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Abstract: For many firms, producing information, knowledge, and 
enhancing learning capability have become the primary basis of competitive 
advantage. A review of organizational learning theory identifies two 
approaches: (1) those that treat symbolic information processing as 
fundamental to learning, and (2) those that view the situated nature of 
cognition as fundamental. After noting that the former is inadequate 
because it focuses primarily on behavioral and cognitive aspects of 
individual learning, this paper argues the importance of studying learning 
as interactions among people in the context of their environment. It 
contributes to organizational learning in three ways. First, it argues that 
situated learning theory is to be preferred over traditional behavioral and 
cognitive learning theories, because it treats organizations as complex 
adaptive systems rather than mere information processors. Second, it adds 
rate and nonlinear learning effects. Third, following model-centered 
epistemology, it uses an agent-based computational model, in particular 
a“humanized” version of Kauffman’s NK model, to study the situated nature 
of learning. Using simulation results, we test eight hypotheses extending 
situated learning theory in new directions. The paper ends with a discussion 
of possible extensions of the current study to better address key issues in 
situated learning. 
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INTRODUCTION 

Information and knowledge have become the primary basis of a 
firm’s competitive advantage in modern societies (Argote, Ingram, 
Levine & Moreland, 2000; Castells, 1996; Drucker, 1999). How organ-
izations create, retain, share and transfer knowledge has become a heated 
topic attracting attention from diverse disciplines, including cognitive 
psychology (e.g. Thompson, Gentner & Lowenstein, 2000), artificial 
intelligence (Carley, 1999a; Carley & Gasser, 1999; Hutchins, 1990, 
1991), group dynamics (Argote, 1999; Moreland & Myaskovsky, 2000; 
Paulus & Yang, 2000), strategic management (Brockmann & Anthony, 
1998), and macro organization theory (Miner & Anderson, 1999). 
Increasing the amount of organizational learning has become the center-
piece of research on organizational strategy, structure and process (Cross 
& Israelit, 2000; Nonaka & Nishiguchi, 2001). Amount of learning is 
surely important, but increasing the rate of learning could be even more 
important for firms competing in hypercompetitive, high velocity 
contexts (D’Aveni, 1994; Prusak, 1996; Brown & Eisenhardt, 1997). 

Existing research on organizational learning roughly classifies 
into two camps: symbolic information processing and situated learning 
(Greeno & Moore, 1993). The symbolic information processing perspec-
tive, dominating traditional learning theory, focuses primarily on 
individual minds, and downplays the importance of context. The situated 
learning perspective, by contrast, views learning as grounded less in 
individual cognitions than in interactions among people and between 
people and their environmental context. That agents interact and 
influence each other is fundamental to the coevolutionary basis of the 
nonlinear dynamics studied by complexity scientists (Arthur, 1990; 
Arthur, Durlauf & Lane, 1997). 

Kauffman (1993) argues that increasing numbers of links among 
interacting agents have a nonlinear effect, resulting eventually in 
“complexity catastrophe.” His use of “catastrophe” is to signify that 
while increasing social connections at first facilitates learning, at some 
point too much interactive complexity thwarts adaptive learning and 
stops the Darwinian natural selection process. The negative effect of too 
much network complexity has also been observed in organizations (Uzzi, 
1997). In this paper, we concentrate on the within-group dynamics at the 
core of organizational learning.  

For the record we note that, for Kauffman, “complexity 
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catastrophe” thwarts the Darwinian natural selection process—a truly 
catastrophic outcome for biologists. This usage differs from Thom’s 
(1975) catastrophe theory wherein surpassing critical values on control 
parameters shifts a system into discontinuous change. 

We begin by elaborating the argument that situated theory of 
learning is to be preferred over the traditional behavioral and cognitive 
theories of learning. Our theoretical development rests on two recent 
shifts in organizational research: (a) from treating organizations as mere 
information processors to complex adaptive systems; and (b) from a 
reductionist to a holistic perspective focusing on emergent collective 
properties. Given these theory issues, we take an agent-based simulation 
approach. Heterogeneous agent models are particularly well suited to the 
study of interactive agent connections, nonlinear interaction, emergent 
structure and supervenience (downward causality). Using a computa-
tional simulation, we test several hypotheses extending situated theory in 
new directions. We conclude with a discussion of possible extensions of 
the current study to better address remaining issues in the situated 
learning theory. 

 

TRADITIONAL VS. SITUATED LEARNING THEORY 

Traditional 

Traditional learning theories divide roughly into two 
perspectives: behavioral and cognitive (Greeno & Moore, 1993). The 
behavioral approach focuses on how people learn through stimulus-
response conditioning, ignoring mental processes through which human 
beings develop internal perceptions of external objects. Cognitive 
theories of learning, regardless of the distinctions among the 
constructivist, psychoanalytic, and critical cultural perspective (Fenwick, 
2000), rose as antitheses to the behavioral approach for explaining how 
cognitive agents learn through symbolic information processing (Glynn, 
Lant & Millikan, 1994; Greeno & Moore, 1993; Moore, 1998). Although 
most traditional theories of learning acknowledge the existence of 
interactive relations between the agents and the external contexts that 
may impact the development of agents’ intellectual capabilities for 
knowledge acquisition, the dialectic interplay between agents and the 
contexts has never been fully explored (Greeno & Moore, 1993). In 
traditional learning theories, the primary unit of analysis is the individual 
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mind (Lave & Wenger, 1991; Sfard, 1998), and as a result, the concept 
of learning is a “lonely one, analytically removed from the rich textures 
of everyday experience” (Hutchins, 1993, p. 743). 

Situated Learning Theory 

Situated learning theory scholars argue that learning activity 
takes place not only within the individual learner’s mind, but also among 
learners within an interactive community. Group knowledge is not only 
the property of individuals who have the knowledge, but also of the 
speech community or the social network in which such knowledge is 
negotiated and justified (Giddens, 1984; Hutchins, 1993; Glynn, Lant & 
Milliken, 1994; Lave & Wenger, 1991; Taylor, 1999; Wenger, 1998). 
Argote (1999) defines a group as a collection of individuals who share 
task interdependencies, who see themselves and are seen by others as 
members of an intact social entity, and who are embedded in a larger 
social system. Group learning is a collective experience in which group 
members generate, retain, and transfer knowledge.  

