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Chapter 1  
Introduction 

 
1.1 Basic Definitions 
 
Thermodynamics is the science that seeks to predict the amount of energy needed to 
bring about a change of state of a system from one equilibrium state to another. While 
thermodynamics tells us nothing about the mechanisms of energy transfer, rates of change, 
and time associated with a system changing from one equilibrium state to another, it is still 
the lynch-pin that allow us to answer these questions. 
 

• Definition of 'heat': Heat is energy in transit solely as a result of a temperature 
difference. 

 
• Definition of 'work': Work is energy exchange between system and surroundings due 

to any phenomenon except a temperature difference. 
 
• Definition of 'temperature': Temperature is a measure of the mean kinetic energy of 

molecules. Absolute zero (0oK) is a state of complete motionless of molecules. 
 
• 'Rate': 'Rate' implies an element of speed, how fast an event happens, and time. 
 
• 'System': In thermodynamics, the universe can be divided into two parts. One part is 

the system, the other part is the rest of the universe called the surroundings. System 
can be classified as (1) isolated system where no mass or energy is transferred across 
the system boundaries, (2) closed system (system) where only energy is transferred 
across the system boundaries, or (3) open system (control volume) where mass and 
energy can be transferred across the system boundaries. A system is any designated 
region of a continuum of fixed mass. The boundaries of a system may be deformable 
but they always enclose the same mass. 
 
 

`

Surroundings

Boundary

System

 
 

Figure 1.1 Schematic diagram of the "universe", showing a system and the 
surroundings. 
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• 'Control volume': A 'control volume' is also any designated region of a continuum 
except that it may permit matter to cross its boundaries. If the boundaries of a control 
volume are such that matter may not enter or leave the control volume, the control 
volume is identical to a system. In these respects, a 'system' is a subset of a 'control 
volume'. 

 
• 'Equilibrium': 'Equilibrium' means that there are no spatial differences in the variables 

that describe the condition of the system, also called the 'state' of a system, such as its 
pressure, temperature, volume, and mass (P, T, V, m), and that any changes which 
occur do so infinitesimally slowly. 

 
The laws of thermodynamics are applicable only to equilibrium states which means that the 
state does not really change significantly with time, differences in variables between the state 
of a system and its surroundings are of infinitesimal magnitude and that within the system 
itself there are no spatial variations of the variables that determine its state. Using 
thermodynamics, we can predict the amount of energy needed to change a system from an 
equilibrium state to another. For example it will take about 75 kJ to change 1 kg of air at 
25oC and 1 atm to 100oC and 1 atm. It will take much more energy, about 2257 kJ, to change 
1 kg of water at 100oC and 1 atm to water vapor (steam) at the same temperature and 
pressure. 

75 kJ
requiredAir, 1 atm

   25 C
    1 kg

o

Air, 1 atm
   100 C
    1 kg

o

2257 kJ
required

Water
1 atm
100 C
 1 kg

o
Steam
1 atm
100 C
1 kg

o

State 1 State 2

State 1 State 2

 
Figure 1.1 Energy required changing air or water from state 1 to state 2. 

 
1.2 Property 
 
A property is a macroscopic characteristic of a system such as pressure, temperature, volume, 
and mass. At a given state each property has a definite value independent of how the system 
arrived at that state. The properties of air in state 1 shown in Figure 1.1 are: pressure at 1 atm, 
temperature at 25oC, and mass of 1 kg.  
 
A property can be classified as extensive or intensive. An extensive property depends on the 
size of the system while an intensive property is independent on the size of the system. 
Consider systems (1) and (2) shown in Figure 1.2 both at 100oC and 1 atm containing 2 and 5 
kg of steam, respectively.  
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System (1)
System (2)

100 C
1 atm
2 kg

o 100 C
1 atm
5 kg

o

 
 

Figure 1.2 Example of intensive and extensive properties. 
 

Temperature, pressure, and specific volume of both systems are intensive properties. Total 
mass and total volume of each system are extensive property. At 100oC and 1 atm, the 
specific volume v of each system is 1.674 m3/kg. The mass of system (1) is m1 = 2 kg and 
that of system (2) is m2 = 5 kg. The total volume of system (1) is V1 = m1v =  (2 kg)(1.674 
m3/kg) = 3.348 m3. The total volume of system (2) is V2 = m2v =  (5 kg)(1.674 m3/kg) = 8.37 
m3. An intensive property might be obtained from an extensive propery by dividing the 
extensive property by the mass of the system.  
 
1.3 Units 
 
The SI units (Système International d'Unitès, translated Internal System of Units) are used in 
this text. It happens that seven primary quantities are needed to completely describe all 
natural phenomena1. The decision as to which quantities are primary is arbitrary. The units of 
the primary quantities and their symbols are listed in Table 1.3-1 and are defined arbitrarily 
as follows: 
 
Meter: the length of the trajectory traveled by light in a vacuum per 1/299,792,458 s, 
 
Kilogram: the mass of the platinum cylinder deposited at the International Office for 
Weights and Measures, Sèvres, France, 
 
Second: 9,192,631,770 times the period of radiation in energy level transitions in the fine 
spectral structure of 133Cs, 
 
Kelvin: 1/273.16 of the triple point temperature of water with naturally occurring amounts of 
H and O isotopes, 
 
Amperes: the current which, on passing through two parallel infinite conducting wires of 
negligible cross section, separated by 1 m and in vacuum, induces a force (per unit length) of 
2×10-7 N/m, 
 
Mole: the amount of a matter containing the number of particles equal to the number of 
atoms in 0.012 kg of the pure isotope 12C, 
 
Candela: the amount of perpendicular light (luminosity) of 1/60×10-6 m2 of the surface of an 
absolute black body at the melting temperature of platinum and a pressure of 101,325 Pa. 
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Table 1.3-1 The seven primary quantities and their units in SI 
 

Primary quantity Unit 
Length  
Mass 
Time 
Temperature 
Electric current  
Amount of matter 
Amount of light 

Meter (m) 
Kilogram (kg) 
Second (s) 
Kelvin (K) 
Ampere (A) 
Mole (mol) 
Candela (cd) 

 
Several of the derived quantities with units are listed in Table 1.3-2. A derived unit is a 
quantity expressed in terms of a product and/or quotient of two or more primary units. 
 

Table 1.3-2 The derived quantities and their units in SI 
 

Derived quantity Unit 
Cp, specific heat capacity  
E, energy  
F, force 
k, thermal conductivity 
p, pressure  
q, heat transfer rate 
q", heat flux 
q ′′′ , heat generation rate per unit volume 
μ, viscosity 
ρ, density 

J/kg·K 
J = N·m, joule 
N = kg·m/s2, newton 
W/m·K 
Pa = N/m2, pascal 
W = J/s = kg·m2/s3, watt 
W/m2 = J/s·m2 

W/m3  
N/m2=kg/s·m 
kg/m3 

 
1.4 Pressure 
 
Any force acting on a surface consists of a component perpendicular to the surface and a 
component parallel to the surface. These two components are called normal force and shear 
force as shown in Figure 1.4-1.  Pressure is defined as a normal force per unit area on which 
the force acts. The SI pressure unit, N/m2, is called a pascal (Pa). Pressure at any point is a 
fluid is the same in any direction.  

Normal force

Shear force

Area ( )A

Fn

Fs

Normal stress = Normal force/A

 
 

Figure 1.4-1 Normal and parallel components of a force on a surface. 
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Consider a hole in the wall of a tank or a pipe as shown in Figure 1.4-2. The fluid pressure p 
may be defined as the ratio F/A, where F is the minimum force that would have to exerted on 
a frictionless plug in the hole to keep the fluid from emerging1 

 
 

P(N/m )2

P(N/m )2

A(m )2

F(N)

F(N)A(m )2

Fluid

Fluid flowing through a pipe

 
Figure 1.4-2 Fluid pressure in a tank and a pipe. 

 
The pressure at a given position measured relative to absolute zero pressure or absolute 
vacuum is called the absolute pressure. Most pressure-measuring devices are calibrated to 
read zero in the atmosphere as shown in Figure 1.4-3. These pressure gages indicate the 
difference between the absolute pressure and the local atmospheric pressure. Pressures below 
atmospheric pressure are called vacuum pressures and are measured by vacuum gages that 
indicate the difference between the atmospheric pressure and the absolute pressure. Absolute, 
gage, and vacuum pressures are all positive quantities and are related to each other by 
 
 Pgage = Pabs − Patm 

 

 Pvac = Patm − Pabs 
 

01
2
3
4

5 6 7 8 9
10

kPa

Pabs = 0 Pabs = 0

Patm

Patm

Pabs

Pgage
Pabs

Pvac

Patm Patm

 
 

Figure 1.4-3 Absolute, gage, and vacuum pressures. 
 
Two common pressure units are the bar and standard atmosphere: 
 
 1 bar = 105 Pa = 0.1 Mpa = 100 kPa 
 
 1 atm = 101,325 Pa = 101.325 kPa = 1.01325 bar = 14.696 psi 

                                                 
1 R. M. Felder and R. W. Rousseau, Elementary Principles of Chemical Processes, Wiley, 2000, p.54. 
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1.5 Temperature 
 
When two objects are brought into contact and isolated from the surrounding, energy tends to 
move spontaneously from one to the other. The object that gives up energy is at a higher 
temperature, and the object that receives energy is at a lower temperature. We would be able 
to observe that the electrical resistance of the warmer object decreases with time, and that of 
the colder block increases with time; eventually there would be no change in the electrical 
resistances of these objects. The two objects are then in thermal equilibiurm. They are at the 
same Temperature. We could then define temperature as a measure of the tendency of an 
object to spontaneously give up energy to its surroundings.  
 
Any object with at least one measurable property that changes as its temperature changes can 
be used as a thermometer. Most thermometers operate on the principle of thermal expansion: 
Materials tend to occupy more volume at a given pressure when they are at a higher 
temperature. A mercury thermometer is just a convenient device for measuring the volume of 
a fixed amount of mercury. To define actual units for temperature we arbitrary assign 0 to the 
freezing point and 100 to the boiling or steam point of water. We then mark these two points 
on our mercury thermometer, measure off a hundred equally spaced intervals in between, and 
declare that this thermometer now measures temperature on the Celsius (or centigrade) scale, 
by definition.  
 
The Kelvin scale is an absolute temperature scale that measures temperature from absolute 
zero instead of from the freezing point of water. The relationship between these two 
temperature scales is given by 
 
 T(oC) = T(K) − 273.15  (1.6-1) 
 
By definition, the Rankin scale, is related to the Kelvin scale by a factor of 1.8: 
 
 T(oR) = 1.8T(K)  (1.6-2) 
 
A degree of the same size as that on the Rankine scale is used in the Fahrenheit scale but the 
zero point is shifted according to the relation 
 
 T(oF) = T(oR) − 459.67  (1.6-3) 
 
From equations (1.6-1), (1.6-2), and (1.6-3) the Fahrenheit scale can be related to the Celsius 
scale by 
 
 T(oF) = 1.8T(oC) + 32 
 
Many of the equations of thermodynamics are correct only when you measure temperature 
on the absolute scale, Kelvin or Rankine. There will be no problem in using the Celcius and 
Fahrenheit scales when the difference between two temperatures is needed. 
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1.6 Energy Balance 
 
 Energy balance is the cornerstone of heat transfer analysis. The first law of 
thermodynamics is the conservation of energy, which states that energy is neither created nor 
destroyed. The first law can be written for a system as 
 
 δQ  =  δW + dE 
 
where 
 δQ =  heat transfer between the system and the surroundings 
 δW = work exchanged between the system and the surroundings 
 dE = accumulated energy of the system 
 
The first law postulates the existence of a "function of state" called the accumulated energy 
such that for an adiabatic system (δQ = 0) the work output is balanced by a reduction in the 
accumulated energy: 
 
 dE  =  - δW  
 
While δQ and δW are not themselves a "function of state", the difference δQ  -  δW is a 
function of state.  
 

 
 
A quantity is a function of state when the difference in its values between two states only 
depends on the initial and final states and not on the paths connecting these two states. The 
accumulated energy E is a state function so that, 
 
 [ ]aPTEPTE ,...),(,...),( 1122 −   = [ ]bPTEPTE ,...),(,...),( 1122 −  
 
The differential of E is an exact differential for which the integral from state 1 to state 2 is 
simply the difference ,...),(,...),( 1122 PTEPTE − . 
 

 ∫
2

1
dE  = 2

1
E  = ,...),(,...),( 1122 PTEPTE −  

 
Heat and work are path functions and the differentials of heat and work, δQ and δW, 

respectively, are nonexact differentials so that ∫
2

1
Qδ ≠ Q2 – Q1 and ∫

2

1
Wδ ≠ W2 – W1. The 

following example will show that work is path dependent. 
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Example 1.6-1 
 
A gas is contained within a cylinder and piston system shown. Assuming a 'simple' system 
(expansion and compression work only), calculate the work done by the system in 
transforming from state P1, V1 to state P2, V2. 
 
 
 
 
 
 
 
 
 
Solution 
 
1. Compute the work using path a with constant volume followed by constant pressure  
 

 ∫
2

1
Wδ = ∫

22

11

,

,

VP

VP
PdV  = ∫

12

11

,

,

VP

VP
PdV + ∫

22

12

,

,

VP

VP
PdV  = 0 + P2(V2 – V1) = Wa 

 
2. Compute the work using path b with constant pressure followed by constant volume 
 

 ∫
2

1
Wδ = ∫

22

11

,

,

VP

VP
PdV  = ∫

21

11

,

,

VP

VP
PdV + ∫

22

21

,

,

VP

VP
PdV  = P1(V2 – V1) + 0 = Wb 

 
Clearly Wa ≠ Wb 
 
It should be noted that a constant pressure process makes δW a function of state. 
 
 PdV = d(PV) – VdP 
 

 ∫
2

1
Wδ = ∫

2

1
)(PVd – ∫

2

1
VdP  

 

∫
2

1
)(PVd is a function of state while ∫

2

1
VdP is not a function of state. For constant P 

 

 ∫
2

1
Wδ = ∫

2

1
)(PVd = 2

1
PV  = P2V2 – P1V1 = P1 or 2 (V2 – V1) 

 
A function of state is one whose integral of a differential of itself recovers the original 
function, for example 
 
 ∫ dU = U ; ∫ dP = P ; ∫ )(PVd = PV 

Path a

Path b 

P2 

P1 

V2 V1 



 1-9

First law as a rate equation 
 

 
 
 Apply the first law to the system shown over time interval Δt 
 
 ΔQ = ΔW + ΔE (1.6-1) 
 
Divide the above equation by Δt 
 

 
t
Q
Δ
Δ  = 

t
W
Δ
Δ  + 

t
E
Δ
Δ  (1.6-2) 

 
We are departing from the classical thermodynamic view that deals with equilibrium because 
time is not a relevant parameter for equilibrium systems. Take the limit of Eq. (1.6-2) as Δt 
→ 0 
 

 
0

limit
→Δt t

Q
Δ
Δ   = 

0
limit
→Δt t

W
Δ
Δ  + 

0
limit
→Δt t

E
Δ
Δ  

 

  
t
Q
δ
δ  =  

t
W
δ
δ  + 

dt
dE  (1.6-3) 

 

  q = W& + 
dt
dE  (1.6-4) 

 
where q = net heat input plus heat generated (W) 
 
 q = qin – qout + qgen (1.6-5) 
 
 W& = net work output (W) 

 
dt
dE = accumulated energy change (W) 

 
A control volume must be defined to apply Eqs. (1.6-4) and (1.6-5). 
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Example 1.6-2. ---------------------------------------------------------------------------------- 
Saturated steam at 99.63oC condenses on the outside of a 5-m long, 4-cm-diameter thin 
horizontal copper tube by cooling liquid water that enters the tube at 25oC at an average 
velocity of 3 m/s and leaves at 45oC. Liquid water density is 997 kg/m3, cp of liquid water is 
4.18 kJ/kgoC. (a) Determine the rate of heat transfer to water. (b) If the rate of heat transfer 
to water is 200 kW, determine the rate of condensation of steam 
 
Solution ------------------------------------------------------------------------------------------ 
 

QCondensing steam

Ti Te 
 

(a) The rate of heat transfer to water is given by 
 
 Q&  = m& cp(Te − Ti) 
 
In this equation, the mass flow rate of water is given by 
 
 m&  = ρVvelAtube 
 
 m&  = (997 kg/m3)(3 m/s)(π×0.022 m2) = 3.7586 kg/s 
 
The heat transfer rate is then 
 
 Q&  = (3.7586 kg/s)(4.18 kJ/kgoC)(45 − 25)oC = 314.2 kW 
 
(b) If the rate of heat transfer to water is 200 kW, determine the rate of condensation of 
steam. 
 
We need the enthalpy for saturated liquid and saturated vapor 
  

  Specific   
Temp Pressure Enthalpy Quality Phase 

C MPa kJ/kg   
99.63 0.1 2675 1 Saturated Vapor 
99.63 0.1 417.5 0 Saturated Liquid 

  
The rate of heat transfer to water can also be determined from 
 

 Q&  = steamm& (hg − hf) ⇒ steamm& = 
g f

Q
h h−

&
 

 

 steamm& = 200 kJ/s
(2675 - 417.5) kJ/kg

=  0.0886 kg/s 

 
 



Chapter 2  
Thermodynamic Relations 

 
2.1 Types of Thermodynamic Properties 
 
The thermodynamic state of a system can be characterized by its properties that can be 
classified as measured, fundamental, or derived properties. We want to develop relationships 
to relate the changes in the fundamental and derived properties in terms of the measured 
properties that are directly accessible from laboratory measurements. Some of the measured 
properties are P, v, T, composition, cp, and cv. The small letters are used to denote specific 
quantities for example v is specific volume.  
 
The fundamental properties are internal energy u and entropy s. These properties arrive from 
the first and second law of thermodynamics. The first law states that energy is conserved, and 
the second law states that entropy of the universe always increases.  
 
The derived properties are defined to facilitate the energy balance of systems in which the 
combination of internal energy and other properties often occurs. In open systems, the mass 
that crosses the boundary between the surroundings and the system always contributes to two 
terms in the energy balance: internal energy and flow work (Pv). For convenient we can 
define an enthalpy (h) as 
 
 h = u + Pv (2.1-1a) 
 
In terms of the total enthalpy H, we have 
 
 H = U + PV (2.1-1b) 
 
We can then make an enthalpy balance for an open system in which the flow work is 
included in the enthalpy term. Figure 2.1-1 shows a raindrop created from the surrounding 
super saturated vapor in the atmosphere. Not only the energy U of the raindrop is needed but 
also some additional energy, equal to PV, is required to push the atmosphere out of the way 
to make room for the drop. 
 

A raindrop with volume
V and internal energy U

 
Figure 2.1-1 An energy of U + PV is required to create a raindrop. 

 
Enthalpy is the total energy we would need, to create a system out of nothing and put it in an 
environment with constant pressure P. Or, if we could completely annihilate a system, H is 
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the energy we could recover: the system’s energy plus the work done by the collapsing 
atmosphere. 
 
However, we usually are not interested in the total energy needed or the total energy that can 
be recovered from a system. We will be more interested in the work involved in a system. 
For isothermal surroundings, the system can extract heat from the surroundings for free, so 
the work required to create the system from nothing is equal to the internal energy minus the 
heat received. And if we annihilate the system, we generally cannot recover all its energy as 
work since we have to dispose of its entropy by dumping some heat into the surroundings. 
Therefore it is more convenient to define the Helmholtz free energy, A, for an environment at 
constant temperature T 
 
 A = U − TS (2.1-2) 
 
A is the energy that must be provided as work if we create the system out of nothing. The 
heat extracted from the surroundings is TΔS = T(Sf − Si) = TSf where Sf is the system final 
entropy and Si the system zero initial entropy. If we annihilate a system with initial entropy 
Si, A is the amount of recovered work, since we have to dump some heat, equal to TSi, into 
the environment to get rid of the system’s entropy.  
 
Equation (2.1-2) includes all work, even the work done by the system’s surroundings. If the 
system is in an isothermal and isobaric environment, it is more convenient to use the Gibbs 
free energy 
 
 G = U − TS + PV (2.1-3) 
 
Gibbs free energy is the work required to create a system from nothing in an environment 
with constant P and constant temperature T.  
 
We usually are more interested in the change in states of a system rather than its creation or 
annihilation. We then want to look at the changes in A and G. The change in A at constant 
temperature is given by 
 
 ΔA = ΔU − TΔS = Q + W − TΔS (2.1-4) 
 
In this expression Q is the heat added and W is the work done on the system. If the process is 
reversible then Q = TΔS and the change in A is precisely equal to the work done on the 
system. If the process is irreversible then Q < TΔS and ΔA < W, the change in A is less than 
the work done on the system. 
 
For an environment with constant P and constant temperature T, the change in G is given by 
 
 ΔG = ΔU − TΔS + PΔV= Q + W − TΔS + PΔV (2.1-5) 
 
For any process we have 
 
 Q  − TΔS ≤ 0 (equal sign for reversible processes) (2.1-6) 
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The work term W consists of the work done by the environment, − PΔV, and any “other” 
work done on the system. 
 
 W = − PΔV + Wother (2.1-7) 
 
Substituting equations (2.1-6) and (2.1-7) into equation (2.1-5) we obtain 
 
 ΔG  ≤  Wother at constant T, P  (2.1-8) 
 
Example 2.1-1. ---------------------------------------------------------------------------------- 
Determine the electrical work required to produce one mole of hydrogen in the electrolysis of 
liquid water at 298oK and 1 atm. The chemical reaction is 
 
  H2O(l) → H2(g) + 0.5O2(g) 
 
Data (at 298oK and 1 atm): ΔH = 286 kJ for this reaction, SH2O = 70 J/oK, SH2 = 131 J/oK, 
and SO2 = 205 J/oK. 
 
Solution ----------------------------------------------------------------------------------------- 
 
 G = H − TS 
 
At constant T we have 
 
 ΔG  = ΔH − TΔS  
 
The change in system entropy is given by 
 
 ΔS = SH2 + 0.5SO2 − SH2O = 131 + 0.5(205) − 70 = 163.5 J/oK 
 
The change in G is then 
 
 ΔG  = 286 kJ − (298oK)(163.5 J/oK) = 237 kJ 
 
This is the amount of energy in terms of electrical work required to produce one mole of 
hydrogen by electrolysis.  
 
If we burn one mole of hydrogen, the amount of heat we would get is 286 kJ. If we can 
combine one mole of hydrogen and half a mole of oxygen in a fuel cell to produce water we 
can extract 237 kJ of electrical work. The difference ΔH − ΔG  = TΔS = 49 kJ is the waste 
heat that must be expel by the fuel cell to get rid of the excess entropy that was in the gases. 
Therefore the maximum efficiency, εfuel cell, of the fuel cell is 
 
 εfuel cell = 237/286 = 0.829 
 
This efficiency is higher than the 40% efficiency of electrical power plants. 
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Example 2.1-2. ---------------------------------------------------------------------------------- 
In a hydrogen fuel cell shown in Figure 2.1-2, hydrogen and oxygen gas pass through porous 
electrodes and react to form water. Electrons are released at the anode (negative electrode) 
and deposited at the cathode (positive electrode). The overall reaction is 
 
  H2(g) + 0.5O2(g) → H2O(l)  
 
Calculate the voltage of the cell. 
 
Data (at 298oK and 1 atm): ΔG = − 237 kJ for this reaction. 
 

 
Figure 2.1-2 A hydrogen fuel cell 

Solution ----------------------------------------------------------------------------------------- 
 
In a hydrogen fuel cell1, the steps of the chemical reaction are 
 

 Anode Reaction: H2 => 2H+ + 4e- 
                                 

                              Cathode Reaction: 0.5O2 + 2H+ + 2e- => H2O  
 
Two electrons are pushed through the circuit each time the full reaction occurs. The electrical 
work produced per electron is 
 
 237 kJ/(2×6.02×1023) = 1.97×10-19 J = 1.23 eV 
 
 (Note: 1 eV = 1.602×10-19 J) 
 
Since 1 volt is the voltage needed to give each electron 1 eV of energy, so the fuel cell has a 
voltage of 1.23 V. 

                                                 
1 Schroeder, D. V., An Introduction to Thermal Physics, Addision Wesley Longman, 2000 
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2.2 Fundamental Property Relations 
 
The first law for a closed system undergoing reversible process with only PV work is given 
by 
 
 dU = δQrev + δWrev 
 
From the second law, δQrev = TdS, the first law can be written as 
 
 dU = TdS − pdV (2.2-1) 
 
We can write the change in internal energy in terms of two independent variables S and V, 
that is, U = U(S, V): 
 

 dU = 
VS

U
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

dS + 
SV

U
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

dV (2.2-2) 

 
Comparing equations (2.2-1) and (2.2-2) we have 
 

 T = 
VS

U
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

 and p = − 
SV

U
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

 (2.2-3) 

 
The four functions U, H, A, and G are collectively called thermodynamic potentials. The 
expression represented by U = U(S, V) results in the partial derivatives of the thermodynamic 
potentials corresponding to thermodynamic properties T and p as defined in Eq. (2.2-3). 
While U can be a function of any two properties, no other grouping of independent properties 
x and y, U = U(x, y), allows us to write partial derivatives in terms of thermodynamic 
properties as given by Eq. (2.2-3). The three properties {U, S, V} form a fundamental 
grouping.  
 
Similarly, the change in enthalpy (H = U + pV) is given by 
 
 dH = dU + d(pV) = TdS − pdV + pdV +Vdp 
 
  dH = TdS + Vdp (2.2-4) 
 
The change in enthalpy in terms of two independent variables S and p is 
 

 dH = 
PS

H
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

dS + 
S

H
p

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

dp (2.2-5) 

 
Comparing equations (2.2-4) and (2.2-5) we have 
 

 T = 
PS

H
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

 and V = 
S

H
p

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 (2.2-6) 
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We have two more relations for the change in Helmholtz free energy, dA, and the change in 
Gibbs free energy, dG, 
 
 dA = − SdT − pdV (2.2-7) 
 
 dG = − SdT + VdpP (2.2-8) 
 
The fundamental groupings  {A, T, V} and {G, T, p} result in  
 

 S = − 
VT

A
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

and p = − 
TV

A
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  (2.2-9) 

 

 S = − 
PT

G
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ and V = 

T

G
p

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 (2.2-10) 

 
The grouping can be obtained from the following diagram where there properties at a corner 
form a fundamental grouping, for example {A, T, V} and {G, T, p}. 
 
 

G p H

S

UVA

T

G p H S
U V A T

reat hysicists ave tudy
nder ery ble eachers

 
 

Thermodynamic properties can then be obtained from the partial derivative of the 
thermodynamics potentials. Temperature can be obtained from the derivative of H or U. In 
both cases, the variable opposite T in the diagram will be in the denominator of the derivative 
and the remaining variable belong to the grouping will be the variable keeping constant. 
 

G p H

S

UVA

T

G p H

S

UVA

T

 
 

Using this rule, we have 
 

 T = 
VS

U
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

 and T = 
PS

H
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

  

 
Similarly, p can be expressed in terms of the partial derivative of thermodynamic potentials 
using the following diagram. Note the minus sign since V is in the negative direction of P. 
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G p H

S

UVA

T

G p H

S

UVA

T

 
 

p = − 
SV

U
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

 and p = − 
TV

A
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  

 
Similarly, we have 
 

G p H

S

UVA

T

G p H

S

UVA

T

 
 

S = − 
VT

A
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

and S = − 
PT

G
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  

 
and  

G p H

S

UVA

T

G p H

S

UVA

T

 
 

V = 
S

H
p

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

and V = 
T

G
p

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 

 
When we study phase equilibrium, the Gibbs free energy will be use frequently to obtain the 
relations between the measured properties. 
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Example 2.2-1.2 ---------------------------------------------------------------------------------- 
For the Van Der Waals isotherm shown in the following figure, show that the saturation 
pressure can be determined by locating the horizontal, two-phase segment of the isotherm so 
that two equal areas are enclosed between it and the Van de Waals curve. 

1
2

P

V

A

BPB

PA

 
Solution ----------------------------------------------------------------------------------------- 
 

G P H

S

UVA

T

G P H

S

UVA

T

 
 

From the grouping {G, T, P}, we have G = G(T, P), therefore 
 

 dG = 
PT

G
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dT + 

TP
G
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dP = − SdT + VdP 

 

Along an isotherm of the equation of state, dT = 0, therefore ΔG =  ∫

                                                

2

1

P

P
VdP

 
At the saturation pressure ΔG = GV −  GL = 0, we have 
 

ΔG = GV −  GL = + + ∫ + = 0 ∫
A

V

P

P
VdP ∫

V

A

P

P
VdP B

V

P

P
VdP ∫

V

B

P

P
VdP

 

Since area (1) = − −  , and area (2) = + , the saturation 

pressure can be determined by locating the horizontal, two-phase segment of the isotherm so 
that two equal areas are enclosed between it and the Van Der Waals curve.  

∫
A

V

P

P
VdP ∫

V

A

P

P
VdP ∫

B

V

P

P
VdP ∫

V

B

P

P
VdP

 
 

 
2 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999 
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Maxwell Relations  
 
The fundamental property relations are written so that the left-hand side is the differential of 
a state function as follow 
 
 dU = TdS − PdV (8.3-1a) 
 
  dH = TdS + VdP (8.3-1b) 
 
 dA = − SdT − PdV (8.3-1c) 
 
 dG = − SdT + VdP (8.3-1d) 
 
The exact differential of a function z = z(x, y) is written as 
 

 dz = 
yx

z
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dx + 

xy
z
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dy = Mdx + Ndy (8.3-2) 

 
In this expression, we have 
 

 M = 
yx

z
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  and N = 

xy
z
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  

 
A useful property of exact differential is that the order of partial differentiation does not 
matter. That is 
 

 
xyx

z
y ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡
∂
∂

∂
∂  = 

yxy
z

x ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂  (8.3-2) 

 
 

 
xy

M
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  = 

yx
N
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  (8.3-3) 

 
 
Applying equation (8.3-3) to equation (8.3-1a) we get 
 

 
SV

T
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  = −

VS
P
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

 (8.3-4a) 

 
This relation is called the Maxell relation. Similarly, from the other three fundamental 
property relationships we have 
 

 
SP

T
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  = 

PS
V
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ , 

TV
S
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  = 

VT
P
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ ,  and −

TP
S
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  = 

PT
V
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  (8.3-4b,c,d) 
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The Maxwell relations can be used to calculate entropy from PVT data. The derivative 
relations of equations (8.3-1a)−(8.3-1d) then enable us to calculate U, H, A, and G. The 
Maxwell relations can also be obtained from the diagram 
 

G P H

S

UVA

T

 ⇒   
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SV
T
⎟
⎠
⎞

⎝ ∂
∂

⎜
⎛  = −

VS
P
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

 

 
The sign of the derivative is obtained from multiplication of the individual sign of each 
variable in a group. For TVS the sign is (−)(−)(+) = +, for PSV the sign is (+)(+)(−) = −. 
Similarly, for the other three Maxwell relations we have 
 

G P H

S

UVA

T

 ⇒   
SP ⎠⎝ ∂

T
⎟
⎞

⎜
⎛ ∂  = 

PS ⎠⎝ ∂
V
⎟
⎞

⎜
⎛ ∂  

 
G P H

S

UVA

T

 ⇒   
TV ⎠⎝ ∂

S
⎟
⎞

⎜
⎛ ∂  = 

VT ⎠⎝ ∂
P
⎟
⎞

⎜
⎛ ∂  

 
 
  

G P H

S

UVA

T

  ⇒   −
TP ⎠⎝ ∂

S
⎟
⎞

⎜
⎛ ∂  = 

PT ⎠⎝ ∂
V
⎟
⎞

⎜
⎛ ∂  



Chapter 2  
 
2.3 Equations of State 
 
In the calculations of energy, enthalpy, and entropy of a substance we need an accurate 
representation of the relationship among pressure, volume, and temperature. Besides the 
tabular and graphical presentations of the p-v-T relationship, analytical formulations, called 
equation of state, constitute another way of expressing the p-v-T relationship. The equations 
of state are convenient for performing the mathematical operations required to calculate u, h, 
s, and other thermodynamic properties. We will discuss the virial, Van de Walls, and Soave-
Redlick-Kwong (SRK) equation of states.  
 
2.3-1 The Virial Equation of State 
 
The virial equation of state can be derived from the principle of statical mechanics to relate 
the p-v-T behavior of a gas to the forces between molecules. A virial equation of state 

expresses the quantity pv
RT

 as a power series in the inverse of molar volume v . 

 

 Z = pv
RT

 = 1 + ( )B T
v

 + 2

( )C T
v

 + 3

( )D T
v

 + … (2.3-1) 

 
In this equation, B, C, and D are called virial coefficient and are functions of temperature. For 
a truncated virial equation with two terms we have 
 

 pv
RT

 = 1 + ( )B T
v

 (2.3-2) 

 
In this equation, B(T) can be estimated from the following equations: 
 

 B(T) = c

c

RT
p

(B0 + ωB1) (2.3-3) 

 

 B0 = 0.083 − 1.6

0.422

RT
, B1 = 0.139 − 4.2

0.172

RT
 

 
In equation (2.3-3), ω is the Pitzer acentric factor, which is a parameter reflecting the 
geometry and polarity of a molecule. In the limiting case where there are no interactions 
between the molecules, all the virial coefficients are equal to zero. Eq. (2.3-1) becomes 
 

  Z = pv
RT

 = 1 (2.3-4) 

 
Eq. (2.3-4) is the ideal gas equation of state. Example 2.3-1 will illustrate the use of the virial 
equation of state with one virial coefficient. 
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Example 2.3-1 ---------------------------------------------------------------------------------- 
A three-liter tank contains two gram-moles of nitrogen at − 150.8oC. Estimate the tank 
pressure using the ideal gas equation of state and then using the virial equation of state 
truncated after the second term. Taking the second estimate to be correct, calculate the 
percentage error that results from the use of the ideal gas equation at the system conditions. 
Data for nitrogen: Tc = 126.2 K, pc = 33.5 atm, and ω = 0.04012. 
 
Solution ------------------------------------------------------------------------------------------ 
 
 v = 3.0 L/2 mol = 1.5 L/mol, T = − 150.8 + 273.2 = 122.4 K 
 
From the ideal gas law, 
 

 pideal = RT
v

= ( )0.08206 L atm/mol K (122.4 K)
1.50 L/mol
⋅ ⋅

 = 6.696 atm 

 
From the truncated virial equation, 
 

 pv
RT

 = 1 + ( )B T
v

 

 
 TR = 122.4/126.2 = 0.970 
 

 B0 = 0.083 − 1.6

0.422

RT
 = 0.083 − 1.6

0.422
0.97

 =  − 0.360 

 

 B1 = 0.139 − 4.2

0.172

RT
 = B1 = 0.139 − 4.2

0.172
0.97

 =  − 0.0566   

 

 B(T) = c

c

RT
p

(B0 + ωB1)  

 

B(T) = ( )0.08206 L atm/mol K (126.2 K)
33.5 atm
⋅ ⋅

[ − 0.36 + (0.04)( − 0.0566)] = − 0.112 L/mol 

 

 p = RT
v

0.1121
1.5

⎛ ⎞−⎜ ⎟
⎝ ⎠

 = ( )0.08206 L atm/mol K (122.4 K)
1.50 L/mol
⋅ ⋅

(0.9253) 

 
 p = 6.196 atm 
    
Error in using ideal gas law 
 

 ε = idealp
p
− p

                                                

×100 = 8.07 % 

 
12 Felder R. M., Rousseau R. W., Elementary Principles of Chemical Processes, Wiley, 2005, pg. 202 
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2.3-2 The Van de Walls Equation of State 
 
We will use the Van de Walls equation of state to illustrate the evaluation of thermodynamic 
properties. Both the Van de Walls and the SRK equations of state have two adjustable 
constants but the Van de Walls equation is simpler. The Van de Walls equation of state is 
 

  P = RT
v b−

 − 2

a
v

 (2.3-5) 

 
In this equation, the constant b accounts for the finite volume occupied by the molecules and 

the term 2

a
v

 accounts for the attractive forces between molecules.  

 
Figure 2.3-1 Isotherms from the Van der Waals equation. 

 
The Van der Waals parameters a and b can be determined from the critical properties since 
there is an inflection point at the critical isotherm as shown in Figure 2.3-1. At the critical 
point we have 
 

 
cT

P
v
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
 = 

2

2

cT

P
v

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 = 0 (2.3-6)  

 
The isotherm passing through the critical point is given by 
 

  P = cRT
v b−

 − 2

a
v

 

 
The first and second derivatives of P with respect to v are given by 
 

 
cT

P
v
∂⎛ ⎞

⎜ ⎟∂⎝ ⎠
 = − 

( )2
c

c

RT
v b−

 + 3

2

c

a
v

 = 0 (2.3-6a) 
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2

2

cT

P
v

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 = 
( )3

2 c

c

RT
v b−

 − 4

6

c

a
v

 = 0 (2.3-6b) 

 
We can solve the two equations (2.3-6a) and (2.3-6b) for the two unknowns a and b. 
Multiplying equation (2.3-6a) by 2 and equation (2.3-6b) by ( cν  − b) and add them together 
we get 
 

 3

4

c

a
v

 − 4

6

c

a
v

( cν  − b) = 0  (2.3-7) 

 
 4a cν  − 6a cν  + 6ab = 0 ⇒ cν  = 3b (2.3-8) 
 
Substituting b = cν /3 into equation (2.3-6a) and solving for a gives 
 

 a = 
8
9

cν R Tc 

 
At the critical point we have 
 

 Pc = c

c

RT
v b−

 − 2
c

a
v

 (2.3-9) 

 
We can use equation (2.3-9) to solve for cν  in terms of critical temperature and critical 

pressure. Substituting a = 
8
9

cν R Tc and  b = cν /3 into equation (2.3-9) we obtain 

 

 Pc = 3
2

c

c

RT
v

− 2

9
8

c c

c

RT
v

ν  = 3
2

c

c

RT
v

⎟
⎠
⎞

⎜
⎝
⎛ −

8
9

2
3  = 3

8
c

c

RT
v

 

 
Solving for cν  in terms of Pc and Tc we have  
 

 cν  = 3
8

c

c

RT
P

  

Hence 
 

  a = 
8
9

cν R Tc = 
64
27 2( )c

c

RT
P

 

 
Using R  = 8.314 J/(mol⋅oK) = 8.314×10-5 m3⋅bar/(mol⋅oK) and for propane, Tc = 369.9oK, Pc 
= 42.46 bar, we have 
 

 a = 
64
27 2( )c

c

RT
P

 = 
64
27

46.42
)9.36910314.8( 25 ×× −

 = 9.36×10-6 m6⋅bar/mol 
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 Example 2.3-2.3 ---------------------------------------------------------------------------------- 
One mole of propane gas is to be expanded from 0.001 m3 to 0.040 m3 while in contact with 
a heating bath at 100oC. The expansion is not reversible. The heat extract from the bath is 
600 J. Determine the work for the expansion using the Van der Waals equation of state. 
 

  P = RT
v b−

 − 2

a
v

 

 
Solution ----------------------------------------------------------------------------------------- 
 
From the first law we have Δu = q + w. Since the amount of heat transfer q is given (600 
J/mol), we only need to evaluate Δu to find w. 
 
We write u as a function of the independent variables T and v since the values of these two 
variables are given in the problem 
 

 u = u(T, v) ⇒ du = 
vT

u
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dT + 

Tv
u
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dv  

 
Since the process occurs at constant T, dT = 0, we have 
 

 du = 
Tv

u
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dv  

 

We need to express 
Tv

u
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  in terms of measurable properties by using the diagram 

 
G P H

S

UVA

T

G P H

S

UVA

T

 
 

 du = 
vs

u
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ ds + 

sv
u
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dv = Tds − Pdv 

 
Therefore  
 

 du = 
Tv

vPsT
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂−∂ dv = ⎥

⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ P
v
sT

T

dv  
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G P H

S

UVA

T

 ⇒   
TV ⎠⎝ ∂

S
⎟
⎞

⎜
⎛ ∂  = 

VT ⎠⎝ ∂
P
⎟
⎞

⎜
⎛ ∂  

 

Using the Maxwell relation we have 
Tv

s
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  = 

vT
P
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ , the change in internal energy can now 

be expressed solely in terms of measurable properties: 
 

 du =  ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ P
T
PT

v

dv  

 
In terms of molar quantities 
 

  du  =  ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ P
T
PT

v

d v  

 
 

From the Van der Waals equation:  P = RT
v b−

 − 2

a
v

 

 

 
vT

P
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ = R

v b−
 ⇒ ⎥

⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ P
T
PT

v

 = 2

a
v

 

 
Hence 
 

 Δu  = 
3

3

0.04

0.001

m

m
T

sT P
v

⎡ ⎤∂⎛ ⎞ −⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
∫ d v  = 

3

3

0.04

20.001

m

m

a
v∫ d v  = − 

3

3

0.04

0.001

m

m

a
v

 

 
Using R  = 8.314 J/(mol⋅oK) = 8.314×10-5 m3⋅bar/(mol⋅oK) and for propane, Tc = 369.9oK, Pc 
= 42.46 bar, we have 
 

 a = 
64
27 2( )c

c

RT
P

 = 
64
27

46.42
)9.36910314.8( 25 ×× −

 = 9.36×10-6 m6⋅bar/mol 

 
Therefore 

 Δu  = − 9.36×10-6 ⎟
⎠
⎞

⎜
⎝
⎛ −

001.0
1

04.0
1  = 913×10-5 m3⋅bar/mol 
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 Δu  = 913 J/mol 
 
The required work for the expansion is  
 
 w = Δu  −  q = 913 −  600 = 313 J/mol 
 
2.3-3 Soave-Redlick-Kwong (SRK) Equation 
 
The Soave-Redlick-Kwong (SRK) equation belongs to a class of cubic equations of state 
because, when expanded, they yield third-degree equations for the specific volume. The SRK 
equation of state is 
 

 p = RT
v b−

 − 
( )

a
v v b
α
+

 (2.3-10) 

 
In this equation, the parameter a, b, and α are empirical functions of the critical temperature 
and pressure, the Pitzer acentric factor, and the system temperature. The following 
correlations can be used to estimate these parameters: 
 

 a = 0.42747
( )2

c

c

RT
p

 

 

 b = 0.08664 c

c

RT
p

 

 
 m = 0.48508 + 1.55171ω − 0.1561ω2 
 

 α = ( ) 2
1 1 Rm T⎡ ⎤+ −⎣ ⎦  

 
Example 2.3-3 ---------------------------------------------------------------------------------- 
A gas cylinder with a volume of 2.50 m3 contains 1.00 kmol of carbon dioxide at T = 300 K. 
Use the SRK equation of state to estimate the gas pressure in atm. Data for carbon dioxide: 
Tc = 304.2 K, pc = 72.9 atm, and ω = 0.2254. 
 
Solution ------------------------------------------------------------------------------------------ 
  
 TR = 300/304.2 = 0.9862 
 
 cRT  = (0.08206 L⋅atm/mol⋅K)(304.2 K) = 24.96 L⋅atm/mol 
 

 a = 0.42747
( )2

c

c

RT
p

 =  0.42747 ( )224.96 L atm/mol
72.9 atm

⋅
 = 3.6539 L2⋅atm/mol2 
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 b = 0.08664 c

c

RT
p

 = 0.08664 24.96 L atm/mol
72.9 atm

⋅  = 0.0297 L/mol 

 
 m = 0.48508 + 1.55171ω − 0.1561ω2 = 0.8263 
 

 α = ( ) 2
1 1 Rm T⎡ ⎤+ −⎣ ⎦  = ( ) 2

1 0.8263 1 0.9862⎡ ⎤+ −⎣ ⎦  = 1.0115 

 

 p = RT
v b−

 − 
( )

a
v v b
α
+

 

 

 p = ( )0.08206 L atm/mol K (300 K)
(2.50 0.0297) L/mol

⋅ ⋅
−

 − ( )
( )

2 21.0115 (3.654 L atm/mol )
2.50 L/mol (2.50 0.0297) L/mol

⋅
+

 

 
 p = 9.38 atm 
 
Example 2.3-4 ---------------------------------------------------------------------------------- 
A stream of propane at temperature T = 423 K and pressure p(atm) flows at a rate of 100.0 
kmol/hr. Use the SRK equation of state to estimate the volumetric flow rate flowV&  of the 
stream for p = 0.7 atm, 7 atm, and 70 atm. In each case, calculate the percentage differences 
between the predictions of the SRK equation and the ideal gas equation of state. Data for 
propane: Tc = 369.9 K, pc = 42.0 atm, and ω = 0.1525. 
 
Solution ------------------------------------------------------------------------------------------ 
 

We first calculate a, b, and α from the following expressions: 
 

 a = 0.42747
( )2

c

c

RT
p

, b = 0.08664 c

c

RT
p

 

 

 m = 0.48508 + 1.55171ω − 0.1561ω2, α = ( ) 2
1 1 Rm T⎡ ⎤+ −⎣ ⎦  

 
The SRK equation is written in the form 

 

 f( v ) = p − RT
v b−

 + 
( )

a
v v b
α
+

 = 0 

 

v is then calculated using Newton’s method: v  = v  − ( )
'( )

f v
f v

 = v  − d v

                                                

, where 

 

 
5 Felder R. M., Rousseau R. W., Elementary Principles of Chemical Processes, Wiley, 2005, pg. 204 
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 f’( v ) = 
( )2

RT
v b−

 − 
( ) 2
(2 )a v b

v v b
α +

+⎡ ⎤⎣ ⎦
 

 

The initial value for v  is obtained from ideal gas law: v ideal = RT
p

. The iteration process 

stops when v /d v  is less than 0.0001. The percentage difference between v SRK and v ideal is  
 

 idealv
v
− v

×100% 

 
Once v  is known for a given p, the volumetric flow rate corresponding to a molar flow rate 
of 100.0 kmol/hr is obtained as 
 

 flowV& (m3/hr) =  v (L/mol)
310  mol

kmol

3

3

1 m
10  L

(100 kmol/hr) = 100 v (L/mol) 

 
The calculations are performed using the following Matlab program: 
 
% Example 2.4-3 
Tc=369.9; % K 
pc=42.0; % atm 
w=0.152; % acentric factor 
Rg=0.08206; % L*atm/(mol*K) 
T=423; % K 
p=input('p(atm) = '); 
Tr=T/Tc; 
a=0.42747*(Rg*Tc)^2/pc; 
b=0.08664*(Rg*Tc)/pc; 
m = 0.48508 + 1.55171*w - 0.1561*w^2; 
alfa=(1+m*(1-Tr^0.5))^2; 
videal=Rg*T/p;v=videal; 
for i=1:20; 
    f=p-Rg*T/(v-b)+alfa*a/(v*(v+b)); 
    df=Rg*T/(v-b)^2-alfa*a*(2*v+b)/(v*(v+b))^2; 
    dv=f/df; 
    v=v-dv; 
    if abs(dv/v)<1e-4, break, end 
end   
Di=(videal-v)/v*100; 
Flowrate=100*v; 
fprintf('videal = %6.2f, v(L/mol) = %6.2f, Percentage Difference = 
%6.3f\n',videal,v,Di) 
fprintf('Flow rate (m3/hr) = %6.1f\n', Flowrate) 
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>> ex3d4d5 
p(atm) = .7 
videal = 49.588, v(L/mol) = 49.406, Percentage Difference =   0.37 
Flow rate (m3/hr) = 4940.6 
 
>> ex3d4d5 
p(atm) = 7 
videal =  4.959, v(L/mol) =  4.775, Percentage Difference =   3.86 
Flow rate (m3/hr) =  477.5 
 
>> ex3d4d5 
p(atm) = 70 
videal =  0.496, v(L/mol) =  0.289, Percentage Difference =  71.57 
Flow rate (m3/hr) =   28.9 
 
 
The SRK equation of state (and every other equation of state) is itself an approximation. At 
423 K and 70 atm, the actual value for v is 0.2579 L/mol. The percentage error in the SRK 
estimate ( v  = 0.289 L/mol) is 12%, and that in the ideal gas estimate ( v  = 0.50 L/mol) is 
92%. 
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Chapter 2  
 
2.4 Properties Evaluations 
 
This section will show the use of equation of state and property relations to evaluate 
thermodynamic properties in several examples. 
 
Example 2.4-1. 6 ---------------------------------------------------------------------------------- 
Propane at 350oC and 600 cm3/mol is expanded in an isentropic turbine. The exhaust 
pressure is atmospheric. What is the exhaust temperature? PvT behavior has been fit to the 
Van der Waals equation with a = 92×105 [(atm⋅cm6)/mol2] and b = 91 [cm3/mol]. Solve this 
using T as v as the independent variables, that is s = s(T, v). The Van der Waals equation is 
given as 
 

    P = RT
v b−

 − 2

a
v

 

 

The ideal gas heat capacity for propane is 
R
cp  = 1.213 + 28.785×10-3T − 8.824×10-6T2  

 
Solution ----------------------------------------------------------------------------------------- 
 
Since propane is expanded in an isentropic turbine, we can construct a path such that the sum 
of Δs is zero. 

v

T

T , v1 1

T , v2 2

Δs1

Δs2

Δs = 0

Ideal gas

 
 

Choosing T and v as the independent variables the change in entropy is given by 
 

 ds = 
vT

s
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dT + 

Tv
s
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dv 

 

Since ∂s = 
T
Q∂  ⇒ 

vT
s
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ = 

T
1

vT
Q
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  = 

T
cv  
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Using Maxwell relation as shown on the following diagram, we have 
 

  
Tv

s
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ = 

vT
P
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  

 
G P H

S

UVA

T

 ⇒   
TV ⎠⎝ ∂

S
⎟
⎞

⎜
⎛ ∂  = 

VT ⎠⎝ ∂
P
⎟
⎞

⎜
⎛ ∂  

 
 

Therefore ds = 
T
cv dT + 

vT
P
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dv 

 

From the Van der Waals equation: P = 
bv

RT
−

 − 2v
a ⇒  

vT
P
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ = 

bv
R
−

  

  
 
  
For an isentropic process, we have 
 

 Δs = ∫
2

1

T

T
v

T
c dT + ∫ −

2

1

v

v bv
R dv = 0 

 

 
R
cv  = 

R
cp  − 1 = 0.213 + 28.785×10-3T − 8.824×10-6T2  

 

0.213ln(T2/T1) + 28.785×10-3(T2 − T1) − 4.412×10-6(T2
2 − T1

2) + ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

bv
bv

1

2  = 0 (E-1) 

 
In terms of molar quantities 
 

0.213ln(T2/T1) + 28.785×10-3(T2 − T1) − 4.412×10-6(T2
2 − T1

2) + ln 2

1

v b
v b

⎛ ⎞−
⎜ ⎟−⎝ ⎠

 = 0 (E-1) 

 

Since R  = 82.06 cm3⋅atm/mol⋅K, 2v  = 2

2

RT
P

 = 
1
06.82 2T  = 82.06T2 
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Substituting the following numerical values: T1 = 350oC = 623.15oK, 1v  = 600 cm3/mol, P2 = 
1 atm, and b = 91 [cm3/mol] into equation (E-1), we have 
 
  
0.213ln(T2/623.15) + 28.785×10-3(T2 −623.15) − 4.412×10-6(T2

2 − 623.152)  
 

                                                                 + ln ⎟
⎠
⎞

⎜
⎝
⎛ −

509
9106.82 2T  = 0 (E-2) 

 
We can use the following Matlab statements to solve the nonlinear equation  
 
>> fun=inline('0.213*log(x/623.15) + 28.785e-3*(x -623.15) - 4.412e-6*(x^2 - 
623.15^2)+log((82.06*x-91)/509)'); 
>> T2=fsolve(fun,500,optimset('Display','off')) 
T2 = 
  448.2512 
>>  
 
The temperature of the exhaust from the turbine is 448.3oK. 
  
 
 
 
 
 

 2-23



Example 2.4-2.7 ---------------------------------------------------------------------------------- 
Develop a general relationship for the change in temperature with respect to pressure at 
constant entropy 
 

 
sP

T
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  

 
(a) Evaluate the expression for an ideal gas. 
 
