The Dihedral Group D_3

The dihedral group D_3 is obtained by composing the six symetries of an equilateral triangle.

There are three rotations

and three reflections.

0	R_0	R_{120}	R_{240}	L_1	L_2	L_3
R_0	R_0	R_{120}	R_{240}	L_1	L_2	L_3
R_{120}	R_{120}	R_{240}	R_0	L_3	L_1	L_2
R_{240}	R_{240}	R_0	R_{120}	L_2	L_3	L_1
L_1	L_1	L_2	L_3	R_0	R_{120}	R_{240}
L_2	L_2	L_3	L_1	R_{240}	R_0	R_{120}
L_3	L_3	L_1	L_2	$ \begin{array}{c} L_1 \\ L_3 \\ L_2 \\ R_0 \\ R_{240} \\ R_{120} \end{array} $	R_{240}	R_0