According to Greeno and Moore (1993), the more commonly 
used term “situated cognition” implies that some types of cognitions are 
situated while others are not. They suggest the term “situativity” instead 
of “situated” to describe a general characteristic of cognition, arguing 
that “situativity is fundamental in all cognitive activity” and “cognition 
that involves symbols” is only “a special case of cognitive activity” (p. 
50). Although we use the more popular term here, we agree with Greeno 
and Moore that being situated in social contexts is fundamental for most 
learning activities. 

Situated learning theory shifts attention from individual minds to 
connections among minds; and from the properties of individual persons 
or of their environments to the interactions between people, and between 
people and their environment (Greeno & Moore, 1993; Glynn, Lant & 
Millikan, 1994; Lant & Phelps, 1999; Lave & Wenger, 1991; Taylor, 
1999; Weick & Ashford, 2000; Weick & Roberts, 1993). Learners are 
not isolated individuals but participants within communities of practice 
(Lave & Wenger, 1991). It follows that (a) individual learning is insep-
arable from collective learning; and (b) situated learning should be 
understood primarily as evolving within “an interactive context and is 
embedded in the context and the process of organizing” (Lant & Phelps 
1999, p. 233), and is “best modeled in terms of the organizational 
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connections that constitute a learning network” (Glynn, Lant & Millikan, 
1994, p. 56).  

Situated learning theory advocates a fundamental reconcep-
tualization of the processes of human cognitive activities (Greeno & 
Moore, 1993; Hutchins, 1993; Glynn, Lant & Millikan, 1994; Lant, 
1999). This view is also consistent with two changes in organizational 
studies in recent years. The first one is the shift from viewing 
organizations as linear information processors to treating them as 
complex adaptive systems. The second reflects the studying learning 
from a holistic, emergent, multi-level mutual-causality perspective. We 
elaborate these below. 

 
Situated Learning in Complex Adaptive Systems 

 
Situated learning theory’s argument that learning stems from 

social interactions may be further elaborated given that social 
interactions usually occur within complex adaptive systems (CASs) 
(Anderson, 1999; Anderson et al., 1999; Baum, 1999; Baum & 
Silverman, 2001; Carley & Hill, 2001; Levinthal & Warglien, 1999; 
McKelvey, 1997b, 1999a, 2003; Rivkin, 2000). Complexity has been a 
central construct in organization science ever since the open-systems 
view of organizations began to diffuse in the 1960s (Anderson, 1999). 
The latter focuses on how interdependent parts of organizations interact 
with each other and with some larger environment to exchange resources 
(Monge & Eisenberg, 1987). However, the premises at the core of 
contemporary “complexity theory” did not emerge until after scholars 
realized that the general systems approach fell short in accounting for 
such issues as self-referencing capabilities of systems, coevolution 
among parts, time-dependent nature of relationships, and nonlinearity 
and discontinuity in the growth trajectories (Arthur, Durlauf & Lane, 
1997; Contractor, 1994; Deetz, 2000).  

According to Markovsky (1998, p. 2), CASs have the following 
characteristics: (a) large numbers of components coupled with even 
larger numbers of interactions;  (b) self-organization; (c) adaptation to 
their environment over time; (d) dynamism and a kind of patterned 
liveliness; (e) interactions and feedback loops among components that 
produce higher level emergent behaviors that could not be understood by 
reducing it to parts; (f) Nonlinearity, in that the parts of complex systems 
do not sum. 
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The CAS view parallels situative learning theory because it also 
locates learning not only in individual minds, but also in connections 
between minds. Furthermore, the CAS view suggests that interactions 
between agents are dynamic over time and nonlinearly generative of 
emergent, group-level learning properties from individual group 
members (hereinafter, agents). This results in shared meaning, facilitates 
sense making (Weick, 1976), and produces emergent  collective 
knowledge (Monge & Fulk, 1999; Monge & Contractor, 2000). CAS and 
situated theory converge in identifying the core role of relational 
interactions and emergent properties in learning. 

 
Multi-Level Coevolution 

 
Given its emphasis on individual and emergent collective 

properties, complexity theory takes a holistic, multi-level, coevolutionary 
perspective. The situated theory of learning emphasizes the importance 
of participation, arguing that “learning should be viewed as a process of 
becoming a part of a greater whole” (Sfard, 1998, p. 6). While the 
acquisition metaphor (AM) of traditional learning theories stresses the 
individual mind and what goes “into it,” the participation metaphor 
(PM) of the situated theory of learning shifts the focus to the evolving 
bonds between the individual and others. While AM emphasizes the 
inward movements of the object known as knowledge, PM gives 
prominence to the aspect of mutuality characteristic of part-whole 
relations. Indeed, PM makes salient the dialectic nature of the learning 
interaction: The whole and the parts affect and inform each other. 

A holistic perspective does not mean that researchers should 
only concentrate on the collective properties of the system and ignore the 
micro dynamism of and between individual components. Compared to 
the aggregation model of the positivist-reductionist approach, macro-
level studies can get us closer to the true nature of the global properties 
of a system. Even so, they fall short of capturing the processes by which 
the global properties of the system come into being—as do reductionist 
approaches. Following the CAS arguments, because the global properties 
of a system are not static, but emergent from lower-level interactions, the 
focus of research attention should be placed on agent-level interactions, 
either among agents or between agents and the environmental context 
(Holland, 1996; Monge & Contractor, 2000). In the case of learning 
theories, it means that the extreme version of situated learning theory, 
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which proposes to explain learning only from the effects of context, is as 
inadequate as the proposal to concentrate on decontextualized actors 
(Moore, 1998; Sfard, 1998; Weick & Ashford, 2000).  
 

KAUFFMAN’S COMPLEXITY CATASTROPHE THEORY 
APPLIED TO LEARNING 

 
Learning in Kauffman’s NK model encompasses both the 

interactions among individual agents and between agents and the group. 
Interactions among agents exist because, so long as group members are 
connected to each other, one group member’s contribution to the overall 
performance of the group is influenced by his or her interactions with the 
others. Part-whole interactions progress in two ways. Bottom-up 
interaction happens when the performance of the group is influenced by 
how much each individual member contributes. Top-down influence 
occurs when a decision at the group level, as to whether to incorporate an 
individual person’s learning as collective learning, is made based on its 
value to the whole group, not to that particular individual person. The 
“agents” (for us, group members) coevolve toward improved individual 
fitness (learning) over time by searching out and then adopting the 
fitness attributes of other agents. Agents systematically select for 
improved learning and the group selects against agents having lower 
learning—following Darwinian selectionist theory. Applied to our 
context, group performance improves through coevolutionary learning at 
the agent level as individuals interact in search spaces that are 
dynamically shaped and reshaped over time by other individuals’ actions 
as each pursues his or her own learning. 