(b) From the result in part (a), show that for an ideal gas with constant cP, an isentropic 
expansion from state 1 and state 2 yields equation  .constPvk =
 
(c) Evaluate the expression for a gas that obeys the Van der Walls equation of state. 
 
Solution ----------------------------------------------------------------------------------------- 
(a) Evaluate the expression for an ideal gas 

The cyclic rule can be employed to give 
 

 
TPs P

s
s
T

P
T

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  

 

Substituting the relation 
PT

s
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ = 

T
cP and

TP
s
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ = − 

PT
v
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ yields 

 

 
PPs T

v
c
T

P
T

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  

 

For an ideal gas: Pv = RT ⇒ 
P
R

T
v

P
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂  

 
Therefore, 
 

 
PPs c
v

cP
RT

P
T

==⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ 1  

 
(b) Show that for an ideal gas with constant cP, an isentropic expansion from state 1 and state 
2 yields equation  .constPvk =

Separation of variables provides 
 

 
P
P

c
R

T
T

P

∂
=

∂  
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Integration provides 
 

Pc

P
P

T
T

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

1

2

1

2 lnln

R

  

 

This expression can be rewritten as  Pc
R

P
P

T
T

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2

1

2  

 
The ideal gas law is now employed 
 

 Pc
R

P
P

vP
vP

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

2

11

22  ⇒ 1

1

12

1

2 vPvP PP c
R

c
R

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=  

 
where 
 

 
kc

c
c

Rc
c
R

P

v

P

P

P

11 ==
−

=−  

 
If we raise both sides of the equation by a power of k, we find 
 
  ⇒  kk vPvP 1122 = .constPvk =
 
(c) Evaluate the expression for a gas that obeys the Van der Walls equation of state. 

In Part (a), we found 
PPs T

v
c
T

P
T

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  

 
Using the derivative inversion rule, we find for the van der Waals equation  
 

 P = 
bv −

RT  − 2v
a  

 

 ( )
( )23 2 bvaRTv

bvRv
T
v

P −−
=⎟

⎠
⎞

⎜
⎝
⎛
∂

3 −∂  

 
(Therefore, )
( )23 2

1
bvaRTv

bvRTv
cP

T

Ps −−
=⎟

⎠
⎞

⎜
⎝
⎛
∂

3 −∂  

  
 

 2-25



Example 2.4-3.8 ---------------------------------------------------------------------------------- 
Your company has just developed a new refrigeration process. This process uses a secret gas 
called Gas A. You are told that you need to come up with thermodynamic property data for 
this gas. The following data have already been obtained for the superheated vapor: 
 

 P = 10 bar P = 12 bar 
T [oC] v [m3/kg] s [kJ/kg⋅oK] v [m3/kg] s [kJ/kg⋅oK] 

80 0.16270 5.4960 0.13387 ? 
100 0.17389  0.14347  

 
As accurately as you can, come up with a value for s in the table above. Clearly indicate your 
approach and state any assumptions that you make. Do not assume ideal gas behavior. 
 
Solution ----------------------------------------------------------------------------------------- 
 
In order to solve this problem we need to relate the change in entropy from 10 to 12 bar to 
the change in molar volume (for which we have complete data).  First, we can rewrite the 
change in entropy as 
 

∫ ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=−=Δ
bar 12

bar 10
12 dP

P
ssss

T
 

 
Applying a Maxwell relation, we can relate the above equation to the change in molar 
volume: 
 

 ∫∫ ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−+=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+=
bar 12

bar 10
1

bar 12

bar 10
12 dP

T
vsdP

P
sss

PT
 

 
As 10 bar: 
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅
×=⎟

⎠
⎞

⎜
⎝
⎛
Δ
Δ

≅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ −

Kkg
m 1060.5

3
4

PP T
v

T
v  

 
At 12 bar: 
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅
×=⎟

⎠
⎞

⎜
⎝
⎛
Δ
Δ

≅⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ −

Kkg
m 1080.4

3
4

PP T
v

T
v  

 

To integrate the above entropy equation, we need an expression that relates 
PT

v
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ to 

pressure.  Thus, we will fit a line to the data.  We obtain 
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⎥
⎥
⎤

⎢
⎢
⎡

⋅
×+

⎟
⎟
⎞

⎜
⎜
⎛

⎥
⎥
⎤

⎢
⎢
⎡

⋅⋅
×−=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ −−

Kkg
m106.9

PaKkg
m 100.4

3
4

3
10 P

T
v

⎦⎣⎠⎝ ⎦⎣P
 

 
Now integrate the equation to find the entropy: 
 
 

( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⋅

=⎥
⎦

⎤
⎢
⎣

⎡
⋅

−=×−×+= ∫
×

×

−−
Kkg

kJ 392.5
Kkg

kJ 104.04960.5106.9100.4
Pa 101.2

Pa 100.1

410
12

6

6

dPPss  

 
Example 2.4-4.9 ---------------------------------------------------------------------------------- 
You need to design a heater to preheat a gas flowing into a chemical reactor. The inlet 
temperature is 27oC and the inlet pressure is 50 bar. You desire to heat the gas to 227oC and 
50 bar. You are provided with an equation of state for the gas. 
 

 Z = = 
RT
Pv  = 1 + 5.0T

aP , with a = − 0.070 [oK1/2/bar] 

 
and with ideal gas heat capacity data: 
 

 
R
cP  = 3.58 + 3.02×10-3T where T is in [oK] 

 
As accurately as you can, calculate, in [J/mol], the amount of heat required. 
 
Solution ----------------------------------------------------------------------------------------- 
Energy balance:    qhh =− 12
 
Because the gas is not ideal under these conditions, we have to create a hypothetical path that 
connects the initial and final states through three steps.  One hypothetical path is shown 
below: 
 

P [bar] 

T [K]

P,T1

step 1 st
ep

 3

step 2

ideal gas

300

q = Δh 
50

0

500

P,T2

 Δh1 

 Δh2 

 Δh3 
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Choosing T and P as the independent properties: 
 

 dP
P
hdT

T
hdh

TP
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=  

 

Using Equation 
TP

h
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  = v

T
vT

P

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

− yields 

 

 dPv
T
vTdTcdh

P
P ⎥

⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

−+=  

 
The given EOS can be rewritten as 
 

 ⎟
⎠
⎞

⎜
⎝
⎛ += 2/11 aT

P
Rv  

 

Taking the derivative gives: 5.05.0 −+=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ aRT

P
R

T
v

P
 

 
Hence 
 
 ( )dPaRTdTcdh P

5.05.0+=  
 
For step 1 
 

 ( ) ⎥⎦
⎤

⎢⎣
⎡=−==Δ ∫ mol

J 2525.05.0
0

bar 50

5.0
1

5.0
11 PaRTdPaRTh  

For step 2 
 

 ( ) ⎥⎦
⎤

⎢⎣
⎡=−×+=Δ ∫ −−
mol

J 7961875.01002.358.3
K 500

K 300

5.03
2 dTTTRh  

 
For step 3: 
 

 ( ) ⎥⎦
⎤

⎢⎣
⎡−===Δ ∫ mol

J 3235.05.0
bar 50

0

5.0
2

5.0
23 PaRTdPaRTh  

 

⎥⎦
⎤

⎢⎣
⎡=Δ+Δ+Δ=
mol

J 7888321 hhhq  Finally summing up the three terms, we get, 
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Chapter 3  
 

Principles of Phase Equilibrium 
 
3.1 Phase and Pure Substance 
 
A phase is a quantity of matter characterized by both uniform physical structure and uniform 
chemical composition. A phase can be solid, liquid, vapor or gas. The atoms in a solid phase 
are fixed relative to other atoms in the solid. They are however can vibrate about this fixed 
position. Like a solid, molecules within the liquid phase are in close proximity to one another 
due to intermolecular forces. However, the molecules in a liquid are not fixed relative to 
other molecules in the liquid. They are constantly in motion, free to move relative to one 
another. More than one liquid phase can coexist such as oil and water. They are considered 
separate liquid phases since they are not miscible. Similarly, solids can coexist in different 
phases. For example, solid carbon can exist in the diamond phase or the graphite phase. Gas 
molecules move randomly to fill the entire volume of the container in which they are housed. 
The molecules continuously change direction as they colide with each other and bounce off 
the container surface creating the measurable pressure p.  
 
A substance that has a fixed chemical composition throughout the system is called a pure 
substance. Water, hydrogen, nitrogen, and carbon monoxide, for example, are all pure 
substance. A pure substance can also be a mixture of various chemical elements or 
compounds as long as the mixture is homogeneous. Air, a mixture of several compounds, is 
often considered to be a pure substance because it has a uniform chemical composition. “A 
mixture of two or more phases of a pure substance is still a pure substance as long as the 
chemical composition of all phases is the same. A mixture of ice and liquid water, for 
example, is a pure substance because both phases have the same chemical composition.”1  
 
The state of a system at equilibrium is defined by the values of its thermodynamic properties. 
System of pure substances or simple compressible systems are defined by two intensive 
properties such as temperature and pressure. For any homogeneous, pure substance, all 
thermodynamic functions or properties may be expressed in terms of any two given 
independent properties. 
 
 v = f(T, p) or v = v(T, p) 
 
 u = u(T, p) or u = u(T, v) 
 
 s = s(T, p) or s = s(T, v) 
 
The functional relations for these properties must be developed from experimental data and 
are dependent on the particular chemical molecules making up the system. Only expansion or 
compression works given by pdV∫ are permissible in simple compressible systems 
undergoes quasiequilibrium processes. 

                                                 
1 Cengel Y. A., Boles M. A., Thermodynamics: An Engineering Approach, Mc-Graw Hill, 1998, pg. 48. 
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Pressure can be expressed as a function of temperature and specific volume: p = p(T, v). The 
plot of p = p(T, v) is a surface called p-v-T surface. Figure 3.1 shows the p-v-T surface of a 
substance such as water that expands on freezing.  
 

 
Figure 3.1-1 p-v-T surface and projections for a substance that expands on freezing. 

(a) 3-D view (b) p-T diagram (c) p-v diagram2. 
 

The location of a point on the p-v-T surface gives the values of pressure, specific volume, and 
temperature at equilibrium. The regions on the p-v-T surface labeled solid, liquid, and vapor 
are single-phase regions. The state of a single phase is determined by any two of the 
properties: pressure, temperature, and specific volume. The two-phase regions where two 
phases exist in equilibrium separate the single-phase regions. The two-phase regions are: 
liquid-vapor, solid-liquid, and solid-vapor. Temperature and pressure are dependent within 
the two-phase regions. Once the temperature is specified, the pressure is determined and vice 
versa. The states within the two-phase regions can be fixed by specific volume and either 
temperature or pressure.  
 
The projection of the p-v-T surface onto the p-T plane is known as the phase diagram as 
shown in Figure 3.1 (b). The two-phase regions of the p-v-T surface reduce to lines in the 
phase diagram. A point on any of these lines can represent any two-phase mixture at that 
particular temperature and pressure. The triple line of the p-v-T surface projects onto a point 
on the phase diagram called the triple point. Three phases coexist on the triple line or the 
triple point.  
 

                                                 
2 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, p. 83 
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The constant temperature lines of the p-v diagram are called the isotherms. For any specified 
temperature less than the critical temperature, the pressure remains constant within the two-
phase region even though specific volume changes. In the single-phase liquid and vapor 
regions the pressure decreases at fixed temperature as specific volume increases. For 
temperature greater than or equal to the critical temperature, there is no passage across the 
two-phase liquid-vapor region.  
 

 
 

 
Figure 3.1-2 T-v diagram for water (to scale). 

 
Figure 3.1-2 is a T-v diagram for water. For pressure greater than or equal to the critical 
pressure, temperature increases continously at fixed pressure as the specific volume increases 
and there is no passage across the two-phase liquid-vapor region. The isobaric curve marked 
50 MPa in Figure 3.1-2 shows this behavior. For pressure less than the critical value, there is 
a two-phase region where the temperature remains constant at a fixed pressure as the two-
phase region is traversed. The isobaric curve with values of 20 MPa or less in Figure 3.1-2 
shows the constant temperature during the phase change. 
 
At 100oC, the saturated volumes of liquid and vapor water are 1.0434 cm3/g and 1,673.6 
cm3/g, respectively. The quality of steam is the mass fraction of water vapor in a mixture of 
liquid and vapor water.  The specific volume of 100oC steam with a quality of 0.65 is given 
by 
 
 v = (1 − 0.65)vL + 0.65 vV = (0.35)(1.0434) + (0.65)(1,673.6) = 1088.2 cm3/g 
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3.2 Phase Behavior 
 
We will consider a phase change of 1 kg of liquid water contained within a piston-cycinder 
assembly as shown in Figure 3.2-1a. The water is at 20oC and 1.014 bar (or 1 atm) as 
indicated by point (1) on Figure 3.2-2. 
 

 
Figure 3.2-1 Phase change at constant pressure for water3 

 

 
Figure 3.2-2 Sketch of T-v diagram for water4 

 
As the water is heated at constant pressure, the temperature increases with a slight increase in 
specific volume until the system reaches point (f). This is the saturated liquid state 
corresponding to 1.014 bar. The saturation temperature for water at 1.014 bar is 100oC. The 
liquid states along the line segment 1-f are called subcooled or compressed liquid states. 
When the system is at the saturated liquid state (point f in Figure 3.2-2) any additional heat 
will cause the liquid to evaporate at constant pressure as shown in Figure 3.2-1b. When a 
mixture of liquid and vapor exists in equilibrium, the liquid phase is a saturated liquid and 
the vapor phase is a saturated vapor. Liquid water continues to evaporate with additional heat 
until it becomes all saturated vapor at point (g). Any further heating will cause an increase in 
both temperature and specific volume and the saturated vapor becomes superheated vapor 
denoted by point (s) in Figure 3.2-2. For a two-phase liquid-vapor mixture, the quality x is 
defined as the mass fraction of vapor in the mixture 
 

 x = vapor

vapor liquid

m
m m+

 (3.2-1) 

                                                 
3 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, p. 87 
4 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, p. 86 
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The properties of pure subtances can be obtained from tables such as Table 3.2-1 for 
saturated properties of water and Table 3.2-2 for properties of superheated water vapor. 
Thermodynamic properties can also be obtained from softwares, which are more convenient 
since interpolations for values not directly available in the tables are not necessary.  
 

Table 3.2-1 Thermodynamic properties of saturated water5. 
    Specific Volume

m3/kg 
Internal Energy

kJ/kg
Enthalpy 

kJ/kg
Entropy 
kJ/kg·K

 

Temp. 
°C 

Press. 
bar 

Sat. 
Liquid 

vf × 
103 

Sat. 
Vapor 

vg 

Sat. 
Liquid

uf

Sat. 
Vapor

ug

Sat. 
Liquid

hf

Evap. 
hfg

Sat. 
Vapor 

hg 

Sat. 
Liquid 

sf 

Sat. 
Vapor

sg

Temp.
°C

.01   0.00611 1.0002 206.136 0.00 2375.3 0.01 2501.3 2501.4 0.0000 9.1562 .01

 4   0.00813 1.0001 157.232 16.77 2380.9 16.78 2491.9 2508.7 0.0610 9.0514  4

 5   0.00872 1.0001 147.120 20.97 2382.3 20.98 2489.6 2510.6 0.0761 9.0257  5

 6   0.00935 1.0001 137.734 25.19 2383.6 25.20 2487.2 2512.4 0.0912 9.0003  6

 8   0.01072 1.0002 120.917 33.59 2386.4 33.60 2482.5 2516.1 0.1212 8.9501  8

10   0.01228 1.0004 106.379 42.00 2389.2 42.01 2477.7 2519.8 0.1510 8.9008 10

11   0.01312 1.0004 99.857 46.20 2390.5 46.20 2475.4 2521.6 0.1658 8.8765 11

12   0.01402 1.0005 93.784 50.41 2391.9 50.41 2473.0 2523.4 0.1806 8.8524 12

13   0.01497 1.0007 88.124 54.60 2393.3 54.60 2470.7 2525.3 0.1953 8.8285 13

14   0.01598 1.0008 82.848 58.79 2394.7 58.80 2468.3 2527.1 0.2099 8.8048 14

15   0.01705 1.0009 77.926 62.99 2396.1 62.99 2465.9 2528.9 0.2245 8.7814 15

16   0.01818 1.0011 73.333 67.18 2397.4 67.19 2463.6 2530.8 0.2390 8.7582 16

17   0.01938 1.0012 69.044 71.38 2398.8 71.38 2461.2 2532.6 0.2535 8.7351 17

18   0.02064 1.0014 65.038 75.57 2400.2 75.58 2458.8 2534.4 0.2679 8.7123 18

19   0.02198 1.0016 61.293 79.76 2401.6 79.77 2456.5 2536.2 0.2823 8.6897 19

20   0.02339 1.0018 57.791 83.95 2402.9 83.96 2454.1 2538.1 0.2966 8.6672 20

21   0.02487 1.0020 54.514 88.14 2404.3 88.14 2451.8 2539.9 0.3109 8.6450 21

22   0.02645 1.0022 51.447 92.32 2405.7 92.33 2449.4 2541.7 0.3251 8.6229 22

23   0.02810 1.0024 48.574 96.51 2407.0 96.52 2447.0 2543.5 0.3393 8.6011 23

24   0.02985 1.0027 45.883 100.70 2408.4 100.70 2444.7 2545.4 0.3534 8.5794 24

25   0.03169 1.0029 43.360 104.88 2409.8 104.89 2442.3 2547.2 0.3674 8.5580 25

 
 

 

                                                 
5 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, p. 817 
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Table 3.2-2 Thermodynamic properties of superheated water vapor6. 
T 

°C 
v 

m3/kg 
u 

kJ/kg 
h 

kJ/kg 
s 

kJ/kg·K
v 

m3/kg
u 

kJ/kg 
h 

kJ/kg 
s 

kJ/kg·K 

  p = 0.06 bar = 0.006 MPa 
(Tsat = 36.16°C) 

p = 0.35 bar = 0.035 MPa 
(Tsat = 72.69°C) 

Sat. 23.739 2425.0 2567.4  8.3304 4.526 2473.0 2631.4 7.7158 

 80 27.132 2487.3 2650.1 8.5804 4.625 2483.7 2645.6 7.7564 

120 30.219 2544.7 2726.0 8.7840 5.163 2542.4 2723.1 7.9644 

160 33.302 2602.7 2802.5 8.9693 5.696 2601.2 2800.6 8.1519 

200 36.383 2661.4 2879.7 9.1398 6.228 2660.4 2878.4 8.3237 

240 39.462 2721.0 2957.8 9.2982 6.758 2720.3 2956.8 8.4828 

280 42.540 2781.5 3036.8 9.4464 7.287 2780.9 3036.0 8.6314 

320 45.618 2843.0 3116.7 9.5859 7.815 2842.5 3116.1 8.7712 

360 48.696 2905.5 3197.7 9.7180 8.344 2905.1 3197.1 8.9034 

400 51.774 2969.0 3279.6 9.8435 8.872 2968.6 3279.2 9.0291 

440 54.851 3033.5 3362.6 9.9633 9.400 3033.2 3362.2 9.1490 

500 59.467 3132.3 3489.1 10.1336 10.192 3132.1 3488.8 9.3194 

  p = 0.70 bar = 0.07 MPa 
(Tsat = 89.95°C) 

p = 1.0 bar = 0.10 MPa 
(Tsat = 99.63°C) 

Sat. 2.365 2494.5 2660.0 7.4797 1.694 2506.1 2675.5 7.3594 

100 2.434 2509.7 2680.0 7.5341 1.696 2506.7 2676.2 7.3614 

120 2.571 2539.7 2719.6 7.6375 1.793 2537.3 2716.6 7.4668 

160 2.841 2599.4 2798.2 7.8279 1.984 2597.8 2796.2 7.6597 

200 3.108 2659.1 2876.7 8.0012 2.172 2658.1 2875.3 7.8343 

240 3.374 2719.3 2955.5 8.1611 2.359 2718.5 2954.5 7.9949 

280 3.640 2780.2 3035.0 8.3162 2.546 2779.6 3034.2 8.1445 

320 3.905 2842.0 3115.3 8.4504 2.732 2841.5 3114.6 8.2849 

360 4.170 2904.6 3196.5 8.5828 2.917 2904.2 3195.9 8.4175 

400 4.434 2968.2 3278.6 8.7086 3.103 2967.9 3278.2 8.5435 

440 4.698 3032.9 3361.8 8.8286 3.288 3032.6 3361.4 8.6636 

500 5.095 3131.8 3488.5 8.9991 3.565 3131.6 3488.1 8.8342 

 
 

                                                 
6 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, p. 821 
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Example 3.2-1 ----------------------------------------------------------------------------------. 
(a) Determine the specific volume for saturated water vapor and internal energy for saturated 
liquid at 4.4oC from the following data 

    Specific Volume
m3/kg

Internal Energy
kJ/kg

  

Temp. 
°C 

Press. 
bar 

Sat. 
Liquid

vf × 
103

Sat. 
Vapor 

vg

Sat. 
Liquid

uf

Sat. 
Vapor 

ug

Temp. 
°C 

 4   0.00813 1.0001 157.232 16.77 2380.9  4 

 5   0.00872 1.0001 147.120 20.97 2382.3  5 
 
(b) Determine the specific volume and the internal energy for superheated water vapor at 
90oC and 0.20 bar from the following data 

T 
°C 

v 
m3/kg 

u 
kJ/kg 

h 
kJ/kg 

s 
kJ/kg·K

v 
m3/kg

u 
kJ/kg 

h 
kJ/kg 

s 
kJ/kg·K 

  p = 0.06 bar = 0.006 MPa 
(Tsat = 36.16°C) 

p = 0.35 bar = 0.035 MPa 
(Tsat = 72.69°C) 

 80 27.132 2487.3 2650.1 8.5804 4.625 2483.7 2645.6 7.7564 

120 30.219 2544.7 2726.0 8.7840 5.163 2542.4 2723.1 7.9644 

 
Solution ------------------------------------------------------------------------------------------ 

(a) Determine the specific volume for saturated water vapor at 4.4oC. 
y2

xx1 x2

y1

y

x  
 

1

1

y y
x x
−
−

 = 2 1

2 1

y y
x x
−
−

 

Using linear interpolation we have 
 

 
157.232

4.4 4
gv −

−
 = 147.120 157.232

5 4
−
−

  

 
 vg = 157.232 + (0.4)(147.120 − 157.232) = 153.187 m3/kg 
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We can also use Matlab interpolation command interp1. 
 
>> vg=interp1([4 5],[157.232 147.12],4.4) 
 
vg = 
 
  153.1872 
 
Determine the internal energy for saturated liquid at 4.4oC 
 

16.77
4.4 4
lu −

−
 = 20.97 16.77

5 4
−
−

  

 
 ul = 16.77 + (0.4)(20.97 − 16.77) = 19.29 kJ/kg 
 
We can also use Matlab interpolation command interp1. 
 
>> ul=interp1([4 5],[20.97 16.77],4.4) 
 
ul = 
 
   19.2900 
 
Properties of water can also be obtained from the Steam4 program written by T.K. Nguyen. 
You should note that the values from the software might be different than the values obtained 
from linear interpolation since the software does not assume linear relation between the 
variables. The values calculated from software are in general more accurate.  
 

 
 

Figure 3.2-3 Propterties of saturated liquid and vapor water. 
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The Catt2 program (Computer-Aided Thermodynamic Table 2) produced by Sonntag 
contains properties of other compounds beside water. 

 

 
Figure 3.2-4 Propterties of saturated liquid and vapor water from Catt2. 

 
 

(b) Determine the specific volume for superheated water vapor at 90oC and 0.20 bar  
 

T 
°C

v 
m3/kg 

v 
m3/kg 

  0.06 bar 0.35 bar 

 80 27.132 4.625

120 30.219 5.163

 
We first need to determine v1(90oC, 0.06 bar) and v2(90oC, 0.35 bar) 
 

 1 27.132
90 80

v −
−

 = 30.219 27.132
120 80

−
−

 

 
 v1 = 27.132 + (10)(30.219 − 27.132)/30 = 27.90 m3/kg 
 

 2 4.625
90 80

v −
−

 = 5.163 4.625
120 80

−
−

 

 
 v2 = 4.625 + (10)(5.163 − 4.625)/30 = 4.760 m3/kg 
 
We now determine v(90oC, 0.20 bar) from v1(90oC, 0.06 bar) and v2(90oC, 0.35 bar) 
 

 27.9
0.20 0.06

v −
−

 = 4.76 27.9
0.35 0.06

−
−
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 v = 27.9 + (0.14)(4.76 − 27.9)/0.29 = 16.73 m3/kg 
 
We can also use the following Matlab commands. 
 
>> v1=interp1([80 120],[27.132 30.219],90); 
>> v2=interp1([80 120],[4.625 5.163],90); 
>> v=interp1([.06 .35],[v1 v2],.2) 
 
v = 16.7307 
 
 
Determine the internal energy for superheated water vapor at 90oC and 0.20 bar  
 

T 
°C

u 
kJ/kg 

u 
kJ/kg 

  0.06 bar 0.35 bar 

 80 2487.3 2483.7

120 2544.7 2542.4

 
Use the following Matlab commands, we obtain u = 2500.1 kJ/kg 
 
>> u1=interp1([80 120],[2487.3 2544.7],90); 
>> u2=interp1([80 120],[2483.7 2542.4],90); 
>> u=interp1([.06 .35],[u1 u2],.2) 
 
u = 2.5001e+003 
 
The internal energy for superheated water vapor at 90oC and 0.20 bar can also be obtained 
directly from thermodynamic property software. 
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Chapter 3  
Principles of Phase Equilibrium 

 
3.3 Introduction to Phase Equilibrium 
 
A system is said to be in equilibrium when its properties are uniform over the system and are 
independent with time.  
 

70 Co

70 Co

60 Co

40 Co

30 Co 30 Co

45 Co

A                                B                                 C 

t = 0
t = 5 min

 
Figure 3.3 Example of equilibrium and non-equilibrium systems. 

 
System A shown in Figure 3.3 is not at equilibrium since its temperature is a function of both 
position and time. It is an unsteady state system. System B is not at equilibrium since its 
temperature is a function of position. It is a steady state system. System C is at equilibrium 
since its temperature is uniform and independent of time.  
 
We can use thermodynamics to form relationships between the states of a system that 
undergoes certain processes. From the first and second law we can calculate the work or heat 
required for the change of states or the value of an unknown property of a given state. We 
can also use thermodynamics to determine the composition of a mixture when it reaches 
equilibrium between coexisting phases with or without chemical reactions. 
 
The criterion for equilibrium can be based on the energy or entropy of the system. For a 
spontaneous process, the system is at equilibrium if its energy is a minimum or its entropy is 
at a maximum. At equilibrium we have 
 
 ΔGT,P ≤ 0 (3.3-1a) 
 
Equation (3.3-1a) says that in a closed system at constant temperature and pressure, 
spontaneous processes produce negative changes in Gibbs free energy, and at equilibrium the 
Gibbs free energy is at its minimum value.  
 

G P H

S

UVA

T

G P H S
U V A T

reat hysicists ave tudy
nder ery ble eachers

 
 
From the above diagram, we can see that equation (3.3-1) involves three variables in a group. 
We can use variables belong to different groups for the equilibrium criterion. 
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 ΔHP,S ≤ 0, ΔUS,V ≤ 0, or ΔAV,T ≤ 0. (3.3-1b,c,d) 
 
The criterion based on entropy is given as 
 
 ΔSU,V ≥ 0, or ΔSH,P ≥ 0. (3.3-2a,b) 
 
Equation (3.3-2a) says that in a closed system at constant internal energy and volume, 
spontaneous processes produce positive changes in entropy, and at equilibrium the entropy is 
at its maximum value. 
 
3.4 Pure Species Phase Equilibrium 
 
3.4-1 Gibbs Free Energy as a Criterion for Chemical Equilibrium 
 
Consider a closed system of a pure component in mechanical and thermal equilibrium and, 
therefore, at constant T and P. The system can absorb energy Q at constant T. Therefore the 
surroundings will have a reduction in the entropy given by 
 

 ΔSsur = − 
T
Q  (3.4-1) 

 
From the second law we have 
 
 ΔSsur + ΔSsys ≥ 0 (3.4-2) 
 
In this expression, the equal sign applies for reversible processes and the unequal sign applies 
for irreversible processes. Combining equations (3.4-1) and (3.4-2) gives 
 

  ΔSsys ≥ 
T
Q  

 
We will now drop the subscript sys for the entropy of a system (ΔS = ΔSsys), the above 
equation becomes 
 
 TΔS ≥ Q (3.4-3) 
 
The first law for a closed system with only PV work is given by 
 
 Q = ΔU − W = ΔU + PΔV 
 
Substituting Q = ΔU + PΔV into equation (3.4-3) gives 
 
  ΔU + PΔV − TΔS ≤ 0 (3.4-4) 
 
The Gibbs free energy is related to other properties by the following equation 
 
 G = H − TS = U + PV − TS  
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The change in Gibbs free energy is then 
 
 ΔG = ΔU + PΔV + VΔP − TΔS − SΔT 
 
At constant T and P, ΔT = ΔP = 0, the above equation becomes 
 
 ΔG = ΔU + PΔV − TΔS ≤ 0 (3.4-5) 
 
The above equation is essentially equation (3.3-1a), ΔGT,P ≤ 0. Therefore in a closed system 
at constant temperature and pressure, spontaneous processes produce negative changes in 
Gibbs free energy, and at equilibrium the Gibbs free energy is at its minimum value. It 
should be noted that the specification of two intensive properties fixes the values of all other 
state properties only in the uniform equilibrium state of a single-component, single-phase 
system. Thus, the equilibrium criterion specified by Eq. (3.3-1a) or (3.4-5) can be used for 
identifying the final equilibrium state in an isolated system that is initially nonuniform, or in 
which several phases or components are present. 
 
3.4-2 The Chemical Potential 
 

G P H

S

UVA

T

G P H S
U V A T

reat hysicists ave tudy
nder ery ble eachers

 
 
Consider the fundamental grouping {U, S, V}, we have 
 
 U = U(S, V) 
 
For a system with C component, the internal energy U also depends on the number of moles, 
ni, of each component. Let C = 3, we have 
 
 U = U(S, V, n1, n3, n3) 
 
The differential change in U is given by 
 

dU = 
321 ,,, nnnVS

U
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dS + 

321 ,,, nnnSV
U
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dV + 

32 ,,,1 nnVSn
U
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dn1 + 

31,,,2 nnVSn
U
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dn2 + 

21 ,,,3 nnVS
n
U
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dn3 

 
In general, we have  
 
 U = U(S, V, n1, …,ni, …, nC) (3.4-6) 
 
and  

  dU = 
inVS

U
,

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dS + 

inSV
U

,
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dV + ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂C

i nVSi
j

n
U

1 ,,

dni  (3.4-7) 
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The subscript j denotes a component different than i. The first two coefficient of Eq. (3.4-7) 

refer to conditions of constant composition. This refers to the same conditions as 
VS

U
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  and 

SV
U
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ . 

 
G P H

S

UVA

T

G P H

S

UVA

T

 
 

Therefore 
 

 
inVS

U
,

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ = T and 

inSV
U

,
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ = − P 

 
We can simplify Eq. (3.4-7) by defining the chemical potential μi: 
 

 μi = 
jnVSin

U

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  

 
Equation (3.4-7) now becomes 
 

 dU = TdS  − PdV + dni  (3.4-8) ∑
=

C

i
i

1

μ

 
Adding d(PV) to each side of this equation, we obtain 
 

 dH = dU  + d(PV) = VdP + TdS + ∑ dni  (3.4-9) 
=

C

i
i

1

μ

 
Subtracting d(TS) from each side of Eq. (3.4-8) yields 
 

 dA = dU  − d(TS) =  − SdT − PdV + dni  (3.4-10) ∑
=

C

i
i

1

μ

 
Similarly, subtracting d(TS) from each side of Eq. (3.4-9) yields 
 

 dG = dH  − d(TS) = VdP  − SdT + ∑ dni  (3.4-11) 
=

C

i
i

1

μ
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Equations (3.4-8)-(3.4-11) are applicable to closed systems where the change in the number 
of moles of one or more components is caused by a chemical reaction. They are also 
applicable to open systems where the change is from a transfer of matter.  
 

G P H

S

UVA

T

G P H S
U V A T

reat hysicists ave tudy
nder ery ble eachers

 
 

We defined the chemical potential as 
 

 μi = 
jnVSin

U

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  

 
From equations (3.4-9)-(3.4-11), we can also define the chemical potential in terms of H, A, 
and G 
 

 μi = 
jnVSin

U

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  = 

jnSPin
H

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ = 

jnVTin
S

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ = 

jnPTin
G

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  (3.4-12) 

 
These definitions involve the 3 properties at each corner of the diagram. They can be 
considered as alternative ways of determining a thermodynamic property. The last term in 
equation (3.4-12) is the more useful definition since a process of constant temperature and 
pressure is experimentally the most convenient. For a single component system G = Ng, and 
 

 μi  = 
jnPTin

G

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  = ( )

PTN
Ng

,
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂  = g 

 
A physical meaning of the chemical potential may be obtained when Eq. (3.4-8) is applied to 
a process. 
 

 dU = TdS  − PdV + dni  (3.4-8)  ∑
=

C

i
i

1

μ

 
From the first law, we have dU = δQ + δW. Therefore 
 

  δQ + δW = TdS  − PdV + dni  (3.4-13) ∑
=

C

i
i

1

μ

 
Since this equation applies only to changes between equilibrium states,  δQ = TdS . Equation 
(3.4-13) becomes 
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  δW = − PdV + dni  (3.4-14) ∑
=

C

i
i

1

μ

 
Eq. (3.4-14) is the work interaction of a system. It contains a Pv work and a work involved a 
change in mole numbers due to chemical reaction or mass transfer.  
 
3.4-3 Vapor Liquid Phase Equilibrium 
 
Consider an isolated system of a single component shown in Figure 3.4-1. The equilibrium 
system consists of a vapor phase (I) and a liquid phase (II). For the entire system, the total 
moles, internal energy, volume, and entropy, all of which are extensive variables, are the 
sums of these quantities in the two phases, that is, 
 
 N = NI + NII  
 
 U = UI + UII  
 
 V = VI + VII  
 
and 
 S = SI + SII  
 

Vapor phase I

Liquid phase II
 

Figure 3.4-1 An isolated equilibrium system. 
 

We now consider the internal energy to be a function of volume, entropy, and mole number. 
 
 UI = UI(SI, VI, NI) 
 
We can calculate the change in the internal energy for the vapor phase I due to changes in SI, 
VI, and NI. 
  

 dUI = 
II NV

I

I

S
U

,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dSI + 

II NS
I

I

V
U

,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dVI + 

II VS
I

I

N
U

,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dNI

  (3.4-15) 

 
The partial derivatives can be written in terms of thermodynamic properties. 
 
 dUI = TIdSI − PIdVI + gIdNI

  (3.4-16) 
 
  
Solving the above equation for dSI yields 
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 dSI = IT
1 dUI + I

I

T
P dVI − I

I

T
g dNI (3.4-17a) 

 
Similarly, for the liquid phase we have 
 

 dSII = IIT
1 dUII + II

II

T
P dVII − II

II

T
g dNII (3.4-17b) 

 
The entropy change of the entire system is 
 

 dS = dSI + dSII = IT
1 dUI + IIT

1 dUII + I

I

T
P dVI + II

II

T
P dVII − I

I

T
g dNI − II

II

T
g dNII 

 
Since the system is isolated, the total number of moles, total internal energy, and total 
volume are constant. 
 
 dN = dNI + dNII = 0 ⇒ dNI =  − dNII  
  
 dU = dUI + dUII = 0 ⇒ dUI =  − dUII  
 
 dV = dVI + dVII = 0 ⇒ dVI =  − dVII  
 
Therefore 
 

 dS = ⎟
⎠
⎞

⎜
⎝
⎛ − III TT

11 dUI + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− II

II

I

I

T
P

T
P dVI − ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− II

II

I

I

T
g

T
g dNI  (3.4-18) 

 
At equilibrium, the value of S is at a maximum. Hence dS = 0. Since UI, VI, and NI are 
independent, dS can be equal to zero only if the coefficients of dUI, dVI, and dNI must all 
equal to zero.  
 

 ⎟
⎠
⎞

⎜
⎝
⎛ − III TT

11  ⇒ TI = TII 

 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− II

II

I

I

T
P

T
P  ⇒ PI = PII 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− II

II

I

I

T
g

T
g  ⇒ gI = gII 

 
Therefore, the equilibrium condition for the two phases system shown in Figure 3.4-1 is 
satisfied if both phases have the same temperature, the same pressure, and the same chemical 
potential or Gibbs free energy. 
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Example 3.4-17  ---------------------------------------------------------------------------------- 
Calculate the horsepower for compressing 5,000 lbs/hr of ethylene from 100 psia, − 40oF to 
200 psia. The adiabatic efficiency of the compressor is 75%. Include your calculations and 
Mollier chart. 
Solution ------------------------------------------------------------------------------------------ 
 
The Mollier chart (Pressure-Enthalpy diagram) for ethylene can be obtained from the text by 
Darby, R., Chemical Engineering Fluid Mechanics, Marcel Dekker, 2001, p. 511. 

T 
= 

- 4
0

Fo

s =
 1.

64
 B

tu/
lb

Fo

Pr
es

su
re

, p
si

a

Enthalpy, Btu/lb
1044 1064

200

100

 
The enthalpy of ethylene at 100 psia and − 40oF can be located from the diagram to give 
 
 h1 = 1044 Btu/lb 
 
For isentropic compression, Δs = 0, we follow the curve where s is a constant until it reaches 
the line where P = 200 psia to locate a value for the enthalpy 
 
 h2 = 1064 Btu/lb 
 
Therefore  (h2 − h1)isentropic = 1064 − 1044 = 20 Btu/lb. 
 
The actual increase in enthalpy of the gas is obtained from the adiabatic efficiency 
 

 (h2 − h1)actual = 
75.0
1 (h2 − h1)isentropic = 26.7 Btu/lb 

 
The horesepower supplied by the compressor to compress 5000 lb/hr of ethylene is 
 
 Power = 5000 × 26.7 = 133,500 Btu/hr 
 
 Power = (133,500 Btu/hr)(3.9301×10-4 hp/(Btu/hr)) = 52.5 hp 
 
 
 
 
                                                 
7 Dr. Pang's Notes 
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Chapter 3  
Example 3.4-2  ---------------------------------------------------------------------------------- 
Design a refrigeration system, which supplies two levels of ammonia refrigerant at 10oC and 
at − 10oC to two exchangers requiring duties of 850 and 2,500 kW, respectively.  Draw a 
process flow diagram  (PFD) showing major equipment, flow rates in kg/s of refrigerant, 
duty of each heat exchanger, duty, and horsepower of each compressor. Also, show 
temperatures and pressures of all streams. There are no inter-coolers between compressors. 
The compressed gas from the last stage compressor can be cooled to saturated liquid at 30oC.  
Use 75% adiabatic efficiency for all compressors. 
 
Solution ------------------------------------------------------------------------------------------ 
 

E1

F1

C1

E3

T , P5 3

T, Pi 3

T
P

1

1

T
P

1

1

T
P

1

1

E2

F2

C2

T
P

2

2

T
P

2

2

T
P

2

2

T , P3 1 T , P4 1

V1V2

 
Figure 3.4-2 A two level refrigeration system. 

 
A design of a two level refrigeration system is shown in Figure 3.4-2. Saturated liquid 
ammonia at Ti is partially vaporized through a let-down valve V1 to T1 and P1. Part of the 
liquid separated by the flash drum F1 is used to provide the first level refrigeration through 
the heat exchanger E1. The remaining liquid passes through a second valve where its 
temperature and pressure is reduced to T2 and P2. The liquid stream from the second flash 
drum F2 is used for the second level refrigeration through the heat exchanger E2 where it 
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becomes saturated vapor. This stream is combined with the saturated vapor from the second 
flash drum and compressed back to pressure P1.   

Isotherm at Ti

Critical point 

T , P1 1

T , P2 2

T , P3,ideal 1

T , P3 1

Enthalpy

T, Pi 3

Saturated liquid

Saturated vapor

Isentropic line 

 
Figure 3.4-3 Pressure-Enthalpy diagram. 

 
The problem can be solved either with a Pressure-Enthalpy diagram of ammonia as shown in 
Figure 3.4-3 or with a program solving an equation of state to obtain thermodynamic 
properties of a pure substance given any two other properties (for example, temperature and 
pressure or saturation temperature). We will use the computer program CATT2 to obtain 
thermodynamic values listed in Table 3.4-1. For this example the pressure drop across the 
heat exchangers and across the flash drums will be neglected. 

 
Saturated liquid ammonia at Ti = 30oC is a defined state at P3 = 1.167 MPa with enthalpy 
equal to 322.4 kJ/kg as shown in the first line of the property table 3.4-1. Similarly, the 
saturated properties of ammonia at 10oC and −10oC can be obtained. The mass flow rated of 
saturated liquid ammonia, , required to remove 2,500 kW in heat exchanger E2 is given 
by 

2,Lm&

 

  = 2,Lm&
2,2,

2500

LV hh
kW
−

 

 
In this equation, hV,2 and hL,2 are the enthalpy of saturated vapor and liquid ammonia at 
−10oC, respectively. Therefore 
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  = 2,Lm&
2,2,

2500

LV hh
kW
−

= 
4.1341431

2500
−

 = 1.9281 kg/s 

 
 

 Table 3.4-1 Thermodynamic properties of ammonia. 
    Specific Specific Specific   
 Type Temp Pressure Volume Enthalpy Entropy Quality Phase 
  C MPa m3/kg kJ/kg kJ/kg/K   

1 Ammonia 30 1.167 0.00168 322.4 1.2 0 Saturated Liquid 
2 Ammonia 30 1.167 0.1105 1466 4.974 1 Saturated Vapor 
3 Ammonia 10 0.6152 0.0016 227 0.8779 0 Saturated Liquid 
4 Ammonia 10 0.6152 0.2054 1452 5.204 1 Saturated Vapor 
5 Ammonia -10 0.2909 0.001534 134.4 0.5408 0 Saturated Liquid 
6 Ammonia -10 0.2909 0.4181 1431 5.467 1 Saturated Vapor 
7 Ammonia 39.43 0.6152 0.2343 1530 5.467 Superheated Vapor 
8 Ammonia 52.64 0.6152 0.2465 1563 5.57 Superheated Vapor 
9 Ammonia 38.85 0.6152 0.2338 1529 5.463 Superheated Vapor 

10 Ammonia 87.57 1.167 0.1417 1628 5.463 Superheated Vapor 
11 Ammonia 100.8 1.167 0.1482 1661 5.554 Superheated Vapor 

 
 

 
2,Lm&  is also the liquid flow rate leaving flash drum F2. The vapor flow rate, , leaving the 

second flash drum F2 can be determined from the mass and energy balance around valve V2 
and flash drum F2.  

2,Vm&

 
 = +  2m& 2,Lm& 2,Vm&
 
In this equation  is the saturated liquid ammonia flow rate at T1 and P1 entering valve V2. 
The energy balance is given by 

2m&

 
 ( + )hL,1 = hL,2 +  hV,2  2,Lm& 2,Vm& 2,Lm& 2,Vm&
 
Solving for  we have 2,Vm&
 

  = 2,Vm& 2,Lm&
1,2,

2,1,

LV

LL

hh
hh

−
−

 = 1.9281
2271431

4.134227
−
−  = 0.1483 kg/s 

 
The liquid flow rate through valve V2 is then 
 
 = 1.9281 + 0.1483 = 2.0764 kg/s 2m&
 
The mass flow rated of saturated liquid ammonia, , required to remove 850 kW in heat 
exchanger E1 is given by 

1,Em&
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  = 1,Em&
1,1,

850

LV hh
kW
−

 

 
In this equation, hV,1 and hL,1 are the enthalpy of saturated vapor and liquid ammonia at 10oC, 
respectively. Therefore 
 

  = 1,Em&
1,1,

850

LV hh
kW
−

= 
2271452

850
−

 = 0.6939 kg/s 

 
The liquid flow rate, , leaving flash drum F1 is the sum of the liquid flow rate through 
the heat exchanger E1 and the liquid flow rate through the valve V2 

1,Lm&

 
 =  + = 0.6939 + 2.0764 = 2.7703 kg/s 1,Lm& 1,Em& 2m&
 
Similarly, the vapor flow rate, , leaving the first flash drum F1 can be determined from 
the mass and energy balance around valve V1 and flash drum F1.  

1,Vm&

 

  = 1,Vm& 1,Lm&
11,

1,

iV

Li

hh
hh
−
−

 = 2.7703
4.3221466

2274.322
−
−  = 0.2340 kg/s 

 
The total mass flow rate of ammonia required for the system is then im&
 
  =  + = 2.7703 + 0.2340 = 3.0043 kg/s im& 1,Lm& 1,Vm&
 
The vapor flow rate from both the exchanger E1 and the flash drum F1 is given by vapm ,1&

 
 =  +  = 0.6939 + 0.2340 = 0.9279 kg/s vapm ,1& 1,Em& 1,Vm&
 
We now determine the horsepower of the second compressor. The saturated vapor leaving 
the second exchanger E2 and the flash drum F2 must be compressed from 0.2909 MPa to 
0.6152 MPa. For isentropic work, the gas entering and exiting the compressor will have the 
same entropy at 5.467 kJ/kg⋅oK. The enthalpy of the gas leaving the second compressor C2 
due to isentropic compression is 1530 kJ/kg. For 75% adiabatic efficiency, the actual 
enthalpy of the exiting gas is given by 
 
 h3,actual = 1431 + (1530 − 1431)/0.75 = 1563 kJ/kg 
The horsepower required of the second compressor C2 is 
 
 HP2 = 2.0764×(1530 − 1431)/0.75 = 274.1 kW = 368 hp 
 
The actual temperature T3 of the exiting gas is obtained from P1 = 0.6152 MPa and h3,actual = 
1563 kJ/kg. We have the gas leaving the second compressor at T3 = 52.64oC that must be 
mixed with the saturated gas leaving the first heat exchanger E1 and the first flash drum F1 at 
10oC. The enthalpy of the gas entering the first compressor C1 is then 

 3-22



 

 h4 = 
9279.00764.2

14529279.015630764.2
+

×+×  = 1528.7 kJ/kg 

 
At these conditions (P1 = 0.6152 MPa, h4 = 1528.7 kJ/kg) T4 = 38.85oC and entropy s4 = 
5.463 kJ/kg⋅oK, the gas will be compressed to 1.167 MPa. The enthalpy of the gas leaving the 
first compressor C1 due to isentropic compression is 1628 kJ/kg. For 75% adiabatic 
efficiency, the actual enthalpy of the exiting gas is given by 
 
 h5,actual = 1528.7 + (1628 − 1528.7)/0.75 = 1661.1 kJ/kg 
 
The horsepower required of the first compressor C1 is 
 
 HP1 = 3.0043×(1628 − 1528.7)/0.75 = 398 kW = 534 hp 
 
The gas leaving the first compressor C1 at P3 = 1.167 MPa, h5,actual = 1661.1 kJ/kg, its 
temperature T5 is 100.8oC. The gas will be condensed to saturated liquid at 30oC (1.167 
MPa). The duty of the heat exchanger E3 is given by 
 
 Q3 = 3.0043×(1661.1 − 322.4) = 4022 kW 
 

--------------------------------------------------------------------------------------------- 
 
3.4-4 The Clapeyron Equation 
 
Temperature and pressure are not independent for a pure species that exists in two phases at 
equilibrium. We now wish to derive an expression relating the pressure at which two phases 
can coexist to the temperature of the system. At equilibrium between α and β phases, where 
α and β can represent the vapor, liquid, or solid phases, we have 
 
 Tα = Tβ, Pα = Pβ, and gα = gβ (3.4-19) 
 
Hence, the differential changes in Gibbs free energy of each phase must be equal 
 
 dgα = dgβ 
 

 
PT

g
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ α

dT + 
TP

g
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ α

dP = 
PT

g
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ β

dT + 
TP

g
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ β

dP (3.4-20) 

 
Equation (3.4-20) shows the displacement of the system from its original equilibrium state 
described by Eqs. (3.4-19) to another equilibrium state. This change will move the system 
along one of the coexistence lines shown in Figure 3.4-5 to a new T and P where 
 
 T → T + dT and P → P + dP  
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Figure 3.4-5 Surfaces of Gibbs surfaces for two phases α and β. 

 
Applying the fundamental property relation for g to each phase yields 
 
 − sαdT + vαdP = − sβdT + vβdP (3.4-20) 
 
Rearrangement gives 
 

 
dT
dP  = βα

βα

vv
ss

−
−  (3.4-21) 

 
We have  gα = gβ ⇒ hα − Tsα = hβ − Tsβ  
 
 
Solving for the difference in entropy yields 
 

 sα  − sβ = 
T

hh βα −  

 
Substituting the expression for entropy into equation (3.4-21) gives 
 

 
dT
dP  = ( )Tvv

hh
βα

βα

−
−  (3.4-22) 

 
Equation (3.4-22), called the Clapeyron equation, is a general relationship among pressure, 
temperature, volume change, and enthalpy change for a single component, two-phase system 
at equilibrium. This equation can be applied to any kind of phase equilibrium including solid-
vapor and solid-liquid equilibria by substituting the alternative sublimation or fusion 
properties into the equation. 
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For solid-liquid equilibrium, we are usually interested in the change of freezing point with 
pressure dT/dP. We can invert Eq. (3.4-22) to obtain 
 

 
dP
dT  = ( )

sl

sl

hh
Tvv

−
−  (3.4-23) 

 
For most substances dT/dP is small and positive; however for water dT/dP is negative since 
ice is less dense than liquid water. This unusual behavior for water means that ice will melt 
when pressure is applied to it isothermally as shown in Figure 3.4-6. Due to this 
phenomenon, you can skate on ice. 
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Figure 3.4-6 P-T behavior of real fluid. 

 
For vapor-liquid equilibrium, we have 
 

 
dT

dPsat

 = ( )Tvv
hh
lv

lv

−
−  (3.4-24) 

 
When applied to equilibrium involving a vapor phase, the pressure is referred to as the vapor 
or saturation pressure and will be denoted by Psat. In the region far from the critical point, vl 
<< vv, the volume of the liquid is negligible compared to the volume of the vapor. If the 
vapor obeys ideal gas law, Eq. (3.4-24) becomes 
 

 
dT

dPsat

 = 2RT
hP vap

satΔ
 (3.4-25) 

 
In this equation, Δhvap = hv − hl is the enthalpy of vaporization of the substance at temperature 
T. Equation (3.4-25) can be rewritten in the form 
 

 d lnPsat = −
R
hvapΔ

d ⎟
⎠
⎞

⎜
⎝
⎛

T
1  (3.4-26) 

 
Integrating Eq.(3.4-26) between state 1 and state 2 yields 
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 ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
sat

sat

P
P

1

2  = −
R
hvapΔ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

12

11
TT

 (3.4-27) 

 
We can also integrate Eq. (3.4-26) using a constant of integration C1 
 

 lnPsat = C1 − RT
hvapΔ

 (3.4-28) 

 

Equations (3.4-27) and (3.4-28) are often called the Clausius-Clapeyron equation. They can 
be used to correlate, interpolate, and extrapolate of vapor data or to estimate latent heats from 
vapor pressure data. Equation (3.4-28) suggests that a plot of lnPsat vs. (1/T) should be a 
straight line over the region where Δhvap is a constant. Actually, it has been found that Eq. 
(3.4-28) is valid over a surprisingly wide range of temperature due to a cancellation of errors 
introduced by the various assumptions. 

