs. The energy transfer from turbulent kinetic energy to thermal

energy (increased temperature) is governed by ε in the transport equation for

turbulent kinetic energy, see Eq. 8.14. The scales of the eddies are described by

the Kolmogorov scales (see Eq. 5.5)

II. Inertial subrange. The existence of this region requires that the Reynolds number

is high (fully turbulent flow). The eddies in this region represent the mid-region.

The turbulence is also in this region isotropic. This region is a “transport re-

gion” (i.e. in wavenumber space) in the cascade process. The “transport” in

wavenumber space is called spectral transfer. Energy per time unit, P k = ε, is spectral

transfercoming from the large eddies at the lower part of this range and is transferred

per unit time to the dissipation range at the higher part. Note that the relation

P k = {dissipation at small scales}, see Fig. 5.2, is given by the assumption of

the cascade process, i.e. that the energy transfer per unit time from eddy-size–

to–eddy-size is the same for all eddy sizes.

The kinetic energy, kκ = v′κ,iv
′
κ,i/2, of an eddy of size (lengthscale), 1/κ, repre-

sents the kinetic energy of all eddies of this size. The kinetic energy of all eddies

(of all size) is computed by Eq. 5.11. The eddies in this region are indepen-

dent of both the large, energy-containing eddies and the eddies in the dissipation

range. One can argue that the eddies in this region should be characterized by

the spectral transfer of energy per unit time (ε) and the size of the eddies, 1/κ.

Dimensional analysis gives

E = κa εb

[m3/s2] = [1/m] [m2/s3]
(5.12)
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We get two equations, one for meters [m]

3 = −a+ 2b,

and one for seconds [s]
−2 = −3b,

so that b = 2/3 and a = −5/3. Inserted in Eq. 5.12 we get

E(κ) = CKε
2

3 κ−
5

3 (5.13)

where the Kolmogorov constant CK ≃ 1.5. This is a very important law (Kol-

mogorov spectrum law or the −5/3 law) which states that, if the flow is fully

turbulent (high Reynolds number), the energy spectra should exhibit a −5/3-

decay in the inertial region (region II, Fig. 5.2).

Above we state that the eddies in Region II and III are isotropic. This means that –

in average – the eddies have no preferred direction, i.e. the fluctuations in all directions

are the same so that v′21 = v′22 = v′23 . Note that is not true instantaneously, i.e. in

general v′1 6= v′2 6= v′3. Furthermore, isotropic turbulence implies that if a coordinate isotropic

turbulencedirection is switched (i.e. rotated 180o), nothing should change. For example if the

x1 coordinate direction is rotated 180o the v′1v
′
2 should remain the same, i.e. v′1v

′
2 =

−v′1v′2. This is possible only if v′1v
′
2 = 0. Hence, all shear stresses are zero in isotropic

turbulence. Using our knowledge in tensor notation, we know that an isotropic tensor

can be written as const. · δij . Hence, the Reynolds stress tensor for small scales can be

written as v′iv
′
j = const.δij which, again, shows us that the shear stresses are zero in

isotropic turbulence.

As discussed on p. 67, the concept of the cascade process assumes that the energy

extracted per unit time by the large turbulent eddies is transferred (per unit time) by

non-linear interactions through the inertial range to the dissipative range where the

kinetic energy is transformed (per unit time) to thermal energy (increased temperature).

The spectral transfer rate of kinetic energy from eddies of size 1/κ to slightly smaller

eddies can be estimated as follows. An eddy loses (part of) its kinetic energy during

one revolution. The kinetic energy of the eddy is proportional to v2κ and the time for

one revolution is proportional to ℓκ/vκ. Hence, the energy spectral transfer rate, εκ,

for an eddy of length scale 1/κ can be estimated as (see Fig. 5.2)

εκ ∼ v2κ
tκ

∼ v2κ
ℓκ
/
vκ

∼ v3κ
ℓκ

(5.14)

Kinetic energy is transferred per unit time to smaller and smaller eddies until the trans-

fer takes place by dissipation (i.e. increased temperature) at the Kolmogorov scales. In

the inertial subrange, the cascade process assumes that εκ = ε. Applying Eq. 5.14 for

the large energy-containing eddies gives

ε0 ∼ v20
ℓ0
/
v0

∼ v30
ℓ0

∼ εκ = ε (5.15)

The dissipation at small scales (large wavenumbers) is determined by how much energy

per unit time enters the cascade process at the large scales (small wavenumbers). We
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generation x1 x2 x3

1st 1 0 0

2nd 0 1 1

3rd 2 1 1

4th 2 3 3

5th 6 5 5

6th 10 11 11

7th 22 21 21

Table 5.1: Number of eddies at each generation with their axis aligned in the x1, x2 or

x3 direction, see Fig. 5.3.

can now estimate the ratio between the large eddies (with v0 and ℓ0) to the Kolmogorov

eddies (vη and ℓη). Equations 5.5 and 5.15 give

v0
vη

= (νε)−1/4v0 =
(
νv30/ℓ0

)−1/4
v0 = (v0ℓ0/ν)

1/4
= Re1/4

ℓ0
ℓη

=

(
ν3

ε

)−1/4

ℓ0 =

(
ν3ℓ0
v30

)−1/4

ℓ0 =

(
ν3

v30ℓ
3
0

)−1/4

= Re3/4

τo
τη

=

(
νℓ0
v30

)−1/2

τ0 =

(
v30
νℓ0

)1/2
ℓ0
v0

=

(
v0ℓ0
ν

)1/2

= Re1/2

(5.16)

whereRe = v0ℓ0/ν. We find that the ratio of the velocity, length and time scales of the

energy-containing eddies to the Kolmogorov eddies increases with increasing Reynolds

number. This means that the eddy range (wavenumber range) of the intermediate region

(region II, the inertial region) increases with increasing Reynolds number. Hence, the

larger the Reynolds number, the larger the wavenumber range of the intermediate range

where the eddies are independent of both the large scales and the viscosity. or in other

words: the large the Reynolds number, the larger the difference between the largest

and the smallest scales. This is the very reason why it is so expensive (in terms of

computer power) to solve the Navier-Stokes equations. With a computational grid we

must resolve all eddies. Hence, as the Reynolds number increases, the number of grid

cells increases rapidly, see Eq. 28.1.

5.4 The cascade process created by vorticity

The interaction between vorticity and velocity gradients is an essential ingredient to

create and maintain turbulence. Disturbances are amplified by interaction between the

vorticity vector and the velocity gradients; the disturbances are turned into chaotic,

three-dimensional fluctuations, i.e. into turbulence. Two idealized phenomena in this

interaction process can be identified: vortex stretching and vortex tilting.

The equation for the instantaneous vorticity (ωi = ω̄i + ω′
i) reads (see Eq. 4.20)

∂ωi

∂t
+ vj

∂ωi

∂xj
= ωj

∂vi
∂xj

+ ν
∂2ωi

∂xj∂xj

ωi = ǫijk
∂vk
∂xj

(5.17)
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Figure 5.3: Family tree of turbulent eddies (see also Table 5.1). Five generations. The

large original eddy, with axis aligned in the x1 direction, is 1st generation. Adapted

from [14]

As we learnt in Section 4.2 this equation is not an ordinary convection-diffusion equa-

tion: it has an additional term on the right side which represents amplification and

rotation/tilting of the vorticity lines (the first term on the right side). The i = j compo-

nents of this term represent (see Eq. 4.21) vortex stretching. A positive ∂v′1/∂x1 will Vortex

stretchingstretch the cylinder, see Fig. 4.2 and from the requirement that the volume must not

change (incompressible continuity equation) we find that the radius of the cylinder will

decrease. We have neglected the viscosity since viscous diffusion at high Reynolds

number is much smaller than the turbulent one and since viscous dissipation occurs at

small scales (see p. 67). Thus we can assume that there are no viscous stresses acting

on the cylindrical fluid element surface which means that the angular momentum

r2ω′

1 = const. (5.18)

remains constant as the radius of the fluid element decreases. Note that also the cir-

culation, Γ – which is the integral of the tangential velocity round the perimeter, see

Eq. 1.23 – is constant. Equation 5.18 shows that the vorticity increases if the radius

decreases (and vice versa). As was mentioned above, the continuity equation shows

that stretching results in a decrease of the radius of a slender fluid element and an in-

crease of the vorticity component (i.e. the tangential velocity component) aligned with

the element. For example, an extension of a fluid element in one direction (x1 direc-

tion) decreases the length scales in the x2 direction and increases ω′
1, see Fig. 5.4. At

the same time, vortex tilting creates small-scale vorticity in the x2 and x3 direction,

ω′
2 and ω′

3. The increased ω′
1 means that the velocity fluctuation in the x2 direction

is increased, see Fig. 5.5. The increased v′2 velocity component will stretch smaller
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Figure 5.4: A fluid element is stretched by
∂v′1
∂x1

> 0. Its radius decreases (from dashed

line to solid line).

fluid elements aligned in the x2 direction, see Fig. 5.5. This will increase their vortic-

ity ω′
2 and decrease their radius. In the same way will the increased ω′

1 also stretch a

fluid element aligned in the x3 direction and increase ω′
3 and decrease its radius. At

each stage, the length scale of the eddies – whose velocity scale are increased – de-

creases. Figure 5.3 illustrates how a large eddy whose axis is oriented in the x1 axis

in a few generations creates – through vortex stretching – smaller and smaller eddies

with larger and larger velocity gradients. Here a generation is related to a wavenumber

in the energy spectrum (Fig. 5.2); young generations correspond to high wavenumbers.

The smaller the eddies, the less the original orientation of the large eddy is recalled.

In other words, the small eddies “don’t remember” the characteristics of their original

ancestor. The small eddies have no preferred direction. They are isotropic. The cre-

ation of multiple eddies by vortex stretching from one original eddies is illustrated in

Fig. 5.3 and Table 5.1. The large original eddy (1st generation) is aligned in the x1
direction. It creates eddies in the x2 and x3 direction (2nd generation); the eddies in

the x2 direction create new eddies in the x1 and x3 (3rd generation) and so on. For

each generation the eddies become more and more isotropic as they get smaller.

The i 6= j components in the first term on the right side in Eq. 4.21 represent vortex Vortex

tiltingtilting. Again, take a slender fluid element, now with its axis aligned with the x2 axis,

Fig. 4.3. The velocity gradient ∂v1/∂x2 (or ∂v′1/∂x2, which is equivalent) will tilt the

fluid element so that it rotates in the clock-wise direction. As a result, the second term

ω2∂v1/∂x2 in line one in Eq. 4.21 gives a contribution to ω1 (and ω′
1). This shows

how vorticity in one direction is transferred to the other two directions through vortex

tilting.

Vortex stretching and vortex tilting qualitatively explain how interaction between

vorticity and velocity gradient create vorticity in all three coordinate directions from

a disturbance which initially was well defined in one coordinate direction. Once this

process has started it continues, because vorticity generated by vortex stretching and

vortex tilting interacts with the velocity field and creates further vorticity and so on.

The vorticity and velocity field becomes chaotic and three-dimensional: turbulence has

been created. The turbulence is also maintained by these processes.

From the discussion above we can now understand why turbulence always must be

three-dimensional (Item IV on p. 66). If the instantaneous flow is two-dimensional

(x1 − x2 plane) we find that the vortex-stretching/tilting term on the right side of

Eq. 5.17 vanishes because the vorticity vector and the velocity vector are orthogonal.
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Figure 5.5: The rotation rate of the fluid element (black circles) in Fig. 5.4 increases

and its radius decreases. This creates a positive
∂v′3
∂x3

> 0 which stretches the small red

fluid element aligned in the x3 direction and increases ω′
3. The radius of the red fluid

element decreases.

The only non-zero component of vorticity vector is ω3 because

ω1 =
∂v3
∂x2

− ∂v2
∂x3

≡ 0

ω2 =
∂v1
∂x3

− ∂v3
∂x1

≡ 0.

Since v3 = 0, we get ωj∂vi/∂xj = 0.
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6 Turbulent mean flow

6.1 Time averaged Navier-Stokes

W
HEN the flow is turbulent it is preferable to decompose the instantaneous vari-

ables (for example the velocity components and the pressure) into a mean value

and a fluctuating value, i.e.

vi = v̄i + v′i

p = p̄+ p′
(6.1)

where the bar, ·̄, denotes the time averaged value defined as

v̄ =
1

2T

∫ T

−T

vdt. (6.2)

where T is sufficiently large. When we time average Eq. 6.1 we get

v̄i = v̄i + v′i = v̄i + v′i (6.3)

where we used the fact that v̄i = v̄i, see Section 8.1.4. Hence, Eq. 6.3 gives

v′i = 0, p′ = 0 (6.4)

One reason why we decompose the variables is that when we measure flow quan-

tities we are usually interested in their mean values rather than their time histories.

Another reason is that when we want to solve the Navier-Stokes equation numerically

it would require a very fine grid to resolve all turbulent scales and it would also require

a fine resolution in time (turbulent flow is always unsteady).

The continuity equation and the Navier-Stokes equation for incompressible flow

with constant viscosity read

∂vi
∂xi

= 0 (6.5)

ρ
∂vi
∂t

+ ρ
∂vivj
∂xj

= − ∂p

∂xi
+ µ

∂2vi
∂xj∂xj

(6.6)

The gravitation term, −ρgi, has been omitted which means that the p is the hydro-

dynamic pressure (i.e. when vi ≡ 0, then p ≡ 0, see p. 35). Inserting Eq. 6.1 into the

continuity equation (6.5)

∂v̄i + v′i
∂xi

=
∂v̄i
∂xi

+
∂v′i
∂xi

=
∂v̄i
∂xi

=
∂v̄i
∂xi

(6.7)

where we used the fact that v′i = 0 (see Eq. 6.4 and v̄i = v̄i, see section 8.1.4).

Next, we use the decomposition in Navier-Stokes equation (Eq. 6.6)

ρ
∂(v̄i + v′i)

∂t
I

+ ρ
∂(v̄i + v′i)(v̄j + v′j)

∂xj
II

= − ∂(p̄+ p′)

∂xi
III

+µ
∂2(v̄i + v′i)

∂xj∂xj
IV

(6.8)

Let’s consider the equation term-by-term.
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Term I:
∂(v̄i + v′i)

∂t
=
∂v̄i
∂t

+
∂v′i
∂t

=
∂v̄i
∂t

=
∂v̄i
∂t

We assume that the mean flow, v̄i, is steady, and hence the term is zero.

Term II:

∂(v̄i + v′i)(v̄j + v′j)

∂xj
=
∂v̄iv̄j + v̄iv′j + v′iv̄j + v′iv

′
j

∂xj

=
∂v̄iv̄j
∂xj

+
∂v̄iv′j
∂xj

+
∂v′iv̄j
∂xj

+
∂v′iv

′
j

∂xj

• Section 8.1.4 shows that v̄iv̄j = v̄iv̄j .

• Section 8.1.3 shows that v̄iv′j = v̄iv′j = 0 and v̄jv′i = v̄jv′i = 0

Hence, Term II reads

∂v̄iv̄j
∂xj

+
∂v′iv

′
j

∂xj

Term III:
∂(p̄+ p′)

∂xi
=

∂p̄

∂xi
+
∂p′

∂xi
=

∂p̄

∂xi

Term IV:
∂2(v̄i + v′i)

∂xj∂xj
=

∂2v̄i
∂xj∂xj

+
∂2v′i

∂xj∂xj
=

∂2v̄i
∂xj∂xj

Now we van finally write the time averaged continuity equation and Navier-Stokes

equation

∂v̄i
∂xi

= 0 (6.9)

ρ
∂v̄iv̄j
∂xj

= − ∂p̄

∂xi
+

∂

∂xj

(
µ
∂v̄i
∂xj

− ρv′iv
′
j

)
(6.10)

It is assumed that the mean flow is steady. This equation is the time-averaged

Navier-Stokes equation and it is often called the Reynolds equation. A new term ρv′iv
′
j Reynolds

equationsappears on the right side of Eq. 6.10 which is called the Reynolds stress tensor. The

tensor is symmetric (for example v′1v
′
2 = v′2v

′
1). It represents correlations between

fluctuating velocities. It is an additional stress term due to turbulence (fluctuating ve-

locities) and it is unknown. We need a model for v′iv
′
j to close the equation system in

Eq. 6.10. This is called the closure problem: the number of unknowns (ten: three ve- closure

problemlocity components, pressure, six stresses) is larger than the number of equations (four:

the continuity equation and three components of the Navier-Stokes equations).

The continuity equation applies both for the instantaneous velocity, vi (Eq. 6.5),

and for the time-averaged velocity, v̄i (Eq. 6.9); hence it applies also for the fluctuating

velocity, v′i, i.e.
∂v′i
∂xi

= 0 (6.11)
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x1
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2δ

xA2

v̄1(x2)

Figure 6.1: Flow between two infinite parallel plates. The width (i.e. length in the x3
direction) of the plates, Zmax, is much larger that the separation between the plates,

i.e. Zmax ≫ δ.

6.1.1 Boundary-layer approximation

For boundary-layer type of flow (i.e. boundary layers along a flat plate, channel flow,

pipe flow, jet and wake flow, etc.) the following relations apply

v̄2 ≪ v̄1,
∂v̄1
∂x1

≪ ∂v̄1
∂x2

, (6.12)

Assume steady (∂/∂t = 0), two-dimensional (v̄3 = ∂/∂x3 = 0) boundary-layer flow.

First we re-write the left side of Eq. 6.10 using the continuity equation

ρ
∂v̄iv̄j
∂xj

= ρv̄j
∂v̄i
∂xj

+ ρv̄i
∂v̄j
∂xj

=0

= ρv̄j
∂v̄i
∂xj

(6.13)

Using Eq. 6.13, Eq. 6.10 can be written

ρv̄1
∂v̄1
∂x1

+ ρv̄2
∂v̄1
∂x2

= − ∂p̄

∂x1
+

∂

∂x2

[
µ
∂v̄1
∂x2

− ρv′1v
′
2

]

τ12,tot

(6.14)

x1 and x2 denote the streamwise and wall-normal coordinate, respectively, see Fig. 6.1.

Note that the two terms on the left side are of the same order, because they both include

the product of one large (v̄1 or ∂/∂x2) and one small (v̄2 or ∂/∂x1) part.

In addition to the viscous shear stress, µ∂v̄1/∂x2, an additional turbulent one – a shear

stressReynolds shear stress – appears on the right side of Eq. 6.14. The total shear stress is

thus

τ12,tot = µ
∂v̄1
∂x2

− ρv′1v
′
2 (6.15)

6.2 Wall region in fully developed channel flow

The region near the wall is very important. Here the velocity gradient is largest as

the velocity drops down to zero at the wall over a very short distance. One important

quantity is the wall shear stress which is defined as

τw = µ
∂v̄1
∂x2

∣∣∣∣
w

(6.16)
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From the wall shear stress, we can define a wall friction velocity, uτ , as wall

friction

velocity
τw = ρu2τ ⇒ uτ =

(
τw
ρ

)1/2

(6.17)

In order to take a closer look at the near-wall region, let us, again, consider fully

developed channel flow between two infinite plates, see Fig. 6.1. In fully developed

channel flow, the streamwise derivative of the streamwise velocity component is zero

(this is the definition of fully developed flow), i.e. ∂v̄1/∂x1 = 0. The continuity

equation gives now v̄2 = 0, see Eq. 3.18 at p. 35. The first term on the left side of

Eq. 6.14 is zero because we have fully developed flow (∂v̄1/∂x1 = 0) and the last term

is zero because v̄2 ≡ 0. The streamwise momentum equation, Eq. 6.14, can now be

written

0 = − ∂p̄

∂x1
+

∂

∂x2

(
µ
∂v̄1
∂x2

− ρv′1v
′
2

)
(6.18)

We know that the first term is a function only of x1 and the two terms in parenthesis

are functions of x2 only; hence they must be constant (see Eq. 3.24 and the text related

to this equation), i.e.

− ∂p̄

∂x1
= constant

∂

∂x2

(
µ
∂v̄1
∂x2

− ρv′1v
′
2

)
=
∂τ12,tot
∂x2

= constant

(6.19)

where the total stress, τ12,tot, is given by Eq. 6.15. Integrating Eq. 6.18 from x2 = 0
to x2 gives

τ12,tot(x2)− τw =
∂p̄

∂x1
x2 ⇒ τ12,tot = τw +

∂p̄

∂x1
x2 = τw

(
1− x2

δ

)
(6.20)

At the last step we used the fact that the pressure gradient balances the wall shear stress,

i.e. −∂p̄/∂x1 = τw/δ, see Eq. 3.30 (note that h = 2δ) and Eq. 6.37.

The wall region can be divided into one outer and one inner region, see Fig. 6.2.

The inner region includes the viscous region, x+2 . 5 (dominated by the viscous diffu-

sion), and the logarithmic region, x+2 & 30 (dominated by turbulent diffusion); the log-

arithmic region is sometimes called the inertial region, because the turbulent stresses

stem from the inertial (i.e. the non-linear convection) term. The buffer region acts as a

transition region between these two regions where viscous diffusion of streamwise mo-

mentum is gradually replaced by turbulent diffusion. In the inner region, the total shear

stress is approximately constant and equal to the wall shear stress τw, see Fig. 6.3.

Note that the total shear stress is constant only close to the wall (Fig. 6.3b); further

away from the wall it decreases (in fully developed channel flow it decreases linearly

with the distance from the wall, see Eq. 6.20 and Fig. 6.3a). The Reynolds shear stress

vanishes at the wall because v′1 = v′2 = 0, and the viscous shear stress attains its

wall-stress value τw = ρu2τ . As we go away from the wall the viscous stress decreases

and the turbulent one increases and at x+2 ≃ 11 they are approximately equal. In the

logarithmic layer the viscous stress is negligible compared to the Reynolds stress.

At the wall, the velocity gradient is directly related to the wall shear stress, i.e. (see

Eq. 6.16 and 6.17)
∂v̄1
∂x2

∣∣∣∣
w

=
τw
µ

=
ρ

µ
u2τ =

1

ν
u2τ (6.21)
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Figure 6.2: The wall region (adapted from Ch.7 in [12]) for Reτ = 10 000. δ denotes

half width of the channel, see Fig. 6.1 and x+2 = x2uτ/ν denotes the normalized wall

distance.

Integration gives (recall that both ν and u2τ are constant)

v̄1 =
1

ν
u2τx2 + C1

Since the velocity, v̄1, is zero at the wall, the integration constant C1 = 0 so that

v̄1
uτ

=
uτx2
ν

(6.22)

Equation 6.22 is expressed in inner scaling (or wall scaling) which means that v̄1 and

x2 are normalized with quantities related to the wall, i.e. the friction velocity stemming

from the wall shear stress and the viscosity (here we regard viscosity as a quantity

related to the wall, since the flow is dominated by viscosity). Often the plus-sign (‘+ ‘)
is used to denote inner scaling and equation Eq. 6.22 can then be written

v̄+1 = x+2 (6.23)

From the friction velocity and the viscosity we can define the viscous length scale, ℓν ,

for the near-wall region as

x+2 = x2/ℓν ⇒ ℓν =
ν

uτ
(6.24)

Further away from the wall at 30 . x+2 . 3000 (or 0.003 . x2/δ . 0.3), we

encounter the log-law region, see Fig. 6.2. In this region the flow is assumed to be

independent of viscosity. The Reynolds shear stress, ρv′1v
′
2, is in the region x+2 . 200

(i.e. x2/δ . 0.1) fairly constant and approximately equal to τw, see Fig. 6.3b. Hence

the friction velocity, uτ , is a suitable velocity scale in the inner logarithmic region; it

is used in the entire region.

What about the length scale? Near the wall, an eddy cannot be larger than the

distance to the wall and it is the distance to the wall that sets an upper limit on the



6.2. Wall region in fully developed channel flow 81

a)
0 0.2 0.4 0.6 0.8 1

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x
+ 2

x
2
/
δ

b)
0.2 0.4 0.6 0.8 1

0

100

200

0.2 0.4 0.6 0.8 1
0

0.05

0.1

x
+ 2

x
2
/
δ

Figure 6.3: Reynolds shear stress. Reτ = 2000. a) lower half of the channel; b) zoom

near the wall. DNS (Direct Numerical Simulation) data [15, 16]. : −ρv′1v′2/τw;

: µ(∂v̄1/∂x2)/τw.
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Figure 6.4: Velocity profiles in fully developed channel flow. Reτ = 2000. : DNS

(Direct Numerical Simulation) data [15,16]; : v̄1/uτ = (ln x+2 )/0.41+5.2; :

v̄1/uτ = x+2 .

eddy-size. Hence it seems reasonable to take the wall distance as the characteristic

length scale; a constant, κ, is added so that

ℓ = κx2. (6.25)

The velocity gradient can now be estimated as

∂v̄1
∂x2

=
uτ
κx2

(6.26)

based on the velocity scale, uτ , and the length scale κx2. Another way of deriving the

expression in Eq. 6.26 is to use the Boussinesq assumption (see Eq. 11.33) in which a

turbulent Reynolds stress is assumed to be equal to the product between the turbulent

viscosity and the velocity gradient as

− v′1v
′
2 = νt

∂v̄1
∂x2

(6.27)

The turbulent viscosity, νt, represents the turbulence and has the same dimension as ν,

i.e. [m2/s]. Hence νt can be expressed as a product of a turbulent velocity scale and a

turbulent length scale, and in the log-law region that gives

νt = uτκx2 (6.28)
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Figure 6.5: Symmetry plane of channel flow.

so that Eq. 6.27 gives (inserting −v′1v′2 = u2τ )

u2τ = κuτx2
∂v̄1
∂x2

⇒ ∂v̄1
∂x2

=
uτ
κx2

(6.29)

In non-dimensional form Eqs. 6.26 and 6.29 read

∂v̄+1
∂x+2

=
1

κx+2
(6.30)

Integration gives now

v̄+1 =
1

κ
ln
(
x+2
)
+B or

v̄1
uτ

=
1

κ
ln
(x2uτ

ν

)
+B

(6.31)

where B is an integration constant. Equation 6.31 is the logarithmic law due to von log-law

Kármán [17]. The constant, κ, is called the von Kármán constant. The constants in the

log-law are usually set to κ = 0.41 and B = 5.2.

As can be seen in Fig. 6.2 the log-law applies for x+2 . 3000 (x2/δ . 0.3).

Figure 6.4 – where the Reynolds number is lower than in Fig. 6.2 – shows that the log-

law fit the DNS (Direct Numerical Simulation) up to x+2 . 500 (x2/δ . 0.25). Hence,

the upper limit for the validity of the log-law is dependent on Reynolds number; the

larger the Reynolds number, the larger the upper limit.

In the outer region of the boundary layer, the relevant length scale is the boundary

layer thickness. The resulting velocity law is the defect law

v̄1,c − v̄1
uτ

= FD

(x2
δ

)
(6.32)

where c denotes centerline. The velocity in the log-region and the outer region (often

called the wake region) can be written as

v̄1
uτ

=
1

κ
ln(y+) +B +

2Π

κ
sin2

(πx2
2δ

)
(6.33)

where κ = 0.38, B = 4.1 and Π = 0.5 are taken from boundary layer flow [18–20].
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Figure 6.6: Fully developed channel flow. Reτ = 2000. Forces in the v̄1 equation,

see Eq. 6.18. a) near the lower wall of the channel; b) lower half of the channel ex-

cluding the near-wall region. DNS (Direct Numerical Simulation) data [15, 16]. :

−ρ(∂v′1v′2/∂x2)/τw; : µ(∂2v̄1/∂x
2
2)/τw; : −(∂p̄/∂x1)/τw.

6.3 Reynolds stresses in fully developed channel flow

The flow is two-dimensional (v̄3 = 0 and ∂/∂x3 = 0). Consider the x2 − x3 plane,

see Fig. 6.5. Since nothing changes in the x3 direction, the viscous shear stress

τ32 = µ

(
∂v̄3
∂x2

+
∂v̄2
∂x3

)
= 0 (6.34)

because v̄3 = ∂v̄2/∂x3 = 0. The turbulent part shear stress, ρv′2v
′
3, can be expressed

using the Boussinesq assumption (see Eq. 11.33)

− ρv′2v
′
3 = µt

(
∂v̄3
∂x2

+
∂v̄2
∂x3

)
= 0 (6.35)

and it is also zero since v̄3 = ∂v̄2/∂x3 = 0. With the same argument, v′1v
′
3 = 0.

However note that v′23 = v23 6= 0. The reason is that although the time-averaged flow

is two-dimensional (i.e. v̄3 = 0), the instantaneous turbulent flow is always three-

dimensional and unsteady. Hence v3 6= 0 and v′3 6= 0 so that v′23 6= 0. Consider, for

example, the time series v3 = v′3 = (−0.25, 0.125, 0.125,−0.2, 0.2). This gives

v̄3 = (−0.25 + 0.125 + 0.125− 0.2 + 0.2)/5 = 0

but

v′23 = v23 =
[
(−0.25)2 + 0.1252 + 0.1252 + (−0.2)2 + 0.22

]
/5 = 0.03475 6= 0.

Figure 6.3 presents the Reynolds and the viscous shear stresses for fully developed

flow. As can be seen, the viscous shear stress is negligible except very near the wall. It

is equal to one near the wall and decreases rapidly for increasing wall distance. On the

other hand, the Reynolds shear stress is zero at the wall (because the fluctuating veloc-

ities are zero at the wall) and increases for increasing wall distance. The intersection

of the two shear stresses takes place at x+2 ≃ 11.

Looking at Eq. 6.18 we find that it is not really the shear stress that is interesting,

but its gradient. The gradient of the shear stress, −∂(ρv′1v′2)/∂x2 and µ∂2v̄1/∂x
2
2

represent, together with the pressure gradient, −∂p̄/∂x1, the forces acting on the fluid.
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Figure 6.7: Forces in a boundary layer. The red (dashed line) and the blue (solid line)

fluid particle are located at x+2 ≃ 400 and x+2 ≃ 20, respectively (see Fig. 6.6).

Figure 6.6 presents the forces. Start by looking at Fig. 6.6b which shows the forces

in the region away from the wall, see the red fluid particle in Fig. 6.7. The pressure

gradient is constant and equal to one: this is the force driving the flow. This agrees

– fortunately – with our intuition. We can imagine that the fluid (air, for example) is

driven by a fan. Another way to describe the behaviour of the pressure is to say that

there is a pressure drop. The pressure must decrease in the streamwise direction so that

the pressure gradient term, −∂p̄/∂x1, in Eq. 6.18 takes a positive value which pushes

the flow in the x1 direction. The force that balances the pressure gradient is the gradient

of the Reynolds shear stress. This is the force opposing the movement of the fluid. This

opposing force has its origin at the walls due to the viscous wall force (viscous shear

stress multiplied by area).

Now let’s have a look at the forces in the near-wall region, see Fig. 6.6a. Here the

forces are two orders of magnitude larger than in Fig. 6.6b but they act over a very thin

region (x+2 ≤ 40 or x2/δ < 0.02). In this region the Reynolds shear stress gradient

term is driving the flow and the opposing force is the viscous force, see the blue fluid

particle in Fig. 6.7. We can of course make a force balance for a section of the channel,

as we did for laminar flow, see Eq. 3.36 at p. 37 and Fig. 3.8 at p. 37 which reads

0 = p̄1Zmax2δ − p̄2Zmax2δ − 2τwLZmax (6.36)

where L is the length of the section. We get

∆p̄

L
= − ∂p̄

∂x1
=
τw
δ

(6.37)

As can be seen the pressure drop is directly related to the wall shear stress. In turbulent

flow the velocity profile in the center region is much flatter than in laminar flow (cf.

Fig. 6.4 and Fig. 3.7 at p. 36). This makes the velocity gradient near the wall (and

the wall shear stress, τw) much larger in turbulent flow than in laminar flow: Eq. 6.37
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Figure 6.8: Normal Reynolds stresses and turbulent kinetic energy. Reτ = 2000. DNS

(Direct Numerical Simulation) data [15, 16]. : ρv′21 /τw; : ρv′22 /τw; :

ρv′23 /τw; ◦: k/u2τ .
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Figure 6.9: Velocity profiles in a boundary layer along a flat plate. : DNS (Direct

Numerical Simulation) data [21]; : v̄2/uτ = (lnx+2 )/0.41 + 5.2; : v̄2/uτ =
x+2 .

shows why the pressure drop is larger in the former case compared to the latter; or —

in other words – why a larger fan is required to push the flow in turbulent flow than in

laminar flow.

Figure 6.8 presents the normal Reynolds stresses, ρv′21 , ρv′22 and ρv′23 . As can

be seen, the streamwise stress is largest and the wall-normal stress is smallest. The

former is largest because the mean flow is in this direction; the latter is smallest because

the turbulent fluctuations are dampened by the wall. The turbulent kinetic energy,

k = v′iv
′
i/2, is also included. Note that this is smaller than v′21 .

6.4 Boundary layer

Up to now we have mainly discussed fully developed channel flow. What is the dif-

ference between that flow and a boundary layer flow? First, in a boundary layer flow

the convective terms are not zero (or negligible), i.e. the left side of Eq. 6.14 is not

zero. The flow in a boundary layer is continuously developing, i.e. its thickness, δ,

increases continuously for increasing x1. The flow in a boundary layer is described by

Eq. 6.14. Second, in a boundary layer flow the wall shear stress is not determined by

the pressure drop (indeed it is zero); the total shear stress is balanced by the convective

terms. Third, the outer part of the boundary layer is highly intermittent, consisting of
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turbulent/non-turbulent motion.

However, the inner region of a boundary layer (x2/δ < 0.1) is principally the same

as for the fully developed channel flow, see Fig. 6.9: the linear and the log-law regions

are very similar for the two flows. However, in boundary layer flow the log-law is

valid only up to approximately x2/δ ≃ 0.1 (compared to approximately x2/δ ≃ 0.3 in

channel flow)
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(c) Point 3. vrms = 1.44.

Figure 7.1: Time history of v′. Horizontal red lines show ±vrms.

7 Probability density functions

S
OME statistical information is obtained by forming the mean and second moments,

for example v̄ and v′22 , as was done in Section 6. The root-mean-square (RMS) can root-mean-

square

RMS

be defined from the second moment as

vrms =
(
v′2
)1/2

(7.1)

The RMS is the same as the standard deviation which is equal to the square-root of the standard

deviationvariance. In order to extract more information, probability density function is a useful

variancestatistical tool to analyze turbulence. From the velocity signals we can compute the

probability densities (sometimes called histograms). With a probability density, fv, of

the v velocity, the mean velocity is computed as

v̄ =

∫ ∞

−∞

vfv(v)dv (7.2)

Normalize the probability functions, so that

∫ ∞

−∞

fv(v)dv = 1 (7.3)

Here we integrate over v. The mean velocity can of course also be computed by

integrating over time, as we do when we define a time average, (see Eq. 6.1 at p. 76),

i.e.

v̄ =
1

2T

∫ T

−T

vdt (7.4)

where T is “sufficiently” large.

Consider the probability density functions of the fluctuations. The second moment

corresponds to the variance of the fluctuations (or the square of the RMS, see Eq. 7.1),

i.e.

v′2 =

∫ ∞

−∞

v′2fv′(v′)dv′ (7.5)

As in Eq. 7.4, v′2 is usually computed by integrating in time, i.e.

v′2 =
1

2T

∫ T

−T

v′2(t)dt
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Figure 7.2: Probability density functions of time histories in Fig. 7.1. Vertical red

lines show ±vrms. The skewness, S, and the flatness, F , are given for the three time

histories.

A probability density function is symmetric if positive values are as frequent and

large as the negative values. Figure 7.1 presents the time history of the v′ history at

three different points in a flow (note that v′ = 0). The red horizontal lines indicate the

RMS value of v′. The resulting probability densities functions are shown in Fig. 7.2.

The red vertical lines show plus and minus RMS of v′. Let us analyze the data at the

three points.

Point 1. The time history of the velocity fluctuation (Fig. 7.1a) shows that there ex-

ists large positive values but no large negative values. The positive values are

often larger than +vrms (the peak is actually close to 8vrms) but the negative

values are seldom smaller than −vrms. This indicates that the distribution of v′

is skewed towards the positive side. This is confirmed in the PDF distribution,

see Fig. 7.2a.

Point 2. The fluctuations at this point are much smaller and the positive values are as

large the negative values; this means that the PDF should be symmetric which is

confirmed in Fig. 7.2b. The extreme values of v′ are approximately ±1.5vrms,

see Figs. 7.1b and 7.2b.

Point 3. At this point the time history (Fig. 7.1c) shows that the fluctuations are clus-

tered around zero and much values are within ±vrms. The time history shows

that the positive and the negative values have the same magnitude. The PDF

function in Fig. 7.2c confirms that there are many value around zero, that the ex-

treme value are small and that positive and negative values are equally frequent

(i.e. the PDF is symmetric).

In Fig. 7.2 we can judge whether the PDF is symmetric, but instead of “looking” at

the probability density functions, we should use a definition of the degree of symmetry,

which is the skewness. It is defined as skewness

v′3 =

∫ ∞

−∞

v′3fv′(v′)dv′

and is commonly normalized by v3rms, so that the skewness, Sv′ , of v′ is defined as

Sv′ =
1

v3rms

∫ ∞

−∞

v′3fv′(v′)dv′ =
1

2v3rmsT

∫ T

−T

v′3(t)dt
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Note that f must be normalized (see Eq. 7.3).

There is yet another statistical quantity which sometimes is used for describing

turbulent fluctuations, namely the flatness. The variance (the square of RMS) tells us flatness

how large the fluctuations are in average, but it does not tell us if the time history

includes few very large fluctuations or if all are rather close to vrms. The flatness gives

this information, and it is defined computed from v′4 and normalized by v4rms, i.e.

F =
1

v4rms

∫ ∞

−∞

v′4fv′(v)dv

The fluctuations at Point 1 (see Fig. 7.1a) includes some samples which are very large

and hence its flatness is large (see caption in Fig. 7.2a), whereas the fluctuation for

Point 3 all mostly clustered within ±2vrms giving a small flatness, see Fig. 7.1c and

the caption in Fig. 7.2c. For a Gaussian distribution

f(v′) =
1

vrms
exp

(
− (v′ − vrms)

2

2v2rms

)

for which F = 3.
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8 Transport equations for turbulent kinetic energy

I
N this section and Section 9 we will derive various transport equations. There are two

tricks which often will be used. Both tricks simply use the product rule for derivative

backwards.

Trick 1: Using the product rule we get

∂AiBj

∂xk
= Ai

∂Bj

∂xk
+Bj

∂Ai

∂xk
(8.1)

This expression can be re-written as

Ai
∂Bj

∂xk
=
∂AiBj

∂xk
−Bj

∂Ai

∂xk
(8.2)

and then we call it the “product rule backwards”.

Trick 2: Using the product rule we get

1

2

∂AiAi

∂xj
=

1

2

(
Ai
∂Ai

∂xj
+Ai

∂Ai

∂xj

)
= Ai

∂Ai

∂xj
(8.3)

This trick is usually used backwards, i.e.

Ai
∂Ai

∂xj
=

1

2

∂AiAi

∂xj
(8.4)

8.1 Rules for time averaging

8.1.1 What is the difference between v′1v
′
2 and v′1 v

′
2?

Using 6.2 we get

v′1v
′
2 =

1

2T

∫ T

−T

v′1v
′

2dt.

whereas

v′1 v
′
2 =

(
1

2T

∫ T

−T

v′1dt

)(
1

2T

∫ T

−T

v′1dt

)

We take a numerical example. Let the time series of v′1 and v′2 be

v′1 = [0.2,−0.3, 0.18,−0.08]

v′2 = [0.15,−0.25, 0.04, 0.06]

v′1 =
1

N

N∑

n=1

v′1,n = (0.2− 0.3 + 0.18− 0.08)/4 = 0

v′2 =
1

N

N∑

n=1

v′2,n = (0.15− 0.25 + 0.04 + 0.06)/4 = 0

so that

v′1 v
′
2 =

(
1

N

N∑

n=1

v′1,n

)(
1

N

N∑

n=1

v′2,n

)
= 0 · 0 = 0
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However, the time average of their product is not zero, i.e.

v′1v
′
2 =

1

N

N∑

n=1

v′1,nv
′

2,n = (0.2·0.15+0.3·0.25+0.18·0.04−0.08·0.06)/4 = 0.02685

8.1.2 What is the difference between v′21 and v′1
2
?

Using 6.2 we get

v′21 =
1

2T

∫ T

−T

v′2dt.

whereas

v′1
2
=

(
1

2T

∫ T

−T

v′dt

)2

.

The numerical example gives

v′21 =
1

N

N∑

n=1

v′21,n = (0.22 + 0.32 + 0.182 + 0.082)/4 = 0.0422

v′22 =
1

N

N∑

n=1

v′22,n = (0.152 + 0.252 + 0.042 + 0.062)/4 = 0.02255

but

v′1
2
=

(
1

N

N∑

n=1

v′1,n

)2

= [(0.2− 0.3 + 0.18− 0.08)/4]
2
= 0

v′2
2
=

(
1

N

N∑

n=1

v′2,n

)2

= [(0.15− 0.25 + 0.04 + 0.06)/4]
2
= 0

8.1.3 Show that v̄1v′21 = v̄1v′21

Using 6.2 we get

v̄1v′21 =
1

2T

∫ T

−T

v̄1v
′2
1 dt

and since v̄ does not depend on t we can take it out of the integral as

v̄1
1

2T

∫ T

−T

v′21 dt = v̄1v′21

Now let’s do it with numerical values. Assume that v̄1 = 10.

v̄1v′21 =
1

N

N∑

n=1

(
1

N

N∑

m=1

v1,m

)
v′21,n =

= (10 · 0.22 + 10 · 0.32 + 10 · 0.182 + 10 · 0.082)/4 = 0.422

v̄1v′21 =

(
1

N

N∑

n=1

v1,n

)(
1

N

N∑

n=1

v′21,n

)
=

=
[
10 · (0.22 + 0.32 + 0.182 + 0.082)/4

]
= 0.422
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8.1.4 Show that v̄1 = v̄1

Using 6.2 we get

v̄1 =
1

2T

∫ T

−T

v̄1dt

and since v̄ does not depend on t we can take it out of the integral as

v̄1
1

2T

∫ T

−T

dt = v̄1
1

2T
2T = v̄1

With numerical values we get

v̄1 =
1

N

N∑

n=1

= (10 + 10 + 10 + 10)/4 = 10 = v̄1

8.2 The Exact k Equation

The equation for turbulent kinetic energy, k = 1
2v

′
iv

′
i, is derived from the Navier-Stokes

equation. Again, we assume incompressible flow (constant density) and constant vis-

cosity (cf. Eq. 6.6). We subtract Eq. 6.10 from Eq. 6.6 and divide by density, multiply

by v′i and time average which gives

v′i
∂

∂xj
[vivj − v̄iv̄j ] =

−1

ρ
v′i

∂

∂xi
[p− p̄] + νv′i

∂2

∂xj∂xj
[vi − v̄i] +

∂v′iv
′
j

∂xj
v′i

(8.5)

Using vj = v̄j + v′j , the left side can be rewritten as

v′i
∂

∂xj

[
(v̄i + v′i)(v̄j + v′j)− v̄iv̄j

]
= v′i

∂

∂xj

[
v̄iv′j + v′iv̄j + v′iv

′
j

]
. (8.6)

Using the continuity equation ∂v′j/∂xj = 0 (see Eq. 6.11), the first term is rewritten as

v′i
∂

∂xj

(
v̄iv′j

)
= v′iv

′
j

∂v̄i
∂xj

. (8.7)

For the second term in Eq. 8.6 we start using ∂v̄j/∂xj = 0

v′i
∂

∂xj
(v′iv̄j) = v̄jv′i

∂v′i
∂xj

(8.8)

Next, we use Trick 2

v̄j

(
v′i
∂v′i
∂xj

)
= v̄j

∂

∂xj

(
1

2
v′iv

′
i

)
= v̄j

∂

∂xj
(k) =

∂

∂xj
(v̄jk) (8.9)

The third term in Eq. 8.6 can be written as (replace v̄j by v′j and use the same technique

as in Eq. 8.9)

1

2

∂

∂xj

(
v′jv

′
iv

′
i

)
. (8.10)
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The first term on the right side of Eq. 8.5 is re-written using Trick 1

−1

ρ
v′i
∂p′

∂xi
= −1

ρ

∂p′v′i
∂xi

+
1

ρ
p′
∂v′i
∂xi

= −1

ρ

∂p′v′i
∂xi

(8.11)

where the continuity equation was used at the last step. The second term on the right

side of Eq. 8.5 can be written

νv′i
∂2v′i
∂xj∂xj

= νv′i
∂

∂x2

(
∂v′i
∂xj

)
= ν

∂

∂xj

(
v′i
∂v′i
∂xj

)
− ν

∂v′i
∂xj

∂v′i
∂xj

(8.12)

applying Trick 1 (A = v′i and B = ∂v′i/∂xj). For the first term in Eq. 8.12 we use the

same trick as in Eq. 8.9 so that

ν
∂

∂xj

(
v′i
∂v′i
∂xj

)
= ν

∂

∂xj

(
1

2

(
v′i
∂v′i
∂xj

+ v′i
∂v′i
∂xj

))
=

ν
∂

∂xj

(
1

2

(
∂v′iv

′
i

∂xj

))
= ν

1

2

∂2v′iv
′
i

∂xj∂xj
= ν

∂2k

∂xj∂xj

(8.13)

The last term on the right side of Eq. 8.5 is zero because it is time averaging of a

fluctuation, i.e. āb′ = āb̄′ = 0. Now we can assemble the transport equation for the

turbulent kinetic energy. Equations 8.7, 8.9, 8.11, 8.12 and 8.13 give

∂v̄jk

∂xj
I

= −v′iv′j
∂v̄i
∂xj

II

− ∂

∂xj

[
1

ρ
v′jp

′ +
1

2
v′jv

′
iv

′
i − ν

∂k

∂xj

]

III

− ν
∂v′i
∂xj

∂v′i
∂xj

IV

(8.14)

The terms in Eq. 8.14 have the following meaning.

I Convection.

II Production, P k. The large turbulent scales extract energy from the mean flow.

This term (including the minus sign) is almost always positive. It is largest for

the energy-containing eddies, i.e. for small wavenumbers, see Fig. 5.2. This term

originates from the convection term (the first term on the right side of Eq. 8.6).

It can be noted that the production term is an acceleration term, v′j∂v̄i/∂xj , mul-

tiplied by a fluctuating velocity, v′i, i.e. the product of an inertial force per unit

mass (acceleration) and a fluctuating velocity. A force multiplied with a velocity

corresponds to work per unit time. When the acceleration term and the fluctuating

velocity are in opposite directions (i.e. when P k > 0), the mean flow performs

work on the fluctuating velocity field. When the production term is negative, it

means that the fluctuations are doing work on the mean flow field. In this case, v′j
and the acceleration term, v′j∂v̄i/∂xj , have the same sign.

III The two first terms represent turbulent diffusion by pressure-velocity fluctua-

tions, and velocity fluctuations, respectively. The last term is viscous diffusion.

The velocity-fluctuation term originates from the convection term (the last term

on the right side of Eq. 8.6).

IV Dissipation, ε. This term is responsible for transformation of kinetic energy at

small scales to thermal energy. The term (excluding the minus sign) is always
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Figure 8.1: The size of the largest eddies (dashed lines) for different velocity profiles.

positive (it consists of velocity gradients squared). It is largest for large wavenum-

bers, see Fig. 5.2. The dissipation term stems from the viscous term (see Eq. 8.12)

in the Navier-Stokes equation. It can be written as v′i∂τ
′
ij/∂xj , see Eq. 4.1. The

divergence of τ ′ij is a force vector (per unit mass), i.e. T ′
i = ∂τ ′ij/∂xj . The

dissipation term can now be written v′iT
′
i , which is a scalar product between two

vectors. When the viscous stress vector is in the opposite direction to the fluctuat-

ing velocity, the term is negative (i.e. it is dissipative); this means that the viscose

stress vector performs work and transforms kinetic energy into internal energy.

The transport equation for k can also be written in a simplified easy-to-read sym-

bolic form as

Ck = P k +Dk − ε (8.15)

where Ck, P k, Dk and ε correspond to terms I-IV in Eq. 8.14.

Above, it is stated that the production takes place at the large energy-containing

eddies, i.e. we assume that the large eddies contribute much more to the production

term more than the small eddies. There are two arguments for this:

1. The Reynolds stresses (which appear in P k) are larger for large eddies than for

small eddies.

2. The mean flow generates large eddies which will have same time scale as the

mean velocity gradient, ∂v̄i/∂xj . In the fully turbulent region of a boundary

layer, for example, both time scales are proportional to κx2/uτ . The time scale

of the velocity gradient is given by κx2/uτ , see Eq. 6.26, and the time scale of

a large eddy is also given by ℓ0/v0 = κx2/uτ . Figure 8.1 shows how different

velocity profiles create different largest eddies. The largest eddies created by the

velocity profile A are much smaller than those created by the velocity profile

B, because the gradient of profile A acts over a much shorter length than the

gradient of profile B.
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Figure 8.2: Zoom of the energy spectrum for a wavenumber located in Region II or III,

see Fig. 5.2.

In the cascade process (see Section 5.3) we assume that the viscous dissipation, ε,
takes places at the smallest scales. How do we know that the majority of the dissipation

takes place at the smallest scales? First, let us investigate how the time scale varies with

eddy size. Consider the inertial subrange. Let’s denote the energy that is transferred

in spectral space (i.e. from eddy-to-eddy) per unit time by εκ. How large is ε, that it

generating heat, at wavenumber κ which we here denote ε(κ) (see Section 8.2.1 and

Fig. 8.2)? Recall that the viscous dissipation, ε, is expressed as the viscosity times

the square of the velocity gradient, see Eq. 8.14. The velocity gradient for an eddy

characterized by velocity vκ and lengthscale ℓκ can be estimated as

(
∂v

∂x

)

κ

∝ vκ
ℓκ

∝
(
v2κ
)1/2

κ (8.16)

since ℓκ ∝ κ−1. Now we know that the energy spectrum (see Eqs. 5.10 and 5.13),

E ∝ kκ/κ ∝ v2κ/κ ∝ κ−5/3 ⇒ v2κ ∝ κ−2/3 (8.17)

in the inertial region. Inserting Eq. 8.17 into Eq. 8.16 gives

(
∂v

∂x

)

κ

∝
(
κ−2/3

)1/2
κ ∝ κ−1/3κ ∝ κ2/3 (8.18)

Thus the viscous dissipation at wavenumber κ can be estimated as (see the last term in

Eq. 8.14)

ε = ν
∂v′i
∂xj

∂v′i
∂xj

⇒ ε(κ) ∝
(
∂v

∂x

)2

κ

∝ κ4/3, (8.19)

i.e. ε(κ) does indeed increase for increasing wavenumber.

The energy transferred from eddy-to-eddy per unit time in spectral space can also be

used for estimating the velocity gradient of an eddy. The cascade process assumes that

this energy transfer per unit time is the same for each eddy size, i.e. εκ = ε = v3κ/ℓκ =
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ℓ2κ/τ
3
κ = ℓ20/τ

3
0 , see Eq. 5.14. We find from ℓ2κ/τ

3
κ = ℓ20/τ

3
0 that for decreasing eddy

size (decreasing ℓκ), the time scale, τκ, also decreases, i.e.

τκ =

(
ℓκ
ℓ0

)2/3

τ0 (8.20)

where τ0 and ℓ0 are constants (they are given by the flow we’re looking at, for example

a boundary layer which has the large scales, τ0 and ℓ0). Hence

(
∂v

∂x

)

κ

∝ vκ
ℓκ

∝ τ−1
κ ∝ ℓ−2/3

κ ∝ κ2/3, (8.21)

which is the same as Eq. 8.18.

8.2.1 Spectral transfer dissipation εκ vs. “true” viscous dissipation, ε

As a final note to the discussion in the previous section, it may be useful to look at the

difference between the spectral transfer dissipation εκ, and the “true” viscous dissipa-

tion, ε; the former is the energy transferred from eddy-to-eddy per unit time, and the

latter is the energy transformed per unit time to internal energy (i.e. increased temper-

ature) for the entire spectrum (occurring mainly at the small, dissipative scales), see

Fig. 5.2. Now consider Fig. 8.2 which shows a zoom of the energy spectrum. We as-

sume that no mean flow energy production occurs between κ and κ+dκ, i.e. the region

may be in the −5/3 region or in the dissipation region. Turbulent kinetic per unit time

energy enters at wavenumber κ at a rate of εκ and leaves at wavenumber κ+ dκ a rate

of εκ+dκ. If κ and κ + dκ are located in the inertial region (i.e. the −5/3 region),

then the usual assumption is that εκ ≃ εκ+dκ and that there is no viscous dissipation to

internal energy, i.e. ε(κ) ≃ 0. If there is viscous dissipation at wavenumber κ (which

indeed is the case if the zoomed region is located in the dissipative region), then ε(κ)
is simply obtained through an energy balance per unit time, i.e.

ε(κ) = εκ+dκ − εκ (8.22)

8.3 The Exact k Equation: 2D Boundary Layers

In 2D boundary-layer flow, for which ∂/∂x2 ≫ ∂/∂x1 and v̄2 ≪ v̄1, the exact k
equation reads

∂v̄1k

∂x1
+
∂v̄2k

∂x2
= −v′1v′2

∂v̄1
∂x2

− ∂

∂x2

[
1

ρ
p′v′2 +

1

2
v′2v

′
iv

′
i − ν

∂k

∂x2

]
− ν

∂v′i
∂xj

∂v′i
∂xj

(8.23)

Note that the dissipation includes all derivatives. This is because the dissipation term

is at its largest for small, isotropic scales for which all derivatives are of the same order

and hence the usual boundary-layer approximation ∂/∂x1 ≪ ∂/∂x2 does not apply

for these scales.

Figure 8.3 presents the terms in Eq. 8.23 for fully developed channel flow. The left

side is – since the flow is fully developed – zero. In the outer region (Fig. 8.3b) all

terms are negligible except the production term and the dissipation term which balance

each other. This is called local equilibrium, see p. 98. Closer to the wall (Fig. 8.3a) the local equilib-

rium
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Figure 8.3: Channel flow at Reτ = 2000. Terms in the k equation scaled by u4τ/ν.

Reτ = 2000. a) Zoom near the wall; b) Outer region. DNS (Direct Numerical Sim-

ulation) data [15, 16]. : P k; : −ε; ▽: −∂v′p′/∂x2; +: −∂v′2v′iv′i/2/∂x2; ◦:

ν∂2k/∂x22.
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Figure 8.4: Channel flow at Reτ = 2000. DNS (Direct Numerical Simulation)

data [15, 16].

other terms do also play a role. Note that the production and the dissipation terms close

to the wall are two orders of magnitude larger than in the logarithmic region (Fig. 8.3b).

At the wall the turbulent fluctuations are zero which means that the production term is

zero. Since the region near the wall is dominated by viscosity the turbulent diffusion

terms due to pressure and velocity are also small. The dissipation term and the viscous

diffusion term attain their largest value at the wall and they much be equal to each other

since all other terms are zero or negligible.

The turbulence kinetic energy is produced by its main source term, the production

term, P k = −v′1v′2∂v̄1/∂x2. The velocity gradient is largest at the wall (see Fig. 8.4a)

where the shear stress is zero (see Fig. 8.4b)); the former decreases and the magnitude

of the latter increases with wall distance and their product takes its maximum at x+2 ≃
11. Since P k is largest here so is also k, see Fig. 6.8. k is transported in the x2 direction

by viscous and turbulent diffusion and it is destroyed (i.e. dissipated) by ε.
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8.4 Spatial vs. spectral energy transfer

In Section 5.3 we discussed spectral transfer of turbulent kinetic energy from large to

small eddies (which also applies to the transport of the Reynolds stresses). In Sec-

tion 8.2 we derived the equation for spatial transport of turbulent kinetic energy. How

are the spectral transfer and the spatial transport related? The reason that we in Sec-

tion 5.3 only talked about spectral transfer was that we assumed homogeneous tur-

bulence in which the spatial derivatives of the time-averaged turbulent quantities are homogeneous

turbulencezero, for example ∂v′21 /∂xi = 0, ∂k/∂xi = 0 etc. (Note that the derivatives of the

instantaneous turbulent fluctuations are non-zero even in homogeneous turbulence, i.e.

∂v′1/∂xi 6= 0; the instantaneous flow field in turbulent flow is – as we mentioned at the

beginning of this section, p. 66 – always three-dimensional and unsteady). In homoge-

neous turbulence the spatial transport terms (i.e. the convective term, term I, and the

diffusion terms, term III in Eq. 8.14) are zero. Hence, in homogeneous turbulence there

is no time-averaged spatial transport. However, there is spectral transfer of turbulent

kinetic energy which takes place in wavenumber space, from large to small eddies. The

production term (term II in Eq. 8.14) corresponds to the process in which large energy-

containing eddies extract energy from the mean flow. The dissipation term (term IV in

Eq. 8.14) corresponds to transformation of the turbulent kinetic energy at the small ed-

dies to thermal energy. However, real flows are hardly ever homogeneous. Some flows

may have one or two homogeneous directions. Consider, for example, fully developed

channel turbulent flow. If the channel walls are very long and wide compared to the

distance between the walls, 2δ, then the turbulence (and the flow) is homogeneous in

the streamwise direction and the spanwise direction, i.e. ∂v̄1/∂x1 = 0, ∂v′2i /∂x1 = 0,

∂v′2i /∂x3 = 0 etc.

In non-homogeneous turbulence, the cascade process is not valid. Consider a large,

turbulent eddy at a position xA2 (see Fig. 6.1) in fully developed channel flow. The

instantaneous turbulent kinetic energy, kκ = v′κ,iv
′
κ,i/2, of this eddy may either be

transferred in wavenumber space or transported in physical (spatial) space, or both. It

may first be transported in physical space towards the center, and there lose its kinetic

energy to smaller eddies. This should be kept in mind when thinking in terms of the

cascade process. Large eddies which extract their energy from the mean flow may not

give their energy to the slightly smaller eddies as assumed in Figs. 5.2 and 5.1, but kκ
may first be transported in physical space and then transferred in spectral space (i.e. to

a smaller eddy).

In the inertial range (Region II), however, the cascade process is still a good ap-

proximation even in non-homogeneous turbulence. The reason is that the transfer of

turbulent kinetic energy, kκ, from eddy-to-eddy, occurs at a much faster rate than the

spatial transport by convection and diffusion. In other words, the time scale of the cas-

cade process is much smaller than that of convection and diffusion which have no time

to transport kκ in space before it is passed on to a smaller eddy by the cascade process.

We say that the turbulence at these scales is in local equilibrium. The turbulence in local

equilibriumthe buffer layer and the logarithmic layer of a boundary layer (see Fig. 6.2) is in local

equilibrium. In Townsend [22], this is (approximately) stated as:

the local rates of turbulent kinetic energy (i.e. production and dissipation)

are so large that aspects of the turbulent motion concerned with these pro-

cesses are independent of conditions elsewhere in the flow.

This statement simply means that production is equal to dissipation, i.e. P k = ε, see

Fig. 8.3.
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In summary, care should be taken in non-homogeneous turbulence, regarding the

validity of the cascade process for the large scales (Region I).

8.5 The overall effect of the transport terms

The overall effect (i.e. the net effect) of the production term is to increase k, i.e. if we

integrate the production term over the entire domain, V , we get
∫

V

P kdV > 0 (8.24)

Similarly, the net effect of the dissipation term is a negative contribution, i.e.
∫

V

−εdV < 0 (8.25)

What about the overall effect of the transport terms, i.e. convection and diffusion?

Integration of the convection term over the entire volume, V , gives, using Gauss diver-

gence law, ∫

V

∂v̄jk

∂xj
dV =

∫

S

v̄jknjdS (8.26)

where S is the bounding surface of V . This shows that the net effect of the convection

term occurs only at the boundaries. Inside the domain, the convection merely transports

k with out adding or subtracting anything to the integral of k,
∫
V kdV ; the convection

acts as a source term in part of the domain, but in the remaining part of the domain it

acts as an equally large sink term. Similarly for the diffusion term, we get

−
∫

V

∂

∂xj

(
1

2
v′jv

′

kv
′

k +
1

ρ
p′v′j − ν

∂k

∂xj

)
V

= −
∫

S

(
1

2
v′jv

′

kv
′

k +
1

ρ
p′v′j − ν

∂k

∂xj

)
njdS

(8.27)

The only net contribution occurs at the boundaries. Hence, Eqs. 8.26 and 8.27 show

that the transport terms only – as the word implies – transports k without giving any

net effect except at the boundaries. Mathematically these terms are called divergence

terms, i.e. they can both be written as the divergence of a vector Aj , divergence

terms
∂Aj

∂xj
(8.28)

where Aj for the convection and the diffusion term reads

Aj =





v̄jk convection term

−
(
1

2
v′jv

′

kv
′

k +
1

ρ
p′v′j − ν

∂k

∂xj

)
diffusion term

(8.29)

8.6 The transport equation for v̄iv̄i/2

The equation for K = v̄iv̄i/2 is derived in the same way as that for v′iv
′
i/2. Multiply

the time-averaged Navier-Stokes equations, Eq. 6.10, by v̄i so that

v̄i
∂v̄iv̄j
∂xj

= −1

ρ
v̄i
∂p̄

∂xi
+ νv̄i

∂2v̄i
∂xj∂xj

− v̄i
∂v′iv

′
j

∂xj
. (8.30)
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Figure 8.5: Channel flow at Reτ = 2000. Comparison of mean and fluctuating dissi-

pation terms, see Eqs. 8.36 and 8.37. Both terms are normalized by u4τ/ν. DNS (Direct

Numerical Simulation) data [15, 16]. : ν(∂v̄1/∂x2)
2; : ε.

Using the continuity equation and Trick 2 the term on the left side can be rewritten as

v̄i
∂v̄iv̄j
∂xj

= v̄j v̄i
∂v̄i
∂xj

= v̄j

1
2∂v̄iv̄i

∂xj
=
∂v̄jK

∂xj
(8.31)

The viscous term in Eq. 8.30 is rewritten in the same way as the viscous term in Sec-

tion 8.2, see Eqs. 8.12 and 8.13, i.e.

νv̄i
∂2v̄i
∂xj∂xj

= ν
∂2K

∂xj∂xj
− ν

∂v̄i
∂xj

∂v̄i
∂xj

. (8.32)

Equations 8.31 and 8.32 inserted in Eq. 8.30 gives

∂v̄jK

∂xj
= ν

∂2K

∂xj∂xj
− v̄i
ρ

∂p̄

∂xi
− ν

∂v̄i
∂xj

∂v̄i
∂xj

− v̄i
∂v′iv

′
j

∂xj
. (8.33)

The last term is rewritten using Trick 1 as

− v̄i
∂v′iv

′
j

∂xj
= −

∂v̄iv′iv
′
j

∂xj
+ v′iv

′
j

∂v̄i
∂xj

. (8.34)

Note that the first term on the right side differs to the corresponding term in Eq. 8.14

by a factor of two since Trick 2 cannot be used because v̄i 6= v′i. Inserted in Eq. 8.33

gives (cf. Eq. 8.14)

∂v̄jK

∂xj
= v′iv

′
j

∂v̄i
∂xj

−Pk, sink

− v̄i
ρ

∂p̄

∂xi
source

− ∂

∂xj

(
v̄iv′iv

′
j − ν

∂K

∂xj

)
−ν ∂v̄i

∂xj

∂v̄i
∂xj

εmean, sink

(8.35)

On the left side we have the usual convective term. On the right side we find:

• loss of energy to k due to the production term

• work performed by the pressure gradient; in channel flow, for example, this term

gives a positive contribution to K since −v̄1∂p̄/∂x1 > 0

• diffusion by velocity-stress interaction
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Figure 8.6: Transfer of energy between mean kinetic energy (K), turbulent kinetic

energy (k) and internal energy (denoted as an increase in temperature, ∆T ). K =
1
2 v̄iv̄i and k = 1

2v
′
iv

′
i. The cascade process assumes that the term in red is negligible

(see also Figs. 8.2 and M.3).

• viscous diffusion.

• viscous dissipation, εmean. This corresponds to the dissipation term in Eq. 2.21;

if you replace vi with v̄i and use the continuity equation to get rid of the sec-

ond velocity gradient in S̄ij you find that the dissipation term in Eq. 2.21 (see

Eq. 2.24), is identical to εmean.

Note that the first term in Eq. 8.35 is the same as the first term in Eq. 8.14 but with

opposite sign: here we clearly can see that the main source term in the k equation (the

production term) appears as a sink term in the K equation.

In the K equation the dissipation term and the negative production term (represent-

ing loss of kinetic energy to the k field) read

− ν
∂v̄i
∂xj

∂v̄i
∂xj

+ v′iv
′
j

∂v̄i
∂xj

, (8.36)

and in the k equation the production and the dissipation terms read

− v′iv
′
j

∂v̄i
∂xj

− ν
∂v′i
∂xj

∂v′i
∂xj

(8.37)

The gradient of the time-averaged velocity field, v̄i, is much smoother than the gradient

of the fluctuating velocity field, v′i. Hence, the dissipation by the turbulent fluctuations,

ε, in the turbulent region (logarithmic region and further out from walls), is much larger

than the dissipation by the mean flow (left side of Eq. 8.36). This is seen in Fig. 8.5

(x+2 & 15). The energy flow from the mean flow to internal energy is illustrated in

Fig. 8.6. The major part of the energy flow goes from K to k and then to dissipation.

In the viscous-dominated wall region (x+2 . 5), the mean dissipation, ν(∂v̄1/∂x2)
2,

is much larger than ε, see Fig. 8.5. At the wall, the mean dissipation takes the value

ν = 1/2000 (normalized by u4τ/ν).
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9 Transport equations for Reynolds stresses

I
N this section we will derive the transport equation for the Reynolds stress tensor.

This is an unknown in the time-averaged Navier-Stokes equations, Eq. 6.10, which

must be known before Eq. 6.10 can be solved. The most accurate way to find v′iv
′
j is,

of course, to solve a transport equation for it. This is computationally expensive since

we then need to solve six additional transport equations (recall that v′iv
′
j is symmetric,

i.e. v′1v
′
2 = v′2v

′
1 etc). Often, some simplifications are introduced, in which v′iv

′
j is

modeled by expressing it as the product of a turbulent viscosity and velocity gradients.

Two-equations models are commonly used in these simplified models; no transport

equation for v′iv
′
j is solved.

In Section 8 we derived transport equations for kinetic turbulent energy, k, which

is the trace of the Reynolds stress tensor v′iv
′
j divided by two, i.e. k = v′iv

′
i/2. This

means that k is equal to half the sum of the diagonal components of v′iv
′
j , i.e. k =

0.5(v′21 + v′22 + v′23 ).
Now let’s start to derive the transport equation for v′iv

′
j . This approach is very simi-

lar to that we used when deriving the k equation in Section 8.2. Steady, incompressible

flow with constant density and viscosity is assumed. Subtract Eq. 6.10 from Eq. 6.6

and divide by density, multiply by v′j and time average and we obtain

v′j
∂

∂xk
[vivk − v̄iv̄k] =

−1

ρ
v′j

∂

∂xi
p′ + νv′j

∂2v′i
∂xk∂xk

+
∂v′iv

′

k

∂xk
v′j

(9.1)

Equation 6.10 is written with the index i as free index, i.e. i = 1, 2 or 3 so that the

equation is an equation for v1, v2 or v3. Now write Eq. 6.10 as an equation for vj and

multiply this equation by v′i. We get

v′i
∂

∂xk
[vjvk − v̄j v̄k] =

−1

ρ
v′i

∂

∂xj
p′ + νv′i

∂2v′j
∂xk∂xk

+
∂v′jv

′

k

∂xk
v′i

(9.2)

It may be noted that Eq. 9.2 is conveniently obtained from Eq. 9.1 by simply switching

indices i and j. Adding Eqs. 9.1 and 9.2 together gives

v′j
∂

∂xk
[vivk − v̄iv̄k] + v′i

∂

∂xk
[vjvk − v̄j v̄k] =

−1

ρ
v′i
∂p′

∂xj
− 1

ρ
v′j
∂p′

∂xi

+νv′i
∂2v′j

∂xk∂xk
+ νv′j

∂2v′i
∂xk∂xk

+
∂v′jv

′

k

∂xk
v′i +

∂v′iv
′

k

∂xk
v′j

(9.3)

Note that each line in the equation is symmetric: if you switch indices i and j in any

of the lines nothing changes. This is important: since the tensor v′iv
′
j is symmetric, all
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terms in its transport equation must also be symmetric. Furthermore, you can check

that the equation is correct according to the tensor notation rules. Indices i and j appear

once in each term (not more, not less) and index k (the dummy index) appears exactly

twice in each term (implying summation). Note that it is permitted to use any other

index than k in some terms (but you must not use i and j). You could, for example,

replace k with m in the first term and with q in the second term; however, usually we

use the same dummy index in every term.

Using vi = v̄i + v′i, the first line can be rewritten as

v′j
∂

∂xk
[v̄iv′k + v′iv̄k + v′iv

′

k] + v′i
∂

∂xk

[
v̄jv′k + v′j v̄k + v′jv

′

k

]
(9.4)

Using the continuity equation the first terms in the two groups are rewritten as

v′jv
′

k

∂v̄i
∂xk

+ v′iv
′

k

∂v̄j
∂xk

(9.5)

We merge the second terms in the two groups in Eq. 9.4.

v′j
∂v′iv̄k
∂xk

+ v′i
∂v′j v̄k

∂xk
= v̄kv′j

∂v′i
∂xk

+ v̄kv′i
∂v′j
∂xk

= v̄k
∂v′iv

′
j

∂xk
=
∂v′iv

′
j v̄k

∂xk

(9.6)

The continuity equation was used twice (to get the right side on the first line and to get

the final expression) and the product rule was used backwards to get the second line.