Kauffman theorizes about coevolving adaptive-learning agents 
searching for improved learning on search spaces called “fitness 
landscapes,” drawing on Wright (1931). The configurations of the 
landscape are shaped mainly by two factors, N and K. In his original 
theory, N measures the number of genes that form a genotype. In our 
case, N is designated to measure the number of people forming a group. 
The second component, K measures the average number of linkages that 
each gene has with the other genes forming the same genotype in the 
original theory. In our case, it is a measure of the number of 
communication linkages among people. 
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Amount of Group Learning 

Impacts of Network Density K on Amount of Group Learning 

In Kauffman’s model, K is used to designate the average level of 
communication links (or coordination constraints) among group 
members. As discussed earlier, situated learning theories maintain that 
the dynamics of group interaction have a significant impact on group 
learning. When group members do not have many communication links 
with other people, they will not have adequate opportunities to learn 
from others; so, adding links improves the likelihood of increased group 
learning. But too many linkages can also cause problems as people are 
boundedly rational and it can be costly to maintain extensive network 
ties. Students of social network analyses have established the importance 
of network density in shaping learning within groups. Uzzi (1997), 
however, observes that firms dependent on dense ties have 
vulnerabilities. Thick networks can “gum up” the system and make firms 
slow to adapt. Podolny (1993) finds that strong long-run networks can 
thwart renewal and change. Galaskiewicz and Zaheer (1999, p. 258) 
conclude that “an over-abundance of social network ties can inhibit the 
adaptive capacities of firms and can lead to inflexibility and 
inefficiency.” While there are innovative exceptions, in many organi-
zations, the more people have to coordinate the higher the probability is 
that bureaucratic constraints such as rules and attitudes favoring the 
status quo will prevail. Based on these observations, we propose that 
over time and across many interactions (ceteris paribus)  

H1: The amount of group learning is a nonlinear nonmonotonic 
(inverted U) function of K. 

Impacts of Group Size N on Amount of Group Learning 

How group size N influences the amount of group learning is 
open for debate. N can have a positive impact on within-group 
interactions because, as group size increases, the number of possible ties 
among group members may grow geometrically (Arrow, McGrath, & 
Berdahl, 2000). This creates more learning opportunities among group 
members. But, research also shows that an increase in group size leads to 
increases in social loafing, interpersonal conflict, and dissatisfaction, and 
most relevant to this study, decreased participation opportunities. Also, 
as size increases communication becomes more inefficient, and it may be 
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harder to find out where useful information lies (Argote, 1999). In fact, 
most research on the effect of group size on participation consists of 
snapshot studies. We will explore whether a dynamic analysis produces 
similar results. Absent a clear prediction, we propose that: 

H2: Ceteris paribus, the amount of group learning is influenced 
by group size, N. 

Rate of Learning 

In a fast changing world, it is not just the final amount of 
improved learning that counts, but how fast a group or firm can learn as 
compared to competitors. Prusak (1996, p. 6) says that, “The only thing 
that gives an organization a competitive edge—the only thing that is 
sustainable—is what it knows, how it uses what it knows, and how fast it 
can know something new!” Fisher’s (1930) theorem holds that organisms 
having higher internal change rates are less susceptible to the Law of 
Competitive Exclusion. Anyone with a personal computer knows about 
the high rate at which fixed-disk capacity skyrocketed while at the same 
time disk size shrunk rapidly in size during the 1990s. To stay in the 
“Red Queen” race, firms had to start innovation two product life cycles 
ahead just to stay even. Modest learning early on may prove more 
important for survival than much learning later. As operationalized in the 
Method section, we focus on factors inhibiting the speed at which a 
group reaches its maximum learning, rather than what it would take to 
stay ahead of the learning rates of competitors. 

The importance of rate of learning is well documented in 
observations of successful firms competing in high velocity 
environments. High profits (economic rents) go to firms such as British 
Airways, Gillette, Netscape, 3M, and Intel because their product 
development rates allow them to constantly get new products to market 
ahead of their competitors (Brown and Eisenhardt, 1997; 1998, p. 166). 
Competitive advantage goes to firms: staying ahead of the efficiency 
curve (Porter, 1985; 1996), gaining industry control before competitors 
(Hamel & Prahalad, 1994), winning in hypercompetitive environments 
(D’Aveni, 1994), and keeping pace with value migration (Slywotzky, 
1996). In case after case Stacey (1995) finds that fast paced learning in 
dynamic ill-structured environments is the basis of competitive 
advantage by allowing firms to stay ahead of others in their industry. 
After in-depth studies of 7 exemplar firms, O’Reilly and Pfeffer (2000, p. 
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259) conclude:  “Speed cuts costs, and the things companies do to build 
speed, commitment, and intelligence therefore provide them with 
substantial cost advantages.” 

 
Impacts of Group Size N on Rate of Group Learning 

In light of these findings we use Kauffman’s model to study the 
possibility that interconnectivity proliferation could diminish the rate as 
well as amount of learning. Small groups reach their optimal level fast 
because for a group of 3 people, only 23 types of combinations are 
possible. In contrast, for a group of 8 people, the number of possible 
combinations rises exponentially to 28. Therefore, when group size is 
small it takes less time for the system to find the optimal group 
composition. On the other hand, large groups converge quickly as well, 
but this is because they get trapped on lower, suboptimal peaks that are 
easier to reach quickly—because the peaks are lower. 

H3: Ceteris paribus, the rate of group learning is a nonmonotonic 
function (U shape) of N, with the medium size groups taking longest 
to fully explore the groups’ learning capability. 

Impacts of Network Density K on Rate of Group Learning 

  Similar to our analysis about the amount of group learning, we 
predict that network density K also has a curvilinear effect on the rate of 
group learning. The reason is that when interactivity is low, it takes 
longer for a group to acquire and learn new knowledge. But high 
interactivity slows down the rate just as it does the amount of collective 
learning because people are boundedly rational. Based on these 
arguments, we propose: 

H4: Ceteris paribus, the rate of group learning is a nonlinear 
nonmonotonic (inverted U) function of K. 