Saturation pressure data are commonly correlated in terms of the Antoine equation 

 

 lnPsat = A −
TC

B
+

 (3.4-29) 

 
The Antoine equation can be regarded as an empirical version of the Clausius-Clapeyron 
equation. Values for the Antoine constants, A, B, and C can be found for various substances 
in Koretsky’s text8. There are several more complex correlations9 available for saturation 
data that are accurate over a wider range of temperature. For example, the water vapor 
pressure can be obtained accurately from the following equation10 
 

 Psat = Pcritexp  (3.4-30) ⎥
⎦

⎤
⎢
⎣

⎡ −− ∑
=

−−
8

1

15 )01.065.0()(10
i

i
icri TFTTτ

 
In this equation, T denotes saturation temperature (oC), Pcrit critical pressure (220.88 bars), 
Tcri critical temperature (374.136oC), τ = 1000/T(oK), and Fi is given by 
 

F1 F2 F3 F4 F5 F6 F7 F8 
-741.9242 -29.7210 -11.55286 -.8685635 .1094098 .439993 .02520658 .05218684

 

                                                 
8 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 499 
9 Reid R. C., Praunits J. M., Poling B. E., The Properties of Gases & Liquids, McGraw-Hill, 1987 
10 Keenan J. H., Steam Tables, Wiley, pg. 141 
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Chapter 3  
Example 3.4-316  ---------------------------------------------------------------------------------- 
The heat of fusion of ice is 80 cal/g at 0oC and 1 atm, and the ratio of the specific volume of 
water to that of ice is 1.000:1.091. The saturated vapor pressure and the heat of vaporization 
of water at 0oC are 4.58 mmHg and 600 cal/g, respectively. Estimate the triple point using 
these data. 
 
Solution ------------------------------------------------------------------------------------------ 

so
lid

+l
iq

ui
d

liq
uid

+v
ap

or

Solid

Liquid

Vapor

P

T

4.58 mmHg

0 Co

A

B Triple point

 
Figure E3.4-3 P-T behavior of water. 

 
The coordinates of point A and B are (0oC, 1 atm) and (0oC, 4.58 mmHg), respectively. The 
coexistence line through A will intersect the coexistence line through B at the triple point. 
For equilibrium between the solid and liquid phase we have 
 
 dgs = dgl 
 

 
P

s

T
g

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dT + 

T

s

P
g

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dP = 

P

l

T
g
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dT + 

T

l

P
g
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ dP 

 
Applying the fundamental property relation for g to each phase yields 
 
 − ssdT + vsdP = − sldT + vldP 
 
Rearrangement gives 
 

 
dT
dP  = sl

sl

vv
ss

−
−   

 
                                                 
16 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 234 
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We have  gs = gl ⇒ hs − Tss = hl − Tsl  
 
 
Solving for the difference in entropy yields 
 

 sl  − ss = 
T

hh sl −  

 
Substituting the expression for entropy into dP/dT yields 
 

 
dT
dP  = ( )Tvv

hh
sl

sl

−
−  

 

 
dT
dP  = 

)15.273)(091.0(
80

−
 = − 3.2185 cal/cm3⋅oK 

 
We need to change the unit from cal/cm3⋅oK to mmHg/oK. 
 
 1 cal = 4.184 J = 4.184 kg⋅m2/s2 = 4.184×104 kg⋅cm2/s2  
 
 1 cal/cm3 = 4.184×104 kg/s2⋅cm = 4.184×106 kg/s2⋅m  
 

 1 mmHg = 
760

10013.1 5× kg/s2⋅m ⇒ kg/s2⋅m = 7.502×10-3 mmHg 

 
Therefore 
 

 
dT
dP  = (− 3.2185)(4.184×106)(7.502×10-3) = − 1.01×105 mmHg/oK 

 
The equation for the straight line through A(0oC, 760 mmHg) with slope dP/dT = − 
1.012×105 mmHg/oK is given by 
 

 
0

760
−
−

T
P  = − 1.01×105 mmHg/oK (E-1) 

 
Similarly for equilibrium between the solid and vapor phase we have 
 

 
dT
dP  = ( )Tvv

hh
sv

sv

−
−  

 
Neglecting the solid volume compared to the volume of the vapor and using ideal gas law we 
obtain 
 

 3-28



( ) 
dT

 = dP
2RT

 = hhP sv −
)15.273)(987.1(

)(
2  = 0.33365 mmHg/oK )18600)(58.4(

he equation for the straight line through B(0oC, 4.58 mmHg) with slope dP/dT = 0.33365 
mHg/oK is given by 

 
T
m
 

 
0
58.4

−
−

T
P  = 0.33365 mmHg/oK (E-2) 

t the triple po

t t (E-4) 

olving the tw s (E-3) and (E-4) gives 

-3o

 Pt = 4.5825 mmHg 
 

 
int P = Pt and T = Tt, Equations (E-1) and (E-2) become, respectively A

 
 Pt − 760 = − 1.01×105 Tt (E-3)  

 
 P − 4.58 = 0.33365 T   

 
o linear equationS

 
 Tt = 7.5×10 C 
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3.5 Refrigeration 
 
The most common refrigeration cycle is the vapor compression cycle shown in Figure 3.5-1. 
In step 4 → 1, heat is removed at the temperature TL from the system being refrigerated by 
the evaporation of a liquid under the pressure PL. In step 1 → 2, saturated vapor at PL is 
compress isentropically to PH where it becomes superheated vapor. In step 2 → 3, heat QH is 
transferred to the surrounding by condensation at TH. In step 3 → 4, the cycle is closed by 
throttling the liquid to the lower pressure PL. 
 

Condenser

Evaporator

Throttle
valve Compressor

4 1

23

QL

QH

PL

PH

T

s

Liquid

Vapor
Isenthalp

1

2

3

4W
a b c  

Figure 3.5-1 A vapor-compression refrigeration cycle and its Ts diagram. 
 

The heat transfer between the system and the surroundings can be obtained from the Ts 
diagram. Since Q = , the heat effect is the area under the curve representing the path. In 

Figure 3.5-1 the heat QH transferred from the refrigerator to the high temperature 
environment is the area 2-3-a-c, which is negative. The heat QL removed from the low 
temperature system is the area 4-1-c-b and is positive. For the cyclic process 

∫Tds

 
 ΔU = QL + W − QH = 0 ⇒ W = QH −  QL  (3.5-1) 
 
The efficiency of the refrigeration cycle, called the coefficient of performance COP, is given 
by 
 

 COP = 
W
QL  (3.5-2) 

 
The work required for the refrigeration cycle can be obtained from the Ts diagram 
 
 W = QH −  QL = (Area 2-3-a-c) − (Area 4-1-c-b) 
 
 W = QH −  QL = (Area 1-2-3-4) + (Area 3-4-b-a) 
 
The refrigeration cycle shown in Figure 3.5-1 is a semi-reversible cycle since all steps except 
throttling are reversible.  
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Example 3.5-117---------------------------------------------------------------------------------- 
A vapor compression refrigeration process using NH3 as the working fluid is to operate 
between 20 and 80oF. Determine the coefficient of performance for the semi-reversible 
operation. 
 
Solution ------------------------------------------------------------------------------------------ 

Evaporator
4 1

QL

PL

PH

T

s

Liquid

Vapor
Isenthalp

1

2

3

4W

a b c

80 Fo

20 Fo

h4
h1 h2

 
 

 
  
We will first locate the four states of the refrigeration cycle: 
 
State 3: Saturated liquid at 80oF, h3 = h4 = 131.7 Btu/lb. 
State 1: Saturated vapor at 20oF, h1 = 616.8 Btu/lb. 
State 4: Liquid and vapor mixture at h4 = 131.7 Btu/lb and 20oC 
State 2: Superheated vapor at s2 = s1 = 1.295 Btu/lb⋅oR, PH = P2 = 153.1 psia 
 
Making energy balance around the evaporator yields 
 
 0 = h4 − h1 + QL ⇒ QL = h1 − h4 = 616.8 − 131.7 = 485.1 Btu/lb 
 
Making energy balance around the compressor yields 
 
 0 = h1 − h2 + W ⇒ W = h2 − h1 = 686.6 − 616.8 = 69.8 Btu/lb 
 
The coefficient of performance is then 
 

 COP = 
W
QL  = 

8.69
1.485  = 6.95 

                                                 
17 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 656 
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Example 3.5-213---------------------------------------------------------------------------------- 
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle that 
communicates thermally with a cold region at 0°C and a warm region at 26°C. Saturated 
vapor enters the compressor at 0°C and saturated liquid leaves the condenser at 26°C. The 
mass flow rate of the refrigerant is 0.08 kg/s. Determine (a) the compressor power, in kW, 
(b) the refrigeration capacity, in tons, (c) the coefficient of performance, and (d) the 
coefficient of performance of a Carnot refrigeration cycle operating between warm and cold 
regions at 26 and 0°C, respectively.  
Solution ------------------------------------------------------------------------------------------ 

Condenser

Evaporator

Expansion
valve Compressor

4 1

23

QL

QH

PL

PH

T

s

Liquid

Vapor
Isenthalp

1

2

3

4W
a b c

26 Co

0 Co

 
 
 
 
 

    Specific Internal Specific Specific   
 Type Temp Pressure Volume Energy Enthalpy Entropy Quality Phase 
  C MPa m3/kg kJ/kg kJ/kg kJ/kg/K   
1 R-134a 0 0.2928 0.06931 378.3 398.6 1.727 1 Saturated Vapor 
3 R-134a 26 0.6854 0.000831 235.4 236 1.125 0 Saturated Liquid 
2 R-134a 29.25 0.6854 0.0306 395.2 416.2 1.727  Superheated Vapor

 
(a) The compressor work is give by 
 
  = m (h2 − h1) = (0.08 kg/s)(416.2 − 398.6) kJ/kg = 1.408 kW cW& &

 
(b) The refrigeration capacity, in tons, is 
 
 LQ& = m (h1 − h4) = (0.08 kg/s)( 398.6 − 236) kJ/kg = 13.0 kW &

 

 LQ& = (13.0 kJ/s)(60 s/min) 1 ton
211 kJ/min

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 3.7 ton 

 
(c) Tthe coefficient of performance is 

                                                 
13 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 539 
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 β = L

c

Q
W

&

&
 = 13.0

1.408
 = 9.23 

 
(d) The coefficient of performance of a Carnot refrigeration cycle operating between warm 
and cold regions at 26 and 0°C, respectively 
 

 β = L

c

Q
W

&

&
 = L

H L

Q
Q Q−

&

& &  = L

H L

T
T T−

 = 273
299 273−

 = 10.5 

 
------------------------------------------------------------------------------------------ 
 

Condenser

Evaporator

Expansion
valve Compressor

4 1

23

QL

QH

PL

PH

T

s

Liquid

Vapor

Isenthalp

1

2

3

4W

TH

TL

2s

 
Figure 3.5-2 A vapor-compression refrigeration with irreversibilities. 

 
Figure 3.5-2 shows several features existed in actual vapor compression systems. The heat 
transfers between the refrigerant and the warm and cold regions are not accomplished 
reversibly: the refrigerant temperature in the evaporator is less than the low reservoir 
temperature, TL, and the refrigerant temperature in the condenser is greater than the high 
reservoir temperature, TH. The compressor will not have 100% efficiency so that the fluid 
leaving the compressor will be at state (2), which is at higher entropy than the isentropic 
compression state (2s). The coefficient of performance decreases as the average temperature 
of the refrigerant in the evaporator decreases and as the average temperature of the 
refrigerant in the condenser increases. If the thermal efficiency of the compressor is known, 
the enthapy h2 at state (2) can be determined from the following expression: 
 

 ηc = 
( )
( )

/

/
c s

c

W m

W m

& &

& &
 = 2 1

2 1

sh h
h h

−
−

 

 
Due to frictions, there will be pressure drops as the refrigerant flows through the evaporator, 
condenser, and piping connecting the various components. The pressure drops are ignored in 
subsequent calcualtions for simplicity. 
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Example 3.5-314---------------------------------------------------------------------------------- 
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle that 
communicates thermally with a cold region at − 10°C. Saturated vapor enters the compressor 
at − 10°C and saturated liquid leaves the condenser at 9 bar. The mass flow rate of the 
refrigerant is 0.08 kg/s. Determine (a) the compressor power, in kW, (b) the refrigeration 
capacity, in tons, (c) the coefficient of performance.  
Solution ------------------------------------------------------------------------------------------ 

Condenser

Evaporator

Expansion
valve Compressor

4 1

23

QL

QH

PL

PH

T

s

Liquid

Vapor
Isenthalp

1

2

3

4W
a b c

9 bar

-10 Co

 
 

    Specific Internal Specific Specific   
 Type Temp Pressure Volume Energy Enthalpy Entropy Quality Phase 
  C MPa m3/kg kJ/kg kJ/kg kJ/kg/K   
1 R-134a -10 0.2006 0.09959 372.7 392.7 1.733 1 Saturated Vapor 
2 R-134a 41.47 0.9 0.02359 402.7 423.9 1.733  Superheated Vapor 
3 R-134a 35.53 0.9 0.000858 249 249.8 1.169 0 Saturated Liquid 

 
(a) The compressor work is give by 
 
  = m (h2 − h1) = (0.08 kg/s)(423 − 392.7) kJ/kg = 2.424 kW cW& &

 
(b) The refrigeration capacity, in tons, is 
 
 LQ& = m (h1 − h4) = (0.08 kg/s)( 392.7 − 249.8) kJ/kg = 11.432 kW &

 

 LQ& = (11.432 kJ/s)(60 s/min) 1 ton
211 kJ/min

⎛
⎜
⎝ ⎠

⎞
⎟  = 3.25 ton 

 
(c) The coefficient of performance is 

 β = L

c

Q
W

&

&
 = 11.432

2.424
 = 4.72 

 

                                                 
14 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 541 
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Example 3.5-415---------------------------------------------------------------------------------- 
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle that 
communicates thermally with a cold region at − 10°C. Saturated vapor enters the compressor 
at − 10°C and liquid leaves the condenser at 9 bar and 30oC. The compressor has an 
efficiency of 80%. The mass flow rate of the refrigerant is 0.08 kg/s. Determine (a) the 
compressor power, in kW, (b) the refrigeration capacity, in tons, (c) the coefficient of 
performance.  
Solution ------------------------------------------------------------------------------------------ 

Condenser

Evaporator

Expansion
valve Compressor

4 1

23

QL

QH

PL

P = 9 barH 

T

s

Liquid

Vapor

Isenthalp

1

2

3
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30 Co

-10 Co

 
 

    Specific Specific Specific   
 Type Temp Pressure Volume Enthalpy Entropy Quality Phase 
  C MPa m3/kg kJ/kg kJ/kg/K   
1 R-134a -10 0.2006 0.09959 392.7 1.733 1 Saturated Vapor 
2s R-134a 41.47 0.9 0.02359 423.9 1.733  Superheated Vapor
3 R-134a 30 0.9 0.000842 241.7 1.143  Compressed Liquid
4 R-134a -10 0.2006 0.02716 241.7 1.16 0.2671 Liquid Vapor Mixture

 
(a) The compressor work is give by 
 

  = m (h2 − h1) = cW& & m& 2sh h
η

1−  = (0.08 kg/s) 423.9 392.7
.8
−  kJ/kg = 3.12 kW 

 
 (b) The refrigeration capacity, in tons, is 
 
 LQ& = m (h1 − h4) = (0.08 kg/s)( 392.7 − 241.7) kJ/kg = 12.08 kW &

 

 LQ& = (12.08 kJ/s)(60 s/min) 1 ton
211 kJ/min

⎛
⎜
⎝ ⎠

⎞
⎟  = 3.44 ton 

 
(c) Tthe coefficient of performance is 

 β = L

c

Q
W

&

&
 = 12.08

3.12
 = 3.87 

                                                 
15 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 543 
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3.6 Partial Molar Properties 
 
If we mix 50 cm3 of ethanol with 20 cm3 of water at 25oC we will obtain 67 cm3 of the 
resulting solution16. The difference in the solution volume and the sum of the pure volumes 
is due to the nature of the unlike ethanol-water interactions and the fact that they are different 
from the water-water or ethanol-ethanol pure species interactions. When a species becomes 
part of a mixture, its properties change; however it still contributes to the properties of the 
mixture, since the total solution properties of the mixture depend on the amount present of 
each species and its resultant interactions. We can define a partial molar property to account 
for the contribution of a species to the mixture property. 
 
We will first consider the volume of the mixture V, an extensive property, which at a 
specified temperature and pressure will depend on the number of moles of each species in the 
mixture. The partial molar volume of species i, iV , in a mixture is defined as 
 

 iV  = 
jnPTin

V

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  (3.6-1) 

 
We use the notation nj to specify that we are holding the number of moles of all species 
except species i constant when we take the partial derivative with respect to ni. A partial 
molar property is always defined at constant temperature and pressure, two of the criteria for 
phase equilibrium. In general, the solution property K is a function of T, P, and the number of 
moles of m different species: 
 
 K = K(T, P, n1, n2, ..., ni, ..., nm) (3.6-2) 
 
The differential of K can then be written as the sum of partial derivatives of each of these 
independent variables, as follows: 
 

 dK = 
inPT

K
,

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dT + 

inTP
K

,
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ dP + ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂m

i nPTi
j

n
K

1 ,,

dni (3.6-3) 

 
If we multiply the number of moles in a system by an arbitrary amount α at a given T and P, 
the extensive property K should also increased by that amount: 
 
 αK = K(T, P, αn1, αn2, ..., αni, ..., αnm) (3.6-4) 
 
According to Euler’s theorem, the above equation is a first-order, homogeneous function of 
ni. Differentiating Eq. (3.6-4) with respect to α yields 
 

 
PT

K
,

)(
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

α
α = K = n1

jnPTn
K

,,1 )( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
α

+ n2

jnPTn
K

,,2 )( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
α

+ ... 

                                                 
16 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 263 

 3-36



  + ni

jnPTin
K

,,
)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
α

+ ... + nm

jnPTmn
K

,,
)( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
α

 (3.6-5) 

 
Equation (3.6-5) must be valid for any value of α, so at α = 1, we get 
 
  

 K = ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂m

i nPTi
i

j
n
Kn

1 ,,

 (3.6-6) 

 
The total solution volume is then given by 
 

  V = ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂m

i nPTi
i

j
n
Vn

1 ,,

= ∑
=

m

i
iiVn

1

 (3.6-7) 

 
Example 3.6-117---------------------------------------------------------------------------------- 
We need 2,000 cm3 of an antifreeze solution consisting of 30-mol% methanol in water. What 
volumes of pure methanol and of pure water at 25oC must be mixed to form the 2,000 cm3 
antifreeze, also at 25oC? Partial molar volumes for methanol and water in a 30-mol% 
methanol solution and their pure-species molar volumes, both at 25oC, are: 
 
 Methanol (1): 1V = 38.632 cm3 mol-1 v1 = 40.727 cm3 mol-1 
 Water (2): 2V = 17.765 cm3 mol-1 v2 = 18.068 cm3 mol-1 
 
Solution ------------------------------------------------------------------------------------------ 
 
The molar solution volume at 30-mol% methanol is given as 
 

 v = 
Tn

V  = 
T

m

i
ii

n

Vn∑
=1  = ∑

=

m

i
iiVx

1

 = x1 1V  + x2 2V  

 
 v = (0.3)(38.632) + (0.7)(17.765) = 24.025 cm3 mol-1 
 
The total number of mole required is 
 

 nT = 
v
V  = 

025.24
2000  = 83.246 mol 

 
Volume of pure methanol is V1 = x1nTv1 = (0.3)(83.246)(40.727) = 1,017 cm3 
 
Volume of pure methanol is V2 = x2nTv2 = (0.7)(83.246)(18.068) = 1,053 cm3 

                                                 
17 Smith J. M., Van Ness H. C., and Abbott M. M., Introduction to Chemical Engineering Thermodynamics, Mc 
Graw Hill, 2001, pg. 377 
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Example 3.6-2---------------------------------------------------------------------------------- 
A 20 wt% chloroform solution is obtained by mixing chloroform, CHCl3, with acetone, 
C3H6O, in an insulated mixer at steady state. For every gram of solution, 9.83 J is removed to 
keep the system temperature constant at 14oC. Determine the enthalpy of mixing for this 
solution.  
 
Solution ------------------------------------------------------------------------------------------ 

n , h1 1

n , h2 2

(n +n ), h1 2

Q  
 

Chloroform (1), CHCl3 Mw1 = 119.39 
Acetone (2), C3H6O Mw2 = 58.08 
 
For 100 g of solution, we have 
 
 n1 = 20/119.39 = 0.1675 mol CHCl3 
 
 n2 = 80/58.08 = 1.3774 mol C3H6O 
 
Therefore nT = n1 + n2 = 0.1675 + 1.3774 = 1.5449 mol 
 
A first law over the system gives 
 
 n1h1 + n2h2 − (n1 + n2)h − Q = 0 ⇒ − Q/(n1 + n2) = h  − (x1h1 + x2h2) 
 
 Δhmix = − Q/nT = h  − (x1h1 + x2h2)  
 
 x1 = 0.1675/1.5449 = 0.1084 
 
 x1 = 1.3774/1.5449 = 0.8916 
 
The heat of mixing is equal to the heat removed per mole of solution 
 
 Δhmix = − Q/nT = − q =  − q (x1Mw1 + x2Mw2)  ˆ
 
 Δhmix = − (9.83)(0.1084×119.39 + 0.8916×58.08) = 636.3 J/mol 
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Chapter 3  
Example 3.6-318  ---------------------------------------------------------------------------------- 
A 5.0 wt% H2SO4 solution at 60oF is to be concentrated to 45 wt% by evaporation of water. 
The concentrated solution and water vapor leaving the evaporator at 180oF and 1 atm. 
Calculate the rate at which heat must be supplied to the evaporator to process 500 lb/hr of the 
feed solution. The enthalpy-concentration chart for H2SO4-H2O is given in Figure E-1 where 
the reference states pure liquid water at 32oF and pure liquid H2SO4 at 77oF. 

5 Wt % H SO  solution
          at 60 F

2 4
o

45 wt% H SO  solution
         at 180 F

2 4
o

 
Figure E-1 Enthalpy-concentration chart for H2SO4-H2O. 

 

                                                 
18 Felder R. M., Rousseau R. W., Elementary Principles of Chemical Processes, Wiley, 2000 
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5 wt% solution

water vapor

45 wt% solution500 lb/hr

m1

m2

Q

Evaporator

hF

 ,hv

, ho

 
 
Solution ------------------------------------------------------------------------------------------ 
Making an acid balance around the evaporator yields 
 
 (0.05)(500) = (0.45)(m2) ⇒ m2 = 55.56 lb/hr 
 
The rate of water vapor leaving the evaporator is then 
 
 m1 = 500 − 55.56 = 444.44 lb/hr 
 
Enthalpy of the 5 wt% feed solution at 60oF is obtained from the chart 
 
 hF = 10 Btu/lb 
 
Similarly, the enthalpy of 45 wt% solution at 180oF from the chart is  
 
 ho = − 30 Btu/lb 
 
You should note that the solution enthalpy could not be obtained from the pure properties. If 
it were the value would be on the straight line connecting the enthalpies of pure water and 
pure acid as shown in Figure E-1. 
 
The enthalpy of water vapor, hv, at 180oF, 1 atm can be approximated by the enthalpy of 
saturated water vapor at 180oF using steam table. 
 
 hv = 1138 Btu/lb 
 
Making an energy balance over the evaporator gives 
 
 Q = 444.44hv  + 55.56ho − 500hF 
 
 Q = (444.44)(1138) + (55.56)(− 30) − (500)(10) = 5.0×105 lb/hr 
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Chapter 4  
Principle of Phase Equilibrium II 

 
4.1 The Phase Rule 
 
We want to determine the number of intensive variables that must be specified to define a 
system consisting of m non-reacting components distributed among π phases. To describe 
each phase we need m−1 independent compositions, T, and P to a total of m+1 intensive 
variables. The total number of variables required to specify π phases is π(m+1). For phase 
equilibrium we have the following set of equations: 
 
 Tα = Tβ = … = Tπ 
 
 Pα = Pβ = … = Pπ 

 

 = = … =  
αμ1

βμ1
πμ1

 

 = = … =  
αμ2

βμ2
πμ2

 
     M  

β
 = = … =  

αμm μm
πμm

 
Each row in the set of equations above contains (π−1) independent equations. Thus there are 
a total of (π−1)(m+2) independent equations between the variables. The number of variables 
we can independently pick (the so-called degree of freedom, F) is obtained by subtracting the 
total π(m+1) variables we need to specify by the (π−1)(m+2) independent equations.  
 
 F  = π(m+1) − (π−1)(m+2) = m − π + 2 
 
We can independently specify (m − π + 2) to complete define a system with m components 
and π phases.  
 
Example 4.1-1  ---------------------------------------------------------------------------------- 
Determine the degree of freedom for the following system: 
 
 2x1 − x2 + 3x3 = 0 
 x1 + x2 + 3x3 = 5 
 
Solution ------------------------------------------------------------------------------------------ 
 
There are three variables and two independent equations. Hence, the system has one degree 
of freedom.  
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Example 4.1-2  ---------------------------------------------------------------------------------- 
Determine the degree of freedom for the following vapor liquid equilibrium system with 
three species A, B, and C. 
 
(a) A, B, and C are present in both gas and one single liquid phase. 
(b) A, B, and C are present in gas phase but only A and B are present in the single liquid 
phase. 
(c) A, B, and C are present in both gas and liquid phase (I) but only A and B are present in the 
liquid phase (II). 
 
Solution ------------------------------------------------------------------------------------------ 
 
(a) A, B, and C are present in both gas and one single liquid phase. 
 
Number of intensive variables to specify the system is 
 
 π(m+1) = 2(3 + 1) = 8 
 
For phase equilibrium we have the following set of independent equations: 
 
 TL = TG, PL = PG  
 
 = , = , and =  

L
Aμ

G
Aμ

L
Bμ

G
Bμ

L
Cμ

G
Cμ

 
The degree of freedom is then 
 
 F  = # of variables − # independent equations = 8 − 5 = 3 
 
(b) A, B, and C are present in gas phase but only A and B are present in the single liquid 
phase. 
 
Number of intensive variables to specify the system: 
 
 Gas phase: 2 + 2 = 4 
 Liquid phase: 1 + 2 = 3 
 
For phase equilibrium we have the following set of independent equations: 
 
 TL = TG, PL = PG  
 
 = , and =  

L
Aμ

G
Aμ

L
Bμ

G
Bμ

 
The degree of freedom is then 
 
 F  = # of variables − # independent equations = 7 − 4 = 3 
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(c) A, B, and C are present in both gas and liquid phase (I) but only A and B are present in the 
liquid phase (II). 
 
Number of intensive variables to specify the system: 
 
 Gas phase: 2 + 2 = 4 
 Liquid phase (I): 2 + 2 = 4 
 Liquid phase (II): 1 + 2 = 3 
 
For phase equilibrium we have the following set of independent equations: 
 
 TL1 = TG, PL1 = PG, TL2 = TG, and PL2 = PG 
 
 = = , = = , and =  

1L
Aμ

2L
Aμ

G
Aμ

1L
Bμ

2L
Bμ

G
Bμ

1L
Cμ

G
Cμ

 
The degree of freedom is then 
 
 F  = # of variables − # independent equations = 11 − 9 = 2 
 

---------------------------------------------------------------------------- 
4.2 The Fugacity 
 
Fugacity is a derived thermodynamic property that has the units of pressure. Fugacity is an 
abstract concept defined to facilitate certain calculations involved with phase and chemical 
equilibrium. For a pure substance at given T and P, we have 
 
 dμ = vdP  − sdT  
 
At constant temperature 
 
 dμ = vdP   (4.2-1) 
 
If the gas is ideal, v = RT/P, Eq. (4.2-1) becomes 
 

 dμ = RT
P

dP  ⇒ dμ =  RTd(lnP) (4.2-2) 

 
For a real gas, v ≠ RT/P. However we define a function f called fugacity so that the change in 
chemical potential with respect to P is given by an expression similar to equation (4.2-2) 
 
 dμ =  RTd(lnf) (4.2-3) 
 
In the limit as P → 0, f → P or f/P → 1 since ideal gas law applies as P → 0. Integrating Eq. 
(4.2-3) between a reference state and the state of the system yields 
 

 μ − μo =  RTln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
of

f  (4.2-4) 
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In this equation μo is the chemical potential at the reference pressure, Po, and at the same 
temperature as the chemical potential μ of interest. Similarly, the fugacity, , of a species in 
solution is defined as 

if̂

 

 μi − μi
o =  RTln ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
o

i

i

f
f
ˆ
ˆ

 (4.2-5) 

 
We now derive the criteria for phase equilibrium using fugacity. For phases α and β in 
equilibrium we have 
 
 μi

α = μi
β 

 
Substituting Eq. (4.2-5) into the above equation yields 
 

 μi
o,α +  RTln ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
o

i

i

f
f

,ˆ
ˆ
α

α

 = μi
o,β +  RTln ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
o

i

i

f
f

,ˆ
ˆ
β

β

  (4.2-6) 

 
Rearranging Eq. (4.2-6) gives 
 

 μi
o,α − μi

o,β = RTln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
o

i

o
i

f
f

,

,

ˆ
ˆ
β

α

 + RTln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

β

i

i

f
f
ˆ
ˆ

  (4.2-7) 

 
The first three terms of the equation are parts of the definition of fugacity given by Eq. (4.2-
5). 
 

 μi
o,α − μi

o,β = RTln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
o

i

o
i

f
f

,

,

ˆ
ˆ
β

α

 

 
Therefore 
 

 0 = RTln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

β

i

i

f
f
ˆ
ˆ

 ⇒  =  (4.2-8) α
if̂

β
if̂

 
Equation (4.2-8) forms the criterion for phase equilibrium in terms of fugacity. 
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Example 4.2-11  ---------------------------------------------------------------------------------- 
Determine the fugacity of liquid water at 30oC and at the saturation pressure, 10 bar, and 100 
bar. 
 
Solution ------------------------------------------------------------------------------------------ 
 
At 30oC, Psat = 0.0424 bar. In the limit as P → 0, f → P, therefore fsat = Psat = 0.0424 bar. 
From the definition of fugacity, we have 
 
 dμ =  RTd(lnf) = vdP 
 
Integrating the above equation from Psat to P yields 
 

 RTln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
sat

L

f
f  = v(P − Psat) ⇒ fL = fsatexp

⎭
⎬
⎫

⎩
⎨
⎧ −

RT
PPv sat )(  

 
We have assumed the volume of liquid water remains constant at the saturation temperature 
of 30oC. 
 
 v = 0.001004 m3/kg = (0.001004)(18.02) = 0.01809 m3/kmol 
 
The fugacity of liquid water at 30oC and 10 bar is then 
 

 fL = 0.0424exp
⎭
⎬
⎫

⎩
⎨
⎧ ×−

)15.303)(3.8314(
10)0424.010(01809.0 5

 = 0.0427 bar 

 
 
The fugacity of liquid water at 30oC and 100 bar is  
 

 fL = 0.0424exp
⎭
⎬
⎫

⎩
⎨
⎧ ×−

)15.303)(3.8314(
10)0424.0100(01809.0 5

 = 0.0455 bar 

 
 
Hence the fugacity of a pure liquid varies little over a moderate pressure range. 

                                                 
1 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 257 
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Example 4.2-2  ---------------------------------------------------------------------------------- 
Determine the fugacity of CO2 at 310oK and 1.4×106 Pa using the Van der Waals equation of 
state (EOS). 
 

  P = 
bv

RT
−

 − 2v
a  

 
Data: a = 0.3658 Pa⋅m6/mol2, b = 4.286×10-5 m3/mol 
 
Solution ------------------------------------------------------------------------------------------ 
 
From the definition of fugacity, we have 
 
 dμ =  RTd(lnf) = vdP (E-1) 
 
Since the equation of state is given explicitly in terms of pressure P, we need to rearrange the 
above equation so that the term vdP can be easily integrated. For an ideal gas we have 
 

 RTd(lnP) = vdP = 
P

RT dP (E-2) 

 
Subtracting Eq. (E-1) from Eq. (E-2) gives 
 

 RTd(lnf/P) = ⎟
⎠
⎞

⎜
⎝
⎛ −

P
RTv dP 

 
Integrating the equation from 0 to P gives 
 

 RT (lnf/P) = ∫
Pf

d
/

1 ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

P

P
RTv

0
dP 

 

 ln ⎟
⎠
⎞

⎜
⎝
⎛

P
f  = 

RT
1
∫ ⎟

⎠
⎞

⎜
⎝
⎛ −

P

P
RTv

0
dP (E-3) 

 
We now want to change the integrating variable from P to v using the product rule 
 

 d(Pv) = Pdv + vdP ⇒ dP = 
v
1 d(Pv) − 

v
P dv 

 

Using the definition of the compressibility factor, Z = 
RT
Pv , we have 

 

 d(Pv) = RTdZ  ⇒ dP = 
v

RT dZ − 
v
P dv =  

Z
P dZ − 

v
P dv  

 
Substituting dP from the above equation to Eq. (E-3) gives 
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 ln ⎟
⎠
⎞

⎜
⎝
⎛

P
f  = 

RT
1
∫ ∞=

⎟
⎠
⎞

⎜
⎝
⎛ −

v

v P
RTv ⎟

⎠
⎞

⎜
⎝
⎛ − dv

v
PdZ

Z
P  (E-4) 

 
Expanding the right hand side of the equation yields 
 

 ln ⎟
⎠
⎞

⎜
⎝
⎛

P
f  = 

RT
1
∫ ∞=

⎟
⎠
⎞

⎜
⎝
⎛ −

v

v
P

v
RT dv + 

RT
1
∫ =

⎟
⎠
⎞

⎜
⎝
⎛ −

Z

Z Z
RT

Z
Pv

1
dZ (E-5) 

 
We can integrate the second integral on the RHS of Eq. (E-5). 
 

 
RT
1
∫ =

⎟
⎠
⎞

⎜
⎝
⎛ −

Z

Z Z
RTZ

Z
Pv

1
dZ = ∫ ⎟

⎠
⎞

⎜
⎝
⎛ −

Z

ZZRT
Pv

1

11 dZ  = ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

Z

Z1

11 dZ 

 

 
RT
1
∫ =

⎟
⎠
⎞

⎜
⎝
⎛ −

Z

Z Z
RTZ

Z
Pv

1
dZ = (Z − ln Z Z

1
)  = Z − ln Z − 1 

 
Hence 
 

 ln ⎟
⎠
⎞

⎜
⎝
⎛

P
f  = 

RT
1
∫ ∞=

⎟
⎠
⎞

⎜
⎝
⎛ −

v

v
P

v
RT dv − ln Z + (Z − 1) 

 
We will now integrate the integral with respect to v using the Van der Waals equation of 
state. 
 

  P = 
bv

RT
−

 − 2v
a  

 

 P
v

RT
−  = 

v
RT − 

bv
RT
−

 + 2v
a  

 

 
RT
1
∫ ∞=

⎟
⎠
⎞

⎜
⎝
⎛ −

v

v
P

v
RT dv = ∫ ∞=

v

v v
dv − ∫ ∞= −

v

v bv
dv  + ∫ ∞=

v

v RTv
adv

2  

 

 
RT
1
∫ ∞=

⎟
⎠
⎞

⎜
⎝
⎛ −

v

v
P

v
RT dv = ln

v

vbv
v

∞−
 − 

v

vRTv
a

∞

 =  ln 
bv

v
−

 − ln 
bv

v
−∞

∞

  

 

 
RT
1
∫ ∞=

⎟
⎠
⎞

⎜
⎝
⎛ −

v

v
P

v
RT dv = ln 

bv
v
−

 − ln 
bv

v
−∞

∞

 − 
RTv

a  

 

 
RT
1
∫ ∞=

⎟
⎠
⎞

⎜
⎝
⎛ −

v

v
P

v
RT dv = − ln

v
bv −   − 

RTv
a  = − ln ⎟

⎠
⎞

⎜
⎝
⎛ −

v
b1   − 

RTv
a  

 
Therefore 
 

 4-7



 ln ⎟
⎠
⎞

⎜
⎝
⎛

P
f  = − ln ⎟

⎠
⎞

⎜
⎝
⎛ −

v
b1   − 

RTv
a − ln Z + (Z − 1) (E-6) 

 
We need to evaluate the compressibility factor Z from the Van der Waals equation of state. 
 

  P = 
bv

RT
−

 − 2v
a  ⇒ 

RT
Pv  = 

bv
v
−

 − 
RTv

a  

 

  Z = 
vb /1

1
−

 − 
RTv

a  

 

Since v = 
P

ZRT  ⇒ Z = 

ZRT
bP

−1

1  − 2)(RTZ
aP  (E-7) 

 

Let B = 
RT
bP  and A = 2)(RT

aP , equation (E-7) becomes 

 

 Z = 

Z
B

−1

1 − 
Z
A  

 
We now will rearrange the equation into the polynomial form 
 

 Z ⎟
⎠
⎞

⎜
⎝
⎛ −

Z
B1 Z = Z − A ⎟

⎠
⎞

⎜
⎝
⎛ −

Z
B1  

 

 Z2 − BZ = Z − A + 
Z

AB  

 
 Z3 − (1 + B)Z2 + AZ − AB = 0  (E-8) 
 
In terms of A and B, equation (E-6) becomes 
 

 ln ⎟
⎠
⎞

⎜
⎝
⎛

P
f  = − ln ⎟

⎠
⎞

⎜
⎝
⎛ −

Z
B1   − 

Z
A − ln Z + (Z − 1)   

 

 ln ⎟
⎠
⎞

⎜
⎝
⎛

P
f  = (Z − 1) − 

Z
A − ln (Z − B) (E-9) 

 
The fugacity can be determined from Eq. (E-9) with the values of Z obtained from the 
solution of Eq. (E-8). Table 4.2-1 lists the Matlab program and the results for the fugacity 
calculation. From the program, we have 
 
 f = 1.325×106 Pa 
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Chapter 4  
Table 4.2-1 ----------------------------------------------------------------------- 
% Example 4.2-2, compressibility using Van der Waals EQS 
% 
R = 8.314; % Pa.m3/(mol.K) 
a=0.3658; % Pa.m6/mol2 
b=4.286e-5; % m3/mol 
% 
P=1.4e6; % Pa 
T=310; % K 
% 
A=a*P/(R*T)^2;B=b*P/(R*T); 
fprintf('A = %8.5e, B = %8.5e\n',A,B) 
b2=-(1+B);b1=A;b0=-A*B; 
fprintf('b2 = %8.5e, b1 = %8.5e, b0 = %8.5e\n',b2,b1,b0) 
% 
%  Solve for the compressibility factor Z using Newton method 
% 
Z=1; 
for i=1:20 
    fz=((Z+b2)*Z+b1)*Z+b0; 
    dfz=(3*Z+2*b2)*Z+b1; 
    eZ=fz/dfz;Z=Z-eZ; 
    if abs(eZ)<.00001; break; end 
end 
foP=exp((Z-1)-A/Z-log(Z-B)); 
f=P*foP; 
fprintf('Z = %8.5f, f/P = %8.5f\n',Z,foP) 
fprintf('f(Pa) = %8.5e\n',f) 
 
>> e4d2d2 
A = 7.70954e-002, B = 2.32814e-002 
b2 = -1.02328e+000, b1 = 7.70954e-002, b0 = -1.79489e-003 
Z =  0.94359, f/P =  0.94642 
f(Pa) = 1.32499e+006 
------------------------------------------------------------------------------------- 
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Example 4.2-3  ---------------------------------------------------------------------------------- 
Use data from the steam table to calculate the fugacity of steam at 300oC and 8×106 Pa. 
 
Solution ------------------------------------------------------------------------------------------ 
 
From the definition of fugacity for pure component we have 
 
 dμ =  dg = RTd(lnf) 
 
We integrate this equation from the pressure low enough so that the fugacity is essentially the 
same as the pressure. 
 

  = RT  ∫
g

g IG
dg ∫

f

P
fd )(ln

 

 f = Pexp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
RT

gg IG

 (E-1) 

 
From the steam table, at 300oC or 573.15oK and P = 104 Pa, the pressure is low enough so 
that ideal gas law applies, we have 
 
 hIG = 3077 kJ/kg and sIG = 9.281 kJ/kg⋅oK 
 
Therefore gIG = hIG − TsIG = 3077 − (573.15)(9.281) = − 2243 kJ/kg 
 
 gIG = − (2243)(18) =  − 40,409 J/mol 
 
At 573.15oK and P = 8×106 Pa, we have  
 
 h = 2785 kJ/kg and s = 5.791 kJ/kg⋅oK 
 
 g = h − Ts = − 534 kJ/kg = − 9,618 J/mol 
 
Substituting the values of Gibbs free energy into equation (E-1) yields 
 

 f = Pexp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
RT

gg IG

 = 104 exp ⎟
⎠
⎞

⎜
⎝
⎛

×
−−−

15.573314.8
)409,40(618,9  = 6.401×106 Pa 
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Example 4.2-4  ---------------------------------------------------------------------------------- 
Determine the change in Gibbs energy, Δg, of CO2 at 310oK, 1.4×106 Pa and at 310oK, 
1.4×107 Pa using the Van der Waals equation of state (EOS). 
 

  P = 
bv

RT
−

 − 2v
a  

 
Data: a = 0.3658 Pa⋅m6/mol2, b = 4.286×10-5 m3/mol 
 
(a) Evaluate Δg using the fugacity, Δg = RTln(f2/f1). 
(b) Evaluate Δg using direct integration, Δg = dP. ∫ v

 
Solution ------------------------------------------------------------------------------------------ 
 
(a) Evaluate Δg using the fugacity, Δg = RTln(f2/f1). 
 
The fugacity using Van der Waals EOS is given by 
 

 ln ⎟
⎠
⎞

⎜
⎝
⎛

P
f  = (Z − 1) − 

Z
A − ln (Z − B) 

 
The compressibility Z is the largest root of the equation Z3 − (1 + B)Z2 + AZ − AB = 0 where 
 

 A = 2)(RT
aP  = 7.70954×10-2 (at 310oK, 1.4×106 Pa) 

 

 B = 
RT
bP  = 2.32814×10-2 (at 310oK, 1.4×106 Pa) 

 
Table 4.2-2 lists the Matlab program to determine Z, f, and Δg with the following results at 
310oK: 
  

P(Pa) Z f(Pa) 
1.4×106

1.4×107 
0.94359 
0.41648 

1.325×106 
6.680×106 

 
The change in Gibbs energy is then given by 
 
 Δg = RTln(f2/f1) = (8.314)(310)ln(6.680/1.325) = 4169.23 J 
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(b) Evaluate Δg using direct integration, Δg = dP. ∫ v

We can use 5 points Simpson’s rule to evaluate the integral where 
 

 Δg = 
3
PΔ (v1 + 4v2 + 2v3 + 4v4 + v5)  

 

 ΔP = 
4

104.1104.1 67 ×−×  = 3.15×106 Pa 

 

The specific volume can be determined from v = 
P

ZRT using the following values for P and 

Z. 
  

P(Pa) Z v(m3/mol) 
1.40×106

4.55×106 

7.70×106 

1.085×107 

1.40×107 

0.94359 
0.78834 
0.48223 
0.35298 
0.41648 

1.737×10-3 
4.466×10-4 

1.614×10-4 

8.385×10-5 

7.667×10-5 
 
The change in Gibbs energy is then  
 

 Δg = 
3
PΔ (v1 + 4v2 + 2v3 + 4v4 + v5) = 4471.12 J 

 
The result of the integral dP can be improved by using more points for the Simpson’s rule  

as shown in the following table 
∫ v

 
n 5 9 13 17 35 

Δg(J)  4471.12 4226.39 4187.28 4175.95 4170.54 
 
At n = 35, the value of dP is almost the same as the value obtained from the expression: 

Δg = RTln(f2/f1) = 4169.23 J. 
∫ v
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Table 4.2-1 ----------------------------------------------------------------------- 
% Example 4.2-4, change in Gibbs energy using Van der Waals EOS 
% 
R = 8.314; % Pa.m3/(mol.K) 
a=0.3658; % Pa.m6/mol2 
b=4.286e-5; % m3/mol 
% 
ns=input('Odd number of data point, ns = '); 
T=310; RT = R*T; % K 
v=zeros(ns,1); 
% 
Pv=linspace(1.4e6,1.4e7,ns);; % Pa 
Z=1; 
fv=zeros(ns,1); 
for ni=1:ns 
    P=Pv(ni); 
    A=a*P/(RT)^2;B=b*P/(RT); 
    b2=-(1+B);b1=A;b0=-A*B; 
for i=1:20 
    fz=((Z+b2)*Z+b1)*Z+b0; 
    dfz=(3*Z+2*b2)*Z+b1; 
    eZ=fz/dfz;Z=Z-eZ; 
    if abs(eZ)<.00001; break; end 
end 
    v(ni)=Z*RT/P; 
    f=P*exp((Z-1)-A/Z-log(Z-B)); 
    fprintf('Z = %8.5f, f(Pa) = %8.3e\n',Z,f) 
    fv(ni)=f; 
end 
dg=R*T*log(fv(ns)/fv(1)); 
fprintf('From fugacity, dg(J) = %8.2f\n',dg) 
con=(Pv(2)-Pv(1))/3; 
sum=v(1)+v(ns); 
for i=2:2:ns 
    sum=sum+4*v(i); 
end 
for i=3:2:ns-1 
    sum=sum+2*v(i); 
end 
dg=sum*con; 
fprintf('From integration of vdP, dg(J) = %8.2f\n',dg) 
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>> e4d2d4 
Odd number of data point, ns = 35 
Z =  0.94359, f(Pa) = 1.325e+006, v(m3/mol) = 1.737e-003 
Z =  0.92768, f(Pa) = 1.651e+006, v(m3/mol) = 1.350e-003 
Z =  0.91127, f(Pa) = 1.966e+006, v(m3/mol) = 1.097e-003 
Z =  0.89433, f(Pa) = 2.271e+006, v(m3/mol) = 9.177e-004 
Z =  0.87680, f(Pa) = 2.565e+006, v(m3/mol) = 7.840e-004 
Z =  0.85861, f(Pa) = 2.849e+006, v(m3/mol) = 6.803e-004 
Z =  0.83967, f(Pa) = 3.123e+006, v(m3/mol) = 5.972e-004 
Z =  0.81989, f(Pa) = 3.386e+006, v(m3/mol) = 5.291e-004 
Z =  0.79913, f(Pa) = 3.638e+006, v(m3/mol) = 4.719e-004 
Z =  0.77724, f(Pa) = 3.879e+006, v(m3/mol) = 4.230e-004 
Z =  0.75399, f(Pa) = 4.110e+006, v(m3/mol) = 3.806e-004 
Z =  0.72911, f(Pa) = 4.329e+006, v(m3/mol) = 3.431e-004 
Z =  0.70218, f(Pa) = 4.537e+006, v(m3/mol) = 3.095e-004 
Z =  0.67258, f(Pa) = 4.732e+006, v(m3/mol) = 2.788e-004 
Z =  0.63934, f(Pa) = 4.916e+006, v(m3/mol) = 2.501e-004 
Z =  0.60064, f(Pa) = 5.086e+006, v(m3/mol) = 2.225e-004 
Z =  0.55256, f(Pa) = 5.240e+006, v(m3/mol) = 1.943e-004 
Z =  0.48223, f(Pa) = 5.377e+006, v(m3/mol) = 1.614e-004 
Z =  0.35936, f(Pa) = 5.484e+006, v(m3/mol) = 1.148e-004 
Z =  0.33269, f(Pa) = 5.569e+006, v(m3/mol) = 1.016e-004 
Z =  0.32811, f(Pa) = 5.648e+006, v(m3/mol) = 9.597e-005 
Z =  0.32914, f(Pa) = 5.725e+006, v(m3/mol) = 9.238e-005 
Z =  0.33267, f(Pa) = 5.801e+006, v(m3/mol) = 8.975e-005 
Z =  0.33757, f(Pa) = 5.875e+006, v(m3/mol) = 8.767e-005 
Z =  0.34333, f(Pa) = 5.949e+006, v(m3/mol) = 8.596e-005 
Z =  0.34966, f(Pa) = 6.022e+006, v(m3/mol) = 8.450e-005 
Z =  0.35638, f(Pa) = 6.095e+006, v(m3/mol) = 8.324e-005 
Z =  0.36340, f(Pa) = 6.168e+006, v(m3/mol) = 8.212e-005 
Z =  0.37064, f(Pa) = 6.241e+006, v(m3/mol) = 8.112e-005 
Z =  0.37804, f(Pa) = 6.314e+006, v(m3/mol) = 8.021e-005 
Z =  0.38557, f(Pa) = 6.387e+006, v(m3/mol) = 7.939e-005 
Z =  0.39319, f(Pa) = 6.460e+006, v(m3/mol) = 7.863e-005 
Z =  0.40090, f(Pa) = 6.533e+006, v(m3/mol) = 7.793e-005 
Z =  0.40866, f(Pa) = 6.606e+006, v(m3/mol) = 7.728e-005 
Z =  0.41648, f(Pa) = 6.680e+006, v(m3/mol) = 7.667e-005 
From fugacity, dg(J) =  4169.23 
From integration of vdP, dg(J) =  4170.54 
>>  
------------------------------------------------------------------------------------- 
 



Chapter 4  
4.3 Fugacity of Species i in a Gas Mixture 
 
The fugacity, , of species i in a gas mixture depends on temperature, pressure, and 
composition of the mixture. 

v
if̂

 
 (T, P, n1, n2, ... nm) = yi (T, P, n1, n2, ... nm)P (4.3-1) v

if̂
v
iϕ̂

 
In this equation,  is the fugacity coefficient and m is the number of component. To 
completely specify the reference state for a mixture, we need to know T, P, and composition. 
The reference pressure is a low enough pressure, Plow, so that the mixture behaves as an ideal 
gas. The reference temperature is that of the system of interest, Tsys and the reference 
composition is that of the system ni,sys. The fugacity, , of a species in solution is defined as 
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At constant temperature 
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Many equations of state are explicit in P but not V, so it is convenient to express the partial 
molar volume in terms of derivative in P. 
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Using the cyclic rule at constant T, we have 
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Since the reference state and the system have the same composition, the integral in equation 
(4.3-3) is carried out with both ni and T constant.  Therefore the second partial derivative in 
equation (4.3-4) is replaced with a total derivative. 
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Rearranging the equation yields 
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Equation (4.3-3) becomes 
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Equation (4.3-6) can be evaluated with an equation of state such as the Peng-Robinson 
equation: 
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ω is the acentric factor. The Peng-Robinson equation of state can be expressed in terms of the 
compressibility Z as 
 
  Z3 + (B − 1)Z2 + (A − 3B2 − 2B)Z + (B3 + B2 − AB) = 0 (4.3-8) 
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  Aij = Aji = (1 − kij)(Aii Ajj)1/2,  kij = binary interaction parameter 
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The smallest root of equation (4.3-8), ZL, is identified with the liquid phase while the largest 
root, ZV, is identified with the vapor phase. Using the Peng-Robinson equation, the fugacity 
coefficient of species i in a mixture is given by 
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For the liquid Z = ZL, = , and χ = x = mole fraction of species i in the liquid phase. For 
the vapor Z = ZV, = , and χ =y = mole fraction of species i in the vapor phase. 

iϕ̂
v
iϕ̂

L
iϕ̂

iϕ̂
 
Example 4.3-1  ---------------------------------------------------------------------------------- 
Determine the fugacity coefficient of each species in a gas mixture of 20% ethane in propane 
at a pressure of 50 bar and a temperature of 25oC using the Peng-Robinson EOS. 
 
Solution ------------------------------------------------------------------------------------------ 
 
The fugacity coefficient of each species in a gas mixture might be obtained from the free 
T.K. Nguyen’s program VLE. The results are displayed as follows 
 

 

 
 
The program Thermosolver by Koretsky can also determine the fugacity coefficient as shown 
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Table 4.3-1 lists the Matlab program and the results for the fugacity coefficient calculation. 
Note: In this program A = am, B = bm, Aij = aij, and Bi = b. 
 