Re-writing also the third terms in the two groups in Eq. 9.4 in the same way, the second

and the third terms in Eq. 9.4 can be written

∂v′iv
′
j v̄k

∂xk
+
∂v′iv

′
jv

′

k

∂xk
(9.7)

The second line in Eq. 9.3 is also re-written using Trick 1

− 1

ρ

∂

∂xj
v′ip

′ − 1

ρ

∂

∂xi
v′jp

′ +
1

ρ
p′
∂v′i
∂xj

+
1

ρ
p′
∂v′j
∂xi

(9.8)

It will later turn out that it is convenient to express all derivatives as ∂/∂xk. Therefore

we re-write the derivative in the two first terms as

∂

∂xj
= δjk

∂

∂xk
and

∂

∂xi
= δik

∂

∂xk
(9.9)

so that

− δjk
1

ρ

∂

∂xk
v′ip

′ − δik
1

ρ

∂

∂xk
v′jp

′ +
1

ρ
p′
∂v′i
∂xj

+
1

ρ
p′
∂v′j
∂xi

(9.10)

The third line in Eq. 9.3 is also re-written using Trick 1

ν
∂

∂xk

(
v′i
∂v′j
∂xk

)
+ ν

∂

∂xk

(
v′j
∂v′i
∂xk

)
− 2ν

∂v′i
∂xk

∂v′j
∂xk
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The product rule is used backwards to merge the two first terms so that the third line in

Eq. 9.3 reads

ν
∂

∂xk

(
v′i
∂v′j
∂xk

+ v′j
∂v′i
∂xk

)
− 2ν

∂v′i
∂xk

∂v′j
∂xk

= ν
∂

∂xx

(
∂v′iv

′
j

∂xk

)
− 2ν

∂v′i
∂xk

∂v′j
∂xk

= ν
∂2v′iv

′
j

∂xk∂xk
− 2ν

∂v′i
∂xk

∂v′j
∂xk

(9.11)

The terms on the fourth line in Eq. 9.3 are zero because āb′ = āb̄′ = 0. We can now

put everything together. Put the first term in Eq. 9.7 on the left side and the second

term on the right side together with Eqs. 9.5, 9.10 and 9.11 so that

∂

∂xk
(v̄kv′iv

′
j)

Cij ,I

= −v′jv′k
∂v̄i
∂xk

− v′iv
′

k

∂v̄j
∂xk

Pij ,II

− ∂

∂xk

(
v′iv

′
jv

′

k +
1

ρ
δjkv′ip

′ +
1

ρ
δikv′jp

′ − ν
∂v′iv

′
j

∂xk

)

Dij ,III

+
1

ρ
p′
(
∂v′i
∂xj

+
∂v′j
∂xi

)

Πij ,V

− 2ν
∂v′i
∂xk

∂v′j
∂xk

εij ,IV

(9.12)

Note that the manipulation in Eq. 9.9 allows the diffusion (term III) to be written on a

more compact form. After a derivation, it is always useful to check that the equation is

correct according to the tensor notation rules.

• Every term – or group of terms – should include the free indices i and j (only

once);

• Every term – or group of terms – should be symmetric in i and j;

• A dummy index (in this case index k) must appear exactly twice (=summation)

in every term

Equation 9.12 can also be written in a simplified easy-to-read symbolic form as

Cij = Pij +Dij +Πij − εij (9.13)

where Πij denotes the pressure-strain term

Πij =
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)
(9.14)

Equation 9.12 is the (exact) transport equation of the Reynolds stress, v′iv
′
j . It is called

the Reynolds stress equations. It is an equation for a second-order tensor which con- Reynolds

stress

equations

sists of nine equations, but since it is symmetric we only need to consider six of them.

Compare Eq. 9.12 with the equation for turbulent kinetic energy, Eq. 8.14. An alter-

native – and maybe easier – way to derive Eq. 8.14 is to first derive Eq. 9.12 and then

take the trace (setting i = j) and divide by two. In both the k and the v′iv
′
j equations
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Figure 9.1: Channel flow at Reτ = 2000. Terms in the v′21 equation scaled by u4τ/ν. a)

Zoom near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [15,16].

: P11; : −ε11; : Π11; +: −∂(v′2v′21 )/∂x2; ◦: ν∂2v′21 /∂x
2
2.

there is a convection term (I), a production term (II), a diffusion term (III) and a dis-

sipation term (IV). In the v′iv
′
j equation there is a fifth term (V), see Eq. 9.14, which

is called the pressure strain term. The physical meaning of this term is to redistribute pressure

strainenergy between the normal stress components (if we transform Eq. 9.12 to the princi-

pal coordinates of v′iv
′
j there are no shear stresses, only normal stresses). The average

of the normal stresses is v′2av = v′iv
′
i/3. For a normal stress that is larger than v′2av , the

pressure-strain term is negative and vice-versa. It is often called the Robin Hood term Robin Hood

because it – as Robin Hood – “takes from the rich and gives to the poor”. Note that the

trace of the pressure-strain term is zero, i.e.

Πii =
1

ρ
p′
(
∂v′i
∂xi

+
∂v′i
∂xi

)
= 0 (9.15)

because of the continuity equation and this is the reason why this term does not appear

in the k equation.

For 2D boundary layer flow, Eq. 9.12 reads

∂

∂x1
(v̄1v′iv

′
j) +

∂

∂x2
(v̄2v′iv

′
j) = −v′jv′2

∂v̄i
∂x2

− v′iv
′
2

∂v̄j
∂x2

− ∂

∂x2

(
v′iv

′
jv

′
2 +

1

ρ
δj2v′ip

′ +
1

ρ
δi2v′jp

′ − ν
∂v′iv

′
j

∂x2

)

+
1

ρ
p′
(
∂v′i
∂xj

+
∂v′j
∂xi

)
− 2ν

∂v′i
∂xk

∂v′j
∂xk

(9.16)

Now let’s look at this equation for fully developed channel flow for which

v̄2 = v̄3 = 0

∂(·)
∂x1

=
∂(·)
∂x3

= 0
(9.17)

Note that on the second line the streamwise (x1) and tne spanwise (x3) derivatives

operate on time-averaged quantities; those that operate on instantaneous quantities,

such as in εij and Πij , are not zero.
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Figure 9.2: One-dimensional unsteady heat conduction. In the middle there is a heat

source, Q.

9.1 Source terms

In order to analyze the Reynolds stress equation, Eq. 9.16, we will now look at the

source terms. A positive source term in a transport equation, for example Φ, increases

the value of Φ. A simple example is the one-dimensional unsteady heat conduction

equation (Eq. 2.16 with vi ≡ 0)

∂T

∂t
= α

∂2T

∂x21
+Q (9.18)

where Q is a heat source, see Fig. 9.2. If Q is positive, T will increase and vice-versa.

Now we will look at an important source term in the v′iv
′
j equation, namely the

production term. The production term in Eq. 9.16 reads

Pij = −v′jv′2
∂v̄i
∂x2

− v′iv
′
2

∂v̄j
∂x2

(9.19)

For the v′21 (i = j = 1), v′22 (i = j = 2), v′23 (i = j = 3) and v′1v
′
2 (i = 1, j = 2)

equations we get

P11 = −2v′1v
′
2

∂v̄1
∂x2

(9.20a)

P22 = −2v′2v
′
2

∂v̄2
∂x2

= 0 (9.20b)

P33 = −2v′3v
′
2

∂v̄3
∂x2

= 0 (9.20c)

P12 = −v′2v′2
∂v̄1
∂x2

− v′1v
′
2

∂v̄2
∂x2

= −v′22
∂v̄1
∂x2

(9.20d)

using Eq. 9.17.

Figure 9.1 presents the terms in the v′21 equation (Eq. 9.16 with i = j = 1). As

we saw for the k equation, the production term, P11, reaches its maximum at x2 ≃ 11

where also v′21 takes its maximum (Fig. 6.8). The pressure-strain term, Π11, and the

dissipation term act as sink terms. In the outer region (Fig. 9.1b) the production term

balances the pressure-strain term and the dissipation term.

The terms in the wall-normal stress equation, v′22 , are shown in Fig. 9.4. Here we

find – as expected – that the pressure-strain term, Π22, acts as the main source term.

As mentioned previously, Π22 – the “Robin Hood” term – takes from the “rich” v′21
equation and gives to the “poor” v′22 equation energy because v′21 is large and v′22 is

small.
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Figure 9.4 presents the terms in the v′23 equation. As for the v′22 equation, the main

source term is the pressure-strain term, but it may be noted that here it is positive

near the wall; for the v′22 equation it goes negative near the wall since the pressure-

strain term dampens v′22 near the wall. Another difference is that the pressure diffusion

term, 2∂v′3p
′/∂x2, is zero (as it is in the v′21 equation), whereas it near the wall gives

an important contribution in the v′22 equation (it balances the negative pressure-strain

term).

Figure 9.6 presents the terms in the v′1v
′
2 equation. The production term – which

should be a source term – is here negative. Indeed it should be. Recall that v′1v
′
2 is

here negative and hence its source must be negative; or, rather, the other way around:

v′1v
′
2 is negative because its production term, P12 = −v′22 ∂v̄1/∂x2, is negative since

∂v̄1/∂x2 > 0. Note that in the upper half of the channel ∂v̄1/∂x2 < 0 and hence P12

and v′1v
′
2 are positive. Furthermore, note that the dissipation, ε12, is zero. This is be-

cause dissipation takes place at the smallest scales and they are isotropic. That implies

there is no correlation between two fluctuating velocity components, e.g. v′1v
′
2 = 0 (in

general, for i 6= j, the stresses v′iv
′
j in isotropic turbulence are zero). Hence, also their

gradients are zero so that

ε12 = 2ν
∂v′1
∂xk

∂v′2
∂xk

= 0 (9.21)

However, very close to the wall, x+2 ≤ 10, ε12 6= 0 because here the wall affects

the dissipative scales making them non-isotropic; ε12 is positive since v′1v
′
2 < 0, see

Fig. 9.6. When looking at the energy spectrum, neither the production term nor the

dissipation of mean kinetic energy enters the spectrum, see Fig. 9.3

The main sink term in the v′1v
′
2 equation is the pressure-strain term, π12, see Fig. 9.6.

But since v′1v
′
2 < 0 in the lower half of the channel, it means that it is positive. In order

to understand the sign of π12, we can look at the pressure-strain term in the principal

coordinate directions and transform it to the x1 − x2 coordinate system, see Eq. 11.51.

If you want to learn more how to derive transport equations of turbulent quantities,

see [23] which can be downloaded here

http://www.tfd.chalmers.se/˜lada/allpaper.html

9.2 Reynolds shear stress vs. the velocity gradient

In boundary-layer type of flow, the Reynolds shear stress and the velocity gradient

∂v̄1/∂x2 have nearly always opposite signs. For channel flow, for example, Eq. 9.20

shows thatP12 is negative (and hence also v′1v
′
2) in the lower half because ∂v̄1/∂x2 > 0

and it is positive in the upper half because ∂v̄1/∂x2 < 0. It can be summarized as:

• P12 = −v′22
∂v̄1
∂x2

is the source term in v′1v
′
2 equation and it is large

⇒ P12 and v′1v
′
2 have the same sign. Compare Fig. 9.2 (temperature in oC and

T = 0 at the boundaries): a negative source, Q, gives negative temperature

and vice versa;

⇒ v′1v
′
2 and

∂v̄1
∂x2

have opposite sign;

⇒ The production term in the k equation, P k = −v′1v′2
∂v̄1
∂x2

> 0;

• P k is always positive in fully-developed channel flow;

http://www.tfd.chalmers.se/~lada/allpaper.html
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Figure 9.3: Energy spectrum. Transfer of kinetic energy. The cascade process assumes

that the term in red are negligible (see also Fig. 8.2). The term in blue show the viscous

dissipation of the mean flow.

• In general flows, P k is almost always positive.

The fact that v′1v
′
2 and ∂v̄1/∂x2 almost always have different signs can also be

shown by physical argumentation. Consider the flow in a boundary layer, see Fig. 9.7.

A fluid particle is moving downwards (particle drawn with solid line) from x2,B to

x2,A with (the turbulent fluctuating) velocity v′2. At its new location the v1 velocity is

in average smaller than at its old, i.e. v̄1(x2,A) < v̄1(x2,B). This means that when the

particle at x2,B (which has streamwise velocity v1(x2,B)) comes down to x2,A (where

the streamwise velocity is v1(x2,A)) it has an excess of streamwise velocity compared

to its new environment at x2.A. Thus the streamwise fluctuation is positive, i.e. v′1 > 0
and the correlation between v′1 and v′2 is in average negative (v′1v

′
2 < 0).

If we look at the other particle (dashed line in Fig. 9.7) we reach the same con-

clusion. The particle is moving upwards (v′2 > 0), and it is bringing a deficit in v1
so that v′1 < 0. Thus, again, v′1v

′
2 < 0. If we study this flow for a long time and

average over time we get v′1v
′
2 < 0. If we change the sign of the velocity gradient so

that ∂v̄1/∂x2 < 0 we will find that the sign of v′1v
′
2 also changes.

In cases where the shear stress and the velocity gradient have the same sign (for

example, in a wall jet) the reason is that the other terms (usually the transport terms)



9.2. Reynolds shear stress vs. the velocity gradient 109

a)
0 10 20 30 40

−0.05

0

0.05

x+2
b)

100 200 300 400 500
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

x+2

Figure 9.4: Channel flow at Reτ = 2000. Terms in the v′22 equation scaled by u4τ/ν. a)

Zoom near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [15,16].

: −ε22; ▽ : −2∂v′2p
′/∂x2; : Π22; +: −∂(v′2v′22 )/∂x2; ◦: ν∂2v′22 /∂x

2
2.

a)
0 10 20 30 40

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x+2
b)

100 200 300 400 500
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

x+2

Figure 9.5: Channel flow at Reτ = 2000. Terms in the v′23 equation scaled by u4τ/ν. a)

Zoom near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [15,16].
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are more important than the production term.
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Figure 9.6: Channel flow at Reτ = 2000. Terms in the v′1v
′
2 equation scaled by u4τ/ν.

a) Zoom near the wall; b) Outer region. DNS (Direct Numerical Simulation) data [15,
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Figure 9.7: Sign of the Reynolds shear stress −ρv′1v′2 in a boundary layer.

10 Correlations

10.1 Two-point correlations

T
WO-point correlations are useful when describing some characteristics of the tur-

bulence. By “correlation”, we mean the tendency for two values or variables to

change together, in either the same or opposite way. Pick two points along the x1 axis,

say xA1 and xC1 , and sample the fluctuating velocity in, for example, the x1 direction.

We can then form the correlation of v′1 at these two points as

B11(x
A
1 , x

C
1 ) = v′1(x

A
1 )v

′
1(x

C
1 ) (10.1)

Often, it is expressed as

B11(x
A
1 , x̂1) = v′1(x

A
1 )v

′
1(x

A
1 + x̂1) (10.2)

where x̂1 = xC1 − xA1 is the separation distance between point A and C.

It is obvious that if we move point A and C closer to each other, B11 increases;

when the two points are moved so close that they merge, then B11 = v′2(xA1 ), see
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Figure 10.1: Two-point correlation.

Fig. 10.1. If, on the other hand, we move point C further and further away from point

A, then B11 will go to zero. It is convenient to normalize B11 so that it varies between

−1 and +1. The normalized two-point correlation reads

Bnorm
11 (xA1 , x̂1) =

1

v1,rms(xA1 )v1,rms(xA1 + x̂1)
v′1(x

A
1 )v

′
1(x

A
1 + x̂1) (10.3)

where subscript rms denotes root-mean-square, which for v′1, for example, is defined

as

v1,rms =
(
v′21

)1/2
(10.4)

RMS is the same as standard deviation (Matlab command std) which is the square-

root of the variance (Matlab command var).

Consider a flow where the largest eddies have a length scale of Lint, see Fig. 10.2.

We expect that the two point correlation,B11, approaches zero for separation distance,

|xA1 − xC1 | > Lint because for separation distances larger than |xA1 − xB1 | there is no

correlation between v′1(x
A
1 ) and v′1(x

C
1 ). Hence, flows with large eddies will have a

two-point correlation function which decreases slowly with separation distance. For

flows with small eddies, the two-point correlation,B11, decreases rapidly with x̂1.

If the flow is homogeneous (see p.98) in the x1 direction, the two-point correlation

does not depend on the location of xA1 , but it is only dependent on the separation of the

two points, x̂1, i.e.

Bnorm
11 (x̂1) =

1

v21,rms

v′1(x1)v
′
1(x1 + x̂1) (10.5)

From the two-point correlation, B11, an integral length scale, Lint, can be com- integral

length scaleputed which is defined as the integral of B11 over the separation distance, i.e.

Lint(x1) =

∫ ∞

0

B11(x1, x̂1)

vA1,rmsv
C
1,rms

dx̂1 (10.6)

The integral length scale represents the length scale of the large energy-containing

eddies. If the flow is homogeneous in the x1 direction then Lint does not depend on

x1, and the integral length scale is then computed as

Lint =

∫ ∞

0

Bnorm
11 (x̂1)dx̂1 (10.7)
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Figure 10.2: Schematic relation between the two-point correlation, the largest eddies

(thick lines) and the integral length scale, Lint.
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10.2 Auto correlation

Auto correlation is a “two-point correlation” in time, i.e. the correlation of a turbulent

fluctuation with a separation in time. If we again choose the v′1 fluctuation, the auto

correlation reads

B11(t
A, t̂ ) = v′1(t

A)v′1(t
A + t̂ ) (10.8)

where t̂ = tC − tA, is the time separation distance between time A and C. If the mean

flow is steady, the “time direction” is homogeneous and B11 is independent on tA; in

this case the auto-correlation depends only on time separation, t̂, i.e.

B11(t̂ ) = v′1(t)v
′
1(t+ t̂ ) (10.9)

where the right side is time-averaged over t.
The normalized auto-correlation reads

Bnorm
11 (t̂ ) =

1

v21,rms

v′1(t)v
′
1(t+ t̂ ) (10.10)

In analogy to the integral length scale, Lint, the integral time scale, Tint, is defined integral

time scaleas (assuming steady flow)

Tint =

∫ ∞

0

Bnorm
11 (t̂)dt̂ (10.11)

The integral time scale represents the time scale of the large energy-containing eddies.

10.3 Taylor’s hypothesis of frozen turbulence

The autocorrelation, Bnorm
11 (t̂), is much easier to measure than the two-point correla-

tion,Bnorm
11 (x̂1). Let’s try to obtain the two-point correlation from the autocorrelation.

Consider the velocity fluctuation at point A (i.e. v′A1 (t)) and B (i.e. v′B1 (t)), see

Fig. 10.3. Assume that the turbulent fluctuation at point A is transported by the mean

velocity, v̄1, in a frozen state to point B. This is called Taylor’s hypothesis of frozen

turbulence. This asumption is better the smaller the turbulence intensity, v1,rms/v̄1. It

takes x̂1/v̄1 seconds for the fluid particle at point A to reach point B. Based on Taylor’s

hypothesis we can estimate v′1 at point A by measuring v′1 at point B x̂1/v̄1 seconds

later. This gives

Bnorm
11 (x̂1) =

1

v21,rms

v′A1 (t)v′B1 (t) ≃ 1

v21,rms

v′B1 (t+ x̂1/v̄1)v′B1 (t)

Based on Taylor’s hypohesis, the integral length scale can in Fig. 10.3 be estimated

from the integral time scale as

Lint = v̄1Tint (10.12)
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Figure 10.3: Two-point correlation and frozen turbulence.
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11 Reynolds stress models and two-equation models

11.1 Mean flow equations

11.1.1 Flow equations

For incompressible turbulent flow, all variables are divided into a mean part (time av-

eraged) and fluctuating part. For the velocity vector this means that vi is divided into

a mean part v̄i and a fluctuating part v′i so that vi = v̄i + v′i. Time average and we get

(see Eq. 6.9 at. p. 77):

∂v̄i
∂xj

= 0 (11.1)

∂ρ0v̄i
∂t

+
∂

∂xj
(ρ0v̄iv̄j) = − ∂p̄

∂xi
+ µ

∂2v̄i
∂xj∂xj

− ∂τij
∂xj

− βρ0(θ̄ − θ0)gi (11.2)

(note that θ denotes temperature) where ρ0 is a constant reference density, the volume

force fi = −β(θ̄ − θ0)gi and the turbulent stress tensor (also called Reynolds stress Reynolds

stress

tensor

tensor) is written as:

τij = ρ0v′iv
′
j (11.3)

The pressure, p̄, denotes the hydrodynamic pressure, see Eq. 3.22, which means

that when the flow is still (i.e. v̄i ≡ 0), then the pressure is zero (i.e. p̄ ≡ 0).

The body force fi – which was omitted for convenience in Eq. 6.9 – has here been

re-introduced. The body force in Eq. 11.2 is due to buoyancy, i.e. density differences.

The basic form of the buoyancy force is fi = gi where gi denotes gravitational ac-

celeration. Since the pressure, p̄, is defined as the hydro-dynamic pressure we have

re-written the buoyancy source as

ρ0fi = (ρ− ρ0)gi (11.4)

so that p̄ ≡ 0 when v̄i ≡ 0 (note that the true pressure decreases upwards as ρg∆h
where ∆h denotes change in height). If we let density depend on pressure and temper-

ature, differentiation gives

dρ =

(
∂ρ

∂θ

)

p

dθ +

(
∂ρ

∂p

)

θ

dp (11.5)

Our flow is incompressible, which means that the density does not depend on pressure,

i.e. ∂ρ/∂p = 0; it may, however, depend on temperature and mixture composition.

Hence the last term in Eq. 11.5 is zero and we introduce the volumetric thermal expan-

sion, β, so that

β = − 1

ρ0

(
∂ρ

∂θ

)

p

⇒

dρ = −ρ0βdθ ⇒ ρ− ρ0 = −βρ0(θ − θ0)

(11.6)

where β is a physical property which is tabulated in physical handbooks. For a perfect

gas it is simply β = θ−1 (with θ in degrees Kelvin). Now we can re-write the buoyancy

source as

ρ0fi = (ρ− ρ0)gi = −ρ0β(θ̄ − θ0)gi (11.7)

which is the last term in Eq. 11.2. Consider the case where x3 is vertically upwards.

Then gi = (0, 0,−g) and a large temperature in Eq. 11.7 results in a force vertically

upwards, which agrees well with our intuition.
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11.1.2 Temperature equation

The instantaneous temperature, θ, is also decomposed into a mean and a fluctuating

component as θ = θ̄ + θ′. The transport equation for θ reads (see Eq. 2.16 where

temperature was denoted by T )

∂θ

∂t
+
∂viθ

∂xi
= α

∂2θ

∂xi∂xi
(11.8)

where α = k/(ρcp), see Eq. 2.16 on p. 26. Introducing θ = θ̄ + θ′ we get

∂θ̄

∂t
+
∂v̄iθ̄

∂xi
= α

∂2θ̄

∂xi∂xi
− ∂v′iθ

′

∂xi
(11.9)

The last term on the right side is an additional term whose physical meaning is turbulent

heat flux vector. This is similar to the Reynolds stress tensor on the right side of the

time-averaged momentum equation, Eq. 11.2. The total heat flux vector – viscous plus

turbulent – in Eq. 11.9 reads (cf. Eq. 2.12)

qi,tot
ρcp

=
qi
ρcp

+
qi,turb
ρcp

= α
∂θ̄

∂xi
− v′iθ

′ (11.10)

11.2 The exact v′iv
′

j equation

Now we want to solve the time-averaged continuity equation (Eq. 11.1) and the three

momentum equations (Eq. 11.2). Unfortunately there are ten unknowns; the four usual

ones (v̄i, p̄) plus six turbulent stresses, v′iv
′
j . We must close this equation system; it is

called the closure problem. We must find some new equations for the turbulent stresses. closure

problemWe need a turbulence model.

The most comprehensive turbulence model is to derive exact transport equations

for the turbulent stresses. An exact equation for the Reynolds stresses can be derived

from the Navies-Stokes equation. It is emphasized that this equation is exact; or, rather,

as exact as the Navier-Stokes equations. The derivation follows the steps below.

• Set up the momentum equation for the instantaneous velocity vi = v̄i + v′i →
Eq. (A)

• Time average → equation for v̄i, Eq. (B)

• Subtract Eq. (B) from Eq. (A) → equation for v′i, Eq. (C)

• Do the same procedure for vj → equation for v′j , Eq. (D)

• Multiply Eq. (C) with v′j and Eq. (D) with v′i, time average and add them together

→ equation for v′iv
′
j

In Section 9 at p. 102 these steps are given in some detail. More details can also be

found in [23] (set the SGS tensor to zero, i.e. τaij = 0).
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The final v′iv
′
j-equation (Reynolds Stress equation) reads (see Eq. 9.12)

∂v′iv
′
j

∂t
+ v̄k

∂v′iv
′
j

∂xk
Cij

= −v′iv′k
∂v̄j
∂xk

− v′jv
′

k

∂v̄i
∂xk

Pij

+
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)

Πij

− ∂

∂xk

[
v′iv

′
jv

′

k +
p′v′j
ρ
δik +

p′v′i
ρ
δjk

]

Dij,t

+ ν
∂2v′iv

′
j

∂xk∂xk
Dij,ν

−giβv′jθ′ − gjβv′iθ
′

Gij

− 2ν
∂v′i
∂xk

∂v′j
∂xk

εij

(11.11)

where Dij,t and Dij,ν denote turbulent and viscous diffusion, respectively. The total

diffusion reads Dij = Dij,t + Dij,ν . This is analogous to the momentum equation

where we have gradients of viscous and turbulent stresses which correspond to viscous

and turbulent diffusion. Equation 11.11 can symbolically be written

Cij = Pij +Πij +Dij +Gij − εij

where

Cij Convection

Pij Production

Πij Pressure-strain

Dij Diffusion

Gij Buoyancy production

εij Dissipation

Which terms in Eq. 11.11 are known and which are unknown? First, let’s think

about which physical quantities we solve for. They are

v̄i is obtained from the momentum equation, Eq. 11.2

v′iv
′
j is obtained from the modeled RSM equation, Eq. 11.100

Hence the following terms in Eq. 11.11 are known (i.e. they do not need to be modeled)

• The left side

• The production term, Pij

• The viscous part of the diffusion term, Dij , i.e. Dν
ij

• The buoyancy term, Gij (provided that a transport equation is solved for v′iθ
′,

Eq. 11.22; if not, v′iθ
′ is obtained from the Boussinesq assumption, Eq. 11.34)
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11.3 The exact v′iθ
′ equation

If temperature variations occur we must solve for the mean temperature field, see

Eq. 11.9. To obtain the equation for the fluctuating temperature, subtract Eq. 11.9

from Eq. 11.8

∂θ′

∂t
+

∂

∂xk
(v′k θ̄ + v̄kθ

′ + v′kθ
′) = α

∂2θ′

∂xk∂xk
+
∂v′kθ

′

∂xk
(11.12)

To get the equation for the fluctuating velocity, v′i, subtract the equation for the mean

velocity v̄i (Eq. 11.2) from the equation for the instantaneous velocity, vi (Eq. 6.6) so

that

∂v′i
∂t

+
∂

∂xk
(v′kv̄i + v̄kv

′

i + v′kv
′

i) = −1

ρ

∂p′

∂xi
+ ν

∂2v′i
∂xk∂xk

+
∂v′iv

′

k

∂xk
− giβθ

′ (11.13)

Multiply Eq. 11.12 with v′i and multiply Eq. 11.13 with θ′, add them together and

time average

∂v′iθ
′

∂t
+ v′i

∂

∂xk
(v′k θ̄ + v̄kθ′ + v′kθ

′) + θ′
∂

∂xk
(v̄iv′k + v̄kv′i + v′iv

′

k)

= −θ
′

ρ

∂p′

∂xi
+ αv′i

∂2θ′

∂xk∂xk
+ νθ′

∂2v′i
∂xk∂xk

− giβθ′θ′
(11.14)

The Reynolds stress term in Eq. 11.13 multiplied by θ′ and time averaged is zero, i.e.

∂v′iv
′
j

∂xk
θ′ =

∂v′iv
′
j

∂xk
θ′ = 0

If you have forgotten the rules for time-averaging, see Section 8.1. The first term in the

two parentheses on line 1 in Eq. 11.14 are combined into two production terms (using

the continuity equation, ∂v′k/∂xk = 0)

v′iv
′

k

∂θ̄

∂xk
+ v′kθ

′
∂v̄

∂xk
(11.15)

The second term in the two parenthesis on the first line of Eq. 11.14 are re-written using

the continuity equation

v′i
∂v̄kθ′

∂xk
+ θ′

∂v̄kv′i
∂xk

= v̄k

(
v′i
∂θ′

∂xk
+ θ′

∂v′i
∂xk

)
(11.16)

Now the two terms can be merged (product rule backwards, Trick 1)

v̄k
∂v′iθ

′

∂xk
=
∂v̄kv′iθ

′

∂xk
(11.17)

where we used the continuity equation to obtain the right side. The last two terms

in Eq. 11.14 are re-cast into turbulent diffusion terms using the same procedure as in

Eqs. 11.16 and 11.17

∂v′iv
′

kθ
′

∂xk
(11.18)
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The viscous diffusion terms on the right side are re-written using the product rule back-

wards (Trick 1, see p. 90)

αv′i
∂2θ′

∂xk∂xk
= αv′i

∂

∂xk

(
∂θ′

∂xk

)
= α

∂

∂xk

(
v′i
∂θ′

∂xk

)
− α

∂θ′

∂xk

∂v′k
∂xk

νθ′
∂2v′i

∂xk∂xk
= νθ′

∂

∂xk

(
∂v′i
∂xk

)
= ν

∂

∂xk

(
θ′
∂v′i
∂xk

)
− ν

∂θ′

∂xk

∂v′k
∂xk

(11.19)

Inserting Eqs. 11.15, 11.17, 11.18 and 11.19 into Eq. 11.14 gives the transport

equation for the heat flux vector v′iθ
′

∂v′iθ
′

∂t
+

∂

∂xk
v̄kv′iθ

′ = −v′iv′k
∂θ̄

∂xk
− v′kθ

′
∂v̄i
∂xk

Piθ

−θ
′

ρ

∂p′

∂xi
Πiθ

− ∂

∂xk
v′kv

′
iθ

′

Diθ,t

+α
∂

∂xk

(
v′i
∂θ′

∂xk

)
+ ν

∂

∂xk

(
θ′
∂v′i
∂xk

)

Diθ,ν

− (ν + α)
∂v′i
∂xk

∂θ′

∂xk
εiθ

−giβθ′2
Giθ

(11.20)

where Piθ , Πiθ andDiθ,t denote the production, scramble and turbulent diffusion term,

respectively. The production term include one term with the mean velocity gradient

and one term with the mean temperature gradient. On the last line, Diθ,ν , εiθ and Giθ

denote viscous diffusion, dissipation and buoyancy term, respectively. The unknown

terms – Πiθ , Diθ , εiθ , Giθ – have to be modeled as usual; this is out of the scope of

the present course but the interested reader is referred to [24].

It can be noted that there is no usual viscous diffusion term in Eq. 11.20. The

reason is that the viscous diffusion coefficients are different in the vi equation and

the θ equation (ν in the former case and α in the latter). However, if ν ≃ α (which

corresponds to a Prandtl number of unity, i.e. Pr = ν/α ≃ 1, see Eq. 2.17), the

diffusion term in Eq. 11.20 assumes the familiar form

α
∂

∂xk

(
v′i
∂θ′

∂xk

)
+ ν

∂

∂xk

(
θ′
∂v′i
∂xk

)

= α
∂2v′iθ

′

∂xk∂xk
− α

∂

∂xk

(
θ′
∂v′i
∂xk

)
+ ν

∂2v′iθ
′

∂xk∂xk
− ν

∂

∂xk

(
v′i
∂θ′

∂xk

)

≃
(
ν +

ν

Pr

) ∂2v′iθ
′

∂xk∂xk
− ν

∂

∂xk

(
θ′
∂v′i
∂xk

)
− ν

∂

∂xk

(
v′i
∂θ′

∂xk

)

=
(
ν +

ν

Pr

) ∂2v′iθ
′

∂xk∂xk
−Diθ,ν =

(
ν +

ν

Pr

) ∂2v′iθ
′

∂xk∂xk
−Diθ,ν

(11.21)

where Diθ,ν cancels the corresponding term in Eq. 11.20 if α = ν. Often the viscous

diffusion is simplified in this way. Hence, if α ≃ ν the transport equation for v′iθ
′ can

be simplified as

∂v′iθ
′

∂t
+

∂

∂xk
v̄kv′iθ

′ = −v′iv′k
∂θ̄

∂xk
− v′kθ

′
∂v̄i
∂xk

Piθ

−θ
′

ρ

∂p′

∂xi
Πiθ

− ∂

∂xk
v′kv

′
iθ

′

Diθ,t

+
(
ν +

ν

Pr

) ∂2v′iθ
′

∂xk∂xk
Diθ,ν

− (ν + α)
∂v′i
∂xk

∂θ′

∂xk
εiθ

−giβθ′2
Giθ

(11.22)
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The same question arises as for the v′iv
′
j equation: which terms need to be modeled?

The following quantities are known:

v̄i is obtained from the momentum equation, Eq. 11.2

θ̄ is obtained from the temperature equation, Eq. 11.9

v′iv
′
j is obtained from the modeled RSM equation, Eq. 11.100

v′iθ
′ is obtained from the modeled v′iθ

′ equation

Hence the following terms in Eq. 11.22 are known (i.e. they do not need to be modeled)

• The left side

• The production term, Piθ

• The viscous diffusion term, Diθ,ν

• The buoyancy term, Giθ (provided that a transport equation is solved for θ′2; if

not, θ′2 is usually modeled via a relation to k)

11.4 The k equation

The turbulent kinetic energy is the sum of all normal Reynolds stresses, i.e.

k =
1

2

(
v′21 + v′22 + v′23

)
≡ 1

2
v′iv

′
i

By taking the trace (setting indices i = j) of the equation for v′iv
′
j and dividing by two

we get the equation for the turbulent kinetic energy:

∂k

∂t
+ v̄j

∂k

∂xj

Ck

= − v′iv
′
j

∂v̄i
∂xj

P k

− ν
∂v′i
∂xj

∂v′i
∂xj
ε

− ∂

∂xj

{
v′j

(
p′

ρ
+

1

2
v′iv

′
i

)}

Dk
t

+ ν
∂2k

∂xj∂xj

Dk
ν

−giβv′iθ′
Gk

(11.23)

where – as in the v′iv
′
j equation – Dk

t and Dk
ν denotes turbulent and viscous diffusion,

respectively. The total diffusion reads Dk = Dk
t +Dk

ν . Equation 11.23 can symboli-

cally be written:

Ck = P k +Dk +Gk − ε (11.24)

The known quantities in Eq. 11.23 are:

v̄i is obtained from the momentum equation, Eq. 11.2

k is obtained from the modeled k equation, Eq. 11.96

Hence the following terms in Eq. 11.23 are known (i.e. they do not need to be modeled)

• The left side
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• The viscous diffusion term, Dk
i,ν

• The buoyancy term, Gij (provided that a transport equation is solved for v′iθ
′,

Eq. 11.22; if not, v′iθ
′ is obtained from the Boussinesq assumption, Eq. 11.34)

11.5 The ε equation

Two quantities are usually used in eddy-viscosity model to express the turbulent vis-

cosity. In the k − ε model, k and ε are used. The turbulent viscosity is estimated –

using dimensional analysis – as the product of a turbulent velocity, U , and length scale,

L,

νt ∝ UL (11.25)

The velocity scale is taken as k1/2 and the length scale as k3/2/ε which gives

νt = Cµ
k2

ε

where Cµ = 0.09. An exact equation for the transport equation for the dissipation

ε = ν
∂v′i
∂xj

∂v′i
∂xj

can be derived (see, e.g., [25]), but it is very complicated and in the end many terms

are found negligible. It is much easier to look at the k equation, Eq. 11.24, and to setup

a similar equation for ε. The transport equation should include a convective term, Cε,

a diffusion term, Dε, a production term, P ε, a production term due to buoyancy, Gε,

and a destruction term, Ψε, i.e.

Cε = P ε +Dε +Gε −Ψε (11.26)

The production and destruction terms, P k and ε, in the k equation are used to for-

mulate the corresponding terms in the ε equation. The terms in the k equation have

the dimension [m2/s3] (look at the unsteady term, ∂k/∂t) whereas the terms in the ε
equation have the dimension [m2/s4] (cf. ∂ε/∂t). Hence, we must multiply P k and ε
by a quantity which has the dimension [1/s]. One quantity with this dimension is the

mean velocity gradient which might be relevant for the production term, but not for the

destruction. A better choice should be ε/k = [1/s]. Hence, we get

P ε +Gε −Ψε =
ε

k

(
cε1P

k + cε1G
k − cε2ε

)
(11.27)

where we have added new unknown coefficients in front of each term. The turbulent

diffusion term is expressed in the same way as that in the k equation (see Eq. 11.39)

but with its own turbulent Prandtl number, σε (see Eq. 11.36), i.e.

Dε =
∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
(11.28)

The final form of the ε transport equation reads

∂ε

∂t
+ v̄j

∂ε

∂xj
=
ε

k
(cε1P

k + cε1G
k − cε2ε) +

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
(11.29)

Note that this is a modeled equation since we have modeled the production, destruction

and turbulent diffusion terms.
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11.6 The Boussinesq assumption

In the Boussinesq assumption an eddy (i.e. a turbulent) viscosity is introduced to model

the unknown Reynolds stresses in Eq. 11.2. Consider the diffusion terms in the incom-

pressible momentum equation in the case of non-constant viscosity (see Eq. 2.5)

∂

∂xj

{
ν

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
− v′iv

′
j

}
(11.30)

Now we want to replace the Reynolds stress tensor, v′iv
′
j , by a turbulent viscosity, νt,

so that the the diffusion terms can be written

∂

∂xj

{
(ν + νt)

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)}
(11.31)

Identification of Eqs. 11.30 and 11.31 gives

− v′iv
′
j = νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
(11.32)

This is identical to the assumption for the Newtonian, viscous stress for incompressible

flow, see Eq. 2.4. Equation 11.32 is not valid upon contraction 3 (the right side will be

zero due to continuity, but not the left side). Hence we add the trace of the left side to

the right side so that

v′iv
′
j = −νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
+

1

3
δijv′kv

′

k = −2νts̄ij +
2

3
δijk (11.33)

Now the equation is valid also when it is contracted (i.e taking the trace); after contrac-

tion both left and right side are equal (as they must be) to v′iv
′
i = 2k. When Eq. 11.33

is included in Eq. 11.2 we replace six turbulent stresses with one new unknown (the

turbulent viscosity, νt). This is of course a drastic simplification.

If the mean temperature equation is solved for, we need an equation for the heat

flux vector, v′iθ
′. One option is to solve its transport equation, Eq. 11.22. However, it is

more common to used an eddy-viscosity model for the heat flux vector. The Boussinesq

assumption reads

v′iθ
′ = −αt

∂θ̄

∂xi
(11.34)

where αt denotes the turbulent thermal diffusivity. Note that this is the same assump-

tion as Fourier’s law for a Newtonian flux, see Eq. 2.12. The turbulent thermal diffu-

sivity, αt, is usually obtained from the turbulent viscosity as

αt =
νt
σθ

(11.35)

where σθ is the turbulent Prandtl number; it is an empirical constant which is usually

set to 0.7 ≤ σθ ≤ 0.9. The physical meaning of the turbulent Prandtl number, σθ ,

is analogous to the physical meaning of the usual Prandtl number, see Eq. 2.17; it

defines how efficient the turbulence transports (by diffusion) momentum compared to

how efficient it transports thermal energy, i.e.

σθ =
νt
αt

(11.36)

3contraction means that i is set to j
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It is important to recognize that the viscosity (ν), the Prandtl number (Pr), the

thermal diffusivity (α) are physical parameters which depend on the fluid (e.g. water

or air) and its conditions (e.g. temperature). However, the turbulent viscosity (νt), the

turbulent thermal diffusivity (αt) and the turbulent Prandtl number (σθ) depend on the

flow (e.g. mean flow gradients and turbulence).

11.7 Modeling assumptions

Now we will compare the modeling assumptions for the unknown terms in the v′iv
′
j ,

v′iθ
′, k and ε equations and formulate modeling assumptions for the remaining terms in

the Reynolds stress equation. This will give us the Reynolds Stress Model [RSM] (also

called the Reynolds Stress Transport Model [RSTM]) where a (modeled) transport

equation is solved for each stress. Later on, we will introduce a simplified algebraic

model, which is called the Algebraic Stress Model [ASM] (this model is also called

Algebraic Reynolds Stress Model, ARSM)

Summary of physical meaning:

Pij , Piθ and P k are production terms of v′iv
′
j , v′iθ

′ and k

Gij , Giθ and Gk are production terms of v′iv
′
j , v′iθ

′ and k due to buoyancy

Dij,t, Diθ,t, D
k
t are the turbulent diffusion terms of v′iv

′
j , v′iθ

′ and k

Πiθ is the pressure-scramble terms of v′iθ
′

Πij is the pressure-strain correlation term, which promotes isotropy of the tur-

bulence

εij , εiθ and ε are dissipation of v′iv
′
j , v′iθ

′ and k, respectively. The dissipation

takes place at the small-scale turbulence.

11.7.1 Production terms

In RSM and ASM the production terms are computed exactly

Pij = −v′iv′k
∂v̄j
∂xk

− v′jv
′

k

∂v̄i
∂xk

, P k =
1

2
Pii = −v′iv′j

∂v̄i
∂xj

Piθ = −v′iv′k
∂θ̄

∂xk
− v′kθ

′
∂v̄i
∂xk

(11.37)

The k is usually not solved for in RSM but a length-scale equation (i.e. ε or ω) is

always part of an RSM and that equation includes P k.

In the k − ε model, the Reynolds stresses in the production term are computed
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using the Boussinesq assumption, which gives

−v′iv′j = νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
− 2

3
δijk

P k =

{
νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
− 2

3
δijk

}
∂v̄i
∂xj

= νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

= νt2s̄ij(s̄ij +Ωij) = 2νts̄ij s̄ij

s̄ij =
1

2

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
, Ωij =

1

2

(
∂v̄i
∂xj

− ∂v̄j
∂xi

)
,

∂v̄i
∂xj

= s̄ij +Ωij

(11.38)

where on the third line we used the fact that s̄ijΩij = 0 because the product between a

symmetric tensor (s̄ij) and an asymmetric tensor (Ωij) is zero. The incompressibility

condition, ∂v̄i/∂xi = 0, was used to obtain the third line.

11.7.2 Diffusion terms

The diffusion terms in the k and ε-equations in the k − ε model are modeled using the

standard gradient hypothesis which reads

Dk =
∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]

Dε =
∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

] (11.39)

The gradient hypothesis simply assumes that turbulent diffusion acts as to even out

all inhomogeneities. In other words, it assumes that the turbulent diffusion term, Dk
t ,

transports k from regions where k is large to regions where k is small. The turbulent

diffusion flux of k is expressed as

dkj,t =
1

2
v′jv

′
iv

′
i = − νt

σk

∂k

∂xj
(11.40)

Note that this is the same assumption as Fourier’s law for a Newtonian flux, see

Eq. 2.12. Only the triple correlations are included since the pressure diffusion usu-

ally is negligible (see Fig. 8.3 at p. 97). Taking the divergence of Eq. 11.40 (including

the minus sign in Eq. 11.23) gives the turbulent diffusion term in Eq. 11.39.

Solving the equations for the Reynolds stresses, v′iv
′
j , opens possibilities for a more

advanced model of the turbulent diffusion terms. Equation 11.40 assumes that if the

gradient is zero in xi direction, then there is no diffusion flux in that direction. A more

general gradient hypothesis can be formulated without this limitation, e.g.

dkj,t,G ∝ v′jv
′

k

∂k

∂xk
(11.41)

which is called the general gradient diffusion hypothesis (GGDH). It was derived in

[26] from the transport equation of the triple correlation v′jv
′
iv

′
i. In GGDH the turbulent

flux dk1,t,G, for example, is computed as

dk1,t,G ∝ v′1v
′
1

∂k

∂x1
+ v′1v

′
2

∂k

∂x2
+ v′1v

′
3

∂k

∂x3
(11.42)
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Hence, even if ∂k/∂x1 = 0 the diffusion flux dk1,t,G may be non-zero. A quantity of

dimension [s] must be added to get the correct dimension, and as in Eq. 11.27 we take

k/ε so that

dkj,t,G = ck
k

ε
v′jv

′

k

∂k

∂xk
(11.43)

The diffusion term, Dk
t , in the k equation is obtained by taking the divergence of this

equation

Dk
t =

∂dkj,t,G
∂xj

=
∂

∂xj

(
ck
k

ε
v′jv

′

k

∂k

∂xk

)
(11.44)

This diffusion model may be used when the k equation is solved in an RSM or an ASM.

The corresponding diffusion terms for the ε and v′iv
′
j equations read

Dε
t =

∂

∂xj

(
cε v′jv

′

k

k

ε

∂ε

∂xk

)

Dij,t =
∂

∂xk

(
ck v′kv

′
m

k

ε

∂v′iv
′
j

∂xm

) (11.45)

Equation 11.45 often causes numerical problems. A more stable alternative is to model

the diffusion terms as in 11.39 which for v′iv
′
j reads

Dij,t =
∂

∂xm

(
νt
σk

∂v′iv
′
j

∂xm

)
(11.46)

11.7.3 Dissipation term, εij

The dissipation term εij (see Eq. 11.11) is active for the small-scale turbulence. Be-

cause of the cascade process and vortex stretching (see Figs. 5.2 and 5.3) the small-

scale turbulence is isotropic. This means that the velocity fluctuations of the small-

scale turbulence have no preferred direction, see p. 71. This gives:

1. v′21 = v′22 = v′23 .

2. All shear stresses are zero, i.e.

v′iv
′
j = 0 if i 6= j

because the fluctuations in two different coordinate directions are not correlated.

What applies for the small-scale fluctuations (Items 1 and 2, above) must also apply

for the gradients of the fluctuations, i.e.

∂v′1
∂xk

∂v′1
∂xk

=
∂v′2
∂xk

∂v′2
∂xk

=
∂v′3
∂xk

∂v′3
∂xk

∂v′i
∂xk

∂v′j
∂xk

= 0 if i 6= j

(11.47)

The relations in Eq. 11.47 are conveniently expressed in tensor notation as

εij =
2

3
εδij (11.48)

where the factor 2/3 is included so that ε = 1
2εii is satisfied, see Eqs. 11.11 and 11.23.
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v′1
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Figure 11.1: Physical illustration of the pressure-strain term.

11.7.4 Slow pressure-strain term

The pressure-strain term, Πij , makes a large contribution to the v′iv
′
j equation. In

Section 9 it was shown that for channel flow it is negative for the streamwise equation,

v′21 , and positive for the wall-normal, v′22 , and spanwise, v′23 , equations. Furthermore,

it acts as a sink term for the shear stress equation. In summary, it was shown that the

term acts as to make the turbulence more isotropic, i.e. decreasing the large normal

stresses and the magnitude of the shear stress and increasing the small normal stresses.

The pressure-strain term is often called the Robin Hood terms, because it “takes from

the rich and gives to the poor”.

The role of the pressure strain can be described in physical terms as follows. As-

sume that two fluid particles with fluctuating velocities v′1 bounce into each other at O
so that ∂v′1/∂x1 < 0, see Fig. 11.1. As a result the fluctuating pressure p′ increases at

O so that

p′
∂v′1
∂x1

< 0

The fluid in the x1 direction is performing work, moving fluid particles against the

pressure gradient. The kinetic energy lost in the x1 direction is transferred to the x2
and x3 directions and we assume that the collision makes fluid particles move in the

other two directions, i.e.
∂v′2
∂x2

> 0,
∂v′3
∂x3

> 0 (11.49)

Indeed, if ∂v′1/∂x1 < 0, the continuity equation gives ∂v′2/∂x2 + ∂v′3/∂x3 > 0.

However, in Eq. 11.49 we assume that not only their sum is positive but also that they

both are positive. If this is to happen the kinetic energy in the x1 direction must be

larger than that in the x2 and x3 direction, i.e. v′21 > v′22 and v′21 > v′23 . If v′23 ≃ v′21 ,

the pressure strain re-distributes kinetic energy from both v′21 and v′23 to v′22 .

Now let’s assume that v′21 > v′22 and v′21 > v′23 . The amount of kinetic energy

transferred from the x1 direction to the x2 and x3 directions, should be proportional to
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the difference of their energies, i.e.

p′
∂v′1
∂x1

∝ −ρ
t

1

2

[(
v′21 − v′22

)
+
(
v′21 − v′23

)]

= −ρ
t

[
v′21 − 1

2

(
v′22 + v′23

)]
= −ρ

t

[
3

2
v′21 − 1

2

(
v′21 + v′22 + v′23

)]
= −ρ

t

(
3

2
v′21 − k

)

(11.50)

where t denotes a turbulent timescale. The expression in Eq. 11.50 applies only to

the normal stresses, i.e. the principal axis of v′iv
′
j . Let us show that by transform-

ing the fluctuations to a coordinate system which is rotated an angle α = π/4 then

p′(∂v′1/∂x2 + ∂v′2/∂x1) ∝ −v′1v′2 (α = π/4 corresponds to the special case when the

normal stresses are equal). We express Eq. 11.50 in principal coordinates, (x1∗, x2∗),
and then transform the equation to (x1, x2) by rotating it angle α = π/4, see Appendix

S.1. Replacing u12 in Eq. S.6b by v′1v
′
2 we get

v′1v
′
2 = 0.5

(
v′21∗ − v′22∗

)
(11.51)

since v′1∗v
′
2∗ = v′2∗v

′
1∗. Now we have transformed the right side of Eq. 11.50 (the

right side on the first line). Next step is to transform the left side, i.e. the velocity

gradients. We use Eqs. S.6b and S.6c: replacing u12 and u21 by ∂v′1/∂x2 and ∂v′2/∂x1,

respectively, and adding them gives

∂v′2
∂x1

+
∂v′1
∂x2

=
∂v′1∗
∂x1∗

− ∂v′2∗
∂x2∗

(11.52)

the pressure-strain term in Eqs. 11.11 and 11.50 can be written

p′
(
∂v′2
∂x1

+
∂v′1
∂x2

)
= p′

(
∂v′1∗
∂x1∗

− ∂v′2∗
∂x2∗

)
(11.53)

Now we apply Eq. 11.50 in the x1∗ and −x2∗ directions (looking at the right side of

Eq. 11.53) so that

p′
(
∂v′1∗
∂x1∗

− ∂v′2∗
∂x2∗

)
∝ −3ρ

2t

(
v′21∗ − v′22∗

)
(11.54)

Inserting Eqs. 11.51 and 11.53 into Eq. 11.54 gives finally

p′
(
∂v′2
∂x1

+
∂v′1
∂x2

)
∝ −3ρ

4t
ρv′1v

′
2 (11.55)

This shows that the pressure-strain term acts as a sink term in the shear stress equation.

Thus, Eqs. 11.50 and 11.55 lead as to write

Φij,1 ≡ p′
(
∂v′i
∂xj

+
∂v′j
∂xi

)
= −c1ρ

ε

k

(
v′iv

′
j −

2

3
δijk

)
(11.56)

where Φ denotes the modeled pressure-strain term and subscript 1 means the slow part;

the concept “slow” and “rapid” is discussed at p. 130. We have introduced the turbulent

time scale t = k/ε and a constant c1. This pressure-strain model for the slow part was

proposed by Rotta in 1951 [27].
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Figure 11.2: Decaying grid turbulence. The circles (a) and the thin rectangles (b)

illustrates part of the grid which consists of a mesh of circular cylinders.

Let us investigate how Eq. 11.56 behaves for decaying grid turbulence, see Fig. 11.2.

Flow from left with velocity v̄1 passes through a grid. The grid creates velocity gra-

dients behind the grid which generates turbulence. Further downstream the velocity

gradients are smoothed out and the mean flow becomes constant. From this point

and further downstream the flow represents homogeneous turbulence which is slowly

approaching isotropic turbulence; furthermore the turbulence is slowly dying (i.e. de-

caying) due to dissipation. The exact v′iv
′
j equation for this flow reads (no production

or diffusion because of homogeneity)

v̄1
dv′iv

′
j

dx1
=
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)
− εij (11.57)

Rotta’s pressure-strain model is supposed to reduce anisotropy. Thus it should be in-

teresting to re-write Eq. 11.57 expressed in the normalized anisotropy Reynolds stress

tensor which is defined as

aij =
v′iv

′
j

k
− 2

3
δij (11.58)

Note that when the turbulence is isotropic, then aij = 0. We introduce aij (Eq. 11.58),

Rotta’s model (Eq. 11.56) and the model for the dissipation tensor (11.48) into Eq. 11.57

so that

v̄1

(
d(kaij)

dx1
+ δij

2

3

∂k

∂x1

)
= −c1εaij −

2

3
δijε (11.59)

Analogously to Eq, 11.57, the k equation in decaying grid turbulence reads

v̄1
dk

dx1
= −ε (11.60)

Inserting Eq. 11.60 in Eq. 11.59 and dividing by k we obtain

v̄1
daij
dx1

= −c1
ε

k
aij −

2

3
δij

ε

k
+
ε

k
aij +

2

3
δij

ε

k
=
ε

k
aij(1− c1) (11.61)
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Provided that c1 > 1 Rotta’s model does indeed reduce non-isotropy as it should.

The model of the slow pressure-strain term in Eq. 11.56 can be extended by in-

cluding terms which are non-linear in v′iv
′
j . To make it general it is enough to include

terms which are quadratic in v′iv
′
j , since according to the Cayley-Hamilton theorem, a

second-order tensor satisfies its own characteristic equation (see Section 1.20 in [28]);

this means that terms that are cubic in v′iv
′
j (i.e. v′iv

′
j

3
= v′iv

′

k v′kv
′
m v′mv

′
j) can be

expressed in terms that are linear and quadratic in v′iv
′
j . The most general form of Φij,1

can be formulated as [29]

Φij,1 = −c1ρ
[
εaij + c′1

(
aikakj −

1

3
δijakℓaℓk

)]

aij =
v′iv

′
j

k
− 2

3
δij

(11.62)

aij is an anisotropy tensor whose trace is zero. In isotropic flow all its components are

zero. Note that the right side is trace-less (i.e. the trace is zero). This should be so

since the exact form of Φij is trace-less, i.e. Φii = 2p′∂v′i/∂xi = 0.

11.7.5 Rapid pressure-strain term

Above a model for the slow part of the pressure-strain term was developed using phys-

ical arguments. Here we will carry out a mathematical derivation of a model for the

rapid part of the pressure-strain term.

The notation “rapid” comes from a classical problem in turbulence called the rapid

distortion problem, where a very strong velocity gradient ∂v̄i/∂xj is imposed so that

initially the second term (the slow term) can be neglected, see Eq. 11.64. It is assumed

that the effect of the mean gradients is much larger than the effect of the turbulence,

i.e. ∣∣∣∣
∂v̄i
∂xj

∣∣∣∣
/

(ε/k) → ∞ (11.63)

Thus in this case it is the first term in Eq. 11.64 which gives the most “rapid”

response in p′. The second “slow” term becomes important first at a later stage when

turbulence has been generated.

Now we want to derive an exact equation for the pressure-strain term, Πij . Since

it includes the fluctuating pressure, p′, we start by deriving an exact equation for p′

starting from Navier-Stokes equations.

1. Take the divergence of the incompressible Navier-Stokes equation assuming con-

stant viscosity (see Eq. 6.6) i.e.
∂

∂xi

(
vj
∂vi
∂xj

)
= . . .⇒ Equation A.

2. Take the divergence of the incompressible time-averaged Navier-Stokes equation

assuming constant viscosity (see Eq. 6.10) i.e.
∂

∂xi

(
v̄j
∂v̄i
∂xj

)
= . . .⇒ Equation

B.

Subtraction of Equation B from Equation A gives a Poisson equation for the fluc-

tuating pressure p′

1

ρ

∂2p′

∂xj∂xj
= − 2

∂v̄i
∂xj

∂v′j
∂xi

rapid term

− ∂2

∂xi∂xj

(
v′iv

′

j − v′iv
′
j

)

slow term

(11.64)
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x2, y2
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Figure 11.3: The exact solution to Eq. 11.65. The integral is carried out for all points,

y, in volume V .

The factor two in the rapid term appears because when taking the divergence of the

convective term there are two identical terms, see right-side of Eq. 8.6. For a Poisson

equation
∂2ϕ

∂xj∂xj
= f (11.65)

there exists an exact analytical solution given by Green’s formula, see Appendix T (it

is derived from Gauss divergence law)

ϕ(x) = − 1

4π

∫

V

f(y)dy1dy2dy3
|y − x| (11.66)

where the integrals at the boundaries vanish because it is assumed that f → 0 at the

boundaries, see Fig. 11.3. Applying Eq. 11.66 on Eq. 11.64 gives

p′(x) =
ρ

4π

∫

V


2
∂v̄i(y)

∂yj

∂v′j(y)

∂yi
rapid term

+
∂2

∂yi∂yj

(
v′i(y)v

′

j(y) − v′i(y)v
′
j(y)

)

slow term




dy3

|y − x|
(11.67)

where dy3 = dy1dy2dy3. Now make two assumptions in Eq. 11.67:

i) the turbulence is homogeneous (i.e. the spatial derivative of all time-averaged

fluctuating quantities is zero). This means that the last term in square brackets

is zero. This requirement is not as drastic as it may sound (although very few

turbulent flows are homogeneous). This term is indeed very small compared to

the second derivative of the instantaneous fluctuations, v′i(y)v
′
j(y).

ii) the variation of ∂v̄i/∂xj in space is small. The same argument can be used as

above: the mean gradient ∂v̄i/∂xj varies indeed much more slowly than the

instantaneous velocity gradient, ∂v′j(y)/∂yi
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Assumption i) means that the last term in the integral in Eq. 11.67 is zero, i.e.

∂2v′iv
′
j

∂yi∂yj
= 0

Assumption ii) means that the mean velocity gradient can be taken outside the integral.

Now multiply Eq. 11.67 with ∂v′i/∂xj + ∂v′j/∂xi. Since this term is not a function of

y it can be moved in under the integral. We obtain after time averaging

1

ρ
p′(x)

(
∂v′i(x)

∂xj
+
∂v′j(x)

∂xi

)

=
∂v̄k(x)

∂xℓ

1

2π

∫

V

(
∂v′i(x)

∂xj
+
∂v′j(x)

∂xi

)
∂v′ℓ(y)

∂yk

dy3

|y − x|
Mijkℓ

+
1

4π

∫

V

(
∂v′i(x)

∂xj
+
∂v′j(x)

∂xi

)
∂2

∂yk∂yℓ
(v′k(y)v

′

ℓ(y))
dy3

|y − x|
Aij

(11.68)

Note that the mean velocity gradient, ∂v̄/∂xℓ, is taken at point x because it has been

moved out of the integral. In order to understand this better, consider the integral

f(x) =

∫ L

0

g(ξ)dξ

|x− ξ| (11.69)

Note that x and ξ are coordinates along the same axis (think of them as two different

points along the x axis). If the two points, x and ξ, are far from each other, then the

denominator is large and the contribution to the integral is small. Hence, we only need

to consider ξ points which are close to x. If we assume that g(ξ) varies slowly with ξ,

g(ξ) can be moved out of the integral and since x is close to ξ, Eq. 11.69 can be written

as

f(x) = g(x)

∫ L

0

dξ

|x− ξ| (11.70)

Going from Eq. 11.69 to Eq. 11.70 corresponds to moving the mean velocity gradient

out of the integral. Equation 11.68 can be written on shorter form as

p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)
= Aij +Mijkℓ

∂v̄k
∂xℓ

= Φij,1 +Φij,2 (11.71)

where the first term represents the slow term, Φij,1 (see Eq. 11.56), and second term is

the rapid term, Φij,2 (index 2 denotes the rapid part).

Now we will take a closer look at the rapid part (i.e. the second term) of Mijkℓ.

The second term of Mijkℓ in the integral in Eq. 11.68 can be rewritten as

∂v′j(x)

∂xi

∂v′ℓ(y)

∂yk
=

∂

∂yk

(
v′ℓ(y)

∂v′j(x)

∂xi

)
− v′ℓ(y)

∂2v′j(x)

∂yk∂xi

=
∂2

∂yk∂xi

(
v′ℓ(y)v

′
j(x)

)
− ∂

∂yk

(
v′j(x)

∂v′ℓ(y)

∂xi

)

=
∂2

∂yk∂xi

(
v′ℓ(y)v

′
j(x)

)

(11.72)
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∂2v′j(x)/∂yk∂xi on line 1 is zero because v′j(x) is not a function of y. For the same

reason the last term on line 2 is zero.

Note that the terms above as well as in Eq. 11.68 are two-point correlations, the

two points being x and y. Introduce the distance vector between the two points

ri = yi − xi (11.73)

Differentiating Eq. 11.73 gives

∂

∂ri
=

∂

∂yi
− ∂

∂xi
(11.74)

Equation 11.73 is a coordinate transformation where we replace xi and yi with

I. xi and ri, or

II. yi and ri.

Assumption i) at p. 131 gives that ∂/∂xi = 0 (Item I) or ∂/∂yi = 0 (Item II). In other

words, the two-point correlations are independent of where in space the two points are

located; they are only dependent on the distance between the two points (i.e. ri). Hence

we can replace the spatial derivative by the distance derivative, i.e.

∂

∂xi
= − ∂

∂ri
∂

∂yi
=

∂

∂ri

(11.75)

We can now write Mijkℓ in Eq. 11.68, using Eqs. 11.72 and 11.75, as

Mijkℓ = − 1

2π

∫

V

[
∂2

∂rk∂ri

(
v′ℓv

′
j

)
+

∂2

∂rk∂rj

(
v′ℓv

′
i

)] dr3
|r|

= aijkℓ + ajikℓ

(11.76)

It can be shown that aijkℓ is symmetric with respect to index j and ℓ (recall that v′ℓ and

v′j are not at the same point but separated by ri), i.e.

aijkℓ = aiℓkj (11.77)

see Appendix H on p. 283. Furthermore, Eq. 11.76 is independent of in which order

the two derivatives are taken, so that aijkℓ is symmetric with respect to i and k, i.e.

aijkℓ = akjiℓ (11.78)

Now let us formulate a general expression of aijkℓ which is linear in v′iv
′
j and

symmetric in (j, ℓ) and (i, k). We get

aijkℓ = c1δikv′jv
′

ℓ

+ c2δjℓv′iv
′

k

+ c3(δijv′kv
′

ℓ + δkjv′iv
′

ℓ + δiℓv′kv
′
j + δkℓv′iv

′
j)

+ c4δjℓδikk

+ c5(δijδkℓ + δjkδiℓ)k

(11.79)
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Each line is symmetric in (j, ℓ) and (i, k). For example, on line 3, term 1 & term 3 and

term 2 & term 4 are symmetric with respect to j and ℓ and term 1 & term 2 and term 3

& term 4 are symmetric with respect to i and k.

Consider Eq. 11.68. Here it is seen that if i = j then Mijkℓ = 0 due to the

continuity equation; looking at Eq. 11.76 we get

aiikℓ = 0 (11.80)

Applying this condition to Eq. 11.79 gives

0 = c1δikv′iv
′

ℓ + c2δiℓv′iv
′

k + c3(3v′kv
′

ℓ + δkiv′iv
′

ℓ + δiℓv′kv
′
i + δkℓv′iv

′
i)

+ c4δiℓδikk + c5(3δkℓ + δikδiℓ)k

= c1v′kv
′

ℓ + c2v′ℓv
′

k + c3(3v′kv
′

ℓ + v′kv
′

ℓ + v′kv
′

ℓ + 2δkℓk)

+ c4δkℓk + c5(3δkℓ + δkℓ)k

= v′kv
′

ℓ(c1 + c2 + 5c3) + kδkℓ(c4 + 2c3 + 4c5)

(11.81)

Green’s third formula reads (see Appendix H on p. 283)

aijiℓ = 2v′jv
′

ℓ (11.82)

Using Eq. 11.82 in Eq. 11.79 gives

2v′jv
′

ℓ = 3c1v′jv
′

ℓ + c2δjℓv′iv
′
i + c3(δijv′iv

′

ℓ + δijv′iv
′

ℓ + δiℓv′iv
′
j + δiℓv′iv

′
j)

+ (3c4δjℓ + c5(δijδiℓ + δjiδiℓ))k

= 3c1v′jv
′

ℓ + 2c2δjℓk + 4c3v′jv
′

ℓ + (3c4 + 2c5)δjℓ)k

= v′jv
′

ℓ(3c1 + 4c3) + δjℓk(2c2 + 3c4 + 2c5)

(11.83)

Equations 11.81 and 11.83 give four equations

c1 + c2 + 5c3 = 0, c4 + 2c3 + 4c5 = 0

3c1 + 4c3 − 2 = 0, 2c2 + 3c4 + 2c5 = 0
(11.84)

for the five unknown constants. Let us express all constants in c2 which gives

c1 =
4c2 + 10

11
, c3 = −3c2 + 2

11
, c4 = −50c2 + 4

55
, c5 =

20c2 + 6

55
(11.85)

Inserting Eq. 11.85 into Eq. 11.79 and 11.71 gives

φij,2 =Mijkℓ
∂v̄k
∂xℓ

= (aijkℓ + ajikℓ)
∂v̄k
∂xℓ

= c1

(
v′jv

′

ℓ

∂v̄i
∂xℓ

+ v′iv
′

ℓ

∂v̄j
∂xℓ

)
+ c2

(
v′iv

′

k

∂v̄k
∂xj

+ v′jv
′

k

∂v̄k
∂xi

)

+c3

(
2δijv′kv

′

ℓ

∂v̄k
∂xℓ

+ v′iv
′

ℓ

∂v̄j
∂xℓ

+ v′jv
′

ℓ

∂v̄i
∂xℓ

+ v′kv
′
j

∂v̄k
∂xi

+ v′kv
′
i

∂v̄k
∂xj

)

+c4k

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
+ c5k

(
∂v̄j
∂xi

+
∂v̄i
∂xj

)

(11.86)

We find that the c1 term and the second and third part of the c3 term can be merged.

Furthermore, the c2 term and the third and fourth part of the c3 term can be merged as
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LRR model LRR-IP model

c1 (Eq. 11.56 1.5 1.5
c2 (Eq. 11.88) 0.4 −
c2 (Eq. 11.89) − 0.6

Table 11.1: Constants in the LRR and LRR-IP pressure-strain models.

well as the c4 and c5 terms; using Eq. 11.84 we get

φij,2 = −c2 + 8

11
Pij −

8c2 − 2

11
Dij +

6c2 + 4

11
P k +

4− 60c2
55

ks̄ij

Dij = −v′iv′k
∂v̄k
∂xj

− v′jv
′

k

∂v̄k
∂xi

(11.87)

Finally we re-write this equation so that it is expressed in trace-less tensors

Φij,2 = −ρc2 + 8

11

(
Pij −

2

3
δijP

k

)

− ρ
8c2 − 2

11

(
Dij −

2

3
δijP

k

)
− 60c2 − 4

55
ρks̄ij

(11.88)

where c2 = 0.4. Note that Φii = 0 as we required in Eq. 11.80. This pressure-strain

model is called the LRR model and it was proposed in [30].

All three terms in Eq. 11.88 satisfy continuity and symmetry conditions. It might

be possible to use a simpler pressure-strain model using one or any two terms. Since

the first term is the most important one, a simpler model has been proposed [30, 31]

Φij,2 = −c2ρ
(
Pij −

2

3
δijP

k

)
(11.89)

It can be noted that there is a close similarity between the Rotta model and Eq. 11.89:

both models represent “return-to-isotropy”, the first expressed in v′iv
′
j and the second

in Pij . The model in Eq. 11.89 is commonly called the IP model (IP=Isotropization

by Production) . Since two terms are omitted we should expect that the best value of

γ should be different than (c2 + 8)/11; a value of γ = 0.6 (c2 = −1.4) was found to

give good agreement with experimental data. Since Eq. 11.89 is a truncated form of

Eq. 11.88 it does not satisfy all requirements that Eq. 11.88 do. Equation 11.89 does

satisfy symmetry condition and continuity but it does not satisfy the integral condition

in Eq. 11.82. Although Eq. 11.89 is a simpler, truncated version of Eq. 11.88, it is

often found to give more accurate results [32]. Since the IP model is both simpler and

seems to be more accurate than Eq. 11.88, it is one of the most popular models of the

rapid pressure-strain term. The coefficients for the slow and rapid terms in the LRR

and LRR-IP models are summarized in Table 11.1

11.7.6 Wall model of the pressure-strain term

When we derived the rapid pressure-strain model using Green’s function in Eq. 11.67

we neglected the influence of any boundaries. In wall-bounded domains it turns out

that the effect of the walls must be taken into account. Both the rapid term in the LRR

model and the IP model must be modified to include wall modeling.

The effect of the wall is to dampen turbulence. There are two main effects whose

underlying physics are entirely different.
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x1

x2

Figure 11.4: Modeling of wall correction in pressure-strain terms.

1. Viscosity. Close to the wall the viscous processes (viscous diffusion and dissi-

pation) dominate over the turbulent ones (production and turbulent diffusion).

2. Pressure. When a fluid particle approaches a wall, the presence of the wall is felt

by the fluid particle over a long distance. This is true for a fluid particle carried

by the wind approaching a building as well as for a fluid particle carried by a

fluctuating velocity approaching the wall in a turbulent boundary layer. In both

cases it is the pressure that informs the fluid particle of the presence of the wall.

Since the pressure-strain term includes the fluctuating pressure, it is obviously the

second of these two processes that we want to include in the wall model. Up to now

we have introduced two terms for modeling the pressure-strain term, the slow and the

fast term. It is suitable to include a slow and a fast wall model term, i.e.

Φij = Φij,1 +Φij,2 +Φij,1w +Φij,2w (11.90)

where subscript w denotes wall modeling.

Consider a wall, see Fig. 11.4. The pressure fluctuations dampens the wall-normal

fluctuations. Furthermore, the damping effect of the wall should decrease for increasing

wall distance. We need to scale the wall-normal distance with a relevant quantity and

the turbulent length scale, k3/2/ε, seems to be a good candidate. For the wall-normal

fluctuations, the IP wall model reads [33]

Φ22,1w = −2c1w
ε

k
v′22 f

f =
k

3

2

2.55|ni,w(xi − xi,w)|ε
(11.91)

where ni,w(xi−xi,w) denotes the distance vector to the wall. As explained above, this

damping is inviscid (due to pressure) and affects the turbulent fluctuations well into

the log-region. It has nothing to do with viscous damping. Away from the wall, in

the fully turbulent region, the damping function goes to zero since the distance to the

wall, |ni,w(xi−xi,w)|, increases faster than the turbulence length scale, k3/2/ε. In the

viscous region the wall model term, Φ22,1w, is not relevant and should be zero since

it should account only for inviscid damping. Moreover, function f should not exceed

one.