Complexity Catastrophe 

One significant contribution of Kauffman’s NK model is the 
complexity catastrophe effects that may work against selection. 
Kauffman finds that (1) in precipitous rugged landscapes, adaptive 
progression is trapped on the many suboptimal “local” peaks; or (2) as 
peaks proliferate beyond the rugged few, they become less differentiated 
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from the general landscape. In either case, even in the face of strong 
selection forces, the fittest members of the population exhibit 
characteristics little different from the entire population. He labels these 
“complexity catastrophes” because either one or the other is inevitable if 
the “complexity of the entities under selection increases.” Thus, 
complexity imposes an upper bound on adaptive progression via 
selection “when the number of parts exceeds a critical value” (1993, p. 
36). In this way complexity catastrophe thwarts the selection process. His 
“catastrophe” sets in because, even though Darwinian selection 
processes continue, the learning options from nearest neighbors are 
increasingly reduced toward the mean of 0.5 and further reduced by the 
web of constraints imposed by the K linkage constraints—resulting in the 
flatter search landscape. His Tables 2.1 and 2.2 (1993, pp. 55–56) 
demonstrate this. When K is very small, the increased number of links 
allows improved group learning (even if N is large)—thus temporarily 
thwarting the size effect. But as K increases toward K = N–1, group 
learning is reduced toward the mean. This is shown in our Fig. 1 and 
Kauffman’s Tables 2.1 and 2.2—the targets of our docking analyses. 
Based on these findings, we propose: 

H5: Ceteris paribus, the rate of group learning is a nonmonotonic 
function (U shape) of N, with the medium size groups taking longest 
to fully explore the groups’ learning capability; 

H6: For low K, the rate of group learning is a positive function of K. 

Thompson’s Task Interdependencies 

Communication interdependencies leading to coevolutionary 
agent learning, and ultimately improved group-level learning, could be 
constrained by task interdependencies. Thompson (1967) distinguishes 
among three types of task interdependencies: pooled, sequential, and 
reciprocal. Consequently, in Thompson’s terms, we posit that sequential 
task interdependencies steer communication interactions toward nearby 
neighbors in the task sequence and consequently inhibit the freedom of 
agents to find more fit agents and thereby more quickly coevolve toward 
improved levels of group learning. Thus: 

H7: Pooled task interdependencies improve the rate and amount of 
group learning more than do sequential task interdependencies.  
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Fig. 1. Results from our simulation tests for Docking Table 2.1 from 
Kauffman’s (1993) book. 
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Effect of Group Structure on Learning:  
Humanizing Kauffman’s NK Code 
 

Recent applications (Levinthal, 1997; Levinthal & Warglien, 
1999; Rivkin, 2000) of the NK model to social settings use it unmodified, 
as best we can tell. McKelvey (1997a) offers some ideas for  
“humanizing” Kauffman’s NK model. One of them deals with the 
number of links an agent may have with others—what we term the “K-
distribution” effect. In Kauffman’s verbal formulation of his theory, K is 
designated to represent the average number of links among agents. 
However, in the formulations codified into his computer program, K is 
exactly the same for all members. In this formulation, although K still 
represents the average number of links that a group member may have, 
the generalizability of the model is jeopardized because its completely 
uniform set of connections is only one very narrow special case. In real 
organizations, hierarchical control and social preference structures 
always exist, and differences in tasks are reflected in varying levels and 
types of task interdependencies. Group structure is differentiated if the 
differences in the number of links across people are considerable—
resulting in Stars (many links) and Isolates (few links). It is undifferen-
tiated if the most connected members don’t have many more ties than the 
least connected ones. 

H8: Ceteris paribus, the greater the trend of communication ties 
toward the extremes of stars and isolates, the lower the amount of 
group learning. 

METHOD 

Studying Situated Learning With Agent-Based Models 

To study situated cognition, ethnographic thick descriptions have 
proved a useful tool (Brown & Duguid, 1996). As noted previously, 
situated learning theory calls for studying learning in an interactive 
context. Agent-based models offer an alternative approach that has at 
least three advantages. First, agent-based models allow us to manipulate 
conditions affecting both the complex interactions among individual 
agents and between agents and their environment (Carley & Svoboda, 
1996; Holland, 1996; McKelvey, 1997b, 1999a, 2002). Epstein and 
Axtell (1996) observe that agent-based models simulate two types of 
emergence: the emergence of global properties of an organization or 
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group at the collective level from micro-level agent interactions, and the 
emergence of micro-level properties of agents because the model has 
feedback loops from the organization or group to the agents. These 
characteristics of agent-based models match perfectly with key elements 
of situated learning theory. 

Second, agent-based modeling is particularly useful for modeling 
interactions when they are nonlinear and multiplicative, when the 
dynamics of the interactions are time-dependent, and when the different 
mechanisms that drive interactions among agents may contradict each 
other (Axelrod & Cohen, 1999; Contractor et al., 2000). This approach 
frees researchers from the limitations of the additive, linear models that 
have dominated traditional learning theory and formal modeling in 
general (Henrickson & McKelvey, 2002). 

Third, because the interactions in complex adaptive systems are 
complicated and hard to predict, agent-based models help researchers run 
computational experiments for the purpose of improving theories and 
generating hypotheses (Carley, 1999b, 2000). McKelvey (2002) argues 
for the adoption of a model-centered epistemology. A theory can be 
summarized or formalized in the model and the model then can be used 
to elaborate nuances of the theory. A coevolving theory–model 
development results. Researchers start with a model combining several 
existing theories of interest, each of which may be taken as a generative 
mechanism prescribing rules governing communication interdepen-
dencies. Computational models may also be used to create virtual 
experiments with which researchers can examine, extend, integrate these 
theories, and test hypotheses under conditions not easily created in the 
real world. This facilitates the creation of sounder theories and 
hypotheses before taking on the arduous task of actual real-world 
empirical testing. 

In this beginning study, we take the simulation approach to 
testing our hypotheses. In particular, we use Kauffman’s NK model to 
investigate what factors may influence situated learning within groups. 
There are two reasons why we use this model in preference to other 
learning models. First, Kauffman’s NK model has become a classic in 
theoretical biology and has recently been used to study self-organization 
in organizations, including design of robust organizational forms 
(Levinthal, 1997; Levinthal & Warglien, 1999), implementation of 
effective collective control (Baum, 1999), development of core 
competencies (McKelvey, 1999a,b), and optimization of organizational 
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strategies (Rivkin, 2000). Second, we think that the central ideas of the 
NK model, though originally developed to study biological phenomena, 
are consistent with the major arguments of situated learning theory. The 
model studies interactions both between agents, and between the agents 
and the environment. This point will be further elaborated in the 
following section of the paper. 