Table 4.3-1 ----------------------------------------------------------------------- 
% Example 4.3-1, Fugacity coefficient using Peng-Robinson EOS 
% Binary mixture of 20 mole % ethane (1) in propane at 50 bar and 25 C 
% 
Tc=[305.43 369.9]; % Degree K 
Pc=[48.84 42.57]; % bar 
w=[0.0986 0.1524]; 
m=2; P=50; T=25+273.15;y=[.2 .8]; 
Tr=T./Tc;Pr=P./Pc; 
 b= .0778 * Pr ./ Tr; 
  xk = .37464 + (1.54226 - .26992 * w) .* w; 
  alfa = 1 + xk .* (1 - sqrt(Tr)); 
  a= .45724 * alfa .* alfa .* Pr ./ (Tr.* Tr); 
for i = 1:m 
   aij(i, i) = a(i); 
end 
for i = 1 : m - 1 
  for j = 1 + i : m 
    aij(i, j) = sqrt(a(i) * a(j));aij(j, i) = aij(i, j); 
end 
end 
am=0;bm=0; 
for i = 1 : m 
  bm = bm + y(i) * b(i); 
  for j = 1 : m 
    am = am + y(i) * y(j) * aij(i, j); 
  end 
end 
b2 = bm - 1; b1 = am - 3 * bm * bm - 2 * bm; 
b0 = bm * (bm * bm + bm - am); 
Z=1; 
for i=1:20 
    fz=((Z+b2)*Z+b1)*Z+b0; 
    dfz=(3*Z+2*b2)*Z+b1; 
    eZ=fz/dfz;Z=Z-eZ; 
    if abs(eZ)<.00001; break; end 
end 
fprintf('Z = %8.5f\n',Z) 
s2=sqrt(2); 
Tem = (Z + (1+s2 )* bm) / (Z + (1-s2 ) * bm); 
ag = log(Tem)/(2*s2*bm); 
for i = 1 : m 
  suma = 0; 
  for j = 1 : m 
    suma = suma + y(j) * aij(i, j); 
  end 
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   fuco(i) = exp(ag * (am*b(i) / bm - 2 * suma)  + b(i) * (Z - 1) / bm - log(Z - bm)); 
 fprintf('Species %g, fugacity coef. = %8.5f\n',i,fuco(i))   
end 
>> e4d3d1 
Z =  0.16436 
Species 1, fugacity coef. =  0.61165 
Species 2, fugacity coef. =  0.18551 
------------------------------------------------------------------------------------------------------------- 
 
4.4 Fugacity in the Liquid Phase 
 
In the liquid phase we also need to choose a suitable reference state with a corresponding 
reference chemical potential and reference fugacity to complete the definition defined by 
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For an ideal solution, we have 
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Equation (4.4-2) indicates that the fugacity of an ideal solution is linear in mole fraction to 
the pure species fugacity 
 
 = xifi

ideal (4.4-3) ideal
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If the reference state is the pure fugacity of species i, we have the Lewis/Randall rule: 
 
 fi
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The activity coefficient, γi, is defined as the ratio of the fugacity in the actual solution to the 
fugacity in the ideal solution at the composition of the mixture. 
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The activity coefficient, γi, is similar to the fugacity coefficient, , defined for the vapor 
phase 
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The fugacity coefficient is a dimensionless quantity expressing how the fugacity in the vapor 
phase compares to how it would hypothetically behave as an ideal gas while the activity 
coefficient represents a dimensionless quantity of how the fugacity in the liquid phase 
compares relative to the ideal reference state. Both of these coefficients tell us how far the 
system is deviating from ideal behavior. For gases, the ideal state is a unique state where the 
intermolecular interactions are zero. For liquids, on the other hand, the reference state is a 
state where all the intermolecular interactions are the same. 
 
The activity of species i in the liquid, ai, is often used for system in chemical equilibrium. It 
is defined as follows: 
 

 ai = o
i

l
i

f
f̂  (4.4-7) 
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Figure 4.4-1 Fugacity of a binary liquid mixture. 

 
The activity compares the fugacity of species i in the solution to the fugacity of the pure 
species in its reference state. On the other hand, the activity coefficient compares the fugacity 
of species i in the solution to the fugacity of species i in an ideal solution as shown in Figure 
4.4-1. Comparison of Equations (4.4-5) and (4.4-7) gives a relation between the activity and 
the activity coefficient. 
  
 ai = xiγi  (4.4-8) 
 
We will normally use activity coefficients to describe non-ideal solution in phase 
equilibrium. However activity will be more convenient to use when we encounter chemical 
equilibrium. 
 
In summary, the reference state for species i in the liquid (or solid) phase is just a defined 
state, real or hypothetical, at a given P and xi (usually that of the system) and at the 
temperature of the system. Some text will define the reference state that has the temperature 
of the system as a standard state to distinguish from the reference state that is not at the 
system temperature. A pure gas can be a non-ideal gas, while a pure liquid must be an ideal 
solution since all intermolecular forces in a pure liquid are the same. An increase in pressure 
will lead to deviation from ideal gas law, whereas deviations form ideal solution can occur at 
low pressure since non-ideal behavior is mainly due to dissimilar intermolecular forces 
between species in a mixture. 
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Chapter 5  
Applied Phase Equilibrium 

 
5.1 Vapor-Liquid Equilibrium for Ideal Systems 
 
The most common problems requiring contact between phases chemical engineers encounter 
in the chemical, petroleum, and related industries involve vapor-liquid equilibrium. At 
equilibrium, the fugacity of species i in the vapor phase is equal to that in the liquid phase 
 
 =  (5.1-1) v

if̂
l

if̂
 
The fugacity of species i in the vapor phase can be expressed in terms of the mole fraction, yi, 
fugacity coefficient, , and total pressure, P, as v

iϕ̂
 
 = yi P (5.1-2) v
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The fugacity of species i in the liquid phase can be expressed in terms of the mole fraction, 
xi, activity coefficient, , and fugacity of pure component, P, as v

iϕ̂
 
 = xiγi fi (5.1-3) l

if̂
 
Therefore 
 
 yi P = xiγi fi (5.1-4) v

iϕ̂
 
If the vapor phase obeys ideal gas law,  = 1, and the liquid solution is ideal, γi = 1, Eq. 
(5.1-4) becomes 

v
iϕ̂

 
 yiP = xifi (5.1-5) 
 
At low pressure, fi = Pi

sat, Eq. (5.1-5) becomes Raoult’s law 
 
 yiP = xiPi

sat (5.1-6) 
 
The equilibrium ratio or K-value is defined as 
 

 Ki = 
i

i

x
y  (5.1-7) 

 
When Raoult’s law applies we have 
 

 Ki = 
P

P sat
i  (5.1-8) 
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In general, the K-values depend on temperature, pressure, and the composition in both 
phases. For light hydrocarbon system (methane to decane), the K-values have been 
determined semi-empirically and can be evaluated from the equations given in Table 5.1-11. 
In general, K is a function of temperature, pressure, and composition.  
 

Table 5.1-1 Equilibrium K values for light hydrocarbon systems 
============================================================= 

 (1) ln K = −A/T2 + B − C ln(P) + D/P2 
 (2) ln K = −A/T2 + B − C ln(P) + D/P 
 (3) ln K = −A/T + B − C ln(P)                 ,  where P is in psia, T is in oR 
  Compound A B C D Form  

============================================================= 
 Methane 292860 8.2445 .8951 59.8465 (1) 
 Ethylene 600076.9 7.90595 .84677 42.94594 (1) 
 Ethane 687248.2 7.90694 .866 49.02654 (1) 
 Propylene 923484.7 7.71725 .87871 47.67624 (1) 
 Propane 970688.6 7.15059 .76984 6.90224 (2) 
 i-Butane 1166846 7.72668 .92213 0 (1) 
 n-Butane 1280557 7.94986 .96455 0 (1) 
 i-Pentane 1481583 7.58071 .93159 0 (1)  
 n-Pentane 1524891 7.33129 .89143 0 (1) 
 n-Hexane 1778901 6.96783 .84634 0 (1) 
 n-Heptane 2013803 6.52914 .79543 0 (1) 
 n-Octane 7646.816 12.48457 .73152  (3) 
 n-Nonane 2551040 5.69313 .67818 0 (1) 
 n-Decane 9760.457 13.80354 .7147  (3) 

============================================================= 
 
In flash distillation, a liquid mixture is partially vaporized and the vapor is allowed to come 
to equilibrium with the liquid. The process flow diagram is shown in Figure 5.1-1. The vapor 
and liquid phases are then separated.  

F, xiF

V, yi

L, xi

Q

 
Figure 5.1-1 Flash distillation. 

 

                                                 
1 Wankat, P. C., Equilibrium Staged Separations, Elsevier, 1988 
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Besides flash calculation, which will be discussed later, there are four types of vapor-liquid 
equilibrium calculations: (1) Bubble point temperature calculation, (2) Bubble point pressure 
calculation, (3) Dew point temperature calculation, and (4) Dew point pressure calculation. 
 
Bubble point temperature calculation 
 
In a bubble point temperature calculation, the pressure and liquid phase composition are 
specified. We will solve for the temperature and the vapor composition. The solution 
provides the composition of the first bubble of vapor that forms when heat is supplied to a 
saturated liquid. Since the vapor mole fractions are unknown, we start with the equation 
 

 = 1 (5.1-9) ∑
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i
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Using the K-values: Ki = 
i

i

x
y , Eq. (5.1-9) becomes 
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If the system contains more than two components, we might want to solve the log form of 
equation (5.1-10) for better convergence 
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Example 5.1-1  ---------------------------------------------------------------------------------- 
Determine the temperature and composition of the first bubble created from a saturated liquid 
mixture of benzene and toluene containing 45 mole percent benzene at 200 kPa. Benzene and 
toluene mixtures may be considered as ideal.  
 
Data: Vapor pressure, Psat, data: ln Psat = A − B/(T + C), where Psat is in kPa and T is in oK. 
 
 Compound     A      B        C 
Benzene (1) 14.1603 2948.78 − 44.5633 
Toluene (2) 14.2515 3242.38 − 47.1806 
 
Solution ------------------------------------------------------------------------------------------ 
 
We start with the equation 
 
 y1 + y2 = 1 (E-1) 
 
Substituting yi = xiPi

sat/P into equation (E-1) yields 
 
 x1P1

sat + x2P2
sat = P (E-2) 

 

 5-3



With the numerical values for mole fractions and pressure, equation (E-2) becomes 
 
 0.45exp(14.1603 − 2948.78/(T − 44.5633))  
 + 0.55exp(14.2515 − 3242.38/(T − 47.1806)) = 200 (E-3) 
 
The bubble point temperature should be between the boiling points of benzene and toluene 
given by 
 

 T1
boil = 

)200log(1603.14
78.2948

−
 + 44.5633 = 377.31oK 

 

 T2
boil = 

)200log(2515.14
38.3242

−
 + 47.1806 = 409.33oK 

 
The solution of the nonlinear algebraic equation (E-3) can be determined using Matlab 
function fsolve with inline function as follows: 
 
fun=inline('0.45*exp(14.1603 - 2948.78/(T - 44.5633))+ 0.55*exp(14.2515 - 
3242.38/(T - 47.1806)) - 200'); 
>> T=fsolve(fun,400,optimset('Display','off')) 
T = 
  391.7925 
 
The bubble point temperature of the benzene-toluene mixture is 391.8oK. At this 
temperature, the vapor pressure of benzene is 
 
 P1

sat = exp(14.1603 − 2948.78/(391.7925 − 44.5633)) = 289.45 kPa 
 
The mole fraction of benzene in the vapor phase is then 
 

 y1 = 
P
Px sat

11  = 
200

)45.289)(45.0(  = 0.6513 

 
The mole fraction of toluene in the vapor phase is 
 
 y2 = 1 − y1 = 0.3487 
 
-------------------------------------------------------------------------------------------------------- 
 
Bubble point pressure calculation 
 
In a bubble point pressure calculation, the temperature and liquid phase composition are 
specified. We will solve for the pressure and the vapor composition. Since the vapor mole 
fractions are unknown, we start with the equation 
 

 = 1 (5.1-12) ∑
=

m

i
iy
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Using the K-values: Ki = 
i

i

x
y , Eq. (5.1-12) becomes 

 − 1 = 0 (5.1-13) ∑
=

m

i
ii xK

1

 
Example 5.1-2  ---------------------------------------------------------------------------------- 
Determine the pressure and composition of the first bubble created from a saturated liquid 
mixture of benzene and toluene containing 45 mole percent benzene at 400oK. Benzene and 
toluene mixtures may be considered as ideal.  
 
Data: Vapor pressure, Psat, data: ln Psat = A − B/(T + C), where Psat is in kPa and T is in oK. 
 
 Compound     A      B        C 
Benzene (1) 14.1603 2948.78 − 44.5633 
Toluene (2) 14.2515 3242.38 − 47.1806 
 
Solution ------------------------------------------------------------------------------------------ 
 
We start with the equation 
 
 y1 + y2 = 1 (E-1) 
 
Substituting yi = xiPi

sat/P into equation (E-1) yields 
 
 x1P1

sat + x2P2
sat = P (E-2) 

 
With the numerical values for mole fractions and temperature, the bubble point pressure is  
 
 P = 0.45exp(14.1603 − 2948.78/(400 − 44.5633))  
  + 0.55exp(14.2515 − 3242.38/(400 − 47.1806)) = 245.284 kPa   
 
At 400oK, the vapor pressure of benzene is 
 
 P1

sat = exp(14.1603 − 2948.78/(400 − 44.5633)) = 352.160 kPa 
 
The mole fraction of benzene in the vapor phase is then 
 

 y1 = 
P
Px sat

11  = 
284.245

)160.352)(45.0(  = 0.6461 

 
The mole fraction of toluene in the vapor phase is 
 
 y2 = 1 − y1 = 0.3539 
--------------------------------------------------------------------------------------------------- 
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Dew point temperature calculation 
 
In a dew point temperature calculation, the pressure and vapor phase composition are 
specified. We will solve for the temperature and the liquid composition. The solution 
provides the composition of the first drop of dew that forms from a saturated vapor. Since the 
liquid mole fractions are unknown, we start with the equation 
 

 = 1 (5.1-14) ∑
=

m

i
ix

1

 

Using the K-values: Ki = 
i

i

x
y , Eq. (5.1-14) becomes 

 

 ∑
=

m

i i

i

K
y

1
= 1 (5.1-15) 

 
Example 5.1-3  ---------------------------------------------------------------------------------- 
Determine the temperature and composition of the first dew created from a saturated vapor 
mixture of benzene and toluene containing 45 mole percent benzene at 200 kPa. Benzene and 
toluene mixtures may be considered as ideal.  
 
Data: Vapor pressure, Psat, data: ln Psat = A − B/(T + C), where Psat is in kPa and T is in oK. 
 
 Compound     A      B        C 
Benzene (1) 14.1603 2948.78 − 44.5633 
Toluene (2) 14.2515 3242.38 − 47.1806 
 
Solution ------------------------------------------------------------------------------------------ 
 
We start with the equation 
 
 x1 + x2 = 1 (E-1) 
 
Substituting xi = yiP/Pi

sat into equation (E-1) yields 
 

 satP
Py

1

1  + satP
Py

2

2  = 1 (E-2) 

 
With the numerical values for mole fractions and pressure, equation (E-2) becomes 
 
 90/exp(14.1603 − 2948.78/(T − 44.5633))  
 + 110/exp(14.2515 − 3242.38/(T − 47.1806)) = 1 (E-3) 
 
The dew point temperature should be between the boiling points of benzene and toluene 
given by 
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 T1
boil = 

)200log(1603.14
78.2948

−
 + 44.5633 = 377.31oK 

 

 T2
boil = 

)200log(2515.14
38.3242

−
 + 47.1806 = 409.33oK 

 
The solution of the nonlinear algebraic equation (E-3) can be determined using Matlab 
function fsolve with inline function as follows: 
 
>> fun=inline('90/exp(14.1603 - 2948.78/(T - 44.5633))+ 110/exp(14.2515 - 
3242.38/(T - 47.1806)) - 1'); 
>> T=fsolve(fun,400,optimset('Display','off')) 
T = 
  398.0874 
 
The dew point temperature of the benzene-toluene mixture is 398.1oK. At this temperature, 
the vapor pressure of benzene is 
 
 P1

sat = exp(14.1603 − 2948.78/(398.0874 − 44.5633)) = 336.70 kPa 
 
The mole fraction of benzene in the liquid phase is then 
 

 x1 = satP
Py

1

1  = 
7.336

)200)(45.0(  = 0.2673 

 
The mole fraction of toluene in the liquid phase is 
 
 x2 = 1 − x1 = 0.7327 
 
-------------------------------------------------------------------------------------------------------- 
 
Dew point pressure calculation 
 
In a dew point pressure calculation, the temperature and vapor phase composition are 
specified. We will solve for the pressure and the liquid composition. Since the liquid mole 
fractions are unknown, we start with the equation 
 

 = 1 (5.1-16) ∑
=

m

i
ix

1

 

Using the K-values: Ki = 
i

i

x
y , Eq. (5.1-16) becomes 

 

 ∑
=

m

i i

i

K
y

1
= 1 (5.1-17) 
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If the system contains more than two components, we might want to solve the log form of 
equation (5.1-17) for better convergence 
 

 ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=

m

i i

i

K
y

1
= 0 (5.1-18) 

 
Example 5.1-4  ---------------------------------------------------------------------------------- 
Determine the temperature and composition of the first dew created from a saturated vapor 
mixture of benzene and toluene containing 45 mole percent benzene at 400oK. Benzene and 
toluene mixtures may be considered as ideal.  
 
Data: Vapor pressure, Psat, data: ln Psat = A − B/(T + C), where Psat is in kPa and T is in oK. 
 
 Compound     A      B        C 
Benzene (1) 14.1603 2948.78 − 44.5633 
Toluene (2) 14.2515 3242.38 − 47.1806 
 
Solution ------------------------------------------------------------------------------------------ 
 
We start with the equation 
 
 x1 + x2 = 1 (E-1) 
 
Substituting xi = yiP/Pi

sat into equation (E-1) yields 
 

 satP
Py

1

1  + satP
Py

2

2  = 1 ⇒ P = 
satsat P

y
P
y

2

2

1

1

1

+
 (E-2) 

 
With the numerical values for mole fractions and temperature, equation (E-2) becomes 
 

P = 

))1806.47400/(38.32422515.14exp(
55.0

))5633.44400/(78.29481603.14exp(
45.0

1

−−
+

−−

 

 
P = 209.98 kPa 
 
At 400oK, the vapor pressure of benzene is 
 
 P1

sat = exp(14.1603 − 2948.78/(400 − 44.5633)) = 352.160 kPa 
 
The mole fraction of benzene in the liquid phase is then 
 

 x1 = satP
Py

1

1  = 
16.352

)98.209)(45.0(  = 0.2683 
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Chapter 5  
Example 5.1-5  ---------------------------------------------------------------------------------- 
Construct a Txy diagram for a mixture of benzene and toluene at 200 kPa. Benzene and 
toluene mixtures may be considered as ideal.  
 
Data: Vapor pressure, Psat, data: ln Psat = A − B/(T + C), where Psat is in kPa and T is in K. 
 
 Compound     A      B        C 
Benzene (1) 14.1603 2948.78 − 44.5633 
Toluene (2) 14.2515 3242.38 − 47.1806 
 
Solution ------------------------------------------------------------------------------------------ 
 
The temperature for the Txy diagram should be between the boiling points of benzene and 
toluene given by 
 

 T1
boil = 

)200log(1603.14
78.2948

−
 + 44.5633 = 377.31 K 

 

 T2
boil = 

)200log(2515.14
38.3242

−
 + 47.1806 = 409.33 K 

 
The simplest procedure is to choose a temperature T between 377.31 K and 409.33 K, 
evaluate the vapor pressures, and solve for x and y from the following equations: 
 

 
i

i

x
y  = 

P
P sat

i  (E-1) 

 
At 400oK, the vapor pressure of benzene and toluene are given by 
 
 P1

sat = exp(14.1603 − 2948.78/(400 − 44.5633)) = 352.160 kPa 
 
 P2

sat = exp(14.2515 − 3242.38/(400 − 47.1806)) = 157.8406 kPa 
 
Therefore 
 

 
1

1

x
y = 352.16

200
 ⇒ y1 = K1 x1 = 1.7608x1 (E-1) 

 

 
1

1

1
1

x
y

−
− = 157.841

200
 ⇒ 1 − y1 = K2 (1 − x1) = 0.7892 (1 − x1) (E-1) 

 
Substituting Eq. (E-2) into (E-1) yields 
 
 1 − K1 x1 = K2 (1 − x1) 
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Therefore 
 

  x1 = 
21

21
KK

K
−
−  = 

7892.07608.1
7892.01
−

−  = 0.2170 

 
 y1 = K1 x1 = 1.7608x1 = 0.3820 
 
The Matlab program listed in Table E5-1 plots the Txy diagram shown in Figure E5-1. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

380

385

390

395

400

405

410

x,y

T(
K)

Saturated liquid
Saturated vapor

 
 

Figure E5-1 Calculated Txy diagram of benzene and toluene at 200 kPa. 
 
Table E5-1-------------------------------------------------------------------------- 
% Example 5.1-5, Txy diagram for benzene-toluene mixture at 200 kPa 
% 
P=200; % kPa 
A=[14.1603 14.2515]; B=[2948.78 3242.38]; C=[-44.5633  -47.1806]; 
% Boling point at 200 kPa 
Tb=B./(A-log(P))-C; 
fprintf('Boiling point of Benzene at P = %g, Tb = %6.2f C\n',P,Tb(1)) 
fprintf('Boiling point of Toluene at  P = %g, Tb = %6.2f C\n',P,Tb(2)) 
T=linspace(Tb(1),Tb(2),50); 
K1=exp(A(1)-B(1)./(T+C(1)))/P; 
K2=exp(A(2)-B(2)./(T+C(2)))/P; 
x=(1-K2)./(K1-K2); y = K1.*x; 
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ymin=round(Tb(1)-1);ymax=round(Tb(2)+1); 
plot(x,T,y,T,':') 
axis([0 1 ymin ymax]); 
grid on 
xlabel('x,y');ylabel('T(K)') 
legend('Saturated liquid','Saturated vapor') 
-----------------------------------------------------------------------------------------  
Example 5.1-62  ---------------------------------------------------------------------------------- 
We want to condense the following vapor mixture at 100oF. 
 
Ethylene C2H4: 20% Ethane C2H6: 20% Propane C3H8: 40% n-Buane C4H10: 20% 
 
Determine the dew point pressure and the pressure required to totally condense the vapor 
using the K-values. 
 
Data:  

Equilibrium K values for light hydrocarbon systems 
============================================================= 

 ln K = −A/T2 + B − C ln(P) + D/P + E/P2,  where P is in psia, T is in oR 
  Compound A B C D     E 

============================================================= 
 Ethylene 600076.9 7.90595 .84677 0 42.94594 
 Ethane 687248.2 7.90694 .866 0 49.02654 
 Propane 970688.6 7.15059 .76984 6.90224 0 
 n-Butane 1280557 7.94986 .96455 0 0 

============================================================= 
 
Solution ------------------------------------------------------------------------------------------ 
For dew point pressure calculation, the liquid mole fractions are unknown. We start with the 
equation 
 

 = 1 (E-1) ∑
=

m

i
ix

1

 

Using the K-values: Ki = 
i

i

x
y , Eq. (E-1) becomes 

 

 ∑
=

m

i i

i

K
y

1

= 1 (E-2) 

 
We will solve the log form of equation (E-2) for better convergence 
 

 ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=

m

i i

i

K
y

1
= 0 (E-3) 

 
                                                 
2 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 266 
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We will use Newton’s method to solve Eq. (E-3). A review of Newton’s method is given in 
Appendix A. The procedure for the calculation is as follows: 
 
1) Estimate vapor pressure, Pi

sat, by setting Ki = 1 and solve for Pi
sat using only the three 

constants A, B, and C in the expression for the equilibrium ratio. 
 

 Pi
sat = exp ⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ − 2

1
T
AB

C
 

 

2) Assume a pressure P = 0.5  ∑
=

m

i

sat
ii Py

1

 
3) Evaluate Ki = Ki (T, P) 
 

4) Evaluate f(P) = ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=

m

i i

i

K
y

1
 

 
5) Evaluate Ki = Ki (T, P + dP) and f(P + dP) 
 
6) Since the slope of the curve f(P) versus P is approximated by 
 

 Slope = 
dP

PfdPPf )()( −+  = 
calPP

Pf
−

)(  

 
The calculated Pcal is given by 
 

 Pcal = P − 
)()(

)(
PfdPPf

dPPf
−+

 

 
Steps (3-6) are repeated until |Pcal − P| ≤ error tolerance 
 
In a bubble point pressure calculation, the temperature and liquid phase composition are 
specified. We will solve for the pressure and the vapor composition. Since the vapor mole 
fractions are unknown, we start with the equation 
 

 = 1 (E-4) ∑
=

m

i
iy

1

 

Using the K-values: Ki = 
i

i

x
y , Eq. (E-4) becomes 

 − 1 = 0 (E-5) ∑
=

m

i
ii xK

1

 
We will also use Newton’s method to solve Eq. (E-5). The procedure for the calculation is as 
follows: 
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1) Estimate vapor pressure, Pi

sat, by setting Ki = 1 and solve for Pi
sat using only the three 

constants A, B, and C in the expression for the equilibrium ratio. 
 

 Pi
sat = exp ⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ − 2

1
T
AB

C
 

 

2) Assume a pressure P =  ∑
=

m

i

sat
ii Px

1

 
3) Evaluate Ki = Ki (T, P) 
 

4) Evaluate f(P) = − 1 ∑
=

m

i
ii xK

1

 
5) Evaluate Ki = Ki (T, P + dP) and f(P + dP) 
 
6) Since the slope of the curve f(P) versus P is approximated by 
 

 Slope = 
dP

PfdPPf )()( −+  = 
calPP

Pf
−

)(  

 
The calculated Pcal is given by 
 

 Pcal = P − 
)()(

)(
PfdPPf

dPPf
−+

 

 
Steps (3-6) are repeated until |Pcal − P| ≤ error tolerance. 
 
The following Matlab program can be used to determine the dew and bubble point pressure 
calculation: 
 
----------------------------------------------------------------------------------- 
% Example 5.1-6,  
% Dew point pressure calculation 
% 
T=100+460; 
A=[600076.9 687248.2 970688.6 1280577];  
B=[7.90595 7.90694 7.15059 7.94986];  
C=[0.84677 0.866 0.76984 0.96455]; 
D=[0 0 6.90224 0]; 
E=[42.94594 49.02654 0 0]; 
% Estimate vapor pressure by setting Ki=1 
Pisat=exp((B-A/(T*T))./C); 
yi=[.2 .2 .4 .2]; 
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Pe=yi*Pisat'; % Estimate pressure from vapor pressure and composition 
P=.5*Pe; 
fK='exp(-A/(T*T)+B-C*log(P)+D/P+E/(P*P))'; 
dP=1;eP=1; 
while abs(eP)>.1 
    Ki=eval(fK);fP=log(sum(yi./Ki)); 
    Psav=P;P=P+dP; 
    Ki=eval(fK);fdP=log(sum(yi./Ki)); 
    eP=fP*dP/(fdP-fP); 
    P=Psav-eP; 
end 
Ki=eval(fK);x=yi./(Ki); 
fprintf('Dew point pressure, P(psia) = %8.2f\n',P) 
disp('Species:  Ethylene      Ethane     Propane     n-Butane') 
fprintf('y =        ');disp(yi) 
fprintf('x =        ');disp(x) 
disp(' ') 
% Bubble point pressure calculation 
xi=yi;eP=1;P=Pe; 
while abs(eP)>.1 
    Ki=eval(fK);fP=xi*Ki'-1; 
    Psav=P;P=P+dP; 
    Ki=eval(fK);fdP=xi*Ki'-1; 
    eP=fP*dP/(fdP-fP); 
    P=Psav-eP; 
end 
Ki=eval(fK);y=xi.*Ki; 
fprintf('Bubble point pressure, P(psia) = %8.2f\n',P) 
disp('Species:  Ethylene      Ethane     Propane     n-Butane') 
fprintf('x =        ');disp(xi) 
fprintf('y =        ');disp(y) 
 
>> e5d1d6 
 
Dew point pressure, P(psia) =   163.64 
Species:  Ethylene      Ethane     Propane     n-Butane 
y =            0.2000    0.2000    0.4000    0.2000 
x =            0.0374    0.0544    0.3364    0.5718 
  
Bubble point pressure, P(psia) =   449.30 
Species:  Ethylene      Ethane     Propane     n-Butane 
x =            0.2000    0.2000    0.4000    0.2000 
y =            0.4545    0.3064    0.2128    0.0264 
------------------------------------------------------------------------------------------------- 
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5.2 Isothermal Flash Calculation Using K-values 
 
In flash distillation, a liquid mixture is partially vaporized and the vapor is allowed to come 
to equilibrium with the liquid. The process flow diagram is shown in Figure 5.2-1. The vapor 
and liquid phases are then separated.  

F, xiF

V, yi

L, xi

Q

 
Figure 5.2-1 Flash distillation. 

 
Making a component i balance gives 
 
  FxiF = Vyi + Lxi  = Vyi + (F − V)xi   (5.2-1) 
 
 Defining f = V/F, Eq. (5.2-1) becomes 
 
  xiF = fyi + (1 − f)xi   (5.2-2) 
 
 The above equation can be solved for yi, 

 

  yi = Kixi = f
f 1− xi  + 

f
xiF  (5.2-3) 

 or for xi, 

 

  xi = 1)1( +−i

iF

Kf
x

 (5.2-4) 

 
We will discuss the solution for two cases of isothermal flash calculation. In the first case, 
the fraction of the feed vaporized, f, is specified and in the second case f is determined. 
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Case 1: Fraction of the feed, f, vaporized is specified 
 
The feed composition xiF and the fraction f of the feed vaporized are given at a specified 
separator pressure P, the temperature T and compositions xi and yi can be calculated by 
solving the equation: 
 

  ∑ = 
=

m

i
ix

1
∑ +− 1)1),(( PTKf

x

i

iF  = 1 

 
The procedure for the calculation is as follows: 
 
1) Determine the bubble, Tb, and dew, Td, point temperatures at the feed composition. 
 
2) Assume a temperature T = fTd + (1 − f)Tb 
 
3) Evaluate Ki = Ki (T, P) 
 

4) Evaluate f(T) = ∑ +− 1)1),(( PTKf
x

i

iF − 1 

 
5) Evaluate Ki = Ki (T + dT, P) and f(T + dT) 
 
6) Since the slope of the curve f(T) versus T is approximated by 
 

 Slope = 
dT

TfdTTf )()( −+  = 
calTT

Tf
−

)(  

 
The calculated Tcal is given by 
 

 Tcal = T − 
)()(

)(
TfdTTf

dTTf
−+

 

 
Steps (3-6) are repeated until |Tcal − T| ≤ error tolerance 
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Chapter 5  
 
Case 2: Fraction of the feed, f, vaporized is determined 
 
If the feed composition xiF, temperature T and pressure P of separator are given, then the 
fraction of the feed vaporized V/F and compositions xi and yi can be calculated. Eqs. (5.2-3) 
and (5.2-4) can be arranged so that f = V/F is the only unknown. 
 
  ∑  − = 0 (5.2-5) iy ∑ ix

 

  ∑ +− 1)1( i

iFi

Kf
xK

−∑ +− 1)1( i

iF

Kf
x = 0 (5.2-6) 

 

  F = ∑ +−
−

1)1(
)1(

i

iFi

Kf
xK = 0 (5.2-7) 

 
Equation (5.2-7), which is known as the Rachford-Rice equation, has excellent convergent 
properties and can be solved by Newton’s method. Take the derivative of the function F with 
respect to V/F (or f), 
 

  
df
dF = −

[ ]∑ +−
−

2

2

1)1(
)1(

i

iFi

Kf
xK  (5.2-8) 

 
 The following procedure can be used to solve for V/F: 
 
1) Evaluate Ki = Ki (T, P) 
 
2) Check to see if T is between Tb and Td. 
 
 If all K-values are greater than 1, the feed is a superheated vapor above the dew 
point3. If all K-values are less than 1, the feed is a subcooled liquid below the bubble point. If 
one or more K-values are greater than 1 and one or more K-values are less than 1 we need to 
evaluate Eq. (5.2-7) at f = 0 and at f = 1. 
 
 2a) If ∑ < 0, the feed is below its bubble point. − iFi xK )1(
 

 2b) ∑ −

i

iFi

K
xK )1(  > 0 the feed is above its dew point. 

  
3) Assume f = 0.5 

                                                 
3 Seader J. D., and Henley  E. J., Separation Process Principles, Wiley, 1998, pg. 180. 
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4) Evaluate F = ∑ +−
−

1)1(
)1(

i

iFi

Kf
xK  

 

5) Evaluate 
df
dF = −

[ ]∑ +−
−

2

2

1)1(
)1(

i

iFi

Kf
xK  

 

6) Let ER = F/
df
dF , and      f = f − ER  

 
7) If abs(ER) > .001 go to step 4, otherwise 
 

 xi = 
1)1( +−i

iF

Kf
x   and yi = Kixi 

 
Example 5.2-1 ---------------------------------------------------------------------------------- 
The following mixture is fed to a flash drum at 200 psia. 
 
Ethylene C2H4: 20% Ethane C2H6: 20% Propane C3H8: 40% n-Buane C4H10: 20% 
 
Determine the temperature and the composition of the vapor and liquid streams leaving the 
flash drum if 40% of the feed is vaporized. 
 
Data:  

Equilibrium K values for light hydrocarbon systems 
============================================================= 

 ln K = −A/T2 + B − C ln(P) + D/P + E/P2,  where P is in psia, T is in oR 
  Compound A B C D     E 

============================================================= 
 Ethylene 600076.9 7.90595 .84677 0 42.94594 
 Ethane 687248.2 7.90694 .866 0 49.02654 
 Propane 970688.6 7.15059 .76984 6.90224 0 
 n-Butane 1280557 7.94986 .96455 0 0 

============================================================= 
 
Solution ------------------------------------------------------------------------------------------ 
 
% Example 5.2-1, Isothermal Flash with f=V/F specified 
% Dew point temperature calculation 
% 
P=200; % psia 
f=0.4; 
A=[600076.9 687248.2 970688.6 1280577];  
B=[7.90595 7.90694 7.15059 7.94986];  
C=[0.84677 0.866 0.76984 0.96455]; 
D=[0 0 6.90224 0]; 
E=[42.94594 49.02654 0 0]; 
% Estimate the saturation temperature by setting Ki=1 
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Tsat=sqrt(A./(B-C*log(P))); 
zi=[.2 .2 .4 .2];yi=zi; 
Te=yi*Tsat'; % Estimate temperature from saturation temperature and composition 
T=Te; 
fK='exp(-A/(T*T)+B-C*log(P)+D/P+E/(P*P))'; 
dT=1;eT=1; 
while abs(eT)>.1 
    Ki=eval(fK);fT=sum(yi./Ki)-1; 
    Tsav=T;T=T+dT; 
    Ki=eval(fK);fdT=sum(yi./Ki)-1; 
    eT=fT*dT/(fdT-fT); 
    T=Tsav-eT; 
end 
Td=T; 
fprintf('Dew point temperature, T(R) = %8.2f\n',T) 
disp(' ') 
% Bubble point temperature calculation 
xi=zi;eT=1;T=Te; 
while abs(eT)>.1 
    Ki=eval(fK);fT=log(xi*Ki'); 
    Tsav=T;T=T+dT; 
    Ki=eval(fK);fdT=log(xi*Ki'); 
    eT=fT*dT/(fdT-fT); 
    T=Tsav-eT; 
end 
Tb=T; 
fprintf('Bubble point temperature, T(R) = %8.2f\n',T) 
disp(' ') 
T=f*Td+(1-f)*Tb; 
eT=1; 
for i=1:20 
    Ki=eval(fK);fT=sum(zi./(f*(Ki-1)+1))-1; 
    Tsav=T;T=T+dT; 
    Ki=eval(fK);fdT=sum(zi./(f*(Ki-1)+1))-1; 
    eT=fT*dT/(fdT-fT); 
    T=Tsav-eT; 
    if abs(eT)<.1, break, end 
end 
Ki=eval(fK) 
x=zi./(f*(Ki-1)+1);y=x.*Ki; 
fprintf('Flash temperature, T(R) = %8.2f, V/F = %8.4f\n',T,f) 
disp('Species:  Ethylene      Ethane     Propane     n-Butane') 
fprintf('Feed z =');disp(zi) 
fprintf('x =         ');disp(x) 
fprintf('y =         ');disp(y) 
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>> e5d2d1 
Dew point temperature, T(R) =   574.80 
  
Bubble point temperature, T(R) =   490.69 
  
Flash temperature, T(R) =   523.98, V/F =   0.4000 
Species:  Ethylene      Ethane     Propane     n-Butane 
Feed z =    0.2000    0.2000    0.4000    0.2000 
x =             0.1013    0.1329    0.4649    0.3010 
y =             0.3481    0.3007    0.3027    0.0485 
Ki =            3.4382    2.2630    0.6510    0.1613 
----------------------------------------------------------------------------------------------------------- 
 
Example 5.2-2 ---------------------------------------------------------------------------------- 
The following mixture is fed to a flash drum at 200 psia. 
 
Ethylene C2H4: 20% Ethane C2H6: 20% Propane C3H8: 40% n-Buane C4H10: 20% 
 
Determine the fraction of the feed vaporized and the composition of the vapor and liquid 
streams leaving the flash drum if the drum is at 400oR, 600oR, and 525oR. 
 
Data:  

Equilibrium K values for light hydrocarbon systems 
============================================================= 

 ln K = −A/T2 + B − C ln(P) + D/P + E/P2,  where P is in psia, T is in oR 
  Compound A B C D     E 

============================================================= 
 Ethylene 600076.9 7.90595 .84677 0 42.94594 
 Ethane 687248.2 7.90694 .866 0 49.02654 
 Propane 970688.6 7.15059 .76984 6.90224 0 
 n-Butane 1280557 7.94986 .96455 0 0 

============================================================= 
 
Solution ------------------------------------------------------------------------------------------ 
% Example 5.2-2, Isothermal Flash with T specified 
% Dew point temperature calculation 
% 
P=200; % psia 
T=input('Drum temperature T(R) = '); 
A=[600076.9 687248.2 970688.6 1280577];  
B=[7.90595 7.90694 7.15059 7.94986];  
C=[0.84677 0.866 0.76984 0.96455]; 
D=[0 0 6.90224 0]; 
E=[42.94594 49.02654 0 0]; 
zi=[.2 .2 .4 .2]; 
fK='exp(-A/(T*T)+B-C*log(P)+D/P+E/(P*P))'; 
Ki=eval(fK);Km=Ki-1; 
f0=Km*zi';f1=sum(Km.*zi./Ki); 
if f0<0 
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    disp('Feed is subcooled liquid') 
elseif f1>0 
    disp('Feed is superheated vapor') 
else    
    for i=1:20 
        Km=Ki-1; 
        F=sum((Km.*zi)./(f*Km+1)); 
        dF=-sum((Km.^2).*zi./(f*Km+1).^2); 
        eR=F/dF;f=f-eR; 
        if abs(eR)<.0001, break, end 
    end 
    x=zi./(f*Km+1);y=x.*Ki; 
    fprintf('Flash temperature, T(R) = %8.2f, V/F = %8.4f\n',T,f) 
    disp('Species:  Ethylene      Ethane     Propane     n-Butane') 
    fprintf('Feed z =');disp(zi) 
    fprintf('x =         ');disp(x) 
    fprintf('y =         ');disp(y) 
    fprintf('Ki =        ');disp(Ki) 
end 
 
>> e5d2d2 
Drum temperature T(R) = 400 
Feed is subcooled liquid 
 
>> e5d2d2 
Drum temperature T(R) = 600 
Feed is superheated vapor 
 
>> e5d2d2 
Drum temperature T(R) = 525 
Flash temperature, T(R) =   525.00, V/F =   0.4116 
Species:  Ethylene      Ethane     Propane     n-Butane 
Feed z =    0.2000    0.2000    0.4000    0.2000 
x =             0.0992    0.1308    0.4651    0.3049 
y =             0.3441    0.2989    0.3070    0.0501 
Ki =            3.4674    2.2851    0.6600    0.1642 
------------------------------------------------------------------------------------------------------ 
TK Nguyen’s program (KEQUI) can perform vapor-liquid equilibrium for light 
hydrocarbons using K-values. 
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5.3 Vapor-Liquid Equilibrium with Non-ideal Liquid 
 
In this section we will consider the vapor liquid equilibrium calculation of some real binary 
system where the pressure is low enough for the vapor phase to be an ideal gas. At 
equilibrium, the fugacity of species i in the vapor phase is equal to that in the liquid phase 
 
 =  (5.3-1) v

if̂
l

if̂
 
The fugacity of species i in the vapor phase can be expressed in terms of the mole fraction, yi, 
fugacity coefficient, , and total pressure, P, as v

iϕ̂
 
 = yi P (5.3-2) v

if̂
v
iϕ̂

 
The fugacity of species i in the liquid phase can be expressed in terms of the mole fraction, 
xi, activity coefficient, γi, and fugacity of pure component, fi, as 
 
 = xiγi fi (5.3-3) l

if̂
 
Therefore 
 
 yi P = xiγi fi (5.3-4) v

iϕ̂
 
If the vapor phase obeys ideal gas law,  = 1, and at low pressure, fi = Pi

sat, Eq. (5.3-4) 
becomes 

v
iϕ̂

 
 yiP = xiγiPi

sat (5.3-5) 
 
The activity coefficient, γi, can be obtained from experimental data and fitted to different 
activity coefficient models. The better-known models are the Margules, Van Laar, Wilson, 
NTRL, and UNIQAC equations. The activity coefficient model is normally obtained from the 
excess Gibbs energy, gE, defined by 
 
 gE = ∑ E

iiGx  (5.3-6) 
 
In this equation, the partial molar excess Gibbs energy is given by 
 

 E
iG  = iG − ideal

iG  = μi − μi
ideal = RT ln ideal

i

l
i

f
f

ˆ
ˆ

= RT ln γi 

 
Therefore, the excess Gibbs energy is given in terms of activity coefficient as 
 
 gE = RT ln γi (5.3-7) ∑ ix
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The activity coefficient model must satisfy the following two conditions: 
 
1) It must provide an ideal solution as the mole fraction of one species approach one. That is 
 
 gE = 0 for x1 = 1 or x2 = 1 
 
2) It must satisfy the Gibbs-Duhem equation 
 

 x1

PTx ,1

1ln
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂ γ + x2

PTx ,1

2ln
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂ γ = 0 

 
The simplest non-ideal equation for the excess Gibbs energy that satisfies these two 
conditions is 
 
 gE = Ax1x2 (5.3-8) 
 
From the definition of the partial excess Gibbs energy we have 
 

 EG1 = 
2,,1 nPT

E

n
G

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ = ( )

2,,1 nPT

E

n
ng

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂ = A

2,,

1

21

21

nPT

n
nn

nn

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
 

 

 EG1 = A ⎥
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Therefore 
 

 EG1 = RT ln γ1 =  A 2
21

2
2

)( nn
n
+

 

 
The equation for activity coefficient in terms of mole fraction is then 
 
 RTln γ1 =  Ax2

2 (5.3-9a) 
 
Similarly 
 
 RTln γ2 =  Ax1

2 (5.3-9b) 
 
 
The parameter A can be obtained by fitting Eq. (5.3-9) with experimental data. This 
parameter may change with temperature and pressure, but it is independent of the 
composition of the system. More sophisticated model for the excess Gibbs energy will yield 
activity coefficient equation with more than one parameter that might better fit the 
experimental data. 
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The four common equations for activity coefficient are listed in Table 5.3-1. The Wilson 
model is preferred due to its improved ability to correct for temperature changes4. However 
the Wilson model should not be used for vapor-liquid equilibrium system that contains two 
liquid phases (LLE). 
 

Table 5.3-1 Common Binary Activity Coefficient Models 
Model  Recommended for 
Margules ln γ1 = x2

2[a + 2(b − a)x1] 
ln γ2 = x1

2[b + 2(a −b)x2] 
Aromatics, alcohol, ketones, 
and ethers 

Van Laar 
ln γ1 = 

[ ]221 )/(1 BxAx
A

+
 

ln γ2 = 
[ ]212 )/(1 AxBx

B
+

 

 

Wilson ln γ1 = − ln[x1 + x2Λ12] 

           + x2 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

2112

21

1221

12

xxxx
 

ln γ2 = − ln[x2 + x1Λ21] 

           + x1 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

1221

12

2112

21

xxxx
 

Aromatics, alcohol, ketones, 
ethers, C4-C18 hydrocarbons 

NRTL 
ln γ1 = x2

2

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡

Λ+
Λ

+
Λ+

Λ
2

1212

1212
2

2121

2
2121

xxxx
ττ

 

ln γ2 = x1
2

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡

Λ+
Λ

+
Λ+

Λ
2

1212

2
1212

2
2121

2121

xxxx
ττ

 

 

Aqueous organics, LLE 

 
Example 5.3-1 ---------------------------------------------------------------------------------- 
Find the bubble point pressure and vapor composition for a liquid mixture of 41.2 mol% 
ethanol (1) and n-hexane (2) at 331oK.5 
Data: Activity from Van Laar equations: 
 

 ln γ1 = 
[ ]221 )/(1 BxAx

A
+

  ln γ2 = 
[ ]212 )/(1 AxBx

B
+

  

 
 A = 2.409, and B = 1.970 
 
Vapor pressure: (Pi

sat in kPa and T in oK) 
 

 ln P1
sat = 16.1952 − 

7152.55
53.3423

−T
  ln P2

sat = 14.0568 − 
7089.42
42.2825

−T
 

  
                                                 
4http://students.aiche.org/pdfs/thermodynamics.pdf, 11/27/04 
5 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 279 
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Solution ------------------------------------------------------------------------------------------ 
 
At 331oK 
 
 P1

sat = exp[16.1952 − 3423.53/(331 − 55.7152)] = 42.9 kPa 
 
 P2

sat = exp[14.0568 − 2825.42/(331 − 42.7089)] = 70.54 kPa 
 
For the liquid solution with x1 = 0.412 and x2 = 0.588, we have 
 

 ln γ1 = 
[ ]221 )970.1/409.2(1

409.2
xx+

  = 0.699 ⇒ γ1 = 2.011 

 

 ln γ2 = 
[ ]212 )409.2/790.1(1

790.1
xx+

 = 0.4195 ⇒ γ2 = 1.521 

 
The partial pressure of ethanol is evaluated from 
 
 P1 =  x1γ1P1

sat = (0.412)(2.011)(42.9) = 35.55 kPa 
 
Similarly, the partial pressure of n-hexane is given by 
 
 P2 =  x2γ2P2

sat = (0.588)(1.521)(70.54) = 63.09 kPa 
  
The bubble point pressure is then  
 
 P = P1 + P2 = 35.55 + 63.09 = 98.64 kPa 
 
Mole fraction of ethanol in the vapor phase is calculated from 
 
 y1 = P1/P = 35.55/98.64 = 0.360 
 
The actual data for this system is Pexp = 101.3 kPa, and y1,exp = 0.350 
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Example 5.3-2 ---------------------------------------------------------------------------------- 
Estimate the bubble point temperature and vapor composition for a acetone (1) and water (2) 
liquid mixture with x1 = 0.01 at a total pressure of 101.3 kPa6. Use the Wilson model with 
the parameters 
 Λ12 = 0.1173, Λ21 = 0.4227 
  
Vapor pressure: (Pi

sat in kPa and T in oK) 
 

 ln P1
sat = 14.71712 − 

5228.34
95.2975

−T
  ln P2

sat = 16.5362 − 
9974.38
44.3985

−T
 

  
Solution ------------------------------------------------------------------------------------------ 
 
 Since the vapor mole fractions are unknown, we start with the equation 
 
 y1 + y2 = 1 (E-1) 
 
Substituting yi = xiγiPi

sat/P into equation (E-1) yields 
 
 x1γ1P1

sat + x2γ2P2
sat = P (E-2) 

 
For x1 = 0.01, x2 = 0.99, Λ12 = 0.1173, and Λ21 = 0.4227 we have 
 

 ln γ1 = − ln[x1 + x2Λ12] + x2 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

2112

21

1221

12

xxxx
 = 2.5703 ⇒ γ1 = 13.069 

 

 ln γ2 = − ln[x2 + x1Λ21] + x1 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

1221

12

2112

21

xxxx
 = 7.4112×10-4 ⇒ γ2 = 1.0007 

 
With the numerical values for mole fractions and pressure, equation (E-2) becomes 
 
 (0.01)(13.069)exp(14.71712 − 2975.95/(T − 34.5228))  
 + (0.99)(1.0007)exp(16.5362 − 3985.44/(T − 38.9974)) = 101.3 (E-3) 
 
  
 .13069exp(14.71712 − 2975.95/(T − 34.5228))   
 + 0.9907exp(16.5362 − 3985.44/(T − 38.9974)) = 101.3 (E-4) 
 
Since the boiling point of pure water at 101.3 kPa is 373oK and acetone is more volatile than 
water we will use 370oK as the first guess to the root of the nonlinear algebraic equation (E-
4). The solution can be determined using Matlab function fsolve with inline function as 
follows: 
 
>> fun=inline('.13069*exp(14.71712 - 2975.95/(T - 34.5228))+ 0.9907*exp(16.5362 - 
3985.44/(T - 38.9974)) - 101.3') 
                                                 
6 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 279 
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>> T=fsolve(fun,370,optimset('Display','off')) 
T = 
  361.7142 
 
The bubble point temperature of the acetone-water mixture is 361.7oK. At this temperature, 
the vapor pressure of acetone is 
 
 P1

sat = exp(14.1603 − 2948.78/(391.7925 − 44.5633)) = 289.45 kPa 
 
The mole fraction of benzene in the vapor phase is then 
 

 y1 = 
P
Px sat

11  = 
200

)45.289)(45.0(  = 0.6513 

 
The mole fraction of toluene in the vapor phase is 
 
 y2 = 1 − y1 = 0.3487 
 
 
Example 5.3-3 ---------------------------------------------------------------------------------- 
Estimate the dew point temperature and liquid composition for a acetone (1) and water (2) 
vapor mixture with y1 = 0.40 at a total pressure of 101.3 kPa7. Use the Wilson model with the 
parameters 
 Λ12 = 0.1173, Λ21 = 0.4227 
  
Vapor pressure: (Pi

sat in kPa and T in oK) 
 

 ln P1
sat = 14.71712 − 

5228.34
95.2975

−T
  ln P2

sat = 16.5362 − 
9974.38
44.3985

−T
 

  
Solution ------------------------------------------------------------------------------------------ 
 
 Since the liquid mole fractions are unknown, we start with the equation 
 
 x1 + x2 = 1 (E-1) 
 
Substituting xi = yiP/γiPi

sat into equation (E-1) yields 
 
 y1P/γ1P1

sat + y2P/γ2P2
sat = 1 (E-2) 

 
Since the activity coefficients depend on the liquid mole fractions, we assume a value for x1: 
 
 
 Let x1 = 0.1, then x2 = 1 − x1 = 0.9  
 

                                                 
7 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 279 
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Start Iteration 
 
With Λ12 = 0.1173, and Λ21 = 0.4227 we have 
 

 ln γ1 = − ln[x1 + x2Λ12] + x2 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

2112

21

1221

12

xxxx
 ⇒ γ1 = 5.42913 

 

 ln γ2 = − ln[x2 + x1Λ21] + x1 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

1221

12

2112

21

xxxx
 ⇒ γ2 = 1.0484 

 
With the numerical values for mole fractions, pressure, and activity coefficients, equation (E-
2) becomes 
 
 (0.1)(101.3)/5.42913/exp(14.71712 − 2975.95/(T − 34.5228))  
 + (0.9)(101.3)/1.0484/exp(16.5362 − 3985.44/(T − 38.9974)) = 1 (E-3) 
 
We solve equation (E-3) for temperature and obtain T = 359.196oK with an initial guess of 
370oK. We now need to calculate the liquid mole fractions  
 
 x1 = y1P/γ1P1

sat  = 0.0289813, and  
 
 x2 = y2P/γ2P2

sat = 0.971019 
 
We now need to update values for the activity coefficients: 
 

 ln γ1 = − ln[x1 + x2Λ12] + x2 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

2112

21

1221

12

xxxx
 ⇒ γ1 = 10.2315 

 

 ln γ2 = − ln[x2 + x1Λ21] + x1 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

1221

12

2112

21

xxxx
 ⇒ γ2 = 1.00555 

 
The liquid mole fractions are then reevaluated: 
 
 x1 = y1P/γ1P1

sat  = 0.0153783, and  
 
 x2 = y2P/γ2P2

sat = 1.01239  
 
The summation of the liquid mole fractions is given by 
 
 x1 + x2 = 0.0153783 + 1.01239 = 1.02777 
 
Since the summation is not equal to 1, we need to recalculate the liquid mole fractions using 
the normalized mole fractions as the guessed values 
 
 x1 = 0.0153783/1.02777 = 0.0149628 
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 x2 = 1.01239/1.02777 = 0.985037 
 
We then go back to the Start Iteration and repeat the procedure using 359.196oK as the 
initial temperature for the solution of the non-linear equation (E-3). The final results after 
two iterations are 
 
 x1 = 0.0122297, x2 = 0.987814, and T = 359.942oK  
 
Table 3.5-2 lists the Matlab program used for the calculation. 
 