The IP wall model for the wall-parallel fluctuations reads

Φ11,1w = Φ33,1w = c1w
ε

k
v′22 f (11.92)
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The requirement that the sum of the pressure strain term should be zero. i.e. Φii,1w =
0, is now satisfied since Φ11,1w +Φ22,1w +Φ33,1w = 0.

The wall model for the shear stress is set as

Φ12,1w = −3

2
c1w

ε

k
v′1v

′
2f (11.93)

The factor 3/2 is needed to ensure that Φii,1w = 0 is satisfied when the coordinate sys-

tem is rotated. You can prove this by rotating the matrix [Φ11,1w,Φ12,1w; Φ21,1w,Φ22,1w]
and taking the trace of Φ in the principal coordinates system (i.e. taking the sum of the

eigenvalues).

The general formula for a wall that is not aligned with a Cartesian coordinate axis

reads [33]

Φij,1w = c1w
ε

k

(
v′kv

′
mnk,wnm,wδij −

3

2
v′kv

′
ink,wnj,w − 3

2
v′kv

′
jni,wnk,w

)
f

(11.94)

An analogous wall model is used for the rapid part which reads

Φij,2w = c2w

(
Φkm,2nk,wnm,wδij −

3

2
Φki,2nk,wnj,w − 3

2
Φkj,2ni,wnk,w

)
f

(11.95)

11.8 The k − ε model

The exact k equation is given by Eq. 11.23. By inserting the model assumptions for

the turbulent diffusion (Eq. 11.39), the production (Eq. 11.38) and the buoyancy term

(Eqs. 11.34 and 11.35) we get the modeled equation for k

∂k

∂t
+ v̄j

∂k

∂xj
= νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

+ giβ
νt
σθ

∂θ̄

∂xi

−ε+ ∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

] (11.96)

In the same way, the modeled ε equation is obtained from Eq. 11.29

∂ε

∂t
+ v̄j

∂ε

∂xj
=
ε

k
cε1νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

+ cε1gi
ε

k

νt
σθ

∂θ̄

∂xi
− cε2

ε2

k
+

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

] (11.97)

The turbulent viscosity is computed as

νt = cµ
k2

ε
(11.98)

The standard values for the coefficients read

(cµ, cε1, cε2, σk, σε) = (0.09, 1.44, 1.92, 1, 1.3) (11.99)

For details on how to obtain these constants are obtained, see Section 3 in Introduction to turbulence models.

In that report, details on wall-functions and low-Reynolds number models can be found

in Sections 3 and 4, respectively.

http://www.tfd.chalmers.se/~lada/postscript_files/kompendium_turb.pdf
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11.9 The modeled v′iv
′

j equation with IP model

With the models for diffusion, pressure-strain and dissipation we get

∂v′iv
′
j

∂t
= (unsteady term)

v̄k
∂v′iv

′
j

∂xk
= (convection)

−v′iv′k
∂v̄j
∂xk

− v′jv
′

k

∂v̄i
∂xk

(production)

−c1
ε

k

(
v′iv

′
j −

2

3
δijk

)
(pressure strain, slow part)

−c2
(
Pij −

2

3
δijP

k

)
(pressure strain, rapid part)

+c1wρ
ε

k
[ v′kv

′
mnknmδij −

3

2
v′iv

′

knknj

−3

2
v′jv

′

knkni ]f (pressure strain, wall, slowpart)

+c2w [ Φkm,2nknmδij −
3

2
Φik,2nknj

−3

2
Φjk,2nkni ]f (pressure strain, wall, rapid part)

+ν
∂2v′iv

′
j

∂xk∂xk
(viscous diffusion)

+
∂

∂xm

[
νt
σk

∂v′iv
′
j

∂xm

]
(turbulent diffusion)

−giβv′jθ′ − gjβv′iθ
′ (buoyancy production)

−2

3
εδij (dissipation)

(11.100)

11.10 Algebraic Reynolds Stress Model (ASM)

The Algebraic Reynolds Stress Model is a simplified Reynolds Stress Model. The

RSM and k − ε models are written in symbolic form (see p. 118 & 121) as:

RSM : Cij −Dij = Pij +Φij − εij

k − ε : Ck −Dk = P k − ε
(11.101)

In ASM we assume that the transport (convective and diffusive) of v′iv
′
j is related to

that of k, i.e.

Cij −Dij =
v′iv

′
j

k

(
Ck −Dk

)

Inserting Eq. 11.101 into the equation above gives

Pij +Φij − εij =
v′iv

′
j

k

(
P k − ε

)
(11.102)
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Thus the transport equation (PDE) for v′iv
′
j has been transformed into an algebraic

equation based on the assumption in Eq. 11.101.

Now we want to re-write this equation as an equation for v′iv
′
j . Insert the IP models

for Φij,1 (Eq. 11.56) and Φij,2 (Eq. 11.89) and the isotropic model for εij (Eq. 11.48)

in Eq. 11.102 and multiply by k/ε so that

k

ε
Pij − c1

(
v′iv

′
j −

2

3
δijk

)
− c2

k

ε

(
Pij −

2

3
δijP

k

)
− 2

3
δijk

+
k

ε
(Φij,1w +Φij,2w) =

v′iv
′
j

ε

(
P k − ε

)

Collect all v′iv
′
j terms so that

v′iv
′
j

(
P k

ε
− 1 + c1

)
=

k

ε

[
Pij − c2

(
Pij −

2

3
δijP

k

)
+Φij,1w +Φij,2w

]
+

2

3
δijk(−1 + c1)

=
k

ε

[
Pij −δij

2

3
P k − c2

(
Pij −

2

3
δijP

k

)
+Φij,1w +Φij,2w

]
+

2

3
δijk(P

k/ε − 1 + c1)

where (2/3)δijP
kk/ε was added and subtracted at the last line (shown in boxes). Di-

viding both sides by P k/ε− 1 + c1 gives finally

v′iv
′
j =

2

3
δijk +

k

ε

(1− c2)
(
Pij − 2

3δijP
k
)
+Φij,1w +Φij,2w

c1 + P k/ε− 1
(11.103)

In boundary layer flow Eq. 11.103 reads (without any wall terms, i.e. Φij,1w =
Φij,2w = 0)

−v′1v′2 =
2

3
(1− c2)

c1 − 1 + c2P
k/ε

(c1 − 1 + P k/ε)
cµ

k2

ε

∂v̄1
∂y

As can be seen, this model can be seen as an extension of an eddy-viscosity model

where the cµ constant is made a function of the ratio P k/ε.

11.11 Explicit ASM (EASM or EARSM)

Equation 11.103 is an implicit equation for v′iv
′
j , i.e. the Reynolds stresses appear both

on the left and the right side of the equation. It would of course be advantageous to

be able to get an explicit expression for the Reynolds stresses. Pope [34] managed

to derive an explicit expression for ASM in two dimensions. He assumed that the

Reynolds stress tensor can be expressed in the strain-rate tensor, s̄ij , and the vorticity

tensor, Ωij . Furthermore, he showed that the coefficients, G(n), in that expression can

be a function of not more than the following five invariants

(k2/ε2)s̄ij s̄ji, (k2/ε2)Ω̄ijΩ̄ji, (k3/ε3)s̄ij s̄jks̄ki

(k3/ε3)Ω̄ijΩ̄jk s̄ki, (k4/ε4)Ω̄ijΩ̄jks̄kms̄mi

(11.104)

In two dimension the expression reads

v′iv
′
j =

2

3
kδij +G(1) k

2

ε
s̄ij ++G(2) k

3

ε2
(s̄ikΩ̄kj − Ω̄iks̄kj) (11.105)
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n

sXxXx x1

x2 v̄1(x2)

Figure 11.5: Boundary layer flow.

In general three-dimensional flow, the Reynolds stress tensor depends on 10 ten-

sors, T n
ij [34], i.e.

v′iv
′
j − kδij =

10∑

n=1

G(n)T n
ij

T 1
ij = s̄ij , T 2

ij = s̄ikΩ̄kj − s̄jkΩ̄ki, T 3
ij = s̄iks̄kj −

1

3
δij s̄iks̄ki

T 4
ij = Ω̄ikΩ̄kj −

1

3
δijΩ̄ikΩ̄ki, T 5

ij = Ω̄iks̄kms̄mj − s̄ims̄mkΩ̄kj

T 6
ij = Ω̄imΩ̄mks̄kj + s̄ikΩ̄kmΩ̄mj −

2

3
δijΩ̄pmΩ̄mks̄kp

T 7
ij = Ω̄ims̄mkΩ̄knΩ̄nj − Ω̄imΩ̄mks̄knΩ̄nj , T 8

ij = s̄imΩ̄mks̄kns̄nj − s̄ims̄mkΩ̄kns̄nj

T 9
ij = Ω̄imΩ̄mks̄kns̄nj − s̄ims̄mkΩ̄knΩ̄nj −

2

3
δijΩ̄pmΩ̄mks̄kns̄np

T 10
ij = Ω̄ims̄mks̄knΩ̄npΩ̄pj − Ω̄imΩ̄mks̄kns̄npΩ̄pj

(11.106)

where T n
ij may depend on the five invariants in Eq. 11.104. Equation 11.106 is a general

form of a non-linear eddy-viscosity model. Any ASM may be written on the form of

Eq. 11.106.

It may be noted that Eq. 11.106 includes only linear and quadratic terms of s̄ij
and Ω̄ij . That is because of Cayley-Hamilton theorem which states that a second-

order tensor satisfies its own characteristic equation (see Section 1.20 in [28]); hence

cubic terms or higher can recursively be expressed in linear (s̄ij) and quadratic tensors

(s̄iks̄kj ). Furthermore, note that all terms in Eq. 11.106 are symmetric and traceless as

required by the left side, v′iv
′
j − 2δijk/3.

11.12 Boundary layer flow

In order to better understand the Reynolds stress equation, Eq. 11.100, it is useful to

look at its source terms which to a large degree govern the magnitude of v′iv
′
j . A

large source term in the equation for the v′21 equation, for example, will increase v′21
and vice versa, see Section 9.1. Let us study boundary layer flow (Fig. 11.5) where

v̄2 = 0, v̄1 = v̄1(x2). The production Pij has the form:

Pij = −v′iv′k
∂v̄j
∂xk

− v′jv
′

k

∂v̄i
∂xk
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In this special case we get:

P11 = −2v′1v
′
2

∂v̄1
∂x2

P12 = −v′22
∂v̄1
∂x2

P22 = 0

Is v′22 zero because its production term P22 is zero? No! The sympathetic term Φij ,

which takes from the rich (i.e. v′21 ) and gives to the poor (i.e. v′22 ), saves the unfair

situation! The IP model for Φij,1 and Φij,2 (Eq. 11.56) and Φij,2 (Eq. 11.89) gives

Φ22,1 = c1
ε

k

(
2

3
k − v′22

)
> 0

Φ22,2 = c2
1

3
P11 = −c2

2

3
v′1v

′
2

∂v̄1
∂x2

> 0

Note also that the dissipation term for the v′1v
′
2 is zero, but it takes the value 2

3ε for

the v′21 and v′22 equations (see p. 126). Since the modeled v′1v
′
2 does not have any

dissipation term, the question arises: what is the main sink term in the v′1v
′
2 equation?

The answer is, again, the pressure strain term Φ12,1 and Φ12,2.
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∂θ̄/∂x3 > 0
∂ρ/∂x3 < 0

θ̄2 > θ̄0

θ̄1 < θ̄0

F

F

ρ2 < ρ0

ρ1 > ρ0

x3

Figure 12.1: Stable stratification due to positive temperature gradient ∂θ̄/∂x3 > 0.

12 Reynolds stress models vs. eddy-viscosity models

In this section we present three fundamental physical processes which Reynolds stress

models are able to handle whereas eddy-viscosity models fail. The reason for the

superiority of the former model is in all cases that the production term is treated exactly,

whereas in eddy-viscosity models it is modeled.

12.1 Stable and unstable stratification

In flows where buoyancy is dominating, the temperature has a large effect on the tur-

bulence through the buoyancy term Gij , see Eq. 11.11. If the temperature increases

upwards (i.e. ∂θ̄/∂x3 > 0), then the flow is stably stratified. This is illustrated in

Fig. 12.1. Consider ∂θ̄/∂x3 > 0. This means that the density decreases with increas-

ing vertical height, i.e. ∂ρ/∂x3 < 0. If a fluid particle is displaced from its equilibrium

level 0 up to level 2, see Fig. 12.1, it is heavier then the surrounding at this new level

(ρ0 > ρ2). Hence, the buoyancy forces the particle back to its original position 0. In

this way the vertical turbulent fluctuations are dampened. Similarly if a particle origi-

nating at level 0, is moved down to level 1. Here it is lighter than its new environment,

and buoyancy takes it back to its original level 0.

For the case of unstable stratification, the situation is reversed. Cold fluid is

located on top of hot fluid, i.e. ∂θ̄/∂x3 < 0 and ∂ρ/∂x3 > 0. In Fig. 12.1 we would

then have ρ2 > ρ0. If a fluid particle at level 0 is displaced upwards to level 2, it is

at this location lighter than its new environment; hence it continues to move upwards.

If it is moved down to level 1 it is heavier than its new environments and it will then

continue downwards. Hence, turbulent fluctuations are enhanced. This flow situation

is called unstable stratification.

Now we will investigate how the Reynolds stress model behaves in stable con-

ditions, i.e. when ∂θ̄/∂x3 > 0. The production term due to buoyancy reads (see

Eq. 11.11)

G33 = 2gβv′3θ
′ (12.1)

since gi = (0, 0,−g). From the equation for the turbulent heat flux, v′3θ
′ (i.e. Eq. 11.22
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with i = 3), we find the production term for v′3θ
′

P3θ = −v′3v′k
∂θ̄

∂xk
− v′kθ

′
∂v̄3
∂xk

(12.2)

In the case illustrated in Fig. 12.1, the production term due to temperature gradient

reads P3θ = −v′23 ∂θ̄/∂x3 < 0 (recall that we assume that buoyancy dominates so that

the first term in Eq. 12.2 is much larger than the second one). Since the main source

term in the v′3θ
′ equation, P3θ , is negative, it makes v′3θ

′ < 0 so that G33 < 0 (see

Eq. 12.1). Thus, for the case illustrated in Fig. 12.1, we find that the production term,

G33, due to buoyancy yields a damping of the vertical fluctuations as it should. Note

that the horizontal turbulent fluctuations are not affected by the buoyancy term, Gij ,

since G11 = G22 = 0 because the gravity is in the x3 direction (i.e. g1 = g2 = 0).

If the situation in Fig. 12.1 is reversed so that ∂θ̄/∂x3 < 0 the vertical fluctuations

are instead augmented. This is called unstably stratified conditions.

When eddy-viscosity models are used, transport equations are usually not solved

for v′iθ
′. Instead the heat flux tensor is modeled with an eddy-viscosity assumption

using the Boussinesq assumption, see Eq. 11.34. The buoyancy term, Gk , in the k
equation reads, see Eq. 11.11 (take the trace of Gij and divide by two)

Gk = 0.5Gii = −giβv′iθ′ (12.3)

For gi = (0, 0,−g), it reads Gk = gβv′3θ
′ which with Eq. 11.34 gives

Gk = −gβ νt
σθ

∂θ̄

∂x3
(12.4)

Hence it is seen that in stably stratified conditions, Gk < 0 as required. The differ-

ence between an eddy-viscosity model and a Reynolds stress model, is that the former

reduces k whereas the latter reduces only the vertical fluctuations.

12.2 Curvature effects

When the streamlines in boundary layer flow have a convex curvature, the turbulence

is stabilized. This dampens the turbulence [35, 36], especially the shear stress and

the Reynolds stress normal to the wall. Concave curvature destabilizes the turbu-

lence. The ratio of boundary layer thickness δ to curvature radius R is a common

parameter for quantifying the curvature effects on the turbulence. The work reviewed

by Bradshaw [35] demonstrates that even such small amounts of convex curvature as

δ/R = 0.01 can have a significant effect on the turbulence. In [37] they carried out an

experimental investigation on a configuration simulating the flow near a trailing edge

of an airfoil, where they measured δ/R ≃ 0.03. They reported a 50 percent decrease

of ρv′22 (Reynolds stress in the normal direction to the wall) owing to curvature. The

reduction of ρv′21 and −ρv′1v′2 was also substantial. In addition they reported significant

damping of the turbulence in the shear layer in the outer part of the separation region.

An illustrative model case is curved boundary layer flow, see Fig. 12.2. A polar

coordinate system r − θ with θ̂ locally aligned with the streamline is introduced. As

vθ = vθ(r) (with ∂vθ/∂r > 0 and vr = 0), the radial inviscid momentum equation

(i.e. the terms including viscosity are omitted) degenerates to

ρv2θ
r

− ∂p

∂r
= 0 (12.5)
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Figure 12.2: Flow in a polar coordinate system illustrating streamline curvature. The

streamline is aligned with the θ axis.

r

v̄1

x1

x2
θ

streamline

Figure 12.3: Streamline curvature occurring when the flow approaches, for example, a

separation region or an obstacle.

Here the variables are instantaneous or laminar. The centrifugal force exerts a force in

the normal direction (outward) on a fluid following the streamline, which is balanced

by the pressure gradient. Since we have assumed that ∂vθ/∂r > 0, Eq. 12.5 shows that

the pressure gradient increases with r. If the fluid by some disturbance (e.g. turbulent

fluctuation) is displaced outwards to level A, it encounters a pressure gradient larger

than that to which it was accustomed at r = r0, since (vθ)A > (vθ)0, which from

Eq. 12.5 gives (∂p/∂r)A > (∂p/∂r)0. Hence the fluid is forced back to r = r0.

Similarly, if the fluid is displaced inwards to level B, the pressure gradient is smaller

here than at r = r0 and cannot keep the fluid at level B. Instead the centrifugal force

drives it back to its original level.

It is clear from the model problem above that convex curvature, when ∂vθ/∂r > 0,

has a stabilizing effect on (turbulent) fluctuations, at least in the radial direction. It is

discussed below how the Reynolds stress model responds to streamline curvature.

Assume that there is a flat-plate boundary layer flow, see Fig. 12.3. The ratio of

the normal stresses ρv′21 to ρv′22 is typically 5 (or more). At one x1 station, the flow

is deflected upwards. How will this affect turbulence? Let us study the effect of con-

cave streamline curvature. The production terms Pij owing to rotational strains (i.e.
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∂Vθ/∂r > 0 ∂Vθ/∂r < 0

convex curvature stabilizing destabilizing

concave curvature destabilizing stabilizing

Table 12.1: Effect of streamline curvature on turbulence.

v̄1(x2)

x1

x2

Figure 12.4: The velocity profile for a wall jet.

∂v̄1/∂x2, ∂v̄2/∂x1) can be written as (see Eq. 11.11):

RSM, v′21 − eq. : P11 = −2v′1v
′
2

∂v̄1
∂x2

(12.6a)

RSM, v′1v
′
2 − eq. : P12 = −v′21

∂v̄2
∂x1

− v′22
∂v̄1
∂x2

(12.6b)

RSM, v′22 − eq. : P22 = −2v′1v
′
2

∂v̄2
∂x1

(12.6c)

k − ε P k = νt

(
∂v̄1
∂x2

+
∂v̄2
∂x1

)2

(12.6d)

The terms in boxes appear because of the streamline curvature.

As long as the streamlines are parallel to the wall, all production is a result of

∂v̄1/∂x2. However as soon as the streamlines are deflected, there are more terms

resulting from ∂v̄2/∂x1. Even if ∂v̄2/∂x1 is much smaller than ∂v̄1/∂x2 it will still

contribute non-negligibly to P12 as ρv′21 is much larger than ρv′22 . Thus the magnitude

of P12 will increase (P12 is negative) as ∂v̄2/∂x1 > 0. An increase in the magnitude of

P12 will increase −v′1v′2, which in turn will increase P11 and P22. This means that ρv′21
and ρv′22 will be larger and the magnitude of P12 will be further increased, and so on.

It is seen that there is a positive feedback, which continuously increases the Reynolds

stresses. The turbulence is destabilized owing to concave curvature of the streamlines.

Note that eddy-viscosity models such as k − ε and k − ω models cannot account for

streamline curvature since the two rotational strains, ∂v̄1/∂x2 and ∂v̄2/∂x1, in the

production term are multiplied by the same coefficient (the turbulent viscosity).

Above, we have assumed concave curvature and positive velocity gradient. There

are two other options.

1. If the flow (concave curvature) is a wall jet flow where ∂v̄1/∂x2 < 0 in the
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x1

x2
x1

x2

x2

x1

Figure 12.5: The flow pattern for stagnation flow.

outer part (see Fig. 12.4) the situation will be reversed: the turbulence will be

stabilized.

2. If the streamline (and the wall) is deflected downwards, the situation will be as

follows: the turbulence is stabilizing when ∂v̄1/∂x2 > 0, and destabilizing for

∂v̄1/∂x2 < 0.

The stabilizing or destabilizing effect of streamline curvature depends on the type

of curvature (convex or concave), and whether there is an increase or decrease in tan-

gential momentum with radial distance from its origin (i.e. the sign of ∂Vθ/∂r). For

convenience, these cases are summarized in Table 12.1. It should be noted that con-

cave or convex depends on from which point the streamline is viewed. The streamline

in Fig. 12.3, for example, is concave when viewed from the wall but convex when

viewed from the origin of the circle with radius r.

12.3 Stagnation flow

The k − ε model does in this type of flow not model the normal stresses properly,

whereas ASM/RSM do. The production term in the k equations for RSM/ASM and

k − ε model in stagnation flow (see Fig. 12.5) due to ∂v̄1/∂x1 and ∂v̄2/∂x2 (which

are the dominant strains) is:

RSM : 0.5 (P11 + P22) = −v′21
∂v̄1
∂x1

− v′22
∂v̄2
∂x2

= − ∂v̄1
∂x1

(v′21 − v′22 ) (12.7)

k − ε : P k = 2νt

{(
∂v̄1
∂x1

)2

+

(
∂v̄2
∂x2

)2
}

(12.8)

where continuity ∂v̄1/∂x1 = −∂v̄2/∂x2 has been employed. In RSM, the two terms

are added with sign. In the k − ε model, however, the production will be large because

the difference in sign of the two terms is not taken into account because it includes the

square of the velocity gradients.
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12.4 RSM/ASM versus k − ε models

• Advantages with k − ε models (or eddy viscosity models):

i) simple due to the use of an isotropic eddy (turbulent) viscosity

ii) stable via stability-promoting second-order gradients in the mean-flow equa-

tions

iii) work reasonably well for a large number of engineering flows

• Disadvantages:

i) isotropic, and thus not good in predicting normal stresses (v′21 , v
′2
2 , v

′2
3 )

ii) as a consequence of i) it is unable to account for curvature effects

iii) as a consequence of i) it is unable to account for irrotational strains (stag-

nation flow)

iv) in boundary layers approaching separation, the production due to normal

stresses is of the same magnitude as that due to shear stresses [38].

• Advantages with ASM/RSM:

i) the production terms do not need to be modeled

ii) thanks to i) it can selectively augment or damp the stresses due to cur-

vature effects (RSM is better than ASM because the convective terms are

accounted for) and it is more accurate for boundary layers approaching

separation, buoyancy etc.

• Disadvantages with ASM/RSM:

i) RSM is complex and difficult to implement, especially implicit ASM

ii) numerically unstable because small stabilizing second-order derivatives in

the momentum equations (only viscous diffusion)

iii) CPU time consuming
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13 Realizability

There are a number of realizability constraints. The usual two ones are that all normal

stresses should stay positive and that the correlation coefficient for the shear stress

should not exceed one, i.e.

v′2i ≥ 0 for all i

|v′iv′j |(
v′2i v

′2
j

)1/2 ≤ 1 no summation over i and j, i 6= j
(13.1)

These criteria are seldom used in RSMs. However, satisfying the first criteria is actually

of importance for eddy-viscosity models in stagnation flow [39]. Assume that the flow

is in the x1 direction and that it approaches the wall (see Fig. 12.5). The Boussinesq

assumption for the normal stress v′21 reads (cf. Eq. 12.7)

v′21 =
2

3
k − 2νt

∂v̄1
∂x1

=
2

3
k − 2νts̄11 (13.2)

It is seen that if s̄11 gets too large then v′21 < 0 which is nonphysical, i.e. non-realizable.

Let’s now briefly repeat the concept “invariants”. This means something that is

independent of the coordinate system. Here we mean independent of rotation of the

coordinate system. If a tensor is symmetric, then we know that it has real eigenvalues

which means that we can rotate the coordinate system so that the off-diagonal compo-

nents vanish (see, e.g., [28]). This corresponds to the principal coordinate directions.

For the strain tensor it means that the off-diagonal components of s̄ij vanish and this

is the coordinate system where the diagonal components become largest (e.g. s̄11 in

Eq. 13.2). This is thus the coordinate system in which the danger of negative v′21 from

Eq. 13.2 is largest. The equation for finding the eigenvalues of a tensor Cij is (see

e.g. [28] or [40])

|Cij − δijλ| = 0 (13.3)

which gives, in 2D, ∣∣∣∣
C11 − λ C12

C21 C22 − λ

∣∣∣∣ = 0 (13.4)

The resulting equation is

λ2 − I2D1 λ+ I2D2 = 0

I2D1 = Cii

I2D2 =
1

2
(CiiCjj − CijCij) = det(Cij)

(13.5)

Since Eq. 13.5 is the same irrespectively of the orientation of the original coordinate

system, it follows that its coefficients I2D1 and I2D2 are invariants.

In 3D, Eq. 13.3 gives

∣∣∣∣∣∣

C11 − λ C12 C13

C21 C22 − λ C23

C31 C32 C33 − λ

∣∣∣∣∣∣
= 0 (13.6)
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which gives

λ3 − I3D1 λ2 + I3D2 λ− I3D3 = 0

I3D1 = Cii

I3D2 =
1

2
(CiiCjj − CijCij)

I3D3 =
1

6
(2CijCjkCki − 3CijCjiCkk + CiiCjjCkk) = det(Cij)

(13.7)

The invariants are I3D1 , I3D2 and I3D2 .

Let’s go back to Eq. 13.2 and assume incompressible 2D flow. The first invariant

reads (cf. Eq. 13.5)

I2D1 = s̄ii = s̄11 + s̄22 = λ1 + λ2 = 0 (13.8)

It is zero due to the continuity equation. The second invariant of s̄ij reads

I2D2 = −s̄ij s̄ij/2, (13.9)

(see Eq. 13.5) which is independent of the orientation of the coordinate system (hence

the name ”invariant”). The solution to Eq. 13.5, using Eq. 13.8, is

λ1,2 = ±
(
−I2D2

)1/2
= ±

( s̄ij s̄ij
2

)1/2
(13.10)

The eigenvalues of s̄ij correspond to the strains in the principal axis. As discussed

above, we apply Eq. 13.2 in the principal coordinate directions of s̄ij . Hence, s̄11 in

Eq. 13.2 is replaced by the largest eigenvalue so that

v′21 =
2

3
k − 2νtλ1 (13.11)

The requirement v′21 ≥ 0 gives now together with Eq. 13.11

νt ≤
k

3|λ1|
=
k

3

(
2

s̄ij s̄ij

)1/2

(13.12)

In 3D, Eq. 13.7 instead of Eq. 13.5 is used, and Eq. 13.10 is replaced by [39]

|λk| =
(
2s̄ij s̄ij

3

)1/2

(13.13)

This is a simple modification of an eddy-viscosity model, and it ensures that the normal

stresses stay positive.

13.1 Two-component limit

Another realizability constraint is to require that when v′2i approaches zero near walls,

it should do so smoothly. One way to ensure this is to require that the derivative of v′2i
should go to zero when v′2i goes to zero, i.e.

v′2i → 0 ⇒ dv′2i
dt

→ 0 (13.14)
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where d/dt denotes the material derivative (think of Eq. 13.14 in Lagrangian coordi-

nates, i.e. we follow a fluid particle as it approaches the wall). Equation 13.14 requires

that when v′2i approaches zero, the left side (and thus also the right side) of the trans-

port equation of v′2i should also do so too. Since we are here concerned about the

pressure-strain term, we’ll take a look at how it behaves near walls when v′2i → 0. This

is of some relevance in near-wall turbulence where the wall-normal stress goes to zero

faster than the wall-parallel ones: this state of turbulence is called the two-component

limit [41]. The wall-normal component goes to zero as v′22 = O(x42) whereas v′21 and

v′23 go to zero as O(x22), see Section 4 in Introduction to turbulence models. Neither

the form of Φij,2 in Eq. 11.89 nor Eq. 11.88 satisfy the requirement that Φ22,2 = 0

when v′22 = 0 [29]. In Eq. 11.89, for example,

Φ22,2 → c2
2

3
δijP

k 6= 0 (13.15)

even if v′22 = 0. Very complex forms of Φij,2 have been proposed [42] [CL96] which

include terms cubic in v′iv
′
j . The CL96 model does satisfy the two-component limit.

Another advantage of the CL96 model is that it does not need any wall distances, which

is valuable in complex geometries.

The models of the slow pressure-strain in Eq. 11.56 (linear model) and Eq. 11.62

(non-linear model) do also not satisfy the two-component limit. The Rotta model

(Eq. 11.56), for example, gives

Φ22,1 → c1ρ
2ε

3
6= 0 (13.16)

when v′22 → 0. The only way to ensure that Φ22,1 → 0 is to make c1 → 0 when

the wall is approached. A convenient parameter proposed in [41] is A which is an

expression of A2 and A3 (the second and third invariant of aij , respectively), i.e.

A2 = aijaji, A3 = aijajkaki, A = 1− 9

8
(A2 −A3) (13.17)

The parameter A = 0 in the two-component limit and A = 1 in isotropic turbulence.

Thus A is a suitable parameter to use when damping the constant c1 as the wall is

approached.

http://www.tfd.chalmers.se/~lada/postscript_files/kompendium_turb.pdf
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14 Non-linear Eddy-viscosity Models

In traditional eddy-viscosity models the turbulent stress v′iv
′
j is formulated from the

Boussinesq assumption, i.e.

aij = −2νt
s̄ij
k

s̄ij =
1

2

(
∂v̄i
∂xj

+
∂v̄j
∂xi

) (14.1)

where the anisotropy tensor is defined as

aij ≡
v′iv

′
j

k
− 2

3
δij (14.2)

The relation between the stress v′iv
′
j and the velocity gradient in Eq. 14.1 is, as can

be seen, linear. One way to make eddy-viscosity models more general is to include

non-linear terms of the strain-rate (i.e. the velocity gradient) [34]. A subset of the most

general form reads [43]

aij = −2cµτ s̄ij

+ c1τ
2

(
s̄iks̄kj −

1

3
s̄ℓks̄ℓkδij

)
+ c2τ

2
(
Ω̄iks̄kj − s̄ikΩ̄kj

)

+ c3τ
2

(
Ω̄ikΩ̄jk − 1

3
Ω̄ℓkΩ̄ℓkδij

)
+ c4τ

3
(
s̄iks̄kℓΩ̄ℓj − Ω̄iℓs̄ℓks̄kj

)

+ c5τ
3

(
Ω̄iℓΩ̄ℓms̄mj + s̄iℓΩ̄ℓmΩ̄mj −

2

3
Ω̄mnΩ̄nℓs̄ℓmδij

)

+ c6τ
3s̄kℓs̄kℓs̄ij + c7τ

3Ω̄kℓΩ̄kℓs̄ij

Ω̄ij =
1

2

(
∂v̄i
∂xj

− ∂v̄j
∂xi

)

(14.3)

where τ is a turbulent time scale; for a non-linear k − ε model τ = k/ε, and for a non-

linear k − ω model τ = 1/ω. The tensor groups correspond to a subset of Eq. 11.106:

Line 1: T 1
ij ,

Line 2: T 3
ij and T 2

ij

Line 3: T 4
ij and T 5

ij

Line 4: T 6
ij

Line 5: T 1
ij multiplied by the invariants s̄kℓs̄kℓ and Ω̄kℓΩ̄kℓ

The expression in Eq. 14.3 is cubic in ∂v̄i/∂xj . However, note that it is only

quadratic in s̄ij and Ω̄ij . This is due to Cayley-Hamilton theorem which states that a

tensor is only linearly independent up to quadratic terms, see p. 130; this means that,

for example, s̄3ij = s̄iks̄kℓs̄ℓj can be expressed as a linear combination of s̄2ij = s̄ik s̄kj
and s̄ij .

aij is symmetric and its trace is zero; it is easily verified that the right side of

Eq. 14.3 also has these properties. Examples of non-linear models (sometimes also
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called explicit algebraic Reynolds stress models, EARSM) in the literature are the mod-

els presented in [43–46]. EARSMs are very popular — especially the model in [46]

— in the aeronautical community where explicit time-marching solvers are used. They

are computationally cheap, more accurate than linear eddy-viscosity models and they

do not give rise to any numerical instabilities as in implicit solvers (like SIMPLE).

In implicit solvers a large turbulent viscosity in the diffusion term of the momentum

equations is needed to stabilize the solution procedure.

Let’s take a closer look on Eq. 14.3 in fully developed channel flow (v̄2 = v̄3 =
∂/∂x1 = ∂/∂x3 ≡ 0); we obtain

a11 =
1

12
τ2
(
∂v̄1
∂x2

)2

(c1 + 6c2 + c3)

a22 =
1

12
τ2
(
∂v̄1
∂x2

)2

(c1 − 6c2 + c3)

a33 = −1

6
τ2
(
∂v̄1
∂x2

)2

(c1 + c3)

a12 = −cµτ
∂v̄1
∂x2

+
1

4
τ3
(
∂v̄1
∂x2

)3

(−c5 + c6 + c7)

(14.4)

Using values on the constants as in [43], i.e c1 = −0.05, c2 = 0.11, c3 = 0.21,

c4 = −0.8 c5 = 0, c6 = −0.5 and c7 = 0.5 we get

a11 =
0.82

12
τ2
(
∂v̄1
∂x2

)2

⇒ v′21 =
2

3
k +

0.82

12
kτ2

(
∂v̄1
∂x2

)2

a22 =
−0.5

12
τ2
(
∂ū1
∂x2

)2

⇒ v′22 =
2

3
k − 0.5

12
kτ2

(
∂v̄1
∂x2

)2

a33 =
−0.16

12
τ2
(
∂v̄1
∂x2

)2

⇒ v′23 =
2

3
k − 0.16

12
kτ2

(
∂v̄1
∂x2

)2

a12 = −cµ
k

ε

∂v̄1
∂x2

(14.5)

We find that indeed the non-linear model gives anisotropic normal Reynolds stresses.

In Eqs. 14.4 and 14.5 we have assumed that the only strain is ∂v̄1/∂x2. When

we discussed streamline curvature effects at p. 146 we found that it is important to

investigate the effect of secondary strains such as ∂v̄2/∂x1. Let’s write down Eq. 14.3

for the strain ∂v̄2/∂x1

a11 =
1

12
τ2
(
∂v̄2
∂x1

)2

(c1 − 6c2 + c3)

a22 =
1

12
τ2
(
∂v̄2
∂x1

)2

(c1 + 6c2 + c3)

a33 = −1

6
τ2
(
∂v̄2
∂x1

)2

(c1 + c3)

a12 = −1

4
τ3
(
∂v̄2
∂x1

)3

(c5 + c6 + c7)

(14.6)



14. Non-linear Eddy-viscosity Models 153

Inserting the constants from [43] (see above) we obtain

a11 = −0.5

12
τ2
(
∂v̄2
∂x1

)2

a22 =
0.82

12
τ2
(
∂v̄2
∂x1

)2

a33 = −0.16

12
τ2
(
∂v̄2
∂x1

)2

, a12 = 0

(14.7)

As can be seen the coefficient for a22 is larger than that in Eq. 14.5, and hence the model

is slightly more sensitive to the secondary strain, ∂v̄2/∂x1, than to the primary one,

∂v̄1/∂x2. Thus, the non-linear models are able to account for streamline curvature, but

due to the choice of constants c5 + c6 + c7 = 0 this effect is weak.
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15 The V2F Model

In the V2F model of [39, 47, 48] two additional equations, apart from the k and ε-

equations, are solved: the wall-normal stress v′22 and a function f . This is a model

which aims at improving modeling of wall effects on the turbulence.

Walls affect the fluctuations in the wall-normal direction, v′22 , in two ways. The wall

damping of v′22 is felt by the turbulence fairly far from the wall (x+2 . 200) through the

pressure field (i.e. the pressure-strain term) whereas the viscous damping takes place

within the viscous and buffer layer (x+2 . 10). In usual eddy-viscosity models both

these effects are accounted for through damping functions. The damping of v′22 is in

the RSM accounted for through the modeled pressure-strain terms Φ22,1w and Φ22,2w

(see Eqs. 11.94 and Eq. 11.95). They go to zero far away from the wall (x+2 & 100).

In the V2F model the problem of accounting for the wall damping of v′22 is simply

resolved by solving its transport equation. The v′22 equation in boundary-layer form

reads (see Eq. 9.16 at p. 105)

∂ρv̄1v′22
∂x1

+
∂ρv̄2v′22
∂x2

=
∂

∂x2

[
(µ+ µt)

∂v′22
∂x2

]
− 2v′2

∂p′

∂x2
− ρε22 (15.1)

in which the diffusion term has been modeled with an eddy-viscosity assumption, see

Eq. 11.46 at p. 126. Note that the production term P22 = 0 because in boundary-layer

approximation v̄2 ≪ v̄1 and ∂/∂x1 ≪ ∂/∂x2. The model for the dissipation term,

ε22, is taken as in RSM (see Eq. 11.48)

εmodel
22 =

v′22
k
ε

Add and subtract εmodel
22 on the right side of Eq. 15.1 yields

∂ρv̄1v′22
∂x1

+
∂ρv̄2v′22
∂x2

=

∂

∂x2

[
(µ+ µt)

∂v′22
∂x2

]
− 2v′2

∂p′

∂x2
− ρε22 + ρ

v′22
k
ε− ρ

v′22
k
ε

(15.2)

In the V2F model P is now defined as

P = −2

ρ
v′2
∂p′

∂x2
− ε22 +

v′22
k
ε (15.3)

so that Eq. 15.2 can be written as

∂ρv̄1v′22
∂x1

+
∂ρv̄2v′22
∂x2

=
∂

∂x2

[
(µ+ µt)

∂v′22
∂x2

]
+ ρP − ρ

v′22
k
ε (15.4)

P is the source term in the v′22 -equation above, and it includes the velocity-pressure

gradient term and the difference between the exact and the modeled dissipation. Note

that this term is commonly split into a diffusion term and the pressure-strain term as

v′2
∂p′

∂x2
=
∂v′2p

′

∂x2
− p′

∂v′2
∂x2
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Physically, the main agent for generating wall-normal stress is indeed the pressure-

strain term via re-distribution, see example in Section 11.12.

A new variable f = P/k is defined and a relaxation equation is formulated for f
as

L2 ∂
2f

∂x22
− f = −Φ22

ρk
− 1

T

(
v′22
k

− 2

3

)

T = max

{
k

ε
, CT

(ν
ε

)1/2}

Φ22

ρk
=
C1

T

(
2

3
− v′22

k

)
+ C2

νt
k

(
∂v̄1
∂x2

)2

L = CL max

{
k3/2

ε
, Cη

(
ν3

ε

)1/4
}

(15.5)

where Φ22 is the IP model of the pressure-strain term, see Eqs. 11.56 and 11.89, the

first term being the slow term, and the second the rapid term. The constants are given

the following values: cµ = 0.23, CT = 6, cε1 = 1.44, cε2 = 1.9, σk = 0.9, σε =
1.3, C1 = 1.3, C2 = 0.3, CL = 0.2, Cη = 90.

The boundary condition for f is obtained from the v′22 equation. Near the wall, the

v′22 equation reads

0 = ν
∂2v′22
∂x22

+ fk − v′22
k
ε (15.6)

The first and the last term behave as O(x22) as x2 → 0 because Taylor analysis gives

v′22 = O(x42), ε = O(x02) and k = O(x22), see Section 4 Introduction to turbulence

Furthermore, ε = 2νk/x22 [49]; using this expression to replace k in Eq. 15.6 gives

0 =
∂2v′22
∂x22

+
fεx22
2ν2

− 2v′22
x22

(15.7)

Assuming that f and ε are constant very close to the wall, this equation turns into an

ordinary second-order differential equation with the solution

v′22 = Ax22 +
B

x2
− εf

x42
20ν2

Since v′22 = O(x42) as x2 → 0, both constants must be zero, i.e. A = B = 0, so we get

f = −20ν2

ε

v′22
x42

(15.8)

For more details, see [50].

Above we have derived the v′22 equation in boundary layer form assuming that x2
is the wall-normal coordinate. In general, three-dimensional flow it reads

∂ρv̄jv
2

∂xj
=

∂

∂xj

[
(µ+ µt)

∂v2

∂xj

]
+ ρfk − ρ

v2

k
ε

L2 ∂2f

∂xj∂xj
− f = −Φ22

ρk
− 1

T

(
v2

k
− 2

3

)

Φ22

ρk
=
C1

T

(
2

3
− v2

k

)
+ C2

P k

k

(15.9)
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Figure 15.1: Illustration of Eq. 15.12

In the V2F model a transport equation for the normal stress normal to walls is solved

for. If the wall lies in the x1 − x3 plane, then v2 = v′22 . However, if a wall lies in

the x2 − x3 plane, for example, this means that the transport equation for v′22 is turned

into an equation for v′21 , i.e. v2 = v′21 . This is done automatically since in the general

formulation in Eq. 15.9, ∂v̄1/∂x2 in the expression for Φ22 is replaced by P k. If the

wall lies in the x2−x3 plane the largest velocity gradient will be ∂v̄2/∂x1 or ∂v̄3/∂x1.

Why does the right side of Eq. 15.5 has the form it has? Far from the wall,

the source term in the v′22 -equation simplifies to Φ22 plus isotropic dissipation (see

Eq. 15.1). This is what happens, because far from the wall when ∂2f/∂x22 ≃ 0, so that

Eq. 15.5 can be written (T = k/ε)

kf ≡ P → Φ22 + ε(v′22 /k − 2/3) (15.10)

When this expression is inserted in Eq. 15.4 we get

∂ρv̄1v′22
∂x1

+
∂ρv̄2v′22
∂x2

=
∂

∂x2

[
(µ+ µt)

∂v′22
∂x2

]
+ ρΦ22 −

2

3
ρε (15.11)

which is the usual form of the modeled v′22 -equation with isotropic dissipation. Near

the wall, the diffusion term ∂2f/∂x22 makes f go from the value of its source term to

its (negative) wall value (see Eq. 15.8) over the lengthscaleL. This is how the influence

of the source term P in Eq. 15.4 is reduced as the wall is approached. The behavior of

the equation for f (Eq. 15.5) is illustrated in Fig. 15.1 where the equation

L2 ∂
2f

∂x22
− f + S = 0 (15.12)

has been solved with f = 0 at the wall and with different L and S.

As can be seen, f is, as required, reduced as the wall is approached. Furthermore,

f approaches the value of the source term as x2 > L. The influence of the lengthscale

L is nicely illustrated: the larger L, the further away from the wall does f go to its

far-field value.
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In the V2F model the turbulent viscosity is computed from

νt = Cµv′22 T (15.13)

The k and ε-equations are also solved (without damping functions). For conve-

nience, the boundary conditions are given again

k = 0, v′22 = 0

ε = 2νk/x22

f = −20ν2v′22
εx42

(15.14)

The boundary condition for f makes the equation system numerically unstable.

One way to get around that problem is to solve both the k, ε and v′22 , f equations

coupled [50]. An alternative is to use the ζ − f model [51] which is more stable. In

this model they solve for the ratio v′22 /k instead of for v′22 which gives a simpler wall

boundary condition for f , namely f = 0.

15.1 Modified V2F model

In [52] they proposed a modification of the V2F model allowing the simple explicit

boundary condition f = 0 at walls. They introduced a new variable

f∗ = f − 5εv2/k2

and they neglected the term

−5L2 ∂2

∂xj∂xj

(
εv2

k2

)

The resulting v′22 and f∗-equation read [52]

∂v̄jv
2

∂xj
=

∂

∂xj

[
(ν + νt)

∂v2

∂xj

]
+ kf∗ − 6

v2

k
ε (15.15)

−L2 ∂2f∗

∂xj∂xj
+ f∗ = − 1

T

[
(C1 − 6)

v2

k
− 2

3
(C1 − 1)

]
+ C2

P k

k

P k = νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

T = max

{
k

ε
, 6
(ν
ε

)1/2}

L = CL max

{
k3/2

ε
, Cη

(
ν3

ε

)1/4
}

(15.16)

Boundary conditions at the walls are

k = 0, v2 = 0

ε = 2νk/x22

f∗ = 0

This modified model is numerically much more stable. Note that the modified model

is identical to the original model far from the wall.
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15.2 Realizable V2F model

The realizable condition for stagnation flow (see p. 148) is used also for the V2F model,

and they read [52]

T = min

[
k

ε
,

0.6k
√
6Cµv2 (s̄ij s̄ij)

1/2

]

L = min

[
k3/2

ε
,

k3/2
√
6Cµv2 (2s̄ij s̄ij)

1/2

] (15.17)

These realizable conditions have been further investigated by Sveningsson [50,53–56],

and it was found that the limitation on T is indeed important, whereas that for L is

not. Furthermore, it was found that it is important to impose the limitation on T in

a consistent manner. For instance, if the limit is used in the f equation, it must for

consistency also be used for ε/k in Eq. 15.15.

15.3 To ensure that v2 ≤ 2k/3

In the V2F model, v2 denotes the generic wall-normal stress. Thus it should be the

smallest one. This is not ensured in the V2F models presented above. Below the

simple modification proposed by [57] is presented.

The source term kf in the v2-equation (Eq. 15.15) includes the modeled velocity-

pressure gradient term which is dampened near walls as f goes to zero. Since v2

represents the wall-normal normal stress, it should be the smallest normal stress, i.e.

v′22 ≤ v′21 and v′22 ≤ v′23 , and thus v′22 should be smaller than or equal to 2
3k. In

the homogeneous region far away from the wall, the Laplace term is assumed to be

negligible i.e. ∂2f/∂xj∂xj → 0. Then Eq. 15.16 reduces to f = right side.

It turns out that in the region far away from the wall, the Laplace term is not negli-

gible, and as a consequence v2 gets too large so that v2 > 2
3k. A simple modification

is to use the right side of Eq. 15.16 as an upper bound on the source term kf in the

v2-equation, i.e.

v2source = min

{
kf,− ε

k

[
(C1 − 6)v2 − 2k

3
(C1 − 1)

]
+ C2P

k

}
(15.18)

This modification ensures that v2 ≤ 2k/3. For more details, see [57].
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Figure 16.1: Flow around an airfoil. Pressure contours. Red: high pressure; blue: low

pressure

16 The SST Model

The SST (Shear Stress Transport) model of [58] is an eddy-viscosity model which

includes two main novelties:

1. It is combination of a k−ω model (in the inner boundary layer) and k − εmodel

(in the outer region of the boundary layer as well as outside of it);

2. A limitation of the shear stress in adverse pressure gradient regions.

The k − ε model has two main weaknesses: it over-predicts the shear stress in

adverse pressure gradient flows because of too large length scale (due to too low dis-

sipation) and it requires near-wall modification (i.e. low-Re number damping func-

tions/terms). Various k−ωmodels are presented in Section 4 Introduction to turbulence

One example of adverse pressure gradient is the flow along the surface of an airfoil,

see Fig. 16.1. Consider the upper surface (suction side). Starting from the leading edge,

the pressure decreases because the velocity increases. At the crest (at x/c ≃ 0.15)

the pressure reaches its minimum and increases further downstream as the velocity

decreases. This region is called the adverse pressure gradient (APG) region.

The k − ω model is better than the k − ε model at predicting adverse pressure

gradient flow and the standard k − ω model of [59] (see also [49]) does not use any

damping functions. However, the disadvantage of the standard k−ω model is that it is

dependent on the free-stream value of ω [60, 61].

In order to improve both the k − ε and the k − ω model, it was suggested in [58]

to combine the two models. Before doing this, it is convenient to transform the k − ε
model into a k − ω model using the relation ω = ε/(β∗k), where β∗ = cµ. The left-

hand side of the ω equation will consist of the convection term, dω/dt, which denotes

the material derivative, assuming steady flow, see Eq. 2.25. Let us express the left-

hand side of the ω equation as a combination of the left-hand sides of the ε and the k

http://www.tfd.chalmers.se/~lada/postscript_files/kompendium_turb.pdf
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equations by using the chain rule, i.e.

dω

dt
=

d

dt

(
ε

β∗k

)
=

1

β∗k

dε

dt
+

ε

β∗

d(1/k)

dt

=
1

β∗k

dε

dt
− ε

β∗k2
dk

dt
=

1

β∗k

dε

dt
− ω

k

dk

dt

(16.1)

Now we have transformed the left side of the ω equation. The right side should be

transformed in the same manner. For example, the production of the ω equation will

consist of two terms, one term from the ε equation

1

β∗k
Pε (the first term at the right side in Eq. 16.1) (16.2)

and one from the k equation

− ω

k
P k (the second term at the right side in Eq. 16.1) (16.3)

In the same way we transform the entire right side inserting the modeled equations for

k and ε so that

Dω

Dt
=

[
1

β∗k
Pε −

ω

k
P k

]

Production, Pω

−
[

1

β∗k
Ψε −

ω

k
Ψk

]

Destruction, Ψω

+

[
1

β∗k
DT

ε − ω

k
DT

k

]

Turbulent diffusion, DT
ω

+

[
ν

β∗k

∂2ε

∂x2j
− νω

k

∂2k

∂x2j

]

Viscous diffusion, Dν
ω

(16.4)

• Production term

Pω =
1

β∗k
Pε −

ω

k
P k = Cε1

ε

β∗k2
P k − ω

k
P k

= (Cε1 − 1)
ω

k
P k

(16.5)

• Destruction term

Ψω =
1

β∗k
Ψε −

ω

k
Ψk = Cε2

ε2

k
− ω

k
ε

= (Cε2 − 1)β∗ω2

(16.6)

• Viscous diffusion term

Dν
ω =

ν

β∗k

∂2ε

∂x2j
− νω

k

∂2k

∂x2j
=
ν

k

∂2ωk

∂x2j
− νω

k

∂2k

∂x2j

=
ν

k

[
∂

∂xj

(
ω
∂k

∂xj
+ k

∂ω

∂xj

)]
− ν

ω

k

∂2k

∂x2j

=
ν

k

[
∂ω

∂xj

∂k

∂xj
+ ω

∂2k

∂x2j
+

∂k

∂xj

∂ω

∂xj
+ k

∂2ω

∂x2j

]
− ν

ω

k

∂2k

∂x2j

=
2ν

k

∂ω

∂xj

∂k

∂xj
+

∂

∂xj

(
ν
∂ω

∂xj

)

(16.7)
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The turbulent diffusion term is obtained as (the derivation is found in [62] which

can be downloaded from http://www.tfd.chalmers.se/˜lada)

DT
ω =

2νt
σεk

∂k

∂xj

∂ω

∂xj
+
ω

k

(
νt
σε

− νt
σk

)
∂2k

∂x2j
+

+
ω

k

(
1

σε
− 1

σk

)
∂νt
∂xj

∂k

∂xj
+

∂

∂xj

(
νt
σε

∂ω

∂xj

) (16.8)

In the standard k − ε model we have σk = 1 and σε = 1.3. If we assume that σk = σε
in the second and third term of the right-hand side, we can considerably simplify the

turbulence diffusion so that

DT
ω =

2νt
σεk

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

(
νt
σε

∂ω

∂xj

)
(16.9)

We can now finally write the ε equation formulated as an equation for ω

∂

∂xj
(v̄jω) =

∂

∂xj

[(
ν +

νt
σε

)
∂ω

∂xj

]
+ α

ω

k
P k − βω2

+
2

k

(
ν +

νt
σε

)
∂k

∂xi

∂ω

∂xi

α = Cε1 − 1 = 0.44, β = (Cε2 − 1)β∗ = 0.0828

(16.10)

Since the k − ε model will be used for the outer part of the boundary layer, the vis-

cous part of the cross-diffusion term (second line) is usually neglected (the viscous

terms are negligible in the outer region). The turbulent viscosity is computed as (using

dimensional analysis)

νt =
k

ω
(16.11)

In the SST model the coefficients are smoothly switched from k − ω values in the

inner region of the boundary layer to k − ε values in the outer region. Functions of the

form

F1 = tanh(ξ4), ξ = min

[
max

{ √
k

β∗ωy
,
500ν

y2ω

}
,
4σω2k

CDωy2

]
(16.12)

are used. F1 = 1 in the near-wall region and F1 = 0 in the outer region. The β-

coefficient, for example, is computed as

βSST = F1βk−ω + (1 − F1)βk−ε (16.13)

where βk−ω = 0.075 and βk−ε = 0.0828. Since the standard k − ω model does

not include any cross-diffusion term, the last term in the ω equation (second line in

Eq. 16.10) should only be active in the k − ε region; hence it is multiplied by (1−F1).
At p. 159 it was mentioned that the k − ω model is better than the k − ε model

in predicting adverse pressure-gradient flows because it predicts a smaller shear stress.

Still, the predicted shear stress is too large. This brings us to the second modification

(see p. 159). When introducing this second modification, the author in [58] noted that

a model (the Johnson - King model [JK]) which is based on a transport equation of

the main shear stress v′1v
′
2, predicts adverse pressure gradient flows much better than

http://www.tfd.chalmers.se/~lada
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the k − ω model. In the JK model, the v′1v
′
2 transport equation is built on Bradshaw’s

assumption [63]

− v′1v
′
2 = a1k (16.14)

where a1 = c
1/2
µ = β∗1/2. In boundary layer flow, the Boussinesq assumption can be

written as

−v′1v′2 =
k

ω
νt,k−ω

∂v̄1
∂x2

=
cµk

2

ε
νt,k−ε

∂v̄1
∂x2

= c1/2µ k

[
cµk

2

ε2

(
∂v̄1
∂x2

)2
]1/2

= c1/2µ k

(
P k

ε

)1/2

(16.15)

It is found from experiments that in boundary layers of adverse pressure gradient flows

that the production is much larger than the dissipation (P k ≫ ε) and that −v′1v′2 ≃
c
1/2
µ k. When the Boussinesq assumption is used in the k−ωmodel for adverse pressure

gradient flows, P k ≫ ε, and hence (see Eq. 16.15)

− v′1v
′
2

c
1/2
µ k

≫ 1 (16.16)

which explains why the Boussinesq assumption over-predicts the shear stress and works

poorly in this type of flow (recall that according to experiments −v′1v′2 ≃ c
1/2
µ k). To

reduce |v′1v′2| in Eq. 16.15 in adverse pressure gradient flow, [58] proposed to re-define

the turbulent eddy viscosity including the expression in Eq. 16.14. We have two ex-

pressions for the turbulent viscosity

νt =
−v′1v′2
Ω̄

=
c
1/2
µ k

Ω̄
Johnson-King (16.17a)

νt =
k

ω
=
c
1/2
µ k

c
1/2
µ ω

k − ω model (16.17b)

where Ω̄ is the absolute vorticity (in boundary layer flow Ω̄ = ∂v̄1/∂x2); in (a) the

Boussinesq assumption together with Eq. 16.14 were used and (b) is taken from the

k − ω model. We want (a) to apply only in the boundary layer and hence we multiply

it with a function F2 (similar to F1) which is 1 near walls and zero elsewhere. Then we

take the minimum of (a) and (b) so that

νt =
c
1/2
µ k

max(c
1/2
µ ω, F2Ω̄)

(16.18)

When the production is large (i.e. when Ω̄ is large), Eq. 16.18 reduces νt according to

the Johnson - King model, i.e. Eq. 16.17a. It is important to ensure that this limitation

is not active in usual boundary layer flows where P k ≃ ε. It can be seen that νt is

reduced only in regions where P k > ε, because if P k < ε then Ω̄ < c
1/2
µ ω since

Ω̄2 =
1

νt
νtΩ̄

2 =
ω

k
P k <

ωε

k
= cµω

2 (16.19)

Hence, in regions where P k < ε, Eq. 16.18 returns to νt = k/ω as it should.

To summarize the SST modification:
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• the second part, c
1/2
µ k/Ω in Eq. 16.18 (which mimics the Johnson-King model),

is active in APG flow

• the first part, k/ω in Eq. 16.18 (which corresponds to the usual Boussinesq

model), should be active in the remaining part of the flow. Equation 16.19 shows

that (it is likely that) the second part is active only in APG regions and not else-

where.

Today, the SST model has been slightly further developed. Two modifications have

been introduced [64]. The first modification is that the absolute vorticity Ω̄ in Eq. 16.18

has been replaced by |s̄| = (2s̄ij s̄ij)
1/2 which comes from the production term using

the Boussinesq assumption (see Eq. 11.38), i.e.

|s̄|2 =

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

= 2s̄ij(s̄ij + Ω̄ij) = 2s̄ij s̄ij

Ω̄ij =
1

2

(
∂v̄i
∂xj

− ∂v̄j
∂xi

) (16.20)

where s̄ijΩ̄ij = 0 because s̄ij is symmetric and Ω̄ij is anti-symmetric. Equation 16.18

with |s̄| limits νt in stagnation regions similar to Eq. 13.12. The second modification

in the SST model is that the production term in the new SST model is limited by 10ε,
i.e.

Pk,new = min
(
P k, 10ε

)
(16.21)

The final form of the SST model is given in Eq. 20.4 at p. 195.
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17 Overview of RANS models

This section presents a short overview of the presented RANS models. First the models

can be classified as models based on eddy viscosity (i.e. turbulent viscosity) or models

in which equations are solved (algebraic or differential) to obtain the Reynolds stress

tensor, v′iv
′
j . Eddy-viscosity models, which are based on the Boussinesq assumption, Eddy-

viscosity

models

see Eq. 11.33, are

• standard k − ε (see Section 11.8) and k − ω models

• combination of k − ε and k − ω models such as the SST model, see Section 16.

There are more elaborate eddy-viscosity models such as
non-linear

models• non-linear models, see Section 14

Models not based on the eddy-viscosity are the Reynolds stress models such as

• the Reynolds stress transport model (RSM or RSTM), in which transport equa- RSM

tions are solved for v′iv
′
j , see Eq. 11.100.

• the Algebraic Reynolds stress model, ASM, in which algebraic equations are ASM

solved for v′iv
′
j , see Eq. 11.103.

explicit ASM

• explicit Algebraic Reynolds stress models, in which explicit algebraic equations

are solved for v′iv
′
j , see Section 11.11.

Finally, there is a class of models which are somewhere in between two-equation eddy-

viscosity models and Reynolds stress models, and that is
V2F

• V2F models, see Section 15

The V2F model is an eddy-viscosity model and the model is based on four transport

equations.
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Figure 18.1: Filtering the velocity.

18 Large Eddy Simulations

18.1 Time averaging and filtering

I
N CFD we time average our equations to get the equations in steady form. This is

called Reynolds time averaging:

〈Φ〉 = 1

2T

∫ T

−T

Φ(t)dt, Φ = 〈Φ〉+Φ′ (18.1)

(note that we use the notation 〈.〉 for time averaging). In LES we filter (volume average)

the equations. In 1D we get (see Fig. 18.1)

Φ̄(x, t) =
1

∆x

∫ x+0.5∆x

x−0.5∆x

Φ(ξ, t)dξ

Φ = Φ̄ + Φ′′

Since in LES we do not average in time, the filtered variables are functions of space

and time. The equations for the filtered variables have the same form as Navier-Stokes,

i.e.

∂v̄i
∂t

+
∂

∂xj
(v̄iv̄j) = −1

ρ

∂p̄

∂xi
+ ν

∂2v̄i
∂xj∂xj

− ∂τij
∂xj

∂v̄i
∂xi

= 0

(18.2)

where the subgrid stresses are given by

τij = vivj − v̄iv̄j (18.3)

It should be noted that it is formally incorrect to denote τij as a stress since the density

is omitted (see, e.g., the text below Eq. 6.10 and Eq. 11.3). Contrary to Reynolds time

averaging where 〈v′i〉 = 0, we have here

v′′i 6= 0

v̄i 6= v̄i
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This is true for box filters. Note that for the spectral cut-off filter v̄i = v̄i, see

p. 168. However, in finite volume methods, box filters are always used. In this course

we use box filters, if not otherwise stated.

Let’s look at the filtering of Eq. 18.2 in more detail. The pressure gradient term, for

example, reads

∂p

∂xi
=

1

V

∫

V

∂p

∂xi
dV

Now we want to move the derivative out of the integral. When is that allowed? The

answer is “if the integration region is not a function of xi”, i.e. if V is constant. In finite

volume methods, the filtering volume, V , is (almost always) identical to the control

volume. In general, the size of the control volume varies in space. Fortunately, it can

be shown that if V is a function of xi, the error we do when moving the derivative out

of the integral is proportional to (∆x)2 [65], i.e. it is an error of second order. Since

this is the order of accuracy of our finite volume method anyway, we can accept this

error. Now let’s move the derivative out of the integral, i.e.

∂p

∂xi
=

∂

∂xi

(
1

V

∫

V

pdV

)
+O

(
(∆x)2

)
=

∂p̄

∂xi
+O

(
(∆x)2

)

All linear terms are treated in the same way.

Now we take a look at the non-linear term in Eq. 18.2, i.e. the convective term.

First we filter the term and move the derivative out of the integral, i.e.

∂vivj
∂xj

=
∂

∂xj

(
1

V

∫

V

vivjdV

)
+O

(
(∆x)2

)
=

∂

∂xj
(vivj) +O

(
(∆x)2

)

There is still a problem with the formulation of this term: it includes an integral of a

product, i.e. vivj ; we want it to appear like a product of integrals, i.e. v̄iv̄j . To achieve

this we simple add the term we want (v̄iv̄j) and subtract the one we don’t want ( vivj )

on both the right and left side. This is how we end up with the convective term and the

SGS term in Eq. 18.2.

The filtering in Eq. 18.2 is usually achieved through the finite-volume discretiza-

tion. This means that no additional filtering is done. This is called implicit filtering.

Hence, the discretized momentum equations in RANS and LES (Eqs. 6.6 and 18.2)

are identical. The only difference is the magnitude of the modeled Reynolds stresses,

which are much larger in RANS than in LES.

18.2 Differences between time-averaging (RANS) and space filter-

ing (LES)

In RANS, if a variable is time averaged twice (〈〈v〉〉), it is the same as time averaging

once (〈v〉). This is because 〈v〉 is not dependent on time. From Eq. 18.1 we get

〈〈v〉〉 = 1

2T

∫ T

−T

〈v〉dt = 1

2T
〈v〉2T = 〈v〉

This is obvious if the flow is steady, i.e. ∂〈v〉/∂t = 0. If the flow is unsteady, we must

assume a separation in time scales so that the variation of 〈v〉 during the time interval

T is negligible, i.e. ∂/∂t≪ 1/T . In practice this requirement is rarely satisfied.

In LES, v̄ 6= v̄ (and since v = v̄ + v′′ we get v′′ 6= 0).
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Figure 18.2: Box filter illustrated for a control volume.

Let’s filter v̄I once more (filter size ∆x, see Fig. 18.2. For simplicity we do it in

1D. (Note that subscript I denotes node number.)

v̄I =
1

∆x

∫ ∆x/2

−∆x/2

v̄(ξ)dξ =
1

∆x

(∫ 0

−∆x/2

v̄(ξ)dξ +

∫ ∆x/2

0

v̄(ξ)dξ

)
=

=
1

∆x

(
∆x

2
v̄A +

∆x

2
v̄B

)
.

The trapezoidal rule, which is second-order accurate, was used to estimate the integrals.

v̄ at locations A and B (see Fig. 18.2) is estimated by linear interpolation, which gives

v̄I =
1

2

[(
1

4
v̄I−1 +

3

4
v̄I

)
+

(
3

4
v̄I +

1

4
v̄I+1

)]

=
1

8
(v̄I−1 + 6v̄I + v̄I+1) 6= v̄I

(18.4)

18.3 Resolved & SGS scales

The basic idea in LES is to resolve (large) grid scales (GS), and to model (small)

subgrid-scales (SGS). Even if LES is always made unsteady, we are usually inter-

ested in the time-averaged results. This means that we time-average all quantities for

post-processing, e.g. 〈v̄i〉 where the brackets denote time-averaging. From the LES

equations, Eq. 18.2, we get the resolved (GS) velocities, v̄i. Then we can compute the

resolved fluctuations as v̄′i = v̄i − 〈v̄i〉.
The limit (cut-off) between GS and SGS is supposed to take place in the inertial

subrange (II), see Fig. 18.3.

I: large, energy-containing scales

II: inertial subrange (Kolmogorov −5/3-range)

III: dissipation subrange
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Figure 18.3: Spectrum of velocity.

18.4 The box-filter and the cut-off filter

The filtering is formally defined as (1D)

v̄(x) =

∫ ∞

−∞

GB(r)v(x − r)dr

GB(r) =

{
1/∆, if r ≤ ∆/2
0, if r > ∆
∫ ∞

−∞

GB(r)dr = 1

(18.5)

It is often convenient to study the filtering process in the spectral space. The filter in

spectral space is particular simple: we simply set the contribution from wavenumbers

larger than cut-off to zero. Hence the cut-off filter filters out all scales with wavenumber

larger than the cut-off wavenumber κc = π/∆. It is defined as

ĜC(κ) =

{
1/∆ if κ ≤ κc
0 otherwise

(18.6)

The Fourier transform is defined as (see Section D)

v̂(κ) =
1

2π

∫ ∞

0

v(r) exp(−ıκr)dr (18.7)

and its inverse

v(r) =

∫ ∞

0

v̂(κ) exp(ıκr)dκ (18.8)

where κ denotes the wavenumber and ı =
√
−1. Note that it is physically mean-

ingful to use Fourier transforms only in a homogeneous coordinate direction; in non-

homogeneous directions the Fourier coefficients – which are not a function of space
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Figure 18.4: Physical and wavenumber space. Sinus curves with different wavenum-

bers illustrated in physical space.

– have no meaning. Using the convolution theorem (saying that the integrated prod-

uct of two functions is equal to the product of their Fourier transforms) the filtering in

Eq. 18.5 is conveniently written

v̂(κ) = ̂̄v(κ) =
∫ ∞

0

v̄(η) exp(−ıκη)dη

=

∫ ∞

0

∫ ∞

0

exp(−ıκη)GC(ρ)v(η − ρ)dρdη

=

∫ ∞

0

∫ ∞

0

exp(−ıκρ) exp(−ıκ(η − ρ))GC(ρ)v(η − ρ)dρdη

=

∫ ∞

0

∫ ∞

0

exp(−ıκρ) exp(−ıκξ)GC(ρ)v(ξ)dξdρ = ĜC(κ)v̂(κ)

(18.9)

If we filter twice with the cut-off filter we get (see Eq. 18.9)

v̂ = ĜCĜv̂ = ĜC v̂ = v̂ (18.10)

using Eqs. 18.9 and 18.6. Thus, contrary to the box-filter (see Eq. 18.4), nothing hap-

pens when we filter twice in spectral space. The box filter is sharp in physical space

but not in wavenumber space; for the cut-off filter it is vice versa.

In finite volume methods box filtering is always used. Furthermore implicit filtering

is employed. This means that the filtering is the same as the discretization (=integration

over the control volume which is equal to the filter volume, see Eq. 18.14).

18.5 Highest resolved wavenumbers

Any function can be expressed as a Fourier series such as Eq. 18.8 (see Section 5.3,

Eq. D.28 and Section E) provided that the coordinate direction is homogeneous. Let’s

choose the fluctuating velocity in the x1 direction, i.e. v′1, and let it be a function of x1.

We require it to be homogeneous, i.e. its RMS, v1,rms, does not vary with x1. Now we

ask the question: on a given grid, what is the highest wavenumber that is resolved? Or,

in other words, what is the cut-off wavenumber?

The wave shown in Fig. 18.4a reads

v′1 = 0.25 [1 + 0.8 sin(κ1x1)] (18.11)

and it covers two cells (∆x1/L = 0.5). If we define this as the cut-off wavenumber

we get κ1,cL = κ1,c2∆x1 = 2π (i.e. sin(κ1,c2∆x1) = sin(2π); recall that 2π is one



18.6. Subgrid model 170

period) so that

κ1,c = 2π/(2∆x1) = π/∆x1 (18.12)

It is of course questionable if v′1 in Fig. 18.4a really is resolved since the sinus wave

covers only two cells. However this is the usual definition of the cut-off wavenumber.

If we require that the highest resolved wavenumber should be covered by four cells

(∆x1/L = 0.25), as in Fig. 18.4b, then the cut-off wavenumber is given by κ1,c =
2π/(4∆x1) = π/(2∆x1).

18.6 Subgrid model

We need a subgrid model to model the turbulent scales which cannot be resolved by

the grid and the discretization scheme.

The simplest model is the Smagorinsky model [66]:

τij −
1

3
δijτkk = −νsgs

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
= −2νsgss̄ij

νsgs = (CS∆)
2√

2s̄ij s̄ij ≡ (CS∆)
2 |s̄|

(18.13)

and the filter-width is taken as the local grid size

∆ = (∆VIJK)
1/3

(18.14)

The scalar |s̄| is the norm (i.e. the “length”) of ∂v̄i/∂xj + ∂v̄j/∂xi in the Boussinesq

assumption, see Eq. 16.20. The Smagorinsky model is derived as follows. The turbu-

lent viscosity may – as in RANS – be obtained through dimensional analysis as (see

Eq. 11.25)

νsgs = UL. (18.15)

The turbulent velocity scale, U , is obtained as the first term in Taylor expansion,

ℓ∂v̄/∂x, and the length scale , L, is taken as CSℓ which gives

νsgs = (CS∆)2|s̄| (18.16)

where the one-dimensional velocity gradient, ∂v̄/∂xwas replaced by the general three-

dimensional gradient, |s̄|. Near the wall, the SGS viscosity becomes quite large since

the velocity gradient is very large at the wall. However, because the SGS turbulent

fluctuations near a wall go to zero, so must the SGS viscosity. A damping function fµ
is added to ensure this

fµ = 1− exp(−x+2 /26) (18.17)

A more convenient way to dampen the SGS viscosity near the wall is simply to use

the RANS length scale as an upper limit, i.e.