One difference you will see in our results is that we mostly avoid 
the “hi-tech, multi-color” graphics characteristic of many simulation 
outputs. Instead of showing cute graphics for results and referring 
vaguely to statistics in a footnote, we use the various simulation runs to 
produce samples of numbers and then report out our results in the form 
of t-tests and regressions. 

Operational Measures 

Amount of Group Learning  

In Kauffman’s NK model, an agent, first, searches for a better 
position on a fitness improvement landscape—called an adaptive walk 
(1993, pp. 36–40). In each of some number of generations or time 
periods, g, the agent compares it’s fitness, w, with a nearest neighbor’s 
and adopts the latter’s fitness level if it is higher. The agent keeps 
searching in successive time periods until it gets trapped on a suboptimal 
peak (usually the case when K > 0)— because all neighboring positions 
have lower fitness levels. N measures the number of components of a 
collective entity—group in our case. At any given point in time, t, as the 
model iterates over the (t = 1→ g) generations:  

      ∑
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where Wt represents group learning at time t, and fi,,t,  represents the 
performance contribution from each individual person in the context of 
his/her interaction with other members of the group at time t. Wt 
increases only if it is larger than the previous time iteration. The equation 
implies collective learning at the group level dominates individual learn-
ing. It may happen that at certain iteration, f5,t (representing performance 
contribution from group member #5, for instance) is higher than f5,t-1. But 
if at the same time, the performance improvement of group member #5 
brings about a decrease in performance from other members of the group 
that /she is connected to, and therefore a decrease in overall group 
performance (Wt < Wt-1 ), such a change in the system will be dropped. 
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Rate of Group Learning 
 

We define rate of group learning as the number of time periods 
(iterations) it takes for an agent to reach its (usually) suboptimal point 
(which defines maximum group learning). Thus: 
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where: tb is the beginning of the search process, and te marks the end of 
the search process—when the agent reaches the local optima. We 
suppress the “IFF” part for presentation purposes.  

 
Fig. 2. Adjacent walk -- sequential interdependency: (left) same number 
of links for Person 5 and 6; (right) differences in the number of links for 
stars (Person 5) in contrast to isolates (Person 6). 

Task Interdependency—Adjacent and Random Walks  

In the NK model, in any given iteration, agents may choose to 
interact (at random) with only one of their most adjacent (nearest) 
neighbors. As depicted in Fig. 2 (left), group members may be assigned 
to a sequence of tasks. For the person that occupies the 5th position, for 
example, if N = 8 and K = 2, s/he can only interact with the people 
occupying the 4th and the 6th positions. That is, in Eq. 3, given N = 8 and 
K = 7, for wj,  j = persons 4, 6, 3, 7, 2, 8. And for the person in the 6th 
position, s/he can only interact with the person in the 5th and the 7th 
positions. Although in a simulation (or any other situation) it is not 
guaranteed that coevolutionary learning follows a pre-determined 
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sequence, the interaction pattern is sequential because, in such a setting, 
who can communicate with whom is determined predominantly by their 
position in the production sequence. This is our operationalization of 
Thompson’s (1967) depiction of sequential workflow interdependence. 
In NK models, agents’ movements are called “walks,” and when they are 
sequential the movements are called “adjacent walks.” Group members 
may also select their interaction partners randomly. As depicted in Fig. 3 
(left), for N = 8 and K = 2, the person in the 5th position can go outside 
his/her immediate neighborhood and interact with, say, a person in the 1st 
or 8th positions. In Eq. 3, given N = 8 and K = 7, for wj,  j = random 
selection among persons 2 to 8. This is similar to the idea of Thompson’s 
pooled interdependency, in which each member makes a contribution to 
the overall performance of the group, with no restriction on whether the 
interactions follow a workflow sequence or not. In NK modeling, such 
interactive movements are called “random walks.”  

 

 
Fig. 3. Random walk -- pooled interdependency: (left) same number of 
links for Person 5 and 6; (right) differences in the number of links for 
stars (Person 5) in contrast to isolates (Person 6). 

Stars and Isolates: Operationally Changing the Distribution of K 

We implement the differences between differentiated and 
undifferentiated group structures by the manipulating the distribution of 
K, that is, the standard deviation of K in a normal distribution. As 
depicted in Fig. 4, for a group of N = 48, K = 24, the line representing the 
average, with a close-to-zero standard deviation depicts what occurs in 
Kauffman’s original model—a completely undifferentiated group—all 
members have the same number of links. As the difference in the 
numbers ties across group members increases, the standard deviation 
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increases and the curve flattens. For an illustration, see Fig. 2 (right) for 
sequential and Fig. 3 (right) for pooled interdependency, the standard 
deviations of the K distribution grow accordingly. 

 

 
 
Fig. 4. The K distribution effect. 

 
We examine the humanized model of situated learning using a 

group of N = 48, a relatively large group in organizations. Smaller Ns 
could be chosen, but given the relationship between N and K, that is, 0 < 
K ± (2 × Standard Deviation) < N, a larger, yet realistic number allows 
more data points to be gathered. The reason that we select 2 standard 
deviations away from the mean as the standard is that under a normal 
curve, around 95% of the total area is covered in this region. We stopped 
generating new data when K – (2 × Standard Deviation) < 0, or when K + 
(2 × Standard Deviation) > N so that fewer data are winsorized, and the 
curve more likely remains normal. 

In our virtual experiments, to counter the effect of our use of 
random draws to assign (a) the level of learning contribution from each 
agent, and (b) number of interactive links among individuals in each 
adaptive walk across the learning improvement “landscape” (search 
space), we make the agents conduct their walks 100 independent times 
(100 computational runs) to deal with the first randomness factor in the 
model, and across 50 runs to balance the second factor. A walk stops 
when a group’s overall performance stops improving. Overall, it means 
that the group-learning search process requires 50 × 100 = 5,000 
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independent computer runs for each K by K-distribution configuration. 
The average level of performance across all these runs (walks) is then 
calculated and reported in our results section. 

 

SIMULATION RESULTS 

In our docking analysis, shown in Fig. 1, we reproduce Kauff-
man’s (1993) Tables 2.1 and 2.2 at correlations of 0.979 and 0.976, 
respectively. 

 
Table 1. Descriptive Statistics for the Non-humanized model (100 
Simulation Runs) 
 
Variable 
Name 

Mean Std. 
Dev.