Table 5.3-2 Matlab program for dew point calculation 
 
% Example 5.3-3 
% 
y1=.4;y2=1-y1; 
P=101.3; 
% Assume a value for x1 
x1=.1;x2=1-x1; 
lamda12 = 0.1173;lamda21 = 0.4227; 
% 
dT=1; 
% Assume T 
T=370; 
% Solving for T using Newton's method 
for k=1:20 
A1=x1 + x2*lamda12; A2=x2 + x1*lamda21; 
gama1=exp(-log(A1)+x2*(lamda12/A1-lamda21/A2)); 
gama2=exp(-log(A2)+x1*(lamda21/A2-lamda12/A1)); 
fprintf('x1 = %g, x2 = %g\n',x1,x2) 
fprintf('gama1 = %g, gama2 = %g\n',gama1,gama2) 
for i=1:20 
fT=y1/gama1/exp(14.71712 -2975.95/(T-34.5228)) + y2/gama2/exp(16.5362 - 
3985.44/(T - 38.9974))-1/P; 
T=T+dT; 
fT2=y1/gama1/exp(14.71712 -2975.95/(T-34.5228)) + y2/gama2/exp(16.5362 - 
3985.44/(T - 38.9974))-1/P; 
eT=fT*dT/(fT2-fT); 
% New value for T 
T=T-dT-eT; 
fprintf('T(K) = %g\n',T) 
if abs(eT)<.001, break, end 
end 
x1=y1*P/gama1/exp(14.71712 -2975.95/(T-34.5228));x2=y2*P/gama2/exp(16.5362 - 
3985.44/(T - 38.9974)); 
% Update the values of gama1 and gama2 at new values of x1 and x2 
A1=x1 + x2*lamda12; A2=x2 + x1*lamda21; 
gama1=exp(-log(A1)+x2*(lamda12/A1-lamda21/A2)); 
gama2=exp(-log(A2)+x1*(lamda21/A2-lamda12/A1)); 
fprintf('x1 = %g, x2 = %g\n',x1,x2) 
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fprintf('gama1 = %g, gama2 = %g\n',gama1,gama2) 
x1=y1*P/gama1/exp(14.71712 -2975.95/(T-34.5228));x2=y2*P/gama2/exp(16.5362 - 
3985.44/(T - 38.9974)); 
% Check if x1+x2=1; 
sumx=x1+x2; 
fprintf('x1 = %g, x2 = %g, sumx = %g\n',x1,x2, sumx) 
% New values for x1 and x2 
x1=x1/sumx;x2=x2/sumx; 
if abs(sumx-1)<.0001, break, end 
end 
 
>> e5d3d3 
x1 = 0.1, x2 = 0.9 
gama1 = 5.42913, gama2 = 1.0484 
T(K) = 355.948 
T(K) = 359.037 
T(K) = 359.199 
T(K) = 359.196 
T(K) = 359.196 
x1 = 0.0289813, x2 = 0.971019 
gama1 = 10.2315, gama2 = 1.00555 
x1 = 0.0153783, x2 = 1.01239, sumx = 1.02777 
x1 = 0.0149628, x2 = 0.985037 
gama1 = 12.2028, gama2 = 1.00161 
T(K) = 359.946 
T(K) = 359.942 
T(K) = 359.942 
x1 = 0.0126257, x2 = 0.987374 
gama1 = 12.5979, gama2 = 1.00116 
x1 = 0.0122297, x2 = 0.987814, sumx = 1.00004 
 
Example 5.3-4  ---------------------------------------------------------------------------------- 
Construct a Txy diagram for a mixture of ethanol (1) with hexane (2) at a total pressure of 
101.3 kPa. Use the Wilson model with the parameters 
 Λ12 = 0.0952, Λ21 = 0.2713 
  
Vapor pressure: (Pi

sat in kPa and T in oK) 
 

 ln P1
sat = 16.1952 − 

7172.55
53.3423

−T
  ln P2

sat = 14.0568 − 
7089.42
42.2825

−T
 

 
 
Solution ------------------------------------------------------------------------------------------ 
 
To construct a Txy diagram, we start with a value of x1. The problem becomes a bubble point 
temperature calculation. Since the composition in the vapor phase is not known, we have 
 
 y1 + y2 = 1 (E-1) 
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Substituting yi = xiγiPi
sat/P into equation (E-1) yields 

 
 x1γ1P1

sat + x2γ2P2
sat = P (E-2) 

 
For a given value of x1, the activity coefficients can be obtained from  
 

 ln γ1 = − ln[x1 + x2Λ12] + x2 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

2112

21

1221

12

xxxx
 = 2.5703 ⇒ γ1 = 13.069 

 

 ln γ2 = − ln[x2 + x1Λ21] + x1 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

1221

12

2112

21

xxxx
 = 7.4112×10-4 ⇒ γ2 = 1.0007 

 
With the known values for mole fractions, activity coefficient, and pressure, equation (E-2) 
becomes 
 
 x1γ1exp(16.1952 − 3423.53/(T-55.7152))  
 + (1 − x1)γ2exp(14.0568-2825.42/(T − 42.7089)) = 101.3 (E-3) 
 
Equation (E-3) can be solved by Newton method for the temperature at a given value of x1. 
The boiling point of pure ethanol and hexane can be obtained from the vapor pressure 
equation. We start the calculation with x1 = 0.002 and use the boiling point of hexane as the 
initial guess for the bubble point temperature of the mixture. After each bubble point 
calculation, we increase x1 by a small amount and repeat the calculation using the previous 
temperature as the initial guess. The following Matlab program can be used to construct a 
Txy diagram at 101.3 kPa. 
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-------------------------------------------------------------------------------------------------- 
% Example 5.3-4: Construct a Txy diagramfor ethanol (1) and hexane (2) mixture  
% at a total pressure (kPa) of 
P = 101.3; 
% Use the Wilson equation with parameters 
G12 = 0.0952; G21 = 0.2713; 
% Vapor pressure data: P(kPa), T(K) 
p1sat = 'exp(16.1952-3423.53/(T-55.7152))'; 
p2sat = 'exp(14.0568-2825.42/(T-42.7089))'; 
% Estimate boiling points 
Tb1 = 3423.53/(16.1952-log(P))+55.7152; 
Tb2 = 2825.42/(14.0568-log(P))+42.7089; 
x1=[0 .002 .004 .006 .008 .01 .015]; 
x2=linspace(.02,.92,46); 
x3=[.93 .94 .95 .96 .97 .98 .985 .990 .995 1]; 
xp=[x1 x2 x3];np=length(xp); 
yp=xp;Tp=xp; 
Tp(1)=Tb2;Tp(np)=Tb1; 
dT = .01; 
% Will not work with this guess: T = y1*Tb1+y2*Tb2 
T=Tb2; 
for i=2:np 
    x1=xp(i);x2=1-x1; 
% Evaluate activity coefficients 
 tem1 = x1 + x2*G12; tem2 = x2 + x1*G21; 
 gam1 = exp(-log(tem1)+x2*(G12/tem1-G21/tem2)); 
 gam2 = exp(-log(tem2)+x1*(G21/tem2-G12/tem1)); 
 for k=1:20 
     fT=x1*gam1*eval(p1sat)+x2*gam2*eval(p2sat)-P; 
     T=T+dT; 
      fT2=x1*gam1*eval(p1sat)+x2*gam2*eval(p2sat)-P; 
 dfT=(fT2-fT)/dT; eT=fT/dfT; 
 T=T-dT-eT; 
  if abs(eT)<.001, break ,end 
end 
Tp(i)=T; 
yp(i)=x1*gam1*eval(p1sat)/P; 
fprintf('T(K) = %8.2f , x=%8.4f;y = %8.4f, iteration = %g\n',T,x1,yp(i),k) 
end 
plot(xp,Tp,yp,Tp,':') 
axis([0 1 330 355]) 
xlabel('x,y');ylabel('T(K)'); 
grid on 
legend('x','y') 
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Figure E-1: Txy diagram for ethanol-hexane mixture at 101.3 kPa.  
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Chapter 5  
5.4 Fitting Activity Coefficient Models with VLE Data 
 
One vapor-liquid equilibrium data point is sufficient to determine the two parameters of he 
activity coefficient equations. This data point provides T, P, x1, and y1 so that the activity 
coefficients can be determined from 
 
 γi  = yiP/xiPi

sat (5.4-1) 
 
The equations for the Margules model are 
 
 ln γ1 = x2

2[a + 2(b − a)x1], ln γ2 = x1
2[b + 2(a −b)x2] (5.4-2a,b) 

 
Solving for the two parameters a and b from Eqs. (5.4-2a) and (5.4-2b) yields 
 

 a = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

2

12
x 2

1ln
x
γ  + 2

1

2ln
x
γ , b = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

1

12
x 1

2ln
x
γ  + 2

2

1ln
x
γ  (5.4-3a,b) 

   
 
The equations for the Van Laar model are 
 

 ln γ1 = 
[ ]221 )/(1 BxAx

A
+

, ln γ2 = 
[ ]212 )/(1 AxBx

B
+

 (5.4-4a,b) 

 
Solving for the two parameters A and B from Eqs. (5.4-4a) and (5.4-4b) yields 
 

 A = 
2

11

22

ln
ln1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

γ
γ

x
x lnγ1, B = 

2

22

11

ln
ln1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

γ
γ

x
x lnγ2 (5.4-5a,b) 

 
If more than one data point is available, curve fitting should be used to determine the 
parameters for the activity coefficient equations. As an example, Figure 5.4-1 plots the model 
equation that predicts temperature as a function of time using two parameters ε and h. This is 
similar to the activity coefficient model where the activity coefficient depends on liquid mole 
fraction and two parameters. The relationship between the temperature Ti obtained from the 
model equation and the experimental value Ti,exp can be expressed generally as 
 
 Ti,exp  = Ti (t; ε, h) + ei (B.1-2) 
 
In this equation ei is a random error that can be negative or positive. Ti is a function of the 
independent variable ti and the parameters h and ε. The random error is also called the 
residual, which is the difference between the calculated and measured values.  
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Figure 5.4-1. Relationship between the model equation and the data 

 
Nonlinear regression is based on determining the values of the parameters that minimize the 
sum of the squares of the residuals called an objective function Fobj.  
 

 Fobj = = =  (B.1-3) ∑
=

N

i
ie

1

2 ( )∑
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−
N

i
ii TT

1

2
exp, (∑
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−
N

i
ii TT

1

2
exp, )

 
In this equation N is the number of data points or measured temperatures in this case. The 
two parameters are adjusted until the objection function reaches a minimum. This nonlinear 
regression procedure is presented in more details in Appendix B. 
 
In some cases, the activity coefficient equations can be rearranged so that a linear curve 
fitting can be used to obtain the parameters. 
The equations for the Margules model are 
 
 ln γ1 = x2

2[a + 2(b − a)x1], ln γ2 = x1
2[b + 2(a −b)x2] (5.4-2a,b) 

 
These equations can be rearranged to 
 

 
2

1ln
x
γ  = ax2 + 2(b − a)x1x2, 

1

2ln
x
γ  = bx1 + 2(a −b)x1x2 (5.4-6a,b) 

 
Adding Eq.(5.4-6a) to (5.4-6b) yields 
 

 
2

1ln
x
γ  + 

1

2ln
x
γ  = ax2 + bx1  

 
We now define a new function Q = x1ln γ1 + x2ln γ2, so that 
 

 
21xx

Q  = 
2

1ln
x
γ  + 

1

2ln
x
γ  = ax2 + bx1 =  a(1 − x1) + bx1 
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21xx

Q  = a + (b − a)x1  (5.4-7) 

 

The plot of 
21xx

Q  versus x1 will yield a straight line with slope = (b − a) and intercept = a. If 

data is available for only one component, we can plot 2
2

1ln
x
γ  vs. x1 or 2

1

2ln
x
γ  vs. x2 to obtain 

numerical values for the parameters a and b. If data is available for both components, Eq. 
(5.4-7) should be used to average out the experimental error. 
 
 The Van Laar equations can also be arranged so that the data can be fitted by a linear 
equation. The equations for the Van Laar model are 
 

 ln γ1 = 
[ ]221 )/(1 BxAx

A
+

, ln γ2 = 
[ ]212 )/(1 AxBx

B
+

 (5.4-4a,b) 

 
Taking the inverse of each term we have 
 

 
1ln

1
γ

 = [ ]
A

BxAx 2
21 )/(1+ ,  

2ln
1
γ

 = [ ]
B

AxBx 2
12 )/(1+  (5.4-8a,b) 

 
Taking the square root of each term yields 
 

 
1ln

1
γ

 = 
A

1  + 
B
A

2

1

x
x , 

2ln
1
γ

 = 
B

1  + 
A
B

1

2

x
x  (5.4-9a,b) 

Again, if there is only data for one component, we can plot either Eq. (5.4-9a) or (5.4-9b) to 
obtain the numerical values for A and B. If there are two sets of data, we will use the 
following linear form 
 

 
Q
xx 21  = 

A
1  + 

AB
BA − x1  (5.4-10) 

 
Example 5.4-1  ---------------------------------------------------------------------------------- 
Use the given VLE data for the ethanol (1)-benzene (2) system at 40oC to determine 
Margules and Van Laar parameters6. The vapor pressures for ethanol and benzene at 40oC 
are 134.02 mmHg and 182.78 mmHg, respectively. 
 
x1 .020 .095 .204 .378 .490 .592 .702 .802 .880 .943 .987 
y1 .145 .280 .332 .362 .384 .405 .440 .507 .605 .747 .912 
P,mmHg 208.4 239.8 249.1 252.3 248.8 245.7 237.3 219.4 196.3 169.5 145.6 
 
Solution ------------------------------------------------------------------------------------------ 

                                                 
6 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 281 
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First, we need to determine the activity coefficients from the experimental data from the 
following equation 
 
 yiP = xiγiPi

sat 
 
Applying the equation for the first data point (x1 = .020, y1 = .145, and P = 208.4) yields 
 

 γ1 = satPx
Py

11

1  = 
)02.134)(02.0(
)4.208)(145.0(  = 11.274 

 

 γ2 = ( )
( ) satPx

Py

21

1

1
1
−
−  = 

)78.182)(98.0(
)4.208)(855.0(  = 0.99474 

 
From equation (5.4-7) 
 

 
21xx

Q  = a + (b − a)x1  (5.4-7) 

 

The plot of 
21xx

Q  versus x1 will yield a straight line with slope = (b − a) and intercept = a. 

Table 5.4-1a lists the Matlab program used to determine the Margules parameters using 
linear curve fitting. Figure E-1 shows the fitted line and the experimental data. Figure E-2 
shows the calculated and measured mole fraction of ethanol. The two obtained Margules 
parameters are  
 
 a = 2.173, and b = 1.539 
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Table 5.4-1a ----------------------------------------------------------------------------------- 
%  Example 5.4-1, Determination of Margules parameters a and b 
x=[.020 .095 .204 .378 .490 .592 .702 .802 .880 .943 .987]; 
y=[.145 .280 .332 .362 .384 .405 .440 .507 .605 .747 .912]; 
P=[208.4 239.8 249.1 252.3 248.8 245.7 237.3 219.4 196.3 169.5 145.6]; 
Pvap1=134.02;Pvap2=182.78; 
% Evaluate gamma,g from y*P = x*g*Pvap 
x2=1-x; 
g1=y.*P./(x*Pvap1);g2=(1-y).*P./(x2*Pvap2); 
% Parameters for Margules equation 
ym=(x.*log(g1)+x2.*log(g2))./(x.*x2); 
c=polyfit(x,ym,1); 
%  c(1) = slope, c(2) = intercept 
a=c(2);b=c(1)+a; 
fprintf('Margules parameters: a = %g  b = %g \n',a,b) 
xp=0:.02:1;xp2=1-xp; 
g1c=exp(xp2.*xp2.*(a+2*(b-a)*xp));g2c=exp(xp.*xp.*(b+2*(a-b)*xp2)); 
P1c=xp.*g1c*Pvap1;P2c=xp2.*g2c*Pvap2;y1c=P1c./(P1c+P2c); 
xc=[0 1]; 
yc=polyval(c,xc); 
figure(1) 
plot(xc,yc,x,ym,'o') 
grid on 
legend('Fitted','Data') 
xlabel('x1');ylabel('Q/(x1*x2)') 
figure(2) 
plot(xp,y1c,x,y,'o') 
grid on 
xlabel('x1');ylabel('y1') 
legend('Fitted','Data') 
>> e5d4d1 
Margules parameters: a = 2.17278  b = 1.53949  
------------------------------------------------------------------------------------------------------------- 
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Figure E-1 Determination of Margues parameters 
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Figure E-2 Calculated and measured mole fraction of ethanol. 
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Chapter 5  
For Van Laar model, the plot of 

Q
xx 21  versus x1 will yield a straight line with slope = 

AB
BA −  

and intercept = 
A
1 . Table 5.4-1b lists the Matlab program used to determine the Van Laar 

parameters using linear curve fitting. Figure E-3 shows the fitted line and the experimental 
data. Figure E-4 shows the calculated and measured mole fraction of ethanol. The two 
obtained Van Laar parameters are  
 
 A = 2.186, and B = 1.555 
 
Table 5.4-1b ----------------------------------------------------------------------------------- 
%  Example 5.4-1, Determination of Van Laar parameters A and B 
x=[.020 .095 .204 .378 .490 .592 .702 .802 .880 .943 .987]; 
y=[.145 .280 .332 .362 .384 .405 .440 .507 .605 .747 .912]; 
P=[208.4 239.8 249.1 252.3 248.8 245.7 237.3 219.4 196.3 169.5 145.6]; 
Pvap1=134.02;Pvap2=182.78; 
% Evaluate gamma,g from y*P = x*g*Pvap 
x2=1-x; 
g1=y.*P./(x*Pvap1);g2=(1-y).*P./(x2*Pvap2); 
ym=(x.*log(g1)+x2.*log(g2))./(x.*x2); 
xp=0.02:.02:.98;xp2=1-xp; 
% Parameters for van Laar equation 
yv=1.0./ym; 
c=polyfit(x,yv,1); 
%  c(1) = slope, c(2) = intercept 
A=1/c(2);B=A/(A*c(1)+1); 
fprintf('Van Laar parameters: A = %g  B = %g \n',A,B) 
g1v=exp(A./(1+A*xp./(B*xp2)).^2);g2v=exp(B./(1+B*xp2./(A*xp)).^2); 
P1=xp.*g1v*Pvap1;P2=xp2.*g2v*Pvap2;y1v=P1./(P1+P2); 
xc=[0 1]; 
yc=polyval(c,xc); 
figure(1) 
plot(xc,yc,x,yv,'o') 
grid on 
legend('Fitted','Data') 
xlabel('x1');ylabel('(x1*x2)/Q') 
figure(2) 
plot(xp,y1v,x,y,'o') 
grid on 
xlabel('x1');ylabel('y1') 
legend('Fitted','Data') 
 
>> e5d4d1b 
Van Laar parameters: A = 2.18558  B = 1.55458  
------------------------------------------------------------------------------------------------------------- 
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Figure E-3 Determination of Van Laar parameters 
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Figure E-4 Calculated and measured mole fraction of ethanol. 
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Example 5.4-2  ---------------------------------------------------------------------------------- 
Use the given VLE data for the methanol (1)-carbon tetrachloride (2) system at 20oC to 
determine Wilson parameters7. The vapor pressures for methanol and carbon tetrachloride at 
20oC are 96.87 mmHg and 92.08 mmHg, respectively. 
 
x1 .020 .040 .100 .200 .300 .600 .700 .800 .900 .960 
y1 .344 .391 .430 .449 .462 .494 .512 .546 .662 .792 
P,mmHg 136.6 146.4 154.8 158.0 159.5 159.9 157.5 152.0 135.5 117.2 
 
Solution ------------------------------------------------------------------------------------------ 
The activity coefficients can be calculated from the experimental data using the following 
equation 
 
 yiP = xiγiPi

sat 
 
Applying the equation for the first data point (x1 = .020, y1 = .344, and P = 136.6) yields 
 

 γ1 = satPx
Py

11

1  = 
)87.96)(02.0(
)6.136)(344.0(  = 24.3 

 

 γ2 = ( )
( ) satPx

Py

21

1

1
1
−
−  = 

)08.92)(98.0(
)6.136)(656.0(  = 0.993 

 
The experimental Qexp function is evaluated as 
 
 Qexp = x1ln γ1 + x2ln γ2  (E-1) 
 
The calculated Qcal function is obtained by substituting Eqs. (E-2) and (E-3) for ln γ1 and ln 
γ2 into equation (E-1) 
 

 ln γ1 = − ln[x1 + x2Λ12] + x2 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

2112

21

1221

12

xxxx
  (E-2) 

 

 ln γ2 = − ln[x2 + x1Λ21] + x1 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

1221

12

2112

21

xxxx
 (E-3) 

 
 Qcal = −  x1ln[x1 + x2Λ12] − x2ln[x2 + x1Λ21] (E-4) 
 
The parameters Λ12 and Λ21 can be obtained by minimizing the following objective function 
 

 Fobj =  ( )∑
=

−
N

i
i

calQQ
1

2exp

                                                 
7 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 287 
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Table 4.5-2 lists the Matlab program used to determine the Wilson parameters Fminsearch. 
Figure E-5 shows the calculated and measured mole fraction of methanol. The two obtained 
Wilson parameters are  
 
 Λ12 = 0.0666, and Λ21 = 3.118  
 
Table 5.4-1b ----------------------------------------------------------------------------------- 
%  Example 5.4-2 
%  Determine parameters in the Wilson equation by minimizing the objective 
%    function sum[(Qexp-Qcal)i]^2, using fmins (Matlab function) 
%  Initial guesses 
G12 = .2; G21 =.4; 
gcal=fminsearch('ofq',[G12 G21]); 
fprintf('G12 =  %g , G21 = %g \n',gcal(1),gcal(2)) 
G12=gcal(1);G21=gcal(2); 
x=[.020 .040 .100 .200 .300 .600 .700 .800 .900 .960]; 
y=[.344 .391 .430 .449 .462 .494 .512 .546 .662 .792]; 
Pvap1=96.87;Pvap2=92.08; 
xp=0.02:.02:.98;xp2=1-xp; 
tem=G12./(xp+xp2*G12)-G21./(xp2+xp*G21); 
g1=exp(xp2.*tem)./(xp+xp2*G12);g2=exp(-xp.*tem)./(xp2+xp*G21); 
P1=xp.*g1*Pvap1;P2=xp2.*g2*Pvap2;y1w=P1./(P1+P2); 
plot(xp,y1w,x,y,'o') 
grid on 
xlabel('x1');ylabel('y1') 
legend('Fitted','Data') 
 
-------------------------------------------------- 
function yy=ofq(G) 
%  Example 5.4-2, function to evaluate the objective function Fobj 
%   ofq=sum[(Qexp-Qcal)i]^2 
x=[.020 .040 .100 .200 .300 .600 .700 .800 .900 .960]; 
y=[.344 .391 .430 .449 .462 .494 .512 .546 .662 .792]; 
P=[136.6 146.4 154.8 158.0 159.5 159.9 157.5 152.0 135.5 117.2]; 
Pvap1=96.87;Pvap2=92.08; 
% Evaluate gamma,g from y*P = x*g*Pvap 
x2=1-x;G12=G(1);G21=G(2); 
g1=y.*P./(x*Pvap1);g2=(1-y).*P./(x2*Pvap2); 
%  
Qexp=(x.*log(g1)+x2.*log(g2)); 
Qcal=-x.*log(x+G12*x2)-x2.*log(x2+G21*x); 
yy=sum((Qexp-Qcal).^2); 
 
>> e5d4d2 
G12 =  0.0665678 , G21 = 0.311822  
------------------------------------------------------------------------------------------------------------- 
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Figure E-5 Calculated and measured mole fraction of methanol. 

 
5.5 Azeotropes 
 
When deviations from Raoult’s law are large enough, the Tx and Ty curves can go through a 
maximum or a minimum. The extreme point (either minimum or maximum) is called 
azeotrope where the liquid mole fraction is equal to the vapor mole fraction for each species: 
 
 xi = yi  (5.5-1) 
 
A system that exhibits a maximum in pressure (positive deviations from Raoult’s law) will 
exhibits a minimum in temperature called minimum boiling azeotrope as shown the top part 
of Figure 5.5-1 for a mixture of chloroform and hexane. The Pxy diagram is plotted at 318 K 
and the Txy diagram is plotted at 1 atm. This is the case when the like interaction is stronger 
than the unlike interaction between the molecules. The mixture will require less energy to go 
to the vapor phase and hence will boil at a lower temperature that that of the pure 
components. 
 
If the unlike interaction is stronger than the like interaction we have negative deviations from 
Raoult’s law and the system will exhibit a minimum in pressure or a maximum in 
temperature called maximum boiling azeotrope. A mixture of acetone and chloroform shows 
this behavior in the bottom part of Figure 5.5-1. The Pxy diagram is plotted at 328 K and the 
Txy diagram is plotted at 1 atm. The data for vapor pressure and Wilson model are from the 
Thermosolver program by Koretsky. This program can also plot Pxy and Txy diagrams for 
different mixtures. Table 5.5-1 lists the Matlab program used to produce Figure 5.5-1. 
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Figure 5.5-1 Top: minimum boiling azeotrope for chloroform and n-Hexane system. 
Bottom: maximum boiling azeotrope for acetone and chloroform system 

 
Table 5.5-1 ----------------------------------------------------------------------------------- 
% Figure 5.5-1: Construct a Txy diagramfor chloroform (1) and hexane (2) mixture  
% at a total pressure (atm) of 
P = 1; 
% Use the Wilson equation with parameters 
G12 = 1.2042; G21 = 0.39799; 
% Vapor pressure data: P(atm), T(K) 
p1sat = 'exp(9.33984-2696.79/(T-46.14))'; 
p2sat = 'exp(9.20324-2697.55/(T-48.78))'; 
% Estimate boiling points 
Tb1 = 2696.79/(9.33984-log(P))+46.14; 
Tb2 = 2697.55/(9.20324-log(P))+48.78; 
x1=[0 .002 .004 .006 .008 .01 .015]; 
x2=linspace(.02,.92,46); 
x3=[.93 .94 .95 .96 .97 .98 .985 .990 .995 1]; 
xp=[x1 x2 x3];np=length(xp); 
yp=xp;Tp=xp; 
Tp(1)=Tb2;Tp(np)=Tb1; 
dT = .01; 
T=Tb2; 
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for i=2:np 
    x1=xp(i);x2=1-x1; 
% Evaluate activity coefficients 
 tem1 = x1 + x2*G12; tem2 = x2 + x1*G21; 
 gam1 = exp(-log(tem1)+x2*(G12/tem1-G21/tem2)); 
 gam2 = exp(-log(tem2)+x1*(G21/tem2-G12/tem1)); 
 for k=1:20 
     fT=x1*gam1*eval(p1sat)+x2*gam2*eval(p2sat)-P; 
     T=T+dT; 
      fT2=x1*gam1*eval(p1sat)+x2*gam2*eval(p2sat)-P; 
 dfT=(fT2-fT)/dT; eT=fT/dfT; 
 T=T-dT-eT; 
  if abs(eT)<.001, break ,end 
end 
Tp(i)=T; 
yp(i)=x1*gam1*eval(p1sat)/P; 
fprintf('T(K) = %8.2f , x=%8.4f;y = %8.4f, iteration = %g\n',T,x1,yp(i),k) 
end 
subplot(2,2,2); plot(xp,Tp,yp,Tp,':') 
axis([0 1 333 343]) 
xlabel('x,y');ylabel('T(K)');title('Chloroform-Hexane') 
grid on 
legend('x','y') 
% 
% Construct a Pxy diagramfor chloroform (1) and hexane (2) mixture  
% at a temperature (K) of 
T=318; 
p1vap=eval(p1sat);p2vap=eval(p2sat); 
xp2=1-xp; 
tem1 = xp + xp2*G12; tem2 = xp2 + xp*G21; 
 gam1 = exp(-log(tem1)+xp2.*(G12./tem1-G21./tem2)); 
 gam2 = exp(-log(tem2)+xp.*(G21./tem2-G12./tem1)); 
 p1=xp.*gam1*p1vap;p2=xp2.*gam2*p2vap; 
 Pp=p1+p2;yp=p1./Pp; 
 subplot(2,2,1); plot(xp,Pp,yp,Pp,':') 
axis([0 1 0.4 0.6]) 
xlabel('x,y');ylabel('P(atm)');title('Chloroform-Hexane') 
grid on 
legend('x','y',2) 
% 
% Figure 5.5-1: Construct a Txy diagramfor acetone (1) and chloroform (2) mixture  
% at a total pressure (atm) of 
P = 1; 
% Use the Wilson equation with parameters 
G12 = 1.324; G21 = 1.7314; 
% Vapor pressure data: P(atm), T(K) 
p1sat = 'exp(10.0179-2940.46/(T-35.93))'; 
p2sat = 'exp(9.33984-2696.79/(T-46.14))'; 
% Estimate boiling points 
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Tb1 = 2940.46/(10.0179-log(P))+35.93; 
Tb2 = 2696.79/(9.33984-log(P))+46.14; 
x1=[0 .002 .004 .006 .008 .01 .015]; 
x2=linspace(.02,.92,46); 
x3=[.93 .94 .95 .96 .97 .98 .985 .990 .995 1]; 
xp=[x1 x2 x3];np=length(xp); 
yp=xp;Tp=xp; 
Tp(1)=Tb2;Tp(np)=Tb1; 
dT = .01; 
T=Tb2; 
for i=2:np 
    x1=xp(i);x2=1-x1; 
% Evaluate activity coefficients 
 tem1 = x1 + x2*G12; tem2 = x2 + x1*G21; 
 gam1 = exp(-log(tem1)+x2*(G12/tem1-G21/tem2)); 
 gam2 = exp(-log(tem2)+x1*(G21/tem2-G12/tem1)); 
 for k=1:20 
     fT=x1*gam1*eval(p1sat)+x2*gam2*eval(p2sat)-P; 
     T=T+dT; 
      fT2=x1*gam1*eval(p1sat)+x2*gam2*eval(p2sat)-P; 
 dfT=(fT2-fT)/dT; eT=fT/dfT; 
 T=T-dT-eT; 
  if abs(eT)<.001, break ,end 
end 
Tp(i)=T; 
yp(i)=x1*gam1*eval(p1sat)/P; 
fprintf('T(K) = %8.2f , x=%8.4f;y = %8.4f, iteration = %g\n',T,x1,yp(i),k) 
end 
subplot(2,2,4); plot(xp,Tp,yp,Tp,':') 
axis([0 1 329 340]) 
xlabel('x,y');ylabel('T(K)');title('Acetone-Chloroform') 
grid on 
legend('x','y') 
% 
% Construct a Pxy diagramfor acetone (1) and chloroform (2) mixture  
% at a temperature (K) of 
T=328; 
p1vap=eval(p1sat);p2vap=eval(p2sat); 
xp2=1-xp; 
tem1 = xp + xp2*G12; tem2 = xp2 + xp*G21; 
 gam1 = exp(-log(tem1)+xp2.*(G12./tem1-G21./tem2)); 
 gam2 = exp(-log(tem2)+xp.*(G21./tem2-G12./tem1)); 
 p1=xp.*gam1*p1vap;p2=xp2.*gam2*p2vap; 
 Pp=p1+p2;yp=p1./Pp; 
 subplot(2,2,3); plot(xp,Pp,yp,Pp,':') 
axis([0 1 0.65 1.0]) 
xlabel('x,y');ylabel('P(atm)');title('Acetone-Chloroform') 
grid on 
legend('x','y',2) 



Chapter 5  
 
The total pressure, Pideal, for an ideal mixture is given by 
 
 Pideal =  x1P1

sat +  (1 − x1)P2
sat  (5.5-1) 

 
For a non-ideal system, the total pressure is given by 
 
 P =  x1γ1P1

sat +  (1 − x1)γ2P2
sat  (5.5-2) 

 
If γ1 and γ2 > 1 we have P > Pideal or a positive deviation from Raoult’s law. Similarly, if γ1 
and γ2 < 1 we have P < Pideal or a negative deviation from Raoult’s law. Figure 5.5-2 shows 
both positive and negative deviation of the Px curves. 
 

0 1x1

P2
sat

P1
sat

Positive deviation

Negative deviation

Ideal

P

 
Figure 5.5-2 Positive and negative deviation from Raoult’s law. 

 
 
The azeotrope can be used to determine the two parameters for an activity coefficient model. 
For vapor-liquid equilibrium at low pressure we have 
 
 yiP = xiγiPi

sat  (5.5-3) 
 
Since the vapor and liquid compositions are equal at the azeotrope, the condition for 
equilibrium becomes 
 
 P = γiPi

sat  (5.5-4) 
 
Since both the saturation pressure and the azeotrope pressure are measurable, the activity 
coefficient can simply be obtained from Eq. (5.5-2) at the azeotropic composition. 
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Example 5.5-1  ---------------------------------------------------------------------------------- 
At T = 64.3oK and P = 760 mmHg, the system methanol (1)-methyl ketone (2) forms an 
azeotrope containing 84.2 mol% of methanol8. The vapor pressures for methanol and carbon 
tetrachloride at 20oC are 96.87 mmHg and 92.08 mmHg, respectively. Determine the 
parameters in Wilson equation. 
 
Vapor pressure: (Pi

sat in mmHg and T in oC) 
 

 log10 P1
sat = 7.87863 − 

230
11.1474

+T
  log10 P2

sat = 6.97421 − 
216

6.1209
+T

 

 
Solution ------------------------------------------------------------------------------------------ 
The saturation pressures at 64.3oK can be determined from the given Antoine ’s equations to 
give 
 
 P1

sat = 736.94 mmHg, and P2
sat = 455.86 mmHg. 

 
We then use Eq. (5.5-4) to determine the activity coefficients 
 

 P = γiPi
sat ⇒  γi = sat

iP
P   (5.5-4) 

 
Hence 
 

 γ1 = 
94.736

760  = 1.031, γ2 = 
86.455

760  = 1.667 

 
The Wilson equations are given by 
 

  ln γ1 = − ln[x1 + x2Λ12] + x2 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

2112

21

1221

12

xxxx
  (E-1) 

 

 ln γ2 = − ln[x2 + x1Λ21] + x1 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

1221

12

2112

21

xxxx
 (E-2) 

 
Eqs (E-1) and (E-2) can be combined as x1(E-1) + x2(E-2) to give 
 
 x1ln γ1 + x2ln γ2 = − x1ln[x1 + x2Λ12] −  x2ln[x2 + x1Λ21]  (E-3) 
 
Combining the log’s terms yields 
 
 [ ] [ ] 2

21122
1

12211 )()( xx xxxx Λ+Λ+ γγ  = 1 (E-4) 
 

                                                 
8 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 328 
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Solving for Λ21 in terms of Λ12 and substituting into (E-1) gives an equation with just one 
unknown Λ12 
 

 
( )[ ]

12

21211
2

1

2121

112

22

/

ln1

xx

xx
x
x

xx
x

x

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Λ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
Λ+

Λ
− γ

γ ( )[ ]21211 xx Λ+γ  = 1 (E-4) 

 
Equation (E-4) can be solved with the known values of activity coefficients and liquid mole 
fractions: 
 
 γ1 = 1.031, γ2 = 1.667, x1 = 0.842, and x2 = 0.158 
 
Once Λ12 is evaluated, we can determine Λ21 from Eq. (E-1) 
 

  ln γ1 = − ln[x1 + x2Λ12] + x2 ⎥
⎦

⎤
⎢
⎣

⎡
Λ+

Λ
−

Λ+
Λ

2112

21

1221

12

xxxx
  (E-1) 

  
Rearranging Eq. (E-1) so that only the unknown Λ21 is on the left side of the equation yields 
 

 
2112

21

Λ+
Λ

xx
 = 

1221

12

Λ+
Λ

xx
 − ( )[ ]

2

12211 lnln
x

xx Λ++γ  (E-5) 

 
The RHS of Eq. (E-5) is a known quantity C, therefore 
 

 
2112

21

Λ+
Λ

xx
 = C ⇒ Λ21 = Cx2 + Cx1Λ21   

 
The value of Λ21 is then evaluated 
 

 Λ21 = 
1

2

1 Cx
Cx
−

 (E-6) 

 
Table 5.5-1 lists the Matlab program that solves equation (E-4) for Λ12 by Newton method 
and evaluates Λ21 from equation (E-6). The following values are obtained 
 
 Λ12 = 1.0818, C = 0.79349, and Λ21 = 0.3778 
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Table 5.5-1 -------------------------------------------------------------------------------- 
%  Example 5.5-1, Determination of Wilson parameters from azeotropic composition 
g1=1.031;g2=1.667;x=.842;x2=1-x; 
g2x2=g2*x2;x2x=x2/x; 
f='(g2x2/(1-G12*x/(x+G12*x2)+log(g1*(x+G12*x2))/x2x))^x2x*g1*(x+G12*x2)-1'; 
G12=1;dG=.01; 
for i=1:20 
  fG=eval(f);G12=G12+dG;fG2=eval(f); 
  dfG=(fG2-fG)/dG;eG=fG/dfG; 
  G12=G12-dG-eG; 
  if abs(eG)<.001, break, end 
end 
fprintf('G12 = %8.4f\n',G12) 
c=G12/(x+x2*G12)-(log(g1)+log(x+x2*G12))/x2; 
G21=c*x2/(1-c*x); 
fprintf('G21 = %8.4f\n',G21) 
 
>> e5d5d1 
G12 =   1.0818 
G21 =   0.3778 
--------------------------------------------------------------------------------------------------------------- 
5.6 Estimation of Activity Coefficients 
We sometime need to estimate activity coefficients at the desired conditions from data 
available at other conditions. 
Example 5.6-1  ---------------------------------------------------------------------------------- 
We need equilibrium data for the design of an absorber to remove acetone from an air stream 
using water as a solvent9. The equilibrium data for the acetone (1)-water (2) system are given 
at 25oC as follows: 
 
x1 0.0194 0.0289 0.0449 0.0556 0.0939 
y1 0.5234 0.6212 0.7168 0.7591 0.8351 
P(mmHg) 50.1 61.8 81.3 91.9 126.1 
 
Use the given data to determine the vapor equilibrium mole fractions of acetone in the 
system where air is also present so that the total pressure is maintained at 760 mmHg. At 
25oC the vapor pressures are: P1

sat = 230.05 mmHg and P2
sat = 23.76 mmHg. 

Solution ------------------------------------------------------------------------------------------ 
(Vapor phase)

Acetone + water

Acetone + water

(Liquid phase)

(Vapor phase)

Acetone + water

Acetone + water + air

(Liquid phase)

(A) Data are available (B) Data are needed

System A System B

 
Figure E-1 Air is present in the system B where data are needed. 

                                                 
9 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 352 
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In this problem we need to estimate activity coefficients at the desired condition (Figure E-
1B) from data available at other conditions (Figure E-1A). We first determine the activity 
coefficients from the data available from system A using the equilibrium relation 
 
 yiP = xiγiPi

sat  (E-1) 
 
For the first data point  (x1 = 0.0194, y1 = 0.5234, and P = 50.1 mmHg) we have 
 

 γ1 = satPx
Py

11

1  = 
)05.230)(0194.0(

)1.50)(5234.0(  = 5.88 

 
Similar calculations lead to the following table 
 
x1 0.0194 0.0289 0.0449 0.0556 0.0939 
γ1 5.88 5.77 5.64 5.45 4.88 
P(mmHg) 50.1 61.8 81.3 91.9 126.1 
 
At equilibrium in system B where air is present we also use the equilibrium relation for 
acetone 
 
 y1P = x1γ1P1

sat  (E-2) 
 
In equation (E-2), P is the total pressure of system B, 760 mmHg, and γ1 is the activity 
coefficient obtained from the data of system A. We have assumed that air is essentially 
insoluble in acetone-water solution and therefore the activity coefficients of system B are the 
same as those of system A. The vapor mole fraction of acetone in system B is then calculated 
from 
 

 y1 = 
P
Px sat

111γ  = 
760

)05.230(11γx  

 
For the first data point (x1 = 0.0194 and γ1 = 5.88) we have 
 
  

 y1 = 
760

)05.230)(88.5)(0194.0(  = 0.0345 

 
The following table lists the mole fractions of acetone in the vapor phase in system B at the 
given mole fractions of acetone in the liquid phase: 
 
x1 0.0194 0.0289 0.0449 0.0556 0.0939 
y1 0.0345 0.0505 0.0767 0.0917 0.1387 
P(mmHg) 760 760 760 760 760 
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Example 5.6-2  ---------------------------------------------------------------------------------- 
We want to estimate the solubility (mole fraction) of ethane (1) in n-heptanol (2) at 25oC and 
20 atm10. At 25oC the solubility of ethane in n-heptanol  at 1 atm is x1 = 0.0159. The activity 
coefficients in this system can be represented by 
 
 ln γ1 = B(1 −  x1)2 

 
The K1 values (K1 = f1

L/f1
G) for ethane are given and n-heptanol may be considered 

nonvolatile. At 25oC and 1 atm: K1 = 27.0 and at 25oC and 20 atm: K1 = 1.62 
Solution ------------------------------------------------------------------------------------------ 
   
At 25oC and 20 atm we have 
 
 = ⇒ y1f1

G =  x1γ1f1
L  ⇒ y1 =  x1γ1(f1

L/f1
G) ⇒ y1 =  x1γ1K1 Gf1̂

Lf1̂

  
Since n-heptanol may be considered nonvolatile, y1 = 1, the above equation becomes 
 
 1 = 1.62x1γ1 (E-1) 
 
We can use equation (E-1) to find the solubility if γ1 is known. We now evaluate γ1 at 25oC 
and 1 atm 
 

 y1 =  x1γ1K1 ⇒ 1 = (0.0159)γ1(27) ⇒ γ1 = 
)27)(0159.0(

1  = 2.3294 

 
We then determine the parameter B from the activity coefficient equation ln γ1 = B(1 −  x1)2 

 

 B = 2)0159.01(
)3294.2ln(

−
 = 0.8731 

 
If we assume that B is the same for the system at 20 atm then we can solve equation (E-1). 
Taking the log of equation (E-1) yields 
 
 0 = ln(1.62) + ln(x1) + ln(γ1) = ln(1.62) + ln(x1) + 0.8731(1 −  x1)2 (E-2) 
 
The solution of the nonlinear algebraic equation (E-2) can be determined using Matlab 
function fsolve with inline function as follows: 
 
>> ff=inline('log(1.62)+log(x)+0.8731*(1-x)^2') 
>> x=fsolve(ff,0.5,optimset('Display','off')) 
x = 
    0.4933 
 
Hence the solubility of ethane in n-heptanol at 25oC and 20 atm is x1 = 0.4933 
 
5.7 Phase Behavior in Partially Miscible Systems 
                                                 
10 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 354 
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When like interactions are significantly stronger than unlike interactions, liquids can split 
into two different partially miscible phases to lower the total Gibbs phases energy of the 
system. The separation method of liquid-liquid extraction, found in the chemical, petroleum, 
and related process industries, uses the partial liquid miscibility to separate a component 
from a liquid stream. The application of the extraction method involves the use of solvent to 
preferentially dissolve one of two or more components from another liquid phase. This 
process requires a system of three or more components. We will first focus our attention to 
understand the behavior of binary systems. 
 

V

L  & Vβ

L  & Lα β
Lβ 

L  & Vα

Lα

A

B

C D
E

x1xα
1s xβ

1s

G H

Q R

T
Constant pressure

T3π

Ta

 
Figure 5.7-1 Constant-pressure diagram for a partially miscible binary system11. 

 
The phase behavior of a partially miscible binary system at constant pressure is shown in 
Figure 5.7-1. Point E denotes the state where two liquid phases and a vapor phase are in 
equilibrium. According to the phase rule for m = 2 components, we have 
 
 F  = m − π +2 = 2 − 3 +2 = 1 
 
There is only one degree of freedom for this system at E. Figure 5.7-1 is depicted at a 
specified pressure, therefore the temperature, T3π, and compositions are fixed by the 
equilibrium constraints. The liquid phase α contains mostly species 2 with a mole fraction of 
species 1 equal to xα1s,C where the subscript s denotes the saturated or maximum solubility of 
species 1 in the solution. The second liquid phase β contains mole fraction of species 1 equal 
to xβ1s,D. At temperature less than T3π a three-phase system would have a vapor pressure less 
than the pressure specified by Figure 5.7-1, and therefore the vapor phase cannot exit at this 
specified pressure. Below the temperature T3π, Figure 5.7-1 is divided into three liquid 
regions label Lα, Lβ, and Lα & Lβ. In the region Lα or Lβ only a single liquid phase can exists 
and in the region Lα & Lβ two liquid phases exist. The region Lα represents liquid phase α 
that is rich in species 2 and the region Lβ represents liquid phase β that is rich in species 1. At 
the temperature Ta the liquid phase Lα can have a concentration of species 1 in the range 0 < 
xα1 ≤ xα1s, and the liquid phase Lβ can have a concentration of species 1 in the range xβ1s ≤ xβ1 
< 1. If the overall mole fraction of species 1 is in the range xα1s < x1 < xβ1s, there will be two 
                                                 
11 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 342 
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separate liquid phases with mole fraction of species 1 in each phase to be xα1s and xβ1s 
respectively. 
 
Example 5.7-1  ---------------------------------------------------------------------------------- 
If one mole of species 1 is mixed with one mole of species 2 at a temperature Ta such that 
xα1s = 0.18 and xβ1s = 0.81, determine the amount of liquid in each phase. 
 
Solution ------------------------------------------------------------------------------------------ 
 
The overall mole fraction of species 1 in the mixture is 0.5, which is in the range xα1s < x1 < 
xβ1s. Therefore we will have two liquid phases. 
 
Let nα and nβ be the moles of liquid in each phase α and β respectively, we have 
 
 nα + nβ = 2 
 
Applying the mole balance for species 1 yields 
 
 xα1snα + xβ1snβ = 1 ⇒ 0.18nα +  0.81nβ = 1  
 

 0.18(2 − nβ) + 0.81nβ = 1 ⇒ nβ = 
18.081.0

)2)(18.0(1
−

−  = 1.0159 

 
 nα = 0.9841 
 
Hence we have 0.9841 moles of liquid α with 0.18 mole fraction of species 1 and 1.0159 
moles of liquid β with 0.81 mole fraction of species 1. 

---------------------------------------------------------------------------- 
 
Example 5.7-2  ---------------------------------------------------------------------------------- 
If one mole of species 1 is mixed with 9 moles of species 2 at a temperature Ta such that xα1s 

= 0.18 and xβ1s = 0.81, determine the amount of liquid in each phase. 
 
Solution ------------------------------------------------------------------------------------------ 
 
The overall mole fraction of species 1 in the mixture is 0.1 which is less than xα1s = 0.18. 
Therefore all ten moles are in liquid phase α with x1 = 0.10. 

---------------------------------------------------------------------------- 
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Chapter 5  
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L  & Lα β

Lβ 
Lα

B
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x1

P

Constant temperature

P3π

L  & Vα

L  & Vβ

 
Figure 5.7-2 Constant-temperature diagram for a partially miscible binary system12. 

 
The phase behavior of a partially miscible binary system at constant temperature is shown in 
Figure 5.7-2. Point E denotes the state where two liquid phases and a vapor phase are in 
equilibrium. Since the temperature specified by Figure 5.7-2 satisfies the requirement for one 
degree of freedom, the pressure, P3π, and compositions are fixed by the equilibrium 
constraints. At pressure higher than P3π the vapor phase cannot exist. Above the pressure P3π, 
Figure 5.7-2 is divided into three liquid regions label Lα, Lβ, and Lα & Lβ. In the region Lα or 
Lβ only a single liquid phase can exists and in the region Lα & Lβ two liquid phases exist. The 
region Lα represents liquid phase α that is rich in species 2 and the region Lβ represents liquid 
phase β that is rich in species 1. The boundaries for the liquid phases are almost vertical 
because of negligible change in mutual solubility with pressure. For a binary mixture of 
species 1 and 2 in LLE (liquid-liquid equilibrium) we have 
 
 =  (5.7-1) α

if̂
β

if̂
 
The fugacity of species i in each liquid phase can be expressed in term of the mole fraction, 
xi, activity coefficient, γi, and fugacity of pure component, fi, as 
 
 xi

αγi
α fi = xi

βγi
β fi  (5.7-2) 

 
We will assume that the following equations describe the behavior of the activity coefficients 
 
 ln γ1 = A(1 − x1)2, and ln γ2 = A x1

2 (5.7-3a,b) 
 
Substituting Eqs. (5.7-3a,b) into Eq. (5.72) yields 
 
 xα1exp[A(1 − xα1)2] = xβ1exp[A(1 − xβ1)2]  (5.7-4) 

                                                 
12 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 342 
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 (1 − xα1)exp[A(xα1)2] = (1 − xβ1)exp[A(xβ1)2]  (5.7-5) 
 
Equations (5.7-4) and (5.7-5) can be solved for the two unknowns xα1 and xβ1 (or xα1s and xβ1s 
as denoted in Figure 5.7-1). The reason for partial liquid miscibility can be understood if we 
consider the Gibbs free energy change on forming a solution from n1 mol of pure liquid 1 and 
n2 mol of pure liquid 2. We have 
 
 ΔG = G − n1g1 − n2g2   (5.7-6) 
 
In this equation, G is the Gibbs free energy of the solution and is given by 
 
 G = n1μ1 + n2μ2  (5.7-7) 
 
Combining Eqs. (5.7-6) and (5.7-7) gives 
 
 ΔG = n1(μ1 − g1) + n2(μ2 − g2)  (5.7-8) 
 
Dividing Eq. (5.7-8) by the total number of moles (n1 + n2) yields only intensive properties 
 

 
21 nn

G
+
Δ  = x1(μ1 − g1) + x2(μ2 − g2)  (5.7-9) 

 
From the definition of the fugacity, we have 
 

  μi − μi
o = RT ln o

i

l
i

f
f̂ = RT ln xiγi  (5.7-10) 

 
If the standard state is pure liquid μi

o = gi and  = fi, Eq. (5.7-9) becomes o
if

 
 Δg = x1RT ln x1γ1 + x2RT ln x2γ2 
 
Rearranging the equation gives 
 

 
RT

gΔ  = x1ln x1 + x1ln γ1 + x2ln x2 + x2ln γ2 (5.7-11) 

 
If Eqs. (5.7-3a,b: ln γ1 = A(1 − x1)2, and ln γ2 = A x1

2) are used for the activity coefficient, we 
have 
 

 
RT

gΔ  =  x1ln x1 + x2ln x2 + x1A(1 − x1)2 + x2A x1
2  (5.7-12) 

 
Equation (5.7-12) is plotted in Figure 5.7-3 for three values of A: A = 1, 2, and 3 for the 
bottom, middle, and top curve respectively. The solid portion of the top curve between C and 
D represents a hypothetical single liquid phase. Since the points on this curve have a higher 
free energy than points on the dash line CD, the liquid will exist in two liquid phases with 
compositions corresponding to the points C and D to lower the free energy of the system. 
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Figure 5.7-3 Constant-pressure diagram for a binary system with 

ln γ1 = A(1 − x1)2 and ln γ2 = A x1
2. 