∆ = min
{
(∆VIJK)

1/3
, κn

}
(18.18)

where n is the distance to the nearest wall.

Disadvantage of Smagorinsky model: the “constant” CS is not constant, but it is

flow-dependent. It is found to vary in the range from CS = 0.065 [67] to CS =
0.25 [68].
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Figure 18.5: Energy spectrum.

18.7 Smagorinsky model vs. mixing-length model

The eddy viscosity according to the mixing length theory reads in boundary-layer

flow [69, 70]

νt = ℓ2
∣∣∣∣
∂v̄1
∂x2

∣∣∣∣ .

Generalized to three dimensions, we have

νt = ℓ2
[(

∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

]1/2
= ℓ2 (2s̄ij s̄ij)

1/2 ≡ ℓ2|s̄|.

In the Smagorinsky model the SGS turbulent length scale corresponds to ℓ = CS∆ so

that

νsgs = (CS∆)2|s̄|
which is the same as Eq. 18.13

18.8 Energy path

The path of kinetic energy is illustrated in Fig. 18.5. At cut-off, SGS kinetic energy is

dissipated

εsgs = −τij s̄ij = 2νsgss̄ij s̄ij (18.19)

from the resolved turbulence. This energy is transferred to the SGS scales and act as

production term (Pksgs ) in the ksgs equation. The SGS kinetic energy is then trans-

ferred to higher wave-numbers via the cascade effect and the kinetic energy is finally

dissipated (ε=physical dissipation) in the dissipation range. It should be mentioned that
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this process is an idealized one. We assume that ALL dissipation takes place in the dis-

sipation range. This is a good approximation, but in reality dissipation (i.e. transfer of

energy from kinetic energy to internal energy which corresponds to an increase in tem-

perature) takes place at all wave numbers, and the dissipation increases for increasing

wave number, see Eq. 8.19.

18.9 SGS kinetic energy

The SGS kinetic energy ksgs can be estimated from the Kolmogorov −5/3 law. The

total turbulent kinetic energy is obtained from the energy spectrum as

k =

∫ ∞

0

E(κ)dκ

Changing the lower integration limit to wavenumbers larger than cut-off (i.e. κc) gives

the SGS kinetic energy

ksgs =

∫ ∞

κc

E(κ)dκ (18.20)

The Kolmogorov −5/3 law now gives

ksgs =

∫ ∞

κc

CKκ
−5/3ε2/3dκ

where CK = 1.5 (Note that for these high wavenumbers, the Kolmogorov spectrum

ought to be replaced by the Kolmogorov-Pau spectrum in which an exponential de-

caying function is added for high wavenumbers [69, Chapter 3]). Carrying out the

integration and replacing κc with π/∆ we get

ksgs =
3

2
CK

(
∆ε

π

)2/3

(18.21)

In the same way as ksgs can be computed from Eq. 18.20, the resolved turbulent kinetic

energy, kres, is obtained from

kres =

∫ κc

0

E(κ)dκ

18.10 LES vs. RANS

LES can handle many flows which RANS (Reynolds Averaged Navier Stokes) cannot;

the reason is that in LES large, turbulent scales are resolved. Examples are:

o Flows with large separation

o Bluff-body flows (e.g. flow around a car); the wake often includes large, un-

steady, turbulent structures

o Transition

• In RANS all turbulent scales are modeled ⇒ inaccurate

• In LES only small, isotropic turbulent scales are modeled ⇒ accurate

• LES is very much more expensive than RANS.
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Figure 18.6: Energy spectrum with grid and test filter.

18.11 The dynamic model

In this model of [71] the constant C is not arbitrarily chosen (or optimized), but it is

computed.

If we apply two filters to Navier-Stokes [grid filter and a second, coarser filter (test

filter, denoted by ︷︷. )] where
︷︷
∆ = 2∆ we get

∂
︷︷
v̄ i

∂t
+

∂

∂xj

(︷︷
v̄ i

︷︷
v̄ j

)
= −1

ρ

∂
︷︷
p̄

∂xi
+ ν

∂2
︷︷
v̄ i

∂xj∂xj
− ∂Tij
∂xj

(18.22)

where the subgrid stresses on the test level now are given by

Tij =
︷ ︷
vivj −

︷︷
v̄ i

︷︷
v̄ j (18.23)

∂
︷︷
v̄ i

∂t
+

∂

∂xj

(︷︷
v̄ i

︷︷
v̄ j

)
= −1

ρ

∂
︷︷
p̄

∂xi
+ ν

∂2
︷︷
v̄ i

∂xj∂xj
− ∂

︷︷
τ ij

∂xj

− ∂

∂xj

(︷ ︷
v̄iv̄j −

︷︷
v̄ i

︷︷
v̄ j

) (18.24)

Identification of Eqs. 18.22 and 18.24 gives

︷ ︷
v̄iv̄j −

︷︷
v̄ i

︷︷
v̄ j +

︷︷
τ ij = Tij (18.25)

The dynamic Leonard stresses are now defined as

Lij ≡
︷ ︷
v̄iv̄j −

︷︷
v̄ i

︷︷
v̄ j = Tij −

︷︷
τ ij (18.26)
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Figure 18.7: Control volume for grid and test filter.

The trace of this relation reads

Lii ≡ Tii −
︷︷
τ ii

With this expression we can re-formulate Eq. 18.26 as

Lij −
1

3
δijLkk = Tij −

1

3
δijTkk −

(︷︷
τ ij −

1

3
δij
︷︷
τ kk

)
(18.27)

In the energy spectrum, the test filter is located at lower wave number than the grid

filter, see Fig. 18.6.

18.12 The test filter

The test filter is twice the size of the grid filter, i.e.
︷︷
∆ = 2∆.

The test-filtered variables are computed by integration over the test filter. For ex-

ample, the 1D example in Fig. 18.7
︷︷
v̄ is computed as (

︷ ︷
∆x = 2∆x)

︷ ︷
v̄P =

1

2∆x

∫ E

W

v̄dx =
1

2∆x

(∫ P

W

v̄dx+

∫ E

P

v̄dx

)

=
1

2∆x
(v̄w∆x+ v̄e∆x) =

1

2

(
v̄W + v̄P

2
+
v̄P + v̄E

2

)

=
1

4
(v̄W + 2v̄P + v̄E)

(18.28)

18.12.1 2D filtering

In 2D, we do as in 1D: first compute the value at the center of the four squares (or

rectangles) surrounding the node (I, J,K), marked by x, see Fig. 18.8. For the lower-

left square, for example, we get

v̄fI−1/2,J−1/2,K =
1

4
(v̄I−1,J−1,K + v̄I−1,J,K + v̄I,J−1,K + v̄I,J,K) (18.29)

Next, the test filtered variable is computed as

︷︷
v̄ I,J,K =

1

4
(v̄fI−1/2,J−1/2,K + v̄fI−1/2,J+1/2,K + v̄fI+1/2,J−1/2,K + v̄fI+1/2,J+1/2,K)

(18.30)
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Figure 18.8: A 2D test filter control volume.

18.12.2 3D filtering

In 3D we have eight cubes. Filtering at the test level is carried out in the same way

by integrating over the test cell assuming linear variation of the variables [72]. For the

bottom-lower-left cube, for example, we get

v̄fI−1/2,J−1/2,K−1/2 =
1

8
(v̄I−1,J−1,K + v̄I−1,J,K + v̄I,J−1,K + v̄I,J,K

+v̄I−1,J−1,K−1 + v̄I−1,J,K−1 + v̄I,J−1,K−1 + v̄I,J,K−1)
(18.31)

Next, the test filtered variable is computed as

︷︷
v̄ I,J,K =

1

8
(v̄fI−1/2,J−1/2,K−1/2 + v̄fI+1/2,J−1/2,K−1/2

+v̄fI−1/2,J+1/2,K−1/2 + v̄fI+1/2,J+1/2,K−1/2

+v̄fI−1/2,J−1/2,K+1/2 + v̄fI+1/2,J−1/2,K+1/2

+v̄fI−1/2,J+1/2,K+1/2 + v̄fI+1/2,J+1/2,K+1/2)

(18.32)
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18.13 Stresses on grid, test and intermediate level

The stresses on the grid level, test level and intermediate level (dynamic Leonard

stresses) have the form

τij = vivj − v̄iv̄j stresseswith ℓ < ∆

Tij =
︷ ︷
vivj −

︷︷
v̄ i

︷︷
v̄ j stresseswith ℓ <

︷︷
∆

Lij = Tij −
︷︷
τ ij stresseswith ∆ < ℓ <

︷︷
∆

Thus the dynamic Leonard stresses represent the stresses with lengthscale, ℓ, in the

range between ∆ and
︷︷
∆.

Assume now that the same functional form for the subgrid stresses that is used at the

grid level (τij ) also can be used at the test filter level (Tij). If we use the Smagorinsky

model we get

τij −
1

3
δijτkk = −2C∆2|s̄|s̄ij (18.33)

Tij −
1

3
δijTkk = −2C

︷︷
∆

2

|
︷︷
s̄ |
︷︷
s̄ ij (18.34)

where

︷︷
s̄ ij =

1

2


∂

︷︷
v̄ i

∂xj
+
∂
︷︷
v̄ j

∂xi


 , |

︷︷
s̄ | =

(
2
︷︷
s̄ ij

︷︷
s̄ ij

)1/2

Note that C in Eq. 18.33 is not squared (cf. the Smagorinsky model, Eq. 18.13 at

p.170). Hence, C should be compared with C2
S . Applying the test filter to Eq. 18.33

(assuming thatC varies slowly), substituting this equation and Eq. 18.34 into Eq. 18.27

gives

Lij −
1

3
δijLkk = −2C

(︷︷
∆

2

|
︷︷
s̄ |
︷︷
s̄ ij −∆2

︷ ︷
|s̄|s̄ij

)
(18.35)

Note that the “constant” C really is a function of both space and time, i.e. C =
C(xi, t).

Equation 18.35 is a tensor equation, and we have five (s̄ij is symmetric and trace-

less) equations for C. Lilly [73] suggested to satisfy Eq. 18.35 in a least-square sense.

Let us define the error as the difference between the left-hand side and the right-hand

side of Eq. 18.35 raised to the power of two, i.e.

Q =

(
Lij −

1

3
δijLkk + 2CMij

)2

(18.36a)

Mij =

(︷︷
∆

2

|
︷︷
s̄ |
︷︷
s̄ ij −∆2

︷ ︷
|s̄|s̄ij

)
(18.36b)

The error, Q, has a minimum (or maximum) when ∂Q/∂C = 0. Carrying out the

derivation of 18.36a gives

∂Q

∂C
= 4Mij

(
Lij −

1

3
δijLkk + 2CMij

)
= 0 (18.37)
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Figure 18.9: Numerical dissipation.

Since ∂2Q/∂C2 = 8MijMij > 0 it is a minimum. Equation 18.36 is re-written so

that

C = − LijMij

2MijMij
(18.38)

It turns out that the dynamic coefficient C fluctuates wildly both in space and time.

This causes numerical problems, and it has been found necessary to averageC in homo-

geneous direction(s). Furthermore,C must be clipped to ensure that the total viscosity

stays positive (ν + νsgs ≥ 0).

In real 3D flows, there is no homogeneous direction. Usually local averaging and

clipping (i.e. requiring that C stays within pre-defined limits) of the dynamic coeffi-

cient is used.

Use of one-equation models solve these numerical problems (see p. 184).

18.14 Numerical dissipation

The main function of an SGS model is to dissipate (i.e. to dampen) resolved turbulent

fluctuations. The SGS model is – hopefully – designed to give a proper amount of

dissipation. This is the reason why in LES we should use a central differencing scheme,

because this class of schemes does not give any numerical dissipation. All upwind

schemes give numerical dissipation in addition to the modeled SGS dissipation. Indeed,

there are LES-methods in which upwind schemes are used to create dissipation and

where no SGS model is used at all (e.g. MILES [74]). However, in this course we

focus on ensuring proper dissipation through an SGS model rather than via upwind

differencing. It can be shown using Neumann stability analysis that all upwind schemes

are dissipative (see Further reading at

http://www.tfd.chalmers.se/˜lada/comp turb model/). Below it is

shown that first-order upwind schemes are dissipative.

The first-derivative in the convective term is estimated by first-order upwind differ-

encing as (finite difference, see Fig. 18.9)

v̄

(
∂v̄

∂x

)

exact

= v̄I

(
v̄I − v̄I−1

∆x
+O (∆x)

)
(18.39)

where we have assumed v̄I > 0. Taylor expansion gives

v̄I−1 = v̄I −∆x
∂v̄

∂x
+

1

2
(∆x)2

∂2v̄

∂x2
+O

(
(∆x)3

)

so that
v̄I − v̄I−1

∆x
=
∂v̄

∂x
− 1

2
∆x

∂2v̄

∂x2
+O

(
(∆x)2

)
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Insert this into Eq. 18.39

v̄

(
∂v̄

∂x

)

exact

= v̄
∂v̄

∂x
− 1

2
∆xv̄

∂2v̄

∂x2

O(∆x)

+v̄O
(
(∆x)2

)
(18.40)

where the second term on the right side corresponds to the error term in Eq. 18.39.

When this expression is inserted into the LES momentum equations, the second term

on the right-hand side will act as an additional (numerical) diffusion term. The total

diffusion term will have the form

diffusion term =
∂

∂x

{
(ν + νsgs + νnum)

∂v̄

∂x

}
(18.41)

where the additional numerical viscosity, νnum = 0.5|v̄|∆x, see Eq. 18.40. This means

that the total dissipation due to SGS viscosity and numerical viscosity is (cf. Eq. 18.19)

εsgs+num = 2(νsgs + νnum)s̄ij s̄ij

For more details on derivation of equations transport equations of turbulent kinetic

energies, see [23].

18.15 Scale-similarity Models

In the models presented in the previous sections (the Smagorinsky and the dynamic

models) the total SGS stress τij = vivj − v̄iv̄j was modeled with an eddy-viscosity

hypothesis. In scale-similarity models the total stress is split up as

τij = vivj − v̄iv̄j = (v̄i + v′′i )(v̄j + v′′j )− v̄iv̄j

= v̄iv̄j + v̄iv′′j + v̄jv′′i + v′′i v
′′
j − v̄iv̄j

= (v̄iv̄j − v̄iv̄j) +
[
v̄iv′′j + v̄jv′′i

]
+ v′′i v

′′
j

where the term in brackets is denoted the Leonard stresses, the term in square brackets

is denoted cross terms, and the last term is denoted the Reynolds SGS stress. Thus

τij = Lij + Cij +Rij

Lij = v̄iv̄j − v̄iv̄j

Cij = v̄iv′′j + v̄jv′′i

Rij = v′′i v
′′
j .

(18.42)

Note that the Leonard stresses, Lij , are computable, i.e. they are exact and don’t need

to be modeled.

In scale-similarity models the main idea is that the turbulent scales just above cut-

off wavenumber, κc, (scales smaller than ∆) are similar to the ones just below κc
(scales larger than ∆); hence the word ”scale-similar”. Looking at Eq. 18.42 it seems

natural to assume that the cross term is responsible for the interaction between resolved

scales (v̄i) and modeled scales (v′′i ), since Cij includes both scales.
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18.16 The Bardina Model

In the Bardina model the Leonard stresses Lij are computed explicitly, and the sum of

the cross term Cij and the Reynolds term is modeled as [75, 76]

CM
ij = cr(v̄iv̄j − v̄iv̄j) (18.43)

and RM
ij = 0 (superscript M denotes Modeled). It was found that this model was not

sufficiently dissipative, and thus a Smagorinsky model was added

CM
ij = cr(v̄iv̄j − v̄iv̄j)

RM
ij = −2C2

S∆
2|s̄|s̄ij

(18.44)

18.17 Redefined terms in the Bardina Model

In [76] it was found that the Leonard term Lij and the cross term Cij are not Galilean

invariant by themselves, but only the sum Lij + Cij is (see Appendix I). As a con-

sequence, if the cross term is neglected, the Leonard stresses must not be computed

explicitly, because then the modeled momentum equations do not satisfy Galilean in-

variance.

The stresses in the Bardina model can be redefined to make them Galilean invariant

for any value cr A modified Leonard stress tensor Lm
ij is defined as [77]

τmij = τij = Cm
ij + Lm

ij +Rm
ij

Lm
ij = cr (v̄iv̄j − v̄iv̄j)

Cm
ij = 0

Rm
ij = Rij = v′′i v

′′
j

(18.45)

Note that the modified Leonard stresses is the same as the “unmodified” one plus

the modeled cross term Cij in the Bardina model with cr = 1 (right-hand side of

Eq. 18.43), i.e.

Lm
ij = Lij + CM

ij

In order to make the model sufficiently dissipative a Smagorinsky model is added,

and the total SGS stress τij is modeled as

τij = v̄iv̄j − v̄iv̄j − 2(CS∆)2|s̄|s̄ij (18.46)

Below we verify that the modified Leonard stress is Galilean invariant.

1

cr
Lm∗

ij = v̄∗i v̄
∗
j − v̄

∗

i v̄
∗

j = (v̄i + Vi)(v̄j + Vj)− (v̄i + Vi) (v̄j + Vj)

= v̄iv̄j + v̄iVj + v̄jVi − v̄iv̄j − v̄iVj − Viv̄j

= v̄iv̄j − v̄iv̄j =
1

cr
Lm
ij

(18.47)

18.18 A dissipative scale-similarity model.

Above it was mentioned that when the first scale-similarity model was proposed it

was found that it is not sufficiently dissipative [75]. An eddy-viscosity model has to
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Figure 18.10: Dissipation terms and production term from DNS data. 963 mesh data

filtered onto a 483 mesh. Reτ = 500. : −ε+SGS; : −ε−SGS; +: −εSGS .

be added to make the model sufficiently dissipative; these models are called mixed

models. Ref. [78] presents and evaluates a dissipative scale-similarity model.

The filtered Navier-Stokes read

dv̄i
dt

+
1

ρ

∂p̄

∂xi
= ν

∂2v̄i
∂xk∂xk

− ∂τik
∂xk

(18.48)

where d/dt and τik denote the material derivative and the SGS stress tensor, respec-

tively. The SGS stress tensor is given by

τik = vivk − v̄iv̄k. (18.49)

When it is modeled with the standard scale-similarity model, it is not sufficiently dis-

sipative. Let us take a closer look at the equation for the resolved, turbulent kinetic

energy, k = 〈v′iv′i〉/2, which reads

dk

dt
+ 〈v̄′kv̄′i〉

∂〈v̄i〉
∂xk

+
∂〈p̄′v̄′i〉
∂xi

+
1

2

∂〈v̄′kv̄′iv̄′i〉
∂xk

= ν

〈
∂2v̄′i

∂xk∂xk
v̄′i

〉
−

〈(
∂τik
∂xk

−
〈
∂τik
∂xk

〉)
v̄′i

〉
= ν

〈
∂2v̄′i

∂xk∂xk
v̄′i

〉
−
〈
∂τik
∂xk

v̄′i

〉
=

ν
∂2k

∂xk∂xk
− ν

〈
∂v̄′i
∂xk

∂v̄′i
∂xk

〉

ε

−
〈
∂τik
∂xk

v̄′i

〉

εSGS

(18.50)

The first term on the last line is the viscous diffusion term and the second term, ε, is

the viscous dissipation term which is always positive. The last term, εSGS , is a source

term arising from the SGS stress tensor, which can be positive or negative. When it is

positive, forward scattering takes place (i.e. it acts as a dissipation term); when it is

negative, back scattering occurs.

Figure 18.10 presents SGS dissipation, εSGS in Eq. 18.50, computed from filtered

DNS data. The forward scatter, ε+SGS , and back scatter, ε−SGS , SGS dissipation are

defined as the sum of all instants when εSGS is positive and negative, respectively. As

can be seen, the scale-similarity model is slightly dissipative (i.e. εSGS > 0) , but the

forward and back scatter dissipation are both much larger than εSGS .
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One way to make the SGS stress tensor strictly dissipative is to set the back scatter

to zero, i.e. max(εSGS , 0). This could be achieved by setting ∂τik/∂xk = 0 when its

sign is different from that of v̄′i (see the last term in Eq. 18.50). This would work if we

were solving for k. Usually we do not, and the equations that we do solve (the filtered

Navier-Stokes equations) are not directly affected by the dissipation term, εSGS .

Instead we have to modify the SGS stress tensor as it appears in the filtered Navier-

Stokes equations, Eq. 18.48. The second derivative on the right side is usually called a

diffusion term because it acts like a diffusion transport term. When analyzing the sta-

bility properties of discretized equations to an imposed disturbance, v̄′, using Neumann

analysis (see, for example, Chapter 8 in [79]), this term is referred to as a dissipation

term. In stability analysis the concern is to dampen numerical oscillations; in con-

nection with SGS models, the aim is to dampen turbulent resolved fluctuations. It is

shown in Neumann analysis that the diffusion term in the Navier-Stokes equations is

dissipative, i.e. it dampens numerical oscillations. However, since it is the resolved

turbulent fluctuations, i.e. k in Eq. 18.50, that we want to dissipate, we must consider

the filtered Navier-Stokes equations for the fluctuating velocity, v̄′i. The viscous diffu-

sion term in the momentum equations appears in the first term on the right side (first

line) in Eq. 18.50. To ensure that εSGS > 0, we set −∂τik/∂xk to zero when its sign

is different from that of the viscous diffusion term (cf. the two last terms on the second

line in Eq. 18.50). This is achieved by defining a sign function; for details, see [78].

18.19 Forcing

An alternative way to modify the scale-similarity model is to omit the forward scatter,

i.e. to include instants when the subgrid stresses act as counter-gradient diffusion. In

hybrid LES-RANS, the stresses can then be used as forcing at the interface between

URANS and LES. This new approach is the focus of [80].

18.20 Numerical method

A numerical method based on an implicit, finite volume method with collocated grid

arrangement, central differencing in space, and Crank-Nicolson (α = 0.5) in time is

briefly described below. The discretized momentum equations read

v̄
n+1/2
i = v̄ni +∆tH

(
v̄n, v̄

n+1/2
i

)

−α∆t∂p̄
n+1/2

∂xi
− (1− α)∆t

∂p̄n

∂xi

(18.51)

where H includes convective, viscous and SGS terms. In SIMPLE notation this equa-

tion reads

aP v̄
n+1/2
i =

∑

nb

anbv̄
n+1/2 + SU − α∆t

∂p̄n+1/2

∂xi
∆V

where SU includes all source terms except the implicit pressure. The face velocities

v̄
n+1/2
f,i = 0.5(v̄

n+1/2
i,j + v̄

n+1/2
i,j−1 ) (note that j denotes node number and i is a tensor

index) do not satisfy continuity. Create an intermediate velocity field by subtracting
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the implicit pressure gradient from Eq. 18.51, i.e.

v̄∗i = v̄ni +∆tH
(
v̄n, v̄

n+1/2
i

)
− (1− α)∆t

∂p̄n

∂xi
(18.52a)

⇒ v̄∗i = v̄
n+1/2
i + α∆t

∂p̄n+1/2

∂xi
(18.52b)

Take the divergence of Eq. 18.52b and require that ∂v̄
n+1/2
f,i /∂xi = 0 so that

∂2p̄n+1

∂xi∂xi
=

1

∆tα

∂v̄∗f,i
∂xi

(18.53)

The Poisson equation for p̄n+1 is solved with an efficient multigrid method [81]. In the

3D MG we use a plane-by-plane 2D MG. The face velocities are corrected as

v̄n+1
f,i = v̄∗f,i − α∆t

∂p̄n+1

∂xi
(18.54)

A few iterations (typically two) solving the momentum equations and the Poisson pres-

sure equation are required each time step to obtain convergence. More details can be

found [82].

1. Solve the discretized filtered Navier-Stokes equation, Eq. 18.52a, for v̄1, v̄2 and

v̄3.

2. Create an intermediate velocity field v̄∗i from Eq. 18.52b.

3. Use linear interpolation to obtain the intermediate velocity field, v̄f,i, at the face

4. The Poisson equation (Eq. 18.53) is solved with an efficient multigrid method [81].

5. Compute the face velocities (which satisfy continuity) from the pressure and the

intermediate face velocity from Eq. 18.54

6. Step 1 to 4 is performed till convergence (normally two or three iterations) is

reached.

7. The turbulent viscosity is computed.

8. Next time step.

Since the Poisson solver in [81] is a nested MG solver, it is difficult to parallelize

with MPI (Message Passing Interface) on large Linux clusters. Hence, when we do

large simulations (> 20M cells) we use a traditional SIMPLE method.

18.20.1 RANS vs. LES

Above a numerical procedure suitable for LES was described. However, in general,

any numerical procedure for RANS can also be used for LES; for example pressure-

correction methods such as SIMPLE [83, 84] are often used for LES. What are the

specific requirements to carry out LES with a finite volume code? If you have a RANS

finite volume code, it is very simple to transform that into an LES code. An LES code

is actually simpler than a RANS code. Both the discretization scheme and and the

turbulence model are simpler in LES than in RANS, see Table 18.1.
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RANS LES

Domain 2D or 3D always 3D

Time domain steady or unsteady always unsteady

Space discretization 2nd order upwind central differencing

Time discretization 1st order 2nd order (e.g. C-N)

Turbulence model more than two-equations zero- or one-equation

Table 18.1: Differences between a finite volume RANS and LES code.

t
t1: start t2: end

v̄1

Figure 18.11: Time averaging in LES.

It is important to use a non-dissipative discretization scheme which does not intro-

duce any additional numerical dissipation, see Section 18.14; hence a second-order (or

higher) central differencing scheme should be employed.

The time discretization should also be non-dissipative. The Crank-Nicolson scheme

is suitable.

As mentioned above, turbulence models in LES are simple. There are two reasons:

first, only the small-scale turbulence is modeled and, second, no equation for the tur-

bulent length scale is required since the turbulent length scale can be taken as the filter

width, ∆.

In LES we are doing unsteady simulations. The question then arises, when can we

start to time average and for how long? This is exactly the same question we must ask

ourselves whenever doing an experiment in, for example, a windtunnel. We start the

windtunnel: when has the flow (and the turbulence) reached fully developed conditions

so that we can start to measure the flow? Next question: for how long should we carry

out the measurements?

Both in LES and the windtunnel, the recorded time history of the v̄1 velocity at a

point may look like in Fig. 18.11. Time averaging can start at time t1 when the flow

seems to have reached fully developed conditions. It is difficult to judge for how long

one should carry out time averaging. Usually it is a good idea to form a characteristic

time scale from a velocity, V (free-stream or bulk velocity), and a length scale, L
(width of a wake or a body, length of a recirculation region), and use this to estimate

the required averaging time; 100 time units, i.e. 100L/V , may be a suitable averaging

time for the flow around a bluff body; a value of 10 may be sufficient if L is the

length of a recirculation region. The theoretical statistical error varies with number of

independent samples, N , as N−1/2, see Eq. M.2 on p. 304.
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18.21 One-equation ksgs model

A one-equation model can be used to model the SGS turbulent kinetic energy. The

equation can be written on the same form as the RANS k-equation, i.e.

∂ksgs
∂t

+
∂

∂xj
(v̄jksgs) =

∂

∂xj

[
(ν + νsgs)

∂ksgs
∂xj

]
+ Pksgs − ε

νsgs = ck∆k
1/2
sgs , Pksgs = 2νsgss̄ij s̄ij , ε = Cε

k
3/2
sgs

∆

(18.55)

Note that the production term, Pksgs , is equivalent to the SGS dissipation in the equa-

tion for the resolved turbulent kinetic energy (look at the flow of kinetic energy dis-

cussed at the end of [85]).

18.22 Smagorinsky model derived from the ksgs equation

We can use the one-equation model to derive the Smagorinsky model, Eq. 18.13. The

length scale in the Smagorinsky model is the filter width, ∆ ∝ κ−1
II , see Fig. 18.12. The

cut-off takes place in the inertial subrange where diffusion and convection in the ksgs
equation are negligible (their time scales are too large so they have no time to adapt

to rapid changes in the velocity gradients, s̄ij ). Hence, production and dissipation in

Eq. 18.55 are in balance so that

Pksgs = 2νsgss̄ij s̄ij = ε (18.56)

Let us replace ε by SGS viscosity and ∆. We can write the SGS viscosity as

νsgs = εa(CS∆)b (18.57)

Dimensional analysis yields a = 1/3, b = 4/3 so that

νsgs = (CS∆)4/3ε1/3. (18.58)

Eq. 18.56 substituted into Eq. 18.58 gives

ν3sgs = (CS∆)4ε = (CS∆)4νsgs(2s̄ij s̄ij)

⇒ νsgs = (CS∆)2|s̄|
|s̄| = (2s̄ij s̄ij)

1/2

(18.59)

which is the Smagorinsky model.

18.23 A dynamic one-equation model

One of the drawbacks of the dynamic model of [71] (see p. 173) is the numerical

instability associated with the negative values and large variation of the C coefficient.

Usually this problem is fixed by averaging the coefficient in some homogeneous flow

direction. In real applications ad-hoc local smoothing and clipping is used. Below

a dynamic one-equation model is presented. The main object when developing this

model was that it should be applicable to real industrial flows. Furthermore, being a

dynamic model, it has the great advantage that the coefficients are computed rather than

being prescribed.



18.23. A dynamic one-equation model 185

I

II

III

κ

E(κ)

Figure 18.12: Spectrum for k. I: Range for the large, energy containing eddies; II:

the inertial subrange for isotropic scales, independent of the large scales (ℓ) and the

dissipative scales (ν); III: Range for small, isotropic, dissipative scales.

The equation for the subgrid kinetic energy reads [86, 87] (see also [88, 89])

∂ksgs
∂t

+
∂

∂xj
(v̄jksgs) = Pksgs +

∂

∂xj

(
νeff

∂ksgs
∂xj

)
− C∗

k
3/2
sgs

∆

Pksgs = −τaij v̄i,j , τaij = −2C∆k
1

2

sgss̄ij

(18.60)

with νeff = ν + 2Chom∆k
1

2

sgs. The C in the production term Pksgs is computed

dynamically (cf. Eq. 18.38). To ensure numerical stability, a constant value (in space)

ofC (Chom) is used in the diffusion term in Eq. 18.60 and in the momentum equations.

Chom is computed by requiring that Chom should yield the same total production of

ksgs as C, i.e.

〈2C∆k
1

2

sgss̄ij s̄ij〉xyz = 2Chom〈∆k
1

2

sgss̄ij s̄ij〉xyz
The dissipation term εksgs is estimated as:

εksgs ≡ νTf (vi,j , vi,j) = C∗

k
3/2
sgs

∆
. (18.61)

Now we want to find a dynamic equation for C∗. The equations for ksgs andK read in

symbolic form

T (ksgs) ≡ Cksgs −Dksgs = Pksgs − C∗

k
3/2
sgs

∆

T (K) ≡ CK −DK = PK − C∗

K3/2

︷︷
∆

(18.62)

Since the turbulence on both the grid level and the test level should be in local equilib-

rium (in the inertial −5/3 region), the left-hand side of the two equations in Eq. 18.62

should be close to zero. An even better approximation should be to assume T (ksgs) =
T (K), i.e.

︷︷
P ksgs −

1

∆

︷ ︷
C∗ksgs

3/2

= PK − C∗

K3/2

︷︷
∆

,

so that

Cn+1
∗ =

(
PK −

︷︷
P ksgs +

1

∆

︷ ︷
Cn

∗ k
3/2
sgs

) ︷︷
∆

K
3

2

. (18.63)
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The idea is to put the local dynamic coefficients in the source terms, i.e. in the produc-

tion and the dissipation terms of the ksgs equation (Eq. 18.60). In this way the dynamic

coefficients C and C∗ don’t need to be clipped or averaged in any way. This is a big

advantage compared to the standard dynamic model of Germano (see discussion on

p. 177).

18.24 A Mixed Model Based on a One-Eq. Model

Recently a new dynamic scale-similarity model was presented by [90]. In this model a

dynamic one-equation SGS model is solved, and the scale-similarity part is estimated

in a similar way as in Eq. 18.46.

18.25 Applied LES

At the Department we used LES for applied flows such as flow around a cube [91,92],

the flow and heat transfer in a square rotating duct [93,94], the flow around a simplified

bus [92, 95], a simplified car [96–98] and the flow around an airfoil [99, 100], detailed

SUV [101], trains and buses subjected to sidewinds and wind gusts [102–104]. We

have also done some work on buoyancy-affected flows [105–111].

18.26 Resolution requirements

The near-wall grid spacing should be about one wall unit in the wall-normal direction.

This is similar to the requirement in RANS (Reynolds-Averaged Navier-Stokes) using

low-Re number models. The resolution requirements in wall-parallel planes for a well-

resolved LES in the near-wall region expressed in wall units are approximately 100
(streamwise) and 30 (spanwise). This enables resolution of the near-wall turbulent

structures in the viscous sub-layer and the buffer layer consisting of high-speed in-

rushes and low-speed ejections [112], often called the streak process. At low to medium

Reynolds numbers the streak process is responsible for the major part of the turbulence

production. These structures must be resolved in an LES in order to achieve accurate

results. Then the spectra of the resolved turbulence will exhibit −5/3 range, see figure

on p. 69.

In applied LES, this kind of resolution can hardly ever be afforded. In outer scaling

(i.e. comparing the resolution to the boundary layer thickness, δ), we can afford δ/∆x1
and δ/∆x3 in the region of 10− 20 and 20− 40, respectively. In this case, the spectra

in the boundary layer will look something like that shown in Fig. 18.13 [113]. Energy

spectra are actually not very reliable to judge if a LES simulation is well resolved or

not. In [113,114] different ways to estimate the resolution of an LES were investigated.

The suggestion in these works is that two-point correlations is the best way to estimate

if an LES is sufficiently resolved or not.

Even if the turbulence in boundary layer seldom can be resolved, the flow in re-

circulation regions and shear layer can. In [115] the flow (Re ≃ 106) over a bump

was computed. The geometry is shown in Fig. 18.14. The turbulence in the bound-

ary layer on the bump was very poorly resolved: ∆x1/δin = 0.33, ∆x3/δin = 0.44,

∆x+1 = 1300 and ∆x+3 = 1800. Nevertheless, the turbulence in the recirculation re-

gion and in the shear layer downstream the bump turned out to be well resolved, see

Fig. 18.15.

For wall-bounded flows at high Reynolds numbers of engineering interest, the

computational resource requirement of accurate LES is prohibitively large. Indeed,
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Figure 18.13: Energy spectra in fully developed channel flow [113]. δ denotes half
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the requirement of near-wall grid resolution is the main reason why LES is too ex-

pensive for engineering flows, which was one of the lessons learned in the LESFOIL

project [116, 117].
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19 Unsteady RANS

T
O perform an accurate LES, a very fine mesh must be used. This causes problems,

for example, near walls. LES is very good for wake flow, where the flow is gov-

erned by large, turbulent structures, which can be captured by a fairly coarse mesh.

However, if attached boundary layers are important, LES will probably give poor pre-

dictions in these regions, unless fine grids are used.

An alternative to LES for industrial flows can be unsteady RANS (Reynolds-

Averaged Navier-Stokes), often denoted URANS (Unsteady RANS). In URANS the

usual Reynolds decomposition is employed, i.e.

v̄(t) =
1

2T

∫ t+T

t−T

v(t)dt, v = v̄ + v′′ (19.1)

The URANS equations are the usual RANS equations, but with the transient (unsteady)

term retained; on incompressible form they read

∂v̄i
∂t

+
∂

∂xj
(v̄iv̄j) = −1

ρ

∂p̄

∂xi
+ ν

∂2v̄i
∂xj∂xj

−
∂v′′i v

′′
j

∂xj
∂v̄i
∂xi

= 0

(19.2)

Note that the dependent variables are now not only function of the space coordinates,

but also function of time, i.e. v̄i = v̄i(x1, x2, x3, t), p̄ = p̄(x1, x2, x3, t) and v′′i v
′′
j =

v′′i v
′′
j (x1, x2, x3, t).
Even if the results from URANS are unsteady, one is often interested only in the

time-averaged flow. We denote here the time-averaged velocity as 〈v̄〉, which means

that we can decompose the results from an URANS as a time-averaged part, 〈v̄〉, a

resolved fluctuation, v̄′, and the modeled, turbulent fluctuation, v′′, i.e.

v = v̄ + v′′ = 〈v̄〉+ v̄′ + v′′ (19.3)
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see Fig. 19.1. The modeled turbulent fluctuation, v′′, is not shown in the figure; when

this is added to 〈v̄〉+ v̄′ we obtain v.

What type of turbulence model should be used in URANS? That depends on type

of flow. If the flow has strong vortex shedding, the standard high-Re number k − ε
model can be used, i.e.

∂ρk

∂t
+
∂ρv̄jk

∂xj
=

∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+ P k − ρε (19.4)

∂ρε

∂t
+
∂ρv̄jε

∂xj
=

∂

∂xj

[(
µ+

µt

σε

)
∂ε

∂xj

]
+
ε

k

(
c1εP

k − cε2ρε
)

(19.5)

µt = cµρ
k2

ε
(19.6)

With an eddy-viscosity, the URANS equations read

∂ρv̄i
∂t

+
∂ρv̄iv̄k
∂xk

= − ∂p̄

∂xi
+

∂

∂xk

[
(µ+ µt)

∂v̄i
∂xk

]
(19.7)

Usually the standard k − ε model is not a good URANS model because it gives too

much modeled dissipation (i.e. too large turbulent viscosity), which dampens the re-

solved fluctuations too much. The V2F and non-linear eddy-viscosity models are bet-

ter.

So we are doing unsteady simulations, but still we time average the equations. How

is this possible? The theoretical answer is that the time, T , in Eq. 19.1 should be much

smaller than the resolved time scale, i.e. the modeled turbulent fluctuations, v′′, should

have a much smaller time scale than the resolved ones, v̄′. This is called scale separa-

tion. In practice this requirement is often not satisfied [82]. On the other hand, how do

the momentum equation, Eq. 19.7, know how they were time averaged? Or if they were

volume filtered? The answer is that they don’t. The URANS momentum equation and

the LES momentum equation are exactly the same, except that we denote the turbulent

viscosity in the former case by νt and in the latter case by νsgs. In URANS, much

more of the turbulence is modeled than in LES, and, hence, the turbulent viscosity, νt,
is much larger than the SGS viscosity, νsgs.

The common definition of URANS is that the turbulent length scale is not deter-

mined by the grid, whereas in LES it is. In URANS we do usually not care about scale

separation. What we care about is that the turbulence model and the discretization

v, v̄, 〈v̄〉

t

〈v̄〉

Figure 19.1: Decomposition of velocities in URANS. : v̄; : v; 〈v̄〉.
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Figure 19.2: Configuration of the flow past a triangular flameholder. Flow from left to

right

Figure 19.3: 2D URANS k − ε simulations [118]. One cycle of the v̄2 velocity in a

cell near the upper-right corner of the flameholder.

scheme should not be too dissipative, i.e. they should not kill the resolved fluctuations,

v̄′.
The standard k − εmodel (Eq. 19.4 and 19.5) was used in [118] for two-dimensional

URANS simulations computing the flow around a triangular flame-holder in a channel,

see Fig. 19.2. This flow has a very regular vortex shedding. and the flow actually has a

scale separation. In Fig. 19.3 the v̄2 velocity in a point above the flame-holder is shown

and it can be seen that the velocity varies with time in a sinusoidal manner.

When we’re doing URANS, the question arises how the results should be time

averaged, i.e. when should we start to average and for how long. This issue is the same

when doing LES, and this was discussed in connection to Fig. 18.11.
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Figure 19.4: 2D URANS k − ε simulations compared with experiment [118]. Solid

lines: total turbulent kinetic energy; dashed lines: resolved turbulent kinetic energy:

∗: experimental data. Left figure: x = 0.43H ; right figure: x = 1.1H (x = 0 at the

downstream vertical plane of the flame-holder).

19.1 Turbulence Modeling

In URANS, part of the turbulence is modeled (v′′) and part of the turbulence is resolved

(v̄′). If we want to compare computed turbulence with experimental turbulence, we

must add these two parts together. Profiles downstream the flameholder are shown in

Fig. 19.4. It can be seen that here the resolved and the modeled turbulence are of the

same magnitude.

If the turbulence model in URANS generates ”too much” eddy viscosity, the flow

may not become unsteady at all, because the unsteadiness is dampened out; the reason

for this is that the turbulence model is too dissipative. It was found in [119, 120] when

using URANS for the flow around a surface-mounted cube and around a car, that the

standard k − ε model was too dissipative. Non-linear models like that of [121] was

found to be less dissipative, and was successfully applied in URANS-simulations for

these two flows.

19.2 Discretization

In LES it is well-known that non-dissipative discretization schemes should be used.

The reason is that we don’t want to dampen out resolved, turbulent fluctuations. This is

to some extent true also for URANS. In the predictions on the flame-holder presented

above, the hybrid discretization scheme for the convective terms was used together

with fully implicit first-order discretization in time; this gives first-order accuracy in

both space and time. The turbulence model that was used was the standard k − ε
model. Thus, both the discretization and the turbulence model have high dissipation.

The reason why the unsteadiness in these computations was not dampened out is that

the vortex shedding in this flow is very strong.

In general, a discretization scheme which has little numerical dissipation should be
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Figure 19.5: URANS simulations of the flow around a surface-mounted cube.

used. How dissipative a scheme needs to be in order to be stable is flow dependent; for

some simple flows, it may work with no dissipation at all (i.e. central differencing),

whereas for industrially complex flows maybe a bounded second-order scheme must

be used. For time discretization, the second-order accurate Crank-Nicolson works in

most cases.

In [119] LES and URANS simulations were carried out of the flow around a surface-

mounted cube (Fig. 19.5) with a coarse mesh using wall-functions. Two different dis-

cretization schemes were used: the central scheme and the Mars scheme (a blend be-

tween central differencing and a bounded upwind scheme of second-order accuracy).

In Fig. 19.6 the time-averaged velocity profile upstream of the cube (x1 = −0.6H)

using URANS and LES with central differencing are shown together with URANS and

the Mars scheme. It is seen that with LES and central differencing nonphysical oscil-

lations are present (this was also found in [91]). However, LES with the Mars scheme

(in which some numerical dissipation is present) and URANS with the central scheme

(where the modeling dissipation is larger than in LES) no such nonphysical oscillations

are present. The main reason to the nonphysical oscillations is that the predicted flow

in this region does not have any resolved fluctuations. If turbulent unsteady inlet fluc-

tuations are used, the nonphysical oscillations do usually not appear, even if a central

differencing scheme is used. In this case the turbulent, resolved fluctuations dominate

over any numerical oscillations.
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Figure 19.6: URANS simulations of the flow around a surface-mounted cube. Velocity

profiles upstream the cube [119].

20 DES

D
ES (Detached Eddy Simulation) is a mix of LES and URANS. The aim is to treat

the boundary layer with RANS and capture the outer detached eddies with LES.

Since the flow in the boundary layer will be strongly influenced by the unsteady LES

in the outer region, the flow in the boundary layer will also be unsteady. Hence the

boundary layer is treated with unsteady RANS (URANS). The DES was originally

developed for wings at very high angles of attack.

The RANS model that was originally used was the one-equation model proposed

in [122]. It can be written [116, 122, Sect. 4.6]

∂ρν̃t
∂t

+
∂ρv̄j ν̃t
∂xj

=
∂

∂xj

(
µ+ µt

σν̃t

∂ν̃t
∂xj

)
+
Cb2ρ

σν̃t

∂ν̃t
∂xj

∂ν̃t
∂xj

+ P −Ψ

νt = ν̃tf1

(20.1)

The production term P and the destruction term Ψ have the form

P = Cb1ρ

(
s̄+

ν̃t
κ2d2

f2

)
ν̃t

s̄ = (2s̄ij s̄ij)
1/2 , Ψ = Cw1ρfw

(
ν̃t
d

)2 (20.2)

d in the RANS SA model is equal to the distance to the nearest wall.

In DES [123], d is taken as the minimum of the RANS turbulent length scale d and

the cell length ∆ = max(∆xξ,∆xη,∆xζ), i.e.

d̃ = min(d, Cdes∆). (20.3)

∆xξ , ∆xη and ∆xζ denote the cell length in the three grid directions ξ, η and ζ. The

constant Cdes is usually set to 0.65.
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In the boundary layer d < Cdes∆ and thus the model operates in RANS mode.

Outside the turbulent boundary layer d > Cdes∆ so that the model operates in LES

mode. The modeled length scale is reduced and the consequence is that the destruction

term Ψ increases, which gives a reduction in the turbulent viscosity ν̃t. A reduced ν̃t
gives a smaller production term P so that the turbulent viscosity is further reduced.

At first sight it may seem that as the model switches from RANS mode to LES

mode thus reducing d, this would give rise to an increased production term P through

the second term (see Eq. 20.2). However, this second term is a viscous term and is

active only close to the wall. This term is sometimes neglected [124].

20.1 DES based on two-equation models

The model described above is a one-equation model. In RANS mode it takes its length

scale from the wall distance, which in many situations is not a relevant turbulent length

scale. Recently, DES models based on two-equation models were proposed [125–127].

In these models the turbulent length scale is either obtained from the two turbulent

quantities (e.g. k3/2/ε or k1/2/ω) or the filter width ∆. A model based on the k − ε
model can read

∂k

∂t
+

∂

∂xj
(v̄jk) =

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ P k − εT

∂ε

∂t
+

∂

∂xj
(v̄jε) =

∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+
ε

k
(C1P

k − C2ε)

P k = 2νts̄ij s̄ij , νt = k1/2ℓt

The turbulent length scale, ℓt, and the turbulent dissipation, εT , are computed as [127,

128]

ℓt = min

(
Cµ

k3/2

ε
, Ck∆

)

εT = max

(
ε, Cε

k3/2

∆

)

In other models [64, 125] only the dissipation term, εT is modified. When the grid

is sufficiently fine, the length scale is taken as ∆. The result is that the dissipation in the

k equation increases so that k decreases which gives a reduced νt. A third alternative is

to modify only the turbulent length scale appearing in the turbulent viscosity [128]. In

regions where the turbulent length scales are taken from ∆ (LES mode) the ε-equation

is still solved, but ε is not used. However, ε is needed as soon as the model switches to

RANS model again.

A rather new approach is to reduce the destruction term in the ε equation as in

PANS [129, 130] (Partially Averaged Navier-Stokes, see Section 23) and PITM [131]

(Partially Integrated Transport Modeling, see Section 24). In these models ε increases

because of its reduced destruction term which decreases both k and νt. A low-Reynolds

number PANS was recently proposed [130] in which the near-wall modifications were

taken from the AKN model [132]. In [133] different ways of treating the interface

between the URANS and LES regions were evaluated.

In the RANS mode the major part of the turbulence is modeled. When the model

switches to LES mode, the turbulence is supposed to be represented by resolved tur-

bulence. This poses a major problem with this type of models. If the switch occurs at
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location x1, say, it will take some distance L before the momentum equations start to

resolve any turbulence. This is exactly what happens at an inlet in an LES simulation

if no real turbulence is given as inlet boundary conditions. One way to get around this

is to impose turbulence fluctuations as forcing conditions [85,134–137] at the location

where the model switches from RANS mode to LES mode. The forcing is added in the

form of a source term (per unit volume) in the momentum equations.

20.2 DES based on the k − ω SST model

The standard k − ω model SST reads [58, 64]

∂k

∂t
+

∂
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νt
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500ν
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a1k

max(a1ω, |s̄|F2)

F2 = tanh(η2), η = max

{
2k1/2

β∗ωd
,
500ν

d2ω

}

(20.4)

where d is the distance to the closest wall node. The SST model behaves as a k − ω
model near the wall where F1 = 1 and a k − ε model far from walls (F1 = 0). All

coefficients are blended between the k− ω and the k− ε model using the function F1,

for α, for example,

α = F1αk−ω + (1 − F1)αk−ε (20.5)

The constants take the following values:

β∗ = 0.09, a1 = 0.3

αk−ω = 5/9, βk−ω = 3/40, σk,k−ω = 0.85, σω,k−ω = 0.5

αk−ε = 0.44, βk−ε = 0.0828, σk,k−ε = 1, σω,k−ε = 0.856.

(20.6)

In DES the dissipation term in the k equation is modified as [64]

β∗kω → β∗kωFDES, FDES = max

{
Lt

CDES∆
, 1

}

∆ = max {∆x1,∆x2,∆x3} , Lt =
k1/2

β∗ω

(20.7)

where CDES = 0.61.

Again, the DES modification is meant to switch the turbulent length scale from a

RANS length scale (∝ k1/2/ω) to a LES length scale (∝ ∆) when the grid is suf-

ficiently fine. When FDES is larger than one, the dissipation term in the k equation
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increases which in turn decreases k and thereby also the turbulent viscosity. With a

smaller turbulent viscosity in the momentum equations, the modeled dissipation (i.e

the damping) is reduced and the flow is induced to go unsteady. The result is, hope-

fully, that a large part of the turbulence is resolved rather than being modeled.

Equation 20.7 shows that it is the grid that determines the location where the model

switches between RANS and LES. Hence it is crucial to generate an appropriate grid.

The larger the maximum cell size (usually ∆x or ∆z) is made, the further out from the

wall does the switch take place.

20.3 DDES

In some flows it may occur that the FDES term switches to LES in the boundary layer

because ∆x or ∆z (∆x1 or ∆x3) are too small (smaller than the boundary layer thick-

ness, δ). This means that the flow in the boundary layer is treated in LES mode with too

a coarse mesh. This results in a poorly resolved LES and hence inaccurate predictions.

Different proposals have been made [138, 139] to protect the boundary layer from the

LES mode

FDES = max

{
Lt

CDES∆
(1− FS), 1

}
(20.8)

where FS is taken as F1 or F2 (see Eq. 20.4) of the SST model. In [64] F = F2. This

is called DDES (Delayed DES).
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21 Hybrid LES-RANS

W
HEN simulating bluff body flows, LES (Large Eddy Simulation) is the ideal

method. Bluff body flows are dominated by large turbulent scales that can be

resolved by LES without too fine a resolution and accurate results can thus be obtained

at an affordable cost. On the other hand, it is a challenging task to make accurate pre-

dictions of wall-bounded flows with LES. The near-wall grid spacing should be about

one wall unit in the wall-normal direction. This is similar to the requirement in RANS

using low-Re number models. The resolution requirements in wall-parallel planes for

a well-resolved LES in the near-wall region expressed in wall units are approximately

100 (streamwise) and 30 (spanwise). This enables resolution of the near-wall turbu-

lent structures in the viscous sub-layer and the buffer layer consisting of high-speed

in-rushes and low-speed ejections [112], often called the streak process.

An event of a high-speed in-rush is illustrated in Fig. 21.1. In the lower part of

the figure the spanwise vortex line is shown. Initially it is a straight line, but due to a

disturbance – e.g. a turbulent fluctuation – the mid-part of the vortex line is somewhat

lifted up away from the wall. The mid-part of the vortex line experiences now a higher

v̄1 velocity (denoted by U in the figure) than the remaining part of the vortex line.

As a result the mid-part is lifted up even more and a tip of a hairpin vortex is formed.

The vorticity of the legs of the hairpin lift each other through self-induction which helps

lifting the tip even more. In the x1−x2 plane (upper part of Fig.. 21.1) the instantaneous

and mean velocity profiles (denoted by U and Ū in the figure, respectively) are shown

as the hairpin vortex is created. It can be seen that an inflection point is created in the

instantaneous velocity profile,U , and the momentum deficit in the inner layer increases

for increasing x1. Eventually the momentum deficit becomes too large and the high-

speed fluid rushes in compensating for the momentum deficit. The in-rush event is also

called a sweep. There are also events which occurs in the other direction, i.e. low-

speed fluid is ejected away from the wall. These events are called bursts or ejections.

The spanwise separation between sweeps and bursts is very small (approximately 100
viscous units, see Fig. 21.1). This is the main reason why the grid must be very fine

in the spanwise direction. The streamwise distance between the events is related to

the boundary layer thickness (4δ, see Fig. 21.1). The process by which the events are

formed is similar to the later stage in the transition process from laminar to turbulent

flow. Figure 21.2 presents the instantaneous field of the streamwise velocity fluctuation,

v′1 in the viscous wall region. As can be seen, the turbulent structures very elongated

in the streamwise direction.

At low to medium Reynolds numbers the streak process is responsible for the major

part of the turbulence production. These structures must be resolved in an LES in order

to achieve accurate results. Thus, for wall-bounded flows at high Reynolds numbers

of engineering interest, the computational resource requirement of accurate LES is

prohibitively large. Indeed, the requirement of near-wall grid resolution is the main

reason why LES is too expensive for engineering flows, which was one of the lessons

learned in the LESFOIL project [116, 117].

The object of hybrid LES-RANS (and of DES) is to eliminate the requirement of

high near-wall resolution in wall-parallel planes. In the near-wall region (the URANS

region), a low-Re number RANS turbulence model (usually an eddy-viscosity model)

is used. In the outer region (the LES region), the usual LES is used, see Fig. 21.3.

The idea is that the effect of the near-wall turbulent structures should be modeled by

the RANS turbulence model rather than being resolved. In the LES region, coarser
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Figure 21.1: Illustration of near-wall turbulence (taken from [69]).

x1

x3

Figure 21.2: Fluctuating streamwise velocity in a wall-parallel plane at x+2 = 5. DNS

of channel flow [85].

x2

x1

wall

wall

URANS region

URANS region

LES region

x+2,ml

Figure 21.3: The LES and URANS region.
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URANS region LES region

ℓ κc
−3/4
µ n[1− exp(−0.2k1/2n/ν)] ℓ = ∆

νT κc
1/4
µ k1/2n[1− exp(−0.014k1/2n/ν)] 0.07k1/2ℓ

Cε 1.0 1.05

Table 21.1: Turbulent viscosity and turbulent length scales in the URANS and LES

regions. n and κ denote the distance to the nearest wall and von Kármán constant

(= 0.41), respectively. ∆ = (δV )1/3

.

grid spacing in wall-parallel planes can be used. The grid resolution in this region is

presumably dictated by the requirement of resolving the largest turbulent scales in the

flow (which are related to the outer length scales, e.g. the boundary layer thickness)

rather than the near-wall turbulent processes. The unsteady momentum equations are

solved throughout the computational domain. The turbulent RANS viscosity is used in

the URANS region, and the turbulent SGS viscosity is used in the LES region.

Hybrid LES-RANS is similar to DES (Detached Eddy Simulations) [123,139,140].

The main difference is that the original DES aims at covering the whole attached

boundary layer with URANS, whereas hybrid LES-RANS aims at covering only the

inner part of the boundary layer with URANS. In later work DES has been used as a

wall model [135, 141], and, in this form, DES is similar hybrid LES-RANS.

21.1 Momentum equations in hybrid LES-RANS

The incompressible Navier-Stokes equations with an added turbulent/SGS viscosity

read
∂v̄i
∂t

+
∂

∂xj
(v̄iv̄j) = −1

ρ

∂p̄

∂xi
+

∂

∂xj

[
(ν + νT )

∂v̄i
∂xj

]
(21.1)

where νT = νt (νt denotes the turbulent RANS viscosity) for x2 ≤ x2,ml (see Fig. 21.3)

and, for x2 > x2,ml, νT = νsgs. The turbulent viscosity, νT , is computed from an al-

gebraic turbulent length scale (see Table 21.1) and kT ; the latter is obtained by solving

its transport equation, see Eq. 21.2.

21.2 The equation for turbulent kinetic energy in hybrid LES-RANS

A one-equation model is employed in both the URANS region and the LES region,

which reads

∂kT
∂t

+
∂

∂xj
(v̄jkT ) =

∂

∂xj

[
(ν + νT )

∂kT
∂xj

]
+ PkT − Cε

k
3/2
T

ℓ

PkT = −τij s̄ij , τij = −2νT s̄ij

(21.2)

In the inner region (x2 ≤ x2,ml) kT corresponds to the RANS turbulent kinetic energy,

k; in the outer region (x2 > x2,ml) it corresponds to the subgrid-scale kinetic turbulent

energy (ksgs). No special treatment is used in the equations at the matching plane ex-

cept that the form of the turbulent viscosity and the turbulent length scale are different

in the two regions, see Table 21.1. At the walls, kT = 0.

When prescribing the location of the RANS-LES interface, the velocity profile may

show unphysical behaviour near the interface because of the rapid variation of the tur-
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bulence viscosity. Much work on forcing have been presented in order to alleviate this

problem [85, 113, 135, 136].
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22 The SAS model

22.1 Resolved motions in unsteady

W
HEN doing URANS or DES, the momentum equations are triggered through in-

stabilities to go unsteady in regions where the grid is fine enough. In URANS

or in DES operating in RANS mode, high turbulent viscosity often dampens out these

instabilities. In many cases this is an undesired feature, because if the flow wants to go

unsteady, it is usually a bad idea to force the equations to stay steady. One reason is that

there may not be any steady solution. Hence, the equations will not converge. Another

reason is that if the numerical solution wants to go unsteady, the large turbulent scales

— i.e. part of the turbulent spectrum — will be resolved instead of being modeled.

This leads to a more accurate prediction of the flow.

One way to improve a RANS model’s ability to resolve large-scale motions is to

use the SAS (Scale- Adaptive Simulation) model

22.2 The von Kármán length scale

The von Kármán length scale

LvK,1D = κ

∣∣∣∣
∂〈v̄〉/∂x2
∂2〈v̄〉/∂x22

∣∣∣∣ (22.1)

which includes the second velocity gradient is a suitable length scale for detecting

unsteadiness. The von Kármán length scale is smaller for an instantaneous velocity

profile than for a time averaged velocity, see Fig. 22.1. This is interesting because, as

noted in [142], the von Kármán length scale decreases when the momentum equations

resolve (part of) the turbulence spectrum.

The first and second derivatives in Eq. 22.1 are given in boundary layer form. We

want to extend this expression to a general one, applicable in three dimensions. In the

same way as in, for example, the Smagorinsky model, we take the first derivative as

|s̄| = (2s̄ij s̄ij)
1/2. The second derivative can be generalized in a number of ways. In

the SAS model it is taken as

U ′′ =

(
∂2v̄i

∂xj∂xj

∂2v̄i
∂xk∂xk

)0.5

(22.2)

There are other options how to computed this second derivative, see Eq. O.5 at p. 324.

Hence, the general three-dimensional expression for the von Kármán length scale reads

LvK,3D = κ
|s̄|
|U ′′| (22.3)

In [143] they derived a one-equation νt turbulence model where the von Kármán

length scale was used. The model was called the SAS model. Later, based on the

k− k1/2L model of Rotta [144], Menter & Egorov [142] derived a new k− kL model

using the von Kármán length scale. Finally, in [145] they modified the k − ω-SST

model to include the SAS features; they called this model the SST-SAS model. This

model is described in more detail below.
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Figure 22.1: Velocity profiles from a DNS of channel flow. Solid line: time-averaged

velocity with length scale Lx,1D, Eq. 22.1 ; dashed line: instantaneous velocity with

length scale LvK,3D, Eq. 22.3.

The SST-SAS model

The k − ω SST model is given in Eq. 20.4 at p. 195 (see also the section starting at

p. 159) Now, Menter & Egorov [145] introduced a SAS-term in the ω equation. The

object of this term is to decrease the turbulent viscosity when unsteadiness is detected,

i.e. when the von Kármán length scale becomes small. The production term in the ω
equation in the k−ω-SST model readsPω = αP k/νt ∝ |s̄|2. To decrease the turbulent

viscosity we should increase ω. Thus it seems reasonable to add a new production term

proportional to PωLt/LvK,3D where Lt denotes a RANS length scale. The additional

term reads

ζ̃2κ|s̄|2
Lt

LvK,3D
, Lt =

k1/2

ωc
1/4
µ

(22.4)

When unsteadiness occurs — i.e. when the momentum equations attempt to resolve

part of the turbulence spectrum — this term reacts as follows:

• Local unsteadiness will create velocity gradients which decrease the turbulent

length scale, see Fig. 22.1

• This results in a decrease in the von Kármán length scale, LvK,3D

• As a consequence the additional source, Eq. 22.4, in the ω equation increases

• This gives an increase in ω and hence a decrease in νt

• The decreased turbulent viscosity will allow the unsteadiness to stay alive and,

perhaps, grow.

The last item in the list above is the main object of the SAS model. The reaction

to local unsteadiness in a eddy-viscosity model without the SAS feature is as follows:

the increased local velocity gradients will create additional production of turbulent ki-

netic energy and give an increased turbulent viscosity which will dampen/kill the local

unsteadiness. As mentioned in the introduction to this chapter, this is an undesirable

feature.
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When incorporating the additional production term (Eq. 22.4) in the k − ω-SST

model, the last term in the ω equation is replaced by (for further details, see [145])

PSAS = FSAS max (T1 − T2, 0)

T1 = ζ̃2κS
2 L

LvK,3D

T2 =
2k

σΦ
max

(
1

ω2

∂ω

∂xj

∂ω

∂xj
,
1

k2
∂k

∂xj

∂k

∂xj

)

L =
k1/2

ωc
1/4
µ

(22.5)

Note that the term T1 is the “real” additional SAS term; T2 is included to make sure

that the model in steady flow works as a k − ω SST model.

22.3 The second derivative of the velocity

To computeU ′′ in Eq. 22.2, we need to compute the second velocity gradients. In finite

volume methods there are two main options for computing second derivatives.

Option I: compute the first derivatives at the faces

(
∂v

∂x2

)

j+1/2

=
vj+1 − vj

∆x2
,

(
∂v

∂x2

)

j−1/2

=
vj − vj−1

∆x2

and then

⇒
(
∂2v

∂x22

)

j

=
vj+1 − 2vj + vj−1

(∆x2)2
+

(∆x2)
2

12

∂4v

∂x42

Option II: compute the first derivatives at the center

(
∂v

∂x2

)

j+1

=
vj+2 − vj
2∆x2

,

(
∂v

∂x2

)

j−1

=
vj − vj−2

2∆x2

and then

⇒
(
∂2v

∂x22

)

j

=
vj+2 − 2vj + vj−2

4(∆x2)2
+

(∆x2)
2

3

∂4v

∂x42

In [146], Option I was used unless otherwise stated.

22.4 Evaluation of the von Kármán length scale in channel flow

In Fig. 22.2 the turbulent length scale, 〈LvK,3D〉, is evaluated using DNS data of fully

developed channel flow. When using DNS data only viscous dissipation of resolved tur-

bulence affects the equations. This implies that the smallest scales that can be resolved

are related to the grid scale. The von Kármán length scale based on instantaneous ve-

locities, 〈LvK,3D〉, is presented in Fig. 22.2. For x2 > 0.2, its magnitude is close to

∆x2 which confirms that the von Kármán length scale is related to the smallest resolv-

able scales. Closer to the wall, 〈LvK,3D〉 increases slightly whereas ∆x2 continues to

decrease.

The von Kármán length scale, LvK,1D, based on the averaged velocity profile

〈v̄1〉 = 〈v̄1〉(x2) is also included in Fig. 22.2, and as can be seen it is much larger than

〈LvK,3D〉. Near the wallLvK,1D increases because the time-average second derivative,
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Figure 22.2: Turbulent length scales in fully developed channel flow. Left: global

view; right: zoom. DNS. 963 mesh. Reτ = 500. ∆x1/δ = 0.065, ∆x3/δ = 0.016,

x2-stretching of 9%. : 〈LvK,3D〉; : LvK,1D; : (∆x1∆x2∆x3)
1/3; ◦:

∆x2.
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Figure 22.3: Turbulent length scales in fully developed channel flow. Hybrid LES-

RANS. Left: global view; right: zoom. 32 × 64 × 32 mesh. Reτ = 2000. ∆x1/δ =
0.39, ∆x3/δ = 0.19, x2-stretching of 17%. : 〈LvK,3D〉; : LvK,1D; :

(∆x1∆x2∆x3)
1/3; ◦: ∆x2; +: ℓk−ω = k0.5/(c

1/4
µ ω).

∂2〈v̄1〉/∂x22, goes to zero as the wall is approached. No such behavior is seen for the

three-dimensional formulation, 〈LvK,3D〉.
In Fig. 22.3, data from hybrid LES-RANS are used (taken from [85]). When using

hybrid LES-RANS, part of the turbulence is resolved and part of the turbulence is

modeled. The resolved turbulence is dissipated by a modeled dissipation, −2〈νT s̄ij s̄ij〉
(νT denotes SGS or RANS turbulent viscosity), and νT ≫ ν. As a result, the length

scale of the smallest resolved turbulence is larger in hybrid LES-RANS than in DNS.

Close to the wall in the URANS region (x2 < 0.031δ), the resolved turbulence is

dampened by the high turbulent viscosity, and as a results 〈LvK,3D〉 follows closely

LvK,1D.

The RANS turbulent length scale, ℓk−ω, from a 1D RANS simulation at Reτ =
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2000 with the k − ω SST model is also included in Fig. 22.3. In the inner region

(x2 < 0.5δ), its behavior is close to that of the von Kármán length scale, LvK,1D. In the

center region the RANS turbulent length scale continues to increase which is physically

correct. However, the von Kármán length scale, LvK,1D, goes to zero because the

velocity derivative goes to zero.

Two filter scales are included in Figs. 22.2 and 22.3. In the DNS-simulations,

∆x2 < (∆x1∆x2∆x3)
1/3 near the wall, whereas far from the wall ∆x2 > (∆x1∆x2∆x3)

1/3

because of the stretching in the x2 direction and because of small ∆x1 and ∆x3. In the

hybrid simulations, it can be noted that the three-dimensional filter width is more that

twice as large as the three-dimensional formulation of the von Kármán length scale,

i.e. (∆x1∆x3∆x3)
1/3 > 2〈LvK,3D〉.

In [146], the SST-SAS model has been evaluated in channel flow, flow in an asym-

metric diffusor and flow over an axi-symmetric hill.
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23 The PANS Model

T
HE PANS method uses the so-called “partial averaging” concept, which corresponds

to a filtering operation for a portion of the fluctuating scales [147].

For an instantaneous flow variable, F , we use f̄ to denote the partially-averaged

part, namely f̄ = P(F ), where P denotes the partial-averaging operator. We consider

incompressible flows. Applying the partial averaging to the governing equations gives

∂v̄i
∂xi

= 0 (23.1)

∂v̄i
∂t

+
∂(v̄iv̄j)

∂xj
= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂v̄i
∂xj

− τij

)
(23.2)

where τij is the central second moment resulting from the partial averaging for the

nonlinear terms, that is τij = (P(vivj) − v̄iv̄j), where vi indicates instantaneous ve-

locity components. This term is similar to the Reynolds stress tensor resulting from the

Reynolds averaging in RANS or to the subgrid-scale (SGS) stress tensor after the spa-

tial filtering in LES. For simplicity, we also use the terminology of Reynolds stresses

for the term τij in Eq. 23.2.

To close the system of the partially-averaged Navier-Stokes equations, as in RANS

and LES, a model is needed for τij . In [147] they proposed using the conventional

eddy viscosity concept so that τij = −2νus̄ij , where s̄ij is the strain-rate tensor of the

computed flow and νu is the PANS eddy viscosity.

In order to formulate the PANS eddy viscosity, they defined in [147] another two

quantities, the partially-averaged turbulent kinetic energy, ku and its dissipation rate εu,

so that νu = Cµk
2
u/εu. In the derivation of the transport equations for ku and εu, two

parameters, fk and fε, have been introduced, relating the unresolved to the resolved

fluctuating scales. Parameter fk defines the ratio of unresolved (partially-averaged)

turbulent kinetic energy (ku) to the total kinetic energy (k), and fε is the ratio between

the unresolved (εu) and the total (ε) dissipation rates. These give

k =
ku
fk

and ε =
εu
fε

(23.3)

The extent of the resolved part is now determined by fk and fε. Usually fε = 1;

fε < 1 implies that (large) dissipative scales are resolved. In [147,148] they employed

the standard k − ε model as the base model.

The ku equation is derived by multiplying the RANS k equation (Eq. 11.96) in the

k − ε model by fk, i.e. (for simplicity we omit the buoyancy term)

fk

{
∂k

∂t
+ V̄j

∂k

∂xj

}
= fk

{
P k − ε+

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]}
(23.4)

where Vi denotes the RANS velocity. The left side can be re-written

fk

{
∂k

∂t
+ V̄j

∂k

∂xj

}
=
∂ku
∂t

+ V̄j
∂ku
∂xj

=
∂ku
∂t

+ v̄j
∂ku
∂xj

+ (V̄j − v̄j)
∂ku
∂xj

(23.5)

The convective term must be expressed in v̄j (the PANS averaged velocity) rather than

in V̄j (the RANS averaged velocity), because it is v̄j that transports ku because v̄j
represents the PANS resolved part of vj . The last term on the right side in Eq. 23.5 is

usually neglected.
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The diffusion term is re-written using Eq. 23.3

fk

{
∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]}
=

∂

∂xj

[(
ν +

νt
σk

)
∂ku
∂xj

]

=
∂

∂xj

[(
ν +

νu
σku

)
∂ku
∂xj

] (23.6)

where

σku = σk
f2
k

fε
(23.7)

The source terms in Eq. 23.4 are replaced by Pu and εu, i.e.

fk
(
P k − ε

)
= Pu − εu (23.8)

This relation implies

P k =
1

fk
(Pu − εu) +

εu
fε

(23.9)

Using Eqs. 23.5, 23.6 and 23.8 the final transport equation for ku can now be written

as

∂ku
∂t

+
∂(kuv̄j)

∂xj
=

∂

∂xj

[(
ν +

νu
σku

)
∂ku
∂xj

]
+ Pu − εu (23.10)

where the production term, Pu, is expressed in terms of the PANS eddy viscosity, νu,

and the strain rate of PANS-resolved flow field, i.e.

Pu = νu

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

(23.11)

where

νu = cµ
k2u
εu

(23.12)

The εu equation is derived by multiplying the RANS ε equation by fε, i.e.