2 3 4 5 

Amount of 
learning 
(Fitness) 

.66 .05 -.81* -.66* -.39*   –.17 

Communi-
cation ties  
(K) 

44.32 83.96 .56* .51*   .05 

Complexity 
catastrophe 
(K/(N-1)) 

.33 .33  -.09 .40* 

Group Size 
(N) 

151.20 147.15 –.77* 

Rate of 
learning 
(Mean rate) 

626.20 869.95  

*p < 0.01 level (2-tailed). 
 

Kauffman’s Original Model: Effects of Size and Ties 

For each simulation test, given different K and N combinations, 
we save the resulting fitness level for each walk in an SPSS data file, and 
then use these numbers for data analysis. We show the descriptive 
statistics to ensure that there are no serious violations of the normality 
assumptions of linear regression—see Table 1. Of the five research 
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variables included in the study, communication ties (K) and rate of 
learning are both very positively skewed. Following Tabachnick and 
Fidell’s (1996) suggestion, we take logarithmic transformations of the 
two variables; the distributions of both variables approach normal after 
transformation. We then use scatter plots to examine bivariate relation-
ships between independent and dependent variables in our study—see 
Fig. 5. If the relationships look curvilinear, we include a quadratic term. 

 
Fig. 5. Scatterplot of the relationship between variables N, K, and the 
amount and rate of learning.  

 
As reported in Table 1, because the average number of com-

munication ties between people, K, cannot exceed the total group size, N, 
the two variables are highly correlated with each other (r = .511, p < 
.05). Therefore in analyzing how they may influence the amount and the 
rate of group learning, we put them in the same regression equation so as 
to analyze the unique contribution of each factor, controlling for the 
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confounding effect of one on the other.  
Table 2. Summary of Stepwise Regression for Variables Influencing the 
Amount of Group Learning (Fitness) 

Variables B SE of B β 
Step 1    
Communication Ties 
(logK) 

–5.482 .412   –.803* 

Step 2    
Communication Ties 
(logK) 

  4.232 .831     .620* 

Quadratic term of 
Comm Ties (log2K) 

–4.096 .333 –1.496* 

Step 3    
Communication Ties 
(logK) 

  4.649 .804     .681* 

Quadratic term of 
Comm Ties (log2K) 

–4.450 .336 –1.626* 

Group size (N)   0.005 .001     .139* 
Note: R2 = .644 for Step1; ∆R2 = .217 for Step 2; ∆R2 = .014 for Step 3;  
*p < 0.01 for all cases. 
 
 
Table 3. Summary of Stepwise Regression for Variables Influencing the 
Rate of Group Learning.  

Variables B SE of B β 
Step 1    
Group size (N) –.004 .000   –.815* 
Step 2    
Group size (N) –.012 .001 –2.404* 
Quadratic term of 
group size (N) 

1.882E-05 .000   1.633* 

Step 3    
Group size (N) –.014 .001 –2.724* 
Quadratic term of 
group size (N) 

2.097E-05 .000   1.819* 

Communication ties 
(logK) 

.311 .040     .309* 

Note: R2 = .644 for Step1; ∆R2 = .217 for Step 2; ∆R2 = .014 for Step 3; 
*p < 0.01 for all cases. 
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Amount of Learning 
 

We use stepwise regression to more clearly analyze the relative 
importance of communication ties and group size in influencing 
collective learning. The scatter plot in Fig. 5 shows that the relationship 
between group learning and communication ties is curvilinear. Therefore, 
in the regression equation we include both the first and the second order 
terms for communication ties to capture the nonlinear nature of the 
relationship. As shown in Step 1 of Table 2, the first-order (linear) term 
of communication ties has a strong negative relationship with group 
learning (β = – .803, p < .05). 

In Step 2, both the first and the second order terms are included, 
which causes a significant improvement in the overall fit of the model—
variance explained increases by .217, from .644 to .861 (p < .05). The 
regression coefficients are also significant for both first (β = .681, p < 
.05) and quadratic (β = – 1.626, p < .05) terms of the variable. The 
negative sign of the second order term indicates that the overall 
relationship between the two variables takes an inverted U-shape, with a 
medium level of communication ties producing the highest improvement 
in learning. Therefore H1 is supported: Amount of learning is 
nonmonotonically related to K (inverted U shape). 

Step 3 of Table 2 tests Hypothesis 2, controlling for the number 
of communication ties. This result demonstrates the unique contribution 
of group size on learning, with the influence from network density 
partialled out. It shows that group size has a weak, but significant, linear 
positive effect on learning that is reflected in both the regression 
coefficient (β = .139, p < .05), and the change in R2 (∆R2 = .014, p < .05). 
H2 is also supported: Learning increases as N increases. 
 

Rate of Learning 

The scatter plot in Fig. 5 demonstrates the curvilinear nature of 
Hypothesis 3. In the stepwise regression reported in Table 3, we include 
both the first and second order terms for N. Step 1 tests the linear 
relationship between the variables. After the quadratic term is added in 
Step 2, the overall fit of the model increases from .661 to .801 (∆R2 = 
.140, p < .05). Both the first order (β = – .2.404, p < .05) and second 
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order (β = 1.633, p < .05) terms are significant. The positive sign of the 
second order term means that for groups of medium size, it takes longer 
for them to fully exploit their full learning capacity. H3 is supported: 
Rate of learning is a nonmonotonic function of N (U shape). 

In addition, as depicted in Step 3 of Table 3, density of 
communication ties also has a significant impact on the rate of learning 
(β = .309, p < .05) above and beyond the influence of group size (∆R2 = 
.014, p < .01). However, against our prediction, we did not find a 
significant curvilinear effect of K on rate of group learning. Therefore, 
H4 is partially supported: Rate of learning is a positive function of K.  
 
Complexity Catastrophe 
 

H5, as stated, is not confirmed. Following Wasserman and Faust 
(1994, p. 179), we create a standardized network density measure by 
dividing the number of communication ties, K, by N–1, and then use this 
ratio to predict the likelihood of change in the rate and amount of 
collective learning. The scatter plot of the relationships between 
variables is shown in Fig. 6. As shown in Table 4, the ratio of K/(N–1) 
has a significant negative linear effect on amount of group learning (β = 
– .669, p < .05), and a significant positive linear effect on rate of group 
learning (β = .463, p < .05). Note that nonlinearity has disappeared. 
Combining the two results together, we show that the higher the value of 
K relative to N, the faster a group learns, but, the amount of learning is 
attenuated. This is still consistent with Kauffman’s observation, 
however, that when complexity catastrophe sets in—with a high K 
relative to N—the walk on the landscape toward fitness peaks is likely to 
be shorter—and thus quicker—because the peaks are lower, but because 
they are lower, fitness is also lower. The sense of H5 is confirmed, but 
the underlying causal process is different. H6 is also confirmed, but for 
the full range of K—rate of learning increases with K (but note that 
amount of learning decreases because the peaks are lower).  