 
Table 5.7-1 lists the Matlab program used to plot Figure 5.7-3. 
 
Table 5.7-1 -------------------------------------------------------------- 
% Figure 5.7-3 
clf 
Av=1:3; 
nv=length(Av); 
x1=0.02:0.02:0.98;x=[.001 .003 .005 .007 .01 .015 x1 .985 .99 .993 .995 .997 .999]; 
x2=1-x; 
hold on; 
for i=1:nv 
    A=Av(i); 
 dg=x.*log(x)+x2.*log(x2)+A*x.*x2.^2+A*x2.*x.^2; 
 plot(x,dg) 
end 
x=[0.0707    0.9292];x2=1-x; 
dg=x.*log(x)+x2.*log(x2)+A*x.*x2.^2+A*x2.*x.^2; 
plot(x,dg,':');xlabel('x1');ylabel('dg/RT'); 
grid on 
--------------------------------------------------------------------------------------  
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The compositions corresponding to the points C and D can be determined by solving Eqs. 
(5.7-4) and (5.7-5) with A = 3: 
 
 xα1exp[3(1 − xα1)2] = xβ1exp[3(1 − xβ1)2]  (5.7-13) 
 
 (1 − xα1)exp[3(xα1)2] = (1 − xβ1)exp[3(xβ1)2]  (5.7-14) 
 
We can find the solution to Eqs. (5.7-13) and (5.7-14) by minimizing the following objective 
functions 
 
 y = f12 +  f22   (5.7-15) 
 
In this equation, we have 
 
  f1 = xα1exp[3(1 − xα1)2] − xβ1exp[3(1 − xβ1)2] = 0 (5.7-16) 
 
 f2 = (1 − xα1)exp[3(xα1)2] − (1 − xβ1)exp[3(xβ1)2] = 0 (5.7-17) 
 
The objective function, y, will be minimized (equal to zero) when f1 = 0 and f2 = 0. Table 
5.7-2 lists the function LLE representing the objective function y. The Matlab command 
fminsearch is then used to minimize the objective function. 
 
Table 5.7-2 -------------------------------------------------------------- 
 function y=lle(x) 
f1=x(1)*exp(3*(1-x(1))^2)-x(2)*exp(3*(1-x(2))^2); 
f2=(1-x(1))*exp(3*x(1)^2)-(1-x(2))*exp(3*x(2)^2); 
y=f1*f1+f2*f2; 
 
>> fminsearch('lle',[.1 .9]) 
ans = 
    0.0707    0.9292 
-------------------------------------------------------------- 
 
The compositions corresponding to the points C and D are 
 
 xα1 = 0.0707 and xβ1 = 0.9292 
 
Any mixture with an overall composition in the range 0.0707 < x1 < 0.9292 will exist as a 
LLE system with liquid phase α that is rich in species 2 and liquid phase β that is rich in 
species 1. 
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Example 5.7-3  ---------------------------------------------------------------------------------- 
Calculate the equilibrium composition of the two liquid phases in a binary mixture of methyl 
diethylamine (1) and water (2) at 1 bar and 20oC13. The following Margules model can be 
used for this binary system: 
 

 ln γ1 = 
RT

BA )3( + (1 − x1)2 − 
RT

B4 (1 − x1)3  

 

 ln γ2 = 
RT

BA )3( −  x1
2 + 

RT
B4 x1

3 

 
In these equations, A = 6349 J/mol and B = − 384 J/mol 
 
Solution ------------------------------------------------------------------------------------------ 
 
We have for LLE system 
 
 xi

αγi
α fi = xi

βγi
β fi  (E-1) 

 
Therefore 
 

xα1exp[
RT

BA )3( + (1 − xα1)2  − 
RT

B4 (1 − xα1)3] = xβ1exp[
RT

BA )3( + (1 − xβ1)2  − 
RT

B4 (1 − xβ1)3]   

 
 

(1 − xα1)exp[
RT

BA )3( − (xα1)2 + 
RT

B4 (xα1)3] = (1 − xβ1)exp[
RT

BA )3( − (xβ1)2  + 
RT

B4 (xβ1)23]   

  
We can find the solution to the above equations by minimizing the following objective 
functions 
 
 y = f12 +  f22   (E-2) 
 
In this equation, we have 
 

f1 = xα1exp[
RT

BA )3( + (1 − xα1)2  − 
RT

B4 (1 − xα1)3]  − xβ1exp[
RT

BA )3( + (1 − xβ1)2  − 
RT

B4 (1 − xβ1)3] 

 

f2 = (1 − xα1)exp[
RT

BA )3( − (xα1)2 + 
RT

B4 (xα1)3] − (1 − xβ1)exp[
RT

BA )3( − (xβ1)2  + 
RT

B4 (xβ1)23]  

 
The objective function, y, will be minimized (equal to zero) when f1 = 0 and f2 = 0. Table E-
1 lists the function E5d7d3 representing the objective function y. The Matlab command 
fminsearch is then used to minimize the objective function. 
 
 
                                                 
13 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 400 
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Table E-1 -------------------------------------------------------------- 
function y=e5d7d3(x) 
RT=8.314*293.15; 
A=6349;B=-384; 
c1=(A+3*B)/RT;c2=(A-3*B)/RT;c3=4*B/RT; 
f1=x(1)*exp(c1*(1-x(1))^2-c3*(1-x(1))^3)-x(2)*exp(c1*(1-x(2))^2-c3*(1-x(2))^3); 
f2=(1-x(1))*exp(c2*x(1)^2+c3*x(1)^3)-(1-x(2))*exp(c2*x(2)^2+c3*x(2)^3); 
y=f1*f1+f2*f2; 
 
>> fminsearch('e5d7d3',[.1 .9]) 
ans = 
    0.1014    0.8553 
-------------------------------------------------------------- 
The equilibrium compositions are 
 
 xα1 = 0.1014 and xβ1 = 0.8553 
 
The solutions can also be obtained from the intersections of the curves of x1γ1 and (1 − x1)γ2 
versus x1 as shown in Figure E-1. 
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Figure E-1 Plot of x1γ1 and (1 − x1)γ2 versus x1. 

 
--------------------------------------------------------------------------------------------- 
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Chapter 5  
Applied Phase Equilibrium 

 
5.8 Vapor-Liquid-Liquid Equilibrium: VLLE 
 

T, P

Vapor phase

Liquid phase α

Liquid phase β
      

V

L  & Vβ

L  & Lα β
Lβ 

L  & Vα

Lα

A

B

C D
E

x1xα
1s xβ

1s

G H

Q R

T
Constant pressure

T3π

Ta

         
 
   Figure 5.8-1a VLLE problem.                 Figure 5.8-1b A partial miscible system.  
 
We will consider a system as shown in Figure 5.8-1a when three phases are in equilibrium: a 
vapor phase and two liquid phases, α and β. The phase behavior of a partially miscible 
binary system at constant pressure is shown in Figure 5.8-1b. Point E denotes the state where 
two liquid phases and a vapor phase are in equilibrium. According to the phase rule for m = 2 
components, we have 
 
 F  = m − π +2 = 2 − 3 +2 = 1 
 
There is only one degree of freedom for this system at E. Figure 5.8-1b is depicted at a 
specified pressure, therefore the temperature, T3π, and compositions are fixed by the 
equilibrium constraints. Below the temperature T3π, Figure 5.8-1b is divided into three liquid 
regions label Lα, Lβ, and Lα & Lβ. In the region Lα or Lβ only a single liquid phase can exists 
and in the region Lα & Lβ two liquid phases exist. The region Lα represents liquid phase α 
that is rich in species 2 and the region Lβ represents liquid phase β that is rich in species 1. At 
the temperature Ta the liquid phase Lα can have a concentration of species 1 in the range 0 < 
xα1 ≤ xα1s, and the liquid phase Lβ can have a concentration of species 1 in the range xβ1s ≤ xβ1 
< 1. If the overall mole fraction of species 1 is in the range xα1s < x1 < xβ1s, there will be two 
separate liquid phases with mole fraction of species 1 in each phase to be xα1s and xβ1s 
respectively. 
 
At the temperature T3π only liquid phase α is present at low x1 and only liquid phase β is 
present at high x1. However, at mole fraction x1 in between these two single-phase regions, 
both α and β liquid phases can coexist along with the vapor. The ordinates of point C, D, and 
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E provide the mole fractions of species 1 in liquid phase α, in liquid phase β, and in vapor 
phase, respectively.  
 
For a binary mixture of species 1 and 2 in VLLE (Vapor-liquid-liquid equilibrium) we have 
 
  = =  (5.8-1) v

if̂
α

if̂
β

if̂
 
The fugacity of species i in each liquid phase can be expressed in term of the mole fraction, 
xi, activity coefficient, γi, and fugacity of pure component, fi, as 
 
  =  xi

αγi
α fi = xi

βγi
β fi  (5.8-2) v

if̂
 
For system at low pressure = yiP and fi = Pi

sat. Therefore v
if̂

 
 y1P =  x1

αγ1
αP1

sat = x1
βγ1

βP1
sat  (5.8-3) 

 
 (1 − y1)P =  (1 − x1

α)γ2
αP2

sat = (1 −  x1
β)γ2

βP2
sat  (5.8-4) 

 
 
We will assume that the following equations describe the behavior of the activity coefficients 
 
 ln γ1 = A(1 − x1)2, and ln γ2 = A x1

2 (5.8-5a,b) 
 
Substituting the expression for activity coefficients into Eqs. (5.8-3) and (5.8-4) yields 
 
 y1P =  xα1exp[A(1 − xα1)2]P1

sat = xβ1exp[A(1 − xβ1)2]P1
sat  (5.8-6) 

 
 (1 − y1)P =  (1 − xα1)exp[A(xα1)2]P2

sat = (1 − xβ1)exp[A(xβ1)2]P2
sat  (5.8-7) 

 
At a given temperature, the four unknowns y1, xα1, xβ1, and P can be determined from the 
solutions of the above four nonlinear equations. 
 
Example 5.8-114  ---------------------------------------------------------------------------------- 
A binary mixture exhibits vapor-liquid-liquid equilibrium at 300oK. The following Margules 
model can be used for this binary system: 
 

 ln γ1 = 
RT
b (1 − x1)2  and ln γ2 = 

RT
b  x1

2 , where b = 6235 J/mol. 

 
The saturation pressures are given by P1

sat = 100 kPa and P2
sat = 50 kPa. Determine the 

composition of the three phases and the total pressure. 
 
Solution ------------------------------------------------------------------------------------------ 
For the two liquid phases in equilibrium we have 
 

                                                 
14 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 406 
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 =  (E-1) α
if̂

β
if̂

 
The fugacity of species i in each liquid phase can be expressed in term of the mole fraction, 
xi, activity coefficient, γi, and fugacity of pure component, fi, as 
 
 xi

αγi
α fi = xi

βγi
β fi  (E-2) 

 
We are given following equations for the behavior of the activity coefficients 
 
 ln γ1 = A(1 − x1)2, and ln γ2 = A x1

2 (E-3) 
 
Substituting Eqs. (E-3) into Eq. (E-2) yields 
 
 xα1exp[A(1 − xα1)2] = xβ1exp[A(1 − xβ1)2]  (E-4) 
 
 (1 − xα1)exp[A(xα1)2] = (1 − xβ1)exp[A(xβ1)2]  (E-5) 
 
We can find the solution to Eqs. (E-4) and (E-5) by minimizing the following objective 
functions 
 
 y = f12 +  f22   (E-6) 
 
In this equation, we have 
 
  f1 = xα1exp[A(1 − xα1)2] − xβ1exp[A(1 − xβ1)2] = 0 (E-7) 
 
 f2 = (1 − xα1)exp[A(xα1)2] − (1 − xβ1)exp[A(xβ1)2] = 0 (E-8) 
 
The objective function, y, will be minimized (equal to zero) when f1 = 0 and f2 = 0. Table E-
1 lists the function e5d8d1 representing the objective function y. The Matlab command 
fminsearch is then used to minimize the objective function. 
 
Table E-1 -------------------------------------------------------------- 
function y=e5d8d1(x) 
RT=8.314*300; 
A=6235/RT; 
f1=x(1)*exp(A*(1-x(1))^2)-x(2)*exp(A*(1-x(2))^2); 
f2=(1-x(1))*exp(A*x(1)^2)-(1-x(2))*exp(A*x(2)^2); 
y=f1*f1+f2*f2; 
 
>> fminsearch('e5d8d1',[.1 .9]) 
ans = 
    0.1448    0.8552 
-------------------------------------------------------------- 
The equilibrium compositions are 
 
 xα1 = 0.1448 and xβ1 = 0.8552 
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We have A = 
RT

6235  = 
)300)(314.8(

6235  = 2.4998. The partial pressures are calculated as 

 
 P1 =  xα1exp[A(1 − xα1)2]P1

sat = (0.1448)exp[(2.4998)(0.8552)2](100) = 90.11 kPa 
 
 P2 = (1 − xα1)exp[A(xα1)2]P2

sat = (0.8552)exp[(2.4998)(0.1448)2](50) = 45.06 kPa 
 
 
 P = P1 + P2 = 90.11 + 45.06 = 135.17 kPa 
 
The mole fraction of species 1 in the vapor phase is then 
 
 y1 = P1/P = 90.11/135.17 = 0.6667 
 
Example 5.8-215  ---------------------------------------------------------------------------------- 
At 70oC the system 1-2 exhibits partial liquid miscibility with xα1 = 0.3 and xβ1 = 0.7. The 
vapor pressures are given by P1

sat = 600 mmHg and P2
sat = 500 mmHg. Calculate: 

1) The vapor mole fraction of species 1 and the total pressure when two liquid phases and a 
vapor phase are in equilibrium. 
2) The vapor mole fraction of species 1 and the total pressure when a vapor phase is in 
equilibrium with a liquid phase containing a mole fraction of species 1 of 0.1. 
The following Margules model can be used for this binary system:  
 
 ln γ1 = A(1 − x1)2  and ln γ2 = Ax1

2  
 
Solution ------------------------------------------------------------------------------------------ 
 

V

Lβ Lα

x1xα
1s xβ

1s

P

Constant temperature

P3π

L  & Vα

L  & Vβ

L  & Lα β

 
Figure E-1 Constant-temperature diagram for a partially miscible binary system 

 
1) The vapor mole fraction of species 1 and the total pressure when two liquid phases and a 
vapor phase are in equilibrium. 
 
For the two liquid phases in equilibrium we have 
 
                                                 
15 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 369 
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 =  (E-1) α
if̂

β
if̂

 
The fugacity of species i in each liquid phase can be expressed in term of the mole fraction, 
xi, activity coefficient, γi, and fugacity of pure component, fi, as 
 
 xi

αγi
α fi = xi

βγi
β fi  (E-2) 

 
Applying Eq. (E-2) to species 1 yields 
 
 x1

αγ1
α = x1

βγ1
β ⇒ ln x1

α + ln γ1
α = ln x1

β + ln γ1
β (E-3) 

 
Since xα1 = 0.3 and xβ1 = 0.7 we have 
 
 ln 0.3 + A(1 − 0.3)2  = ln 0.7 + A(1 − 0.7)2   
 
 A(0.72 − 0.32) = ln(7/3) ⇒ A = 2.1182 
 
The values of the activity coefficients are then 
 
 γ1

α = exp[A(1 − x1)2] = exp[(2.1182)(0.7)2] = 2.8234 
 
 γ2

α = exp[Ax1
2] = exp[(2.1182)(0.3)2] = 1.2100 

 
The partial pressure of each species is calculated as 
 
 P1 = x1

αγ1
αP1

sat = (0.3)(2.8234)(600) = 508.21 mmHg 
 
 P2 = x2

αγ2
αP2

sat = (0.7)(1.2100)(500) = 423.51 mmHg 
 
The total pressure is 
 
 P = P1 + P2 = 931.72 mmHg 
 
The vapor mole faction is then 
 
 y1 = P1/P = 0.545 
  
2) The vapor mole fraction of species 1 and the total pressure when a vapor phase is in 
equilibrium with a liquid phase containing a mole fraction of species 1 of 0.1. 
 
Since x1 = 0.1 ≤ xα1 = 0.3, we have liquid phase α. The values of the activity coefficients are 
then 
 
 γ1

α = exp[A(1 − x1)2] = exp[(2.1182)(0.9)2] = 5.5610 
 
 γ2

α = exp[Ax1
2] = exp[(2.1182)(0.1)2] = 1.0214 

 
The partial pressure of each species is calculated as 
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 P1 = x1

αγ1
αP1

sat = (0.1)(5.5610)(600) = 333.66 mmHg 
 
 P2 = x2

αγ2
αP2

sat = (0.9)(1.0214)(500) = 459.63 mmHg 
 
The total pressure is 
 
 P = P1 + P2 = 793.29 mmHg 
 
The vapor mole faction is then 
 
 y1 = P1/P = 0.4206 
  
Example 5.8-316  ---------------------------------------------------------------------------------- 
At 25oC a binary system containing components 1 and 2 is in a state of vapor-liquid-liquid 
equilibrium. The compositions of the saturated liquid phases are: xα1s = 0.02 and xβ1s = 0.98.  
The vapor pressures are given by P1

sat = 0.1 atm and P2
sat = 1.0 atm. Calculate: 

1) The vapor mole fraction of species 1 and the total pressure when two liquid phases and a 
vapor phase are in equilibrium. 
2) The vapor mole fraction of species 1 and the total pressure when a vapor phase is in 
equilibrium with a liquid phase containing a mole fraction x1 of 0.01. 
3) At 25oC a vapor containing 20% species 1 and 80% species 2 initially at 0.1 atm is 
compressed isothermally. Find the dew point pressure and liquid composition. 
 
Solution ------------------------------------------------------------------------------------------ 
1) The vapor mole fraction of species 1 and the total pressure when two liquid phases and a 
vapor phase are in equilibrium. 
 
Since the system is at low pressure, we have 
 
 y1P =  x1

αγ1
αP1

sat = x1
βγ1

βP1
sat  (E-1) 

 
 (1 − y1)P =  (1 − x1

α)γ2
αP2

sat = (1 −  x1
β)γ2

βP2
sat  (E-2) 

 
Since we do not have the data for activity coefficient and x1

β = xβ1s = 0.98 ≈ 1, we assume γ1
β 

= 1 (Raoult’s law). Therefore 
 
 P1 = y1P = x1

βγ1
βP1

sat =  (0.98)(1)(0.1) = 0.098 atm 
 
Similarly 
 
 P2 = (1 − y1)P =  (1 − x1

α)γ2
αP2

sat = (0.98)(1)(1) = 0.98 atm 
 
The total pressure is 
 
 P = P1 + P2 = 1.078 atm 
 
                                                 
16 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 370 
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The vapor mole faction is then 
 
 y1 = P1/P = 0.0909 
 
2) The vapor mole fraction of species 1 and the total pressure when a vapor phase is in 
equilibrium with a liquid phase containing a mole fraction x1 of 0.01. 
 

V

L  & Lα β

Lβ

Lα

A

B

x1
xα

1s xβ
1s

P

P3π

L  & Vβ

L &Vα

0.909 0.2  
Figure E-1 Constant-temperature diagram for a partially miscible binary system. 

 
From part (1) we have P1 = 0.098 atm. Since x1

α = 0.02 we assume Henry’s law will apply 
for species 1 in liquid phase α 
 

 P1 = 0.098 atm = x1
αH1

α ⇒ H1
α = 

02.0
098.0  = 4.9 atm 

 
For x1 = 0.01 ⇒ P1 = x1H1

α = (0.01)(4.9) = 0.049 atm 
 
Since x2

α = 0.99 we assume Raoult’s law will apply for species 2 in liquid phase α 
 
 P2 = x2

αP2
sat = (0.99)(1) = 0.99 atm 

  
The total pressure is 
 
 P = P1 + P2 = 0.049 + 0.99 = 1.039 atm 
 
The vapor mole faction is then 
 
 y1 = P1/P = 0.049/1.039 = 0.0472 

 
3) At 25oC a vapor containing 20% species 1 and 80% species 2 initially at 0.1 atm is 
compressed isothermally. Find the dew point pressure and liquid composition. 
 
From the phase diagram (Figure E-1), we have liquid phase β at the dew point for the vapor 
mixture with 20% species 1.  
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The mole fraction of species 1 in liquid phase β will be close to 1 and the mole fraction of 
species 2 in liquid phase β will be close to zero. Therefore we can apply Raoult’s law to 
species 1 and Henry’s law to species 2. 
 
 P1 = y1P = x1

βP1
sat (E-3) 

 
 P2 = y2P = x2

βH2
β  (E-4) 

 
The Henry’s law constant can be determined from the data given in part (1) 
 

 P2 = 0.98 atm = xβ2sH2
β = 0.02H2

β ⇒ H2
β = 

02.0
98.0  = 49 atm 

 
Since the mole fraction in the liquid phase must add up to 1, we have 
 
  x1

β + x2
β = 1 

 
Substituting the mole fractions from Eqs. (E-3) and (E-4) into the above expression yields 
 

 satP
Py

1

1  + sat
Py

2

2

H
 = 1 ⇒ P = 

satsat
y

P
y

2

2

1

1

1

H
+

 

 
The dew point pressure is then 
 

 P = 
satsat P

y
P
y

2

2

1

1

1

+
 = 

49
8.0

1.0
2.0

1

+
 = 0.496 atm 

 
The mole fraction of species 1 in liquid phase β is given by 
 

  x1
β = satP

Py

1

1  = 
1.0

)496.0)(2.0(  = 0.9919 
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Chapter 5  
 
Example 5.8-417  ---------------------------------------------------------------------------------- 
A hydrocarbon has a vapor pressure of 2 atm at 20oC. The solubility of water in this liquid 
hydrocarbon is xws = 0.00021. Estimate the necessary equilibrium data to design a distillation 
column to remove water from the hydrocarbon. 
 
Solution ------------------------------------------------------------------------------------------ 
 

Hydrocarbon phase α

Water phase β

Vapor phase

 
Figure E-1 Vapor-liquid-liquid equilibrium system. 

 
Let α denotes the hydrocarbon phase and β denotes the water phase. We have the following 
equilibrium relations 
 
 Ph =  xh

αγh
αPh

sat = xh
βγh

βPh
sat  (E-1) 

 
 Pw =  (1 − xh

α)γw
αPw

sat = (1 −  xh
β)γw

βPw
sat  (E-2) 

 
 
The solubility of liquid hydrocarbon in liquid water is also negligible so we have  
 
 γh

α ≈ 1, γw
β ≈ 1, and xw

β ≈ 1. 
 
Therefore 
 
 Ph =  xh

αγh
αPh

sat = (1)(1)Ph
sat = Ph

sat  
 
 Pw =  xw

βγw
βPw

sat = (1)(1)Pw
sat = Pw

sat  
 
The mole fraction of water in the vapor phase is 
 

 yw = 
wh

w

PP
P
+

 = 
5.177602

5.17
+×

 = 0.0114 

 

                                                 
17 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 370 
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For the estimation of equilibrium data for the hydrocarbon liquid containing less than the 
saturation water content, we assume that Henry’s law applies to the water in this α phase: 
 
 Pw =  xw

αγw
αPw

sat = xw
αHw

α 
 
The Henry’s law constant, Hw

α, can be evaluated from the saturation condition 
 

 Hw
α = α

w

w

x
P  = 

00021.0
5.17  = 8.33×104 mmHg 

 
The partial pressure of water vapor is then 
 
 Pw =  8.33×104xw

α 
 
The partial pressure of hydrocarbon is essentially the vapor pressure 
 
 Ph =  xh

αγh
αPh

sat = (1)(1)Ph
sat = Ph

sat = (2)(760) = 1520 mmHg 
 
The vapor mole fraction of water is 
 

 yw = 
wh

w

PP
P
+

 = 
15201033.8

1033.8
4

4

+×
×

α

α

w

w

x
x  

 
The relative volatility of water to hydrocarbon, αwh, is a measure of the ease of separation by 
distillation. The relative volatility is defined as 
 

 αwh = 
hh

ww

xy
xy

/
/  ≈ yw/xw 

 
Therefore 
 

 αwh = yw/xw = 
15201033.8

1033.8
4

4

+×
×

α
wx

 

 

For xw
α < 10-4, αwh = 

15201033.8
1033.8

4

4

+×
×

α
wx

≈ 
1520

1033.8 4×  = 55 

 
The higher the value of αwh compares to unity, the better the separation. The value of 55 for 
relativity volatility for this system indicates that separation by distillation would be very easy 
to accomplish. 
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5.9 The Thermodynamics of Osmosis 
 
We will consider the equilibrium state of liquid mixtures in two regions separated by a 
membrane that is permeable to some of the species present and impermeable to others. This 
situation is illustrated in Figure 5.9-1 where a semi-permeable membrane separates regions A 
that contains a nondiffusing solute and region B that contains only water.  
 

PA PB

h
Water and
non-diffusable
solute

water

A
B

 
Figure 5.9-1 Osmotic pressure π = PA − PB ≈ ρAgh 

 
Water will diffuse from region B into region A until the chemical potential or fugacity of 
water on each side of the membrane is the same. This phenomenon is called osmosis and the 
pressure difference between regions A and B at equilibrium is the osmotic pressure of region 
A. The chemical potential of species i , μi, is defined by the following relations 
 

 μi = 
jnPTin

G

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  = 

jnSPin
H

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  = 

jnVSin
U

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ = 

jnTVin
A

,,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  

 
In these expressions, the subscript j denotes the moles of every species except i is a constant. 
The definition can be obtained from the following diagram 
 
 

G P H

S

UVA

T

G P H S
U V A T

reat hysicists ave tudy
nder ery ble eachers
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We now want an expression that gives us the solution osmotic pressure as a function of the 
solute concentration. At equilibrium 
 
 A

Wf (T, PA, xs) = (T, PB) (5.9-1) B
Wf

 
where (T, PB) is the fugacity of water as a pure component and B

Wf
A

Wf (T, PA, xs) is the 
fugacity of water as it exists in solution with solute at mole fraction xs. A similar equation is 
not written for the solute since it cannot diffuse through the membrane. Equation (5.9-1) can 
be expressed in terms of the pure water fugacity using the activity coefficient  A

Wγ
 
 (T, PA) = (T, PB) (5.9-2) A

Wγ
A

Wx A
Wf

B
Wf

 
The fugacity is a thermodynamic function defined by 
 

 f(T, P) = Pexp ⎥
⎦

⎤
⎢
⎣

⎡ −
RT

PTgPTg IG ),(),(  = Pexp ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −∫ dP

P
RTv

RT
P

0

1  

 
In this expression g(T, P) is the molar Gibbs free energy and gIG(T, P) is the molar Gibbs free 
energy as the fluid approached ideal gas state. The water fugacities at states (T, PA) and (T, 
PB) are then 
 

 ln A

A

P
PTf ),(  = 

RT
1 dP

P
RTv

AP

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

0
 

 

 ln B

B

P
PTf ),(  = 

RT
1 dP

P
RTv

BP

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

0
 

 
Since PA > PB 
 

 ln A

A

P
PTf ),(  = 

RT
1 dP

P
RTv

BP

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

0
+ 

RT
1 dP

P
RTv

A

B

P

P∫ ⎟
⎠
⎞

⎜
⎝
⎛ −  

 

 ln A

A

P
PTf ),(  = ln B

B

P
PTf ),(  + 

RT
1 dPv

A

B

P

P∫  − ∫
A

B

P

P P
dP  

 
v is the molar volume of water, an incompressible liquid 
 

 ln A

A

P
PTf ),(  = ln B

B

P
PTf ),(  + 

RT
PPv BA )( −  − ln B

A

P
P  

 

 ln A

A

P
PTf ),(  = ln A

B

P
PTf ),( + 

RT
PPv BA )( −  
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 A

A

P
PTf ),(  = A

B

P
PTf ),( exp ⎥

⎦

⎤
⎢
⎣

⎡ −
RT

PPv BA )(  

 
From the equality of fugacity, equation (5.9-2) (T, PA) = (T, PB), we have A

Wγ
A

Wx A
Wf

B
Wf

 

 (T, PB) expA
Wγ

A
Wx A

Wf ⎥
⎦

⎤
⎢
⎣

⎡ −
RT

PPv BAL
W )(  = (T, PB) B

Wf

 
Since (T, PB) = (T, PB) = pure water fugacity A

Wf
B

Wf
 

 = expA
Wγ

A
Wx ⎥

⎦

⎤
⎢
⎣

⎡ −−
RT

PPv BAL
W )(  

 
The osmotic pressure is then 
 

 π =  PA − PB = − L
Wv

RT ln ( )A
W

A
W xγ  (5.9-3) 

 
For an ideal aqueous solution at 298oK with xW = 0.98, γW = 1, the osmotic pressure is 
 

 π =  PA − PB = − L
Wv

RT ln(xW) 

 

 π =  − 
molm

K
Kmol

mbar o
o

/1018

)298(10314.8

36

3
5

−

−

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

×
ln(0.98) = 27.8 bar 

 
For ideal solution and small solute concentration, ≈ 1, and ln( ) ≈ − (1 − ) A

Wx A
Wx A

Wx
 
  

Hence  π = − L
Wv

RT ln( ) ≈ A
Wx L

Wv
RT (1 − ) = A

Wx L
Wv

RT A
Sx  (5.9-4) 

 

 = A
Sx

solventMolessoluteMoles
soluteMoles

+
 ≈ 

solventMoles
soluteMoles  

 

 L
W

A
S

v
x  = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
solventMoles
solventVolumesolventMoles

soluteMoles

)(
 = 

solventVolume
soluteMoles  = CS 

 
The ideal dilute solution osmotic pressure, described by equation (5.9-4), is known as van’t 
Hoff’s law. This equation can also be written in terms of the mass concentration ρS 
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  π = L
Wv

RT A  = RT CS = RTSx
S

S

Mw
ρ  (5.9-5) 

 

where ρS = 
solventVolume
soluteMass  and MwS = molecular weight of solute. Equation (5.9-5) can be 

used to determine solvent activity coefficient in a solvent-solute system provided a semi-
permeable membrane can be found.  
 

 π =  PA − PB = − L
Wv

RT ln ( )A
W

A
W xγ  

 
Osmotic pressure measurements are more commonly used to determine the molecular 
weights of proteins and other macromolecules using an osmometer shown in Figure 5.9-2. At 
equilibrium the osmotic pressure π is equal to ρgh, where ρ is the solution density and h is 
the difference in liquid heights. Equation (5.9-5) is then solved for the molecular weight of 
the solute. 
 

 MwS = RT
π
ρS  

h

Solvent

Solvent
solute mixture

Semipermeable
membrane

 
Figure 5.9-2 A graphical depiction of a simple osmometer. 

 
Example 5.9-1.18 ---------------------------------------------------------------------------------- 
The polymer polyvinyl chloride (PVC) is soluble in solvent cyclohexanone. At 25oC it is 
found that if a 2 g of a specific batch of PVC per liter of solvent is placed in an osmometer, 
the height h to which the pure cyclohexanone rises is 0.85 cm. Use this information to 
estimate the molecular weight of the PVC polymer. Density of cyclohexanone is 0.98 g/cm3. 
 
Solution ------------------------------------------------------------------------------------------ 
 

 π =  ρgh = 980 3m
kg

×9.81 2s
m

×8.5×10-3 m = 81.72 Pa 

 MwS = RT
π
ρS  

                                                 
18 Sandler, Chemical and Engineering Thermodynamics, Wiley, 1999, p.605 
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 MwS = 8.314
Kmol

mPa
⋅
⋅ 3

×298.15 K×2,000 3m
g /81.72 Pa = 60,670 g/mol  

--------------------------------------------------------------------------------------------------- 
 
If the dilute solution contains N ideal solutes then 
 

 π =  RT  ∑
=

N

i
iSC

1
,

 
The term osmole is defined as one mole of a nondiffusing and nondissociating substance. 
One mole of a dissociating substance such as NaCl is equivalent to two osmoles. The number 
of osmoles per liter of solution is called osmolarity. For physiological solutions, it is 
convenient to work in terms of milliosmoles (mOsm) or milliosmolar (mOsM). The number 
of particles formed by a given solute determines osmotic pressure. Each nondiffusing particle 
in the solution contributes the same amount to the osmotic pressure regardless of the size of 
the particle. 
 
The osmotic pressure difference between the interstitial and plasma fluids is due to the 
plasma proteins since the proteins do not readily pass through the capillary wall. The osmotic 
pressure created by the proteins is given the special name of colloid osmotic pressure or 
oncotic pressure. For human plasma, the colloid osmotic pressure is about 28 mmHg; 19 
mmHg caused by the plasma proteins and 9 mmHg caused by the cations within the plasma 
that are retained through electrostatic interaction with the negative surface charges of the 
proteins. 

Figure 5.9-3 Osmosis of water through red blood cell19. 
 

If a cell such as red blood cell is placed in a hypotonic solution that has a lower concentration 
of solutes or osmolarity, then the establishment of osmotic equilibrium requires the osmosis 
of water into the cell resulting in swelling of the cell. If the cell is placed in a hypertonic 
solution with a higher concentration of solutes or osmolarity, then osmotic equilibrium 
requires osmosis of water out of the cell resulting in shrinkage of the cell. An isotonic 
solution has the same osmolarity of the cell and will not cause any osmosis of water as 
shown in Figure 5.9-3. A 0.9 weight percent solution of sodium chloride or a 5 weight 
percent solution of glucose is just about isotonic with respect to a cell.  

                                                 
19 Seeley R.R, Stephens T.D., Tate P., Anatomy & Physiology, McGraw Hill, 2003 
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Example 5.9-220. ---------------------------------------------------------------------------------- 
Experiments show that at 0oC a 0.2 molarity sucrose solution has an osmotic pressure 
(relative to pure water) of 4.76 atm whereas a 0.2 molarity NaCl solution has an osmotic 
pressure of 8.75 atm. Estimate the fraction of the NaCl molecules that are dissociated at this 
temperature and concentration. 
Solution ------------------------------------------------------------------------------------------ 

h

Water

Sucrose
solution

Semipermeable
membrane

h

NaCl
solution

 
 

Assume that all the sucrose dissolves and let α be the dissociated fraction of NaCl. When a 
salt dissociates each ion contributes to the osmotic pressure 
 
 NaCl ⇔ Na+ + Cl−  
 
If α is the fraction of NaCl that is dissociated then 1 − α is the fraction that is not dissociated. 
Since each dissociated NaCl molecule contributes 2 ions and each undissociated molecules 
contributes 1 molecules, the osmolarity of the NaCl solution is 
 

 = [2α + (1 − α )]CNaCl ∑
=

N

i
iNaClC

1
,

 
The osmolarity of the sucrose solution is 
 

 = CSucrose ∑
=

N

i
iSucroseC

1
,

 
Therefore, 
 

 
Sucrose

NaCl

π
π  = 

Sucrose

NaCl

RTC
CRT )1( +α  = α + 1 = 

76.4
75.8  = 1.838 

 
 Hence α = 0.838 

 

                                                 
20 Weiss T.F., Cellular Biophysics Transport, MIT Press, 1996, pg. 258 
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Chapter 5  
 
5.10 Distribution of a solute between two liquid phases 
 
5.10a Solubility of a Solid in a Liquid Phase The solubility of a solid in a liquid solvent 
and the distribution of a solute between two liquid phases will be considered in this section. 
When a solute is transported from one phase to another, the solute must cross the interface 
between phases as shown in Figue 5.10-1. We assume that the solute at the interface is in 
phase equilibrium. If the mole fraction yi is known at a given temperature, xi can be 
determined from the equilibrium relation and vice-versa. 
 

Vapor Liquid

y

yi

xi

x y

yi xi

x

Mass transfer from the liquid
       to the gas phase  

Mass transfer from the gas
     to the liquid phase

Vapor Liquid
Ai Ai

 
Figure 5.10-1 Solute transport across the interface. 

 
5.10a Solubility of a solid in a liquid solvent Consider a binary system with solute (2) in 
equilibrium with solvent (1) as shown in Figure 5.10-2. We assume that the solvent is not 
soluble in the solid so that the solid solute will exist as a pure phase. At equilibrium, the 
fugacity of the solute in the solid phase, 2

sf , is equal to the fugacity of the solute in solution, 

2
solf . The fugacity 2

solf  is related to the fugacity of pure liquid solute, 2
Lf , at the equilibrium 

temperature and pressure of the solution by 
 
 2

solf  = γ2x2 2
Lf  = 2

sf  (5.10-1) 
 

solute (2)

 
Figure 5.10-2 Solute (2) in solvent (1). 

 
In equation (5.10-1) x2 is the solubility or the equilibrium mole fraction of solute in solution 
and γ2 is the activity coefficient of the solute. Solving for the solubility gives 
 

 x2 = 
2

1
γ

2

2

s

L

f
f

 (5.10-2) 
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The ratio 2

sf / 2
Lf  may be estimated by21 

 

 2

2

s

L

f
f

 = exp 1 1m

m

H
R T T

⎡ ⎤⎛ ⎞Δ
−⎢ ⎜

⎝ ⎠⎣ ⎦
⎥⎟  (5.10-3) 

 
In this expression, ΔHm is the enthalpy of fusion at the normal melting temperature Tm. For 
an ideal solution the activity γ2 is equal to 1. For non-ideal solutions, an appropriate activity 
coefficient model must be used to calculate the solubility. For non-polar solutes and solvents, 
the activity coefficient might be obtained from the Scatchard-Hildebrand equation: 
 

 γ2 = exp
2 2

2 1 2 1( )LV
RT

δ δ⎡ − Φ
⎢
⎣ ⎦

⎤
⎥  (5.10-4) 

 
In this equation 2

LV  is the molar volume of the solute as a subcooled liquid at the temperature 
of the solution. However, 2

LV  is usually assumed to be the same as the molar volume of the 
solute as a liquid at the melting point. The δ’s are the solubility parameters for the solute and 
the solvent, and Φ1 is the volume fraction of the solvent defined by the following equation. 
 

 Φ1 = 1 1

1 1 2 2

L

L

x V
Lx V x V+

 (5.10-5) 

 
The solubility parameter is given by  
 

 δi = 
1/ 2vap

i
L

i

H RT
V

⎛ ⎞Δ −
⎜
⎝ ⎠

⎟  (5.10-6) 

 
The heat of evaporation can be obtained from the heat of sublimation and the heat of fusion. 
 
 vap

iHΔ  = sub
iHΔ  − m

iHΔ  (5.10-7) 
 
If the vapor pressure of the solid is known as a function of temperature, the heat of 
sublimation can be estimated.  
 

 ln Psat = A − B
T

 (5.10-8) 

 
If the solid is in equilibrium with the vapor we have 
 
 dGV

 = − SVdT + VV

                                                

dPsat = − SSdT + VSdPsat = dGS (5.10-9) 
 
Rearranging this equation gives 

 
21 Fournier, R. L., “Basic Transport Phenomena in Biomedical Engineering”, Taylor & Francis, 2007, p. 57 
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satdP

dT
 = 

V S

V S

S S
V V

−
−

 = 
SV

SV

S
V
Δ
Δ

 (5.10-10) 

 
Since ΔSSV = ΔHSV/T, and we can neglect the volar volume of the solid in comparision to the 
volume of the vapor, equation (5.10-10) becomes 
 

 
satdP

dT
 = 2

SV satH P
RT

Δ  (5.10-11) 

 
We assume ideal gas law in equation (5.10-11), which may be written as follows: 
 

 ln
1

satd P

d
T

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = − 
SVH

R
Δ  (5.10-12) 

 

Taking derivative of equation (5.10-8), ln Psat = A − B
T

, we obtain 

 

 ln
1

satd P

d
T

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = − B = − 
SVH

R
Δ  ⇒ ΔHSV = sub

iHΔ  = RB (5.10-13) 

 
Example 5.10-1.22 ---------------------------------------------------------------------------------- 
A drug has a molecular weight of 230 and a melting temperature of 155oC. Estimate the 
solubility of this drug in benzene and in n-hexane at 25oC assuming  
 a) Ideal solution 
 b) Nonideal solution using the Scatchard-Hildebrand equation 
Data: 
Heat of fusion of the drug 4300 cal/mol 
Density of the drug 1.04 g/cm3 at 25oC 

Vapor pressure of the solid drug ln Psat(mm Hg) = 27.3 − 8926
(K)T

 

Molar volume of benzene 89.4 cm3/mol 
Solubility parameter for benzene 9.2 (cal/cm3)1/2 
Molar volume of n-hexane 131.6 cm3/mol 
Solubility parameter for n-hexane 7.3 (cal/cm3)1/2 
 
Solution ------------------------------------------------------------------------------------------ 
 
a) The ideal solubility of the drug is given by 
 

                                                 
22 Fournier, R. L., “Basic Transport Phenomena in Biomedical Engineering”, Taylor & Francis, 2007, p. 58 
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 x2 = 
2

1
γ

2

2

s

L

f
f

 = exp 1 1m

m

H
R T T

⎡ ⎤⎛ ⎞Δ
−⎢ ⎥⎜

⎝ ⎠
⎟

⎣ ⎦
 where γ2 = 1 

 x2 = exp -14300 cal/mol 1 1 K
1.987 cal/(mol K) 273.15+155 298.15
⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⋅ ⎝ ⎠⎣ ⎦

 = 0.110 

 
The solubility is the same whether the solvent is benzene or n-hexane. 
 
b) Nonideal solution using the Scatchard-Hildebrand equation 
 

 ln Psat(mm Hg) = 27.3 − 8926
(K)T

 

 

 ln
1

satd P

d
T

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = − 8926= − 
SVH

R
Δ

⇒ ΔHSV = sub
iHΔ  = 8926R 

 
 2

subHΔ  = (8926 K)(1.987 cal/mol⋅K) = 17736.9 cal/mol 
 
The heat of evaporation of the drug is then estimated: 
 
 vap

iHΔ  = sub
iHΔ  − m

iHΔ  = 17,736.9 − 4,300 = 13,436.9 
 
The solubility parameter of the drug is given by 
 

 δi = 
1/ 2vap

i
L

i

H RT
V

⎛ ⎞Δ −
⎜ ⎟
⎝ ⎠

 

   

 δi =  
( )

1/ 2

3

13,436.9 cal/mol (1.987 cal/mol K)(298 K)
1 cm / 230 g/mol

1.04
g

⎛ ⎞
⎜ ⎟− ⋅
⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 = 7.62 (cal/cm3)1/2 

 
 
The drug solubility is calculated from 
 

 x2 = 
2

1
γ

2

2

s

L

f
f

 = 
2

1
γ

 exp 1 1m

m

H
R T T

⎡ ⎤⎛ ⎞Δ
−⎢ ⎥⎜

⎝ ⎠
⎟

⎣ ⎦
  

 
 

Substituting  γ2 = exp
2 2

2 1 2 1( )LV
RT

δ δ⎡ ⎤− Φ
⎢ ⎥
⎣ ⎦

 and Φ1 = 1 1

1 1 2 2

L

L

x V
Lx V x V+

into the above equation we 

have 
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 x2 = 
2

2 1 2 2 1

2 1 2 2

1 1exp

( ) (1 )exp
(1 )

m

m

L

L L

H
R T T

V x
RT x V x V
δ δ

⎡ ⎤⎛ ⎞Δ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎧ LV ⎫⎡ ⎤− −
⎨ ⎬⎢ ⎥− +⎣ ⎦⎩ ⎭

  

 
The above equation is implicit in the solubility x2 and can be written as 
 

 f(x2) = x2 − 
2

2 1 2 2 1

2 1 2 2

1 1exp

( ) (1 )exp
(1 )

m

m

L L

L L

H
R T T

V x
RT x V x V
δ δ

⎡ ⎤⎛ ⎞Δ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎧ ⎫V⎡ ⎤− −
⎨ ⎬⎢ ⎥− +⎣ ⎦⎩ ⎭

 = 0 

 
The nonlinear equation f(x2) = 0 can be solved using Matlab function fzero with the ideal 
solution as the initial guess. The solubility of drug in benzene is evaluated using the 
fzero('solubility',0.11) with the function solubility representing f(x2) = 0. 
 
>> x2=fzero('solubility',0.11) 
 
x2 = 
 
  5.3999e-002 
 
function y=solubility(x) 
dHm=4300; % cal/mol 
R=1.987; % cal/(mol*K) 
TK=273.15; % K 
Tm=155+TK; 
dHsub=R*8926; % cal/mol 
dHvap=dHsub-dHm; 
VL2=230/1.04; % molar volume of drug (cm3/mol) 
T=25+TK;  
del2=((dHvap-R*T)/VL2)^0.5; % solubility parameter for the drug (cal/cm3)^0.5 
VL1=89.4; % molar volume of solvent, benzene (cm3/mol) 
del1=9.2; % solubility parameter for benzene (cal/cm3)^0.5 
tem1=VL2*(del1-del2)^2/(R*T); 
tem2=(1-x)*VL1/((1-x)*VL1+x*VL2); 
gamma2=exp(tem1*tem2^2); 
y=x-exp(dHm*(1/Tm-1/T)/R)/gamma2; 
 
 
The solubility of drug in n-hexane is evaluated using the fzero('solhexane',0.11) with the 
function solhexane representing f(x2) = 0. 
 
>> x2=fzero('solhexane',0.11) 
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x2 = 1.0748e-001 
 
function y=solhexane(x) 
dHm=4300; % cal/mol 
R=1.987; % cal/(mol*K) 
TK=273.15; % K 
Tm=155+TK; 
dHsub=R*8926; % cal/mol 
dHvap=dHsub-dHm; 
VL2=230/1.04; % molar volume of drug (cm3/mol) 
T=25+TK;  
del2=((dHvap-R*T)/VL2)^0.5; % solubility parameter for the drug (cal/cm3)^0.5 
VL1=131.6; % molar volume of solvent, n-hexane (cm3/mol) 
del1=7.3; % solubility parameter for n-hexane (cal/cm3)^0.5 
tem1=VL2*(del1-del2)^2/(R*T); 
tem2=(1-x)*VL1/((1-x)*VL1+x*VL2); 
gamma2=exp(tem1*tem2^2); 
y=x-exp(dHm*(1/Tm-1/T)/R)/gamma2; 
 
The drug and n-hexane form an ideal solution since the solubility calculated using non-ideal 
model (x2 = 0.1075) is very close to the ideal model (x2,ideal = 0.11). 
 
5.10b Distribution of a solute between liquid phases One or more of the components in a 
liquid mixture might be separated by contacting the mixture with another liquid in the 
process of liquid extraction. The separation is due to the unequal distribution of a solute 
between two partially miscible liquid phases. Through the process of liquid extraction, a 
product such as penicillin produced in fermentation mixtures can be extracted into a suitable 
solvent and purified from the fermentation broth. Choice of solvent extraction would depend 
on toxicity, cost, degree of miscibility with the fermentation broth, and selectivity for the 
solute.  
 
We normally have three components, A, B, and C and two phases in equilibrium in a liquid-
liquid system. From the phase rule, the degree of freedom F is given by 
 
 F = C + 2 − P = 3 + 2 − 2 = 3 (5.10-14) 
 
The variables are temperature, pressure, and four concentrations. Four concentration occur 
since the mole fraction of the components in a phase must be equal to one: 
 
 xA + xB + xC  = 1 
 
If pressure and temperature are fixed, which is the usual case, then, at equilbirum, setting one 
concentration in either phase defines the system. Consider an equilibrium system from the 
mixing of N1 moles of solutes, N2 moles of solvent 2, and N3 moles of solvent 3. At 
equilibrium, the fugacity of component i in phase I is equal to its fugacity in phase II. 
 
 I

iγ
I
ix I

if (T, P) = II
iγ

II
ix II

if (T, P) (5.10-15) 
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In this equation I
if (T, P) = II

if (T, P) = fi(T, P) = fugacity of pure component i at the same 
temperature and pressure of the system. Equation (5.10-15) becomes 
 
 I

iγ
I
ix  = II

iγ
II
ix  (5.10-16) 

 
The distribution coefficient or the equilibrium constant Ki is defined as the ratio of the mole 
fraction of component i in the two phases. 
 

 Ki = 
I
i
II
i

x
x

 = 
II
i
I
i

γ
γ

 (5.10-17) 

 
In liquid-liquid equilibrium system, the two partially miscible liquid phases usually form a 
non-ideal solution. The activity coefficients should be determined from multi-component 
activity models that can describe liquid-liquid equilibrium system. 
  
Equilateral triangular coordinates can be used to represent the equilibrium data for a three-
component system as shown in Figure 5.10-3. Each of the three corners represents a pure 
component, A, B, or C. The point M represents a mixture with xA = 0.4, xB = 0.2, and xC = 
0.4.The perpendicular distance from the point M to the base AB represents the mole fraction 
xC of C in the mixture at M, the distance to the base CB represents the mole fraction xA of A, 
and the distance to the base AC represents the mole fraction xB of B. 
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Figure 5.10-3 Equilateral triangular coordinates. 
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A common phase diagram where components A and B are partially miscible is shown in 
Figure 5.10-4. In this system, liquid C dissolves completely in A or B. Liquid A is only 
slightly soluble in B and B slightly soluble in A. The phase diagram is separated into two 
regions by a curved or phase envelope. The region outside the curved envelope is the one 
phase region and the region inside the curved envelope is the two-phase region. Any original 
mixture with composition in the two-phase region will separate out into two phases with the 
equilibrium compositions connected by the tie line. For example, a mixture with 5 moles of 
A, 3 moles of B, and 2 moles of C will not exist at equilibrium as a solution at point M. 
Instead this mixture will separate into liquid phase I and liquid phase II with compositions 
given by point a and b respectively. Liquid phase I has the compositions xA,I = 0.79, xB,I = 
0.03, and xC,I = 0.18. Liquid phase II has the compositions xA,II = 0.08, xB,II = 0.68, and xC,II = 
0.24. The moles of liquid in each phase can be determined from the materials balance. 
 
 xA,ILI + xA,IILII = 5 moles 

C
1

0.9
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one-phase region

equilibrium tie line

two-phase region

 
Figure 5.10-4 Liquid-liquid phase diagram where components 

A and B are partially miscible. 
 
 
Since LI + LII = 10 moles, we have 
 

 0.79LI + (0.08)(10 − LI) = 5 ⇒ LI = 5 0.8
0.79 0.08

−
−

 = 5.916 moles 

 
 LII = 4.084 moles 
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The liquid-liquid equilibrium system will be simplified if the two solvents are immiscible. 
Usually solvents are selected to minimize their mutual solubility so immiscible system is a 
reasonable assumption. In many biological applications the solute concentration is so low 
that the activity coefficients approach their infinite dilution values and the distribution 
coefficient is a constant. Consider an equilibrium system from the mixing of N1 moles of 
solutes, N2 moles of solvent 2, and N3 moles of solvent 3. If the solute concentration is low 
then N1 << N2 and N1 << N3. For a system with two immiscible liquid phases at equilibrium, 
a mole balance of the solutes is given by 
 
 N1 = x1,ILI + x1,IILII (5.10-18) 
 
In this equation LI is the moles of solvent 2 and some solute in liquid phase I and LII is the 
moles of solvent 3 and some solute in liquid phase II. Since the solute is present at such small 
quantity the value of LI and LII are assumed to be constant and equal to N2 and N3 
respectively. Equation (5.10-18) becomes 
 
 N1 = x1,I N2 + x1,II N3

 (5.10-18) 
 
If the distribution coefficient is known, x1,I = K1 x1,II, then the mole fraction of the solute in 
phase II can be solved: 
 

 N1 = K1 x1,II N2 + x1,II N3 ⇒ x1,II = 1

1 2 3

N
K N N+

 (5.10-19) 

 
Example 5.10-2.23 ---------------------------------------------------------------------------------- 
We have 0.01 moles (N1) of drug dissolved in 100 moles of water (N3). We then add to this 
phase 100 moles (N2) of octanol. The octanol-water partition coefficient for the drug is 89.  
 