∂εu
∂t

+
∂(εuv̄j)

∂xj
= fε

[
∂ε

∂t
+
∂(εV̄j)

∂xj

]

= fε

{
∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ Cε1P

k ε

k
− Cε2

ε2

k

} (23.13)

The diffusion term is re-written using Eq. 23.3

fε

{
∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]}
=

∂

∂xj

[(
ν +

νt
σε

)
∂εu
∂xj

]

=
∂

∂xj

[(
ν +

νu
σεu

)
∂εu
∂xj

] (23.14)

where

σεu = σε
f2
k

fε
(23.15)
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In the same way, the production and destruction terms are re-formulated as (using

Eqs. 23.3 and 23.9)

fε

{
Cε1P

k ε

k
− Cε2

ε2

k

}
= Cε1

εufk
ku

(
1

fk
(Pu − εu) +

εu
fε

)
− Cε2

ε2ufk
fεku

= Cε1
εu
ku
Pu − Cε1

ε2u
ku

+ Cε1
ε2ufk
kufε

− Cε2
ε2ufk
fεku

(23.16)

= Cε1
εu
ku
Pu − C∗

ε2

ε2u
ku

where

C∗

ε2 = Cε1 +
fk
fε

(Cε2 − Cε1) (23.17)

The εu equation in the PANS model now takes the following form

∂εu
∂t

+
∂(εuv̄j)

∂xj
=

∂

∂xj

[(
ν +

νu
σεu

)
∂εu
∂xj

]
+ Cε1Pu

εu
ku

− C∗

ε2

ε2u
ku

(23.18)

As in the ku equation, the the additional term (V̄j−v̄j)∂εu/∂xj has been neglected.

The PANS equation for ku, Eq. 23.10, was derived by multiplying the RANS equa-

tion for k by fk which was assumed to be constant in space and in time. By referring

to Eqs. 23.6, 23.12 and 23.7, the turbulent diffusion term was obtained as

fk
∂

∂xj

(
νt
σk

∂k

∂xj

)
=

∂

∂xj

(
νt
σk

∂ku
∂xj

)
(23.19a)

=
∂

∂xj

(
νu
σku

∂ku
∂xj

)
(23.19b)

The expression on the right-hand side of Eq. 23.19(a) suggests that the turbulent trans-

port for the PANS-modeled turbulent kinetic energy, ku, is actually formulated in terms

of the RANS turbulent viscosity from the base model. This is different from the turbu-

lent diffusion in subgrid scale (SGS) modeling of LES with a one-equation ksgs model,

which reads
∂

∂xj

(
νsgs
σk

∂ksgs
∂xj

)
(23.20)

In Eq. 23.20 the SGS turbulent viscosity is invoked for the transport of ksgs, whereas

on the right-hand side of Eq. 23.19(a) the total (i.e. the RANS) turbulent viscosity has

been used for ku. Equation 23.19(a) suggests that, when used as an SGS model, the

modeled turbulent diffusion in the PANS formulation is a factor of σk/σku = fε/f
2
k

larger than in Eq. 23.20, see Eqs. 23.10 and 23.19(b). With fε = 1 and fk = 0.4, for

example, this factor is larger than six. The modification of the diffusion coefficient,

σku, is a unique property of the PANS model. In other models, such as DES [149],

X-LES [127] and PITM [131], the sink term in the k, ε or ω equation is modified, but

not the diffusion term. The only difference between PANS and PITM is that in the

former model the diffusion coefficients in the k and ε are modified.

A Low Reynolds number PANS model was presented in [150]. A recently devel-

oped LRN PANS model is employed, for improved modeling of near-wall turbulence,
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which reads [130]

∂ku
∂t

+
∂(kuv̄j)

∂xj
=

∂

∂xj

[(
ν +

νu
σku

)
∂ku
∂xj

]
+ (Pu − εu)

∂εu
∂t

+
∂(εuv̄j)

∂xj
=

∂

∂xj

[(
ν +

νu
σεu

)
∂εu
∂xj

]
+ Cε1Pu

εu
ku

− C∗

ε2

ε2u
ku

νu = Cµfµ
k2u
εu
, C∗

ε2 = Cε1 +
fk
fε

(Cε2f2 − Cε1)

σku ≡ σk
f2
k

fε
, σεu ≡ σε

f2
k

fε

(23.21)

The modifications introduced by the PANS modeling as compared to its parent

RANS model are highlighted by boxes. The model constants take the same values as

in the LRN model [132], i.e.

Cε1 = 1.5, Cε2 = 1.9, σk = 1.4, σε = 1.4, Cµ = 0.09 (23.22)

23.1 PANS as a hybrid LES-RANS model

A new approach to use the partially averaged Navier-Stokes (PANS) model as a hybrid

RANS-LES model was presented by Davidson [151]. It was evaluated in fully devel-

oped channel flow and embedded LES in a hump flow. For the channel flow, the two

RANS-LES interfaces are parallel to the walls. In the URANS region, fk is set to one.

In the LES region, fk is set to a constant value (the baseline value is fk = 0.4) or it

is computed. It is found that the new model gives good results for channel flow for a

large span of Reynolds numbers (4 000 ≤ Reτ ≤ 32 000). In the channel flow sim-

ulations, three different grids are used in the wall-parallel planes, 322, 642 and 1282,

and the model yields virtually grid-independent flow fields and turbulent viscosities.

Embedded LES is used for the hump flow which is well predicted. The RANS-LES

interface is normal to the flow from the inlet. RANS is used upstream of the interface.

Downstream this interface, RANS is used near the wall and LES is used away from the

wall.

23.1.1 The interface conditions at the RANS-LES interface

The interface plane separates the URANS region near the wall and the LES region in

the outer region. In the former region, the turbulent viscosity, νt, should be a RANS

x

y

kint, εint

wall

yint

LES, fk < 1

URANS, fk = 1.0

Figure 23.1: The URANS and the LES regions.
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viscosity and in the latter region it should be an SGS viscosity. Hence νt must decrease

rapidly when going from the URANS region to the LES region. This is achieved by

setting the usual convection and diffusion fluxes of k at the interface to zero. New

fluxes are introduced in which the interface condition is set to kint = fkkRANS , where

kRANS is the k value in the cell located in the URANS region adjacent to the interface.

Unless otherwise stated, no modification is made for the convection and diffusion of ε
across the interface. The implementation is presented in some detail below. We write

the discretized equation in the y direction (see Figs. 23.1 and 23.2) as [84]

aPkP = aNkN + aSkS + SU , aP = aS + aN − SP

where aS and aN are related to the convection and diffusion through the south and

north face, respectively, and SU and SP kP include the production and the dissipation

term, respectively. For a cell in the LES region adjacent to the interface (cell P ), aS
is set to zero, setting the usual convection and diffusion fluxes to zero. New fluxes,

including fk, are incorporated in additional source terms as

SU = (Cs +Ds)fkkS , SP = −(Cs +Ds)

Cs = max (v̄sAs, 0) , Ds =
µtotAs

∆y

(23.23)

where Cs and Ds denote convection (first-order upwind) and diffusion, respectively,

through the south face, and As is the south area of the cell. As can be seen, the kS
is multiplied by fk and hence the new convective flux is a factor fk smaller than the

original one. Also the diffusion flux is smaller; it is Ds(fkkS −kP ) compared with the

original flux Ds(kS − kP ).
The interface is defined along gridlines. The approach presented above is also

applicable when the location is automatically computed where the extent of the RANS

region varies along the wall. The convective and diffusive fluxes are modified in exactly

the same way.

The method of adding a new flux in the k equation is similar to the method proposed

in [152]. In that work they take into account the spatial variation of fk. A decrease of

fk in space – as occurs at the interface in Fig. 23.1 – means that the turbulent kinetic

energy should be transferred from modeled to resolved. This is done by introducing

x

y

Interface

P

S

As

∆y

Figure 23.2: Control volume, P , in the LES region adjacent to the interface.
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a sink term in the k equation which decreases the turbulent viscosity. [152] also add

a turbulent diffusion term in the momentum equation which appears as a source term

in the equation for turbulent resolved kinetic energy. No source term is used in the

momentum equations in this method. A further difference is that this method modifies

the equations only in the LES region (in which k is reduced), not in the RANS region.

The reason is that this effect is believed to be the most critical; it is important that the

resolved turbulence on the LES side of the interface is activated as soon as possible

(i.e. as close as possible to the interface). The total turbulent kinetic energy across the

interface is not conserved, but as shown below, the total turbulent kinetic energy that is

lost across the interface is not large. For more details and results, see Davidson [151].

23.2 Zonal PANS: different treatments of the RANS-LES interface

In [152], a method was proposed to include the effect of the gradient of fk in PANS.

This approach was used at RANS-LES interfaces by Davidson [133]. Four different

interface models are evaluated in fully developed channel flow and embedded LES of

channel flow; in both cases, PANS is used as a zonal model with fk = 1 in the URANS

region and fk = 0.4 in the LES region. In fully developed channel flow, the RANS-

LES interface is parallel to the wall (horizontal) and in embedded LES it is parallel to

the inlet (vertical).

The importance of the location of the horizontal interface in fully developed chan-

nel flow is also investigated. It is found that the location – and the choice of the treat-

ment at the interface – may be critical at low Reynolds number or if the interface is

placed too close to the wall. The reason is that the modeled turbulent shear stress at

the interface is large and hence the relative strength of the resolved turbulence is small.

In RANS, the turbulent viscosity – and consequently also the modeled Reynolds shear

stress – is only weakly dependent on Reynolds number. It is found that that also applies

in the URANS region.

23.2.1 The Interface Condition

The commutation error in PANS was recently addressed in [152]. In PANS, the equa-

tion for the modeled turbulent kinetic energy, k, is derived by multiplying the ktot
equation (ktot = kres + k) by fk where kres denotes the resolved turbulent kinetic

energy. The convective term in the k equation with constant fk is then obtained as

fk
dktot
dt

=
d(fkktot)

dt
=
dk

dt
(23.24)

where

fk =
k

ktot
. (23.25)

Now, if fk varies in space, we get instead

fk
dktot
dt

=
d(fkktot)

dt
− ktot

dfk
dt

=
dk

dt
− ktot

dfk
dt

(23.26)

Since fk here is constant in time, dfk/dt = v̄i∂fk/∂xi. The second term on the right

side of Eq. 23.26 is the commutation term; it represents (excluding the minus sign)

energy transfer from resolved to modeled turbulence. It can be written (on the right

side of the k equation)

ktot
dfk
dt

= (k + kres)
dfk
dt

= k
dfk
dt

+
〈v̄′iv̄′i〉
2

dfk
dt

(23.27)
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Figure 23.3: Fully developed channel flow. The URANS and the LES regions.
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Figure 23.4: Embedded LES. Vertical thick line shows the interface at xI = 0.95. fk
varies linearly in the gray area (width xtr) from 1 to 0.4. δ = 1.

The commutation term in the kres equation is the same but with opposite sign, i.e.

− k
dfk
dt

− 〈v̄′iv̄′i〉
2

dfk
dt

(23.28)

The question is now which term should be added to the momentum equations to get

the commutation term in the kres equation. We start by the second term in Eq. 23.28.

This term can be represented by the source term

S1
i = −1

2
v̄′i
dfk
dt

(23.29)

in the momentum equation. To show that this term corresponds to the commutation

term in Eq. 23.28, consider the momentum equation for the fluctuating velocity, v̄′i.
Multiplying S1

i by v̄′i = v̄i − 〈v̄i〉 and time-averaging gives the source term in the kres
equation as

−
〈
(v̄i − 〈v̄i〉)

1

2
v̄′i
dfk
dt

〉
= −

〈
1

2
v̄′iv̄

′

i

dfk
dt

〉
= −1

2
〈v̄′iv̄′i〉

dfk
dt

(23.30)

Equation 23.30 is equal to the time average of the second term in Eq. 23.28 as it should.

A term corresponding to the first term in Eq. 23.28 can be added as a source term

in the momentum equation as

S2
i = − kv̄′i

〈v̄′mv̄′m〉
dfk
dt

(23.31)
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Multiplying S2
i by v̄′i and time averaging gives

− 〈kv̄′iv̄′i〉
〈v̄′mv̄′m〉

dfk
dt

≃ −〈k〉dfk
dt

(23.32)

where we assume that the correlation between k and v̄′i is weak. Equation 23.32 is

equal to the time average of the first term in Eq. 23.28 as it should.

In [152], the second term on the right side of Eq. 23.26 is represented by introducing

an additional turbulent viscosity, νtr, in a diffusion term in the momentum equation as

∂

∂xj
(νtrs̄ij) , s̄ij =

1

2

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
(23.33)

where

νtr =
Pktr

|s̄|2 . (23.34)

The term, Pktr , is computed as

Pktr = ktot
dfk
dt

(23.35)

Pktr is an additional production term in the k equation, see Eq. 23.21. In [152], Pktr is

re-written using Eq. 23.25 as

Pktr =
k

fk

dfk
dt

(23.36)

23.2.2 Modeling the Interface

The gradient of fk across a RANS-LES interface gives rise to an additional term in

the momentum equations and the k equation. These terms are included only when the

flow goes from a RANS region to an LES region. The effect of these terms will reduce

k and act as a forcing term in the momentum equations. Four different models are

investigated.

23.2.2.1 Interface Model 1

This is based on the approach suggested in [152]. The additional turbulent viscosity,

νtr, gives an additional production term, Pktr , in the k equation, see Eq. 23.36. Since

we are interested in stimulating resolved turbulence in the LES region adjacent to the

RANS region, only negative values of νtr are included. A negative νtr means physi-

cally transfer of kinetic energy from modeled to resolved. It is found that the magnitude

of the positive values of νtr is actually larger than the magnitude of the negative ones,

which means that 〈νtr〉 > 0. The negative values correspond to dfk/dt < 0 (see

Eqs. 23.34, 23.35 and 23.36), i.e. when a fluid particle in a RANS region passes the

interface into an adjacent LES region. However, νtr takes such large (negative) values

that νt + νtr < 0. To stabilize the simulations, it was found necessary to introduce a

limit νt + νtr > 0 in the diffusion term in the momentum equation. No such limit is

used in the k equation, and hence Pk + Pktr is allowed to go negative.
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23.2.2.2 Interface Model 2

This model is identical to Model 1 except that Eq. 23.35 is used instead of Eq. 23.36.

ktot in Eq. 23.35 is defined as

ktot = k +
1

2
〈v̄′iv̄′i〉r.a (23.37)

where subscript r.a. denotes running average. Is is averaged in all homogeneous direc-

tions including time (note that time is not a homogeneous direction in decaying grid

turbulence). Since ktot is mostly larger than k/fk [151], this approach will give a

larger magnitude of the (negative) production than Model 1. It is found in [133] that

this modification is of utmost importance.

23.2.2.3 Interface Model 3

The right side of Eq. 23.27 is added to the k equation, but only when the flow goes

from a RANS region to an LES region (i.e. dfk/dt < 0), i.e.

Pktr = ktot min

(
dfk
dt
, 0

)
(23.38)

where ktot is computed as in Eq. 23.37. The production term Pktr < 0 which means

that it reduces k as it should. The sum of the S1
i and S2

i terms (see Eqs. 23.29 and

23.31) in the momentum equations read

Si = −min

(
dfk
dt
, 0

)(
0.5 +

k

〈v̄′mv̄′m〉r.a.

)
v̄′i (23.39)

Since dfk/dt < 0, the source Si has the same sign as v̄′i; this means that the source

enhances the resolved turbulence as it should.

It may be noted that dfk/dt in Eq. 23.38 assumes the correct (i.e. negative) sign

irrespectively of the orientation of the RANS-LES interface. Consider, for example,

the RANS-LES interfaces at the lower and upper wall in fully-developed channel flow

(Fig. 23.3). For these interfaces, the gradient of fk in Eq. 23.38 reads v̄∂fk/∂y. When

a fluid particles at the lower interface goes from the RANS region to the LES region,

v̄ > 0 and ∂fk/∂y < 0 so that v̄∂fk/∂y < 0 as intended. Also for the upper interface

we get v̄∂fk/∂y < 0 since v̄ < 0 and ∂fk/∂y > 0. For non-cartesian grids the

material derivative, dfk/dt < 0, has to be formulated in local grid coordinates.

It is however found that the forcing often becomes too strong when Si is added

to the momentum equation. The effect of adding or neglecting Si in the momentum

equations is evaluated, see [133].

The differences between Model 3 and 2 are that

• When Si = 0, no explicit modification is made in the momentum equation in

Model 3 (recall that −ν < νtr < 0 is used in the momentum equation in Models

1 and 2).

• Model 2 (and Model 1) may need regularization in case |s̄| → 0 in the denomi-

nator of νttr in Eq. 23.35. No such regularization, however, is used here. It can

be argued that the commutation term in Model 3 is introduced in a more physical

way compared to Models 1 and 2 where artificially negative viscosities are used.
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23.2.2.4 Interface Model 4

This interface model was developed in [151] for horizontal interfaces. The modeled

turbulent kinetic energy in the LES region adjacent to the interface is reduced by setting

the usual convection and diffusion fluxes of k at the interface to zero. New fluxes are

introduced in which the interface condition is set to kint = fkkRANS (fk = 0.4),

where kRANS is the k value in the cell located in the URANS region adjacent to the

interface. No modification is made for the convection and diffusion of ε across the

interface. The implementation is presented in Section 23.1.1.
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24 The PITM model

P
ITM is an acronym for Partially Integrated Transport Model [131, 153].

24.1 RANS mode

Consider homogeneous turbulence, e.g. decay of grid generated turbulence, see Section

3.4 in [49] and Fig. 11.2. The k and ε equations can for this flow be simplified as

dk

dt
= P k − ε (24.1)

dε

dt
=
ε

k
(cε1P

k − cε2ε) (24.2)

where d/dt = v̄1d/dx. The dissipation can be estimated as

ε = c
k3/2

Lt
(24.3)

Differentiation of Eq. 24.3 gives

dε

dt
= c

3

2

k1/2

Lt

dk

dt
− c

k3/2

L2
t

dLt

dt
(24.4)

Inserting Eq. 24.1 into Eq. 24.4

dε

dt
= c

3

2

k1/2

Lt
(P k − ε)− c

k3/2

L2
t

dLt

dt

and using Eq. 24.3 gives

dε

dt
=

3

2

ε

k
(P k − ε)− ε

Lt

dLt

dt
=

3

2

P k − ε

T
− T

Lt

dLt

dt

ε2

k
(24.5)

where T = k/ε. Comparing Eqs. 24.5 and 24.2 we find that

Cε1 = 1.5 and Cε2 = Cε1 +
T

Lt

dLt

dt
(24.6)

24.2 LES mode

Now let’s transform the RANS k − ε model above to an SGS k − ε model. In the

RANS model, k represents all turbulence. In an SGS model, the modeled turbulent

kinetic energy, ksgs, represents scales with wavelength larger that the cut-off, κc, see

Fig. 18.5. The viscous dissipation is the same in RANS and LES. The production

P k is replaced by Pksgs = εsgs (see Fig. 18.5). The time scale, T , is replaced by

Tsgs = ksgs/ε since the time scale of the small scales is different (it is smaller) than

that of the large scales. Now, Eq. 24.5 can be written as

dε

dt
= Cε1,sgs

εεsgs
ksgs

− Cε2,sgs
ε2

ksgs

Cε2,sgs =
3

2
+
Tsgs
Lt

dLt

dt
=

3

2
+
T

Lt

dLt

dt

ksgs
ktot

(24.7)
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Figure 24.1: Spectral energy balance in PITM. Homogeneous turbulence.

where ktot denotes the total turbulence (i.e. resolved and SGS). Note that L is not

replaced by Lsgs, because Eq. 24.3 is still a valid estimate ε.
Let’s introduce a new dissipative length scale of wavenumber κd which is much

larger than κc

κd − κc = ξ
ε

k
3/2
sgs

(24.8)

The constant is very large since κc ≪ κd; thus we can write

κd ≃ ξ
ε

k
3/2
sgs

(24.9)

Consider spectral balance of ksgs in homogeneous turbulence, see Fig. 24.1. When the

cut-off does not move we get simply

Fc = ε (24.10)

where Fc = F(κc) denotes the spectral transfer from wavenumber range [0, κ−c ] into

[κ+c ,∞]; note that κd ≃ ∞. Recall that ksgs is the area below E in Fig. 24.1. see

Eq. 18.20. When the cut-off does not move in time (which implies that dksgs/dt), then

Fc = εsgs = Pksgs (24.11)

When κc is time dependent as, for example, in decaying homogeneous grid turbulence,

see Eq. 24.1, we can set-up the balance of ksgs when κc moves dκc during the time

interval dt, i.e.

dksgs = Fcdt− Ecdκc − εdt (24.12)

where Ecdκ denotes the spectral energy in the slice dκc. Taking the time derivative of

Eq. 24.12 we get
dksgs
dt

= Fc − Ec
dκc
dt

− ε (24.13)

Comparing Eq. 24.13 with Eq. 24.10 and 24.11, we find the spectral energy transfer,

εsgs, at the cut-off, κc, is

εsgs = Fc − Ec
dκc
dt

(24.14)
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We can write a similar equation as Eq. 24.14 at wavenumber κd, i.e.

ε = Fd − Ed
dκd
dt

(24.15)

where ε is the energy transfer rate across κd. Now derivate Eq. 24.9 with respect to

time and insert Eq. 24.15

d

dt

(
ξ
ε

k
3/2
sgs

)
=

Fd − ε

Ed
(24.16)

It may be noted that both the nominator and denominator of the right side go to zero as

κd → ∞. The left side is re-written as

ξ

[
1

k
3/2
sgs

dε

dt
− 3

2
k−5/2
sgs ε

dksgs
dt

]
(24.17)

With Eq. 24.13 we get

ξ

[
1

k
3/2
sgs

dε

dt
− 3

2
k−5/2
sgs ε

(
Fc − Ec

dκc
dt

− ε

)]
(24.18)

Replacing the left side of Eq. 24.16 with Eq. 24.18 gives

ξ

[
1

k
3/2
sgs

dε

dt
− 3

2
k−5/2
sgs ε

(
Fc − Ec

dκc
dt

− ε

)]
=

Fd − ε

Ed
(24.19)

We get (using first Eq. 24.14 and then Eq. 24.9)

dε

dt
= k3/2sgs

Fd − ε

ξEd
+

3

2

ε

ksgs
(εsgs − ε) = ε

Fd − ε

κdEd
+

3

2

ε

ksgs
(εsgs − ε) (24.20)

This equation can now be written

dε

dt
=

3

2︸︷︷︸
Cε1,sgs

ε

ksgs
εsgs −

ε2

ksgs

[
3

2
− ksgs
κdEd

(Fd

ε
− 1

)]

︸ ︷︷ ︸
Cε2,sgs

(24.21)

When κc → 0 (RANS), then ksgs → ktot so that

Cε1,sgs → Cε1 (24.22)

Cε2,sgs → Cε2 =
3

2
− ktot
κdEd

(Fd

ε
− 1

)
(24.23)

It may be noted that both the term in the parenthesis and Ed go to zero as κd → ∞.

Inserting Eq. 24.23 in the expression for Cε2,sgs in Eq. 24.21 gives

Cε2,sgs =
3

2
− ksgs
ktot

ktot
κdEd

(Fd

ε
− 1

)
=

3

2
+
ksgs
ktot

(
Cε2 −

3

2

)

= Cε1 +
ksgs
ktot

(Cε2 − Cε1)

(24.24)

When ksgs/ktot → 0 (only a small part of the turbulent kinetic energy is modeled),

the PITM model is in LES mode, i.e. Cε2,sgs → Cε1. Then Cε2,sgs is reduced which
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increases ε and reduces the modeled turbulent kinetic energy and the turbulent viscos-

ity. On the other hand, when ksgs/ktot → 1 (everything is modeled), then the PITM

model is in RANS mode (i.e. a usual RANS k − ε model).

It should be noted that this model is very similar to the PANS model. Indeed,

Eq. 24.24 is identical to the expression for C∗
ε2, see Eq. 23.17 (provided that no dissi-

pative scales are resolved so that fε = 1), i.e.

Cε2,sgs = Cε1 + fk (Cε2 − Cε1) (24.25)

In both models the Cε2 coefficients are modified. The only difference between the

PANS and PITM models is that the diffusion coefficients in the ku and εu are modified

in the former model, see Eq. 23.21.

In [131] they do not use ksgs/ktot to compute Cε2,sgs. Instead they compute it

using the ratio of the integral and the modeled lengthscales as

Cε2 = Cε1 +
0.42

1 + γ(Lt/∆)2/3

where Lt = k
3/2
tot /ε and γ = 0.42.
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25 Hybrid LES/RANS for Dummies

25.1 Introduction

F
LUID flow problems are governed by the Navier-Stokes equations

∂vi
∂t

+
∂vivj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2vi
∂xj∂xj

(25.1)

where vi denotes the velocity vector, p is the pressure and ν and ρ are the viscosity and

density of the fluid, respectively. In turbulent flow, the velocity and pressure are un-

steady and vi and p include all turbulent motions, often called eddies. The spatial scale

of these eddies vary widely in magnitude where the largest eddies are proportional to

the size of the largest physical length (for example the boundary layer thickness, δ, in

case of a boundary layer). The smallest scales are related to the eddies where dissipa-

tion takes place, i.e. where the kinetic energy of the eddies is transformed into internal

energy causing increased temperature. The ratio of the largest to the smallest eddies

increases with Reynolds number,Re = |vi|δ/ν. This has the unfortunate consequence

– unless one is a fan of huge computer centers – that it is computationally extremely

expensive to solve the Navier-Stokes equations for large Reynolds numbers.

25.1.1 Reynolds-Averaging Navier-Stokes equations: RANS

In order to be able to solve the Navier-Stokes equations with a reasonable computa-

tional cost, the velocity vector and the pressure are split into a time-averaged part (〈vi〉
and 〈p〉) and a fluctuating part (v′i and p′), i.e. vi = 〈vi〉 + v′i, p = 〈p〉 + p′. The

resulting equation is called the RANS (Reynolds-Averaging Navier-Stokes) equations

∂〈vi〉〈vj〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈vi〉
∂xj∂xj

−
∂〈v′iv′j〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+
∂

∂xj

(
(ν + νt)

∂〈vi〉
∂xj

) (25.2)

The last term on the first line is called the Reynolds stress and it is unknown and must

be modeled. All turbulent fluctuation are modeled with a turbulence model and the

results when solving Eq. 25.2 are highly dependent on the accuracy of the turbulence

model. On the right side of Eq. 25.2 the unknown Reynolds stresses are expressed by

a turbulence model in which a new unknown variable is introduced which is called the

turbulent viscosity, νt. The ratio of νt to ν may be of the order of 1000 or larger. In in-

dustry today, CFD (Computationally Fluid Dynamics) based on finite volume methods

is used extensively to solve the RANS equations, Eq. 25.2.

25.1.2 Large Eddy Simulations: LES

A method more accurate than RANS is LES (Large Eddy Simulations) in which only

the small eddies (fluctuations whose eddies are smaller than the computational cell) are

modeled with a turbulence model. The LES equations read

∂v̄i
∂t

+
∂v̄iv̄j
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2v̄i
∂xj∂xj

− ∂τij
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
(ν + νsgs)

∂v̄i
∂xj

) (25.3)
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Note that the time dependence term (the first term on the left side of the first line) has

been retained, because the large, time dependent turbulent (i.e. the resolved) fluctua-

tions are part of v̄i and p̄ and are not modeled with the turbulence model. The last term

on the first line includes the Reynolds stresses of the small eddies, which are called

SGS (sub-grid stresses). This term must also – as in Eq. 25.2 – be modeled, and at the

second line it has been modeled with a SGS turbulent viscosity, νsgs. The difference

of νsgs compared to νt in Eq. 25.2 is that it includes only the effect of the small eddies.

The ratio of νsgs to ν is of the order of 1 to 100. However, the ratio of the resolved

to the modeled turbulence, |v̄′iv̄′j |/|τij | (see Eqs. 25.2 and 25.3) is much larger than

one. Hence, LES is much more accurate than RANS because only a small part of the

turbulence is modeled with the turbulence SGS model whereas in RANS all turbulence

is modeled. The disadvantage of LES is that it is much more expensive than RANS

because a finer mesh must be used and because the equations are solved in four dimen-

sions (time and three spatial directions) whereas RANS can be solved in steady state

(no time dependence).

When the flow near walls is of importance, is turns out that LES is prohibitively

expensive because very fine cells must be used there. The reason is entirely due to

physics: near the walls, the spatial scales of the “large” turbulent eddies which should

be resolved by LES are in reality rather small. Furthermore, their spatial scales get

smaller for increasing Reynolds number. Much research has the last ten years been

carried out to circumvent this problem. All proposed methods combines RANS and

LES where RANS is used near walls and LES is used some distance away from the

walls, see Fig. 25.1. These methods are called Detached Eddy Simulation (DES), hy-

brid LES/RANS or zonal LES/RANS. The focus here is zonal LES/RANS.

25.1.3 Zonal LES/RANS

Equations 25.2 and 25.3 can be written in a same form as

∂v̄i
∂t

+
∂v̄iv̄j
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
(ν + νT )

∂v̄i
∂xj

)
(25.4)

Near the walls, a RANS turbulence model is used for the turbulent viscosity, i.e. νT =
νt and away from the walls an LES turbulence model is employed, i.e. νT = νsgs.

Note that the time dependence term is now retained also in the RANS region: near the

wall we are using an unsteady RANS, i.e. URANS.

Above, we have describe how to use the zonal LES/RANS method for flows near

walls. Another form of zonal LES/RANS is embedded LES, in which an LES region is

embedded in a RANS region. One example is prediction of aeroacoustic noise created

by the turbulence around an external mirror on a vehicle [101]. The flow around the ve-

hicle can be computed with RANS, but in order to predict the noise in the region of the

external mirror we must predict the large turbulence fluctuations and hence LES must

be used in this region. In Section 25.4 we will present simulations using embedded

LES in a simplified configuration represented by the flow in a channel in which RANS

is used upstream of the interface and LES is used downstream of it, see Fig. 25.4.

25.2 The PANS k − ε turbulence model

The PANS k − ε model can be used to simulate wall-bounded flow at high Reynolds

number as well as embedded LES. The turbulence model reads [129,130], see Eq. 23.21
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interface
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x1

LES, fk = 0.4

URANS, fk = 1.0

URANS, fk = 1.0

Figure 25.1: The LES and URANS regions. Fully developed channel flow. Periodic

boundary conditions are applied at the left and right boundaries.

(here in a slightly simplified form to enhance readability)

∂k

∂t
+
∂kv̄j
∂xj

=
∂

∂xj

[(
ν +

νT
σk

)
∂k

∂xj

]
+ P k − ε (25.5)

∂ε

∂t
+
∂εv̄j
∂xj

=
∂

∂xj

[(
ν +

νT
σε

)
∂ε

∂xj

]
+ Cε1P

k ε

k
− C∗

ε2

ε2

k
(25.6)

C∗

ε2 = Cε1 + fk(Cε2 − Cε1), Cε1 = 1.5, Cε2 = 1.9 (25.7)

νT = Cµ
k2

ε
, Cµ = 0.09 (25.8)

Note that k and ε are always positive. The key elements in the present use of the PANS

k − ε model are highlighted in red. When fk in Eq. 25.7 is equal to one, the model

acts as a standard k − ε RANS model giving a large turbulent viscosity. When fk is

decreased (to 0.4 in the present study), C∗
ε2 in Eq. 25.7 decreases. As a result

• ε increases because the destruction term (last term in Eq. 25.6 which is the main

sink term) in the ε equation decreases,

• k decreases because ε (last term in Eq. 25.5) is the main sink term in the k
equation increases, and

• νT in Eq. 25.8 decreases because k decreases and ε increases.

Hence, the turbulence model in Eqs. 25.5–25.8 acts as a RANS turbulence model

(large turbulent viscosity) when fk = 1 and it acts as an LES SGS turbulence model

(small turbulent viscosity) when fk = 0.4.

25.3 Zonal LES/RANS: wall modeling

25.3.1 The interface conditions

The interface plane (see Fig. 25.1) separates the URANS regions near the walls and the

LES region in the core region. In the LES region fk = 0.4 and in the URANS region

fk = 1. In the former region, the turbulent viscosity νT should be an SGS viscosity and

in the latter region it should be an RANS viscosity. Hence νT must decrease rapidly

when going from the URANS region to the LES region. This is achieved by setting

the usual convection and diffusion fluxes of k at the interface to zero. New fluxes are

introduced using smaller SGS values [151].



25.4. Zonal LES/RANS: embedded LES 223

1 100 1000 30000
0

5

10

15

20

25

30

x+2

U
+

(a) Velocities

0 0.05 0.1 0.15 0.2
−1

−0.8

−0.6

−0.4

−0.2

0

x2

〈v
′ 1
v
′ 2
〉+

(b) Resolved shear stresses

Figure 25.2: Velocities and resolved shear stresses. (Nx × Nz) = (64 × 64) :

Reτ = 4 000; : Reτ = 8 000; : Reτ = 16 000; ////: Reτ = 32 000.

25.3.2 Results

Fully developed channel flow is computed for Reynolds numbers Reτ = uτδ/ν =
4 000, 8 000, 16 000 and 32 000. The baseline mesh has 64×64 cells in the streamwise

(x1) and spanwise (x3) directions. The size of the domain is x1,max = 3.2, x2,max = 2
and x3,max = 1.6 (δ = uτ = 1). The grid in the x2 direction varies between 80 and

128 cells depending on Reynolds number. The interface is set to x+2 ≃ 500 for all

grids.

The velocity profiles and the resolved shear stresses are presented in Fig. 25.2. As

can be seen, the predicted velocity profiles are in good agreement with the log-law

which represents experiments. Figure 25.2b presents the resolved shear stresses. The

interface is shown by thick dashed lines and it moves towards the wall for increasing

Reynolds number since it is located at x+2 ≃ 500 for all Reynolds numbers.

The turbulent viscosity profiles are shown in Fig. 25.3 for three different resolutions

in the x1 − x3 plane. It is interesting to note that the turbulent viscosity is not affected

by the grid resolution. Hence, the model yields grid independent results contrary to

other LES/RANS models.

The turbulent viscosity (Fig. 25.3) is sharply reduced when going across the in-

terface from the URANS region to the LES region and the resolved fluctuations (the

Reynolds shear stress in Fig. 25.2b) increase. This shows that the model is switch-

ing from RANS mode to LES mode as it should. More detailed results can be found

in [151].

25.4 Zonal LES/RANS: embedded LES

25.4.1 The interface conditions

The interface plane is now vertical, see Fig. 25.4. The interface conditions for k and

ε are treated in the same way as in Section 25.3.1. The difference is now that “inlet”

turbulent fluctuations must be added to the LES v̄i equations (Eq. 25.3) to trigger the

flow into turbulence-resolving mode. Anisotropic synthetic turbulent fluctuations are

used [154, 155].
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25.4.2 Results

The Reynolds number for the channel flow is Reτ = 950. With a 3.2×2×1.6 domain,

a mesh with 64 × 80 × 64 cells is used in the streamwise (x1), the wall-normal (x2)

and the spanwise (x3) direction, see Fig. 25.4. Inlet conditions at x = 0 are created by

computing fully developed channel flow with the PANS k − ε model in RANS mode

(i.e. with fk = 1).

Figure 25.5a presents the mean velocity and the resolved shear stresses at three

streamwise locations, x1 = 0.19, 1.25 and 3 (recall that the interface is located at

x1 = 1). At x1 = 3, the predicted velocity agrees very well with the experimental

log-law profile.

The resolved streamwise velocity fluctuations are zero in the RANS region, as they

should (Fig. 25.5b), and the maximum resolved values increase sharply over the in-

terface thanks to the imposed synthetic turbulent “inlet” fluctuations. The turbulent

viscosity is reduced at the interface from its peak RANS value of approximately 80
to a small LES value of approximately one (these values are both fairly low because

of the low Reynolds number). Hence, it is seen that the present model successfully

switches from RANS to LES across the interface. The results are presented in more

detail in [151].
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26 Commutation terms in the k and ω equations

In embedded LES, part of the flow is treated by RANS and part by LES. Here we

are interested in a configuration where the upstream region is treated by RANS and

the downstream by LES, and the interface is vertical, parallel to the inlet. We denote

the interface between the two regions as “the RANS-LES interface” located at xR−L,

see Figs.25.4, 26.1 and 26.2. The transition region in which the predicted flow is in

between RANS and LES is often called the grey area, a problem described in [156].

When the flow goes from a RANS region to an LES region through the RANS-LES

interface, it should – in order to minimize the grey area – switch as quickly as possible

from RANS mode to LES mode.

Hamda [157] showed that, when the filter size (i.e. the grid) is non-uniform, a

commutation error appears in SGS models based on transport equations. He found by

analyzing DNS channel data that this commutation term is large at interfaces between

RANS and LES. Here we show how to apply the commutation term derived in [157] at

RANS-LES interfaces. We present a method in which commutations terms are added

in the k and ω equations in order to quickly switch from RANS te LES.

The two-equation zonal k − ω hybrid RANS-LES model of [158] is employed. In

the LES region, the model reads

∂k

∂t
+
∂v̄ik

∂xi
= P k − fk

k3/2

ℓt
+

∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
(26.1)

∂ω

∂t
+
∂v̄iω

∂xi
= Cω1

fω
ω

k
P k − Cω2ω

2 +
∂

∂xj

[(
ν +

νt
σω

)
∂ω

∂xj

]
+ Cω

νt
k

∂k

∂xj

∂ω

∂xj
(26.2)

νt = fµ
k

ω
, P k = νt

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

, ℓt = ΨPDHCLES∆dw

ΨPDH = min

[
10, fk

(
fω
fµ

)3/4
]
, ∆max = max{∆x,∆y,∆z}

∆dw = min (max [Cdwdw, Cw∆max,∆nstep] ,∆max)

(26.3)

where dw denotes the distance to the nearest wall and ∆step is the grid step size in the

wall-normal direction. The damping functions read

fk = 1− 0.722 · exp
[
−
(
Rt

10

)4
]
, fω = 1 + 4.3 · exp

[
−
(
Rt

1.5

)1/2
]

fµ = 0.025 +

{
1− exp

[
−
(
Rt

10

)3/4
]}{

0.975 +
0.001

Rt
· exp

[
−
(
Rt

200

)2
]}

.

The turbulent Reynolds number is defined as Rt = k/(νω). The length scale, ∆dw,

is taken from the IDDES model [149]. In the RANS regions, ℓt = k1/2/(Ckω). The

constants read σk = 0.8, σw = 1.35, Ck = 0.09 Cω1 = 0.42, Cω2 = 0.075, Cω =
0.75, CLES = 0.7 and Cdw = 0.15.

The difference between Eqs. 26.1 and 26.2 in the RANS and LES regions can be

summarized as follows: in RANS regions, the RANS lengthscale, ℓt = k1/2/(Ckω),
is used in the dissipation term in the k equation and, in LES regions, the filter length

scale, ∆dw, is used.
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When the filter size in LES varies in space, an additional term appears in the mo-

mentum equation because the spatial derivatives and the filtering do not commute. For

the convective term in Navier-Stokes, for example, we get

∂vivj
∂xj

=
∂

∂xj
(vivj) +O

(
(∆x)2

)
.

Ghosal & Moin [65] show that the error is proportional to (∆x)2 and, since this error is

of the same order as the discretization error of most finite volume methods, it is usually

neglected.

However, in zonal4 hybrid RANS-LES, the length scale at the RANS-LES interface

changes abruptly from a RANS length scale to an LES length scale. Hamda [157]

estimated the commutation error at RANS-LES interfaces and found that it is large.

The commutation term for the divergence of a flux, qi, reads

∂qi
∂xi

=
∂q̄i
∂xi

− ∂∆

∂xi

∂q̄i
∂∆

4by “zonal”, we imply that the interface is chosen at a location where the RANS and LES length scales

differ
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For the k equation, the commutation term reads [157]

∂uik

∂xi
=
∂v̄ik

∂xi
− ∂∆

∂xi

∂v̄ik

∂∆
(26.4)

Consider a fluid particle in a RANS region moving in the x1 direction and passing

across a RANS-LES interface. The filter width decreases across the interface, i.e.

∂∆

∂x1
≃ ∆LES −∆RANS

∆x1
< 0 (26.5)

and
∂v̄1k

∂∆
≃ u1kLES − u1kRANS

∆LES −∆RANS
> 0 (26.6)

which means that the last term on the right-hand side of Eq. 26.4 gives a positive

contribution on the left side of the k equation, Eq. 26.1; on the right side of Eq. 26.1,

it gives a negative contribution. Hence, the additional term in Eq. 26.4 at a RANS-

LES interface reduces k, as expected. To obtain the right hand of Eqs. 26.5 and 26.6,

the derivatives on the left side of the equations have been estimated by simple finite-

difference expressions, i.e.
df

dx
≃ ∆f

∆x
(26.7)

It may be noted that the idea of adding an additional source term in the k equation

due to a commutation error is similar to the proposal in [152]; they use a commutation

term based on the gradient of fk in the PANS model. This idea was later used by the

present author at RANS-LES interfaces [133].

To find the corresponding term in the ω equation, let us start by looking at the ε
equation. What happens with ε when a fluid particle moves from a RANS region into

an LES region? The answer is, nothing. The dissipation is the same in a RANS region

as in an LES region. This is best seen by looking at the ksgs equation

∂ksgs
∂t

+
∂v̄iksgs
∂xi

= P ksgs +
∂

∂xj

[(
ν +

νsgs
σk

)
∂ksgs
∂xj

]
− ε. (26.8)

The dissipation term, ε, in Eq. 26.8 is the same as the dissipation term in Eq. 26.1 unless

the resolution is very fine (close to DNS). Then much of the dissipation is resolved,

reducing the production term, P ksgs . However, this kind of resolution is not realistic.

Now consider the ω equation. It is derived by transformation of the k and ε equa-

tions to an ω equation as

dω

dt
=

d

dt

(
ε

Ckk

)
=

1

Ckk

dε

dt
+

ε

Ck

d(1/k)

dt
=

1

Ckk

dε

dt
− ω

k

dk

dt
(26.9)

The right-hand side shows that the source terms in theω equation correspond to those in

the ε equation multiplied by 1/(Ckk) together with those in the k equation multiplied

by −ω/k. Hence, the source term due to the commutation error in the ω equation is

the commutation term in Eq. 26.4 multiplied by −ω/k so that

∂uiω

∂xi
=
∂v̄iω

∂xi
− ∂∆

∂xi

∂v̄iω

∂∆
=
∂v̄iω

∂xi
+
ω

k

∂∆

∂xi

∂v̄ik

∂∆
(26.10)

Assuming again a flow in the x1 direction from a RANS region to an LES region,

we find that the second term on the right-hand side of Eq. 26.10 is negative since
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∂∆/∂x1 < 0 (see Eq. 26.5) and ∂v̄1k/∂∆ > 0 (see Eq. 26.6) so that the commutation

term in Eq. 26.10 is positive/negative on the right/left-side of the ω equation (Eq. 26.2).

This means that the commutation term in Eq. 26.10 will increase ω when moving from

a RANS region to an LES region. Hence the source terms in the k and ω equations both

contribute to reducing the turbulent viscosity, which is an effect we are looking for at

RANS-LES interfaces: a reduced turbulent viscosity will promote growth of resolved

turbulence on the LES side of an interface.

The results using the commutation terms are presented in [159].
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27 Inlet boundary conditions

I
N RANS it is sufficient to supply profiles of the mean quantities such as velocity

and temperature plus the turbulent quantities (e.g. k and ε). However, in unsteady

simulations (LES, URANS, DES . . . ) the time history of the velocity and temperature

need to be prescribed; the time history corresponds to turbulent, resolved fluctuations.

In some flows it is critical to prescribe reasonable turbulent fluctuations, but in many

flows it seems to be sufficient to prescribe constant (in time) profiles [115, 160].

There are different ways to create turbulent inlet boundary conditions. One way is

to use a pre-cursor DNS or well resolved LES of channel flow. This method is limited

to fairly low Reynolds numbers and it is difficult (or impossible) to re-scale the DNS

fluctuations to higher Reynolds numbers.

Another method based partly on synthesized fluctuations is the vortex method [161].

It is based on a superposition of coherent eddies where each eddy is described by a

shape function that is localized in space. The eddies are generated randomly in the

inflow plane and then convected through it. The method is able to reproduce first and

second-order statistics as well as two-point correlations.

A third method is to take resolved fluctuations at a plane downstream of the inlet

plane, re-scale them and use them as inlet fluctuations.

Below we present a method of generating synthesized inlet fluctuations.

27.1 Synthesized turbulence

The method described below was developed in [85, 162, 163] for creating turbulence

for generating noise. It was later further developed for inlet boundary conditions [154,

164, 165].

A turbulent fluctuating velocity fluctuating field (whose average is zero) can be

expressed using a Fourier series, see Section 5.3 and Eq. D.17. Let us re-write this

formula as

an cos(nx) + bn sin(nx) =

cn cos(αn) cos(nx) + cn sin(αn) sin(nx) = cn cos(nx− αn)
(27.1)

where an = cn cos(α) , bn = cn sin(αn). The new coefficient, cn, and the phase angle,

αn, are related to an and bn as

cn =
(
a2n + b2n

)1/2
αn = arctan

(
bn
an

)
(27.2)

A general form for a turbulent velocity field can thus be written as

v′(x) = 2

N∑

n=1

ûn cos(κn · x+ ψn)σn (27.3)

where ûn, ψn and σn
i are the amplitude, phase and direction of Fourier mode n. The

synthesized turbulence at one time step is generated as follows.

27.2 Random angles

The anglesϕn and θn determine the direction of the wavenumber vectorκ, see Eq. 27.3

and Eq. 27.1; αn denotes the direction of the velocity vector, v′. For more details, see

Appendix J.
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Figure 27.1: The wave-number vector, κni , and the velocity unit vector, σn
i , are orthog-

onal (in physical space) for each wave number n.

27.3 Highest wave number

Define the highest wave number based on mesh resolution κmax = 2π/(2∆) (see

Section 18.5), where ∆ is the grid spacing. Often the smallest grid spacing near the

wall is too small, and then a slightly larger values may be chosen. The fluctuations

are generated on a grid with equidistant spacing (or on a weakly stretched mesh),

∆η = x2,max/N2, ∆x3 = x3,max/N3, where η denotes the wall-normal direction

andN2 andN3 denote the number of cells in the x2 and x3 direction, respectively. The

fluctuations are set to zero at the wall and are then interpolated to the inlet plane of the

CFD grid (the x2 − x3 plane).

27.4 Smallest wave number

Define the smallest wave number from κ1 = κe/p, where κe = α9π/(55Lt), α =
1.453. The turbulent length scale, Lt, may be estimated in the same way as in RANS

simulations, i.e. Lt ∝ δ where δ denotes the inlet boundary layer thickness. In [154,

164, 165] it was found that Lt ≃ 0.1δin is suitable.

Factor p should be larger than one to make the largest scales larger than those

corresponding to κe. A value p = 2 is suitable.

27.5 Divide the wave number range

Divide the wavenumber space, κmax − κ1, into N modes, equally large, of size ∆κ.
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27.6 von Kármán spectrum

A modified von Kármán spectrum is chosen, see Eq. 27.4 and Fig. 27.2. The amplitude

ûn of each mode in Eq. 27.3 is then obtained from

ûn = (E(κ)∆κ)1/2

E(κ) = cE
u2rms

κe

(κ/κe)
4

[1 + (κ/κe)2]17/6
e[−2(κ/κη)

2]

κ = (κiκi)
1/2, κη = ε1/4ν−3/4

(27.4)

The coefficient cE is obtained by integrating the energy spectrum over all wavenumbers

to get the turbulent kinetic energy, i.e.

k =

∫ ∞

0

E(κ)dκ (27.5)

which gives [69]

cE =
4√
π

Γ(17/6)

Γ(1/3)
≃ 1.453 (27.6)

where

Γ(z) =

∫ ∞

0

e−z′

xz−1dz′ (27.7)

27.7 Computing the fluctuations

Having ûn, κnj , σn
i and ψn, allows the expression in Eq. 27.3 to be computed, i.e.

v′1 = 2

N∑

n=1

ûn cos(βn)σ1

v′2 = 2

N∑

n=1

ûn cos(βn)σ2

v′3 = 2
N∑

n=1

ûn cos(βn)σ3

βn = kn1 x1 + kn2 x2 + kn3 x3 + ψn

(27.8)

where ûn is computed from Eq. 27.4.

In this way inlet fluctuating velocity fields (v′1, v
′
2, v

′
3) are created at the inlet x2−x3

plane.

The code for generating the isotropic fluctuations can be downloaded here

http://www.tfd.chalmers.se/˜lada/projects/inlet-boundary-conditions/proright.html

27.8 Introducing time correlation

A fluctuating velocity field is generated each time step as described above. They are

independent of each other and their time correlation will thus be zero. This is non-

physical. To create correlation in time, new fluctuating velocity fields, V ′
1, V ′

2, V ′
3, are

http://www.tfd.chalmers.se/~lada/projects/inlet-boundary-conditions/proright.html
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computed based on an asymmetric time filter

(V ′

1)m = a(V ′

1)m−1 + b(v′1)m

(V ′

2)m = a(V ′

2)m−1 + b(v′2)m

(V ′

3)m = a(V ′

3)m−1 + b(v′3)m

(27.9)

where m denotes the time step number and

a = exp(−∆t/Tint) (27.10)

where ∆t and Tint denote the computational time step and the integral time scale,

respectively. The second coefficient is taken as b = (1 − a2)0.5 which ensures that

〈V ′2
1 〉 = 〈v′21 〉 (〈·〉 denotes averaging). The time correlation of will be equal to

exp(−t̂/Tint) (27.11)

where t̂ is the time separation and thus Eq. 27.9 is a convenient way to prescribe the

turbulent time scale of the fluctuations. For more detail, see Section 27.8. The inlet

boundary conditions are prescribed as (we assume that the inlet is located at x1 = 0
and that the mean velocity is constant in the spanwise direction, x3)

v̄1(0, x2, x3, t) = V1,in(x2) + u′1,in(x2, x3, t)

v̄2(0, x2, x3, t) = V2,in(x2) + v′2,in(x2, x3, t)

v̄3(0, x2, x3, t) = V3,in(x2) + v′3,in(x2, x3, t)

(27.12)

where v′1,in = (V ′
1)m, v′2,in = (V ′

2)m and v′3,in = (V ′
3)m (see Eq. 27.9). The mean

inlet profiles, V1,in, V2,in, V3,in, are either taken from experimental data, a RANS

solution or from the law of the wall; for example, if V2,in = V3,in = 0 we can estimate

V1,in as [166]

V +
1,in =





x+2 x+2 ≤ 5
−3.05 + 5 ln(x+2 ) 5 < x+2 < 30
1
κ ln(x+2 ) +B x+2 ≥ 30

(27.13)
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Eq. 27.11; : computed from synthetic data, (V ′
1)

m, see Eq. 27.9.

where κ = 0.4 and B = 5.2.

The method to prescribed fluctuating inlet boundary conditions have been used for

channel flow [154], for diffusor flow [160] as well as for the flow over a bump and an

axisymmetric hill [167].

Equation 27.9 introduces a time correlation with an integral time scale Tint. In

order to understand Eq. 27.10, Equation 27.9 is written for m = N . . . 1 where N
denotes number of time steps

U ′

N = aU ′

N−1 + bu′N

U ′

N−1 = aU ′

N−2 + bu′N−1

U ′

N−2 = aU ′

N−3 + bu′N−2

...

U ′

3 = aU ′

2 + bu′3

U ′

2 = aU ′

1 + bu′2

U ′

1 = aU ′

0 + bu′1

(27.14)

With U ′
0 = 0 we get

U ′

1 = bu′1

U ′

2 = abu′1 + bu′2

U ′

3 = a2bu′1 + abu′2 + bu′3

U ′

4 = a3bu′1 + a2bu′2 + abu′3 + bu′4

U ′

5 = a4bu′1 + a3bu′2 + a2bu′3 + abu′4 + bu′5

(27.15)

which can be written as

U ′

m = b
m∑

k=1

am−ku′k (27.16)
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using Eq. 27.10 with t̂ = t/Tint. Let’s show that 〈U ′2〉 = 〈u′2〉. Equation 27.16 gives

〈U ′2〉 = 1

m

m∑

k=1

U ′

kU ′

k =
b2

m2

m∑

k=1

am−ku′k

m∑

i=1

am−iu′i (27.17)

Recall that the synthetic fields u′k and u′iare independent which means that 〈u′ku′i〉 = 0
for k 6= i. Hence

〈U ′2〉 = b2

m

m∑

k=1

a2(m−k)u′ku
′

k = 〈u′2〉(1 − a2)

m∑

k=1

a2k (27.18)

The requirement is that

(1 − a2)

m∑

k=1

a2k = (1− a2)

m∑

k=1

ck = 1 (27.19)

The sum
∑m

k=1 c
k has for large m the value Sm = 1/(1 − c) = 1/(1 − a2) which

shows that the requirement in Eq. 27.19 is satisfied.

The time correlation between many time steps with time step separation m− n =
r ≥ 0 reads

〈U ′U ′〉r =
b2

(m− r)n

n∑

p=1

an−pu′p

m∑

k=1

am−ku′k

=
b2

m− r

m−r∑

k=1

a2(m−k)a−ru′2k = 〈u′u′〉a−r

(27.20)

using Eqs. 27.18 and 27.19 (assuming m ≫ r to obtain the second line and the last

expression; many samples are needed to get good statistics). Inserting Eq. 27.10 into

Eq. 27.20 we get the normalized autocorrelation

B11(t̂)norm =
〈U ′U ′〉r
〈u′2〉 = exp(−t̂/Tint) (27.21)

where t̂ = r∆t. The integral time scale can be computed from the autocorrelation as

(see Eq. 10.11)

Tint =

∫ ∞

0

Bnorm
11 (t̂)dt̂ =

∫ ∞

0

exp(−t̂/Tint)dt̂

=
[
−Tint exp(−t̂/Tint)

]∞
0

= −Tint(0 − 1) = Tint

(27.22)

This shows that the one-sided filter in Eq. 27.9 introduces an integral time scale Tint
as prescribed by the definition of a in Eq. 27.10. The integral time scale can be taken

as Tint = Lint/Ub using Taylor’s hypothesis, where Ub and Lint denote the inlet bulk

velocity and the integral length scale, respectively.

27.9 Anisotropic Synthetic Turbulent Fluctuations

Isotropic fluctuations are generated above. However, turbulence is generally anisotropic.

The method for generating anisotropic turbulence is presented in [85,155,162,168] and

below it is described in detail.

The method can be summarized by the following steps.
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1. A Reynolds stress tensor, 〈v′iv′j〉, is taken from DNS data for turbulent channel

flow. Since the generated turbulence is homogeneous, it is sufficient to choose

one location of the DNS data. The Reynolds stresses at y+ ≃ 16 of the DNS

channel data at Reτ = 590 [169] are used. Here 〈v′1v′1〉 – and hence the degree

of anisotropy – is largest. The stress tensor reads

〈v′iv′j〉 =




7.67 −0.662 0
−0.662 0.32 0

0 0 1.50


 (27.23)

2. The principal directions (the eigenvectors, see Fig. 27.4), ê∗
i
, are computed for

the 〈v′iv′j〉 tensor, see Section 27.9.1. The eigenvalues are normalized so that

their sum is equal to three. This ensures that the kinetic energy of the synthetic

fluctuations does not change during transformation.

3. Isotropic synthetic fluctuations, u′i,iso, are generated in the principal directions

of 〈u′iu′j〉.

4. Now make the isotropic fluctuations non-isotropic according to 〈v′iv′j〉. This is

done by multiplying the isotropic synthetic fluctuations in the ê∗
i

directions by

the square-root of the normalized eigenvalues,
√
λ(i)norm. In Section 27.9.2 this

is done by multiplying the unit vector σ∗n
i by

√
λ(i)norm, see Eq. 27.27 and

Fig. 27.5. This gives a new field of fluctuations

(u′1)aniso =

√
λ
(1)
norm (u′1)iso

(u′2)aniso =

√
λ
(2)
norm (u′2)iso

(u′3)aniso =

√
λ
(3)
norm (u′3)iso

(27.24)

The wavenumber vector, κj , is divided by
√
λ(i) to ensure that the (u′i)aniso

velocity field is divergence free, i.e.

σ∗

j κ
∗

j =

√
λ
(j)
normσj

√
1

λ
(j)
norm

κj = σjκj = 0, (27.25)

see Eq. J.3. Note that there is still no correlation between the (u′i)aniso fluctua-

tions, which means that the shear stresses are zero (for example, 〈(u′1u′2)aniso〉 =
0).

5. The (u′i)aniso fluctuations are transformed to the computational coordinate sys-

tem, xi; these anisotropic fluctuations are denoted (u′i)synt. The transformation

reads

(u′i)synt = Rij(u
′

j)aniso (27.26)

where Rij is the transformation matrix which is defined be the eigenvectors, see

Section 27.9.1. The (u′i)synt fluctuations are now used in Eq. 27.9 replacing

v′i.in.

The Reynolds stress tensor of the synthetic anisotropic fluctuations is now iden-

tical to the DNS Reynolds stress tensor, i.e. 〈(u′iu′j)synt〉 = 〈v′iv′j〉
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6. Since the u′i,synt are homogeneous, the Reynolds stresses, 〈u′i,syntu′j,synt〉, have

constant values in the inlet plane. One can choose to scale the inlet fluctuations

by a k profile taken from DNS, experiments or a RANS simulation.

The Matlab code for generating isotropic or anisotropic fluctuations can be down-

loaded [170].

27.9.1 Eigenvalues and eigenvectors

The normalized eigenvalues and eigenvectors may conveniently be computed with Mat-

lab (or the freeware Octave) as

stress=[7.6684 -6.6206e-01 0; ...

-6.6206e-01 3.1974e-01 0; ...

0 0 1.4997];

diag_sum=trace(stress)/3

stress=stress/diag_sum % ensures that the sum

% of the eigenvalues=3

[R,lambda] = eig(stress)

v_1_temp=[R(1,1);R(2,1); R(3,1)];

v_2_temp=[R(1,2);R(2,2); R(3,2)];

v_3_temp=[R(1,3);R(2,3); R(3,3)];

lambda_1_temp=lambda(1,1);

lambda_2_temp=lambda(2,2);

lambda_3_temp=lambda(3,3);

where stress is taken from Eq. 27.23. Matlab defines the smallest eigenvalue as the

first one and the largest as the last. Here we define the first eigenvalue (streamwise

direction) as the largest and the second (wall-normal direction) as the smallest, i.e.

v1=v3_temp;

v2=v1_temp;

v3=v2_temp;

lambda_1=lambda_3_temp;

lambda_2=lambda_1_temp;

lambda_3=lambda_2_temp;

Make sure that Matlab has defined the first eigenvector in the first or the third

quadrant, and the second eigenvector in the second or the fourth quadrant, see Fig. 27.4.

If not, change sign on some of the eigenvector components.

% switch sign on 12 and 21 to fix the above requirements

v1_new(2)=-v1_new(2);

v2_new(1)=-v2_new(1);
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x2

x1

ê∗
1

ê∗2

Figure 27.4: Eigenvectors ê∗
1

and ê∗
2

. x1 and x2 denote streamwise and wall-normal

direction, respectively.

x2

x1

√
λ(1)ê∗

1

√
λ(2)ê∗

2

Figure 27.5: Eigenvectors multiplied by the eigenvalues. x1 and x2 denote streamwise

and wall-normal direction, respectively.
√
λ(1) and

√
λ(2) define RMS of (u′1)aniso

and (u′2)aniso, respectively.

27.9.2 Synthetic fluctuations in the principal coordinate system

The equation for generating the synthetic fluctuations in the principal coordinate sys-

tem, (u′i)aniso, is similar to Eq. 27.3. The difference is that we now do it in the trans-

formed coordinate system, and hence we have to involve the eigenvector matrix, Rij ,

and the eigenvalues, λ(i). The equation reads [162, 168]

u′
aniso(x

∗) = 2

N∑

n=1

ûn cos(κ∗n · x∗ + ψn)σ∗n

κ∗ = κ∗i =

√
1

λ(i)
Rjiκj, σ∗n = σ∗n

i =
√
λ(i)Rjiσ

n
j

(27.27)

The superscript ∗ denotes the principal coordinates.
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28 Overview of LES, hybrid LES-RANS and URANS

models

D
IRECT Numerical Simulation (DNS) is the most accurate method available. In DNS

DNS we solve the unsteady, 3D Navier-Stokes equations (see Eq. 2.8) numerically

without any turbulence model. This gives the exact solution of the flow field in time

and space. We can afford to do DNS only for low Reynolds number. The higher the

Reynolds number gets, the finer the grid must be because the smallest turbulent length

and time scales, which we must resolve in DNS, decrease with Re−3/4 and Re−1/2,

respectively, see Eq. 5.16. Hence the cell size in each coordinate direction of our CFD

grid must decrease with Re−3/4 and the time step must decrease with Re−1/2. Let’s

take an example. If the Reynolds number increases by a factor of two, the number of

cells increases by

∆Re3/4

x-direction

∆Re3/4

y-direction

∆Re3/4

z-direction

∆Re1/2

time

= ∆Re11/4 = 211/4 = 6.7 (28.1)

Above we assume that the lengthscales are reduced when the Reynolds numbers

is increased. This implies that we assume that the Reynolds number is increased due

to an increase in velocity or a decrease in viscosity. We can, of course, also consider

the change of Reynolds number by changing the size of the object. For example, it is

affordable to compute the flow around a small car such as those we played with as kids

(for this car of, say, length of 5cm, the Reynolds number is very small). As we increase

the size of the car we must increase the number of cells (the smallest cells cannot be

enlarged, because the smallest turbulent scales will not increase). Also the time step

cannot be increased, but we must compute longer time (i.e. increase the number of

timesteps) in order to capture the largest time scales (assuming that the velocity of the

small and the large car is the same).

Having realized that DNS is not feasible, we turn to LES, see Section 18. Here, LES

the smallest scales are modeled, and only the eddies that are larger than the grid are

resolved by the (filtered) Navier-Stokes. With LES, we can make the smallest grid cells

somewhat larger (the cell side, say, 2− 3 times larger).

However, it is found that LES needs very fine resolution near walls, see Section 21.

To find an approximate solution to this problem we use RANS near the walls and LES

away from the walls. The models which we have looked at are DES (Section 20),

hybrid LES-RANS (Section 21), SAS (Section 22) and PANS (Section 23); see also

Section 25 where PANS and Zonal PANS are discussed.

As stated above, the LES must at high Reynolds number be combined with a

URANS treatment of the near-wall flow region. In the literature, there are different

methods for bridging this problem such as Detached Eddy Simulation (DES) [123,

140, 149] hybrid LES/RANS [171] and Scale-Adapted Simulations (SAS) [172, 173]

(for a review, see [174]). The two first classes of models take the SGS length scale

from the cell size whereas the last (SAS) involves the von Kármán lengthscale.

The DES, hybrid LES/RANS and the SAS models have one thing in common: in

the LES region, the turbulent viscosity is reduced. This is achieved in different ways. In

some models, the turbulent viscosity is reduced indirectly by reducing the dissipation

term in the k equation, see Eq. 20.7, as in two-equation DES [175]. In other models,

such as the two-equation XLES model [127] and in the one-equation hybrid LES-

RANS [85], it is accomplished by reducing the length scale in both the expression for
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the turbulent viscosity as well as for the dissipation term in the k equation, see Eq. 21.2

and Table 21.1.

In the partially averaged Navier-Stokes (PANS) model [129] and the Partially In-

tegrated Transport Model (PITM) [131, 153], the turbulent viscosity is reduced by de-

creasing the destruction term in the dissipation (ε) equation which increases ε, see

Eq. 23.17. This decreases the turbulent viscosity in two ways: first, the turbulent vis-

cosity is reduced because of the enhancement of ε (νt = cµk
2/ε, see Eq. 23.12), and,

second, the turbulent kinetic energy (k) decreases because of the increased dissipation

term, ε. In the SAS model based on the k−ω model, the turbulent viscosity is reduced

by an additional source term, PSAS , see Eq. 22.5, in the ω equation. The source term

is activated by resolved turbulence; in steady flow it is inactive. When the momentum

equations are in turbulence-resolving mode, PSAS increases which increases ω. This

decreases the turbulent viscosity in two ways: first, directly, because ω appears in the

denominator in the expression for the turbulent viscosity, νt, and, second, because k is

reduced due to the increased dissipation term β∗kω.

The PANS model and the PITM models are very similar to each other although

their derivations are completely different. The only difference in the models is that

in the PANS model the turbulent diffusion coefficients in the k and ε equations are

modified. These two models do not use the filter width, and can hence be classified as

URANS models. On the other hand, a large part of the turbulence spectrum is usually

resolved which is in contrast to standard URANS models. PANS and PITM models

have in [174] been classified as second-generation URANS models, or 2G-URANS

models.

A short description of the models are given here.

DES. A RANS models is used near the walls and LES is used away from the walls.

The interface is usually defined automatic. In the original DES the entire bound-

ary layer is covered by RANS. However, when the grid is refined in streamwise

and spanwise directions, the interface moves closer to the wall. When a large part

of the boundary layer is covered by LES, it is called WM-LES (Wall-Modeled WM-LES

LES). The LES lengthscale is the filterwidth.

Hybrid LES-RANS. The difference between DES and hybrid LES-RANS is that the

original DES covers the entire boundary layer by RANS whereas hybrid LES-

RANS treats most of the boundary layer in LES mode. Hybrid LES-RANS and

WM-LES can be considered to be the same thing. The LES lengthscale is the

filterwidth.

PANS, PITM. These models are able to operate both in LES and RANS mode. In

LES mode the models do not use the filterwidth as a lengthscale. Hence they are

usually defined as an URANS model (defined below). Since the models usually

aim at resolving a substantial part of the turbulence spectrum, they can be defined

as a second-generation URANS model (a 2G-URANS model [174]).

SAS. This is also a model that can operate both in LES and RANS mode. In unsteady

mode the model does not use the filterwidth as a lengthscale. In unsteady mode

this model usually resolved less turbulence than the other models mentioned

above; hence it can be classified as an URANS model (first generation).

URANS. A RANS model is used in unsteady mode. In unsteady mode the model does

not use the filterwidth as a lengthscale. Unless the flow is prone to go unsteady,
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the results will be steady (i.e. same as RANS). Usually a RANS model developed

for steady flow is used. Only a small part of the turbulence is resolved.

The models listed above can be ranked in terms of accuracy and CPU cost:

1. Hybrid LES-RANS, PANS, PITM, WM-LES. Highest accuracy and CPU cost

2. DES.

3. SAS.

4. URANS. Lowest accuracy and CPU cost
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29 Best practice guidelines (BPG)

In the early days of CFD, different CFD codes used to give different results. Even

if the same grid and the same turbulence model were used, there could be substantial

differences between the results. The reasons to these differences could be that the

turbulence model was not implemented in exactly the same way in the two codes, or

that the discretization scheme in one code was more diffusive than in the other. There

could be small differences in the implementation of the boundary conditions in the two

codes.

Today the situation is much improved. Two different CFD codes usually give the

same results on the same grid. The main reason for this improved situation is because

of workshops and EU projects where academics, engineers from industry and CFD

software vendors regularly meet and discuss different aspects of CFD. Test cases with

mandatory grids, boundary conditions, turbulence models etc are defined and the par-

ticipants in the workshops and EU projects carry out CFD simulations for these test

cases. Then they compare and discuss their results.

29.1 EU projects

Four EU projects in which the author has taken part can be mentioned

LESFOIL: Large Eddy Simulation of Flow Around Airfoils

http://www.tfd.chalmers.se/˜lada/projects/lesfoil/proright.html

FLOMANIA: Flow Physics Modelling: An Integrated Approach

http://cfd.mace.manchester.ac.uk/flomania/

DESIDER: Detached Eddy Simulation for Industrial Aerodynamics

http://cfd.mace.manchester.ac.uk/desider

ATAAC: Advanced Turbulence Simulation for Aerodynamic Application Challenges

http://cfd.mace.manchester.ac.uk/ATAAC/WebHome

29.2 Ercoftac workshops

Workshops are organized by Ercoftac (European Research Community On Flow, Turbulence

And Combustion). The Special Interest Group Sig15 is focused on evaluating turbu-

lence models. The outcome from all workshop are presented

here

http://www.ercoftac.org/fileadmin/user upload/bigfiles/sig15/database/index.html

Ercoftac also organizes workshops and courses on Best Practice Guidelines. The

publication Industrial Computational Fluid Dynamics of Single-Phase Flows can be

ordered on

Ercoftac www page

http://www.ercoftac.org/publications/ercoftac best practice guidelines/single-phase flows spf/

http://www.tfd.chalmers.se/~lada/projects/lesfoil/proright.html
http://cfd.mace.manchester.ac.uk/flomania/
http://cfd.mace.manchester.ac.uk/desider//
http://cfd.mace.manchester.ac.uk/ATAAC/WebHome
http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/index.html
http://www.ercoftac.org/publications/ercoftac_best_practice_guidelines/single-phase_flows_spf/
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29.3 Ercoftac Classical Database

A Classical Database, which includes some 100 experimental investigations, can be

found at

Ercoftac’s www page

http://www.ercoftac.org/products and services/classic collection database

29.4 ERCOFTAC QNET Knowledge Base Wiki

The QNET is also the responsibility of Ercoftac. Here you find descriptions of how

CFD simulations of more than 60 different flows were carried out. The flows are di-

vided into

Application Areas. These are sector disciplines such as Built Environment, Chemical

and Process Engineering, External Aerodynamics, Turbomachinery, Combustion

and Heat Transfer etc. Each Application Area is comprised of Application Chal-

lenges. These are realistic industrial test cases which can be used to judge the

competency and limitations of CFD for a given Application Area.

Underlying Flow Regimes. These are generic, well-studied test cases capturing im-

portant elements of the key flow physics encountered across the Application Ar-

eas.