It is worth noting that a constant concern with simulations is that 
they are “cooked” or “unwrapped” to use Holland’s (1996) term—
meaning that the results are simply a function of how the simulation is 
coded up. Here we see that what appeared in the baseline hypothesis as 
the typical nonlinearity of the catastrophe effect of high K on amount of 
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learning reappears as two nonlinear effects after we use the K/(N-1) 
standardization. 
Table 4. Summary of Regression Analysis of the Effect of K/(N-1) Ratio 
on Group Learning  

Variables B SE of B β 
Amount of learning    
     Ratio (K/(N-1)) –0.095 .011 –.699* 
Rate of learning    
     Ratio (K/(N-1))     .968 .187   .463* 
Note: R2 = .448 for the effect of ratio on amount of learning; R2 = .214 for its 
effect on rate of learning;   *(p < 0.01 for all cases). 
 
 
Table 5.  Descriptive Statistics for the Humanized Model (N=54)   
Variable Name Mean Std. 

Dev.
       2 3 

Amount of learning 
(Fitness) 

.65 .03 –.98* –.42* 

Communication ties 
(K) 

24 11.94   .33* 

Standardized K-
distribution (SD of 
K/K) 

.19 .18  

* p < 0.01 level (2-tailed). 
 
 
Table 6. Summary of Hierarchical Regression for Variables Influencing 
the Amount of Group Learning (Fitness) 

Variables B SE of B β 
Step 1    
Communication Ties (K) –.365 .023 –1.566* 
Quadratic term of Comm 
Ties (K2) 

  .003 .000    .610* 

Step 2    
Communication Ties (K) –.359 .022 –1.540* 
Quadratic term of Comm 
Ties (K2) 

  .003 .000    .556* 

Standardized K- –.990 .395  –.063* 
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distribution (SD of K/K) 
Note: R2 = .972 for Step1; ∆R2 = .003 for Step 2;   *p < 0.01 for all cases. 
 

 
 
Fig. 6. Scatterplot on the impact of K/(N-1) on the amount and rate of 
learning. 
 
Thompson’s Task Interdependencies 
 

To test H7, we use an independent-sample t-test to compare 
whether level of group learning and rate of learning change under 
different task interdependency. Overall, the results show that, compared 
to the pooled-interdependency condition (random walks), the level of 
learning in the sequential-interdependency condition (adjacent walks) is 
lower (t (98) = –1.188, p = .238); and the rate of learning is also lower (t 
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(86.6901) = – 1.817, p = 0.073). However, neither of the two differences 
is statistically significant. H7 is rejected: No difference between pooled 
and task interdependencies in our simulation tests. 

                                                      
1 Adjusted degrees of freedom for the t-test given equal variance between the two sets of 
data cannot be assumed. 

  



 
 
 
 
 
 
 
 

NDPLS, 8(1), Situated Learning Theory                   91 

 
 
Fig. 7.  Testing the K-distribution effect with N = 48 (random walk). 
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Stars and Isolates: The “K-distribution” Effect 

Here is where we “humanized” the NK model by changing 
Kauffman’s programmed parameter requiring that all agents have the 
same K communication ties. In our model, though the average is, say, K 
= 4, agents can vary from K = 0 to K = 7 (given that N = 8). Since “all 
isolates” is the same as Kauffman’s K = 0 setting and “all stars” is the 
same as Kauffman’s K = N–1 setting, we posit that the “K-distribution” 
effect generally would lower the rate and amount of group learning and 
flatten out the nonlinear effect shown in Fig. 4.  

In Fig. 7, we show plots for the random walk parameter setting 
with a group of N = 48. The plots are clearly flatter for all settings of the 
K-distribution—from SD = 0 to SD = 12. Note that the catastrophe effect 
still holds, since with a given group size N = 48, each plot line, from K = 
4 to K = 44 is lower in amount of group learning than the line above. 
Therefore, to study the unique impact of group structure on learning, the 
impact of the number of communication ties between people needs to be 
controlled—that is, standardized across Ks. We show descriptive 
statistics before actually doing the regression analysis—see Table 5. 
Although there are minor deviations, most variables of interest follow a 
normal distribution. Since a scatter plot (for N = 48; not shown here) 
indicates that K has a curvilinear relationship with amount of learning, 
we include both first and second order terms in our analysis. 

To get a standardized measure of network differentiation across 
different K values, we divide the standard deviation of K by K, and use 
the newly created variable, Standardized K-distribution, to predict 
amount of learning with the effect of communication ties, K, controlled. 
As shown in Table 6, the number of communication ties between group 
members remains a dominant factor influencing group learning (β = – 
1.540 for the first order effect, p < .05 and β = .556 for its quadratic term 
p < .05). Though small (β = – .063, p < .05), the K-distribution effect is 
statistically significant, bringing an increase in the overall fit of the 
model (∆R2) up by .003 (p < .05). H8 is supported: If a group is charac-
terized by mostly stars and isolates, amount of learning is impaired. 

CONCLUSION AND DISCUSSION 

Organizational learning has become a key concern in organiza-
tion theory, research and practice. Recently, scholars have offered an 
alternative to linear, reductionist, intra-individual models of learning that 
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have dominated in the past. So-called situated learning perspectives 
anchor learning not in individuals but in interactions among individuals 
and between each individual and his/her context. This has permitted new 
ways of examining the relationship of individual learning to the learning 
of the collective. It has also shifted analysis from the study of individual 
cognition to the study of emergent patterns of interaction. 

To understand the complex, messy world of emergent learning 
and behavior, however, scholars must draw upon a wider set of concepts, 
models, and tools. To this end we combine situated learning theory with 
ideas from complexity science. The reason is that since organizations and 
groups are complex adaptive systems, direct studies of how group 
learning is shaped over-time by the complex, non-linear interactions 
among group members is difficult. Aided by agent-based modeling, in 
particular, a “humanized” version of Kauffman’s (1993) NK model, we 
study how amount and rate of group learning change over-time as 
influenced by group size, network density, different forms of task 
interdependencies and finally complexity catastrophe.  