 Ki = 
I
i
II
i

x
x

 = 89 

For this system, octanol (phase I) and water (phase II) are immiscible. Estimate the mole 
fractions of the drug in the two phases once equilibrium has been attained and the % 
extraction of the drug from the aqueous phase. 
 
Solution ------------------------------------------------------------------------------------------ 
 
Making a mole balance for the drug gives 
 
 N1 = x1,I N2 + x1,II N3 
 
Substituting x1,I = K1 x1,II into the above equation we obtain 
 
 N1 = K1 x1,II N2 + x1,II N3  
 
The mole fraction of the drug in the water phase is 
 

                                                 
23 Fournier, R. L., “Basic Transport Phenomena in Biomedical Engineering”, Taylor & Francis, 2007, p. 71 
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  x1,II = 1

1 2 3

N
K N N+

 = 0.01
89 100 100× +

 = 1.11×10-6 

 
The mole fraction of the drug in the octanol phase is 
 
 x1,I = K1 x1,II = (89)( 1.11×10-6) = 9.889×10-5 
 
The % extraction of the drug from the aqueous phase is given by 
 

 % extraction = 1, 2

1

Ix N
N

×100 = 
59.889 10 100

0.01

−× ×
×100 = 98.89% 

 
Example 5.10-3.24 ---------------------------------------------------------------------------------- 
Purification of an Antibiotic 
 
Benzylpenicillin is an older antibiotic effective against pneumococcal and meningoccal 
infections, anthrax, and Lyme disease. As part of a purification process, 200 mg of 
benzylpenicilin is mixed with 25 ml of n-octanol and 25 mL of water. After equilibrium is 
established, there is a water-rich phase that contains essentially no n-octanol and an octanol-
rich phase that contains 74 mol % n-octanol and 26 mol % water. Determine the 
concentrations of benzylpenicillin in each of these phases. 
 
Data: The molecular weight of benzylpenicillin is 334.5, that of n-octanol is 130.23, the 
liquid density of n-octanol is 0.826 g/cm3, and  
 

 KOW,B = 
O
B
W
B

C
C

 = mg B/(ml n-octanol)
mg B/(ml water)

= 65.5 

 
Solution ------------------------------------------------------------------------------------------ 
 
Since n-octanol is insoluble in water, the number of moles of n-octanol in the octanol-rich 
phase is 
 

 25 mL 0.826 g/mL
130.23 g/mol

× = 0.1586 mol 

 
The amount of water in the octanol-rich phase is 
 

 0.1586 mol octanol × 0.26 mol water
0.74 mol octanol

 = 0.0557 mol water 

 
Assuming no change in volume upon mixing, the volume of the octanol-rich phase is 
 

                                                 
24 Sandler, S. I., “Chemical, Biochemical, and Engineering Thermodyanmics”, Wiley, 2006, p. 643 
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 VO = 0.1586 mol 130.23 g/mol
0.826 g/mL

×  + 0.0557 mol 18 g/mol
1 g/mL

×  = 26.0028 mL 

 
The volume of the water-rich phase is 
 
 VW = 50 mL − 26.0028 mL = 23.997 mL 
 
The total number of moles of benzylpenicillin is 
 

 0.2 g
334.4 g/mol

 = 5.981×10-4 mol 

 
Making a mole balance on of benzylpenicillin gives 
 
 5.981×10-4 mol = VW + VO = VW + KOW,B  VO W

BC O
BC W

BC W
BC

 
 5.981×10-4 mol = (23.997 + 65.5×26.003) = ×1727.52 mL W

BC W
BC

 
  = 3.462×10-7 mol/mL = 1.158×10-4 g/mL = 0.1158 mg/mL W

BC
 
  = KOW,B  = 65.5×3.462×10-7 = 2.268×10-5 mol/mL O

BC W
BC

 
  =  7.585×10-3 g/mL = 7.585 mg/mL O

BC
 
------------------------------------------------------------------------------------------ 
 
5.10c Single-Stage Equilibrium Extraction  
 

Aqueous Stream
   L  , xII

II,in

L  , xI
I,out

L  , xII
II,out

L  I Extractor

 
 

Figure 5.10-5 Single stage equilibrium liquid-liquid extraction. 
 
Figure 5.10-5 shows a single stage liquid extractor where a pure flowing solvent stream at 
molar flow rate LI is contacted with an aqueous stream flowing at LII with a solute of mole 
fraction xII,in. We assume that the solvent and water are immiscible and there is no change in 
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flowrates of LI or LII. The streams leaving the liquid extractor are at equilibrium so that xI,out 
= KxII,out. Making a mole balance on the solute gives 
 
 LII xII,in = LI xI,out + LII xII,out = LIKxII,out + LII xII,out  
 
 LII xII,in = (LIK + LII) xII,out (5.10-20) 
 
Solving for xII,out / xI,out we obtain 
 

 ,

,

II out

II in

x
x

 = 
II

I I

L
KL L+ I  = 1

1
I

II
KL
L

+
 = 1

1 E+
 (5.10-21) 

In equation (5.10-21), E is defined as the extraction factor, 
I

II

KL
L

. The amount of solute 

entering the extractor is LII xII,in. The amount of solute extracted from the aqueous phase II is 
LII xII,in − LII xII,out. The % extraction of the solute from phase II is then given by 
 

 % extraction = , ,

,

II II
II in II out

II
II in

L x L x
L x

⎛ ⎞−
⎜ ⎟
⎝ ⎠

×100 = ,

,

1 II out

II in

x
x

⎛ ⎞
−⎜ ⎟

⎝ ⎠
×100 

 
Example 5.10-4.25 ---------------------------------------------------------------------------------- 
A drug is in an aqueous (phase II) stream flowing at 100 moles/min at a drug mole fraction of 
0.01. The aqueous stream is then contacted with an extractor with a pure solvent (phase I) 
flowing at 200 moles/min. The distribution coefficient for this particular drug is given by 
 

 Ki = 
I
i
II
i

x
x

 = 6 

Determine the equilibrium mole fraction of the drug in the streams exiting the extractor and 
the % extraction of the drug from the aqueous stream. 
 
Solution ------------------------------------------------------------------------------------------ 
 

 

Aqueous Stream
  L  = 100 moles/min, x = 0.01II

II,in 

L  , xI
I,out

L  , xII
II,out

L = 200 moles/min I 

Extractor

 
 

                                                 
25 Fournier, R. L., “Basic Transport Phenomena in Biomedical Engineering”, Taylor & Francis, 2007, p. 72 
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 Making a mole balance on the solute gives 
 
 LII xII,in = LI xI,out + LII xII,out = LIKxII,out + LII xII,out  
 
 LII xII,in = (LIK + LII) xII,out   
 
 
Solving for xII,out / xI,out we obtain 
 

 ,

,

II out

II in

x
x

 = 
II

I I

L
KL L+ I  = 1

1
I

II
KL
L

+
 = 1

1 E+
 = 1

(6)(200)1
100

+
 = 0.0769 

 
 xII,out = (0.01)( 0.0769) = 7.69×10-4, xI,out = (6)( 7.69×10-4) = 4.62×10-3   
 
 

% extraction = , ,

,

II II
II in II out

II
II in

L x L x
L x

⎛ ⎞−
⎜ ⎟
⎝ ⎠

×100 = ,

,

1 II out

II in

x
x

⎛ ⎞
−⎜

⎝ ⎠
⎟ ×100 = (1 − 0.0769) ×100 = 92.3 % 
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Chapter 6  
Chemical Equilibrium 

 
6.1 Introduction 
 
Chemical reaction engineering and separation processes are the two fields unique to chemical 
engineering. The design of chemical reactor often requires extensive repetitive calculations 
with the help of sophisticated computer models now available to design engineer. Analysis of 
chemical reactions is central to the design of chemical reactor. We will first review the 
stoichiometry of the reactions. 
 
 Consider the following reaction in which α moles of species A react with β moles of species 
B to produce ρ moles of R and ν moles of S. 
 
  αA + βB  ⇔ ρR + νS 
 
or  ρR + γS − αA − βB  = 0 
 

or  Ii = 0 ∑
=

4

1i
iν

 
where νi = stoichiometric coefficient of species Ii 
  νi is positive if Ii is a product 
  νi is negative if Ii is a reactant 
  νi is zero if Ii is an inert 
 
For example, consider the reaction A + 2B ⇔  C or C − A − 2B = 0, then νC = 1, νA = − 1, 
and  νC = − 2. At any time the moles Ni of species Ii can be related to the initial moles Nio of 
species Ii by the following relation 
 
  Ni = Nio + νi ζ 
 
where the quantity ζ, which has the same unit as Ni, is called the molar extent of reaction. 
The definition of ζ  
 

  ζ = 
i

ioi NN
ν
−  

is not the same as the definition for the fractional conversion f 
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  f = 
io

iio

N
NN −  = 

fedmoles
reactedmoles  

 
The relation between the molar extent of reaction and the fractional conversion is 
 

  ζ = −
i

iio NN
ν
− = − 

i

iofN
ν

 

ζ is not restricted to lie between 0 and 1. In fact, the molar extent of reaction may be negative 
if the reaction proceeds in the reverse direction to that indicated (e. g., if C is dissociated to 
form A and B). 
 
Example 6.1-1. ---------------------------------------------------------------------------------- 
 Consider the following gas phase reaction at 400oK and 2 atm. 
 
  A + 2B ⇔ C  
The mole fractions of the reactive species at equilibrium satisfy the relation 
 

  2
BA

C

yy
y = 1.1124 

 
Starting with equimolar quantities of A and B, and no C, calculate yA, yB, and yC, the molar 
extent of reaction, and the fractional conversion of A and B if the reaction proceeds to 
equilibrium. 
 

Solution ----------------------------------------------------------------------------------------- 
  A B C Total 
Initial 1 1 0 2 
Final 1 − ζ 1 − 2ζ ζ 2(1 − ζ) 
 
Since NA = NAo − ζ and NB = NBo − 2ζ. The mole fraction of each species is then 
calculated 
 

 yA = 
)1(2

1
ζ
ζ
−
− = 0.5, yB = 

)1(2
21
ζ−
ζ− , and yC = 

)1(2 ζ−
ζ  

 
From the equilibrium relation yC = 1.1124 yA  or 2

By

 

 
)1(2 ζ

ζ
−

 = 1.1124×0.5
2

)1(2
21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

ζ
ζ  

 
 2ζ (1 − ζ) = 0.5562(1 − 2ζ)2 
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 4.2248 ζ2 − 4.2248ζ + 0.5562 = 0 
 
 There are two roots: ζ1 = 0.156 and ζ2 = 0.844 
 
 If  ζ = 0.844 then NB = NBo − 2ζ = 1 − 2ζ  < 0 : not possible 
 
 Therefore the molar extent of reaction ζ must be equal to 0.156, and 
 

  yB = 
)1(2

21
ζ
ζ

−
−  = 0.408, and yC = 

)1(2 ζ
ζ
−

 = 0.092 

 

 fA = 
Aio

AAo

N
NN − = 

AioN
ζ  = 0.156, and fB = 

Bio

BBo

N
NN − = 

BioN
ζ2  = 0.312 

 
********************************************************************* 

 
 From the relation Ni = Nio + νiζ, the rate of change of the number of moles of species i 
can be written as follows: 
 

  
dt

dNi = νi dt
dζ  

  
For chemists and chemical engineers, the rate of change of the number of moles is usually 
written in terms of the reaction rate per unit volume r: 
 

  
dt

dNi = νi dt
dζ = riV 

where V is the reactor volume. 
 
Order of Reactions 
 
 When reaction rates are determined experimentally, is often found that the expression for 
the reaction rate can be expressed in the following way: 
 

  ri = 
dt
d

V
i ζν  =  βα

BACkC

 
In this equation CA and CB are the reactant concentration, and the constant of proportionality 
k is the reaction rate constant. The exponents of the concentrations, α and β, are called the 
orders of the reaction. In this case the reaction would be called “of order α” with respect to 
A, “of order β” with respect to B, or “of order α plus β” overall. For a reaction with 
stoichiometry A → products, a first order reaction will give the rate of consumption of A per 
unit reactor volume as rA = kCA, and a second order reaction will give rA = k(CA)2 
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Sometimes the rate of consumption of A is independent of the concentration of A, or  
  rA = k 
 
Note that the unit of k is dependent on the order of the reaction. The zero-order reaction is 
controlled by something other than the concentration of A. In fact, zero-order kinetics are 
very common in the case of catalyzed reactions. 
 
Type of Reactors 
 
 Batch reactor: There is neither inflow of reactants nor outflow of products while the 
reaction is being carried out. 
 Semibatch reactor: While the reaction is being carried out, there is either inflow of 
reactants or outflow of products but not both. 
 Continuous-stirred tank reactor CSTR: While the reaction is being carried out, there are 
inflow of reactants and outflow of products. Except for startup and shutdown, the CSTR is 
normally run at steady state, and is well mixed. As a result of mixing, the temperature and 
concentration are assumed to be identical everywhere within the reactor including the exit 
point. 
 Tubular reactor: It consists of a cylindrical pipe and is normally operated at steady state. 
For the systems in which the flow is highly turbulent, the flow field may be modeled by that 
of plug flow. The reactor is then called continuous plug-flow reactor PFR. The reactants are 
continuously consumed as they flow down the length of the reactor. The concentrations vary 
continuously only in the axial direction through the reactor but not in the radial direction. 
 
 BATCH SEMIBATCH

Filling Draining

CSTR 
PFR 

 
 
   Figure 6.1-1. Common reactor types 
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Example 6.1-2. ---------------------------------------------------------------------------------- 
The following second order, irreversible gas phase reaction 
 
 AB → A + B, where k = 2.0×104 cm3/mol⋅min 
 
is allowed to decompose isothermally in a constant pressure batch reactor. The reactor 
initially contains pure AB with a volume of 2.0 m3 at 2.5 atm and 500oC. Assuming ideal 
behavior, determine the time for the reaction to reach 90% conversion. 
 
Solution ------------------------------------------------------------------------------------------ 
 
Let X = fractional conversion, no = initial moles of AB in the reactor. The moles of A and B in 
the reactor at any time are given by 
 
 nA =  nB =  noX 
 
We have 

  AB A B Total 
Initial no 0 0 no 
Final no(1 − X)  noX  noX no(1 + X) 
 
Applying the mass balance for AB in the reactor gives 
 

 )]1([ Xn
dt
d

o −  = − k(CAB)2V = − 
V

Xkno
22 )1( −   (E-1) 

 
Since the pressure is a constant, the volume must change since the number of moles 
change. From the ideal gas law 
 

 
0PV

PV  = 
RTn

RTXn

o

o )1( +  ⇒ V = V0(1 + X) 

 
Equation (E-1) becomes 
 

  − no
dt
dX  =  − 

)1(
)1(

0

22

XV
Xkno

+
−  ⇒ t = 

okn
V0 ∫ −

+X
dX

X
X

0 2)1(
1  

 
We can use partial fraction to obtain 
 

 2)1(
1

X
X

+
−  = 

X
a
−1

 + 2)1( X
b
+

 = 
X−

−
1

1  + 2)1(
2
X+

  

 
Therefore, 
 

 t = 
okn

V0
⎥
⎦

⎤
⎢
⎣

⎡
−

+
−

− ∫ ∫
9.0

0

9.0

0 2)1(
2

1 X
dX

X
dX  = 

okn
V0

9.0

01
2)1ln( ⎥⎦

⎤
⎢⎣
⎡

−
+−

X
X  
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 t = 
okn

V0
⎥⎦
⎤

⎢⎣
⎡ −+ )1

9.
1(2)1.0ln(  = 

okn
V0 [ ]18)1.0ln( +   

 
From the ideal gas law  
 

 
on

V0  = 
P

RT  ⇒  t = 
kP
RT [ ]18)1.0ln( +  

 
Substituting the numerical values gives 
 

  t = 
5.2102

77305.82
4 ××
× [ ]18)1.0ln( +  = 1.2685 [ ]18)1.0ln( +  = 19.91 min 

 

We use the ideal gas constant R = 82.05 atm⋅cm3/mol⋅oK 
 
6.2 Chemical Reaction and Gibbs Energy 
 
We apply the same principle to solve phase equilibrium problems to chemical equilibrium. 
Consider the following ideal gas reaction at a total pressure of 1 bar1. 
 
 A2 + B2 ⇔ 2AB (6.2-1) 
 
For a system in which we initially have 1 mole of A2 and 1 mole of B2, the moles of A2 and 
B2 in the reactor at any time are given by 
 
 nA2 =  nB2 =  1 − ζ (6.2-2) 
 
In this expression ζ is the molar extent of reaction. We have 
 

  A2 B2 AB Total 
Initial 1 1 0 2 
Final 1 − ζ 1 − ζ 2ζ 2 

 
The total Gibbs energy is given by 
 
 G = ∑ iiGn  =  = nA2μA2 + nB2μB2 + nABμAB (6.2-3) ∑ iin μ
 
The chemical potential of each component in an ideal gas mixture is given by 
 

 μi = gi
o + RTln ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
bar
Pi

1
 (6.2-4) 

 

                                                 
1 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 435 
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In this expression, the reference state is the ideal gas state at the temperature of the reaction 
and a partial pressure of 1 bar. Since we specified the pressure of the reference state, gi

o is a 
function of only temperature. Substitution of equation (6.2-4) into equation (6.2-3) yields 
 
 G = nA2go

A2 + nB2go
B2 + nABgo

AB + RT[nA2lnPA2 + nB2lnPB2 + nABlnPAB] (6.2-5) 
 
In this expression, the partial pressures must have units of bar. Since Pi = yiP, we have 
 
 G = nA2go

A2 + nB2go
B2 + nABgo

AB + RT[nA2lnyA2 + nB2lnyB2 + nABlnyAB] 
  
  + RT(nA2 + nB2 + nAB)ln P 
 
In terms of the molar extent of reaction, we have 
 
 G = (1 − ζ)(go

A2 + go
B2) + 2ζgo

AB + RT[(1 − ζ)lnyA2 + (1 − ζ)lnyB2 + 2ζ lnyAB] + 2RT ln P 
  
We will consider the system with the following numerical values: T = 1000oK, P = 1 bar, 
go

A2 = go
B2 = 0, and go

AB = − 9.5 kJ/mol. With a gas constant value R = 8.314 J/mol⋅oK, we 
have RT = 8.314 kJ/mol. The Gibbs energy is plotted as a function of ζ in Figure 6.2-1. The 
pure species Gibbs energy is labeled “Term 1”. 
 
 Term 1 = (1 − ζ)(go

A2 + go
B2) + 2ζgo

AB  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-25

-20

-15

-10

-5

0

Zeta

G
(k

J)

G
Term 1

 
Figure 6.2-1 Gibbs energy of the system A2 + B2 ⇔ 2AB. 
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Table 6.2-1 lists the Matlab program used to plot Figure 6.2-1. 
 
Table 6.2-1 ----------------------------------------------------------------------- 
% Figure 6.2-1:1 = A2, 2 = B2, and 3 = AB 
% 
g3=-9.5; RT=8.314; 
zeta=.02:.02:.98; 
y1=(1-zeta)/2;y2=y1; 
y3=zeta; 
G=2*zeta*g3+RT*((1-zeta).*log(y1)+(1-zeta).*log(y2)+2*zeta.*log(y3)); 
G1=2*RT*log(.5);Gn=2*g3; 
zetap=[0 zeta 1];Gp=[G1 G Gn]; 
plot(zetap,Gp,[0 1],[0 Gn],':') 
grid on 
xlabel('Zeta');ylabel('G(kJ)'); 
legend('G','Term 1') 
------------------------------------------------------------------------------------------------------------- 
 
The product, species AB, has lower Gibbs energy than the reactants, species A2 and B2. 
However, the equilibrium conversion is not pure species AB, but rather the composition at 
which the Gibbs energy is a minimum. This is due to the fact that a mixture has much higher 
entropy than a pure component. The system can lower the Gibbs energy if the reaction is not 
completed. Starting with pure reactants or product, the system will have a minimum Gibbs 
energy when all three species are present. The contribution to the Gibbs energy of the system 
due to mixing is given by the expression 
 
 ΔGmix = RT[(1 − ζ)lnyA2 + (1 − ζ)lnyB2 + 2ζ lnyAB] 
 
We only need to specify the amount of each of the elements that are present and the system 
temperature and pressure to predict the equilibrium state of the system. The change in Gibbs 
energy with respect to temperature, pressure, and the number of moles is given by 
 

 dG = VdP  − SdT + dni  (6.2-6) ∑
=

C

i
i

1

μ

 
When the composition change is the result of a single chemical reaction we have 
 
 ni = nio + νiζ ⇒ dni = νidζ  
 
At constant temperature and pressure, the change in Gibbs energy is given by 
 
 dGT,P = ∑ iνμ dζ i

 

There is no change in Gibbs energy at equilibrium: dGT,P = 0 ⇒ 
PT

G

,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
ζ

 = = 0 ∑ iiμν
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Chapter 6  
6.3 The Condition of Equilibrium for a Chemical Reaction 
 
At constant temperature and pressure, the system comes to chemical equilibrium when the 
Gibbs energy is a minimum. 
 
 dGT,P = ∑ i dζ (6.3-1) iνμ
 

At equilibrium: dGT,P = 0 ⇒ 
PT

G

,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
ζ

 = ∑ iiμν = 0 (6.3-2) 

 
Equation (6.3-2) is the condition of equilibrium for a chemical reaction that can be solved if 
we relate chemical potential to fugacity. From the definition of the fugacity in a mixture we 
have 
 
 dμi = RT d ln  (6.3-3) if̂
 
Integrating this equation between a standard state, denoted by the superscript o, and the 
equilibrium state yields 
 

 μi = gi
o + RT ln o

i

i

f
f̂  (6.3-4) 

 
In this equation, the standard state is defined as the pure species at the temperature of the 
reaction and a pressure of 1 bar (or 1 atm, when appropriate). Since the Gibbs energy is not a 
strong function of pressure we will freely interchange 1 atm and 1 bar as the reference state 
pressure. We should note the difference between a standard state and a reference state. In a 
standard state, only pressure and physical form (gas, liquid, or crystal structure for solid) are 
specified while in reference state temperature, pressure and physical form are specified. For 
the reference state the temperature can be specified to be different from the reaction 
temperature. For the standard state the temperature must be the temperature of the reaction. 
Since the pressure is specified in the standard state, the pure species molar Gibbs energy, gi

o, 
is a function of temperature only. Substituting equation (6.3-4) into equation (6.3-2) gives 
 

  + RT∑ o
ii gν ∑ o

i

i
i f

f̂lnν  = 0 (6.3-5) 

 
The ratio of fugacities is called activity , a new thermodynamic function: iâ
 

  = iâ o
i

i

f
f̂  (6.3-6) 
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While the fugacity fi depends only on the state of the system, the numerical value of the 
activity also depend on the choice of standard state. Rearranging equation (6.3-5) and using 
the mathematical identity that the sum of logarithms is equal to the log of the products gives 
 

 ln
i

o
i

i

f
f

ν

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π

ˆ
= − 

RT
g o

ii∑ν
 = − 

RT
g o

rxnΔ  (6.3-7) 

 
We have defined a new term, = o

rxngΔ ∑ o
ii gν , which is called the standards Gibbs free 

energy change of reaction or simply the Gibbs energy of reaction. The product on the left 
hand side of equation (6.3-7) is called the equilibrium constant K  
 

 K = 
i

o
i

i

f
f

ν

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π

ˆ
 (6.3-8) 

 
Equation (6.3-7) can now be written as 
 

 ln K = − 
RT
g o

rxnΔ  (6.3-9) 

 
The reaction equation for a single reaction may be written as 
 
 Ii = 0 (6.3-10) ∑ iν
 
When more than one chemical reaction is required to describe chemical equilibrium in a 
system we need one equation for each reaction j or 
 
 Iij = 0 (6.3-11) ∑ ijν
 
The change in Gibbs energy of the system is then 
 

 dG = ∑ ∑ dζj (6.3-12) ⎟
⎠

⎞
⎜
⎝

⎛

j i
ijijνμ

 
At equilibrium G is a minimum, and all partial derivatives with respect to extent of reaction ζ 
must equal zero 
 

 
PTj

G

,
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂
ζ

 = = 0 (6.3-13) ∑
i

ijijνμ

 
Equation (6.3-13) applies to each reaction, and at equilibrium the equilibrium constant for 
each reaction must be satisfied. 
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6.4 Calculation of Equilibrium Constant from Data 
 
The Gibbs energy of reaction may be obtained from the Gibbs energy of formation which is 
the Gibbs energy of reaction when the species of interested is formed from its pure elements, 
as found in nature, that is, 
 

 Elements ↔  Species i 
Δ fg

 
The Gibbs energy of formation of a pure element, as it is found in nature, is equal to zero. 
The Gibbs energy of formation is available for many species at 25oC and 1 bar. The Gibbs 
energy of reaction is then given by 
 
 =  (6.4-1) 298,rxn

ogΔ ∑ Δ 298,f
o

i gν
 
In this equation, the stoichiometric coefficients for products are positive and those for 
reactants are negative. The equilibrium constant is then evaluated: 
 

 ln K = − 
RT

g rxn
o

298,Δ  (6.4-2) 

 
Example 6.4-1.2 ---------------------------------------------------------------------------------- 
Calculate the equilibrium constant for the following reaction using the data at 298oK 
 
 H2O(g) + CH3OH(g) ⇔ CO2(g) + 3H2(g) 
 
 H2O(g) CH3OH(g) CO2(g) H2(g) 
Δgo

f (kJ/mol) − 228.57 − 161.96 − 394.36 0 
 
Solution ------------------------------------------------------------------------------------------ 
 
  =  298,rxn

ogΔ ∑ Δ 298,f
o

i gν
 
  = (Δgo

f)CO2 + 3(Δgo
f)H2 − (Δgo

f)H2O − (Δgo
f)CH3OH 298,rxn

ogΔ
 
  = (− 394.36)CO2 + 3(0)H2 − (− 228.57)H2O − (− 161.96)CH3OH 298,rxn

ogΔ
 
  = − 3.83 kJ/mol 298,rxn

ogΔ
 
The equilibrium constant is then 
 

 K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o
298,  = exp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

)15.298)(314.8(
830,3  = 4.69 

                                                 
2 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 444 
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Example 6.4-2. ---------------------------------------------------------------------------------- 
Find the equilibrium concentration of N2O4(g) [Nitrogen nitroxide] due to the chemical 
reaction at 25oC and 1 atm. 
 
 N2O4(g) ⇔ 2NO2(g) 
 
The following data are available: 
 
 (1) N2O4(g) ⇔ N2(g) + 2O2(g)  Δgo

rxn,1 = − Δgo
f,N2O4 = − 23.41 kcal/mol 

 
 (2) 0.5N2(g) + O2(g) ⇔ NO2(g)  Δgo

rxn,2 = Δgo
f,NO2 = 12.24 kcal/mol 

 
Solution ------------------------------------------------------------------------------------------ 
 
The reaction N2O4(g) ⇔ 2NO2(g) may be obtained by combining reactions (1) and (2) 
 
 (1) + 2(2) ⇒  N2O4(g) ⇔ 2NO2(g) 
 
Therefore 
 
 Δgo

rxn = Δgo
rxn,1 + 2Δgo

rxn,2 = − Δgo
f,N2O4 + 2Δgo

f,NO2 = − 23.41 +2(12.24) 
 
 Δgo

rxn = 1.11 kcal/mol = 4644 J/mol = − RT ln K 
 

 K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o
298,  = exp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

)15.298)(314.8(
644,4  = 0.1563 

  
The equilibrium constant K can also be expressed in terms of the activities: 
 

 K = 
42

2

2

ON

NO

a
a

 = 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

0

2

0

42

42

2

2

ˆ

ˆ

ON

ON

NO

NO

f
f

f
f

 (E-1) 

 
Assume ideal gas  = Pi,  = Po

NO2 = Po
N2O4 = 1 atm, equation (E-1) becomes if̂

0
if

 

 K = 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

0

2

0

42

42

2

2

ˆ

ˆ

ON

ON

NO

NO

f
f

f
f

 = 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

0

2

0

42

42

2

2

ON

ON

NO

NO

P
P

P
P

 = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

atm1

atm1

42

2

2

Py

Py

ON

NO

 (E-2) 

 
Since P = 1 atm, equation (E-2) becomes 
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 K = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

atm1

atm1

42

2

2

Py

Py

ON

NO

 = 
42

2

2

ON

NO

y
y

 = 0.1563 (E-3) 

 
 We have 
 

  N2O4 NO2 Total 
Initial 1 0 1 
Final 1 − ζ 2ζ 1 + ζ 
 

The mole fractions of N2O4 and NO2 are given by 
 

 yN2O4 = 
ζ
ζ

+
−

1
1   yNO2 = 

ζ
ζ
+1
2  

 
Substituting yN2O4 and yNO2 into equation (E-3) gives 
 

 

ζ
ζ
ζ
ζ

+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

1
1
1
2

2

 = 0.1563 ⇒ 
)1)(1(

4 2

ζζ
ζ

+−
 = 0.1563  

 

 4ζ2 = 0.1563(1 − ζ2) ⇒ ζ2 = 
1536.4
1536.0  ⇒ ζ = 0.1923 

 
The equilibrium concentration of N2O4(g) is then 
 

 yN2O4 = 
ζ
ζ

+
−

1
1  = 0.6774 

------------------------------------------------------------------------------------------------ 
 
If the Gibbs energies of formation are available at the reaction temperature, the equilibrium 
constant can be calculated directly from  
  

 K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o

  

  
However most reactions we want to study are at temperatures different than 25oC where data 
are not available. We need an expression to determine the equilibrium constant at any 
temperature from one set of Gibbs energy data. 
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6.5 Variation of Equilibrium Constant with Temperature 
 

Since cp = 
PT

h
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  and expressions for cp as a function of temperature are available for many 

species, if we could relate Gibbs energy to enthalpy we might found an equation to determine 
the temperature dependence of the equilibrium constant. 
 

G P H

S

UVA

T

G P H

S

UVA

T

 
 

From the thermodynamic diagram we have S = − 
PT

G
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ or 

 

 so
i = − 

P

i

T
g

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ o

 (6.5-1) 

 
Taking the derivative of go

i/T with respect to T yields 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

T
g

T
i
o

 = 
T
g

T
i

∂
∂ o1   − 2

o

T
gi  (6.5-2) 

 

Substituting 
P

i

T
g

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ o

= − so
i into equation (6.5-2) gives 

  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

T
g

T
i
o

 = − 
T
si

o

 − 2

o

T
gi  (6.5-3) 

 
Since go

i = ho
i  −  Tso

i, we have 
 

 2

o

T
gi  = 2

o

T
hi  − 

T
si

o

 ⇒ − 
T
si

o

 − 2

o

T
gi  = − 2

o

T
hi  (6.5-4) 

 
Comparing equations (6.5-3) and (6.5-4) yields 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

T
g

T
i
o

  = − 2

o

T
hi  (6.5-5) 
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Since ln K = − 
RT

gii∑ oν
 = − 

RT
g o

rxnΔ  (6.5-6) 

 

 
T∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
RT
g o

rxn  = 
R
1 ∑ iν ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

T
g

T
i
o

 = − 
T
K

∂
∂ )(ln  (6.5-7) 

 

 
T
K

∂
∂ )(ln  = 

R
1 ∑ iν 2

o

T
hi  = 2

o
rxn

RT
hΔ  (6.5-8) 

 
In equation (6.5-8) we have defined the enthalpy of reaction Δho

rxn = ∑ . For 
exothermic reaction (Δho

rxn < 0), the equilibrium constant decreases as temperature increases, 
since RT2 is always positive. For endothermic reaction (Δho

rxn < 0), the equilibrium constant 
increases as temperature increases. The enthalpy of reaction can be determined at any 
temperature based on the enthalpy of reaction at 298oK and heat capacity data from the 
equation 

o
iihν

 

 Δho
rxn = Δho

rxn,298 + ( )∫ ∑
T

ic298 piν dT (6.5-9) 

 

Let 
R
cpi  = Ai + BiT + CiT2, equation (6.5-9) becomes 

 

 Δho
rxn = Δho

rxn,298 + R ( )∫ ∑ ∑ ∑++
T

iiiiii TCTBA
298

2ννν dT (6.5-10) 

 
Integrating equation (6.5-10) yields 
 

 Δho
rxn = Δho

rxn,298 + R[ΔA(T − 298) + 
2
BΔ (T2 − 2982) + 

3
CΔ (T3 − 2983) ] (6.5-11) 

 
In this equation we have defined ΔA = ∑ ii Aν , ΔB = ∑ ii Bν , and ΔC = . Equation 
(6.5-11) can also be written as 

∑ iiCν

 

 Δho
rxn = Δhcon + R[ΔAT + 

2
BΔ T2 + 

3
CΔ T3] (6.5-12) 

 
where 
 

 Δhcon = Δho
rxn,298 −  R[298ΔA + 2982

2
BΔ  + 2983

3
CΔ ] (6.5-13) 

 

Substituting Δho
rxn = Δhcon + R[ΔAT + 

2
BΔ T2 + 

3
CΔ T3] into equation (6.5-8) 
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T
K

∂
∂ )(ln  = 2

o
rxn

RT
hΔ  (6.5-8) 

 
We obtain 
 

 
T
K

∂
∂ )(ln  = 2

con

RT
hΔ  + 

T
AΔ  + 

2
BΔ + 

3
CΔ T (6.5-14) 

 
Integrating equation (6.5-14) from 298oK (or any temperature T1) to T yields 
 

 ln ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1T

T

K
K  = −  

R
hconΔ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1

11
TT

 + ΔAln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1T
T  + 

2
BΔ (T −  T1) + 

6
CΔ (T2 −  T1

2) (6.5-15) 

 

If the heat capacity has the form 
R
cpi  = Ai + BiT + CiT2 + DiT-2, equation (6.5-9) becomes 

 

 Δho
rxn = Δho

rxn,298 + R ( )∫ −Δ+Δ+Δ+Δ
T

DTCTBTA
298

22 dT (6.5-16) 

 
Integrating equation (6.5-16) yields 
 

Δho
rxn = Δho

rxn,298 + R[ΔA(T − 298) + 
2
BΔ (T2 − 2982) + 

3
CΔ (T3 − 2983) − ΔD ⎟

⎠
⎞−

298
11

T
⎜
⎝
⎛ ]  

 

Let Δhcon = Δho
rxn,298 −  R[298ΔA + 2982

2
BΔ  + 2983

3
CΔ −  

298
DΔ ], the expression for heat of 

reaction is then 
 

 Δho
rxn = Δhcon + R[ΔAT + 

2
BΔ T2 + 

3
CΔ T3 −  

T
DΔ ] 

 
We need to integrate the following equation 
 

 
T
K

∂
∂ )(ln  = 2

con

RT
hΔ  + 

T
AΔ  + 

2
BΔ + 

3
CΔ T −  3T

DΔ  

 
The equation for equilibrium constant as a function of temperature is finally 
 

ln ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1T

T

K
K  = −  

R
hconΔ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1

11
TT

 + ΔAln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1T
T  + 

2
BΔ (T −  T1) + 

6
CΔ (T2 −  T1

2) + 
2
DΔ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 2

1
2

11
TT
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Chapter 6  
Example 6.5-1.3 ---------------------------------------------------------------------------------- 
Calculate the equilibrium constant for the following reaction at 60oC using the data at 298oK 
 
 H2O(g) + CH3OH(g) ⇔ CO2(g) + 3H2(g) 
 
 H2O(g) CH3OH(g) CO2(g) H2(g) 
Δgo

f,298 (kJ/mol) − 228.57 − 161.96 − 394.36 0 
Δho

f,298 (kJ/mol) − 241.82 − 200.66 − 393.51 0 
 
Solution ------------------------------------------------------------------------------------------ 
 
The equilibrium constant as a function of temperature is given by 
 

 
T
K

∂
∂ )(ln  = 2

o
rxn

RT
hΔ  (E-1) 

 
Since the data are available at 25oC and K is needed at 60oC, we can integrate equation (E-1) 
assuming constant  o

rxnhΔ
 
  =  = o

rxnhΔ o
rxnh 298,Δ ∑ Δ o

fi h 298,ν  
 
  = (Δho

f)CO2 + 3(Δho
f)H2 − (Δho

f)H2O − (Δho
f)CH3OH o

rxnh 298,Δ
 
  = (− 393.51)CO2 + 3(0)H2 − (− 241.82)H2O − (− 200.66)CH3OH o

rxnh 298,Δ
 
  =  = 48.97 kJ/mol o

rxnhΔ o
rxnh 298,Δ

 
The equilibrium constant K at 298oK is evaluated 
 
  = (Δgo

f)CO2 + 3(Δgo
f)H2 − (Δgo

f)H2O − (Δgo
f)CH3OH 298,rxn

ogΔ
 
  = (− 394.36)CO2 + 3(0)H2 − (− 228.57)H2O − (− 161.96)CH3OH 298,rxn

ogΔ
 
  = − 3.83 kJ/mol 298,rxn

ogΔ
 
The equilibrium constant at 298oK is then 
 

 K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o
298,  = exp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

)15.298)(314.8(
830,3  = 4.69 

 
                                                 
3 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 445 

 6-17



Integrating equation (E-1) from 298oK to 333oK yields 
 

 ln 
298

333

K
K  = − 

R
ho

rxnΔ
⎟
⎠
⎞

⎜
⎝
⎛ −

298
11

T
 

 

 ln 
69.4
333K  = − 

314.8
970,48

⎟
⎠
⎞

⎜
⎝
⎛ −

298
1

333
1  = 2.08 

 
 K333 = 37.44 
 
 
Example 6.5-2.4 ---------------------------------------------------------------------------------- 
Formaldehyde, CH2O, is produced by the gas-phase pyrolysis of methanol, CH3OH, 
according to the reaction 
 
 CH3OH(g) ⇔ CH2O(g) + H2(g) 
 
1) Determine the equilibrium constant at room temperature. 
2) Determine the equilibrium constant at 600oC and 1 bar assuming (a)  = constant, and 
(b)  = (T). 

o
rxnhΔ

o
rxnhΔ o

rxnhΔ

The heat capacity has the form: 
R
cpi  = Ai + BiT + CiT2 + DiT-2  

 
 CH2O(g) CH3OH(g) H2(g) 
Δgo

f,298 (kJ/mol) − 110.0 − 162.0 0 
Δho

f,298 (kJ/mol) − 116.0 − 200.7 0 
νi 1 − 1 1 
Ai 2.264 2.211 3.249 
 Bi 7.022×10-3 1.222×10-2 0.422×10-3 
 Ci − 1.877×10-6 − 3.45×10-6 0 
Di 0 0 0.083×105 

 
Solution ------------------------------------------------------------------------------------------ 
 
1) Determine the equilibrium constant at room temperature. 
 
  =  298,rxn

ogΔ ∑ Δ 298,f
o

i gν
 
  = (Δgo

f)CH2O + (Δgo
f)H2 − (Δgo

f)CH3OH 298,rxn
ogΔ

 
  = (− 110.0)CH2O + 3(0)H2  − (− 162.0)CH3OH 298,rxn

ogΔ
 
  = 52 kJ/mol 298,rxn

ogΔ
                                                 
4 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 447 
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The equilibrium constant is then 
 

 K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o
298,  = exp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

)15.298)(314.8(
000,52  = 7.75×10-10 

 

Since K = 
OHCH

HOCH

a
aa

3

22 , very little formaldehyde will form at 298oK. 

 
2a) Determine the equilibrium constant at 600oC and 1 bar assuming o

rxnhΔ  = constant 
 
The equilibrium constant as a function of temperature is given by 
 

 
T
K

∂
∂ )(ln  = 2

o
rxn

RT
hΔ  (E-1) 

 
We need the enthalpy of reaction to calculate K at 600oC. o

rxnhΔ
 
  =  = o

rxnhΔ o
rxnh 298,Δ ∑ Δ o

fi h 298,ν  
 
  = (Δho

f)CH2O + (Δho
f)H2 − (Δho

f)CH3OH o
rxnh 298,Δ

 
  = (− 116.0)CH2O + (0)H2 − (− 200.7)CH3OH o

rxnh 298,Δ
 
  =  = 84.7 kJ/mol o

rxnhΔ o
rxnh 298,Δ

 
Integrating equation (E-1) from 298oK to 873oK yields 
 

 ln 
298

873

K
K  = − 

R
ho

rxnΔ
⎟
⎠
⎞

⎜
⎝
⎛ −

298
11

T
 

 

 ln 10
873

1075.7 −×
K  = − 

314.8
700,84

⎟
⎠
⎞

⎜
⎝
⎛ −

298
1

873
1  = 22.5 

 
 K873 = 4.66 
 
2b) Determine the equilibrium constant at 600oC and 1 bar assuming o

rxnhΔ  = (T) o
rxnhΔ

 
The equilibrium constant at 600oC can be evaluated from 
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ln ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1T

T

K
K  = −  

R
hconΔ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1

11
TT

 + ΔAln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1T
T  + 

2
BΔ (T −  T1) + 

6
CΔ (T2 −  T1

2) + 
2
DΔ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 2

1
2

11
TT

 

 
In this expression 
 

 
R
hconΔ  = 

R
ho

con,298Δ
 −  [298ΔA + 2982

2
BΔ  + 2983

3
CΔ −  

298
DΔ ] (E-2) 

 
 ΔA = = 3.302,  ΔB = ∑ ii Aν ∑ ii Bν = − 4.776×10-3, 
 
 ΔC = = 1.57×10-6, ΔD = ∑ iiCν ∑ ii Dν = 0.083×105 
 
Substituting the numerical values into equation (E-2) 
 

R
hconΔ = 

314.8
84700  −  [(298)(3.302) + (2982) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ×− −

3
10776.4 3

+ (2983) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ × −

3
1057.1 6

− 
298

103.8 3× ] 

 

 
R
hconΔ = 9.43×103 oK 

 
Performing the calculation for the equilibrium constant gives 
 

 ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

298

873

K
K  = 23.15 ⇒ K873 = 7.75×10-10exp(23.15) = 8.8 

------------------------------------------------------------------------------------------------------- 
 
6.6 Homogeneous Gas Phase Reaction 
 
The equilibrium constant is given by the expression 
 

 K = 
i

o
i

i

f
f

ν

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π

ˆ
 (6.6-1) 

 
For gas phase we choose the standard state pressure to be ideal gas at 1 bar, therefore 
 
 fi

o = 1 bar (6.6-2) 
 
The fugacity in equation (6.6-1) must have unit of bar and becomes 
 

 K = Π = Π( ) ibarfi

ν
][ˆ ( ) ibarPy ii

νϕ ][ˆ  (6.6-3) 
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For the calculation of the equilibrium concentration we usually assume = ϕi so that 
equation (6.6-3) can be written as 

iϕ̂

 
 K = Π  (6.6-4) ( iPy ii

νϕ )
 
For an ideal gas = 1, equation (6.6-3) can be simplified to iϕ̂
 
 K = Π  (6.6-4) ii Pyi

νν

 
Example 6.6-1.5 ---------------------------------------------------------------------------------- 
Ethylene is produced from the decomposition of ethane according to the reaction 
 
 C2H6(g) ⇔ C2H4(g) + H2(g) 
 
Determine the equilibrium composition at 1000oC and 1 bar assuming  = constant. o

rxnhΔ
 

 C2H6(g) C2H4(g) H2(g) 
Δgo

f,298 (kJ/mol) − 32.84 68.15 0 
Δho

f,298 (kJ/mol) − 84.68 52.26 0 
νi − 1 1 1 

 
Solution ------------------------------------------------------------------------------------------ 
 
Determine the equilibrium constant at room temperature 
 
  =  298,rxn

ogΔ ∑ Δ 298,f
o

i gν
 
  = (Δgo

f)C2H4 + (Δgo
f)H2 − (Δgo

f)C2H6 298,rxn
ogΔ

 
  = (68.15)C2H4 + 3(0)H2  − (− 32.84)C2H6 298,rxn

ogΔ
 
  = 100.99 kJ/mol 298,rxn

ogΔ
 
The equilibrium constant is then 
 

 K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o
298,  = exp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

)15.298)(314.8(
990,100  = 2.0246×10-18 

 
The equilibrium constant as a function of temperature is given by 
 

 
T
K

∂
∂ )(ln  = 2

o
rxn

RT
hΔ  (E-1) 

                                                 
5 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 451 
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We need the enthalpy of reaction to calculate K at 1000oC. o

rxnhΔ
 
  =  = o

rxnhΔ o
rxnh 298,Δ ∑ Δ o

fi h 298,ν  
 
  = (Δho

f)C2H4 + (Δho
f)H2 − (Δho

f)C2H6 o
rxnh 298,Δ

 
  = (52.26)C2H4 + (0)H2 − (− 84.68)C2H6 o

rxnh 298,Δ
 
  =  = 136.94 kJ/mol o

rxnhΔ o
rxnh 298,Δ

 
Integrating equation (E-1) from 298oK to 873oK yields 
 

 ln 
298

1273

K
K  = − 

R
ho

rxnΔ
⎟
⎠
⎞

⎜
⎝
⎛ −

298
11

T
 

 

 ln 18
873

100246.2 −×
K  = − 

314.8
940,136

⎟
⎠
⎞

⎜
⎝
⎛ −

298
1

1273
1  = 42.3331 

 
 K1273 = 4.9133 
 
  
The equilibrium constant K can also be expressed in terms of the activities: 
 

 K = 
62

242

HC

HHC

a
aa

 = 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

o

oo

62

62

2

2

42

42

ˆ

ˆˆ

HC

HC

H

H

HC

HC

f
f

f
f

f
f

 (E-2) 

 
Assume ideal gas  = Pi, fi

o = Po
C2H6 = Po

C2H4 = Po
H2 = 1 bar, equation (E-2) becomes if̂

 

 K = 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

o

oo

62

62

2

2

42

42

ˆ

ˆˆ

HC

HC

H

H

HC

HC

f
f

f
f

f
f

 = 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

o

oo

62

62

2

2

42

42

HC

HC

H

H

HC

HC

P
P

P
P

P
P

 = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

bar1

bar1bar1

62

242

Py

PyPy

HC

HHC

 (E-3) 

 
Since P = 1 bar, equation (E-3) becomes 
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 K = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

bar1

bar1bar1

62

242

Py

PyPy

HC

HHC

 = 
62

242

HC

HHC

y
yy

 = 4.9133 (E-4) 

 
 We have  C2H6(g) ⇔ C2H4(g) + H2(g) 
 
 

  C2H6 C2H4 H2 Total 
Initial 1 0 0 1 
Final 1 − ζ ζ ζ 1 + ζ 
 

The mole fractions of C2H6, C2H4, and H2 are given by 
 

 yC2H6 = 
ζ
ζ

+
−

1
1 , yC2H4 = 

ζ
ζ
+1

, and yH2 = 
ζ

ζ
+1

 

 
Substituting the mole fractions in terms of extent of reaction into equation (E-4) gives 
 

 

ζ
ζ
ζ

ζ

+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

1
1
1

2

 = 4.9133 ⇒ 
)1)(1(

2

ζζ
ζ

+−
 = 4.9133  

 

 ζ2 = 4.9133(1 − ζ2) ⇒ ζ2 = 
9133.5
9133.4   = 0.8309 

 
 ζ = 0.9115 
 
The equilibrium concentration of C2H4(g) is then 
 

 yC2H4 = 
ζ

ζ
+1

 = 0.4769 

 
Example 6.6-2. ---------------------------------------------------------------------------------- 
Calculate the partial pressure of monatomic hydrogen in hydrogen gas at 2000oK and 1 atm 
for 
 
 0.5H2(g) ⇔ H(g) 
 
Data:  = 217,990 J/mol,  = 49.35 J/mol⋅oK, heat capacity of H(g) = 1.5R, and 
heat capacity of H2(g) = 31 J/mol⋅oK. 

o
rxnh 298,Δ o

rxns 298,Δ

 
Solution ------------------------------------------------------------------------------------------ 
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0.5H2

0.5H2 H(g)

H(g)

2000 Ko

298 Ko

Δh1 Δh2

 
 

 Δgo
rxn,2000 = Δho

rxn,2000 − TΔso
rxn,2000 

 
The heat of reaction Δho

rxn,2000 and the entropy of reaction Δso
rxn,2000 can be calculated using 

the heat capacity data as follows: 
 
Δho

rxn,2000 = 0.5cp,H2(298 − 2000) + Δho
rxn,298 + cp,H(2000 − 298)  

 
Δho

rxn,2000 = Δho
rxn,298 + 1702(cp,H − 0.5cp,H2) = 217,990 + 1702(1.5×8.314 − 0.5×31) = 212,830 J 

 

Δso
rxn,2000 = 0.5cp,H2 ∫

298

2000 T
dT  + Δso

rxn,298 + cp,H ∫
2000

298 T
dT  = Δso

rxn,298 + (cp,H − 0.5cp,H2)ln
298

2000  

 

Δso
rxn,2000 = 39.35 + (1.5×8.314 − 0.5×31) ln

298
2000  = 43.58 J/mol⋅oK 

 
Δgo

rxn,2000 = Δho
rxn,2000 − TΔso

rxn,2000 = 212,830 − 2000(43.58) = 125,670 J/mol 
 
The equilibrium constant is given by 
 

K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o
2000,  = exp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

)2000)(314.8(
670,125  = 5.22×10-4 

 
For ideal gas, the fugacity can be replaced by pressure with standard state pressure equal to 1 
atm. 
 

 K = 5.0

atm1

atm1

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ H

H

P

P

 = ( ) 5.0
2H

H

P
P  = 

( ) 5.01 H

H

P
P

−
 = 5.22×10-4 

 
The partial pressure of monatomic hydrogen is then 
 
 PH = 5.22×10-4 atm 
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Chapter 6  
Example 6.6-1.6 ---------------------------------------------------------------------------------- 
Ammonia is produced from a stoichiometric feed of nitrogen and hydrogen.  
 
 N2(g) + 3H2(g) ⇔ 2NH3(g) 
 
Determine the maximum possible conversion at 500oC and 300 bar using (a) ideal gas law 
and (b) the Van der Waals equation of state. 