For more information, visit

ERCOFTAC QNET Knowledge Base Wiki

http://www.ercoftac.org/products and services/wiki/

http://www.ercoftac.org/products_and_services/classic_collection_database//
http://www.ercoftac.org/products_and_services/wiki/
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A TME225: ǫ− δ identity

T
HE ǫ− δ identity reads

ǫinmǫmjk = ǫminǫmjk = ǫnmiǫmjk = δijδnk − δikδnj

In Table A.1 the components of the ǫ− δ identity are given.

i n j k ǫinmǫmjk δijδnk − δikδnj
1 2 1 2 ǫ12mǫm12 = ǫ123ǫ312 = 1 · 1 = 1 1− 0 = 1
2 1 1 2 ǫ21mǫm12 = ǫ213ǫ312 = −1 · 1 = −1 0− 1 = −1
1 2 2 1 ǫ12mǫm21 = ǫ123ǫ321 = 1 · −1 = −1 0− 1 = −1

1 3 1 3 ǫ13mǫm13 = ǫ132ǫ213 = −1 · −1 = 1 1− 0 = 1
3 1 1 3 ǫ31mǫm13 = ǫ312ǫ213 = 1 · −1 = −1 0− 1 = −1
1 3 3 1 ǫ13mǫm31 = ǫ132ǫ231 = −1 · 1 = −1 0− 1 = −1

2 3 2 3 ǫ23mǫm23 = ǫ231ǫ123 = 1 · 1 = 1 1− 0 = 1
3 2 2 3 ǫ32mǫm23 = ǫ321ǫ123 = −1 · 1 = −1 0− 1 = −1
2 3 3 2 ǫ23mǫm32 = ǫ231ǫ132 = 1 · −1 = −1 0− 1 = −1

Table A.1: The components of the ǫ− δ identity which are non-zero.
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B TME225 Assignment 1 in 2016: laminar flow in a

channel

Y
OU will get results of a developing two-dimensional channel flow (i.e. flow be-

tween two parallel plates), see Fig. B.1. The flow is steady and incompressible.

The simulations have been done with Calc-BFC [176]. The inlet boundary condition

(left boundary) is v1 = Vin = 0.9. The height of the channel is h = 0.01m and

L = 0.6385m; the fluid is air of 20oC. You will use Matlab to analyze the data. You

can also use Octave on Linux/Ubuntu. Octave is a Matlab clone which can be down-

loaded for free.

• First, find out and write down the governing equations (N.B:. you cannot assume

that the flow is fully developed).

From the course www pagehttp://www.tfd.chalmers.se/˜lada/MoF/,

download the data file channel flow data.dat and the m-file channel flow.m

which reads the data and plot some results. Open Matlab and executechannel flow.

Open channel flow.m in an editor and make sure that you understand it. There

are three field variables, v1, v2 and p; the corresponding Matlab arrays are v1 2d,

v2 2d and p 2d. The grid is 199 × 28, i.e. ni = 199 grid points in the x1 direction

and nj = 28 grid points in the x2 direction. The field variables are stored at these grid

points. We denote the first index as i and the second index as j, i.e. v1 2d(i,j).

Hence in

v1 2d(:,1) are the v1 values at the lower wall;

v1 2d(:,nj) are the v1 values at the upper wall;

v1 2d(1,:) are the v1 values at the inlet;

v1 2d(ni,:) are the v1 values at the outlet;

The work should be carried out in groups of two (you may also do it on your

own, but we don’t recommend it). At the end of this Assignment the group should

write and submit a report (in English). Divide the report into sections corresponding

to the sections B.1 – B.9. In some sections you need to make derivations; these should

clearly be described and presented. Present the results in each section with a figure

(or a numerical value). The results should also be discussed and – as far as you can –

explained.

B.1 Fully developed region

Fully developed conditions mean that the flow does not change in the streamwise di-

rection, i.e. ∂v1/∂x1 = 0. If we define “fully developed” as the location where the

velocity gradient in the center becomes smaller than 0.01, i.e. |∂v1/∂x1| < 0.01, how

long distance from the inlet does the flow become fully developed?

Another way to define fully developed conditions can be the x1 position where the

centerline velocity has reached, for example, 99% of its final value. What x1 value do

you get?

In Section 3.2.2, a distance taken from the literature is given. How well does this

agree with your values?

http://www.tfd.chalmers.se/~lada/MoF/
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V

x1

x2

L

h

Figure B.1: Flow between two plates (not to scale).

In the fully developed region, compare the velocity profile with the analytical pro-

file (see Section 3.2.2).

Look at the vertical velocity component, v2. What value should it take in the fully

developed region (see Section 3.2.2)? What value does it take (at x2 = h/4, for

example)?

B.2 Wall shear stress

On the lower wall, the wall shear stress, τw,L (index L denotes Lower), is computed as

τw,L ≡ τ21,w,L = µ
∂v1
∂x2

∣∣∣∣
L

(B.1)

Recall that τ12 = µ(∂v1/∂x2 + ∂v2/∂x1) (see Eqs. 2.4 and 1.9) but at the wall

∂v2/∂x1 = 0; Skk = 0 because of the continuity equation, Eq. 2.3. Plot τw,L ver-

sus x1. Why does it behave as it does?

Now we will compute the wall shear stress at the upper wall, τw,U . If you use

Eq. B.1, you get the incorrect sign. Instead, use Cauchy’s formula (see Fig. 1.3 and [1],

Chapt. 4.2)

t
(n̂)
i = τjinj (B.2)

which is a general way to compute the stress vector on a surface whose (outward point-

ing) normal vector is n̂ = nj . The expression for τij can be found in Eqs. 1.9 and

2.4; recall that the flow in incompressible. On the top wall, the normal vector points

out from the surface (i.e. nj = (0,−1, 0)). Use Eq. B.2 to compute the wall shear

stress at the upper wall. Plot the two wall shear stresses in the same figure. How do

they compare? In the fully developed region, compare with the analytical value (see

Eq. 3.30).

B.3 Inlet region

In the inlet region the flow is developing from its inlet profile (v1 = V = 0.9) to

the fully developed profile somewhere downstream. The v1 velocity is decelerated

in the near-wall regions, and hence the v1 velocity in the center must increase due

to continuity. Plot v1 in the center and near the wall as a function of x1. Plot also

∂v1/∂x1. If you, for a fixed x1, integrate v1, i.e.

ξ(x1) =

∫ h

0

v1(x1, x2)dx2

what do you get? How does ξ(x1) vary in the x1 direction? How should it vary?
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B.4 Wall-normal velocity in the developing region

In Section B.3 we found that, in the developing region, v1 near the walls decreases for

increasing x1. What about v2? How do you explain the behaviour of v2?

B.5 Vorticity

Do you expect the flow to be irrotational anywhere? Let’s find out by computing the

vorticity vector ωi, see Section 1.4 (note that only one component of ωi is non-zero).

Plot it in the fully developed region as ω3 vs. x2. Where is it largest? Plot the vorticity

also in the inlet and developing regions; what happens with the vorticity in the inlet

region? Now, is the flow rotational anywhere? Why? Why not?

B.6 Deformation

In Section 1.6, we divided the velocity gradient into a strain-rate tensor, Sij , and a vor-

ticity tensor, Ωij . Since the flow is two-dimensional, we have only two off-diagonal

terms (which ones?). Plot and compare one of the off-diagonal term of Sij and Ωij .

Where are they largest? Why? What is the physical meaning of Sij and Ωij , re-

spectively? Compare Ωij with the vorticity, ωi, you plotted in Section B.5. Are they

similar? Any comment?

B.7 Dissipation

Compute and plot the dissipation, Φ = τji∂vi/∂xj , see Eq. 2.13. What is the physical

meaning of the dissipation? Where do you expect it to be largest? Where is it largest?

Any difference it its behaviour in the inlet region compared to in the fully developed

region?

The dissipation appears as a source term in the equation for internal energy, see

Eq. 2.13. This means that dissipation increases the internal energy, i.e. the temperature.

This is discussed in some detail at p. 27.

Use Eq. 2.15 to compute the temperature increase that is created by the flow (i.e. by

dissipation). Start by integrating the dissipation over the entire computational domain.

Next, re-write the left side on conservative form (see Section 2.4) and then apply the

Gauss divergence theorem. Assume that the upper and the lower wall are adiabatic;

furthermore we can neglect the heat flux by conduction, q1, (see Eq. 2.12) at the inlet

and outlet. Now you can compute the increase in bulk temperature, Tb, from inlet to

outlet. The bulk temperature is defined as

Tb =

∫ h

0 v1Tdx2∫ h

0
v1dx2

(B.3)

When you compute the convective flux in Eq. 2.10 at the outlet, for example, you get

∫ h

0

v1Tdx2

which indeed is very similar to the bulk temperature in Eq. B.3.
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B.8 Eigenvalues

Compute and plot the eigenvalues of the viscous stress tensor, τij . Use the Matlab

command eig. If you have computed the four elements of the τij matrix you can use

the following commands:

tau=[tau_11 tau_12; tau_21 tau_22];

[n,lambda]=eig(tau);

where n and lambda denote eigenvalues and eigenvectors, respectively. Note that

tau 11, tau 12, tau 21, tau 22 are scalars and hence the coding above must

be inserted in for loops.

What is the physical meaning of the eigenvalues (see Chapter 1.8)? Pick an x1 loca-

tion where the flow is fully developed. Plot one eigenvalue as a x−y graph (eigenvalue

versus x2). Plot also the four stress components, τij , versus x2. Is (Are) anyone(s) neg-

ligible? How does the largest component of τij compare with the largest eigenvalue?

Any thoughts? And again: what is the physical meaning of the eigenvalues?

B.9 Eigenvectors

Compute and plot the eigenvectors of τij . Recall that at each point you will get two

eigenvectors, perpendicular to each other. It is enough to plot one of them. An eigen-

vector is, of course, a vector. Use the Matlab command quiver to plot the field of the

eigenvectors. Recall that the sign of the eigenvector is not defined (for example, both

v̂1 and −v̂1 in Fig. 1.11 at p. 23 are eigenvectors). Try to analyze why the eigenvectors

behave as they do.
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C TME225 Assignment 1 in 2014: laminar flow in a

boundary layer

Y
OU will get results of a developing two-dimensional boundary-layer flow (i.e. flow

along a flat plate, see Fig. C.1). The flow is steady and incompressible. The

simulations have been done with CALC-BFC [176] using the QUICK discretizatin

scheme [177]. The height of the domain is H = 1.289m, L = 2.461m and x0 =
0.19m; the fluid is air of 20oC and V1,∞ = 1m/s . The mesh has 252 × 200 grid

points, i.e. ni = 252 points in the x1 direction and nj = 200 points in the x2 direction.

Inlet boundary, x1 = −x0 (i=1)

v1 = V1,∞ = 1, v2 = 0.

Lower boundary, x2 = 0 (j=1)

x1 ≤ 0, i≤ i=i lower sym: v2 = ∂v1/∂x2 = 0, i.e. a symmetry boundary con-

dition

x1 > 0, i> i=i lower sym: v1 = v2 = 0, i.e. a wall

Outlet, x1 = L (i=ni)

Neumann boundary conditions are used, i.e. ∂v1/∂x1 = ∂v2/∂x1 = 0.

Upper boundary, x2 = H (j=nj)

v2 = ∂v1/∂x2 = 0, i.e. a symmetry boundary condition

You will use Matlab to analyze the data. You can also use Octave on Linux/Ubuntu.

Octave is a Matlab clone which can be downloaded for free.

• First, find out and write down the governing equations

From the course www pagehttp://www.tfd.chalmers.se/˜lada/MoF/,

download the data files boundary layer data.dat, xc.dat, yc.dat and blasius.dat

and the m-file boundary layer.m which reads the data and plot some results.

Download also the file with the Blasius solution, blasius.dat. Open Matlab and

execute boundary layer.m

Open boundary layer.m in an editor and make sure that you understand it.

There are three field variables, v1, v2 and p; the corresponding Matlab arrays are u2d,

v2d and p2d. The field variables are stored at the cell centers denoted xp,yp. We

denote the first index as i and the second index as j, i.e. u2d(i,j). Hence

• u2d(:,1) are the v1 values at the lower boundary

– i≤ i=i lower sym: symmetric boundary condition

– i> i=i lower sym: wall

• u2d(:,nj) are the v1 values at the upper boundary;

http://www.tfd.chalmers.se/~lada/MoF/
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Figure C.1: Flow along a flat plate (not to scale).

• u2d(1,:) are the v1 values at the inlet;

• u2d(ni,:) are the v1 values at the outlet;

The work should be carried out in groups of two (you may also do it on your own,

but we don’t recommend it). At the end of this Assignment the group should write

and submit a report (in English). Divide the report into sections corresponding to the

sections C.1 – C.10. In some sections you need to make derivations; these should

clearly be described and presented. Present the results in each section with a figure

(or a numerical value). The results should also be discussed and – as far as you can –

explained.

C.1 Velocity profiles

The flat plate starts at x1 = 0. What happens with the streamwise velocity, v1, near

the wall as you go downstream from x1 = 0? Why does v1 behave as it does? What

happens with v2? Does the behavior of v2 has anything to do with v1?

Plot profiles of v1 vs. x2 at a couple of x1 locations.

Now plot v1/V1,∞ vs. ξ, see Eq. 3.47 and compare with Blasius solution, see

Table 3.1 (the Blasius solution is loaded in boundary layer.m). Note that when

you compute ξ you must use x1, x2 and ν from the Navier-Stokes solution. Plot also

v2/V1,∞.

Compare v1/V1,∞ and v2/V1,∞ with Blasius solution; v1,Blasius/V1,∞ is taken

from the data file and v2,Blasius/V1,∞ is obtained from Eqs. 3.43 and 3.49.

C.2 Boundary layer thickness

Look at the v1 profiles vs. x2 you plotted at different x1 locatations in Section C.1.

The boundary layer gets thicker and thicker as you go downstream, right? The bound-

ary layer thickness, δ, can be defined in many ways. One way is the boundary layer

thickness at the x2 value where the local velocity is 99% of the freestream velocity;

this boundary layer thickness is denoted δ99.

Compute and plot δ99 vs. x1 and compare it with the Blasius solution

δ99,Blasius = 5

(
νx1
V1,∞

)1/2

(C.1)

The disadvantage of δ99 is that this definition is entirely dependent on the behavior

of the velocity profile near the edge of the boundary layer. There are two other, more
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stable, definitions of boundary layer thickness, the displacement thickness, δ∗, and the

momentum thickness, θ; they are defined as

δ∗ =

∫ ∞

0

(
1− v1

V1,∞

)
dx2

θ =

∫ ∞

0

v1
V1,∞

(
1− v1

V1,∞

)
dx2

(C.2)

The upper limit of the integrals is infinity. If you look carefully at the velocity profiles

which you plotted in Section C.1, you find that v1 has a maximum outside the boundary

layer. We don’t want to carry out the integration in Eq. C.2 outside of this maximum,

because this will give an incorrect estimate of δ∗Blasius and θBlasius. Hence, terminate

the integration when u2d(i,j+1) < u2d(i,j). Plot δ∗ and θ vs. x1 and compare

with the Blasius solution

δ∗Blasius = 1.721

(
νx1
V1,∞

)1/2

θBlasius = 0.664

(
νx1
V1,∞

)1/2

C.3 Velocity gradients

Compute and plot ∂v1/∂x2 vs. x2 at a couple of x1 locations. How does this velocity

derivative change as you move downstream along the plate? Do you see any connection

with the change of the boundary layer thickness with x1 and the change of ∂v1/∂x2
with x1?

In boundary layer approximations, we assume that v2 ≪ v1 and ∂v1/∂x2 ≫
∂v1/∂x1: are these assumptions satisfied in this flow?

C.4 Skinfriction

The skinfriction, Cf , is a dimensionless wall shear stress defined as

Cf =
τw

1
2ρV

2
1,∞

(C.3)

The wall shear stress, τw, is the same as τ12 = τ21, see Eq. 2.4, at the wall. When

using Eq. 2.4, recall that the flow is incompressible. Furthermore, what about ∂v2/∂x1
in Eq. 2.4? how large is it at the wall? Plot Cf vs. x1 and compare it with the Blasius

solution

Cf,Blasius =
0.664√
V1,∞x1/ν

Cf decreases vs. x1 and δ increases vs. x1: do you see any connection?

C.5 Vorticity

Do you expect the flow to be irrotational anywhere? Let’s find out by computing the

vorticity vector, ωi, see Section 1.4 (note that only one component of ωi is non-zero).

Plot the vorticity above the plate vs. x2 at a couple of x1 locations. Where is it largest?

Plot the vorticity also upstream of the plate. Now, is the flow rotational anywhere?

Why? Why not?
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C.6 Deformation

In Section 1.6, we divided the velocity gradient into a strain-rate tensor, Sij , and a vor-

ticity tensor, Ωij . Since the flow is two-dimensional, we have only two off-diagonal

terms (which ones?). Plot and compare one of the off-diagonal term of Sij and Ωij .

Where are they largest? Why? What is the physical meaning of Sij and Ωij , respec-

tively? Compare Ωij with the vorticity, ωi, which you plotted in Section C.5. Are they

similar? Any comment?

C.7 Dissipation

Compute and plot the dissipation, Φ = τji∂vi/∂xj , see Eq. 2.13. What is the physical

meaning of the dissipation? Where do you expect it to be largest? Where is it largest?

How large is is upstream the plate?

The dissipation appears as a source term in the equation for internal energy, see

Eq. 2.13. This means that dissipation increases the internal energy, i.e. the temperature.

This is discussed in some detail at p. 27.

Use Eq. 2.15 to compute the temperature increase that is created by the flow (i.e. by

dissipation). Start by integrating the dissipation over the entire computational domain.

Next, re-write the left side on conservative form (see Section 2.4) and then apply the

Gauss divergence theorem. Assume that the lower (x2 = 0) and the upper (x2 =
H) boundaries are adiabatic; furthermore we can neglect the heat flux by conduction,

q1, (see Eq. 2.12) at the inlet and outlet. Now you can compute the increase in bulk

temperature, Tb, from inlet to outlet. The bulk temperature is defined as

Tb =

∫ h

0
v1Tdx2∫ h

0 v1dx2
(C.4)

When you compute the convective flux in Eq. 2.10 at the outlet, for example, you get

∫ h

0

v1Tdx2

which indeed is very similar to the bulk temperature in Eq. C.4.

C.8 Eigenvalues

Compute and plot the eigenvalues of the viscous stress tensor, τij . Use the Matlab

command eig. If you have computed the four elements of the τij matrix you can use

the following commands:

tau=[tau_11 tau_12; tau_21 tau_22];

[n,lambda]=eig(tau);

where n and lambda denote eigenvalues and eigenvectors, respectively. Note that

tau 11, tau 12, tau 21, tau 22 are scalars and hence the coding above must

be inserted in for loops.

What is the physical meaning of the eigenvalues (see Chapter 1.8)? Pick an x1
location above the plate. Plot one eigenvalue as a x − y graph (eigenvalue versus x2).

Plot also the four stress components, τij , versus x2. Is (Are) anyone(s) negligible?

How does the largest component of τij compare with the largest eigenvalue? Any

thoughts? And again: what is the physical meaning of the eigenvalues?
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C.9 Eigenvectors

Compute and plot the eigenvectors of τij . Recall that at each point you will get two

eigenvectors, perpendicular to each other. It is enough to plot one of them. An eigen-

vector is, of course, a vector. Use the Matlab command quiver to plot the field of the

eigenvectors. Recall that the sign of the eigenvector is not defined (for example, both

v̂1 and −v̂1 in Fig. 1.11 at p. 23 are eigenvectors). Try to analyze why the eigenvectors

behave as they do.

C.10 Terms in the v1 equation

The Navier-Stokes equation for v1 includes only three terms, see Eq. 3.41. The left

side and the right side of this equation must be equal. Let’s verify that. Plot the three

terms vs. x2 at a couple of x1 locations. Plot also the sum of the terms, i.e. check if

the left side and the right side of Eq. 3.41 are equal: are they? If not, what could be

the reason? Recall that in Eq. 3.41 we assume that ∂p/∂x1 = 0. Maybe it is not zero?

Plot it and check! If it’s not zero, what could be the reason?

How large is ∂2v1/∂x
2
2 at the wall? How large should it be? (Hint: which other

terms in the v1 equation are non-zero?). How large is the gradient of vorticity, ∂ω/∂x2,

at the wall? Look at the discussion in connection to Eq. 4.25.
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Figure D.1: Scalar product.

D TME225: Fourier series

H
ERE a brief introduction to Fourier series extracted from [178] is given.

D.1 Orthogonal functions

Consider three vectors, V1, V2, V3, in physical space which form an orthogonal base

in R3 (i.e. their scalar products are zero). Let us call them basis functions. Any vector,

T, in R3 can now be expressed in these three vectors, i.e.

T = c1V1 + c2V2 + c3V3 (D.1)

see Fig. D.1. Now define the scalar product of two vectors, a and b, as a · b = (a|b).
The coordinates, ci, can be determined by making a scalar product of Eq. D.1 and Vi

which gives

(T|Vi) = (c1V1|Vi) + (c2V2|Vi) + (c3V3|Vi)

= (c1V1|V1) + (c2V2|V2) + (c3V3|V3)

= c1|V1|2 + c2|V2|2 + c3|V3|2 = ci|Vi|2
(D.2)

where |Vi| denotes the length of Vi; the second line follows because of the orthogo-

nality of Vi. Hence the coordinates, ci, are determined by

ci = (T|Vi)/|Vi|2 (D.3)
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Now let us define an infinite (∞-dimensional) functional space, B, with orthogonal

basis functions {g}∞1 . The “scalar product” of two functions, f and gn, is defined as

(f |gn) =
∫ b

a

f(x)gn(x)dx (D.4)

Then, in a similar way to Eq. D.1, any function can, over the interval [a, b], be expressed

as

f =

∞∑

n=1

cngn (D.5)

As above, we must now find the “coordinates”, cn (cf. the coordinates, ci, in Eq. D.1).

Multiply, as in Eq. D.2, f with the basis functions, gi, i.e.

(f |gi) =
∞∑

n=1

cn(gn|gi) (D.6)

Since we know that all gn are orthogonal, Eq. D.6 is non-zero only if i = n, i.e.

(f |gi) = (c1g1|gi) + (c2g2|gi) . . . ci(gi|gi) . . . ci+1(gi+1|gi) . . . =
= ci(gi|gi) = ci||gi||2

(D.7)

Similar to Eq. D.3, the “coordinates” can be found from (switch from index i to n)

cn = (f |gn)/||gn||2 (D.8)

The “coordinates”, cn, are called the Fourier coefficients to f in system {g}∞1 and

||gn|| is the “length” of gn (cf. |Vi| which is the length of Vi in Eq. D.3), i.e.

||gn|| = (gn|gn)1/2 =

(∫ b

a

gn(x)gn(x)dx

)1/2

(D.9)

Let us now summarize and compare the basis functions in physical space and the

basis functions in functional space.

1. Any vector in R3 can be expressed in

the orthogonal basis vectors Vi

1. Any function in [a, b] can be ex-

pressed in the orthogonal basis func-

tions gn
2. The length of the basis vector, Vi, is

|Vi|
2. The length of the basis function, gn,

is ||gn||
3. The coordinates of Vi are computed

as ci = (T|Vi)/|Vi|2
3. The coordinates of gn are computed

as cn = (f |gn)/||gn||2

D.2 Trigonometric functions

Here we choose gn as trigonometric functions which are periodic in [−π, π]. The

question is now how to choose the orthogonal function system {g}∞1 on the interval

[−π, π]. In mathematics, we usually start by doing an intelligent “guess”, and then we

prove that it is correct. So let us “guess” that the trigonometric series

[1, sinx, cosx, sin(2x), . . . , sin(nx), cos(nx), . . .] (D.10)
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is an orthogonal system. The function system in Eq. D.10 can be defined as

gn(x) =

{
φk(x), for n = 2k = 2, 4, . . .
ψk(x), for n = 2k + 1 = 1, 3, . . .

(D.11)

where φk(x) = sin(kx) (k = 1, 2, . . .) and ψk(x) = cos(kx) (k = 0, 1, . . .). Now we

need to show that they are orthogonal, i.e. that the integral of the product of any two

functions φk and ψk is zero on B[−π, π] and we need to compute their “length” (i.e.

their norm).

Orthogonality of ψn and ψk

(ψn|ψk) =

∫ π

−π

cos(nx) cos(kx)dx =
1

2

∫ π

−π

[cos((n+ k)x) + cos((n− k)x)] dx

=
1

2

[
1

n+ k
sin((n+ k)x) +

1

n− k
sin((n− k)x)

]π

−π

= 0 for k 6= n

(D.12)

D.2.1 “Length” of ψk

(ψk|ψk) = ||ψk||2 =

∫ π

−π

cos2(kx)dx =

[
x

2
+

1

4k
sin(2kx)

]π

−π

= π for k > 0

(ψ0|ψ0) = ||ψ0||2 =

∫ π

−π

1 · dx = 2π

(D.13)

D.2.2 Orthogonality of φn and ψk

(φn|ψk) =

∫ π

−π

sin(nx) cos(kx)dx =
1

2

∫ π

−π

[sin((n+ k)x) + sin((n− k)x)] dx

= −1

2

[
1

n+ k
cos((n+ k)x) +

1

n− k
cos((n− k)x)

]π

−π

= 0

(D.14)

because cos((n+ k)π) = cos(−(n+ k)π) and cos((n− k)π) = cos(−(n− k)π).

D.2.3 Orthogonality of φn and φk

(φn|φk) =
∫ π

−π

sin(nx) sin(kx)dx =
1

2

∫ π

−π

[cos((n− k)x)− cos((n+ k)x)] dx

=
1

2

[
1

n− k
sin((n− k)x)− 1

n+ k
sin((n+ k)x)

]π

−π

= 0 for k 6= n

(D.15)

D.2.4 “Length” of φk

(φk|φk) = ||φk||2 =

∫ π

−π

sin2(kx)dx =

[
x

2
− 1

4k
sin(2kx)

]π

−π

= π for k ≥ 1

(D.16)
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D.3 Fourier series of a function

Now that we have proved that {g}∞1 in Eq. D.11 forms an orthogonal system of func-

tions, we know that we can express any periodic function, f (with a period of 2π) in

{g}∞1 as

f(x) = c+

∞∑

n=1

(an cos(nx) + bn sin(nx)) (D.17)

where x is a spatial coordinate. The Fourier coeffients are given by

bn = (f |φn)/||φn||2 =
1

π

∫ π

−π

f(x) sin(nx)dx (D.18a)

an = (f |ψn)/||ψn||2 =
1

π

∫ π

−π

f(x) cos(nx)dx (D.18b)

c = (f |ψ0)/||ψ0||2 =
1

2π

∫ π

−π

f(x)dx (D.18c)

where n > 0. If we set c = a0/2, then a0 is obtained from Eq. D.18b, i.e.

f(x) =
a0
2

+

∞∑

n=1

(an cos(nx) + bn sin(nx)) (D.19a)

bn = (f |φn)/||φn||2 =
1

π

∫ π

−π

f(x) sin(nx)dx (D.19b)

an = (f |ψn)/||ψn||2 =
1

π

∫ π

−π

f(x) cos(nx)dx (D.19c)

Note that a0/2 corresponds to the average of f . Taking the average of f (i.e.

integrating f from −π to π) and dividing with the integration length, 2π, gives (see

Eq. D.19a)

f̄ =
1

2π

∫ π

−π

f(x)dx =
1

2π

a0
2

· 2π =
a0
2

(D.20)

Hence, if f̄ = 0 then a0 = 0.

D.4 Derivation of Parseval’s formula

Parseval’s formula reads

∫ π

−π

(f(x))2dx =
π

2
a20 + π

∞∑

n=1

(a2n + b2n) (D.21)

We will try to prove this formula. Assume that we want to approximate the function

f as well as possible with an orthogonal series

∞∑

n=1

angn (D.22)

Now we want to prove that the Fourier coefficients are the best choice to minimize the

difference

||f −
N∑

n=1

angn|| (D.23)
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Later we will let N → ∞. Using the definition of the norm and the laws of scalar

product we can write

||f −
N∑

n=1

angn||2 =

(
f −

N∑

n=1

angn

∣∣∣∣∣f −
N∑

k=1

akgk

)

= (f |f)−
N∑

n=1

an(f |gn)−
N∑

k=1

ak(f |gk) +
N∑

n=1

N∑

k=1

anak(gn|gk) =

= (f |f)− 2

N∑

n=1

an(f |gn) +
N∑

n=1

a2n(gn|gn)

(D.24)

because of the orthogonality of the function system, {g}N1 . Expressing f in the second

term using the Fourier coefficients cn (see Eqs. D.5 and D.8) gives

(f |f)− 2

N∑

n=1

ancn(gn|gn) +
N∑

n=1

a2n(gn|gn)

= ||f ||2 +
N∑

n=1

||gn||2
(
a2n − 2ancn

)

= ||f ||2 +
N∑

n=1

||gn||2 (an − cn)
2 −

N∑

n=1

||gn||2c2n

(D.25)

The left side of Eq. D.24 is thus minimized if the coefficients an are chosen as the

Fourier coefficients, cn so that

||f −
N∑

n=1

angn||2 = ||f ||2 −
N∑

n=1

||gn||2c2n (D.26)

The left side must always be positive and hence

N∑

n=1

||gn||2c2n ≤ ||f ||2 =

∫ π

−π

(f(x))2dx for all N (D.27)

As N is made larger, the magnitude of the left side increases, and its magnitude gets

closer and closer to that of the right side, but it will always stay smaller than ||f ||2.

This means that the series on the left side is convergent. Using the Fourier coefficients

in Eq. D.19 and letting N → ∞ it can be shown that we get equality of the left and

right side, which gives Parseval’s formula,

||f ||2 ≡
∫ π

−π

(f(x))2dx =

N∑

n=1

||gn||2c2n = ||ψ0||
(
a20
2

)
+

N∑

n=1

||ψn||a2n + ||φn||b2n

= 2π

(
a20
2

)
+ π

N∑

n=1

a2n + b2n =
π

2
a20 + π

∞∑

n=1

(a2n + b2n)

Note that 2π and π on the second line are the “length” of ||gn||, i.e. the length of ||ψ0||,
||ψn|| and ||φn|| (see Sections D.2.1 and D.2.4).

Appendix N describes in detail how to create energy spectra from two-point corre-

lations.
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D.5 Complex Fourier series

Equation D.19 gives the Fourier series of a real function. It is more convenient to

express a Fourier series in complex variables even if the function f itself is real. On

complex form it reads

f(x) =

∞∑

n=−∞

cn exp(ınx)) (D.28a)

cn =
1

2π

∫ π

−π

f(x) exp(−ınx)dx (D.28b)

where the Fourier coefficients, cn, are complex. Below we verify that if f is real, then

Eq. D.28 is equivalent to Eq. D.19. The Fourier coefficients, cn, read – assuming that

f is real – according to Eq. D.28

cn =
1

2π

∫ π

−π

f(x)(cos(nx)− ı sin(nx))dx =
1

2
(an − ıbn), n > 0 (D.29)

where an and bn are given by Eq. D.19. For negative n in Eq. D.28 we get

c−n = c∗n =
1

2π

∫ π

−π

f(x)(cos(nx) + ı sin(nx))dx =
1

2
(an + ıbn), n > 0 (D.30)

where c∗n denotes the complex conjugate. For n = 0, Eq. D.28 reads

c0 =
1

2π

∫ π

−π

f(x)dx =
1

2
a0 (D.31)

see Eq. D.19. Inserting Eqs. D.29, D.30 and D.31 into Eq. D.28 gives

f(x) =
1

2
a0 +

1

2

∞∑

n=1

(an − ıbn) exp(ınx) + (an + ıbn) exp(−ınx)

=
1

2
a0 +

1

2

∞∑

n=1

(an − ıbn)(cos(nx) + ı sin(nx)) + (an + ıbn)(cos(nx)− ı sin(nx))

=
1

2
a0 +

∞∑

n=1

an cos(nx) − ı2bn sin(nx) =
1

2
a0 +

∞∑

n=1

an cos(nx) + bn sin(nx)

(D.32)

which verifies that the complex Fourier series for a real function f is indeed identical

to the usual formulation in Eq. D.19 although the Fourier coefficients, cn, are complex.

One advantage of Eq. D.28 over the formulation in Eq. D.19 is that we don’t need any

special definition for the first Fourier coefficient, a0. The trick in the formulation in

Eq. D.28 is that the imaginary coefficients for negative and positive n cancel whereas

the real coefficients add. This means that the real coefficients are multiplied by a factor

two except the first coefficient, a0, which makes up for the factor 1
2 in front of a0 in

Eq. D.19.
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E TME225: Why does the energy spectrum, E, have

such strange dimensions?

T
HE energy spectrum, E, has the strange dimension v2/ℓ. The reason is that it is

a spectral density so that the kinetic energy, k = v′iv
′
i, is computed by integrating

over all wavenumbers, see Eq. 5.10. The energy spectrum is a spectral density function

in a similar way as fv(v) in Eq. 7.2; the difference is that fv(v) in Eq. 7.2 is the first

moment. Equation 7.5 defines the second moment. The dimension of fv(v) in Eq. 7.2

and fv′(v′) in Eq. 7.5 is one over velocity.

Since we have chosen to express the energy spectrum as a function of the wavenum-

ber, dimension analysis givesE ∝ κ−5/3, see Eqs. 5.12 and 5.13. A similar dimension

analysis for the kinetic energy of v′ gives v′2κ ∝ κ−2/3. However, integrating v′2κ over

all wavenumbers does not give any useful integral quantity.

The integral of the energy spectrum in the inertial region can be estimated as (see

Eqs. 5.10 and 5.13)

k = CKε
2

3

∫ κ2

κ1

κ−
5

3 dκ (E.1)

We could also express E as a function of the turbulent length scale of the eddies, ℓκ
(κ = 2π/ℓκ, see Eq. 5.7). The energy spectrum is then integrated as

k =

∫ κ2

κ1

E(κ)dκ

[m2]

= CKε
2

3

∫ κ2

κ1

κ−
5

3 dκ
κ−2/3

= CKε
2

3

∫ κ2

κ1

κ−
5

3

dκ

dℓκ
dℓκ = −CK2πε

2

3

∫ ℓ2

ℓ1

κ−
5

3 ℓ−2
κ dℓκ

= CK

( ε

2π

) 2

3

∫ ℓ1

ℓ2

ℓ
−

1

3

κ dℓκ

ℓ
2/3
κ

=

∫ ℓ1

ℓ2

Eℓ(ℓκ)dκ

[m2]

(E.2)

As can be seen, the energy spectrum Eℓ(ℓκ) obeys the −1/3 law and E(κ) obeys the

−5/3 law. However, as mentioned above, v′2κ varies as κ−2/3 (or ℓ
2/3
κ ).

E.1 Energy spectrum for an ideal vortex

The velocity field for an ideal vortex is given by vθ = Γ/(2πr), vr = 0, see Eq. 1.27

and Fig. 1.8, where Γ denotes the circulation. The kinetic energy, k, for the vortex

between r = R1 and r = R2 is obtained by integrating v2θ/2 from R1 to R2, i.e.

k =
1

8π2(R2 −R1)

∫ R2

R1

Γdr

r2
(E.3)

From this we can define a kinetic energy spectrum as

Eideal(r) =
Γ

8π2(R2 −R1)r2
(E.4)

so that

k =

∫ R2

R1

Eideal(r)dr (E.5)

Equation E.4 shows that Eideal ∝ r−3. As in the previous section, we find that the

dependence of k on the radius is one degree higher, i.e. k = v2θ/2 ∝ r−2.
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E.2 An example

Let’s generate a fluctuating velocity, v′, using a Fourier series. For simplicity we make

it symmetric so that only the cosine part needs to be used. We make it with four terms.

It reads then (see Eq. D.19)

v′(x) = a0.51 cos

(
2π

L/1
x

)
+ a0.52 cos

(
2π

L/2
x

)

+ a0.53 cos

(
2π

L/3
x

)
+ a0.54 cos

(
2π

L/4
x

) (E.6)

where the wavenumber n in Eq. D.19 corresponds to 2π/(L/m) with m = (1, 2, 3, 4).
The first coefficient, a0 = 0, in Eq. D.19 because the mean of the fluctuation v′ is zero,

i.e. ∫ L

0

v′dx = 0 (E.7)

Equation Eq. E.6 is continuous, i.e. it is given for any x/L = [0, 1]. In unsteady

CFD simulations we are always dealing with discrete points, i.e. a computational grid.

Hence, let’s express Eq. E.6 for N = 16 discrete points with ∆x = 1/(N − 1) as

v′(x) = a0.51 cos

(
2π(n− 1))

N/1

)
+ a0.52 cos

(
2π(n− 1))

N/2

)

+ a0.53 cos

(
2π(n− 1))

N/3

)
+ a0.54 cos

(
2π(n− 1))

N/4

) (E.8)

where (n− 1)/N = x/L and n = [1, N ].
Now we want v′ in Eq. E.8 to have an energy spectrum of−5/3. Parseval’s formula,

Eq. D.21, tells us that the kinetic energy of an eddy of wavenumber κ is simply the

square of its Fourier coefficient. Hence we let the ratio of the ak coefficients in Eq. E.8

decrease as m−5/3, i.e.

a1 = 1, a2 = 2−5/3, a3 = 3−5/3, a4 = 4−5/3 (E.9)

Figure E.1 shows how v′ varies over x/L. The four terms in E. E.8 shown in Fig. E.1

can be regarded as the velocity fluctuations at one time instant of four eddies of length-

scale L, L/2, L/3 and L/4. The period of the four terms is L, L/2, L/3, and L/4
corresponding to wavenumber 2π/L, 2 · 2π/L, 3 · 3π/L and 4 · 2π/L.

Now let’s make a DFT of v′ to get the energy spectrum (see Matlab code in Section

E.3). In DFT, the integral in Eq. D.18

am =
1

π

∫ π

−π

v′(x) cos(κx)dx =
1

π

∫ π

−π

v′(x) cos

(
2πmx

L

)
dx (E.10)

is replaced by a summation over discrete points, i.e.

Am =
1

N

N∑

n=1

v′(x) cos

(
2πm(n− 1)

N

)
(E.11)

where (n− 1)/N = x/L (note thatm = 0 corresponds to the mean, which is zero, see

Eq. E.7).
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Figure E.1: v′ in Eq. E.8 vs. x/L. : term 1 (m = 1); : term 2 (m = 2); :

term 3 (m = 3); ◦: term 4 (m = 4); thick line: v′. Matlab code is given in Section E.3.
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Figure E.2: Energy spectrum of v′. ◦: Evv = A2
m. Matlab code is given in Section

E.3.

Now plot the energy spectrum, Evv = A2
m versus wavenumber, see Fig. E.2a.

It can be seen that it decays as κ−5/3 as expected (recall that we chose the Fourier

coefficients, am, to achieve this). The total energy is now computed as

〈v′2〉x =

N∑

m=1

A2
m =

N∑

m=1

Evv(m) (E.12)

where 〈·〉x denotes averaging over x.

Figure E.2b shows the computed energy spectrum, Eℓ(ℓκ), versus eddy size, see

Matlab code in Section E.3. It decays as ℓ
−1/3
κ as it should, see Eq. E.2.

E.3 An example: Matlab code

close all

clear all

% number of cells

N=16;
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L=1;

n=1:1:N;

x_over_L=(n-1)/N;

% E_vv=mˆ(-5/3)

a1=1;

a2=2ˆ(-5/3);

a3=3ˆ(-5/3);

a4=4ˆ(-5/3);

for i=1:N

arg2(i)=2*pi*(i-1)/N;

arg2(i)=2*pi*x_over_L(i);

v(i)=a1ˆ0.5*cos(arg2(i))+a2ˆ0.5*cos(2*arg2(i))+a3ˆ0.5*cos(3*arg2(i))+a4ˆ0.5*cos(4

end

% take DFT

W_cos=zeros(1,N);

W_sin=zeros(1,N);

for m=1:N

for i=1:N

a=v(i);

arg1=2*pi*(m-1)*(i-1)/N;

W_cos(m)=W_cos(m)+a*cos(arg1)/N;

W_sin(m)=W_sin(m)+a*sin(arg1)/N;

end

end

% Note that all elements of W_sin are zero since v(i) is symmetric

%*******************************************************************
figure(1)

f1=a1ˆ0.5*cos(arg2);

f2=a2ˆ0.5*cos(2*arg2);

f3=a3ˆ0.5*cos(3*arg2);

f4=a4ˆ0.5*cos(4*arg2);

plot(x_over_L,f1,’linew’,2)

hold

plot(x_over_L,f2,’r--’,’linew’,2)

plot(x_over_L,f3,’k-.’,’linew’,2)

plot(x_over_L,f4,’o’,’linew’,2)

plot(x_over_L,w,’k-’,’linew’,4)

h=gca

set(h,’fontsi’,[20])

xlabel(’x’)

ylabel(’y’)
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axis([0 1 -1 3])

print vprim_vs_L.ps -depsc2

%

%*******************************************************************
%

figure(2)

%

% the power spectrum is equal to W*conj(W) = W_cosˆ2+W_sinˆ2

PW=W_cos.ˆ2+W_sin.ˆ2;

mx=2*pi*(n-1)/L;

% plot power spectrum; plot only one side of the symmetric spectrum and

% multiply by two so that all energy is accounted for

plot(mx(1:N/2),2*PW(1:N/2),’bo’,’linew’,2)

hold

h=gca

set(h,’xscale’,’log’)

set(h,’yscale’,’log’)

axis([5 50 0.01 1])

% plot -5/3 line

xxx=[5 50];

yynoll=1;

yyy(1)=yynoll;

yyy(2)=yyy(1)*(xxx(2)/xxx(1))ˆ(-5/3);

plot(xxx,yyy,’r--’,’linew’,4)

% compute the average of energy in physical space

int_phys=0;

for i=1:N

int_phys=int_phys+v(i).ˆ2/N;

end

% compute the average of energy in wavenumber space

int_wave=0;

for i=1:N

int_wave=int_wave+PW(i);

end

set(h,’fontsi’,[20])

xlabel(’x’)

ylabel(’y’)

print spectra_vs_kappa.ps -depsc2

%

%*******************************************************************
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%

figure(3)

% compute the length corresponding the wavenumber

lx=2*pi./mx;

% multiply PW by lxˆ(-2) to get the energy spectrum E(lx)

PW_L=PW.*lx.ˆ(-2);

% plot power spectrum

plot(lx(1:N/2),2*PW_L(1:N/2),’bo’,’linew’,2)

hold

h=gca

set(h,’xscale’,’log’)

set(h,’yscale’,’log’)

axis([0.1 1.2 0.4 1])

% plot -1/3 line

xxx=[0.1 1]

yynoll=0.9;

yyy(1)=yynoll;

yyy(2)=yyy(1)*(xxx(2)/xxx(1))ˆ(-1/3);

plot(xxx,yyy,’r--’,’linew’,4);

set(h,’fontsi’,[20])

xlabel(’x’)

ylabel(’y’)

print spectra_vs_L.ps -depsc2
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F TME225 Assignment 2: turbulent flow

I
N this exercise you will use data from a Direct Numerical Simulation (DNS) for

fully developed channel flow. In DNS the unsteady, three-dimensional Navier-Stokes

equations are solved numerically. The Re number based on the friction velocity and

the half channel width is Reτ = uτh/ν = 500 (h = ρ = uτ = 1 so that ν = 1/Reτ ).

A 96 × 96 × 96 mesh has been used. The streamwise, wall-normal and spanwise

directions are denoted by x (x1), y (x2) and z (x3) respectively. The cell size in x and

z directions are ∆x = 0.0654 and ∆z = 0.0164. Periodic boundary conditions were

applied in the x and z direction (homogeneous directions). All data have been made

non-dimensional by uτ and ρ.

You can do the assignment on your own or in a group of two. You should write a

report where you analyze the results following the heading F.1–F.12. It is recommended

(but the not required) that you use LATEX(an example of how to write in LATEXis available

on the course www page). It is available on Linux. On Windows you can use, for

example, MikTex (www.miktex.org) which is free to download.

F.1 Time history

At the course home page http://www.tfd.chalmers.se/˜lada/MoF/you

find a file u v time 4nodes.dat with the time history of v1 and v2. The file

has eight columns of v1 and v2 at four nodes: x2/δ = 0.0039, x2/δ = 0.0176,

x2/δ = 0.107 and x2/δ = 0.47. With uτ = 1 and ν = 1/Reτ = 1/500 this cor-

respond to x+2 = 1.95, x+2 = 8.8, x+2 = 53.5 and x+2 = 235. The sampling time step

is ∆t = 0.0033 (every second time step). The four points are located in the viscous

sublayer, the buffer layer and in the logarithmic layer, see Fig. 6.2 at p. 80.

Use the Matlab. You can also use Octave on Linux/Ubuntu. Octave is a Matlab

clone which can be downloaded for free. Start the program pl time.m which loads

and plots the time history of v1. Start Matlab and run the program pl time. Recall

that the velocities have been scaled with the friction velocity uτ , and thus what you see

is really v1/uτ . The time history of v1 at x2/δ = 0.0176 and x2/δ = 0.107 are shown.

Study the time history of the blue line (x2/δ = 0.0176) more in detail. Make a zoom

between, for example, t = 10 and t = 11 and v1,min = 3 and v1,min = 21. This is

conveniently done with the command

axis([10 11 3 21])

In order to see the value at each sampling time step, change the plot command to

plot(t,u2,’b-’,t,u2,’bo’)

Use this technique to zoom, to look at the details of the time history. Alternatively,

you can use the zoom buttons above the figure.

Plot v1 for all four nodes. How does the time variation of v1 vary for different

positions? Plot also v2 at the four different positions. What is the differences between

v1 and v2?

F.2 Time averaging

Compute the average of the v1 velocity at node 2. Add the following code (before the

plotting section)

http://www.miktex.org/
http://www.tfd.chalmers.se/~lada/MoF/
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umean=mean(u2)

Here the number of samples is n = 5000 (the entire u2 array). Find out how many

samples must be used to get a correct mean value. Start by trying with 100 samples as

umean_100=mean(u2(1:100))

What is the maximum and minimum value of v1? Compare those to the mean.

Do the same exercise for the other three nodes.

Compute and plot also the instantaneous fluctuations; v′1 at node 1, for example, is

computed as

u1_mean=mean(u1);

u1_fluct=u1-u1_mean;

F.3 Mean flow

All data in the data files below have been stored every 10th time step.

Download the file uvw inst small.mat, y.dat and the Matlab file pl vel.m

which reads the data files. The data file includes v1, v2 and v3 from the same DNS as

above, but now you are given the time history of all x2 nodes at one chosen x1 and x3
node. There are nj = 98 nodes in the x2 direction; node 1 and nj are located at the

lower and upper wall, respectively.

Your data are instantaneous. Compute the mean velocity. Plot it both as linear-

linear plot and a log-linear plot (cf. Fig. 6.4).

In the log-linear plot, use x+2 for the wall distance. Include the linear law, v+1 = x+2 ,

and the log law, v+1 = κ−1 lnx+2 + B (κ = 0.41 is the von Kármán constant and

B = 5.2). How far out from the wall does the velocity profile follow the linear law?

At what x+2 does it start to follow the log-law?

Compute the bulk velocity

V1,b =
1

2h

∫ 2h

0

v̄1dx2 (F.1)

(recall that h denote half the channel width) What is the Reynolds number based on

V1,b and centerline velocity, V1,c, respectively?

F.4 The time-averaged momentum equation

Let us time average the streamwise momentum equation. Since the flow is fully devel-

oped and two dimensional we get

0 = −1

ρ

∂p̄

∂x1
+ ν

∂2v̄1
∂x22

− ∂v′1v
′
2

∂x2
(F.2)

This equation is very similar to fully developed laminar flow which you studied in

Assignment 1, see Eq. 3.24; the difference is that we now have an additional term

which is the derivative of the Reynolds shear stress. Recall that all terms in the equa-

tion above represent forces (per unit mass). Let us investigate how these forces (the

pressure gradient, the viscous term and the Reynolds stress term) affect fluid parti-

cles located at different x2 locations. Compute and plot the three terms. (the file

uvw inst small.mat does not include p̄; set ∂p̄/∂x = −1.)
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If a term is positive it means that it pushes the fluid particle in the positive x1
direction. What about the viscous term? Is it always negative? Where is it largest? At

that point? which term balances it? How large is the third term? The pressure term

should be a driving force. Where is the Reynolds shear stress positive and where is it

negative?

F.5 The gradient

In the Section F.4 you needed to compute the gradient of the velocities, e.g. ∂v̄1/∂x2.

Presumably, you used the Matlab command

dudy=gradient(u1d,y);

Now you should compute ∂v̄1/∂x2 yourself, i.e. without using the Matlab com-

mand gradient. Make a for loop and compute ∂v̄1/∂x2 as ∆v̄1/∆x2. Recall that

the grid is non-equidistant, i.e. ∆x2 is not constant. Make sure that your ∂v̄1/∂x2
gives exactly the same values as the Matlab command gradient, also at the bound-

aries (j = 1 and j = nj).
Hint: compute first the face values of v̄1 (v̄1,n and v̄1,s) using linear interpola-

tions (you cannot use weight factors of 0.5 since ∆x2 is not constant). Then compute

∆v̄1/∆x2 as (v̄1,n − v̄1,s)/(x2,n − x2,s) where subscript n and s denote north and

south, respectively. Recall that the variable yc in pl vel.m denotes x2 at the faces.

Compute also the second derivate, ∂2v̄1/∂x
2
2, without using the Matlab command

gradient. Compare this result with what you get with the gradient, i.e.

dudy=gradient(u1d,y);

d2udy2=gradient(dudy,y);

Hint: compute first the face values of ∂v̄1/∂x2.

F.6 Wall shear stress

Compute the wall shear stress at both walls. They should be equal. Are they?

F.7 Resolved stresses

In Section F.3 you computed the mean velocities. From the instantaneous and the mean

velocity, you can compute the fluctuations as

v′i = vi − v̄i (F.3)

Now you can easily compute all stresses v′iv
′
j . Plot the normal stresses in one figure

and the shear stresses in one figure (plot the stresses over the entire channel, i.e. from

x2 = 0 to x2 = 2h). Which shear stresses are zero?

F.8 Fluctuating wall shear stress

In the same way as the velocity, the wall shear stress can be decomposed into a mean

value and a fluctuation, i.e.

τw,inst = µ
∂v1
∂x2

, τw = µ
∂v̄1
∂x2

(F.4)
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where the first expression is the instantanous wall shear stress and the second is the

time-averaged. In general, any fluctuating variable, φ, can be decomposed into a mean

and fluctuation as φ = φ̄+ φ′. The root-mean-square (RMS) is then defined as

φrms =
(
φ′2
)1/2

(F.5)

Compute the RMS of the wall shear stress. This is a measure of the fluctuating tan-

gential force on the wall due to turbulence. If heat transfer is involved, the fluctuating

temperature at the wall inducing fluctuating heat transfer may be damaging to the ma-

terial of the walls causing material fatigue. This is probably the most common form of

fluid-solid interaction.

F.9 Production terms

In order to understand why a stress is large, it is useful to look at its transport equation,

see Eq. 9.12. Usually, a stress is large when its production term, Pij , is large (there

may be exceptions when other terms, such as the diffusion term, are largest). Plot the

production terms for all non-zero stresses across the entire channel. Which ones are

zero (or close to)? Does any production term change sign at the centerline? If so, what

about the sign of the corresponding shear stress plotted in Section F.7?

F.10 Pressure-strain terms

The pressure-strain term reads (see Eq. 9.14)

Πij =
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)
(F.6)

Our data are obtained from incompressible simulations, in which the pressure may

vary unphysically in time (∂p/∂t does not appear in the equations). Hence, we prefer

to compute the velocity-pressure gradient term

Πp
ij = −v

′
i

ρ

∂p′

∂xj
−
v′j
ρ

∂p′

∂xi
, (F.7)

see the second line in Eq. 9.3. The pressure diffusion term in the v′22 equation – which

is the difference between Eqs. F.6 and F.7 (the two first terms in Eq. 9.8) – is small

except very close to the wall (see Figs. 9.4 and 9.6). Hence, the difference between Πp
ij

and Πij is small.

Download the data file p inst small.mat and the Matlab file pl press strain.m

which reads the data file. The time histories of the pressure along five x2 lines [(x1, x2, x3),
(x1 ±∆x1, x2, x3) and (x1, x2, x3 ±∆x3)] are stored in this file. This allows you to

compute all the three spatial derivatives of p′. Using the velocities stored in uvw inst small.mat

(see Section F.3), you can compute all the terms in Eq. F.7.

Plot the pressure strain, Πp
ij , for the three normal stresses and the shear stress across

the channel. For which stresses is it negative and positive? Why?

Which term Πp
ij is the largest source and sink term, respectively?
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F.11 Dissipation

The physical meaning of dissipation, ε, is transformation of turbulent kinetic energy

into internal energy, i.e. increased temperature.

Download the files y half.dat, diss inst.mat and the Matlab file pl diss.m

which reads it. The data file includes the time history of the velocities along five x2
lines [(x1, x2, x3), (x1±∆x1, x2, x3) and (x1, x2, x3±∆x3)] so that you can compute

all spatial derivatives. The data cover only the lower half of the channel. Compute and

plot

ε = ν
∂v′i
∂xk

∂v′i
∂xk

(F.8)

see Eq. 8.14. Where is it largest? In which equation does this quantity appear?

Let us now consider the equations for the mean kinetic energy,K = v̄iv̄i/2 (Eq. 8.35)

and turbulent kinetic energy, k = v′iv
′
i/2 (Eq. 8.14). The dissipation in the K equation

reads

εmean = ν
∂v̄i
∂xk

∂v̄i
∂xk

(F.9)

The flow of kinetic energy between K , k and ∆T is illustrated in Fig. 8.6 The dissipa-

tions, ε and εmean, are defined in Eqs. F.8 and F.9, respectively. Compute and plot also

εmean and P k. Which is large and which is small? How is the major part of the kinetic

energy transformed from K to ∆T ? Is it transformed via k or directly fromK to ∆T ?

F.12 Do something fun!

You have been provided with a lot of data which you have analyzed in many ways.

Now think of some other way to analyze the data. There are many interesting things

yet to be analyzed!
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G TME225 Learning outcomes 2016

TME225 Learning outcomes 2016: week 1

1. Explain the difference between Lagrangian and Eulerian description of the mo-

tion of a fluid particle.

2. Consider the flow in Section 1.2. Show that ∂v1/∂t is different from dv1/dt.

3. Watch the on-line lecture Eulerian and Lagrangian Description, part 1 – 3 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. Part 1 describes the difference between Lagrangian and Eulerian points and

velocities.

ii. The formula
∂T

∂t
+ vi

∂T

∂xi
is nicely explained in Part 2

4. Show which stress components, σij , that act on a Cartesian surface whose normal

vector is ni = (1, 0, 0). Show also the stress vector, tn̂i . (see Eq. B.2 and Fig. 1.3

and the Lecture notes of Ekh [2])

5. Show that the product of a symmetric and an antisymmetric tensor is zero.

6. Explain the physical meaning of diagonal and off-diagonal components of Sij

7. Explain the physical meaning of Ωij

8. What is the definition of irrotational flow?

9. What is the physical meaning of irrotational flow?

10. Derive the relation between the vorticity vector and the vorticity tensor

11. Start from Eq. 1.16 and express the vorticity tensor as a function of the vorticity

vector (Eq. 1.18)

12. Explain the physical meaning of the eigenvectors and the eigenvalues of the

stress tensor (see Section 1.8 and the Lecture notes of Ekh [2])

13. Watch the on-line lecture Vorticity, part 1 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. What is a vortex line?

ii. The teacher talks of ωA and ωB, where ω = 0.5(ωA + ωB); what does it

denote? (cf. Fig. 1.4 in the lecture notes)

iii. The teacher shows the rotating tank (after 3 minutes into the movie). He

puts the vorticity meter into the tank. The flow in the tank moves like a

solid body. How does the vorticity meter move? This is a curved flow with

vorticity.

iv. The teacher puts the vorticity meter into a flow in a straight channel (near a

wall). What happens with the vorticity meter? (cf. Fig. 1.10)

http://www.tfd.chalmers.se/~lada/flow_viz.html
http://www.tfd.chalmers.se/~lada/flow_viz.html
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v. After 4:20 minutes, the teacher shows the figure of a boundary layer. He

says that one of the “vorticity legs” (ωA in Item 13ii above) is parallel to the

wall; what does he say about ωB? What conclusion does is draw about ω?

This is a straight flow with vorticity.

vi. After 4:30 minutes, the teacher introduces a spiral vortex tank (in the lecture

notes this is called an ideal vortex). How does the vortex meter behave? (cf.

Fig. 1.8 in the lecture notes). How does the teacher explain that the vorticity

is zero (look at the figure he talks about after 6 minutes); the explanation

uses the fact that the tangential velocity, vθ , is inversely proportional to the

radius, r, see Eq. 1.29 in the lecture notes.

vii. After 8:40 minutes, the teacher puts the vorticity meter at different locations

in the boundary layer; he puts it near the solid wall, a bit further out and

finally at the edge of the boundary layer. How does the vorticity meter move

at the different locations? Where is the vorticity smallest/largest? Explain

why.

viii. After 10:35, the vortex meter is shown in the spiral vortex tank. What hap-

pens with the vorticity when we get very close to the center? Does it still

remain zero? What happens with the tangential velocity? (see Eq. 1.29)

ix. The teachers explains the concept of circulation, Γ, and its relation to vor-

ticity (cf. Eqs. 1.23 and 1.25).

x. What is a vortex core?

xi. How large is the vorticity and the circulation in the rotating tank?

xii. How large is the vorticity and the circulation in the spiral vortex tank? Does

it matter if you include the center?

xiii. The teacher presents a two-dimensional wing. Where is the pressure low and

high, respectively? The Bernoulli equation gives then the velocity; where is

it high and low, respectively? The velocity difference creates a circulation,

Γ.

xiv. After 15:25 minutes, the teacher looks at the rotating tank again. He starts

to rotate the tank; initially there is only vorticity near the outer wall. As time

increases, vorticity (and circulation) spread toward the center. Finally, the

flow in the entire tank has vorticity (and circulation). This illustrates that as

long as there is an imbalance in the shear stresses, vorticity (and circulation)

is changed (usually created), see Figs. 1.10 and 4.1.

14. Equation 1.7 states that mass times acceleration is equal to the sum of forces (per

unit volume). Write out the momentum equation (without using the summation

rule) for the x1 direction and show the surface forces and the volume force on a

small, square fluid element (see lecture notes of Ekh [2]). Now repeat it for the

x2 direction.

15. Derive the Navier-Stokes equation, Eq. 2.5 (use the formulas in the Formula

sheet which can be found on the course www page)



G. TME225 Learning outcomes 2016 273

TME225 Learning outcomes 2016: week 2-3

1. Simplify the Navier-Stokes equation for incompressible flow and constant vis-

cosity (Eq. 2.8)

2. Derive the transport equation for the internal energy, u, Eq. 2.13 (again, use the

Formula sheet). What is the physical meaning of the different terms?

3. Simplify the the transport equation for internal energy to the case when the flow

is incompressible (Eq. 2.16).

4. Derive the transport equation for kinetic energy, vivi/2, Eq. 2.21. What is the

physical meaning of the different terms?

5. Explain the energy transfer between kinetic energy, k, and internal energy, u

6. Show how the left side of the transport equations can be written on conservative

and non-conservative form

7. Starting from the Navier-Stokes equations (see Formula sheet), derive the flow

equation governing the Rayleigh problem expressed in f and η; what are the

boundary conditions in time (t) and space (x2); how are they expressed in the

similarity variable η?

8. Show how the boundary layer thickness can be estimated from the Rayleigh

problem using f and η (Fig. 3.3)

9. Explain the flow physics at the entrance (smooth curved walls) to a plane channel

(Fig. 3.5).

10. Explain the flow physics in a channel bend (Fig. 3.6).

11. Derive the flow equations for fully developed flow between two parallel plates,

i.e. fully developed channel flow (Eqs. 3.18, 3.22 and 3.26)

12. Show that the continuity equation is automatically satisfied in 2D when the ve-

locity is expressed in the streamfunction, Ψ

13. Starting from Eq. 3.41, derive the equation for two-dimensional boundary-layer

flow expressed in the streamfunction (Eq. 3.45). Start from Eq. 3.41

14. Derive the Blasius equation, Eq. 3.53. Start from Eq. 3.45

15. Explain (using words and a figure) why vorticity can be created only by an im-

balance (i.e. a gradient) of shear stresses. Explain why pressure and the gravity

force cannot create vorticity.

16. The Navier-Stokes equation can be re-written on the form

∂vi
∂t

+
∂k

∂xi︸︷︷︸
no rotation

− εijkvjωk︸ ︷︷ ︸
rotation

= −1

ρ

∂p

∂xi
+ ν

∂2vi
∂xj∂xj

+ fi

Derive the transport equation (3D) for the vorticity vector, Eq. 4.20

17. Show that the divergence of the vorticity vector, ωi, is zero
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18. Explain vortex stretching and vortex tilting

19. Show that the vortex stretching/tilting term is zero in two-dimensional flow

20. Derive the 2D equation transport equation for the vorticity vector from the 3D

transport equation, Eq. 4.22

21. Show the similarities between the vorticity and temperature transport equations

in fully developed flow between two parallel plates

22. Use the diffusion of vorticity to show that
δ

ℓ
∝
√

ν

Uℓ
=

√
1

Re
(see also

Eq. 3.14).

23. Watch the on-line lecture Boundary layers parts 1 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. Consider the flow over the flat plate. How does the boundary layer thickness

change when we move downstream?

ii. What value does the fluid velocity take at the surface? What is this boundary

conditions called: slip or no-slip? How do they define the boundary layer

thickness?

iii. How is the wall shear stress defined? How does it change when we move

downstream? (how does this compare with the channel flow in TME225

Assignment 1?)

iv. How is the circulation, Γ, defined? (cf. with Eq. 1.23) How is it related to

vorticity? How do they compute Γ for a unit length (> δ) of the boundary

layer? How large is it? How does it change when we move downstream on

the plate?

v. Where is the circulation (i.e. the vorticity) created? Where is the vortic-

ity created in “your” channel flow (TME225 Assignment 1)? The vorticity

is created at different locations in the flat-plate boundary layer and in the

channel flow: can you explain why? (hint: in the former case

∂p

∂x1
= µ

∂2v1
∂x22

∣∣∣∣
wall

= 0,

but not in the latter; this has an implication for γ2,wall [see Section 4.3])

vi. How do they estimate the boundary layer thickness? (cf. Section. 4.3.1)

http://www.tfd.chalmers.se/~lada/flow_viz.html
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Week 4

1. Derive the Bernoulli equation (Eq. 4.32)

Hint: The gravitation term is first expressed as a potential gi = −∂Φ̂/∂xi.

2. Consider the derivative of the complex function (f(z + z0) − f(z))/z0 where

z = x + iy and f = u + iv. The derivative of f must be independent in which

coordinate direction the derivative is taken (either along the real or the imaginary

axis). Show that this leads to the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

3. Show that in inviscid flow, both the velocity potential and the streamfunction

satisfy the Laplace equation.

4. Consider the complex potential f = Φ + iΨ. Show that f = C1z
n satisfies the

Laplace equation. Derive the velocity polar components for n = 1 and n = 2.

What physical flow do these two cases correspond to?

5. Derive the polar velocity components for the complex potential f = ṁ ln z/(2π)
and f = −iΓ ln z/(2π) (Γ denotes circulation). What does the physical flow

look like? Show that they satisfy the Laplace equation.

6. A doublet is a combination of a radial sink and source and its complex potential

reads f = µ/(πz). Combine it with the potential for parallel flow (z = V∞z).

Derive the resulting velocity field around a cylinder (in polar components).

Hint: the radius is defined as r0 = µ/(πV∞).

7. Consider the potential flow around a cylinder. Show that the radial velocity is

zero at the surface. Use the Bernoulli equation to get the surface pressure. Show

that the drag and lift forces are zero. Where are the stagnation points located?

8. Add the complex potential of a vortex line, f = −iΓ ln z/(2π) (Γ denotes cir-

culation) to the complex potential for cylinder flow. Compute the polar velocity

components. Where are the stagnation points located? What happens with the lo-

cation of the stagnation point(s) when the circulation becomes very large? How

is the lift of the cylinder computed (which applies for any body).

9. What is the Magnus effect? Explain the three applications in the text: why is it

efficient to use loops in table tennis? Why does the Magnus effect help a football

player get the ball around the wall (of players) when making a free-kick? How

does the Magnus effect help propulsing a ship using Flettner rotors (to learn more

about Flettner rotors, google “flettner rotors”).

10. Consider the inviscid flow around an airfoil, see Fig. 4.19. In inviscid theory it

would look like Fig. 4.20. What has been done to achieve the flow in Fig. 4.21?

How is the lift computed?

11. Watch the on-line lecture Boundary layers part 2 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. How does the boundary layer thickness change at a given x when we in-

crease the velocity? Explain why.

http://www.tfd.chalmers.se/~lada/flow_viz.html
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ii. Consider the flow in a contraction: what happens with the boundary layer

thickness after the contraction?

iii. Why is the vorticity level higher after the contraction?

iv. Is the wall shear stress lower or higher after the contraction? Why?

v. Consider the flow in a divergent channel (a diffusor): what happens with the

boundary layer thickness and the wall shear stress?

vi. What happens when the angle of the diffusor increases?

vii. What do we mean by a “separated boundary layer”? How large is the wall

shear stress at the separation point?

viii. The second part of the movie deals with turbulent flow: we’ll talk about that

in the next lecture (and the remaining ones).

12. Watch the on-line lecture Boundary layers parts 2 (second half) & 3 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. The flow is “tripped” into turbulence. How?

ii. When the flow along the lower wall of the diffusor is tripped into turbulent

flow, the separation region is suppressed. Try to explain why.

iii. Two boundary layers – one on each side of the plate – are shown. The upper

one is turbulent and the lower one is laminar. What is the difference in the

two velocity profiles? (cf. my figures in the ’summary of lectures’) Explain

the differences.

iv. Why is the turbulent wall shear stress larger for the turbulent boundary

layer? What about the amount of circulation (and vorticity) in the laminar

and turbulent boundary layer? How are they distributed?

v. Consider the airfoil: when the boundary layer on the upper (suction) side

is turbulent, stall occurs at a higher angle of incidence compared when the

boundary layer is laminar. Why?

vi. Vortex generator are place on the suction side in order prevent or delay sep-

aration. Try to explain why separation is delayed.

13. What characterizes turbulence? Explain the characteristics. What is a turbulent

eddy?

14. Explain the cascade process. How large are the largest scales? What is dissi-

pation? What dimensions does it have? Which eddies extract energy from the

mean flow? Why are these these eddies “best” at extracting energy from the

mean flow?

15. What are the Kolmogorov scales? Use dimensional analysis to derive the expres-

sion for the velocity scale, vη , the length scale, ℓη and the time scale, τη.

16. Make a figure of the energy spectrum. The energy spectrum consists of thee

subregions: which? describe their characteristics. Show the flow of turbulent

kinetic energy in the energy spectrum. Given the energy spectrum, E(κ), how

is the turbulent kinetic energy, k, computed? Use dimensional analysis to derive

the −5/3 Kolmogorov law.

17. What does isotropic turbulence mean? What about the shear stresses?

http://www.tfd.chalmers.se/~lada/flow_viz.html
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Week 5

1. How is the energy transfer from eddy-to-eddy, εκ, estimated? Show how the ratio

of the large eddies to the dissipative eddies depends on the Reynolds number (see

Eq. 5.16).

2. Describe the cascade process created by vorticity. Write the vortex stretch-

ing/tilting term in tensor notation. What is its physical meaning? Describe the

physical process of vortex stretching which creates smaller and smaller eddies.

Show and discuss the family tree of turbulence eddies and their vorticity. Show

that in 2D flow the vortex stretching/tilting term vanishes.

3. Watch the on-line lecture Turbulence part 1 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. Why does the irregular motion of wave on the sea not qualify as turbulence?

ii. How is the turbulence syndrome defined?

iii. The movie shows laminar flow in a pipe. The viscosity is decreased, and the

pressure drop (i.e. the resistance, the drag, the loss) decreases. Why? The

viscosity is further decreased, and the pressure drop increases. Why? How

does the characteristics of the water flow coming out of the pipe change due

to the second decrease of viscosity?

iv. It is usually said that the flow in a pipe gets turbulent at a Reynolds number

of 2300. In the movie they show that the flow can remain laminar up to

8 000. How do they achieve that?

v. Dye is introduced into the pipe. For laminar flow, the dye does not mix with

the water; in turbulent flow it does. When the mixing occurs, what happens

with the pressure drop?

4. Watch the on-line lecture Turbulence part 2 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. Draw a laminar and turbulent velocity profile for pipe flow. What is the

main difference? In which flow is the wall shear stress τw = µ
∂v̄1
∂x2

largest,

laminar or turbulent?

ii. In turbulent flow, the velocity near the wall is larger than in laminar flow.

Why?

iii. Discuss the connection between mixing and the cross-stream (i.e. v′2) fluc-

tuations.

iv. Try to explain the increased pressure drop in turbulent flow with increased

mixing.

v. The center part of the pipe is colored with blue dye and the wall region is

colored with red dye: by looking at this flow, try to explain how turbulence

creates a Reynolds shear stress.

vi. Two turbulent jet flows are shown, one at low Reynolds number and one at

high Reynolds number. They look very similar in one way and very different

in another way. Which scales are similar and which are different?

http://www.tfd.chalmers.se/~lada/flow_viz.html
http://www.tfd.chalmers.se/~lada/flow_viz.html
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vii. The two turbulent jet flows have the same energy input and hence the same

dissipation. Use this fact to explain why the smallest scales in the high

Reynolds number jet must be smaller that those in the low Reynolds number

jet.

viii. At the end of the presentation of the jet flow, they explain the cascade pro-

cess.

ix. Explain the analogy of a water fall (cascade of water, the water passes down

the cascade) and the turbulent cascade process.

5. Use the decomposition vi = v̄i + v′i to derive the time-averaged Navier-Stokes

equation. A new terms appears: what is it called? Simplify the time-averaged

Navier-Stokes equation for boundary layer flow. What is the total shear stress?

6. How is the friction velocity, uτ , defined? Define x+2 and v̄+1 .

7. The wall region is divided into an inner and outer region. The inner region is

furthermore divided into a viscous sublayer, buffer layer and log-layer. Make a

figure and show where these regions are valid (Fig. 6.2)

8. What are the relevant velocity and length scales in the viscous-dominated region

(x+2 . 5)? Derive the linear velocity law in this region (Eq. 6.22). What are

the suitable velocity and length scales in the inertial region (the fully turbulent

region)? Derive the log-law for this region.