We first dock our model against results from Kauffman’s prior 
work. In our docking analysis, we replicate Kauffman’s original results 
to correlations of 0.976 or higher. We us his NK computational 
simulation model to test our hypotheses. The statistical tests of the 
simulation results show that communication interactivity is nonlinearly 
related to both amount and rate of group learning over time. Kauffman’s 
“complexity catastrophe” effect applies here as well—as communication 
interactivity becomes denser, and rate of learning speeds up, there are 
diminishing returns to improving group learning. However, density in 
communication interactivity is not independent of group size. Once we 
adjust for this effect via standardization of K by N–1, we find that the 
curvilinear effect disappears, but the catastrophe effect continues as a 
function of two linear variables. Rate of group learning remains a 
positive linear function of communication interactivity, but amount of 
learning becomes a negative linear function of interactivity density. 
Against our prediction, task interdependency, as operationalized here, 
has no effect on group learning. We find that altering the distribution of 
communication isolates and stars in groups has a statistically significant, 
but not very pronounced effect on the coevolutionary development of 
group-level learning over time. These results of our simulation studies 
can be used to guide future empirical studies of situated learning in real 
work groups. 
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Our study has several limitations, given the nature of the NK 
model. These also create opportunities for future research. Kauffman’s 
NK model is parsimonious and has high heuristic value. Agents have 
very simple capabilities to learn and adapt; they do not have the complex 
psychological, cognitive capabilities to think and to make complex 
decisions. Many modelers argue that the best models are simple, focus 
on highlighting a very few real-world dynamics at any given time, and 
have few assumptions (Holland, 1996; Axlerod, 1997). For example, 
Epstein and Axtell (1996) are able to create a fairly realistic-looking 
society (Sugarscape) with just one agent rule, “Eat as much sugar as you 
can.” Still, at the expense of being simple and general, the NK model 
may not be able to achieve a high level of accuracy (Weick, 1976). With 
appropriate caution, we mention some paths toward additional model-
complexity that seem promising: 

1. Agents could be given rules that allow them to approach Nash 
equilibria on variables other than fitness, learning or expertise: such as, 
social centrality (number of links), power, trust, decisiveness, listening, 
and so on. 

2. The model could allow K to vary in density as the model 
iterates across time periods so that the possibility of an optimal K might 
emerge. In the NK model, once the configuration of the group has been 
set up at the initial stage of the simulation, it remains unchanged 
throughout the simulation tests. This can be constraining if research 
interest is on the process through which communication links emerge. 
This would allow much better explorations of the interaction of N and K 
with amount and rate of group learning. 

3. The group learning rate and amount effects could be made a 
function of what Kauffman labels the “C” factor—ties between agents in 
different groups or organizations. The NK model, in common with many 
other approaches to learning, models context primarily in terms of 
interactions among agents within groups. Most group learning takes 
place within the context of other groups or environmental entities whose 
choices may similarly affect the fitness of each.  

4. In Kauffman’s model, only one network dominates—people-
to-people. Task and resource networks are also important, resulting in six 
types of networks (Argote & Ingram 2000; Krackhardt & Carley, 1998; 
McGrath & Argote, 2002). It would be interesting to study how the 
fitness landscape (the solution space over which individual agents walk) 
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would form and deform given the within- and between-ties of these six 
kinds of networks. 

Despite these limitations, this paper advances situated learning 
theory by: (a) coupling it with the more realistic dynamical (nonlinear) 
coevolutionary theories of complex adaptive systems; and (b) recasting it 
in terms of a holistic perspective emphasizing the dynamical interaction 
between a group of interacting agents and group-level learning. These 
advances to situated learning theory are achieved with agent-based 
modeling. Needless to say, additional research efforts are warranted to 
further develop not only the theory, but also agent-based modeling of 
situated learning, some of which we mention. Collecting real-world data 
to validate our hypothesis testing via simulated experiments is also 
required to further our understanding of situated learning. By advancing 
in the direction outlined here, we offer some information with which to 
guide real-world tests, and thus better understand situated learning’s role 
in how firms achieve competitive advantage. 

Our results bear on implicit learning (Seger, 1994), even though 
definitional differences are obvious. Implicit learning focuses on non-
verbal or unconscious learning (Guastello & Guastello 1998; Seger, 
1994;), whereas situated learning attends to contextual effects: 

1. Guastello and Guastello (1998) find that increasing 
coordination difficulty (similar to increasing K in our model) brings 
nonlinear outcomes in the form of attenuated group-level learning—the 
same basic effect that results from our studies. 

2. Guastello and Guastello (1998) extend their human experi-
ment results by using a computer simulation. Their “bridging forward” 
from experiment to simulation, lends some credence to the idea that one 
could also “bridge backward” from our simulation to real-world human 
behavior.  

3. Guastello (2002, Chapter 8) extends these results from 
possible nonverbal to verbally based implicit learning. Since computer 
models appear to gloss over distinctions between verbal vs. nonverbal 
and conscious vs. unconscious learning (whether implicit or explicit), the 
fact that K-creation of nonlinear learning outcomes withstands broad-
ening extensions, again, suggests our findings apply fairly generally to 
various kinds of learning. 

Broader application of our results is also supported by Trofim-
ova’s EVS model (Trofimova, 2001; Trofimova & Mitin, 2002). Her 
measure of sociability, her most telling parameter, is essentially the same 
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as our K. It governs the self-organization process in complex adaptive 
systems. As is also seen in Kauffman’s prior work (1993), K affects the 
self-organization consequences of individual agent learning and the 
coevolving learning of interacting agents. The percolation and sub-
grouping effects on the EVS model also reflect the earlier contributions 
of various studies from statistical physics by Derrida and Stauffer (1986), 
Stauffer (1987), Weisbuch (1991, as reviewed by McKelvey, 1999b). 

The study of information, knowledge, and learning in 
organizations has taken an important step in moving away from the 
traditional symbolic information processing approach to situated learning 
theory. But situated theory’s view that learning is a simple function of 
communication interactivity does not connect it well with how firms 
develop and use knowledge in the high velocity environments of the 
New Economy. To be useful to managers in the New Economy, situated 
theory has to be recast in a dynamical form. Managers need to know 
about communication interactivity effects over time, whether they are 
linear or nonlinear, what kinds of interactions and emergent dynamics 
there are between individual learning and group learning, and how 
different kinds of environmental contexts affect emergent individual and 
group learning. Most importantly, they need more information about the 
interaction between levels of individual learning, or human capital 
(Becker, 1975) and social capital—learning stemming from interactivity 
and network development (Burt, 1992). 
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