9. Consider fully developed turbulent channel flow. In which region (viscous sub-

layer, buffer layer or log-layer) does the viscous stress dominate? In which re-

gion is the turbulent shear stress large? Integrate the boundary layer equations

and show that the total shear stress varies as 1− x2/δ (Eq. 6.20).

10. In fully developed turbulent channel flow, the time-averaged Navier-Stokes con-

sists only of three terms. Make a figure and show how the velocity and Reynolds

shear stress vary across the channel. After that, show how the three terms vary

across the channel (Fig. 6.6). Which two terms balance each other in the outer

region? Which term drives (“pushes”) the flow in the x1 direction? Which two

terms are large in the inner region? Which term drives the flow?

11. Derive the exact transport equation for turbulent kinetic energy, k. Discuss the

physical meaning of the different terms in the k equation. Which terms do only

transport k? Which is the main source term? Main sink (i.e. negative source)

term?
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1. In the cascade process, we assume that the dissipation is largest at the smallest

scales, i.e. ε(κ) ∝ κ4/3, see Eq. 8.19 at p. 95. Show this. For which eddies is

the production largest? Why?

2. Watch the on-line lecture Turbulence part 3 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. The movie says that there is a similarity of the small scales in a channel flow

and in a jet flow. What do they mean?

ii. What happens with the small scales when the Reynolds number is increased?

What happens with the large scales? Hence, how does the ratio of the large

scales to the small scales change when the Reynolds number increases (see

Eq. 5.16)

iii. In decaying turbulence, which scales die first? The scenes of the clouds

show this in a nice way.

iv. Even though the Reynolds number may be large, there are a couple of phys-

ical phenomena which may inhibit turbulence and keep the flow laminar:

mention three.

v. Consider the flow in the channel where the fluid on the top (red) and the

bottom (yellow) are separated by a horizontal partition. The two fluids are

identical. Study how the two fluids mix downstream of the partition. In the

next example, the fluid on the top is hot (yellow) and light, and the one at

the bottom (dark blue) is cold (heavy); how do the fluids mix downstream

of the partition, better or worse than in the previous example? This flow

situation is called stable stratification. In the last example, the situation is

reversed: cold, heavy fluid (dark blue) is moving on top of hot, light fluid

(yellow). How is the mixing affected? This flow situation is called unstable

stratification. Compare in meteorology where heating of the ground may

cause unstable stratification or when inversion causes stable stratification.

You can read about stable/unstable stratification in Section 12.1 at p. 142.

3. Given the exact k equation, give the equation for boundary-layer flow (Eq. 8.23).

All spatial derivatives are kept in the dissipation term: why? In the turbulent

region of the boundary layer, the k equation is dominated by two terms. Which

ones? Which terms are non-zero at the wall?

4. Where is the production term, P k = −v′1v′2∂v̄1/∂x2, largest? In order to explain

this, show how −v′1v′2 and ∂v̄1/∂x2 vary near the wall.

5. Discuss the difference of spatial transport of k and spectral transfer of k. Give

an example of how they are combined in non-homogeneous turbulence. How is

homogeneous turbulence defined?

6. Derive the exact transport equation for mean kinetic energy, K . Discuss the

physical meaning of the different terms. One term appears in both the k and the

K equations: which one? Consider the dissipation terms in the k and the K
equations: which is largest near the wall and away from the wall, respectively?

Show where they appear in the energy spectrum.

7. Derive the exact transport equation for turbulent Reynolds stress, v′iv
′
j . Take the

trace of the v′iv
′
j equation to derive the k equation.

http://www.tfd.chalmers.se/~lada/flow_viz.html
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8. Show that the role of the convection and diffusion terms is purely to transport the

quantity (k for example) and that they give no net effect except at the boundaries

(use the Gauss divergence theorem), see Eqs. 8.26 and 8.27.

9. Discuss the physical meaning of the different terms in the v′iv
′
j equation.

10. Consider the pressure-strain term in the v′iv
′
j equation. The mean normal stress

can be defined as v′2av = v′iv
′
i/3; what sign will the pressure-strain term have for

the normal stresses which are, respectively, larger and smaller than v′2av? What

role does Π12 has? What sign? Why do we call the pressure-strain term the

Robin Hood term?

11. Consider the dissipation term, ε12, for the shear stress: how large is it?

12. Consider fully developed channel flow: how are the expressions for the produc-

tion terms in the v′iv
′
j equations simplified? Which production terms are zero and

non-zero, respectively? Consider the production term for v′1v
′
2: what sign does

it have in the lower and upper part of the channel, respectively? Why is there no

pressure-strain term in the k equation?

13. Consider the fully turbulent region in fully developed channel flow: which are

the main source and sink terms in the v′21 , v′22 , v′23 and v′1v
′
2 equations? Which

are the largest terms at the wall? Which terms are zero at the wall?

14. Consider channel flow and use physical reasoning to show that v′1v
′
2 must be

negative and positive in the lower and upper half of the channel, respectively. Is

this consistent with the sign of P12?

15. Explain why v′1v
′
2 and ∂v̄1/∂x2 must have different sign in fully-developed

channel flow by looking at the P12.

16. Define the two-point correlation. How is it normalized? What is the physical

meaning of the two-point correlation? How is it related to the largest eddies?

How is the integral length scale defined?

17. Define the auto correlation. How is it normalized? What physical meaning does

it have? The integral time scale is defined in analogy to the integral length scale:

show how it is defined.

18. What is Taylor’s hypothesis? Shown that the integral length scale can be esti-

mated from the integral time scale
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TME225 Learning outcomes 2016: just for fun!

1. Watch the on-line lecture Pressure field and acceleration part 1 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. The water flow goes through the contraction. What happens with the veloc-

ity and pressure. Try to explain.

ii. Fluid particles become thinner and elongated in the contraction. Explain

why.

iii. In the movie they show that the acceleration along s, i.e. Vs
dVs
ds

, is related to

the pressure gradient
dp

ds
. Compare this relation with the three-dimensional

form of Navier-Stokes equations for incompressible flow, Eq. 2.8

2. Watch the on-line lecture Pressure field and acceleration part 2 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. Water flow in a manifold (a pipe with many outlets) is presented. The pres-

sure decreases slowly downstream. Why?

ii. The bleeders (outlets) are opened. The pressure now increases in the down-

stream direction. Why?

iii. What is the stagnation pressure? How large is the velocity at a stagnation

point?

iv. What is the static pressure? How can it be measured? What is the difference

between the stagnation and the static pressures?

v. A venturi meter is a pipe that consists of a contraction and an expansion (i.e.

a diffusor). The bulk velocities at the inlet and outlet are equal, but still the

pressure at the outlet is lower than that at the inlet. There is a pressure drop.

Why?

vi. What happens with the pressure drop when there is a separation in the dif-

fusor?

vii. They increase the speed in the venturi meter. The pressure difference in

the contraction region and the outlet increases. Since there is atmospheric

pressure at the outlet, this means that the pressure in the contraction region

must decrease as we increase the velocity of the water. Finally the water

starts to boil, although the water temperature may be around 10oC. This is

called cavitation (this causes large damages in water turbines).

viii. Explain how suction can be created by blowing in a pipe.

3. Watch the on-line lecture Pressure field and acceleration part 3 at

http://www.tfd.chalmers.se/˜lada/flow viz.html

i. What is the Coanda effect?

ii. The water from the tap which impinges on the horizontal pipe attaches to the

surface of the pipe because of the Coanda effect. How large is the pressure

at the surface of the pipe relative to the surrounding pressure?

iii. Explain the relation between streamline curvature and pressure (cf. Sec-

tion 3.2.1).

http://www.tfd.chalmers.se/~lada/flow_viz.html
http://www.tfd.chalmers.se/~lada/flow_viz.html
http://www.tfd.chalmers.se/~lada/flow_viz.html
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iv. At the end of the contraction, there is an adverse pressure gradient (∂p/∂x >
0). Explain why.
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H MTF270: Some properties of the pressure-strain term

I
N this Appendix we will investigate some properties of aijkℓ in Eq. 11.76 at p. 133.

Introduce the two-point correlation function

Bjℓ(r) = v′j(x)v
′

ℓ(x+ r)

Define the point x′ = x+ r so that

Bjℓ(r) = v′j(x
′ − r)v′ℓ(x

′) = v′ℓ(x
′)v′j(x

′ − r) = Bℓj(−r)

We get
∂Bjℓ(r)

∂ri
= −∂Bℓj(−r)

∂ri
⇒ ∂2Bjℓ(r)

∂rk∂ri
=
∂2Bℓj(−r)

∂rk∂ri
(H.1)

Since Eq. H.1 in the definition of aijkℓ in Eq. 11.76 is integrated over r3 covering both

r and −r (recall that v′ℓ and v′j are separated by r), aijkℓ is symmetric with respect to

index j and ℓ, i.e.

aijkℓ = aiℓkj (H.2)

Green’s third formula (it is derived from Gauss divergence law) reads

ϕ(x) = − 1

4π

∫

V

∇2ϕ

|y − x|dy
3 (H.3)

where the boundary integrals have been omitted. Setting ϕ = v′ℓv
′
j in Eq. H.3 gives

v′jv
′

ℓ = − 1

4π

∫

V

∂2v′ℓv
′
j

∂xi∂xi

dy3

|y − x| =
1

2
aijiℓ (H.4)

where the last equality is given by Equation 11.76.
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I MTF270: Galilean invariance

B
ELOW we repeat some of the details of the derivation given in [76]. Galilean invari-

ance means that the equations do not change if the coordinate system is moving

with a constant speed Vk . Let’s denote the moving coordinate system by ∗, i.e.

x∗k = xk + Vkt, t
∗ = t, v̄∗k = v̄k + Vk (I.1)

By differentiating a variable φ = φ(t∗, x∗i ) we get

∂φ(xi, t)

∂xk
=
∂x∗j
∂xk

∂φ

∂x∗j
+
∂t∗

∂xk

∂φ

∂t∗
=

∂φ

∂x∗k

∂φ(xi, t)

∂t
=
∂x∗k
∂t

∂φ

∂x∗k
+
∂t∗

∂t

∂φ

∂t∗
= Vk

∂φ

∂x∗k
+
∂φ

∂t∗
.

(I.2)

From Eq. I.2 is it easy to show that the Navier-Stokes (both with and without filter)

is Galilean invariant [76, 179]. Transforming the material derivative from the (t, xi)-
coordinate system to the (t∗, x∗i )-coordinate system gives

∂φ

∂t
+ vk

∂φ

∂xk
=
∂φ

∂t∗
+ Vk

∂φ

∂x∗k
+ (v∗k − Vk)

∂φ

∂x∗k

=
∂φ

∂t∗
+ v∗k

∂φ

∂x∗k
,

It shows that the left hand side does not depend on whether the coordinate system

moves or not, i.e. it is Galilean invariant.

Now, let’s look at the Leonard term and the cross term. Since the filtering operation

is Galilean invariant [76], we have v̄∗k = v̄k + Vk and consequently also v′′∗k = v′′k . For

the Leonard and the cross term we get (note that since Vi is constant Vi = V̄i = V̄i)

L∗

ij = v̄∗i v̄
∗
j − v̄∗i v̄

∗

j = (v̄i + Vi)(v̄j + Vj)− (v̄i + Vi)(v̄j + Vj)

= v̄iv̄j + v̄iVj + v̄jVi − v̄iv̄j − v̄iVj − Viv̄j

= v̄iv̄j − v̄iv̄j + Vj(v̄i − v̄i) + Vi(v̄j − v̄j)

= Lij − Vjv′′i − Viv′′j

C∗

ij = v̄∗i v
′′∗
j + v̄∗j v

′′∗
i = (v̄i + Vi)v′′j + (v̄j + Vj)v′′i =

= v̄iv′′j + v′′j Vi + v̄jv′′i + v′′i Vj = Cij + v′′j Vi + v′′i Vj

(I.3)

From Eq. I.3 we find that the Leonard term and the cross term are different in the two

coordinate systems, and thus the terms are not Galilean invariant. However, note that

the sum is, i.e.

L∗

ij + C∗

ij = Lij + Cij . (I.4)

The requirement for the Bardina model to be Galilean invariant is that the constant

must be one, cr = 1 (see Eq. 18.44). This is shown by transforming both the exact

Cij (Eq. 18.42) and the modelled one, CM
ij (i.e. Eq. 18.43). The exact form of Cij

transforms as in Eq. I.3. The Bardina term transforms as

C∗M
ij = cr(v̄

∗

i v̄
∗

j − v̄
∗

i v̄
∗

j )

= cr

[
(v̄i + Vi)(v̄j + Vj)− (v̄i + Vi)(v̄j + Vj)

]

= cr [v̄iv̄j − v̄iv̄j − (v̄i − v̄i)Vj − (v̄j − v̄j)Vi]

= CM
ij + cr

[
v′′iVj + v′′jVi

]
.

(I.5)
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As is seen, C∗M
ij 6= CM

ij , but here this does not matter, because provided cr = 1 the

modelled stress, CM
ij , transforms in the same way as the exact one, Cij . Thus, as for

the exact stress, Cij (see Eq. I.4), we have C∗M
ij +L∗

ij = CM
ij +Lij . Note that in order

to make the Bardina model Galilean invariant the Leonard stress must be computed

explicitly.
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J MTF270: Computation of wavenumber vector and

angles

F
OR each mode n, create random angles ϕn, αn and θn (see Figs. J.1 and 27.1) and

random phase ψn. The probability distributions are given in Table J.1. They are

chosen so as to give a uniform distribution over a spherical shell of the direction of the

wavenumber vector, see Fig. J.1.

J.1 The wavenumber vector, κn
j

x1

x2

x3

θn

ϕn

κni

dAi

Figure J.1: The probability of a randomly selected direction of a wave in wave-space

is the same for all dAi on the shell of a sphere.

Compute the wavenumber vector, κnj , using the angles in Section J according to

Fig. J.1, i.e.

κn1 = sin(θn) cos(ϕn)

κn2 = sin(θn) sin(ϕn)

κn3 = cos(θn)

(J.1)

p(ϕn) = 1/(2π) 0 ≤ ϕn ≤ 2π
p(ψn) = 1/(2π) 0 ≤ ψn ≤ 2π
p(θn) = 1/2 sin(θ) 0 ≤ θn ≤ π
p(αn) = 1/(2π) 0 ≤ αn ≤ 2π

Table J.1: Probability distributions of the random variables.
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κn

i
σn

i
αn

(1, 0, 0) (0, 0,−1) 0
(1, 0, 0) (0, 1, 0) 90

(0, 1, 0) (0, 0,−1) 0
(0, 1, 0) (−1, 0, 0) 90

(0, 0, 1) (0, 1, 0) 0
(0, 0, 1) (−1, 0, 0) 90

Table J.2: Examples of value of κni , σn
i and αn from Eqs. J.1 and J.4.

J.2 Unit vector σn
i

Continuity requires that the unit vector, σn
i , and κnj are orthogonal. This can be seen

by taking the divergence of Eq. 27.3 which gives

∇ · v′ = 2

N∑

n=1

ûn cos(κn · x+ ψn)σn · κn (J.2)

i.e.

σn
i κ

n
i = 0 (J.3)

(superscript n denotes Fourier mode n). Hence, σn
i will lie in a plane normal to the

vector κni , see Fig. 27.1. This gives

σn
1 = cos(ϕn) cos(θn) cos(αn)− sin(ϕn) sin(αn)

σn
2 = sin(ϕn) cos(θn) cos(αn) + cos(ϕn) sin(αn)

σn
3 = − sin(θn) cos(αn)

(J.4)

The direction of σn
i in this plane (the ξn1 − ξn2 plane) is randomly chosen through

αn. Table J.2 gives the direction of the two vectors in the case that κi is along one

coordinate direction and α = 0 and α = 90o.
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K MTF270: 1D and 3D energy spectra

T
HE general two-point correlation Bij of v′i and v′j (see Eq. 10.2) can be expressed

by the energy spectrum tensor as [69, Chapter 3] (see Eq. D.28a)

Bij(x1, x2, x3)) =

∫ +∞

−∞

Ψij(κ) exp(ıκmx̂m)dκ1dκ2dκ3 (K.1)

where x̂m and κm are the separation vector the two points and the wavenumber vector,

respectively. The complex Fourier transform exp(ıκmx̂m) is defined in Appendix D

(see Eq. 18.8). The two-point correlation, Bij , and the energy spectrum tensor, Ψij ,

form a Fourier-transform pair (see Eq. D.28b)

Ψij(κ) =
1

(2π)3

∫ +∞

−∞

Bij(x̂) exp(−ıκmrm)dx̂1dx̂2dx̂3 (K.2)

The separation between the two points is described by a general three-dimensional

vector, x̂m. Both in experiments and in LES it is usually sufficient to study the two-

point correlation and the energy spectra along a line. Hence, one-dimensional energy

spectra,Eij(κ), which are a function of scalar wavenumber, κ (κ1, κ2 or κ3), are often

used. They are formed by integrating over a wavenumber plane; the energy spectrum

for the wavenumber κ1, for example, reads

Eij(κ1) =
1

2

∫ +∞

−∞

Ψij(κ)dκ2dκ3 (K.3)

A factor of two is included because E ∝ Ψii/2 is used to define a energy spectrum

for the turbulent kinetic energy k = v′iv
′
i/2, see Eqs. K.8 and K.10. Note that the

maximum magnitude of the wavenumber vector contributing to Eij(κ1) is very large

since it includes all κ2 and κ3, i.e. −∞ < κ2 < ∞ and −∞ < κ3 < ∞. The

one-dimensional two-point correlation,Bij(x̂1), for example, and the one-dimensional

spectrum, Eij(κ1), form a Fourier-transform pair, i.e.

Bij(x̂1) =
1

2

∫ +∞

−∞

Eij(κ1) exp(ıκ1x̂1)dκ1 (K.4)

Eij(κ1) =
2

2π

∫ +∞

−∞

Bij(x̂1) exp(−ıκ1x̂1)dx̂1 (K.5)

where Eij is twice the Fourier transform of Bij because of the factor two in Eq. K.3.

The diagonal components of the two-point correlation tensor are real and symmetric

and hence the antisymmetric part of exp(−ıκ1x̂1) – i.e. the sinus part – is zero and

Eqs. K.4 and K.5 are simplified as

Bij(x̂1) =
1

2

∫ +∞

−∞

Eij(κ1) cos(κ1x̂1)dκ1 =

∫ ∞

0

Eij(κ1) cos(κ1x̂1)dκ1

Eij(κ1) =
1

π

∫ +∞

−∞

Bij(x̂1) cos(κ1x̂1)dx̂1 =
2

π

∫ +∞

0

Bij(x̂1) cos(κ1x̂1)dx̂1

(K.6)

for i = j. The Reynolds stress ρv′21 , for example, is equal to the two-point correlation

tensor ρBij with with zero separation distance. The v′21 can be computed both from the
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three-dimensional spectrum (Eq. K.1 ) and one-dimensional spectrum (Eq. K.6)

v′21 = B11(x1, 0, 0) =

∫ +∞

−∞

Ψ11(κ)dκ1dκ2dκ3

v′21 = B11(0) =

∫ ∞

0

E11(κ1)dκ1

(K.7)

Hence the turbulent kinetic energy, k = v′iv
′
i/2, an be written as

k =
1

2

∫ +∞

−∞

Ψii(κ)dκ1dκ2dκ3 (K.8)

k =
1

2

∫ ∞

0

E11(κ1)κ1 +
1

2

∫ ∞

0

E22(κ2)κ2 +
1

2

∫ ∞

0

E33(κ3)dκ3 (K.9)

The integral in Eq. K.8 has no directional dependence: it results in a scalar, k. Instead

of integrating over dκ1dκ2dκ3 we can integrate over a shell with radius κ = (κiκi)
1/2

and letting the radius go from zero to infinity, i.e.

k =
1

2

∫ ∞

0

4πκ2Ψiidκ (K.10)

where 4πκ2 is the surface area of the shell. We now define an energy spectrum,E(κ) =
2πκ2Ψii so that

k =

∫ κ

0

E(κ)dκ. (K.11)

The energy spectrumE11(κ1), for example, corresponds to the square of the Fourier

coefficient of the velocity fluctuation (see Parseval’s formula, Eq. D.4), i.e.

E11(κ1) = v̂21(κ1) (K.12)

Below the properties of the three energy spectra are summarized.

• The three-dimensional spectrum tensor, Ψij(κ), is a tensor which is a function

of the wavenumber vector.

• The one-dimensional spectrum, Eij(κ1), is a tensor which is a function of a

scalar (one component of κm).

• The energy spectrum, E(κ), is a scalar which is a function of the length of the

wavenumber vector, |κ| ≡ κ.

K.1 Energy spectra from two-point correlations

In connection to Eqs. K.4, K.5 and K.6 we stated that the one-dimensional energy spec-

tra and the two-point correlations form Fourier-transform pairs. The proof is given in

this section. The energy spectrum is given by the square of the Fourier coefficients, see

Parseval’s formula, Eq. D.4. Let û be the Fourier coefficient of the velocity fluctua-

tion u′ in the x direction which is periodic with period 2L. Take the covariance of the
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Fourier coefficients, û(κ′) and û(κ) where κ and κ′ denote two different wavenumbers

and x and x′ denote two points separated in the x directions so that

〈û(κ)û(κ′)〉 =
〈

1

2L

∫ L

−L

u(x) exp(−ıκx)dx 1

2L

∫ L

−L

u(x′) exp(−ıκ′x′)dx′
〉

=

〈
1

4L2

∫ L

−L

∫ L

−L

u(x)u(x′) exp(−ı(κx+ κ′x′)dxdx′

〉

(K.13)

where 〈·〉 denotes averaging over time; this equation corresponds to Eq. K.4 except the

factor of two. Since we are performing a Fourier transform in x we must assume that

this direction is homogeneous, i.e. all averaged turbulence quantities are independent

of x and the two-point correlation is not dependent of x (or x′) but only on the sepa-

ration distance x − x′, see discussion in connection to Eq. 10.6 on p. 111. Hence we

replace x′ by x+ x′′ so that

〈û(κ)û(κ′)〉 =
〈

1

4L2

∫ L

−L

(∫ L−x

−L−x

u(x)u(x+ x′′) exp(−ı(κx+ κ′(x+ x′′))dx′′

)
dx

〉

=

〈
1

2L

∫ L

−L

exp(−ı(κ+ κ′)x)

(
1

2L

∫ L−x

−L−x

B11(x
′′) exp(−ıκ′x′′))dx′′

)
dx

〉

(K.14)

The second integral (in parenthesis) is the Fourier transform (which corresponds to the

Fourier coefficient in discrete space, see Eq. D.28b) of the two-point correlation B11,

i.e.

〈û(κ)û(κ′)〉 =
〈
B̂11(x

′′)
1

2L

∫ L

−L

exp(−ı(κ+ κ′)x))dx

〉
(K.15)

where B̂11 denotes the Fourier transform of B11 (cf. K.5) and since it does not depend

on the spatial coordinate it has been moved out of the integral. Furthermore, B̂11 is real

and symmetric since B11 is real and symmetric. The remaining integral in Eq. K.15

includes trigonometric function with wavelengths κ and κ′. They are orthogonal func-

tions, see Appendix D, and the integral of these functions is zero unless κ = κ′. The

integral in Eq. K.15 for κ = κ′ is evaluated as (see “length of of ψk” in Appendix D,

Eq. D.13, and use ψ1 = cos(2πx/L))

(ψ1|ψ1) = ||ψ1||2 =

∫ L

−L

cos2
(
2πx

L

)
dx

=

[
x

2
+

L

8π
sin

(
4πx

L

)]L

−L

= L

(K.16)

In the same way, the “length of of φk” in Eq. D.16 is also L. Equation K.15 can now

be written

〈û(κ)û(κ)〉 = 1

2L
(L+ L)〈B̂11(x)〉 = 〈B̂11(x)〉 (K.17)

Hence, it is seen that the Fourier transform of a two-point correlation (in this example

〈B11(x1)〉) indeed gives the corresponding one-dimensional energy spectrum (in this

example E11(κ1) = 〈(û(κ))2〉).
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L MTF270, Assignment 1: Reynolds averaged Navier-

Stokes

L.1 Part I: Data of Two-dimensional flow

Y
OU can do the assignment on your own or in a group of two. It is recommended

(but the not required) that you use LATEX(an example of how to write in LATEXis

available on the course www page). It is available on Linux. On Windows you can use,

for example, Lyx (www.lyx.org) or MikTex (www.miktex.org) which are both

free to download.

You’ll use data from a coarse DNS. Although some of the data are probably not

fully accurate, in this exercise we consider the data to be exact. You will use Matlab.

You can also use Octave on Linux/Ubuntu. Octave is a Matlab clone which can be

downloaded for free. Use Matlab or Octave to read data files of the mean flow (v̄1, v̄2,

p̄) and turbulent quantities. (v′21 , v′22 , v′23 , v′1v
′
2, and ε). You will analyze one of the

following flows:

Case 1: Flow over a wavy wall (small wave) [180, 180]. Re = 10 000 (ν = 1 · 10−4,

ρ = 1) based on the bulk velocity in the channel at x = 0 and the channel height.

Case 2: Flow over a wavy wall (large wave) [180, 180]. Re = 10 000 (ν = 1 · 10−4,

ρ = 1) based on the bulk velocity in the channel at x = 0 and the channel height.

Case 3: Flow over a hill Re = 10 595 (ν = 1/10595, ρ = 1) based on the bulk velocity

in the channel at x = 0 and the channel height.

Case 4: Flow over two hills Re = 10 595 (ν = 1/10595, ρ = 1) based on the bulk

velocity in the channel at x = 0 and the channel height.

Periodic boundary conditions are imposed in streamwise (x1) and spanwise (x3)

directions in all flows.

The work should be carried out in groups of two (if you want to work on you own

that is also possible) . Contact the teacher to get a Case No. Download the data from

http://www.tfd.chalmers.se/˜lada/comp turb model. At the www-

page you can download a M-file (pl vect.m) which reads the data and plots the vec-

tor field and the pressure contours. You must also download the functiondphidx dy.m

which computes the gradients, see Section L.2. Make sure you put this function in the

directory where you execute pl vect.m.

The report, along with the Matlab files(s), should be submitted electronically at

the Student Portal www.student.portal.se; the deadline can be found at the

Student Portal.

L.1.1 Analysis

Study the flow. In which regions do you expect the turbulence to be important? Let’s

find out. The two-dimensional time-averaged Navier-Stokes for the x1 momentum

reads (the density is set to one, i.e. ρ = 1)

∂v̄1v̄1
∂x1

+
∂v̄1v̄2
∂x2

= − ∂p̄

∂x1
+ ν

∂2v̄1
∂x21

− ∂v′21
∂x1

+ ν
∂2v̄1
∂x22

− ∂v′1v
′
2

∂x2

∂v̄1v̄2
∂x1

+
∂v̄2v̄2
∂x2

= − ∂p̄

∂x2
+ ν

∂2v̄2
∂x21

− ∂v′1v
′
2

∂x1
+ ν

∂2v̄2
∂x22

− ∂v′22
∂x2

(L.1)
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Recall that all the terms on the right-hand side represent x1 components of forces per

unit volume.

L.1.2 The momentum equations

The file pl vect.m loads the data file and plots the profiles of v′21 at some x stations,

the velocity vector field and a contour plot of velocity gradient ∂v̄1/∂x2. Compute

all terms in Eq. L.1. You will need to compute the derivatives of e.g. v̄1 and p̄. In

pl vect.m the function dphidx dy.m is used to compute ∂v̄1/∂x1 and ∂v̄1/∂x2.

Use this function to compute all derivatives that you need. Find two (or more) x1
locations (vertical grid lines) where the v′21 stress is large and small, respectively. One

way to find these locations is to use the Matlab surf command.

Assignment 1.1. Plot the stresses along vertical grid lines at these two locations using the Matlab

command plot(x,y). Please make sure that in your report the numbering on

the axis and the text in the legend is large enough; you can use the command

h1=gca;

set(h1,’fontsize’,[20]) %the number ’20’ gives the fontsize

The size of the labels and the title is similarly controlled by

xlabel(’x/H’,’fontsize’,[20])

ylabel(’y/H’,’fontsize’,[20])

title(’velocity’,’fontsize’,[20])

Assignment 1.2. Plot also all terms in Eq. L.1 (see Fig. 6.6). To enhance readability you may omit

the small terms or use two plots per vertical grid line. Make also a zoom near the

walls. For example, for a x− y plot

plot(u,y,’linew’,2) % linewidth=2

you may want to zoom in on y=[0 0.01] andu=[-0.1 0.4]; this is achieved

by

axis([-0.1 0.4 0 0.01])

The ’axis’ command can be used together with any plot, e.g. with ’surf’ and

’quiver’.

Which terms are negligible? Can you explain why they are negligible?

What about the viscous terms: where do they play an important role? Which

terms are non-zero at the wall? (you can easily show that with paper and pen).

So far we have looked at the v̄1-momentum equation. The database corresponds

to a two-dimensional flow. Now let’s think of the forces as vectors. The gradient

of the normal stresses in the x1−x2 plane represent the force vector (see Eq. L.1)

FN =

(
−∂v

′2
1

∂x1
,−∂v

′2
2

∂x2

)
(L.2)
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and the corresponding force vector due to the shear stresses reads (see Eq. L.1)

FS =

(
−∂v

′
1v

′
2

∂x2
,−∂v

′
1v

′
2

∂x1

)
(L.3)

Find the first term in Eqs. L.2 and L.3 in the v̄1 momentum equation, Eq. L.1.

Write out the momentum equation also for v̄2 and find the other two terms in

Eqs. L.2 and L.3. Note that FN and FS are forces per unit volume ([N/m3]).

Assignment 1.3. The left-hand side can be formulated in three different ways (steady flow), dv̄i/dt,
v̄j∂v̄i/∂xj and ∂/∂xj(v̄iv̄j), see Section 2.4. Consider the first form, dv̄i/dt.
This is the Lagrangian form, i.e. we follow a particle, see Fig. 1.1. Now, pick a

vertical grid line at x1 and try to estimate dv̄1/dt. Then you want to estimate v1,

∆t seconds later. During this time the fluid particle has moved the vector dis-

tance (∆x1,∆x2) to the next vertical grid line with the speed V = (v21 + v22)
1/2

so that ∆t = ∆s/V where ∆s = ((∆x1)
2 + (∆x2)

2)1/2

Compare this way of computing the left-hand side with ∂/∂xj(v̄1v̄j).

Note that we have now estimated dv̄1/dt using the the discrete approximation of

the chain rule in Eq. 1.1, i.e.

dv̄1
dt

≃ ∆v̄1
∆t

= V
∆v̄1
∆s

≃ v̄1
∂v̄1
∂x1

+ v̄1
∂v̄1
∂x1

(L.4)

Assignment 1.4. Plot the vector field FN to learn something about its properties. When v′22
reaches a maximum or a minimum along a grid line normal to the wall, what

happens with the vector field FN? Zoom-in on interesting regions.

Assignment 1.5. Plot also vector fields of the shear stress, FS (see Eq. L.3), the pressure gradient

and the viscous terms. Zoom up in interesting regions. Anything interesting?

L.1.3 The turbulent kinetic energy equation

The exact transport equation for the turbulent kinetic energy, k, reads

∂

∂xj
(v̄jk) = ν

∂2k

∂xj∂xj
+ P k +Dk − ε

P k = −v′iv′j
∂v̄i
∂xj

(L.5)

Assignment 1.6. Plot the production term along the two grid lines (see Fig. 8.3). Explain why

it is large at some locations and small at others. The production term consists

of the sum of four terms, two of which involve the shear stress while the other

include the normal stresses. Compare the contributions due the shear stress and

the normal stresses.

Assignment 1.7. Plot the dissipation and compare it with the production. Do you have local equi-

librium (i.e. P k ≃ ε) anywhere?
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L.1.4 The Reynolds stress equations

The modeled transport equation for the Reynolds stresses can be written as

∂

∂xk

(
v̄kv′iv

′
j

)
= ν

∂2v′iv
′
j

∂xk∂xk
+ Pij +Φij +Dij − εij

Pij = −v′iv′k
∂v̄j
∂xk

− v′jv
′

k

∂v̄i
∂xk

(L.6)

The pressure-strain term, Φij , and the diffusion term, Dij , need to be modeled. Here

we use the models in Eqs. 11.90, 11.56, 11.89, 11.94 and 11.95.

1. In the damping function, f (see Eq. 11.91), |ni,w(xi−xi,w)| denotes the distance

to the nearest wall. If, for example, a lower wall is the closest wall to node (I, J),
then

|xi − xi,n| =
{
(x(I, J)− x(I, 1))2 + (y(I, J)− y(I, 1))2

}1/2
(L.7)

Note that you have to search through all wall nodes to find which wall node gives

the smallest value. The damping function, f , involves k and ε. These should be

taken from the 2D RANS simulation (they are loaded in pl vect.m).

2. If we assume, again, that the lower wall is the closest wall to cell (I, J) and that

the lower wall is horizontal, then ni,w = (0, 1). To compute ni,w for the general

case (see Eqs. 11.94 and 11.95), compute first the vector which is parallel to the

wall, si,w, and compute then ni,w from si,w (see Eq. L.12)

3. The diffusion terms Dij and Dε can be modeled using the Generalized Gradient

Diffusion Hypothesis GGDH of [181]

Dij =
∂

∂xm

(
cukum

k

ε

∂v′iv
′
j

∂xk

)
(L.8)

This diffusion model can cause numerical problems, and the GGDH is then re-

placed by a simple eddy viscosity model

Dij =
∂

∂xm

(
νt
σk

∂v′iv
′
j

∂xm

)
, νt = Cµk

2/ε (L.9)

The following constants should be used:

(cµ, c1, c2, c1w, c2w, σk) = (0.09, 1.5, 0.6, 0.5, 0.3, 1)

Assignment 1.8. Choose two stresses. Plot the different terms in the equations for one vertical

grid line fairly close to the inlet (not too close!), compare Fig. 9.1. Use the

simple eddy viscosity model for the turbulent diffusion term. Use k and ε from

the 2D RANS simulation. If the figure becomes too crowdy, use two plots per

vertical grid line or simply omit terms that are negligible. Try to explain why

some terms are large and vice versa. Usually, a stress is large in locations where

its production (or pressure-strain) term is large. Is that the case for you?

Assignment 1.9. Compute the stresses using the Boussinesq assumption, i.e v′iv
′
j = −2νts̄ij +

(2k/3)δij where νt = cµk
2/ε. Use k and ε from the 2D RANS simulation.

Compare the eddy-viscosity stresses with two of the Reynolds stresses from the

database. Make also a zoom-in near walls.
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When using the Boussinesq assumption the production of turbulent kinetic energy

(use k and ε from the 2D RANS simulation)

P k = 2νts̄ij s̄ij (L.10)

is always positive. The exact production of turbulent kinetic energy (see Eq. L.5) is

usually positive. It can however become negative.

Assignment 1.10. Compute the exact production in Eq. L.5 in the entire domain to investigate if the

production is negative anywhere. If so, explain why (for physical explanation,

see Item II at p. 93).

The reason why the eddy-viscosity production in Eq. L.10 must be positive is that

neither νt nor s̄ij s̄ij can go negative. Another way to explain this fact is that the

modeled Reynolds stress, v′iv
′
j , and the strain rate tensor, s̄ij are parallel. To find out to

what degree the exact Reynolds stress and the strain rate are parallel, one can compute

the eigenvectors.

Assignment 1.11. Compute the eigenvalues and eigenvectors of the strain rate tensor, s̄ij . The

eigenvalues correspond to the normal strain rate in the direction of the eigenvec-

tors (see Section 13). If the shear strain rates (i.e. the off-diagonal components)

dominate, you will get eigenvectors in the direction (±1,±1) and if the normal

strain rates (i.e. the diagonal components) dominate the direction of the eigen-

vectors will be along the x1 and x2 axes (explain why!). Plot the eigenvectors

as a vector field. Our flow is 2D; thus we get two eigenvectors and two eigen-

values. Since the two eigenvectors are perpendicular to each other it is sufficient

to plot one of them (for example, the eigenvectors (1, 1), (−1, 1), (−1,−1) and

(1,−1), all represent the same principal coordinate system). Zoom in on in-

teresting regions. Make also a comparison of eigenvectors and eigenvalues in

fully-developed channel flow. On the www page you download RANS and DNS

channel data.

Assignment 1.12. Compute the eigenvalues and eigenvectors of the Reynolds stresses, v′iv
′
j . The

eigenvalues correspond to the normal stresses in the direction of the eigenvectors.

Zoom in on interesting regions. In which regions differ the eigenvectors of the

Reynolds stress tensor and those of the strain rate tensor most? This should

indicate regions in which an eddy-viscosity model would perform poorly. Zoom

in on interesting regions.

L.2 Compute derivatives on a curvi-linear mesh

In this section we describe how the derivatives on a curvi-linear grid are computed

in the provided Matlab function dphidx dy.m. On a Cartesian grid it is more con-

venient to use the built-in Matlab function gradient, but the approach used below

works for all meshes, including Cartesian ones.

The data you have been given, x1 and x2 and all variables, are stored at the grid

points, i.e. at (x1,sw , x2,sw), (x1,se, x2,se), (x1,nw, x2,nw) and (x1,ne, x2,ne). When

you need a variable, say v1, at the center of the cell, compute it as

v1,P =
1

4
(v1,sw + v1,se + v1,nw + v1,ne) (L.11)
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P
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ne

ne = (n1e, n2e)

se = (s1e, s2e)

se

nw

sw

Figure L.1: Control volume. The velocity v1 is stored at the corners (ne, nw, . . . ).

Coordinates x1, x2 are given at the corners (ne, nw, ...).

Let’s compute ∂v1/∂x1. In order to do that we use Gauss’ law over a control

volume centered at face e (dashed control volume in Fig. L.1). The divergence theorem

for a scalar, φ, reads ∫

V

∂φ

∂xi
dV =

∫

A

φnidA

To compute ∂v1/∂x1 we set φ = v1 and i = 1 which gives

∫

V

∂v1
∂x1

dV =

∫

A

v1n1dA

Assuming that ∂v1/∂x1 is constant in the volume V we obtain

∂v1
∂x1

=
1

V

∫

A

v1n1dA

In discrete form we can write (see Fig. L.1)

(
∂v1
∂x1

)
=

1

V

∑

i=e,n,w,w

(v1n1A)i =

1

V
{(v1An1)e + (v1An1)n + (v1An1)w + (v1An1)s}
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L.2.1 Geometrical quantities

It is useful to first compute the unit vectors s along the control volume. For the east

face, for example, we get

s1e =
x1,ne − x1,se

de

s2e =
x2,ne − x2,se

de

de =
√
(x1,ne − x1,se)2 + (x2,ne − x2,se)2

(note that the area of the east face Ae is equal to de since ∆z = 1). The relation

between the normal vector n, s and the unit vector in the z-direction

s · n = 0

s× ẑ = n,

gives us the normal vector for the east face as

n1e = s2e

n2e = −s1e.
(L.12)

L.3 Part II: StarCCM+

In this task, a commercial CFD software (StarCCM+ 11.02.009) will be used. The

task is to do simulation of an asymmetric diffuser. Several turbulence models will be

used and the results will be compared with experimental data. Before doing the task,

it is recommended to first do one of the tutorials in the StarCCM+. The tutorial is the

steady backward facing step tutorial. The tutorials can be found in the StarCCM+ user

guide.

L.3.1 Backward Facing Step Tutorial

This tutorial is a good bridge before doing the asymmetric diffuser case. Here are some

steps to access the tutorial:

1. Open a terminal window. In the terminal window, type starccm+

2. To start a new simulation, click File → new simulation

3. Tick the Power-On-Demand box and fill the license box with POD code

4. Download the tutorial instruction and data from the course homepage

Assignment 1.13. Continue to work on the backward facing step flow. Choose a new turbulence

model (right click on Continua/Fluid and select Select models ....

Untick All y+ Wall treatment and then untick the turbulence model.

Now you can choose a new turbulence model. Run a couple different turbulence

model and compare the results. A short recirculation region is usually connected

to high turbulence in the shear layer bounding the recirculation region.
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Assignment 1.14. Compare the turbulence levels in the shear layer for different turbulence models.

How much larger is the turbulence in the shear layer compared to the flow in the

boundary layer upstream of the step? How large is the turbulence intensities in

the two regions. Plot the turbulence production, P k. Do this by going to the

solvers folder, segregated flow and tick Temporary Storage Retained

Run one iteration to create the date and then open a Scalar Scene and plot the

turbulence production. Make other interesting comparisons!

L.3.2 Asymmetric diffuser case

In this case 2D Asymmetric diffuser will be studied. The Reynolds number (Re =

20000) is based on the bulk velocity and the inlet channel height. The case is built

based on these references. It is highly recommended to read these references before

doing the case :

1. Ercoftac case 8.2: Flow through an asymmetric plane diffuser

Ercoftac database.

2. El-Behery & Hamed [182]

3. Buice & Eaton [183]

4. Davidson [146].

L.3.3 Brief instruction to begin the asymmetric diffuser case

1. Start the StarCCM+

• Open a terminal window → type StarCCM+

2. Create a new simulation

• Click the new simulation icon → tick the power on demand box

• Fill the license box with the POD license

3. Draw the geometry

• Follow and modify the geometry in the ercoftac case 8.2

• Create a new 3D-CAD Models

• Create a new sketch on XY plane

• Start by drawing the asymmetric diffuser without the radius

• Right click on each lines and apply vertical / horizontal constraint accord-

ingly

• Set the diffuser angle to 10 degree

• Set the length of each lines. Use H = 1 m. Length of the inlet = 60H.

Length of the diffuser = 21H. Length of the outlet = 22H. Do not need to

set the height of the outlet.

• Create a fillet on the beginning and end of the diffuser line. (R = 9.7H)

• Set your base point (which is the point where the channel start to bend) at

X = 0 and Y = 3.7 m

http://www.ercoftac.org/fileadmin/user_upload/bigfiles/sig15/database/8.2/
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• Extrude the sketch 1 m for easier renaming

• Rename the faces accordingly (inlet, outlet, top, bottom, leftside, rightside)

4. Create a new geometry part. (The same way as in backward facing step tutorial)

5. Assign parts to regions. (The same way as in backward facing step tutorial)

6. Set the boundary condition accordingly. Inlet = velocity inlet; Outlet = pressure

outlet; leftside = symmetry plane; rightside = symmetry plane.

7. Create directed mesh

• Right click on the operation → new → directed mesh → body1 → OK

• Expand operations → Right click on the directed mesh → edit

• Add rightSide as a source surfaces and leftSide as target surfaces

• Right click on source meshes → new source mesh → patch mesh → body1

→ OK

• Click auto populate feature edges icon

• Change the mode from patch topology into patch mesh

• Click the inlet line

– Number of divisions = 80

– Type = two sided hyperbolic

– Spacing start and end = 3e-4 m

• Click the top line

– Number of divisions = 421

– Type = constant

• Right click on the mesh distributions → create new volume distribution.

Set the number of layers = 2

• Close the directed mesh and execute the directed mesh

8. Create 2D Mesh

• Go to Menu bar → Mesh → Convert to 2D → Delete 3D regions after

conversion → OK

9. Select turbulence model

• Right click on Physics 1 2D → Select model

• In the new window select:

(a) Untick the auto-select recommended models

(b) Two dimensional

(c) Steady

(d) Gas

(e) Segregated flow

(f) Constant Density

(g) Turbulent

(h) Reynolds-Averaged Navier-Stokes
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(i) Choose turbulence model that you want to use.

10. Set the Gas properties

• Expand Physics 1 folder → Gas → Air → Material Properties → Dynamic

Viscosity → Constant → Value = 6E − 5Pa− s

11. Set the boundary condition

• Go to Regions.

• In the properties window, check that mesh continuum is parts meshes.

Check that physics continuum is physics 1 2D

• Expand Body 1 2D → Boundaries → Inlet

(a) Physics Conditions → Velocity Specification → Method → Compo-

nents

(b) Physics Values → Velocity → value → [1,0,0] m/s

12. Extract more data from the simulation (for example: Turbulent kinetic energy

production)

• Expand Solvers folder → go to every subfolder and tick temporary storage

retained if you find one

13. Set the stopping criteria

• For Reynolds Stress Model, use the default setting of the stopping criteria

• For the rest of the model use instruction below

• Disabled the maximum iteration criteria

• Create new stopping criteria

(a) Right click on the Report folder → go to New Report → click Pressure

Drop

(b) In the Pressure Drop 1 properties window. High Pressure = Outlet.

Low Pressure = Inlet.

• Right click on the Pressure Drop 1 → click on create monitor and plot from

report

• Right click on the Stopping criteria folder →choose create new criterion →
create from monitor → click on Pressure Drop 1 monitor

• In the Pressure Drop 1 Monitor criterion properties window

(a) Criterion option = Asymptotic

(b) Click on Asymptotic limit

• set [max-min] value = 1E − 4→ Number of samples = 100

14. Create a scalar scene to show the result

• Go to Scenes folder → New Scene → Scalar

• Right click on the select function → select velocity [i]

15. Create planes to extract the results at the same location as the experimental data
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• Right click on Derived Parts folder → New Part → Section → Plane

• Input Parts → Select → All the region

• Set normal → x = 1, y = 0, z = 0

• Display → New Geometry Displayer

• Specify the x-coordinate according to the experimental data (see below)

• Click Apply for each of the x-coordinate

(a) X − 6 = −5.87m

(b) X03 = 2.59m

(c) X06 = 5.98m

(d) X14 = 13.56m

(e) X17 = 16.93m

(f) X20 = 20.32m

(g) X24 = 23.71m

(h) X27 = 27.09m

(i) X30 = 30.48m

(j) X34 = 33.87m

16. Create the X-Y plot to monitor the result

• Right click on Plots folder → choose New Plot → click on X-Y Plot

• On the new X-Y Plot properties window, go to Parts → select all the derived

parts

• Expand the X-Y Plot 1

(a) X-type → Type = Scalar → Scalar Function → Field Function = Ve-

locity[i]

(b) Y-types → Y Type 1

– Type = Direction; smooth values

– Vector Quantity → Value = [0,1,0]

– Go to each Plane Section and change the X Offset accordingly

17. Insert experimental data

• Download the experimental data from the course homepage

• Expand Tools folder

• Right click on Tables folder → choose Create a New Table → click File

Table → Load all the experimental data

• Go back to X-Y plot 1 monitor → right click on Data Series folder → Add

Data → Select all the experimental data

• Expand Data series folder → select all the experimental data by click the

first data hold shift button and click the last data → right click on the high-

lighted area → click swap column

18. Run the simulation

• Go to Solution → Run
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• Other method: click icon which show a running man.

19. Collecting the simulation data

• After the simulation has reached its stopping criteria → Right click on XY

plot 1 → Export → Save with appropriate name

• Add the simulation data to other simulation as you add experimental data

Assignment 1.14. Look at the results. How large is the pressure recovery (i.e. how much does the

pressure increase from inlet to outlet).

Assignment 1.15. Choose a new turbulence model Run the same turbulence models as for the back-

step case and compare the results. Are the results different? Where do the differ-

ence appear? In the plane channel upstream of the diffuser? Compare turbulent

quantities such a k and νt (or if you chose to use a Reynolds stress model, com-

pare the shear stresses v′1v
′
2. If the recirculation region is different, the reason

is maybe connected to the turbulence level in the shear layer above the recir-

culation region. Or maybe the reason is that the incoming boundary layers are

different. In the backstep flow, you found that one turbulence model was better

than the other one(s). Is the same turbulence model best for this flow? Make

other interesting comparisons!
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M MTF270, Assignment 2: LES

Y
OU can do the assignment on your own or in a group of two. You will receive

data from a DNS of fully developed flow in a channel. It is recommended (but

not required) that you use LATEX(an example of how to write in LATEXis available on

the course www page). It is available on Linux. On Windows you can use, for exam-

ple, Lyx (www.lyx.org) or MikTex (www.miktex.org) which are both free to

download.

The equations that have been solved are

∂vi
∂xi

= 0

∂vi
∂t

+
∂

∂xj
(vivj) = δi1 −

∂p

∂xi
+

1

Reτ

∂2vi
∂xj∂xj

(M.1)

The Re number based on the friction velocity and the half channel width is Reτ =
uτh/ν = 500 (h = ρ = uτ = 1 so that ν = 1/Reτ ).

A 96 × 96 × 96 mesh has been used. The streamwise, wall-normal and spanwise

directions are denoted by x (x1), y (x2) and z (x3) respectively. The cell size in x and

z directions are ∆x = 0.0654 and ∆z = 0.0164. Periodic boundary conditions were

applied in the x and z direction (homogeneous directions). The size of the domain is

(L, h, Zmax) in (x, y, z), see Fig.M.1.

M.1 Time history

At the www-page

http://www.tfd.chalmers.se/˜lada/comp turb model/

you find a file u v time 4nodes.dat with the time history of u and v. The file has

eight columns of u and v at four nodes: y/δ = 0.0039, y/δ = 0.0176, y/δ = 0.107
and y/δ = 0.47. With uτ = 1 and ν = 1/Reτ = 1/500 this correspond to y+ = 1.95,

y+ = 8.8, y+ = 53.5 and y+ = 235. The sampling time step is 0.0033 (every second

time step).

Use Matlab or Octave. Octave is a Matlab clone which can be downloaded for free.

Download the Matlab/Octave program pl time.m which loads and plots the time

history of u. Run the program pl time.m. Recall that the velocities have been scaled

with the friction velocity uτ , and thus what you see is really u/uτ . The time history

of u at y/δ = 0.0176 and y/δ = 0.107 are shown. Study the time history of the blue

line (y/δ = 0.0176) in greater detail. Make a zoom between, for example, t = 10 and

t = 11 and umin = 3 and umin = 21. This is conveniently done with the command

axis([10 11 3 21])

In order to see the value at each sampling time step, change the plot command to

plot(t,u2,’b-o’)

Use this technique to zoom and to look at the details of the time history. Alterna-

tively, you can use the zoom buttons above the figure.

Plot u for all four nodes. How does the time variation of u vary for different posi-

tions? Why? Plot also v at the four different positions. What is the difference between

u and v?

http://www.tfd.chalmers.se/~lada/comp_turb_model/
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M.2 Time averaging

Compute the average of the u velocity at node 2. Add the following code (before the

plotting section)

umean=mean(u2)

Here the number of samples is n = 5000 (the entire u2 array). Find out how many

samples must be used to get a correct mean value. Start by trying with 100 samples as

umean_100=mean(u2(1:100))

Do the same exercise for the other three nodes.

M.3 Auto correlation

Auto correlation is defined in Section 10.2. Compute the autocorrelation for u′ at Node

1 using the Matlab command

imax=500;

two_uu_1_mat=autocorr(u1,imax);

where we set the maximum separation in time to imax = 500 (i.e. we carry out the

integration in Eq. 10.11 not to infinity, but to imax · ∆t). Note that the autocorr

command returns the normalized autocorrelation, i.e. Bnorm
11 , see Eq. 10.10. Plot the

autocorrelation as

plot(t(1:imax),two_uu_1_mat(1:imax),’linew’,2)

xlabel(’t’)

ylabel(’$B_{11}ˆ{norm}$’,’Interpreter’,’latex’)

handle=gca

set(handle,’fontsi’,[20])

Compute the integral time scale Tint as

dt=t(1);

int_T_1=trapz(two_uu_1_mat)*dt;

Plot the normalized autocorrelation and compute the integral time scales also for

the other three points. Where is Tint large and small, respectively? Try to explain why.

In Section M.2 you time averaged the velocities to get the mean value. You in-

vestigated how few samples you could use. In reality it is not only the number of

samples that is relevant, but also that they are independent. To find out if two samples

are independent, it is convenient to use the integral time scale, Tint. If the samples

are separated by Tint seconds they are independent. Hence, re-do the averaging you

did in Section M.2 but use samples every Tint second. The theoretical estimate of the

statistical error varies with number of independent samples, N , as

error =
1√
N

v1,rms

〈v1〉
(M.2)

We see that the statistical error decreases as N−1/2, provided that the samples are

independent.
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Let us use Taylor’s frozen turbulence hypothesis to compute the integral length

scale. This hypothesis assumes that – if the turbulence level is not too strong – the

velocity fluctuation at point x and time t is the same as that at time (t − τ) at point

(x−ξ) where τ = (x−ξ)/〈u〉 (it takes time τ for the particle to travel from point (x−ξ)
to point x with a velocity 〈u〉). The hypothesis assumes that the turbulence is frozen

between point (x − ξ) and x. When we want to find the velocity fluctuation at point

(x− ξ) at time (t− τ) we can instead take it at point x at time t. The Taylor hypothesis

makes it possible to compute the integral lengthscale from the integral timescale as (see

Eq. 10.12)

Lint = 〈u〉
∫ ∞

0

Bnorm
11 (t̂)dt̂ = 〈u〉Tint (M.3)

Compute the integral lengthscale.

M.4 Probability density/histogram

Histogram (also called probability density function, PDF) can give additional useful

information, see Section 7. With a probability density, fv, of the v velocity, the mean

velocity is computed as

〈v〉 =
∫ ∞

−∞

vfv(v)dv (M.4)

Normalize the probability density function so that

∫ ∞

−∞

fv(v)dv = 1 (M.5)

Here we integrate over v. The mean velocity can of course also be computed by

integrating over time, as we do when we define a time average. Compute the PDF as

u3_fluct=u3-mean(u3);

[pdf3 u3_pdf]= hist(u3_fluct,20)

Here we have divided u3 into 20 bins which span the variation of u3, i.e. [min(u3),max(u3)].
The variable pdf3 is a vector of length 20 whose elements gives the number of samples

in each bin. Plot the histogram as

norm3=sum(pdf3)*(u3_pdf(2)-u3_pdf(1));

plot(u3_pdf,pdf3/norm3,’linew’,2)

xlabel(’u3’)

ylabel(’PDF’)

handle=gca

set(handle,’fontsi’,[20])

where norm3 is the integral in Eq. 7.3. You find that the PDF is rather symmetric.

Compute and plot the PDFs of the points close to the wall and you will find that they

are more skewed. Skewness, S, is a variable that quantify the skewness and it is defined

as

Sv′ =
1

v3rms

∫ ∞

−∞

v′3fv′(v′)dv′

Compute it as
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urms3=std(u3_fluct);

S=mean(u3_fluct.ˆ3)/urms3ˆ3;

where urms3 = 〈u′2〉1/2 at Node 3. Verify that the magnitude of S is large close to

the wall. What does a negative skewness mean physically? (cf. Fig. 7.2) Do you have

any explanation why the skewness increases as we go closer to the wall?

M.5 Frequency spectrum

One way to verify that the LES you have performed resolves the turbulence properly,

is to look at the spectra of the resolved turbulence. One can analyze the time history of

a variable at a point. You do a FFT of that signal to get the Fourier coefficients ai and

then plot a2i . Then you get the frequency spectrum, i.e. how much energy resides in

each frequency. The other way to do it is to look at the instantaneous velocity along a

grid line, and do a FFT of that signal. Then you get the energy spectrum as a function

of the wave number, i.e. the inverse of the wave length. In this case you must average

over many instants to get a reasonably smooth spectrum.

The Matlab file pl spectrum.m does a FFT of the time history of fluctuating

velocity, u′, (u = 〈u〉+ u′) and plots a2i . The same data file as in the previous exercise

is used (u v time 4nodes.dat). It uses the Matlab function pwelch. Run the

program by typing

pl spectrum

As we mentioned in the Lecture Notes, in a well-resolved LES we want to have the

cut-off in the inertial subrange where the kinetic energy decays as the wave number (or

frequency) up to the power of −5/3. Thus we want the resolved turbulence to have

a behaviour like this for high frequencies. As you can see from the plot, this is the

case. Actually, you find that for even higher frequencies the kinetic energy decays even

faster. The decay at high frequencies occurs because in the LES which produced the

data we over-resolve in time compared to the resolution in space. This is usually the

case when the maximum CFL number (Courant-Friedrichs-Lewy condition) is set to

one, since CFL in many points is much smaller than one (CFL=1 in one cell means that

a fluid particle is transported across that cell during one time step). Investigate this by

using only, say, every 4th of the samples, i.e.

% 4*dt

m=4;

i=1:m:n;

dt=m*t(1);

[px_L,f_L]=pwelch(u4(i),nmax,[],[],1/dt);

plot(f_L,px_L,’k-’,’linew’,2)

Now you find that the spectrum became much more irrgular. The reason is that

pwelch chops the time history into nmax pieces, makes an FFT and then averages

the FFT:s. Since we are now only using every 4th sample, the time signal is only

5000/4 = 1250 samples, which means that no averaging is done. Decrease nmax to

256 and do it again. Has the region in which the energy spectrum decays fast vanished?

If not, use even coarser sampling (set m=8). You may note that the low region of the

frequency spectrum is also modified. The reason is that when we increase nmax the

time series on which pwelch makes FFT on has a larger total time, T , and the lowest

frequence is proportional to 1/T .

Plot the spectra for the three other points (make changes in pl spectrum.m).
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Figure M.1: Channel domain.

It should be mentioned that spectra may not be a reliable measure of resolution [113,

114]. Two-point correlations are usually better.

M.6 Resolved stresses

At the www-page (http://www.tfd.chalmers.se/˜lada/comp turb model)

you find data files with three instantaneous flow fields (statistically independent). The

data files include the instantaneous variables u (v1), v (v2), w (v3)and p (made non-

dimensional by uτ and ρ). You find a Matlab/Octave program at the www-page which

reads the data and computes the mean velocity. The data files are Matlab binary files.

Since the data files are rather large, it is recommended that you do all tasks using only

data files ’1’. When everything works, then use also data files ’2’ and ’3’ averaging by

use of the three files.

We decompose the instantaneous variables in time-averaged and fluctuating quan-

tities as

vi = 〈vi〉+ v′i, p = 〈p〉+ p′

The symbol 〈.〉 denotes averaging in the homogeneous directions x and z. Note that

in reality 〈.〉 always denote time averaging. It is only in this special academic test case
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where we have three homogeneous directions (x, z, t) where we can – in addition to

time averaging – also can use x and z averaging. Compute the six stresses of the stress

tensor, 〈v′iv′j〉. Use the definition to compute the stresses, for example

〈v′1v′2〉 = 〈(v1 − 〈v1〉) (v2 − 〈v2〉)〉
= 〈v1v2〉 − 〈v1〈v2〉〉 − 〈v2〈v1〉〉+ 〈〈v1〉〈v2〉〉
= 〈v1v2〉 − 2〈v1〉〈v2〉+ 〈v1〉〈v2〉 = 〈v1v2〉 − 〈v1〉〈v2〉.

(M.6)

Wait with analysis of the results until you have done next part.

M.7 Resolved production and pressure-strain

Compute the production term and the pressure-strain terms

P k = −〈v′1v′2〉
∂〈v1〉
∂y

P11 = −2〈v′1v′2〉
∂〈v1〉
∂y

P12 = −〈v′2v′2〉
∂〈v1〉
∂y

Φ11 = 2

〈
p′
∂v′1
∂x

〉

Φ12 =

〈
p′
∂v′1
∂y

〉
+

〈
p′
∂v′2
∂x

〉

Φ22 = 2

〈
p′
∂v′2
∂y

〉

Do the production terms and the pressure-strain term appear as you had expected? (see

the previous course TME225).

Now analyze the fluctuations in the previous subsection. Which stresses do you

think are symmetric with respect to the centerline? or anti-symmetric? What’s the

reason?

When averaging, we use only three time steps (three files). If we would use many

more time steps – or, in general, if we let T → ∞ when time averaging, e.g.

〈φ〉 = lim
T→∞

1

2T

∫ +T

−T

φdt

then some of the stresses would be identical zero (now they are small): which ones?

Why?

M.8 Filtering

Plot v1 and v2 along x1 at two different x2 values at x3 = x3,max/2.

1. Filter v1 and v2 to get v̄1 and v̄2 using a 1D box-filter (in the x1 direction) with

filter width ∆ = 2∆x1 (this corresponds to a test filter, see Eq. 18.28). Compare

v̄1 and v̄2 with v1 and v2.
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Figure M.2: Spectrum with cut-off.

2. Do the same thing again but with a filter width of ∆ = 4∆x1 (now you must

derive the expression on your own!). Discuss the differences between no filter,

∆ = 2∆x1 and ∆ = 4∆x1.

In LES we almost always assume that the filter width is equal to the control volume

(i.e. we use an implicit filter). Above, in Item 1 and 2 you have just carried out explicit

filtering. This type of filtering is used in the scale-similarity model, see Section 18.15.

Repeat Item 1, but now for a 2D filter (x1 and x3 direction); the formula for a 3D

filter is given in Eq. 18.32. Compare the results along the same lines as in Item 1 and

2.

M.9 SGS stresses: Smagorinsky model

Compute the SGS stress τ12 from the Smagorinsky model, which reads

τij = −2νsgss̄ij , νsgs = (Csfµ∆)
2√

2s̄ij s̄ij

s̄ij =
1

2

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)

fµ = 1− exp(−x+2 /26)

(M.7)

The filtered velocities, v̄i, are taken from Section M.8 using the 2D filter (in x1 and

x3); we should really have used a 3D filter, but in order to keep it simple, we use the

2D filter. The constant Cs = 0.1.

As an alternative to the damping function, fµ, one can compute the filter length as

∆ = min{κn,∆} (M.8)

where n is the distance to the nearest wall and κ = 0.4 (von Kàrmàn constant). In this

case you should set fµ = 1.
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Compare the SGS stress 〈τ12〉 with the resolved stress 〈u′v′〉 and compare the SGS

viscosity with the physical one. Use wall damping both according to Eqs. M.7 and

M.8. Plot them across the channel. Any thoughts?

M.10 SGS stresses: WALE model

Repeat the Task in Section M.9, but now for the WALE model by [184], which reads

gij =
∂v̄i
∂xj

, g2ij = gikgkj

s̄dij =
1

2

(
g2ij + g2ji

)
− 1

3
δijg

2
kk

νsgs = (Cm∆)
2

(
s̄dij s̄

d
ij

)3/2

(s̄ij s̄ij)
5/2

+
(
s̄dij s̄

d
ij

)5/4

(M.9)

with Cm = 0.325 which corresponds to Cs = 0.1.

M.11 Dissipations

Compute the dissipation

ε = ν

〈
∂v′i
∂xj

∂v′i
∂xj

〉

and plot ε across the channel.

In LES we introduce a filter which is assumed to cut off the spectrum at κc in the

inertial region, see Fig. M.2. At cut-off, kinetic energy is extracted from the resolved

flow by the SGS dissipation εsgs. Since the cut-off is assumed to be located in the iner-

tial sub-range (II), the SGS dissipation is at high Re numbers equal to the dissipation.

Introduce a 2D filter (2∆x1 and 2∆x3) as in Sections M.8 and M.9 and filter all

velocities to obtain v̄1, v̄2 and v̄3. Compute the SGS stresses from the definition

τij = vivj − v̄iv̄j (M.10)

and compute the SGS dissipation

εsgs = −
〈
τij

∂v̄i
∂xj

〉
(M.11)

Now, what is the relation between εsgs and ε? Considering the cascade process, what

did you expect?

Recall that when we do traditional Reynolds decomposition, the production term

in the equation for turbulent kinetic energy appears as a sink term in the equation for

the mean kinetic energy, see Eq. 8.35. This is the case also in LES, but now we have

a decomposition into time-averaged filtered velocity, 〈v̄i〉, resolved fluctuation, v̄′i, and

SGS fluctuation, v′′i , i.e.

vi = v̄i + v′′i = 〈v̄i〉+ v̄′i + v′′i (M.12)

Now we have three equations for kinetic energy: K̄ = 1
2 〈v̄i〉〈v̄i〉, k̄ = 1

2 〈v̄′iv̄′i〉 and

ksgs = 1
2 〈v′′i v′′i 〉. The flow of kinetic energy can be illustrated as in Figs. M.3 and M.4

(cf. Fig. 20 in [85])
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−
〈
v̄′iv̄

′

j

〉 ∂〈v̄i〉
∂xj
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≃ 2〈νsg
s〉〈s̄

ij
〉〈s̄ij

〉

∆T
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sgs ) ∂〈v̄

i 〉∂x
j

∂〈v̄
i 〉∂x

j

ε

ν

〈 ∂v̄
′
i

∂xj

∂v̄
′
i

∂xj

〉

ε ′
sgs

Figure M.3: Transfer of kinetic turbulent energy. K̄ = 1
2 〈v̄i〉〈v̄i〉 and k̄ = 1

2 〈v̄′iv̄′i〉
denote time-averaged kinetic and resolved turbulent kinetic energy, respectively. ∆T
denotes increase in internal energy, i.e. dissipation. The cascade process assumes that

the term in red is negligible (see also Fig. 8.2). The terms in blue show viscous and

SGS dissipation of the mean flow.

The transport equation for 〈12 v̄′iv̄′i〉 is derived in [23]. (can be downloaded from

www.tfd.chalmers.se/˜lada).

When deriving the ksgs equation, no decomposition into time-averaged, 〈v̄i〉, and

resolved fluctuations, v̄′i, is made. Hence the SGS dissipation in Eq. M.11 appears as

an instantaneous production term in the equation for ksgs [86, 87] (can be downloaded

from www.tfd.chalmers.se/˜lada).

Plot (along x2), compare and discuss the five dissipations (see Figs. M.3 and M.4)

〈v̄′1v̄′2〉
∂〈v̄1〉
∂x2

: dissipation (which is equal to production with minus sign) by resolved

turbulence in the K̄ equation

ε′sgs =

〈(
νsgs

∂v̄i
∂xj

∂v̄i
∂xj

)′
〉

≃ 〈νsgs
∂v̄′i
∂xj

∂v̄′i
∂xj

〉: SGS dissipation term in the k̄ equa-

tion. This is the modelled SGS dissipation.

The exact SGS dissipation is computed as (since ε′sgs is a product of two fluctu-

ating quantities, we compute it with the same formula as in Eq. M.6)

ε′sgs =

〈
−τ ′ij

∂v̄′i
∂xj

〉
= −

〈
τij

∂v̄i
∂xj

〉
+ 〈τij〉

∂〈v̄i〉
∂xj

(M.13)

Note that ε′sgs is defined using the fluctuating velocity gradient (see [23]5), con-

trary to εsgs = Pksgs in Eq. M.11. The difference between εsgs and ε′sgs is

5can be downloaded from course home page
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Figure M.4: Energy spectrum. Transfer of kinetic energy. The cascade process assumes

that the term in red is negligible (see also Fig. 8.2). The terms in blue show viscous the

SGS dissipation of the mean flow.

that the former includes the SGS dissipation from the mean kinetic energy, i.e.

2〈νsgs〉〈s̄ij〉〈s̄ij〉, see Figs. M.3 and M.4.

ν

〈
∂v̄′i
∂xj

∂v̄′i
∂xj

〉
: viscous dissipation term in the k̄ equation

〈
νsgs

∂v̄1
∂x2

〉
∂〈v̄1〉
∂x2

≃ 〈νsgs〉
(
∂〈v̄1〉
∂x2

)2

: SGS dissipation term in the K̄ equation.

M.12 Test filtering

Above the filtered velocities were computed using the filter width ∆ = 2∆x1. In

dynamic models, we often define the test filter as twice the usual filter, i.e.
︷︷
∆ = 2∆.

Use this definition (1D filter, i.e.
︷︷
∆ = 4∆x1) to compute the dynamic Leonard stress

〈L12〉 from the definition

Lij =
︷ ︷
v̄iv̄j −

︷︷
v̄ i

︷︷
v̄ j (M.14)
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and compare it (across the channel) with the resolved stress 〈v̄′1v̄′2〉 and the SGS stress

〈τ12〉 defined in Eq. M.10. Do you expect the magnitude of stresses to be similar?

M.13 Near-wall behavior

What is the near-wall behavior of 〈v1〉, 〈v′21 〉 and 〈v′22 〉 (i.e., for v1, what is m in 〈v1〉 =
O(xm2 )). In order to estimate m, plot the quantities in log-log coordinates. Do the

quantities exhibit the near-wall behaviour that you expected?

M.14 Two-point correlations

The two-point correlation for u′

B11(x2, ζm) =
1

96× 96

96∑

I=1

96∑

K=1

v′1(x
I
1, x2, x

K
3 )v′1(x

I
1, x2, x

K
3 − ζm) (M.15)

where xK3 and ζm are the spanwise locations of the two points. Take advantage of the

fact that the flow is periodic, but be careful when integrating the correlation above in

the x3 direction. We have 96 cells in the x3 direction. If, for example, ζm = 2∆x3,

and one of the points (x13) is at K = 1 then the other (x13 − 2∆) is at K = 95.

Plot the two-point correlation at a couple of x2 positions. When plotting two-point

correlations, it is no point showing both symmetric parts; show only half of it (cf. the

two-point correlations in Section 10.1 and Fig. N.1).

Compute and plot the integral length scale, L1, which is defined by

L1(x2) =
1

v21,rms

∫ ∞

0

B11(x2, ζ1)dζ1. (M.16)

Compute also L3, which is defined as

L3(x2) =
1

v23,rms

∫ ∞

0

B33(x2, ζ3)dζ3. (M.17)

What’s the difference between L1 and L3? Did you expect this difference?

M.15 Energy spectra

The energy spectrum of any second moment can be obtained by taking the FFT of the

corresponding two-point correlation. You can find some details on how to use Matlab’s

FFT in Appendix N.

If you have computed the Fourier coefficients properly, the sum of all coefficients

should give the energy. The reason is that the Fourier coefficients correspond to the

energy spectrum, and if we integrate the energy spectrum over all wave numbers we

get the total energy. When we take the FFT of Eq. M.15, for example, we get

B̂11(κz) = FFT (B11)

and summation gives

v21,rms =

N∑

1

B̂11/N (M.18)
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see Appendix N.

Plot the energy spectra at a couple of x2 locations. When plotting two energy

spectrum, it is no point showing both symmetric parts; show only half of it (cf. the

energy spectrum in Fig. N.5 b). Confirm that Eq. M.18 is satisfied.

M.16 Something fun

Think of an interesting turbulent quantity and plot it and analyze it!
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N MTF270: Compute energy spectra from LES/DNS

data using Matlab

N.1 Introduction

W
HEN analyzing DNS or LES data, we are interested to look at the energy spectra.

From these we can find out in which turbulence scales (i.e. at which wave num-

bers) the fluctuating kinetic turbulent energy reside. By taking the Fourier transform

of the time signal (a fluctuating turbulent velocity) and then taking the square of the

Fourier coefficients we obtain the energy spectrum versus frequency.

If we want to have the energy spectrum versus wavenumber there are two options;

either we

1. Fourier transformN instantaneous signals in space and then time average the N
Fourier transforms, or

2. we Fourier transform a (time-averaged) two-point correlation,B33(x̂3).

Option 1 and 2 is really only a question when we time average. In Option 1, we take

first FFT and then time average. In 2, we first time average and then take FFT.

Here we will use Option 2. The two-point correlation, B33(x̂3) is defined as (see

Eq. 10.2)

B(x3, x̂3) = 〈v′3(x3 − x̂3)v
′

3(x3)〉 (N.1)

where x̂3 is the separation between the two points. Here we assume that x3 is an

homogeneous direction so that B33 is independent of x3, i.e. B33 = B33(x̂3). The

two-point correlation for an infinite channel flow is shown in Fig. N.1. On discrete

form the expression for B33 reads

B33(k∆z) =
1

M

M∑

m=1

v′3(x3 − k∆z)v′3(x3) (N.2)

where m denotes summation in homogeneous directions (i.e. time plus spatial homo-

geneous directions).

In the following section we give a simple example how to use Matlab to Fourier

transform a signal where we know the answer. Then we show how to derive the energy

spectrum from a spatial two-point correlation. Finally, some comments are given on

how to create an energy spectrum versus frequency from an autocorrelation (i.e. from

a two-point correlation in time).

N.2 An example of using FFT

Here we will present a simple example. Consider the function

u = 1 + cos(2πx/L) = 1 + cos(2π(n− 1)/N) (N.3)

where L = 3 is the length of the domain and N = 16 is the number of discrete points,

see Fig. N.2. Let’s use this function as input vector for the discrete Fourier transform

(DFT) using Matlab. The function u is symmetric, so we expect the Fourier coefficients
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to be real. In Matlab the DFT of u is defined as (type help fft at the Matlab prompt)

U(k) =
N∑

n=1

un exp

{−ı2π(k − 1)(n− 1)

N

}

1 ≤ k ≤ N

(N.4)

where k is the non-dimensional wavenumber and ı =
√
−1. The ratio (n − 1)/N

corresponds to the physical coordinate, x, in the the continuous FFT

U c(κ) =
1

L

∫ L

−L

u(x) exp(−ıκx)dx, κ = 2π/L (N.5)

Note that the discrete Fourier U(k) coefficients in Eq. N.4 must be divided by N , i.e.

U(k)/N , in order to correspond to the Fourier coefficients U c (N corresponds to L in

Eq. N.5). Furthermore, it can be noted that in Eq. N.4 the period [0, 2π] is used whereas

the formulation in Eq. N.5 is based on the interval [−π, π].
In Matlab, we generate the function u in Eq. N.3 using the commands

N=16;

n=1:1:N;

u=1+cos(2*pi*(n-1)/N);

The u function is shown in Fig. N.2. 16 nodes are used; node 1 is located at x = 0
and node 16 is located at 15L/16.

Now we take the discrete Fourier transform of u. Type

U=fft(u);

Instead of using the built-in fft command in Matlab we can program Eq. N.4
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Figure N.1: Two-point correlation, B(x̂3) = 〈v′3(x3 − x̂3)v
′
3(x3)〉, of DNS data in

channel flow taken from [85].
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Figure N.2: The u function.

directly in Matlab as

U=zeros(1,N);

for k=1:N

for n=1:N

arg1=2*pi*(k-1)*(n-1)/N;

U(k)=U(k)+u(n)*cos(-arg1);

end

end

Note that since u is symmetric, we have only used cos(−x) = cos(x) (the sym-

metric part of exp(−ıx)).
The resulting Fourier coefficients are shown in Fig. N.3. Since the function u in-

cludes only one cosine function and a mean (which is equal to one) only three Fourier

coefficient are non-zero. Two of them, U(2)/N = 0.5, U(16)/N = 0.5, correspond to

the cosine functions (there must be two since U is symmetric). For k = 2 we have

cos(2π(n− 1)/N)

and for k = N

cos((N − 1)2π(n− 1)/N) = cos(−2π(n− 1)/N) = cos(2π(n− 1)/N)

which corresponds to cos(2πx/L) in Eq. N.3. It can be noted that the interval [k =
N/2 + 1, N = 9, 16] corresponds to the negative, symmetric part of the wavenumbers

in the physical formulation (cf. Eqs. N.4 and N.5). The first Fourier coefficient corre-

sponds – as always – to the mean of u, i.e. U(1)/N = 〈u〉. This is easily verified from

Eq. N.4 by inserting k = 1. The remaining coefficients are zero.

In Fig. N.3, U/N is plotted versus non-dimensional wavenumber, k, and versus

wavenumber κ = 2π(n− 1)/L.

The energy, 〈u2〉, of the signal in Fig. N.2 can be computed as

〈u2〉 = 1

L

∫ L

0

u2(x)dx =
N∑

n=1

u2n/N = 1.5 (N.6)
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Figure N.3: The U/N Fourier coefficients.

In wavenumber space the energy is – according to Parseval’s formula, see Eq. D.4 –

equal to the integral of the square of the Fourier coefficients, i.e.

〈u2〉 = 1

L

∫ ∞

0

U2(κ)dκ =
1

N

N∑

n=1

U2
n/N = 1.5 (N.7)

see Fig. N.3.

N.3 Energy spectrum from the two-point correlation

Now that we have learnt how to use the FFT command in Matlab, let’s use it on our

two-point correlation in Eq. N.1 and Fig. N.1. Equation N.4 reads

B̂33(k) =

N∑

n=1

B33(n) exp

{−ı2π(k − 1)(n− 1)

N

}
(N.8)

The simulations in [85] have been carried out with periodic boundary conditions in x3
direction (and x1), and hence B33(x̂3) is symmetric, see Fig. N.4. Thus, it is sufficient

to use the cosine part of Eq. N.8, i.e.

B̂33(k) =

N∑

n=1

B33(n) cos

{
2π(k − 1)(n− 1)

N

}
(N.9)

In Fig. N.5a the Fourier coefficients B̂33κ3 are presented versus wavenumber κ3 =
2π(n − 1)/x3,max, where x3,max ≃ 1.55, see Fig. N.4. Figure N.5b shows the same

energy spectra in log-log scale (only half of the spectrum is included), which is the

common way to present energy spectra. The dashed line shows the −5/3 slope which

indicates that the energy spectra from the DNS follows the Kolmogorov −5/3 decay.

As usual, the Fourier coefficient for the first non-dimensional wavenumber, i.e.

B̂33(1)/N is equal to the mean of B33, i.e.

〈B33〉 =
1

N

N∑

n=1

B33(n) ≡
1

N
B̂33(1) (N.10)



N.3. Energy spectrum from the two-point correlation 319

0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B33(x̂3)

x̂3

1 96

Figure N.4: Periodic two-point correlation, B33(x̂3) = 〈v′3(x3)v′3(x3 + x̂3)〉, of DNS

data in channel flow taken from [85].
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Figure N.5: The energy spectrum of v′23 versus wavenumber, κ3. Dashed line in b)

show −5/3 slope. Taken from [85].

compare with Eq. N.9. Note that this is almost the same expression as that for the

integral length scale which reads (see Eq. 10.6)

Lint(x3) =
1

v′23

∫ ∞

0

B33(x3, x̂3)dx̂3 =
〈B33〉
v′23

(N.11)

Hence the integral length scale is related to the first Fourier mode as

Lint =
B̂33(1)

Nv′23
(N.12)

The two-point correlation for zero separation is equal to v′23 , i.e. B33(0) = v′23 =

1.51. Another way to obtain v′23 is to integrate the energy spectrum in Fig. N.5, i.e.

v′23 =

∫ ∞

0

B̂33(κ3)dκ3 =
1

N

N∑

n=1

B̂33(n) = 1.51 (N.13)
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N.4 Energy spectra from the autocorrelation

When computing the energy spectra of the v′3 velocity, say, versus frequency, the time

series of v′3(t) is commonly Fourier transformed and the energy spectrum is obtained

by plotting the square of the Fourier coefficients versus frequency, f . We can also split

the time signal into a number subsets, Fourier transform each subset and then average.

In Matlab, the command pwelch is a convenient command which does all this.

In the previous section we computed the energy spectrum versus wavenumber by

Fourier transforming the two-point correlation. We can use the same approach in time.

First we create the autocorrelation B33(τ) = 〈v′3(t)v′3(t + τ)〉 (this can be seen as a

two-point correlation in time). Then B33(τ) is Fourier transformed to get B̂33(f) in

the same way as in Section N.3.
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O MTF270, Assignment 3: Zonal PANS, DES, DDES

and SAS

I
N this exercise you will use data from a Zonal PANS for fully developed channel

flow. The data are taken from [151] 6. The Re number based on the friction velocity

and the half channel width is Reτ = uτh/ν = 8000. 28 cells (29 nodes including the

boundary) are located in the URANS region at each wall. The matching line is located

at gridline number 29 at which x+2 ≃ 500, x2/δ = 0.06.

A 64 × 96 × 64 mesh has been used. The cell size in x1 and x3 directions are

∆x1 = 0.05 and ∆x3 = 0.025. Periodic boundary conditions were applied in the x1
and x3 direction (homogeneous directions). All data have been made non-dimensional

by uτ and ρ.

At the course www page you find data files with instantaneous flow fields (sta-

tistically independent). The data files include the instantaneous variables u (v1), v
(v2), w (v3) and kT (made non-dimensional by uτ and ρ). Use Matlab or Octave on

Linux/Ubuntu. Octave is a Matlab clone which can be downloaded for free. Use one

of these programs to analyze the data. You find a Matlab/Octave program at the www

page which reads the data and computes the mean velocity. The data files are Matlab

binary files. Since the data files are rather large, it is recommended that you do all tasks

using only data files ’1’. When everything works, then use also data files ’2’, ’3’ and

’4’, and average by use of all four files.

You will also find a file with time history of u.

O.1 Time history

At the www page you find a file u v time 5nodes zonal pans.dat with the

time history of v̄1 and v̄2. The file has nine columns of v̄1 and v̄3 at five nodes (and

time): x2/δ = 0.0028, x2/δ = 0.0203, x2/δ = 0.0364, x2/δ = 0.0645 and x2/δ =
0.20. Hence, three nodes are located in the URANS region and two nodes in the LES

region. With uτ = 1 and ν = 1/Reτ = 1/8000, this correspond to x+2 = 22,

x+2 = 162, x+2 = 291, x+2 = 516 and x+2 = 1600, respectively. The sampling time

step is 6.250E−4 (every time step). Use the Matlab programpl time zonal pans

to load and plot the time history of v̄1 .

Recall that the velocities have been scaled with the friction velocity uτ , and thus

what you see is really v̄1/uτ . The time history of v̄1 at x2/δ = 0.0203 and x2/δ =
0.0645 are shown. To study the profiles in closer detail, use the axis-command in the

same way as when you studied the DNS data.

Plot v̄1 for all five nodes. How does the time variation of v̄1 differ for different

positions? Recall that the two points closest the wall are located in the URANS region

and the other two are located in the LES region. In the URANS region the turbulent

viscosity is much larger than in the LES region. How do you expect that the difference

in νt affects the time history of v̄1. Does the time history of v̄1 behave as you expect?

What about v̄3?

Compute the autocorrelation of the five points

imax=500;

two_uu_1_mat=autocorr(u1,imax);

6this paper can be downloaded from http://www.tfd.chalmers.se/˜lada/allpaper.html

http://www.tfd.chalmers.se/~lada/allpaper.html
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Above we set the maximum separation in time to 500 samples. Compute the inte-

gral timescale

dt=t(1);

int_T_1=trapz(two_uu_1_mat)*dt;

Plot the autocorrelation.

plot(t(1:imax),two_uu_1_mat(1:imax),’linew’,2)

xlabel(’t’)

ylabel(’B_{uu}’)

handle=gca

set(handle,’fontsi’,[20])

How does it compare to the integral timescale? Compute the autocorrelation and

integral timescale also for the other three points. Do you see any difference between

the points in the URANS region and the LES region?

O.2 Mean velocity profile

After having performed a Zonal PANS, we want to look at the time-averaged re-

sults. Use the file pl uvw zonal pans.m to look at the mean velocity profiles.

pl uvw zonal pans.m reads the instantaneous v̄1 field and performs an averaging

in the homogeneous directions x1 and x3. The time averaged velocity profile is com-

pared with the log profile (markers). There are four files with instantaneous values of

v̄1. Use more than one file to perform a better averaging.

O.3 Resolved stresses

We want to find out how much of the turbulence that has been resolved and how much

that has been modelled. Compute first vmean (this quantity should be very small, but

if you use only one file this may not be the case due to too few samples). Now compute

〈v′1v′2〉. Here’s an example how to do:

uv=zeros(nj,1);

for k=1:nk

for j=1:nj

for i=1:ni

ufluct=u3d(i,j,k)-umean(j);

vfluct=v3d(i,j,k)-vmean(j);

uv(j)=uv(j)+ufluct*vfluct;

end

end

end

uv=uv/ni/nk;

Plot it in a new figure (a figure is created by the command figure(2)).

Compute also the resolved turbulent kinetic energy

kres = 0.5
(
〈v′21 〉+ 〈v′22 〉+ 〈v′23 〉

)

and plot it in a new figure.
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O.4 Turbulent kinetic energy

Now plot and compare the resolved and modelled turbulent kinetic energies. Note that

the modelled turbulent kinetic energy, kT (te1 zonal pans.mat, te2 zonal pans.mat,

. . . ), can be downloaded from the www page and loaded at the beginning of pl uvw zonal pans.m.

Which is largest? Which is largest in the URANS region and in the LES region, re-

spectively? What about the sum? The magnitude of resolved and modelled turbulent

kinetic energies is discussed on p. 115 in relation to Fig. 6 in [151].

O.5 The modelled turbulent shear stress

We have computed the resolved shear stress. Let’s find the modelled shear stress.

The modelled turbulent kinetic energy, kT (file te1 zonal pans.mat, . . . ), and

the dissipation, ε (file ed1 zonal pans.mat, . . . ) will be used. Recall that ν =
1/8000. Compute the turbulent viscosity as 0.09k2/ε (we neglect the damping function

which is active only in the viscous sublayer; if you’re ambitious you may include it;

it’s given in the paper).

Compute the modelled shear stress from the Boussinesq assumption

τ12 = −2νT s̄12 = −νT
(
∂v̄1
∂x2

+
∂v̄2
∂x1

)

Plot it and compare with the resolved shear stress (see Section O.3). Are they smooth

across the interface? Is the resolved shear stress large in the URANS region? Should it

be large? Why/why not?

O.6 Location of interface in DES and DDES

As mentioned above, the interface in the present simulations are prescribed along a

fixed grid line (No 29). Let’s compare that with DES and DDES.

In SA-DES, the interface is defined as the location where the wall distance is equal

to CDES∆ where ∆ = max{∆x,∆y,∆z}, see Eq. 20.3. How does this compare with

gridline number 29?

In SST-DES, the location of the interface is computed using k and ω. Compute ω
from ε/(β∗k) and compute the location using Eq. 20.7. How does the location compare

with gridline 29 and SA-DES?

In DDES, the boundary layer is shielded with a damping function. In SST-DES,

the shielding function (see Eq. 20.8) may be one of the blending functions, F1 or F2

(see Eq. 20.4). Let’s use F2 as the shielding function as in [64]. Does DDES work, i.e.

does it make the model to be in RANS mode in the entire boundary layer?

O.7 SAS turbulent length scales

Compute the 1D von Kármán length scale defined as

LvK,1D = κ

∣∣∣∣
∂〈v̄1〉/∂x2
∂2〈v̄1〉/∂x22

∣∣∣∣ (O.1)

Note that you should take the derivatives of the averaged v̄1 velocity, i.e. of 〈v̄1〉. Zoom

up near the wall. How does it behave (i.e. what is n in O(xn2 )? What should n be?
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Compare that with the von Kármán length scale defined from instantaneous v̄1, i.e.

LvK,1D,inst = κ

∣∣∣∣
〈
∂v̄1/∂x2
∂2v̄1/∂x22

〉∣∣∣∣ (O.2)

How does it compare with LvK,1D?

When we’re doing real 3D simulations, the first and second derivative must be

defined in 3D. One way of defining the von Kármán length scale in 3D is [145, 146]

LvK,3D,inst = κ

∣∣∣∣
S

U ′′

∣∣∣∣

S = (2νts̄ij s̄ij)
0.5

U ′′ =

(
∂2v̄i
∂xj∂xj

∂2v̄i
∂xj∂xj

)0.5

(O.3)

The second derivative is then computed as

U ′′2 =

(
∂2v̄1
∂x21

)2

+

(
∂2v̄1
∂x22

)2

+

(
∂2v̄1
∂x23

)2

(
∂2v̄2
∂x21

)2

+

(
∂2v̄2
∂x22

)2

+

(
∂2v̄2
∂x23

)2

(
∂2v̄3
∂x21

)2

+

(
∂2v̄3
∂x22

)2

+

(
∂2v̄3
∂x23

)2

(O.4)

Plot the von Kármán length scale using Eqs. O.3 and O.4. Compare them with Eq. O.1.

What’s the difference? What effect do the different length scales give for PSAS (i.e.

T1 in Eq. 22.5) and what effect does it give to ω?

Another way to compute the second derivative is [185]

U ′′ =

(
∂2v̄i

∂xj∂xk

∂2v̄i
∂xj∂xk

)0.5

(O.5)

U ′′2 =

(
∂2v̄1
∂x21

)2

+ 2

(
∂2v̄1
∂x1∂x2

)2

+ 2

(
∂2v̄1
∂x1∂x3

)2

(
∂2v̄1
∂x22

)2

+ 2

(
∂2v̄1
∂x2∂x3

)2

+

(
∂2v̄1
∂x23

)2

(
∂2v̄2
∂x21

)2

+ 2

(
∂2v̄2
∂x1∂x2

)2

+ 2

(
∂2v̄2
∂x1∂x3

)2

(
∂2v̄2
∂x22

)2

+ 2

(
∂2v̄2
∂x2∂x3

)2

+

(
∂2v̄2
∂x23

)2

(
∂2v̄3
∂x21

)2

+ 2

(
∂2v̄3
∂x1∂x2

)2

+ 2

(
∂2v̄3
∂x1∂x3

)2

(
∂2v̄3
∂x22

)2

+ 2

(
∂2v̄3
∂x2∂x3

)2

+

(
∂2v̄3
∂x23

)2

(O.6)

Plot and compare the von Kármán length scales using the second derivatives defined

in Eqs. O.4 and O.6.
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Figure P.1: Channel flow configuration. The interface separates the RANS and the LES

regions.

I
N this exercise you will use data from an embedded PANS of channel flow. The data

are taken from [155]. The ku (Eq. 23.10) and the εu (Eq. 23.18) equations are solved.

The turbulent viscosity is computed from Eq. 23.12. The PANS model is a modified

k − ε model which can operate both in RANS mode and LES mode.

The Reynolds number for the channel flow is Reτ = 950 based on the friction

velocity, uτ , and half the channel width, δ. In the present simulations, we have set

ρ = 1, δ = 1 and uτ ≃ 1, see Fig. P.1. With a 3.2 × 2 × 1.6 domain, a mesh with

64 × 80 × 64 cells is used in, respectively, the streamwise (x), the wall-normal (y)

and the spanwise (z) direction, see Fig. P.1. The resolution is approximately (the wall

shear stress varies slightly along the wall) 48× (0.6− 103)× 24 in viscous units. Inlet

conditions at x = 0 are created by computing fully developed channel flow with the

LRN PANS model in RANS mode (i.e. with fk = 1). The RANS part extends up to

x1 = 0.95; downstream the equations operate in LES mode ((i.e. fk = 0.4).

Anisotropic synthetic fluctuations are added at the interface. The interface condi-

tion for εu is computed with the baseline value Cs = 0.07, where kRANS is taken at

x = 0.5, see Fig. P.1. The modeled dissipation, εinter , is set from kinter and an SGS

length scale, ℓsgs, which is estimated from the Smagorinsky model as

ℓsgs = Cs∆ (P.1)

and the interface condition for ku is computed as

kinter = fLES
k kRANS (P.2)

with fLES
k = 0.4. The interface conditions on ku and εu will make the turbulent

viscosity steeply decrease from its large values in the RANS region to much smaller

values appropriate for the LES region.

P.1 Time history

At the www-page you find a file u time interior.dat with the time history of

v̄2. The file has eight columns of v̄2 along two lines: x2 = 0.0139 (x+2 ≃ 13) and
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x2 = 0.24 (x+2 ≃ 230); they are located at x1 = 0.775, 1.175, 1.675, 2.175. The

sampling time step is 0.000625 (every time step). Use Matlab. You can also use Octave

on Linux/Ubuntu. Octave is a Matlab clone which can be downloaded for free. Use the

Matlab/Octave program pl time pans to load and plot the time history of v̄2.

The time history of v̄2 at x2 = 0.0139 at x1 = 0.775 and x1 = 1.675 are shown.

To study the profiles in closer detail, use the axis-command in the same way as when

you studied the DNS data. Why is there such a big difference in the fluctuations?

If you’re not interested in integral time scales, skip the rest of this section and

proceed to Section P.2.

In Matlab figure 2, the autocorrelation is plotted. The autocorrelation is defined as

B(τ) =

∫ ∞

0

v(t)v(t − τ)dt (P.3)

Study the coding and try to understand it. When prescribing the time correlation of

the synthetic fluctuations, the integral timescale T is used. The integral time scale is

defined as

T =

∫ ∞

0

Bnorm(τ)dτ (P.4)

where Bnorm = B(τ)/B(0) so that Bnorm(0) = 1. The constant a is in [155] set to

0.954 and from Eq. 14 in [186] we can then compute the prescribed integral timescale.

In the Matlab file the integral timescale is computed from the autocorrelation. Try to

understand the coding.

Plot v̄2 for the other nodes and study the differences. Compute the autocorrelations

and the integral timescales.

P.2 Resolved stresses

Now we will look at the time-averaged results. Use the file pl uuvvww 2d.m to

look at the mean quantities such as velocity, resolved and modeled stresses, turbulent

viscosities etc. pl uuvvww 2d.m reads the fields and transforms them into 2D arrays

such as u 2d, uu 2d.

Run pl uuvvww 2d. The resolved stresses 〈v′21 〉 are plotted vs x2 (figure 1) and

vs. x1 (figure 2). Two x1 stations are shown in figure 1, x1 = 1.175 and x1 = 2.925.

Plot the resolved stress also in the RANS region, i.e. for x1 < 0.95. The 〈v′21 〉 profiles

are very different in the RANS region (x1 < 0.95) and in the LES (x1 > 0.95), aren’t

they? Why? This can also be seen in figure 2 where 〈v′21 〉 is plotted vs. x1
Now plot the resolved shear stresses, 〈v′1v′2〉, both in the RANS region and in the

LES region. You find the same difference between RANS and LES region as for 〈v′21 〉,
don’t you?

P.3 Turbulent viscosity

Plot the turbulent viscosity vs. x2 in both regions. Normalize it with 〈ν〉, i.e. plot

〈νu〉/ν. Where is it large and where is it small? Why? Now plot it also vs. x1.

Something drastically happens at x1 = 0.95, right?
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Figure P.2: Energy spectrum.

P.4 Modeled stresses

In Section P.2 you looked at the resolved Reynolds stresses. Now let’s look at the mod-

eled stresses. Compute the modeled Reynolds stresses from the Boussinesq assumption

〈v′iv′jmod
〉 = −〈νu〉

(
∂〈v̄i〉
∂xj

+
∂〈v̄j〉
∂xi

)
+

2

3
δij〈ku〉 (P.5)

Compare the resolved and the modeled shear stress as well as the streamwise and the

normal stresses in the RANS region and in the LES region.

P.5 Turbulent SGS dissipation

In an LES the resolved turbulent fluctuations can be represented by a energy spectrum

as in Fig. P.2. The resolved turbulence extracts kinetic energy via the production term,

P k, which represents a source term in the k equation (Eq. 8.14) and a sink term in the

K̄ equation (Eq. 8.35). The energy flow is visualized in Fig. M.3 where the energy in

K̄ mostly goes to resolved turbulence, k̄, then to modeled turbulence, ksgs (or ku) and

finally to internal energy via dissipation, εu.

In RANS mode, however, there is no resolved turbulence. Hence the kinetic energy

goes directly from K̄ to the modeled turbulence, ku.

In the LES region, the production term in the ku equation includes both mean and

fluctuating strain rates since

Pu = εsgs =

〈
νu

(
∂v̄i
∂xj

+
∂v̄j
∂xi

)
∂v̄i
∂xj

〉

which in the Matlab file is stored as pksgs 2d. Now consider the LES region. Investi-

gate the relation between Pu = εsgs and the production due to the resolved turbulence

P k = −〈v′iv′j〉
∂〈v̄i〉
∂xj

Compare also P k in the LES region and in the RANS region.



P.5. Turbulent SGS dissipation 328

In both the RANS and the LES region the process of viscous dissipation takes place

via εu. Hence, plot also this quantity. Is the turbulence in local equilibrium, i.e. does

the relation Pu = εu hold?
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Q MTF270, Assignment 5, recirculating flow: PANS,

DES and DDES

I
N this exercise you will use data from PANS and Zonal PANS for for the flow over a

hump. The results are presented in detail in [151, 155, 186] 7

0.6 1 2

0

0.2

0.4

0.6

0.8

1

x
2

x1

Figure Q.1: Hump flow. Grid. Every 4th grid line is shown.

The Reynolds number of the hump flow is Rec = 936 000, based on the hump

length, c, and the inlet mean velocity at the centerline, Uin,c. The grid is shown in

Fig. Q.1. Experiments were conducted by Greenblatt [187,188]; they are also described

in detail at http://cfdval2004.larc.nasa.gov/case3.html. The maximum height of the

hump, h, and the channel height, H , are given by H/c = 0.91 and h/c = 0.128,

respectively. The baseline mesh has 312× 120× 64 cells with Zmax = 0.2.

There are side-wall effects (3D flow) near the side plates in the experiment. Hence,

in order to compensate for the blockage effect of the side plates in the computation,

the surface shape of the upper wall (above the hump) is modified and the upper wall is

moved slightly downwards, see Fig. Q.1. The ratio of the local cross-sectional area of

the side plates (facing the flow) to the cross sectional area of the tunnel enclosed by the

side plates was computed. This ratio was used to scale the local height of the channel

and thus modifying the contour shape of the upper wall.

Neumann conditions are used at the outflow section located at x1 = 4.2. Slip

conditions are used at the upper wall and symmetric boundary conditions are used on

the spanwise boundaries. Inflow boundary (at x1 = 0.6) conditions are taken from

2D RANS SST k − ω simulations carried out by the group of Prof. Strelets in St.

Petersburg. The distributions of V1 and V2 at x1 = 0.6 from the RANS simulation are

used together with V3 = 0 as mean inlet velocities to which the fluctuating velocity V ′
1,

V ′
2 and V ′

2 are superimposed. The computed integral length scale for the synthetic inlet

fluctuations is L ≃ 0.040 and the integral time scale T ≃ 0.038. It is noted that the

prescribed inlet integral length scale is rather large [155] (approximately equal to the

7these papers can be downloaded from http://www.tfd.chalmers.se/˜lada/allpaper.html

http://cfdval2004.larc.nasa.gov/case3.html
http://www.tfd.chalmers.se/~lada/allpaper.html
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inflow boundary layer thickness). The reason is that synthetic fluctuations with a large

integral length scale are efficient in generating resolved turbulent fluctuations [167].

At the course www page you find data files with time and spanwise averaged flow

fields. Use Matlab or Octave on Linux/Ubuntu. Octave is a Matlab clone which can be

downloaded for free. Use one of these programs to analyze the data.

Start by downloadingpl vect hump.m, vectz aiaa paper.dat, xy hump.dat

and x065 off.dat. The m-file reads the data files. The velocities, the square of the

velocities and a number of other quantities are read. The resolved stresses are com-

puted as in Eq. M.6. Furthermore, the m file plots contours of 〈v′1v′1〉, the grid, a vector

plot as well as 〈v̄1〉 and 〈v′2v′2〉 at x = 0.65 (gridline 10 is chosen which corresponds

to x 2d(10,1)= 0.652). The experimental values are also included in the plots at

x = 0.65.

Q.1 Discretization schemes

You will analyze results from two publications [155, 186]. The main difference is that

in [186] pure central differencing was used whereas in [155] a blend of 95% central

differencing and 5% bounded second-order upwind scheme (van Leer scheme [189])

was employed.

Consider the plot of 〈v̄1〉 and 〈v′2v′2〉 at x = 0.65. The velocity profile shows that

the boundary layer extends up to x2 ≃ 0.17. However, the 〈v′2v′2〉 exhibits large values

outside the boundary layer; the peak value at x2 ≃ 0.24 is almost 5 times larger than

in the boundary layer. These fluctuations are nonphysical and stem from the use of

central differencing.

Now plot 〈v′2v′2〉 at locations further downstream; do the nonphysical fluctuations

disappear (they do, don’t they?). Compare with 〈v′1v′2〉 in Fig. 12 in [186]. The non-

physical fluctuations appear in the outer region where no physical resolved turbulence

is present. Pure central differences sometimes give problems is flow regions like this.

It is tempting to draw the conclusion that these nonphysical fluctuations are caused by

the inlet synthetic fluctuations. However, when increasing the magnitude of the inlet

synthetic fluctuations the magnitude of the nonphysical fluctuation diminishes, see Fig.

13a in [186].

Similar (much worse) problems with central differences were encountered in LES

of the flow around an airfoil [100, 190]. Large nonphysical fluctuations were found in

regions far from the airfoil; in these studies the problems were solved by using 100%
van Leer scheme in the far-field regions.

In [155] the same simulations were carried out but now using a blend of central

differencing (95%) and van Leer scheme (5%). Analyze these results by loading file

vectz aiaa journal.dat in pl vect hump.m.

Consider the resolved fluctuations: note how strongly they increase when going

from the attached boundary layer (x1 = 0.65) to the recirculating region, 0.8 . x .
1.2. The peak of 〈v′2v′2〉, for example, increases from 0.0017 (x1 = 0.65, gridline

i=10) to 0.046 (x1 = 0.800, gridline i=45). This is the main reason why the non-

physical fluctuations at x1 = 0.65 vanish quickly further downstream.

Q.2 The modeled turbulent shear stress

As usual, when analysing results of DES, PANS etc, we want to find out how much of

the turbulence is modeled and how much is resolved. This gives an indication how well

the turbulence has been resolved; if much turbulence is resolved it may be either good
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or bad. In recirculating regions it is usually good but it may be disastrous in boundary

layer regions close to the wall if the mesh is not fine enough (this is the very reason

why DDES was proposed, see Eq. 20.8). A suitable quantity to look at is the shear

stress which is much more relevant than the turbulent kinetic energy; the shear stress

is the largest diffusion term in the momentum equations, much larger than the normal

stresses (at least in boundary layer flows).

Now plot the resolved (uv 2d) and the modelled shear stress (uv model 2d)

in the boundary layer region (e.g. gridline i=10) and the recirculating region (e.g.

gridline i=45). Where is the modeled shear stress large and where is it small? Look

at other x1 locations.

Q.3 The turbulent viscosity

It may be interesting to look at the turbulent viscosity. Usually it is plotted scaled with

ν, i.e. νt/ν. Plot the viscosity, νt/ν (vis 2d/viscos) in the boundary layer and in

the recirculating region. You find that the turbulent viscosity is large in the recirculation

region, right? That might lead you to conclude that the turbulence is better resolved

in the boundary layer than in the recirculating region. But that would be an incorrect

conclusion. When estimating the influence of the modeled turbulence, we should not

look at the turbulent viscosity because it does not appear as a term in the momentum

equations; we should look at the ratio of modeled stresses to the resolved one, and,

as mentioned in Section Q.2, preferably the ratio of the modeled to the resolved shear

stress [113, 114]. It would actually be even more relevant to look at the divergence of

these terms, i.e.
∂

∂xj

(〈
νt
∂v̄i
∂xj

〉)
and −

∂〈v′iv′j〉
∂xj

(Q.1)

because these are the terms that indeed appear in the momentum equations.

You have noted that the turbulent viscosities are rather large; in the recirculation re-

gion, νt/ν is larger than 100. Go back and load the results of [186] (vectz aiaa paper.dat).

Plot the turbulent viscosity. You find that it is much smaller than for the data of [155].

It is true that the discretization schemes used in the two papers are slightly different,

but that is not the reason. The difference stems from the fact that the turbulent Prandtl

numbers in the k and ε equations were in the two papers set as

σk = 1.4, σε = 1.4 [186] (Q.2)

σk =
1.4

f2
k

, σε =
1.4

f2
k

[155] (Q.3)

Equation Q.3 corresponds to the original PANS model. Recall that the turbulent diffu-

sion in, for example, the k equation reads

∂

∂xj

(
νt
σk

∂k

∂xj

)
(Q.4)

Since fk = 0.4, it means that the turbulent diffusion in the k and ε equations are

1/0.42 ≃ 6 times larger in [155] than in [186]. The consequence is that peaks in k and

ε (and also νt) are reduced in the former case compared to the latter (this is the physical

role played by diffusion: it transports from regions of high k to regions of low k). This

explains why the peaks of k are much larger in [186] compared to [155].

Hence, in the original PANS model (Eq Q.3), the RANS turbulent viscosity appears

in the turbulent diffusion of k (and ε), because the turbulent diffusion term reads (recall
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that fk = k/ktotal = k/kRANS where kRANS denotes the turbulent kinetic energy in

a RANS simulation)

∂

∂xj

(
νtf

2
k

1.4

∂k

∂xj

)
=

∂

∂xj

(
cµk

2

εf2
k1.4

∂k

∂xj

)

=
∂

∂xj

(
cµk

2
RANS

ε1.4

∂k

∂xj

)
=

∂

∂xj

(
νt,RANS

1.4

∂k

∂xj

) (Q.5)

cf. Eqs. 18 and 19 in [130]. Thus the total (i.e. RANS) viscosity is responsible for the

transport of the modeled turbulent kinetic energy.

Q.4 Location of interface in DES and DDES

The results analyzed above were from LES simulations [155,186] (i.e. the PANS model

was used in LES mode). Now we will analyze results from Zonal PANS [151] where

the interface is prescribed along a fixed grid line (No 32). Let’s compare that with DES

and DDES. Load the file vectz zonal pans.dat in pl vect hump.m. Recall

that ∆z = 0.2/32 (note that in [155, 186] ∆z = 0.2/64)

In SA-DES, the interface is defined as the location where the wall distance is equal

to CDES∆ where ∆ = max{∆x,∆y,∆z}, see Eq. 20.3. How does this compare with

gridline number 32?

In SST-DES, the location of the interface is computed using k and ω. Compute ω
from ε/(β∗k) and compute the location using Eq. 20.7. How does the location compare

with gridline 32 and SA-DES?

In DDES, the boundary layer is shielded with a damping function. In SST-DES,

the shielding function (see Eq. 20.8) may be one of the blending functions, F1 or F2

(see Eq. 20.4). Let’s use F2 as the shielding function as in [64]. Does DDES work, i.e.

does it make the model to be in RANS mode in the entire boundary layer? What about

the separation region?

Q.5 Compute fk

In [155, 186], fk = 0.4 in the entire domain. In the Zonal PANS simulations [151],

fk = 0.4 in the LES region or it is computed from Eq. Q.6; in the RANS region near

the lower wall fk = 1 (interface at grid line No 32). The expression for computing fk
reads [191]

fk = c−2/3
µ

∆

Lt
, Lt =

k
3/2
total

〈ε〉 (Q.6)

where ∆ = (∆V )1/3 where ∆V denotes the cell volume and ktotal denotes resolved

plus modeled turbulent kinetic energy, i.e.

ktotal =
1

2

(
〈v′21 〉+ 〈v′22 〉+ 〈v′23 〉

)
+ 〈k〉 (Q.7)

Compute fk from Eq. Q.6 and plot it at a couple of x1 locations (cf. Fig. 26

in [151]). It is bigger or smaller than the prescribed values (0.4 and 1)? Compare

it also with the definition of fk = k/ktotal (cf. Fig. 26 in [151]). How is k/ktotal
related to Eq. Q.6? (see the discussion in [151] leading to Eq. 14)
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R MTF270, Assignment 6: Hybrid LES-RANS

I
N this exercise you will use data from a Hybrid LES-RANS for fully developed

channel flow. The turbulence model is the same as in [85] (no forcing), but the

domain and Reynolds number is taken from [192]. TheRe number based on the friction

velocity and the half channel width is Reτ = uτh/ν = 8000. 28 cells (29 nodes

including the boundary) are located in the URANS region at each wall. The matching

line is located at gridline number 29 at which x+2 ≃ 500, x2/δ = 0.06.

A 64 × 96 × 64 mesh has been used. The cell size in x1 and x3 directions are

∆x1 = 0.05 and ∆x3 = 0.025. Periodic boundary conditions were applied in the x1
and x3 direction (homogeneous directions). All data have been made non-dimensional

by uτ and ρ.

At the course www page you find data files with instantaneous flow fields (sta-

tistically independent). The data files include the instantaneous variables u (v1), v
(v2), w (v3) and kT (made non-dimensional by uτ and ρ). Use Matlab or Octave on

Linux/Ubuntu. Octave is a Matlab clone which can be downloaded for free. Use one

of these programs to analyze the data. You find a Matlab/Octave program at the www

page which reads the data and computes the mean velocity. The data files are Matlab

binary files. Since the data files are rather large, it is recommended that you do all tasks

using only data files ’1’. When everything works, then use also data files ’2’, ’3’ and

’4’, and average by use of all four files.

You will also find a file with time history of u.

R.1 Time history

At the www page you find a file u v time 4nodes hybrid.dat with the time

history of v̄1 and v̄3. The file has nine columns of v̄1 and v̄3 at four nodes (and time):

x2/δ = 0.0028, x2/δ = 0.015, x2/δ = 0.099 and x2/δ = 0.35. Hence, two nodes

are located in the URANS region and two nodes in the LES region. With uτ = 1
and ν = 1/Reτ = 1/8000, this correspond to x+2 = 22, x+2 = 120, x+2 = 792 and

x+2 = 2800, respectively. The sampling time step is 6.250E− 4 (every time step). Use

the Matlab program pl time hybrid to load and plot the time history of v̄1 .

Recall that the velocities have been scaled with the friction velocity uτ , and thus

what you see is really v̄1/uτ . The time history of v̄1 at x2/δ = 0.015 and x2/δ = 0.35
are shown. To study the profiles in closer detail, use the axis-command in the same

way as when you studied the DNS data.

Plot v̄1 for all four nodes. How does the time variation of v̄1 differ for different

positions? Recall that the two points closest the wall are located in the URANS region

and the other two are located in the LES region. In the URANS region the turbulent

viscosity is much larger than in the LES region. How do you expect that the difference

in νt affects the time history of v̄1. Does the time history of v̄1 behave as you expect?

What about v̄2?

Compute the autocorrelation of the four points

imax=500;

two_uu_1_mat=autocorr(u1,imax);

Above we set the maximum separation in time to 500 samples. Compute the inte-

gral timescale
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dt=t(1);

int_T_1=trapz(two_uu_1_mat)*dt;

Plot the autocorrelation.

plot(t(1:imax),two_uu_1_mat(1:imax),’linew’,2)

xlabel(’t’)

ylabel(’B_{uu}’)

handle=gca

set(handle,’fontsi’,[20])

How does it compare to the integral timescale? Compute the autocorrelation and

integral timescale also for the other three points. Do you see any difference between

the points in the URANS region and the LES region?

R.2 Mean velocity profile

After having performed a hybrid LES-RANS, we want to look at the time-averaged re-

sults. Use the file pl uvw hybrid.m to look at the mean velocity profiles. pl uvw hybrid.m

reads the instantaneous v̄1 field and performs an averaging in the homogeneous direc-

tions x1 and x3. The time averaged velocity profile is compared with the log profile

(markers). There are four files with instantaneous values of v̄1. Use more than one file

to perform a better averaging.

R.3 Resolved stresses

We want to find out how much of the turbulence that has been resolved and how much

that has been modelled. Compute first vmean (this quantity should be very small, but

if you use only one file this may not be the case due to too few samples). Now compute

〈v′1v′2〉. Here’s an example how to do:

uv=zeros(nj,1);

for k=1:nk

for j=1:nj

for i=1:ni

ufluct=u3d(i,j,k)-umean(j);

vfluct=v3d(i,j,k)-vmean(j);

uv(j)=uv(j)+ufluct*vfluct;

end

end

end

uv=uv/ni/nk;

Plot it in a new figure (a figure is created by the command figure(2)).

Compute also the resolved turbulent kinetic energy

kres = 0.5
(
〈v′21 〉+ 〈v′22 〉+ 〈v′23 〉

)

and plot it in a new figure.
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URANS region LES region

ℓ 2.5n[1− exp(−0.2k
1/2
T n/ν)] ℓ = ∆ = (δV )1/3

νT 0.09 · 2.5k1/2T n[1− exp(−0.014k
1/2
T n/ν)] 0.07k

1/2
T ℓ

Table R.1: Expressions for ℓ and νT in the LES and URANS regions. n denotes the

distance from the wall.

R.4 Turbulent kinetic energy

Now plot and compare the resolved and modelled turbulent kinetic energies. Note that

the modelled turbulent kinetic energy, kT (te1 hybrid.mat, te2 hybrid.mat,

. . . ), can be downloaded from the www page and loaded at the beginning of pl uvw hybrid.m.

Which is largest? Which is largest in the URANS region and in the LES region, re-

spectively? What about the sum? The magnitude of resolved and modelled turbulent

kinetic energies is discussed in the last subsection in [85].

R.5 The modelled turbulent shear stress

We have computed the resolved shear stress. Let’s find the modelled shear stress.

The modelled turbulent kinetic energy, kT (file te1 hybrid.mat, . . . ), will be

used. Recall that ν = 1/8000. Compute the turbulent viscosity according to Table R.1

and do the usual averaging. When computing∆, you need the volume, δV , of the cells.

It is computed as δV = (∆x1∆x2∆x3); ∆x1 and ∆x3 are constant and ∆x2 is stored

in the array dy(j), look at the beginning of the m-file. Plot 〈νT 〉/ν. Where is it large

and where is it small? (Recall that the URANS region is located in the first 28 cells).

Is it smooth? Do you need more samples? If so, use more files.

Compute the modelled shear stress from the Boussinesq assumption

τ12 = −2νT s̄12 = −νT
(
∂v̄1
∂x2

+
∂v̄2
∂x1

)

Plot it and compare with the resolved shear stress (see Section R.3). Are they smooth

across the interface? Is the resolved shear stress large in the URANS region? Should it

be large? Why/why not?

R.6 Location of interface in DES and DDES

As mentioned above, the interface in the present simulations is prescribed along a fixed

grid line (No 29). Let’s compare that with DES and DDES.

In SA-DES, the interface is defined as the location where the wall distance is equal

to CDES∆ where ∆ = max∆x,∆y,∆z , see Eq. 20.3. How does this compare with

gridline number 29?

In SST-DES, the location of the interface is computed using k and ω. Compute ω
from νT and k as ω = νT /k) and compute the location using Eq. 20.7.

R.7 Turbulent length scales

Compute and plot the turbulent length scales given in Table R.1. Plot the ℓSGS and

ℓURANS length scales in both regions. Which is largest? Any surprises? Compare

them with ∆x2 and (∆x1∆x2∆x3)
1/3. One would expect that (∆x1∆x2∆x3)

1/3 <
ℓURANS everywhere. Is this the case?
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x1

x2

x∗1

x∗2

αβ

Figure S.1: Transformation between the coordinate systems (x1∗, x2∗) and (x1, x2).

S MTF270: Transformation of tensors

S.1 Rotation from x1∗ − x2∗ to x1 − x2

T
HE rotation of a vector from the xi∗ coordinate system to xi reads (see, e.g., Chapter

1 in [28])

ui = bijuj∗ (S.1)

where bij denotes the cosine between the axis

bij = cos (xi, xj∗) (S.2)

In Fig. S.1, the bij is given by

b11 = cosα, b12 = cosβ = − cos(π/2− α) = − sin(α)

b21 = cos(π/2− α) = sinα, b22 = cosα
(S.3)

The relations bikbjk = bkibkj = δij are fulfilled as they should.

For a second-order tensor, the transformation reads

uij = bikbjmuk∗m∗ (S.4)

As an example, set α = π/4. Equation S.3 gives

b11 = 1/
√
2, b12 = −1/

√
2, b21 = 1/

√
2, b22 = 1/

√
2 (S.5)

Inserting Eq. S.5 into Eq. S.4 gives

u11 = b11b11u1∗1∗ + b12b11u2∗1∗ + b11b12u1∗2∗ + b12b12u2∗2∗ (S.6a)

=
1

2
(u1∗1∗ − u2∗1∗ − u1∗2∗ + u2∗2∗)

u12 = b11b21u1∗1∗ + b12b21u2∗1∗ + b11b22u1∗2∗ + b12b22u2∗2∗ (S.6b)

=
1

2
(u1∗1∗ − u2∗1∗ + u1∗2∗ − u2∗2∗)

u21 = b21b11u1∗1∗ + b22b11u2∗1∗ + b21b12u1∗2∗ + b22b12u2∗2∗ (S.6c)

=
1

2
(u1∗1∗ + u2∗1∗ − u1∗2∗ − u2∗2∗)

u22 = b21b21u1∗1∗ + b22b21u2∗1∗ + b21b22u1∗2∗ + b22b22u2∗2∗ (S.6d)

=
1

2
(u1∗1∗ + u2∗1∗ + u1∗2∗ + u2∗2∗)
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S.2 Rotation from x1 − x2 to x1∗ − x2∗

Now we do the same transformation as in Section S.1 but backwards, i.e. from x1−x2
to x1∗ − x2∗. Consider fully developed flow in a channel, see Appendix B, for which

∂v1
∂x1

= v2 = 0 (S.7)

so that the strain-rate tensor, sij , reads

s11 = 0, s12 =
1

2

∂v1
∂x2

, s21 = s12, s22 = 0 (S.8)

The x1 and x2 coordinates in Fig. S.1 correspond now to the streamwise and wall-

normal directions in the channel, respectively. Let the x1∗ − x2∗ coordinate system

denote the eigenvectors. The transformation from x1 − x2 to x1∗ − x2∗ reads

si∗j∗ = cikcjmskm, cij = cos (xi∗, xj) (S.9)

where

c11 = cosα, c12 = cos(π/2− α) = sinα

c21 = cosβ = − sinα, c22 = cosα
(S.10)

see Fig. S.1. It can be seen that the relation cji = bij is satisfied as it should. The

eigenvectors for Eq. S.8 are any two orthogonal vectors with angles ±π/4,±3π/4.

Let us choose π/4 and 3π/4 for which the transformation in Eq. S.9 reads (α = π/4)

s1∗1∗ = c11c11s11 + c12c11s21 + c11c12s12 + c12c12s22 (S.11a)

=
1

2
(s11 + s21 + s12 + s22)

s1∗2∗ = c11c21s11 + c12c21s21 + c11c22s12 + c12c22s22 (S.11b)

=
1

2
(−s11 − s21 + s12 + s22)

s2∗1∗ = c21c11s11 + c22c11s21 + c21c12s12 + c22c12s22 (S.11c)

=
1

2
(−s11 + s21 − s12 + s22)

s2∗2∗ = c21c21s11 + c22c21s21 + c21c22s12 + c22c22s22 (S.11d)

=
1

2
(s11 − s21 − s12 + s22)

The fully developed channel flow is obtained by inserting Eq. S.8

s1∗1∗ = s12, s1∗2∗ = 0, s2∗1∗ = 0, s2∗2∗ = −s21 (S.12)

Since the off-diagonal elements are zero it confirms that the coordinate system x1∗ −
x2∗ with α = π/4 is indeed a principal coordinate system. The eigenvalues, λ(k), of

sij correspond to the diagonal elements in Eq. S.12, i.e.

λ(1) ≡ s1∗1∗ = s12 =
1

2

∂v1
∂x2

, λ(2) ≡ s2∗2∗ = −s12 = −1

2

∂v1
∂x2

(S.13)
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S.3 Transformation of a velocity gradient

Consider the velocity gradient Aij = ∂vi/∂xj . Apply the transformation from the

x1 − x2 system to the principal coordinate system x1∗ − x2∗ in Eqs. S.11a-S.11d with

α = π/4

A1∗1∗ =
1

2
(A11 +A21 +A12 +A22)

A1∗2∗ =
1

2
(−A11 −A21 +A12 +A22)

A2∗1∗ =
1

2
(−A11 +A21 −A12 +A22)

A2∗2∗ =
1

2
(A11 −A21 −A12 +A22)

(S.14)

Insert Eq. S.10 with α = π/4 and replace Aij by the velocity gradient use Eq. S.7 (i.e.

fully-developed channel flow)

∂v1∗
∂x1∗

=
∂v1∗
∂x2∗

=
1

2

∂v1
∂x2

,
∂v2∗
∂x1∗

=
∂v2∗
∂x2∗

= −1

2

∂v1
∂x2

, (S.15)

It can be seen that ∂v1∗/∂x1∗ = s1∗1∗ and ∂v1∗/∂x2∗ + ∂v2∗/∂x1∗ = 2s1∗2∗ = 0
(see Eqs. S.13 and S.15) as it should.
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T MTF270: Green’s formulas

I
N this appendix we will derive Green’s three formulas from Gauss divergence law.

In the last section we will derive the analytical solution to the Poisson equation. The

derivations below are partly taken from [193].

T.1 Green’s first formula

Gauss divergence law reads

∫

V

∂Fi

∂xi
dV =

∫

S

FinidS (T.1)

where S is the bounding surface of the volume, V , and ni is the normal vector of S

pointing out of V . Replacing Fi by ϕ
∂ψ

∂xi
gives

∫

V

∂

∂xi

(
ϕ
∂ψ

∂xi

)
dV =

∫

S

ϕ
∂ψ

∂xi
nidS (T.2)

The left side is re-written as

∂

∂xi

(
ϕ
∂ψ

∂xi

)
= ϕ

∂2ψ

∂xi∂xi
+
∂ψ

∂xi

∂ϕ

∂xi
(T.3)

which inserted in Eq. T.2 gives

∫

V

ϕ
∂2ψ

∂xi∂xi
dV +

∫

V

∂ψ

∂xi

∂ϕ

∂xi
dV =

∫

S

ϕ
∂ψ

∂xi
nidS (T.4)

This is Green’s first formula.

T.2 Green’s second formula

Switching ϕ and ψ in Eq. T.4 gives

∫

V

ψ
∂2ϕ

∂xi∂xi
dV +

∫

V

∂ϕ

∂xi

∂ψ

∂xi
dV =

∫

S

ψ
∂ϕ

∂xi
nidS (T.5)

Subtract Eq. T.5 from T.4 gives

∫

V

(
ϕ

∂2ψ

∂xi∂xi
− ψ

∂2ϕ

∂xi∂xi

)
dV =

∫

S

(
ϕ
∂ψ

∂xi
− ψ

∂ϕ

∂xi

)
nidS (T.6)

This is Green’s second formula.

T.3 Green’s third formula

In Green’s second formula, Eq. T.6, set

ψ(r) =
1

|r− rP |
(T.7)

As usual we are considering a volume V with bounding surface S and normal vector

ni. Since function ψ(r) is singular for r = rP , consider a small sphere in V , see
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x1

x2

V

ni

nε
i

Sε

S

rP

r

Figure T.1: Green’s third formula. A volume V with bounding surface S with normal

vector ni. In V there is a small sphere Sε located at rP with radius ε and normal vector

nε
i .

Fig. T.1. In Eq. T.6 we need the first and the second derivative of ψ. The first derivative

of 1/ri is computed as

∂

∂xi

(
1

r

)
= −∂r/∂xi

r2
= − ri

r3
(T.8)

since the derivative of a distance X is a vector along the increment of the distance, i.e.

∂X/∂xi = Xi/X where X = |Xi|. The second derivative is obtained as

∂2

∂xi∂xi

(
1

r

)
= − ∂

∂xi

( ri
r3

)
= − ∂ri

∂xi

(
1

r3

)
+

∂r

∂xi

(
3ri
r4

)

= −3

(
1

r3

)
+
ri
r

(
3ri
r4

)
= − 3

r3
+
r2

r

(
3

r4

)
= 0

(T.9)

To get the right side on the second line we used the fact that riri = r2. Now we replace

ri = r by r− rP = ri − rP,i in Eqs. T.8 and T.9 which gives

∂

∂xi

(
1

|r− rP |

)
= − ri − rP,i

|r− rP |3
∂2

∂xi∂xi

(
1

|r− rP |

)
= 0

(T.10)

for ri 6= rPi , i.e. for V excluding the sphere Sε, see Fig. T.1. Apply Green’s second

formula for this volume which has the bounding surfaces S and Sε with normal vectors

ni (outwards) and nε
i (inwards), respectively. We get

−
∫

V−Sε

1

|r− rP |
∂2ϕ

∂xi∂xi
dV =

∫

S

(
−ϕ ri − rPi

|r− rP |3
− 1

|r− rP |
∂ϕ

∂xi

)
nidS

+

∫

Sε

(
−ϕ ri − rPi

|r− rP |3
− 1

|r− rP |
∂ϕ

∂xi

)
(−nε

i )dS

IS∗

(T.11)
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where the volume integral is taken over the volume V but excluding the sphere Sε, i.e.

V − Sε. Note the minus sign in front of the normal vector in the Sε integral; this is

because the normal vector must point out of the volume V − Sε, i.e. into the sphere,

Sε. In the sphere the normal vector, nε
i , correspond to the direction from point rP , i.e.

nε
i =

r− rP

|r− rP |
=

ri − rP,i

|ri − rP,i|
(T.12)

where we have normalized the vector ri− rP,i in order to make its length equal to one.

The length of the vector ri − rP,i is the radius of sphere Sε, i.e.

|r− rP | = ε (T.13)

The surface area, dS, for sphere Sε can be expressed in spherical coordinates as

dS = ε2Ω = ε2 sin θdθdα (T.14)

where Ω is the solid angle. Inserting Eqs. T.12, T.13 and T.14 in the last integral in

Eq. T.11 gives

ISε =

∫

Sε

(
ϕ

ε2
+
ri − rP,i

ε2
∂ϕ

∂xi

)
ε2dΩ =

∫

Sε

(
ϕ+ (ri − rP,i)

∂ϕ

∂xi

)
dΩ (T.15)

To re-write this integral we will use the mean value theorem for integrals. In one

dimension this theorem simply states that for the integral of a function, g(x), over an

interval [a, b], there exists (at least) on point for which the the relation

∫ b

a

g(x)dx = (a− b)g(xQ) (T.16)

holds, where xQ denotes a point on [a, b]. Applying this theorem to the integral in

Eq. T.15 gives

ISε = ϕ(rQ)

∫

Sε

dΩ+

[
rQ,i − rP,i)

∂ϕ

∂xi
(rQ)

]∫

Sε

dΩ (T.17)

where rQ ≡ rQ,i denotes a point on Sε. As we let Q→ P , the radius, ε, of sphere Sε

goes to zero so that the integral in Eq. T.17 reads

lim
ε→0

ISε = 4πϕ(rQ) (T.18)

since
∫
Sε dΩ = 4π. Inserted in Eq. T.11 gives

ϕ(rP ) = − 1

4π

∫

V

1

|r− rP |
∂2ϕ

∂xi∂xi
dV

+
1

4π

∫

S

ϕ
ri − rPi
|r− rP |3

nidS +
1

4π

∫

S

1

|r− rP |
∂ϕ

∂xi
nidS

(T.19)

This is Green’s third formula.

The singularity 1/|r − rP | in the volume integral in Eq. T.19 is not a problem.

Consider a small sphere with radius r = |ra − rP | centered at point P . In spherical

coordinates the volume element can then be expressed as

dV = r2 sin θdrdθdα = r2drdΩ (T.20)

Hence it is seen that volume element dV goes to zero faster than the singularity 1/|r−
rP |.
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T.4 Analytical solution to Poisson’s equation

Poisson’s equation reads
∂2ϕ

∂xj∂xj
= f (T.21)

where we assume that ϕ goes to zero at infinity and that the right side is limited.

Green’s third formula, Eq. T.19, gives

ϕ(rP ) = − 1

4π

∫

V

f(r)

|r− rP |
dV

+
1

4π

∫

S

ϕ
ri − rPi
|r− rP |3

nidS +
1

4π

∫

S

1

|r− rP |
∂ϕ

∂xi
nidS

(T.22)

We choose the volume as a large sphere with radiusR. Using Eqs. T.12, T.13 and T.14,

the first surface integral can be written as

1

4π

∫

S

ϕ
ri − rPi
|r− rP |3

nidS =
1

4πR2

∫

S

ϕninidS =
1

4π

∫

S

ϕdΩ (T.23)

using nini = 1. This integral goes to zero for large R since ϕ→ 0 as R → ∞.

The second surface integral in Eq. T.22 can be re-written using Eq. T.13, Gauss

divergence law and Eq. T.21 as

1

4π

∫

S

1

|r− rP |
∂ϕ

∂xi
nidS =

1

4πR

∫

S

∂ϕ

∂xi
nidS

=
1

4πR

∫

S

∂2ϕ

∂xi∂xi
dV =

1

4πR

∫

V

fdV

(T.24)

This integral also goes to zero for large R since we have assumed that f is limited.

Hence the final form of Eq. T.22 reads

ϕ(rP ) = − 1

4π

∫

V

f(r)

|r− rP |
dV (T.25)

This is the analytical solution to Poisson’s equation, Eq. T.21.
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U MTF270: Learning outcomes for 2016

Week 1

1. How is the buoyancy term, ρgi, re-written in incompressible flow?

2. Given the transport equation for the temperature, θ, and the transport equation

for θ̄, show the principles (in the same way as is done for the v′iv
′
j equation on

Section 11.2 on p. 117) how to derive the transport equation for v′iθ
′, Eq. 11.22.

Discuss the physical meaning of the different terms. Which terms need to be

modeled?

3. What is the expression for the total heat flux that appears in the θ̄ equation?

4. Show the principles how to derive the transport equation for v′iv
′
j , Eq. 11.11 (see

Section 11.2 on p. 117)

5. Which terms in the v′iv
′
j equation need to be modeled? Explain the physical

meaning of the different terms in the v′iv
′
j equation.

6. Derive the Boussinesq assumption.

7. Show how the turbulent diffusion (i.e. the term which includes the triple corre-

lation) in the k equation is modeled.

8. How is the production term modeled in the k − ε model (Boussinesq)? Show

how it can be expressed in s̄ij

9. Given the modeled k equation, derive the modeled ε equation.

10. How are the Reynolds stress, v′iv
′
j , and the turbulent heat flux, v′iθ

′, modeled in

the Boussinesq approach?

11. Discuss and show how the dissipation term, εij , is modeled.
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Week 2

1. Use physical reasoning to derive a model for the diagonal components of the

pressure-strain term (slow part).

2. Using physical reasoning, the model for the pressure-strain term above is for-

mulated only for the normal streses. Show that if the model is expressed in the

principal directins, then a model for the shear stress is also obtained.

3. The slow pressure-strain model reads Φij,1 = −c1ρ ε
k

(
v′iv

′
j − 2

3δijk
)

. The

anisotropy tensor is defined as aij =
v′

iv
′

j

k − 2
3δij . Show that for decaying grid

turbulence, the model for the slow pressure-strain model indeed acts as to make

the turbulence more isotropic if c1 > 1.

4. Derive the exact Poisson equation for the pressure fluctuation, Eq. 11.64.

5. For a Poisson equation
∂2ϕ

∂xj∂xj
= f

there exists an exact analytical solution

ϕ(x) = − 1

4π

∫

V

f(y)dy1dy2dy3
|y − x| (U.1)

Use Eqs. 11.64 and U.1 to derive the exact analytical solution (Eq. 11.67) for

the pressure-strain term. Which are the “slow” and “rapid” terms? Why are they

called “slow” and “rapid”?

6. Derive the algebraic stress model (ASM). What main assumption is made?

7. Show the physical reasoning leading to the modeled slow pressure strain term,

Φ22,1w, for wall effects. What sign does it have? Give also the expressions for

Φ11,1w and Φ33,1w

8. The modeled slow and rapid pressure strain term readΦij,1 = −c1ρ ε
k

(
v′iv

′
j − 2

3δijk
)

and Φij,2 = −c2
(
Pij − 2

3δijP
k
)
, respectively. Give the expression for the pro-

duction terms, modeled pressure-strain terms and modeled dissipation terms for

a simple shear flow (e.g. boundary layer, channel flow, jet flow . . . ). In some

stress equations there is no production terms nor any dissipation term. How

come? Which is the main source term (or sink term) in these equations?

9. Describe the physical effect of stable stratification and unstable stratification on

turbulence.

10. Consider buoyancy-dominated flow with x3 vertically upwards. The production

term for the v′iv
′
j and the v′iθ

′ equations read

Gij = −giβv′jθ′ − gjβv′iθ
′, Piθ = −v′iv′k

∂θ̄

∂xk

respectively (we assume that the velocity gradient is negligible). Show that the

Reynolds stress model dampens and increases the vertical fluctuation in stable

and unstable stratification, respectively, as it should. Show also that k in the

k − ε model is affected in the same way.
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Week 3

1. Consider streamline curvature for a streamline formed as a circular arc (convex

curvature). Show that the turbulence is dampened if ∂vθ/∂r > 0 and that it is

enhanced if the sign of ∂vθ/∂r is negative.

2. Streamline curvature: now consider a boundary layer where the streamlines are

curved away from the wall (concave curvature). Show that the Reynolds stress

model gives an enhanced turbulence production (as it should) because of positive

feedback between the production terms. Why is the effect of streamline curvature

in the k − ε model is much smaller?

3. Consider stagnation flow. Show that in the Reynolds stress model, there is only a

small production of turbulence whereas eddy-viscosity models (such as the k − ε
model) give a large production of turbulence.

4. What is a realizability constraint? There are two main realizability constraints,

one on the normal and one on the shear stresses: give the form of these con-

straints.

5. Show that the Boussinesq assumption may give negative normal stresses. In

which coordinate system is the risk largest for negative normal stresses? Derive

an expression (2D) how to avoid negative normal stresses by reducing the turbu-

lent viscosity (Eq. 13.12).

Hint: the eigenvalues, λ1, λ2, are obtained from |Sij − δijλ| = 0.
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Week 4-5

1. What is a non-linear eddy-viscosity model? When formulating a non-linear

model, the anisotropy tensor aij = −2νts̄ij/k is often used. The three terms

read

c1τ
2

(
s̄iks̄kj −

1

3
s̄ℓks̄ℓkδij

)

+c2τ
2
(
Ω̄iks̄kj − s̄ikΩ̄kj

)

+c3τ
2

(
Ω̄ikΩ̄jk − 1

3
Ω̄ℓkΩ̄ℓkδij

)

Show that each term has the same properties as aij , i.e. non-dimensional, trace-

less and symmetric.

2. Which equations are solved in the V2F model?

3. The transport equation for v′22 reads (the turbulent diffusion term is modeled)

∂ρv̄1v′22
∂x1

+
∂ρv̄v′22
∂x2

=
∂

∂x2

[
(µ+ µt)

∂v′22
∂x2

]
−2v′2∂p

′/∂x2︸ ︷︷ ︸
ρΦ22

−ρε22

Show how this equation is re-written in the V2F model.

4. The f equation in the V2F model reads

L2∂
2f

∂x22
− f = −Φ22

k
− 1

T

(
v′22
k

− 2

3

)
, T ∝ k

ε
, L ∝ k3/2

ε

Explain how the magnitude of the right side and L affect f (Fig 15.1). How

does f enter into the v′22 equation? Show that far from the walls, the V2F model

(i.e. the f and the v′22 equation) returns to the v′22 equation in the Reynolds stress

model. In the V2F model, the v2 equation is solved: what is the difference

between v′22 and v2 (see the discussion in connection to Eq. 15.9)?

5. What does the acronym SST mean? The SST model is a combination of the

k − ε and the k − ω model. In which region is each model used and why? How

is ω expressed in k and ε?

6. Derive a transport equation for ω from the k and ε transport equations; you only

need to do the production, the destruction and the viscous diffusion terms.

7. In the SST model, a blending function F1 is used; what does this function do?

8. What is the purpose of the shear stress limiter in the SST model? Show that the

eddy-viscosity assumption gives too high a shear stress in APG since P k/ε≫ 1
(Eq. 16.15).

9. Show the difference between volume averaging (filtering) in LES and time-

averaging in RANS.
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10. Consider the spatial derivative of the pressure in the filtered Navier-Stokes: show

that the derivative can be moved outside the filtering integral (it gives an addi-

tional second-order term).

11. The filtered non-linear term has the form

∂vivj
∂xj

Show that it can be re-written as

∂v̄iv̄j
∂xj

giving an additional term

− ∂

∂xj
(vivj) +

∂

∂xj
(v̄iv̄j) = −∂τij

∂xj

on the right side.

12. Consider a 1D finite volume grid. Carry out a second filtering of v̄ at node I and

show that v̄I 6= v̄I .

13. Consider the energy spectrum. Show the three different regions (the large energy-

containing scales, the −5/3 range and the dissipating scales). Where should the

cut-off be located? Show where the SGS scales, grid (i.e resolved) scales and the

cut-off, κc are located in the spectrum.
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Week 6

1. Show how a sinus wave sin(κcx) corresponding to cut-off is represented on a

grid with two and four cells, respectively. How is κc related to the grid size ∆x
for these cases?

2. Taking guidance from the RANS k equation, formulate the one-equation ksgs
equation

3. Consider the energy spectrum and discuss the physical meaning of Pksgs and

εsgs.

4. Discuss the energy path in connection to the source and sink terms in the k̄, K̄
and the ksgs equations, see Figs. M.3 and M.4. How are k̄ and ksgs computed

from the energy spectrum?

5. Derive the Smagorinsky model in two different ways (Sections 18.6 and 18.22)

6. What is a test filter? Grid and test filter Navier-Stokes equation and derive the

relation ︷ ︷
v̄iv̄j −

︷︷
v̄ i

︷︷
v̄ j +

︷︷
τ ij = Lij +

︷︷
τ ij = Tij (U.2)

Draw an energy spectrum and show which wavenumber range k̄, ksgs, ksgs,test
cover.

7. Formulate the Smagorinsky model for the grid filter SGS stress, τij , and the test

filter SGS stress, Tij . Use Eq. U.2 and derive the relation

Lij −
1

3
δijLkk = −2C

(︷︷
∆

2

|
︷︷
s̄ |
︷︷
s̄ ij −∆2

︷ ︷
|s̄|s̄ij

)

8. The equation you dervived above is a tensor equation for C. Use this relation

and derive the final expression for the dynamic coefficient, C, Eq. 18.38.

9. Show that when a first-order upwind schemes is used for the convection term,

an additional diffusion term and dissipation terms appear because of a numerical

SGS viscosity

10. What are the five main differences between a RANS finite volume CFD code

and a LES finite volume CFD code? What do you need to consider in LES when

you want to compute time-averaged quantities? (see Fig. 18.11). How can the

integral time scale, Tint, be used?(see Section M.3)

11. We usually define the SGS stress tensor as τij = v′iv
′
j − v̄iv̄j . In scale-similarity

models, τij is written as three different terms. Derive these three terms. What

are they called? What does the word “scale-similar” mean? Two of the terms are

not Galilean invariant: which ones? What is Galilean invariance?

12. When doing LES, how fine does the mesh need to be in the wall region be? Why

does it need to be that fine?
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Week 7

1. Describe URANS. How is the instantaneous velocity decomposed? What turbu-

lence models are used? What is scale separation?

2. What is DES? The length scale in the RANS S-A model reads

(
ν̃t
d

)2

; how is it

computed in the corresponding DES model?

3. How is the length scale computed in a k − ε two-equation DES model? Where

in a boundary layer does the DES model switch from RANS to LES?

4. The modified (reduced) length scale in two-equation DES models can be intro-

duced in different ways. It it usually introduced in one transport equation. Which

one and which term? Apart from this transport equation, it is sometimes used in

a another equation. Which one? What is the effect on the modeled, turbulent

quantities?

5. What is DDES? Why was it invented?

6. Describe hybrid LES-RANS based on a one-equation model.

7. Discuss the choice of discretization scheme and turbulence model in URANS

(see

8. What is the physical meaning of fk in PANS?

9. The PANS equations are given in Eqs. 23.21. Assume that fε = 1. Consider the

destruction term in the ε equation and the coefficient C∗
ε2. Explain what happens

if fk is reduced from 1 (RANS mode) to fk = 0.4 (LES mode).

10. Describe the SAS model. How is the von Kármán length scale defined? An

additional source term is introduced in the ω equation: what is the form of this

term? Describe how this source reduces the turbulent viscosity. When is the term

large and small, respectively?
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Week 8

1. Give a short description of the method to generate synthetic turbulent inlet fluc-

tuations; see Chapter 27 and first 13 slides in

http://www.tfd.chalmers.se/˜lada/slides/slides inlet.pdf

What form on the spectrum is assumed? How is the wavenumber, κe, for the

energy-containing eddies, determined? How are the maximum and minimum

wavelengths, κmax, κmin, determined? With this method, the generated shear

stress is zero: why? How is the correlation in time achieved?

http://www.tfd.chalmers.se/~lada/slides/slides_inlet.pdf
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Technology, Göteborg, Sweden, 2002.

[93] J. Pallares and L. Davidson. Large-eddy simulations of turbulent flow in a rotat-

ing square duct. Physics of Fluids, 12(11):2878–2894, 2000.

[94] J. Pallares and L. Davidson. Large-eddy simulations of turbulent heat transfer in

stationary and rotating square duct. Physics of Fluids, 14(8):2804–2816, 2002.
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