The heat capacity has the form: 
R
pic

 = Ai + BiT + CiT2 + DiT-2  

 
 NH3(g) N2(g) H2(g) 
Δgo

f,298 (kJ/mol) − 16.45 0 0 
Δho

f,298 (kJ/mol) − 46.11 0 0 
νi 2 − 1 − 3 
Ai 3.578 3.280 3.249 
 Bi 3.020×10-3 0.593×10-3 0.422×10-3 
 Ci 0 0 0 
Di − 0.186×105 0.040×105 0.083×105 

 
Solution ------------------------------------------------------------------------------------------ 
 
Determine the equilibrium constant at room temperature 
 
  =  298,rxn

ogΔ ∑ Δ 298,f
o

i gν
 
  = 2(Δgo

f)NH3 − (Δgo
f)N2 − 3(Δgo

f)H2  298,rxn
ogΔ

 
  = 2(− 16.45)NH3 − (0)N2  − 3(0)H2 = − 32.9 kJ/mol 298,rxn

ogΔ
 
The equilibrium constant is then 
 

 K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o
298,  = exp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

)15.298)(314.8(
900,32  = 5.81×105 

 
The standard heat of reaction is needed to evaluate equilibrium constant at 500oC 
 
  =  o

rxnh 298,Δ ∑ Δ o
fi h 298,ν

 
  = 2(Δho

f)NH3 − (Δho
f)N2 − 3(Δho

f)H2  o
rxnh 298,Δ

 

                                                 
6 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 454 
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  = 2(− 46.11)NH3 − (0)N2  − 3(0)H2 = − 92.22 kJ/mol o
rxnh 298,Δ

 
The equilibrium constant at 500oC can be evaluated from 
 

ln ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

1T

T

K
K  = −  

R
hconΔ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1

11
TT

 + ΔAln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1T
T  + 

2
BΔ (T −  T1) + 

2
DΔ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 2

1
2

11
TT

 (E-1) 

 
In this expression 
 

 
R
hconΔ  = 

R
ho

con,298Δ
 −  [298ΔA + 2982

2
BΔ  −  

298
DΔ ] (E-2) 

 
 ΔA = = − 5.871,  ΔB = ∑ ii Aν ∑ ii Bν = 4.180×10-3, 
 
 ΔC = = 0, ΔD = ∑ iiCν ∑ ii Dν = − 0.661×105 
 
Substituting the numerical values into equation (E-2) 
 

 
R
hconΔ = 

314.8
220,92−  −  [(298)(− 5.871) + (2982) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ × −

3
10180.4 3

− 
298

10661.0 5×− ] 

 

 
R
hconΔ = − 9.75×103 oK 

 
 
Performing the calculation for the equilibrium constant gives 
 

 ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

298

773

K
K  = − 24.39 ⇒ K773 = 5.81×105exp(− 24.39) =  1.483×10-5 

 
The equilibrium constant K can also be expressed in terms of the activities: 
 

 K = 3

2

22

3

HN

NH

aa
a

 = 3

oo

2

o

2

2

2

2

3

3

ˆˆ

ˆ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

H

H

N

N

NH

NH

f
f

f
f

f
f

 (E-3) 

 
We choose the standard state pressure to be ideal gas at 1 bar, therefore 
 
 fi

o = 1 bar 
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The fugacity of species i in the vapor phase can be expressed in terms of the mole fraction, yi, 
fugacity coefficient, , and total pressure, P, as iϕ̂
 
 = yi P if̂ iϕ̂
 
Hence  
 

 K = 33

22

2222

33

ˆ
ˆ

HHNN

NHNH

yy
y

ϕϕ
ϕ

P-2 (E-4) 

 
(a) Ideal gas law  
 
For ideal gas, = 1, the equilibrium constant is simplified to iϕ̂
 

 Kideal = 3

2

22

3

HN

NH

yy
y

P-2 (E-5) 

 
We have  N2(g) + 3H2(g) ⇔ 2NH3(g) 
 
 

  N2 H2 NH3 Total 
Initial 1 3 0 4 
Final 1 − ζ 3(1 − ζ) 2ζ 4 − 2ζ 
 

The mole fractions of N2, H2, and NH3 are given by 
 

 yN2 = 
ζ
ζ
24

1
−
− , yH2 = 

ζ
ζ

24
33

−
− , and yNH3 = 

ζ
ζ
24

2
−

 

 
Substituting the mole fractions in terms of extent of reaction into equation (E-5) yields 
 
  

 1.483×10-5 = ( ) ( )
( )( )3

22

331
242
ζζ
ζζ

−−
− P-2 

 
For P = 300 bar, we have 
 
 (2ζ)2(4 − 2ζ) =  1.3347(1 − ζ)(3 − 3ζ)3 
 
We can use the following Matlab statements to solve the nonlinear equation  
 
>> ff=inline('(2*z)^2*(4-2*z)^2-1.3347*(1-z)*(3-3*z)^3'); 
>> zeta=fsolve(ff,.5,optimset('Display','off')) 
zeta = 
    0.3676 
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The extent of reaction at 500oK and 300 bar is ζ = 0.3676. 
 
(b) The Van der Waals equation of state. 
 
We assume that = ϕi = fugacity of pure species that can be evaluated from the Van de 
Waals equation of state 

iϕ̂

 

 lnϕi = (Z − 1) − 
Z
A − ln (Z − B) (E-6) 

 

From Example 4.2-2, the Van der Waals equation of state P = 
bv

RT
−

 − 2v
a  can be written in 

terms of the compressibility factor Z = 
RT
Pv as 

 
 Z3 − (1 + B)Z2 + AZ − AB = 0  (E-7) 
 

In this equation B = 
RT
bP  and A = 2)(RT

aP  where the constant a and b can be evaluated from 

the critical properties: 
 

 a = 
64
27

c

c

P
RT 2)(  and b = 

c

c

P
RT
8

 (E-8) 

 
Table E-1 lists the critical properties, the parameters a and b evaluated from equation (E-8), 
the compressibility from equation (E-7), and the fugacity coefficient from equation (E-6). 
 

Table E-1 Summary of Fugacity Coefficient Calculation 
 NH3(g) N2(g) H2(g) 

Tc [oK] 405.5 126.2 33.3 
Pc [atm] 111.3 33.5 12.8 

a [Pa⋅m6/mol2] 0.425 0.137 0.0249 
b [m3/mol] 3.74×10-5 3.86×10-5 2.67×10-5 

Z 0.897 1.105 1.11 
ϕi  0.885 1.098 1.114 

  
The fugacity coefficients can be substituted into equation (E-4) 
 

 K = 33

22

2222

33

ˆ
ˆ

HHNN

NHNH

yy
y

ϕϕ
ϕ

P-2 (E-4) 

 

 K = 0.516 3

2

22

3

HN

NH

yy
y

P-2 
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In terms of the extent of reaction the above equation becomes 
 

 1.483×10-5 = 0.516 ( ) ( )
( )( )3

22

331
242
ζζ
ζζ

−−
− P-2 

 
For P = 300 bar, we have 
 
 (2ζ)2(4 − 2ζ) =  2.5868(1 − ζ)(3 − 3ζ)3 
 
We can use the following Matlab statements to solve the nonlinear equation  
 
>> ff=inline('(2*z)^2*(4-2*z)^2-2.5868*(1-z)*(3-3*z)^3'); 
>> zeta=fsolve(ff,.5,optimset('Display','off')) 
zeta = 
    0.4311 
 
The extent of reaction at 500oK and 300 bar is ζ = 0.4311. 
 
 
Table E-2 lists the Matlab program to evaluate the fugacity coefficient 
 
Table E-2 -------------------------------------------------------------------- 
% Example 6.6-1c, compressibility using Van der Waals EQS 
% 
R = 8.314; % Pa.m3/(mol.K) 
Tc=[405.5 126.2 33.3] ; % Degree K 
Pc=[111.3 33.5 12.8]*1.01325e5 ; %Pa 
av=27*(R*Tc).^2./(64*Pc); % Pa.m6/mol2 
bv=R*Tc./(8*Pc); % m3/mol 
name='NH3*N2*H2'; 
% 
P=3e7; % Pa 
T=773; % K 
for ic=1:3 
    ib=3*(ic-1)+1;ie=ib+2; 
    ni=name(ib:ie); 
    a=av(ic);b=bv(ic); 
% 
disp(ni) 
fprintf('a(Pa.m6/mol2) = %g, b(m3/mol) = %g\n',a,b) 
A=a*P/(R*T)^2;B=b*P/(R*T); 
fprintf('A = %8.5e, B = %8.5e\n',A,B) 
b2=-(1+B);b1=A;b0=-A*B; 
fprintf('b2 = %8.5e, b1 = %8.5e, b0 = %8.5e\n',b2,b1,b0) 
Z=1; 
for i=1:20 
    fz=((Z+b2)*Z+b1)*Z+b0; 
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    dfz=(3*Z+2*b2)*Z+b1; 
    eZ=fz/dfz;Z=Z-eZ; 
    if abs(eZ)<.00001; break; end 
end 
foP=exp((Z-1)-A/Z-log(Z-B)); 
fprintf('Z = %8.5f, f/P = %8.5f\n',Z,foP) 
end 
 
>> e6d6d1c 
NH3 
a(Pa.m6/mol2) = 0.425181, b(m3/mol) = 3.73679e-005 
A = 3.08828e-001, B = 1.74434e-001 
b2 = -1.17443e+000, b1 = 3.08828e-001, b0 = -5.38700e-002 
Z =  0.89713, f/P =  0.88484 
*N2 
a(Pa.m6/mol2) = 0.136824, b(m3/mol) = 3.86383e-005 
A = 9.93810e-002, B = 1.80364e-001 
b2 = -1.18036e+000, b1 = 9.93810e-002, b0 = -1.79247e-002 
Z =  1.10511, f/P =  1.09792 
*H2 
a(Pa.m6/mol2) = 0.0249325, b(m3/mol) = 2.66832e-005 
A = 1.81096e-002, B = 1.24557e-001 
b2 = -1.12456e+000, b1 = 1.81096e-002, b0 = -2.25568e-003 
Z =  1.11007, f/P =  1.11444 
----------------------------------------------------------------------------------------------- 
 
6.7 Heterogeneous Reaction 
 
We will consider an equilibrium system with a gas phase and one or more condensed phases. 
The mole fractions in the equilibrium relations refer to the mole fraction in a given phase, not 
the total mole fraction. When the heterogeneous system is in equilibrium, there will be 
chemical equilibrium in the gas phase and also phase equilibrium between species in the gas 
phase and the pure condensed phases. When a pure condensed phase is present, the partial 
pressure of that component in the gas phase will equal the vapor or saturation pressure of the 
pure condensed phase. Hence a pure condensed phase cannot exist if the partial pressure of 
that component is less than the vapor pressure. 
 
The activity of a pure condensed phase is given by  
 

 a = of
f  

 
In this definition, f is the fugacity of the pure solid in the equilibrium system and fo is the 
fugacity of the pure condensed phase at 1 bar. For a pure substance at given T and P, we have 
 
 dμ = vdP  − sdT  (6.7-1) 
 
At constant temperature 
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 dμ = vdP  =  RTd(lnf) (6.7-2) 
 
Integrating equation (6.7-2) from the standard pressure 1 bar to the pressure of the system 
yields 
 

 RT (lnf) =  ∫
f

fo

d ∫
P

Pv
1

d

 

 RTln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
of

f  = RTln a = v(P − 1) (6.7-3) 

 
We have assumed incompressible for the volume of the condensed phase. The activity is 
given by 
 

 a = exp ⎥⎦
⎤

⎢⎣
⎡ −

RT
Pv )1(  (6.7-3) 

 
Except for very high pressures the activity is close to unity. The state of the pure condensed 
phase at equilibrium is not significantly different from the standard state. 
 
Example 6.7-17  ---------------------------------------------------------------------------------- 
Determine the activity of liquid water at 30oC and at the saturation pressure, 10 bar, and 100 
bar. 
 
Solution ------------------------------------------------------------------------------------------ 
 
At 30oC, Psat = 0.0424 bar. We will assume the volume of liquid water remains constant at 
the saturation temperature of 30oC. 
 
 v = 0.001004 m3/kg = (0.001004)(18.02) = 0.01809 m3/kmol 
 
The activity of liquid water at 30oC and 0.0424 bar is 
 

 a = exp ⎥⎦
⎤

⎢⎣
⎡ −

RT
Pv )1(  = exp

⎭
⎬
⎫

⎩
⎨
⎧ ×−

)15.303)(3.8314(
10)10424.0(01809.0 5

 = 0.9993 

 
The activity of liquid water at 30oC and 10 bar is then 
 

 a = exp
⎭
⎬
⎫

⎩
⎨
⎧ ×−

)15.303)(3.8314(
10)0424.010(01809.0 5

 = 1.0065 

 
 
The activity of liquid water at 30oC and 100 bar is  
 
                                                 
7 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 257 
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 a = exp
⎭
⎬
⎫

⎩
⎨
⎧ ×−

)15.303)(3.8314(
10)0424.0100(01809.0 5

 = 1.0736 

 
 
Hence the fugacity of a pure liquid varies little over a moderate pressure range. 
 
Example 6.7-28  ---------------------------------------------------------------------------------- 
Determine the equilibrium conversion for the isomerization reaction of methylcyclopentane 
(CH3C5H9) to cyclohexane (C6H12) at 298oK. Gibbs energies of formation are given at 298oK 
as: Δgo

f,CH3C5H9 = 31.72 [kJ/mol] and Δgo
f,C6H12 = 26.89 [kJ/mol]  

 
Solution ------------------------------------------------------------------------------------------ 
 
Determine the equilibrium constant at room temperature 
 
  =  298,rxn

ogΔ ∑ Δ 298,f
o

i gν
 
  = (Δgo

f)C6H12 − (Δgo
f)CH3C5H9 = 26.89 − 31.72 = − 4.83 kJ/mol 298,rxn

ogΔ
 
The equilibrium constant is then 
 

 K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o
298,  = exp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

)15.298)(314.8(
830,4  = 7.0182 

 
The equilibrium constant is also given by the expression 
 

 K = 
i

o
i

i

f
f

ν

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π

ˆ
= 

i

o
i

iii

f
fx

ν
γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Π  (E-1) 

 

Except for very high pressure the ratio o
i

i

f
f  = exp ⎥⎦

⎤
⎢⎣
⎡ −

RT
Pv )1(  is close to unity. Equation (E-1) 

becomes 
 
 K =  (E-2) ( ) i

iix νγΠ
 

For ideal solution:  K =  = ( ) i
ix νΠ

953

126

HCCH

HC

x
x

 = 
ζ

ζ
−1

 = 7.0182 

 

 ζ = 
0182.8
0182.7  = 0.8753 ⇒ 87.5% of the liquid exists as cyclohexane. 

                                                 
8 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 456 
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Chapter 6  
Example 6.7-39  ---------------------------------------------------------------------------------- 
Calcium carbonate can dissociate according to the following reaction: 
  
 CaCO3(s) ⇔ CaO(s) + CO2(g) 
 
Determine the equilibrium pressure for a closed system with pure CaCO3 in vacuum at 
1000oK. Assume that the two solid phases are completely immiscible.  
 
 

 CaCO3(s) CaO(s) CO2(g) 
Δgo

f,1000 (kJ/mol) − 951.25 − 531.09 − 395.81 
 
Solution ------------------------------------------------------------------------------------------ 
 
The equilibrium constant K can be expressed in terms of the activities: 
 

 K = 
3

2

CaCO

COCaO

a
aa

 = 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

o

oo

3

3

2

2

ˆ

ˆˆ

CaCO

CaCO

CO

CO

CaO

CaO

f
f

f
f

f
f

 (E-1) 

 
Since we have pure solid phases: 
 

 = CaOa o

ˆ

CaO

CaO

f
f  = o

CaO

CaO

f
f  = exp ⎥⎦

⎤
⎢⎣
⎡ −

RT
Pv )1(  ≈ 1 at low pressure 

 

 = 
3CaCOa o

3

3

ˆ

CaCO

CaCO

f
f

 = o
3

3

CaCO

CaCO

f
f

 = exp ⎥⎦
⎤

⎢⎣
⎡ −

RT
Pv )1(  ≈ 1 at low pressure 

 
For the gas phase 
 

  = 
2COa o

2

2
ˆ

CO

CO

f
f

 = 
bar

PyCO

1
2  =  

2COP

 

Therefore K = = = exp
2COP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o
1000,  

 
The Gibbs energy of reaction is given by 

                                                 
9 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 457 
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  =  1000,rxn
ogΔ ∑ Δ 1000,f

o
i gν

 
  = (Δgo

f)CaO + (Δgo
f)CO2 − (Δgo

f)CaCO3 1000,rxn
ogΔ

 
  = (− 531.09)CaO + (− 395.81)CO2  − (− 951.25)CaCO3 1000,rxn

ogΔ
 
  = 24.35 kJ/mol 1000,rxn

ogΔ
 

 K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
g rxn

o
1000,  = exp ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

)15.298)(314.8(
350,24  = 0.0535 

 
Therefore, calcium carbonate will dissociate at 1000oK until the pressure reaches 0.0535 bar 
or until all the available CaCO3(s) reacted. 
  
6.8 Thermodynamics of Pack Cementation 
 
Pack cementation is a process where a pure element or master alloy is deposited on the 
surface of a superalloy to extend its life in corrosive and oxidizing environments at high 
temperature. There are four constituents to this process: a filler, a pure element or master 
alloy, an activator, and a substrate. The inert or filler provides a medium for vapor transport, 
e.g., aluminum oxide Al2O3. The pure element or master alloy will be deposited on the 
substrate. The activator is used to transport the master alloy through the filler to the substrate, 
which is the surface of the superalloy. We will consider the case where aluminum with AlF3 
activator will be mixed with aluminum oxide powder in a pack cementation process at 
1400oK. A schematic of the process is shown in Figure 6.8-1 where the system is maintained 
at 1 atm in an environment of Argon gas. The bulk pack is the region where aluminum and 
activator exist within the filler. In the depleted zone, there is no aluminum or activator. For 
this process aluminum is transferred from the bulk pack to the substrate in the form of 
aluminum flouride vapor, under the action of the thermodynamic activity gradient that exists 
between the pack and substrate. 
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Figure 6.8-1 Schematic of pack aluminizing process. 

 
At the bulk pack the following reactions will occur 
 
 AlF3(s) = AlF3(g) (6.8-1) 
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 2Al(l) + AlF3(s) = 3AlF(g) (6.8-2) 
 
 Al(l) + 2AlF3(s) = 3AlF2(g) (6.8-3) 
 
    2AlF3(g) = Al2F6(g) (6.8-4) 
 
Since the melting point of pure aluminum is 933.6oK, aluminum will exist in the bulk pack as 
a liquid. The five partial pressures (PAlF, PAlF2, PAlF3, PAl2F6, and PAr) in the bulk pack can be 
obtained from the four equilibrium conditions above and the assumption that  
 
 PAlF + PAlF2 + PAlF3 + PAl2F6 + PAr = 1 atm (6.8-5) 
 
Table 6.8-1 provides data for the Gibbs energies of formation for the species present in the 
process. 
 

Table 6.8-1  in kcal/mol⋅oK 1400,rxn
ogΔ

Thermodynamic Data for Mineral Technology, L. B. Pankrats, J. M. Stuve, and N. A. Gokcen 
Species AlF3(c) AlF(g) AlF2(g) AlF3(g) Al(c,l) 

 
Al2F6(g) 

1400,rxn
ogΔ  − 274.125 − 88.241 − 173.235 − 267.838 0 − 532.504 

 
The equilibrium constant K is then calculated from  
 
 K = exp(− /RT) (6.8-6) 1400,rxn

ogΔ
 
In this equation,  =  1400,rxn

ogΔ ∑ Δ 1400,f
o

i gν
 
The equilibrium constant K1 for reaction (6.8-2): [2Al(l) + AlF3(s) = 3AlF(g)] can be 
expressed in terms of the activities: 
 

 K = 2

3

3 AlAlF

AlF

aa
a    (6.8-7) 

 
Since we have pure solid and liquid phase: 
 

 aAlF  = o

ˆ

AlF

AlF

f
f  = o

AlF

AlF

f
f  = exp ⎥⎦

⎤
⎢⎣
⎡ −

RT
Pv )1(  = 1 

 

 aAl = o

ˆ

Al

Al

f
f  = o

Al

Al

f
f  = exp ⎥⎦

⎤
⎢⎣
⎡ −

RT
Pv )1(  = 1  

 
For the gas phase 
 

  = 
3AlFa o

3

3

ˆ

AlF

AlF

f
f

 = 
atm

PyAlF

1
3  =  

3AlFP
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The equilibrium constants for the four reactions (6.8-1) - (6.8-4) are then related to the partial 
pressures by the following relations 
 
 K1 = PAlF3 (6.8-8) 
 
 K2 = PAlF

3 (6.8-9) 

 

 K3 = PAlF2
3 (6.8-10) 

 

 K4 = 2
3

62

AlF

FAl

P
P  (6.8-11) 

 
The five partial pressures can be easily determined from equations (6.8-8)-(6.8-11) and 
equation (6.8-5). The results are 
 
 PAlF3 = 0.1043, PAlF = 0.3241, PAlF2 = 0.0327, PAl2F6 = 0.0035, and PAr = 0.5353 
 
The following Matlab program is used to evaluate the partial pressures 
------------------------------------------------------------------------------------ 
% Aluminum packing with AlF3 activator 
% T = 1400 K 
R = 1.987;T = 1400;RT = R*T;P=1; 
% Data at 1400 K 
dGAlF3c = -274.125;dGAlF3 = -267.838; 
dGAlF = -88.241; dGAlF2 = -173.235; 
dGHF = -67.047; dGAl2F6 = -532.504; 
% 
dGr = dGAlF3 - dGAlF3c; K1 = exp(-1000*dGr/RT); 
dGr = 3*dGAlF- dGAlF3c; K2 = exp(-1000*dGr/RT); 
dGr = 3*dGAlF2 - 2*dGAlF3c; K3 = exp(-1000*dGr/RT); 
dGr = dGAl2F6 - 2*dGAlF3; K4 = exp(-1000*dGr/RT); 
% Evaluate the partial pressure at the bulk pack 
% 
PAlF3 = K1; PAlF = K2^(1/3); PAlF2 = K3^(1/3); PAl2F6 = K4*PAlF3^2; 
PAr = 1 - (PAlF3 + PAlF + PAlF2 + PAl2F6); 
disp('Partial pressure in atm, diffusion in argon') 
disp('PAlF3           PAlF          PAlF2           PAl2F6         PAr') 
fprintf('%10.3e  %10.3e  %10.3e  %10.3e  %10.3e  
%10.3e\n',PAlF3,PAlF,PAlF2,PAl2F6,PAr) 
 
>> c6d8 
Partial pressure in atm, diffusion in argon 
PAlF3           PAlF          PAlF2           PAl2F6         PAr 
1.043e-001  3.241e-001  3.270e-002  3.481e-003  5.353e-001   
---------------------------------------------------------------------------------------------------- 
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6.9 Equilibrium in Electrochemical Systems 
 
In electrochemical systems we can obtain work by applying an electric potential to two 
electrodes. A galvanic cell is an electrochemical cell that uses a spontaneous reaction to 
produce useful work. When copper and iron pipes are connected, a galvanic cell is created as 
shown in Figure 6.9-1. Electron will flow from iron with lower electron affinity to copper 
with higher affinity until a few volts counterbalancing electrical potential is established 
between them. An electrochemical cell also needs an electrolytic solution in contact with the 
two metals that allows ions to be transported from one metal to the other. Water is an 
electrolyte since it contains H+, OH-, and other ions. 
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Electron flow

Metallic connection

 
 

Figure 6.9-1 Schematic of a galvanic cell. 
 

An electrolytic cell is an electrochemical cell that requires electrical work to induce a 
reaction that would not occur spontaneously. An example of an electrolytic cell is shown in 
Figure 6.9-2 where both electrodes are immersed in a common electrolyte. 
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Figure 6.9-2 Schematic of an electrolytic cell. 
 

At the cathode we have reduction of cupric ions to grow solid copper: 
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 Cu2+(l) + 2e- → Cu(s) (6.9-1) 
 
At the anode we have oxidation of the water: 
 
 H2O(l)  → 0.5O2(g) + 2H+(l) + 2e-  (6.9-2) 
 
The reaction (6.9-1) occurring on the cathode and reaction (6.9-2) occurring on the anode are 
called half-cell reactions. The overall reaction is obtained by adding the oxidation and 
reduction half reactions: 
 
 H2O(l)  + Cu2+(l) → 0.5O2(g) + 2H+(l) + Cu(s) (6.9-3) 
 
Electrochemical cells can contain different electrolyte compositions at the anode and the 
cathode. An example shown in Figure 6.9-3 is an alternative electroplating process for 
copper in which zinc is oxidized at the anode and goes into solution as Zn2+. This cell is 
galvanic since the copper growth occurs spontaneously without the input of electrical work. 
The two electrolytes are separated by a salt bridge that allows a net charge to be transferred 
from one electrolyte solution to the other but does not allow undesired mixing of the 
electrolyte. A salt bridge in impermeable to the ions. It can be a simple porous disk or a gel 
saturated with a strong electrolyte such as KCl. 
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Figure 6.9-3 A galvanic cell with a salt bridge. 
  
A shorthand notation has been developed to describe electrochemical cells. Starting at the 
anode, we pass through the electrolyte to the cathode and indicate the active species in 
chemical notation. A vertical bar separates two phases, that is, phase 1| phase 2. A double bar 
indicates a salt bridge or an impermeable separation of the phases, that is, phase 1|| phase 2. 
The short hand notation for the electrolytic cell shown in Figure 6.9-2 is: 
 
 Pt|O2(g)|H2SO4(l), CuSO4(l)|Cu(s) (6.9-4) 
 
The short hand notation for the galvanic cell shown in Figure 6.9-3 is: 
 
 Zn(s)|ZnSO4(l)||CuSO4(l)|Cu(s) (6.9-5) 
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The differential electrical work, δW*, can be related to the electric potential difference 
between the cathode and the anode, E, and the differential amount of charge transferred, dQ, 
by the equation: 
 
 δW* = − EdQ (6.9-6) 
 
The sign convention for equation (6.9-6) is chosen so that when the cathode has a positive 
potential with respect to the anode, the process is spontaneous, while a negative potential 
indicates that work is required for the process to proceed. The oxidation half-reaction at the 
anode causes a flow of electrons in the external circuit; therefore the differential charge 
transferred can be related to the extent of reaction as follows: 
 

 {charge transferred} = 
⎭
⎬
⎫

⎩
⎨
⎧

reacting species mole
liberated e mole -

⎭
⎬
⎫

⎩
⎨
⎧

-e mole
charge {extent of reaction} 

 
 dQ = zFdζ (6.9-7) 
 
In this equation, z is the number of moles of electron liberated per mole of species that reacts 
and F is Faraday’s constant, 96,485 C/(mole e-), which represents the charge of 1 mole of 
electrons. Substituting dQ from equation (6.9-7) into equation (6.9-6) yields 
 
 δW* = − zEFdζ (6.9-8) 
 
For reversible reaction with non-Pv work we have 
 
 δW* = (dG)T,P = dζ (6.9-9) ∑ iiνμ
 
Comparing equations (6.9-8) and (6.9-9) we obtain 
 

 − zEF = ∑ = iiνμ ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ io

i

io
i f

fRTg ν
ˆ

ln  (6.9-10) 

 
Assuming the activity of the solids in equation (6.9-10) is unity, we obtain 
 

 − zEF =  + RTln  (6.9-11) o
rxngΔ ( ) (∏∏ ⎥

⎦

⎤
⎢
⎣

⎡

liquids
ii

vapors
ii

ii xPy νν γϕ̂ )

 
Electrochemical cells typically operate at low pressure so we can assume iϕ̂ = 1. For the 
liquid in the electrolyte, the standard state is 1-m solution where m denotes molality (moles 
per kg of solvent). Equation (6.9-11) becomes 
 

 − zEF =  + RTln  (6.9-12) o
rxngΔ ( ) ( )∏∏ ⎥

⎦

⎤
⎢
⎣

⎡

liquids
ii

vapors
i

ii cP νν γ
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In this equation, the concentration ci is in molality. If a species in the liquid concentration of 
1 mole per kg of solvent and its interactions corresponding to an ideal solution, it has ciγi = 1. 
Dividing equation (6.9-12) by zF yields 
 

 E =  − o
rxnE

zF
RT ln  (6.9-12) ( ) ( )∏∏ ⎥

⎦

⎤
⎢
⎣

⎡

liquids
ii

vapors
i

ii cP νν γ

 
In this equation, the standard potential of reaction is defined as  
 

  = − o
rxnE

RT
go

rxnΔ  (6.9-13) 

 
The standard potential of reaction is obtained from thermochemical data and is measured 
with reference to hydrogen-hydrogen ion oxidation reaction, whose potential is defined as 
zero: 
 
 H2(g) → 2H+(l) + 2e- Eo = 0.0 V (6.9-14) 
 
Example 6.7-310  ---------------------------------------------------------------------------------- 
The reverse copper disproportion reaction has been proposed to etch solid copper: 
 
 Cu + Cu2+(l) → 2Cu+(l)  
 
Determine the equilibrium constant of the disproportionation reaction using the following 
half-cell reactions: 
 
 Cu2+(l) + e- → Cu+(l)  Eo = 0.153 V 
 
 Cu → Cu+(l) + e-  Eo = − 0.521 V 
 
Solution ------------------------------------------------------------------------------------------ 
 
The sum of the half-cell reactions gives the copper disproportion reaction, therefore 
 
 =  0.153 − 0.521 = − 0.368 V o

rxnE
 
   = − zF  = (−1)(96,485)(− 0.368) = 35.5 kJ/mol o

rxngΔ o
rxnE

 
Since >0, this reaction will not occur spontaneously. The equilibrium K constant is then  o

rxngΔ
 

 K = K = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−

RT
go

rxn  = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

)15.298)(314.8(
500,35  = 6.01×10-7 

 
 
                                                 
10 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 466 
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Chapter 6  
 
6.10 Complex Chemical Equilibrium 
 
We want to determine the number of intensive variables that must be specified to define a 
system consisting of m identifiable chemical species distributed among π phases. To describe 
each phase we need m−1 independent compositions, T, and P to a total of m+1 intensive 
variables. The total number of variables required to specify π phases is π(m+1). For phase 
equilibrium we have the following set of equations: 
 
 Tα = Tβ = … = Tπ 
 
 Pα = Pβ = … = Pπ 

 

 = = … = 
αμ1

βμ1
πμ1  

 

 = = … = 
αμ2

βμ2
πμ2  

 
     M  

β
 = = … =  

αμm μm
πμm

 
Each row in the set of equations above contains (π−1) independent equations. Thus there are 
a total of (π−1)(m+2) independent equations between the variables. In addition to these 
equations there are R equations from the number of independent reactions 
 
 = 0 (j = 1… R) ∑

i
ijijνμ

 
There might be additional equations, expressible in terms of intensive variables, which apply 
to the system. These equations will be called additional constraints and their number will be 
designated s. The total number of independent equations involving intensive variables is 
therefore 
 
 (π−1)(m+2) + R + s 
 
The number of variables we can independently pick (the so-called degree of freedom, F) is 
obtained by subtracting the total π(m+1) variables we need to specify by the [(π−1)(m+2) + 
R + s] independent equations.  
 
 F  = π(m+1) − [(π−1)(m+2) + R + s] = m + 2 − π − R − s 
 
We can independently specify (m + 2 − π − R − s) to complete define a system with m 
components and π phases. The combination of (m− R − s) is called the phase rule 
components, C. We now need to determine the number of independent reaction, R, among 
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the chemical species in a system. The procedure will be illustrated by the following 
examples. 
 
Example 6.10-1.11 ---------------------------------------------------------------------------------- 
In a reacting system at equilibrium, the following species are considered to be present: CO2, 
CO, C, CH4, H2, H2O, and N2. Determine the number of phase rule components and the 
number of independent reactions. 
 
Solution ------------------------------------------------------------------------------------------ 
 
We will first create a coefficient matrix called the β matrix as follows: 
 

 C O H N 
CO2 1 2 0 0 
CO 1 1 0 0 
C 1 0 0 0 

CH4 1 0 4 0 
H2 0 0 2 0 
N2 0 0 0 2 

H2O 0 1 2 0 
 
The number of phase rule components, C, is equal to the rank of the β matrix. The rank of a 
matrix is the order of the largest determinant having a nonzero value that can be created from 
the matrix. The order of a determinant, or a square matrix, is the number of rows or columns. 
For this example, the rank of the matrix is equal to or less than 4. A fourth order nonzero 
determinant can be formed from the β matrix. Therefore C = 4. The rank of the β  matrix can 
also be founded from the following Matlab statement: 
 
>> rank([1 2 0 0;1 1 0 0;1 0 0 0;1 0 4 0;0 0 2 0;0 0 0 2;0 1 2 0]) 
ans = 
     4  
 
Since C = m− R − s , and s = 0. The number of independent reaction R is  
 
 R = m− C = 7 − 4 = 3 
 
We now need to find the three independent reactions. First we write the formation reaction 
for each of the 4 molecular species (CO2, CO, CH4, and H2O). 
 
 C + O2 = CO2 (1) 
 C + 0.5O2 = CO (2) 
 C + 2H2 = CH4 (3) 
 H2 + 0. 5O2 = H2O (4) 
 
Since free oxygen is not among the m species, we can eliminate O2 from the above set by 
using the second equation 
 
                                                 
11 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 535 
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 C + 0.5O2 = CO ⇒  0.5O2 = CO − C 
 
Equation (1) becomes 
 
 C + 2CO − 2C = CO2 ⇒  2CO = C +CO2 
 
Equation (4) becomes 
 
 H2 + CO − C = H2O ⇒  H2 + CO = C + H2O 
 
We now have a set of three independent reactions 
 
 2CO = C +CO2 (E-1) 
 C + 2H2 = CH4 (E-2) 
 H2 + CO = C + H2O (E-3) 
 
It should be noted that there are more than one set of 3 independent reactions. 
 
Example 6.10-2. ---------------------------------------------------------------------------------- 
In a reacting system at equilibrium, the following species are considered to be present: H2, 
ethane (C2H6), CO, H2O, and methanol (CH3OH). Determine the number of phase rule 
components and the number of independent reactions. 
 
Solution ------------------------------------------------------------------------------------------ 
 
The β matrix is created as follows 
 

 H2 C2H6 CO H2O CH3OH 
C 0 2 1 0 1 
H 2 6 0 2 4 
O 0 6 0 1 1 

 
The rank of the β matrix is 3 = C (number of phase rule components) 
 
Since C = m− R − s , and s = 0. The number of independent reaction R is  
 
 R = m− C =5 − 3 = 2 
 
 

 



Appendix A  
Solving Algebraic Equations 

 
A.1 The Newton-Raphson Method 
 
The Newton-Raphson method and its modification is probably the most widely used of all 
root-finding methods. Starting with an initial guess x1 at the root, the next guess x2 is the 
intersection of the tangent from the point [x1, f(x1)] to the x-axis. The next guess x3 is the 
intersection of the tangent from the point [x2, f(x2)] to the x-axis as shown in Figure A.1. The 
process can be repeated until the desired tolerance is attained. 
 

x1

f(x)
f(x )1 B

x2x3

 
Figure A.1 Graphical depiction of the Newton-Raphson method. 

 
The Newton-Raphson method can be derived from the definition of a slope 
 

 f’(x1) = 
21

1 0)(
xx

xf
−
−  ⇒ x2 = x1 − 

)('
)(

1

1

xf
xf  

 
In general, from the point [xn, f(xn)], the next guess is calculated as 
 

 xn+1 = xn − 
)('
)(

n

n

xf
xf  

 
The derivative or slope f(xn) can be approximated numerically as 
 

 f’(xn) = 
x

xfxxf nn

Δ
−Δ+ )()(  
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Example A.1-1 ----------------------------------------------------------------------------------- 
 
Solve f(x) = x3 + 4x2 − 10 using the Newton-Raphson method for a root in [1, 2]. 
 
Solution ----------------------------------------------------------------------------------------- 

From the formula  xn+1 = xn − 
)('
)(

n

n

xf
xf  

 
 f(xn) =  + 4 − 10 ⇒ f’(xn) = 3  + 8xn 3

nx 2
nx 2

nx
 

 xn+1 = xn − 
nn

nn

xx
xx

83
104

2

23

+
−+  

 
Using the initial guess, xn  = 1.5, xn+1 is estimated as 
 

 xn+1 = 1.5 − 
5.185.13
105.145.1

2

23

×+×
−×+  = 1.3733 

 
----------------------------------------------------------------------------------------------------------- 

 
A Matlab program for the Newton-Raphson method is listed in Table A.1 where the function 
f(x) is an input to the program. The statement eval(f) is used to evaluate the function at a 

given value of x. The derivative is evaluated numerically using f’(xn) = 
x

xfxxf nn

Δ
−Δ+ )()(  

with Δx = 0.01. A sample result is given at the end of the program. 
 
Table A.1 --------------------------------------------------------------------------------- 
% Example A.1: Newton method with numerical derivative 
%  
f=input('f(x)=','s'); 
tol=input('error tolerance =1e-5, new tolerance='); 
if length(tol)==0,tol=1e-5;end 
x1=input(' First guess='); 
x=x1; fx=eval(f); 
for i=1:100 
  if abs(fx)<tol, break,end 
  x=x+.01; 
  ff=eval(f); 
  fdx=(ff-fx)/.01; 
  x1=x1-fx/fdx; 
  x=x1; 
  fx=eval(f); 
  fprintf('i = %g, x = %g, fx = %g\n',i,x,fx) 
end 
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>> e1d1 
f(x)=x^3+4*x^2-10 
error tolerance =1e-5, new tolerance= 
 First guess=1.5 
i = 1, x = 1.37391, fx = 0.143874 
i = 2, x = 1.36531, fx = 0.00129871 
i = 3, x = 1.36523, fx = 6.39291e-006 
 
---------------------------------------------------------------------------------------------------------- 
A.2 Newton’s Method for Systems of Nonlinear Algebraic Equations 
 
Consider two equations f1(x1, x2) and f2(x1, x2) for which the roots are desired. Let , be 
the guessed values for the roots. f1(x1, x2) and f2(x1, x2) can be expanded about point ( , ) 
to obtain 

0
1p

0
1p

0
2p

0
2p

 

 f1(x1, x2) = f1( , ) + 0
1p 0

2p
1

1

x
f

∂
∂ (x1 − ) + 0

1p
2

1

x
f

∂
∂ (x2 − ) = 0 0

2p

 f2(x1, x2) = f2( , ) + 0
1p 0

2p
1

2

x
f
∂
∂ (x1 − ) + 0

1p
2

2

x
f
∂
∂ (x2 − ) = 0 0
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Let  = (x1 − ) and  = (x2 − ), the above set can be written in the matrix form 0

1y 0
1p 0

2y 0
2p

 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

2

2

1

2

2

1

1

1

x
f

x
f

x
f

x
f

⎥
⎦

⎤
⎢
⎣

⎡
0
2

0
1

y
y

 = −  ⎥
⎦

⎤
⎢
⎣

⎡

),(
),(

0
2

0
12

0
2

0
11

ppf
ppf

 
or 
 J(p(0))y(0) = − F(p(0)) 
 
In general, the superscript (0) can be replaced by (k−1) 
 
 J(p(k-1))y(k-1) = − F(p(k-1)) 
 
J(p(k-1)) is the Jacobian matrix of the system. The new guessed values x at iteration k are 
given by 
 
 x =  p(k) = p(k-1) + y(k-1) 
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Example A.2-1 
 
Use Newton’s method with the initial guess x = [0.1 0.1 −0.1] to obtain the solutions to the 
following equations1 
 

 f1(x1, x2, x3) = 3x1 − cos(x2 x3) − 
2
1  = 0 

 f2(x1, x2, x3) =  − 81(x2 + 0.1)2 + sin x3 + 1.06 = 0 2
1x

 f2(x1, x2, x3) =  + 20x3 + 21xxe−

3
310 −π  = 0 

 
Solution 
 
The following two formulas can be applied to obtain the roots 
 
 J(p(k-1))y(k-1) = − F(p(k-1)) 
 
J(p(k-1)) is the Jacobian matrix of the system.  
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F(p(k-1)) is the column vector of the given functions 
 

 F(p(k-1)) =  
⎥
⎥
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The new guessed values x at iteration k are given by 
 
 x =  p(k) = p(k-1) + y(k-1) 
 
Table A.2-1 lists the Matlab program to evaluate the roots from the given initial guesses. 
 
Table A.2-1 Matlab program for Example A.2-1  ------------- 
% Newton Method for set of nonlinear equations 
% 
f1='3*x(1)-cos(x(2)*x(3))-.5'; 
f2='x(1)*x(1)-81*(x(2)+.1)^2+sin(x(3))+1.06'; 
f3= 'exp(-x(1)*x(2))+20*x(3)+10*pi/3-1' ; 
                                                 
1 Numerical Analysis by Burden and Faires 

 A-4



% Initial guess 
% 
x=[0.1 0.1 -0.1]; 
for i=1:5 
f=[eval(f1) eval(f2) eval(f3)]; 
Jt=[3                     2*x(1)          -x(2)*exp(-x(1)*x(2)) 
   x(3)*sin(x(2)*x(3))  -162*(x(2)+.1)   -x(1)*exp(-x(1)*x(2)) 
   x(2)*sin(x(2)*x(3))   cos(x(3))       20]'; 
% 
dx=Jt\f'; 
x=x-dx'; 
fprintf('x = ');disp(x) 
end 
 
>> e1d5d1 
x =     0.4999    0.0195   -0.5215 
x =     0.5000    0.0016   -0.5236 
x =     0.5000    0.0000   -0.5236 
x =     0.5000    0.0000   -0.5236 
x =     0.5000    0.0000   -0.5236 
------------------------------------------------------------------------------------------------------------ 
 
Matlab can also evaluate the Jacobian matrix of the system analytically as shown in Table 
A.2-2 
 
 Table A.2-2 Matlab program for Example A.2-1  ------------- 
% Newton Method with Jacobian matrix evaluated analytically by Matlab 
%  
syms x1 x2 x3 
F=[3*x1-cos(x2*x3)-.5 
   x1^2-81*(x2+.1)^2+sin(x3)+1.06 
   exp(-x1*x2)+20*x3+(10*pi-3)/3]; 
Jac=[diff(F,x1) diff(F,x2) diff(F,x3)]; 
x1=.1;x2=.1;x3=-.1; 
k=0; 
disp('   k     x1                 x2                  x3') 
fprintf('%3.0f  %10.7f  %10.7f  %10.7f\n',k,x1,x2,x3) 
for k=1:10 
Am=eval(Jac);Bc=eval(F); 
yk=Am\Bc; 
x1=x1-yk(1); 
x2=x2-yk(2); 
x3=x3-yk(3); 
fprintf('%3.0f  %10.7f  %10.7f  %10.7f\n',k,x1,x2,x3) 
if max(abs(yk))<.00001, break, end 
end 
 
>> e1d5d1b 
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Jac = 
[               3,   sin(x2*x3)*x3,   sin(x2*x3)*x2] 
[            2*x1,    -162*x2-81/5,         cos(x3)] 
[ -x2*exp(-x1*x2), -x1*exp(-x1*x2),         20] 
 
  k         x1                x2                 x3 
  0   0.1000000   0.1000000  -0.1000000 
  1   0.4998697   0.0194668  -0.5215205 
  2   0.5000142   0.0015886  -0.5235570 
  3   0.5000001   0.0000124  -0.5235985 
  4   0.5000000   0.0000000  -0.5235988 
  5   0.5000000   0.0000000  -0.5235988 
 
Solving set of nonlinear equations with Excel 
 
Use the initial guess x = [0.1 0.1 −0.1] to obtain the solutions to the following equations 
 

 f1(x1, x2, x3) = 3x1 − cos(x2 x3) − 
2
1  = 0 

 f2(x1, x2, x3) =  − 81(x2 + 0.1)2 + sin x3 + 1.06 = 0 2
1x

 f2(x1, x2, x3) =  + 20x3 + 21xxe−

3
310 −π  = 0 
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Appendix B  
 

Curve Fitting 
 
B.1 Nonlinear Curve Fitting 
 
A sample consists of a layer of aluminum and a layer of a composite coating is tested in a 
vacuum chamber by measuring its temperature as a function of time. The behavior of the 
sample temperature has a nonlinear dependence on the emissivity ε of the sample and the 
heat transfer coefficient h between the coating and the vacuum air. 
 

Insulation

Aluminum
Composite
coating

Vacuum chamber

 
Figure B.1-1. A sample enclosed within a testing chamber. 

 
The unknown parameters h and ε may be obtained by fitting the model equation to 
experimental data as shown in Figure B.1.2 where the curve represents the model equation 
and the circles represent the data. 
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Figure B.1-2. Transient temperature of a typical sample. 
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To illustrate how this is done, first consider a portion of the graph in Figure B.1-2 that is re-
plotted in Figure B.1-3. The relationship between the temperature Ti obtained from the model 
equation and the experimental value Ti,exp can be expressed generally as 
 
 Ti,exp  = Ti (t; ε, h) + ei (B.1-2) 
 
where ei is a random error that can be negative or positive. Ti is a function of the independent 
variable ti and the parameters h and ε. The random error is also called the residual, which is 
the difference between the calculated and measured values.  

 

ei

Ti,exp

Ti

ti  
Figure B.1-3. Relationship between the model equation and the data 

 
Nonlinear regression is based on determining the values of the parameters that minimize the 
sum of the squares of the residuals called an objective function Fobj.  
 

 Fobj = = =  (B.1-3) ∑
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Where N is the number of data points or measured temperatures in this case. The temperature 
from equation B.1-2 can be expanded in a Taylor series around h and ε and curtailed after the 
first derivative. 
 

 Ti,j+1 =  Ti,j + 
ε∂

∂ jiT , Δε + 
h

T ji

∂
∂ , Δh (B.1-4) 

 
Where j is the guess and j+1 is the prediction, Δε = εj+1 − εj, and Δh = hj+1 − hj. We have 
linearized the original model with respect to the parameters h and ε. Equation (B.1-4) can be 
substituted into Eq. (B.1-2) to yield 
 

 Ti,exp  − Ti,j = 
ε∂

∂ jiT , Δε + 
h

T ji

∂
∂ , Δh + ei (B.1-5a) 

 
or in matrix form 
 

 B-2



 {D} = [Zj]{ΔA} + {E} (B.1-5b) 
 
where [Zj] is the matrix of partial derivatives of the function (called the Jacobian matrix) 
evaluated at the guess j, the vector {D}contains the differences between the measure 
temperature and the calculated temperature at the guess j, the vector {ΔA}contains the 
changes in the parameter values, and the vector {E} contains the residuals. It should be noted 
that as the final values of the parameters are obtained after the iterations vector {D} is the 
same as vector {E}. 
 

 [Zj] = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂
∂
∂

∂
∂
∂
∂

h
TT

h
T
h
T

T

T

NN

ε

ε

ε

MM

2

1

2

1

, {D} = , {ΔA} = , {E} =  

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

−
−

jNN

j

j

TT

TT
TT

,,exp

,2,exp2

,1,exp1

M ⎭
⎬
⎫

⎩
⎨
⎧
Δ
Δ

h
ε

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

Ne

e
e

M
2

1

 
We minimize the objective function  
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by taking its derivative with respect to each of the parameters and setting the resulting 
equation to zero. 
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This algorithm is Gauss-Newton method for minimizing the sum of the squares of the 
residuals between data and nonlinear functions. Equations (B.1-6a) and (B.1-6b) can be 
combined in a matrix form 
 
 [Zj]T{E} = 0 (B.1-7) 
 
where [Zj]T is the transpose of [Zj]. Let consider N = 3 so we can see the combination from 
(B.1-6a) and (B.1-6b) to (B.1-7). 
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Substitute {E} = {D} − [Zj]{ΔA} from Eq. (B.1-5b) into (B.1-7) 
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 [Zj]T{{D} − [Zj]{ΔA}} = 0  
 
or 
 
 [Zj]T[Zj]{ΔA} = {[Zj]T{D}} (B.1-8) 
 
The Jacobian matrix [Zj] may be evaluated numerically for the model equation (B.1-1). 
 

 
ε∂

∂ iT ≈ 
δε

εδεε ),(),( hThT ii −+  (B.1-9a) 

 

 
h
Ti

∂
∂ ≈ 

h
hThhT ii

δ
εδε ),(),( −+  (B.1-9b) 

 
Typically, δε can be chosen to be 0.01 and δh can be chosen to be 0.01 W/m2⋅K. Thus, the 
Gauss-Newton method consists of solving Eq. (B.1-8) for {ΔA}, which can be employed to 
compute improved values for the parameters h and ε. 
 
 εj+1 = εj + Δε (from {ΔA}) 
 
 hj+1 = hj + Δh (from {ΔA}) 
 
This procedure is repeated until the solution converges that is until Δε and Δh fall below an 
acceptable criterion. The Gauss-Newton method is a common algorithm that can be found in 
many numerical method texts. However, this description follows the notations and 
development by Chapra and Canale. 
 
Example B.1-1 
 
Fit the function T(t; ε, h) = ε(1 − e−ht) to the data. 
 

t 0.25 0.75 1.25 1.75 2.25 
T 0.28 0.75 0.68 0.74 0.79 

 
Use initial guesses of h = 1 and ε = 1 for the parameters. 
 
Solution 
 
The partial derivatives of the function with respect to the parameters h and ε are 
 

 
ε∂

∂T  =  1 − e−ht and 
h
T
∂
∂  = εte−ht 
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The matrix multiplied by its transpose results in 
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 [Zj]T[Zj] =  ⎥
⎦

⎤
⎢
⎣

⎡
4404.09489.0
9489.03194.2

 
The vector {D} consists of the differences between the measurements T and the model 
predictions T(t; ε, h) = ε(1 − e−ht) 
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The vector {D} is pre-multiplied by [Zj]T to give 
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The vector {ΔA} can be calculated by using MATLAB statement dA=ZjTZj\ZjTD ({ΔA} = 
{[Zj]T[Zj] \[Zj]T{D}})  
 

  {ΔA} =  ⎥
⎦

⎤
⎢
⎣

⎡−
5019.0
2714.0
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The next guesses for the parameters ε and h are 
 
 ε = 1 − 0.2715 = 0.7285 
 
 h =  1 + 0.5019 = 1.5019 
 
Table B.1-1 lists the MATLAB program with the results of two iterations. 
 
Table B.1-1 _____________________________________ 
 
% Gauss-Newton method 
% 
t=[0.25 0.75 1.25 1.75 2.25]'; 
T=[0.28 0.57 0.68 0.74 0.79]'; 
e=1;h=1; 
Tmodel='e*(1-exp(-h*t))'; 
dTde='1-exp(-h*t)';dTdh='e*t.*exp(-h*t)'; 
for i=1:2 
 Zj=[eval(dTde) eval(dTdh)]; 
 ZjTZj=Zj'*Zj 
 D=T-eval(Tmodel) 
 ZjTD=Zj'*D 
 dA=ZjTZj\ZjTD 
 e=e+dA(1); 
 h=h+dA(2); 
 fprintf('Iteration #%g: e = %8.4f, h = %8.4f\n',i,e,h) 
end 
 
>> Gauss 
ZjTZj = 
    2.3194    0.9489 
    0.9489    0.4404 
D = 
    0.0588 
    0.0424 
   -0.0335 
   -0.0862 
   -0.1046 
ZjTD = 
   -0.1534 
   -0.0366 
dA = 
   -0.2715 
    0.5019 
Iteration #1: e =   0.7285, h =   1.5019 
ZjTZj = 
    3.0660    0.4162 
    0.4162    0.0780 
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D = 
    0.0519 
    0.0777 
    0.0629 
    0.0641 
    0.0863 
ZjTD = 
    0.2648 
    0.0397 
dA = 
    0.0625 
    0.1758 
Iteration #2: e =   0.7910, h =   1.6777 
 
 
Table B.1-2 lists the Matlab program that solves for the two parameters ε and h until the 
maximum change of the parameters between two successive iterations is less than 0.01. The 
standard error and the correlation coefficient of the fitted values are also evaluated. The 
standard error stde is determine from  
 

  stde =
2

1
−N

( )∑
=

−
N

i
ii TT

1

2
exp, = 

2−N
S ,   where S =  ( )∑

=

−
N

i
ii TT

1

2
exp,

 
The standard error quantifies the spread around the regression curve. A crude measure of the 
goodness-of-fit is given by the correlation coefficient r 
 

  r = 
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S
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In this expression ,expiT  is the mean of the experimental dependent variable. 
 

______ Table B.1-2 Gauss Newton method for nonlinear curve fitting ______ 
 
% Gauss-Newton method 
% 
t=[0.25 0.75 1.25 1.75 2.25]'; 
T=[0.28 0.57 0.68 0.74 0.79]'; 
e=1;h=1; 
Tmodel='e*(1-exp(-h*t))'; 
dTde='1-exp(-h*t)';dTdh='e*t.*exp(-h*t)'; 
for i=1:20 
 Zj=[eval(dTde) eval(dTdh)]; 
 ZjTZj=Zj'*Zj; 
 D=T-eval(Tmodel); 
 ZjTD=Zj'*D; 
 dA=ZjTZj\ZjTD; 
 e=e+dA(1); 
 h=h+dA(2); 
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 if max(abs(dA))<.01,break, end 
end 
fprintf('# of Iteration = %g: e = %8.4f, h = %8.4f\n',i,e,h) 
S=sum((T-eval(Tmodel)).^2); 
stde=sqrt(S/(length(t)-2)); 
Tave=mean(T);Sdev=sum((T-Tave).^2); 
cor=sqrt(1-S/Sdev); 
fprintf('Standard error = %8.4f, Correlation coefficient = %8.4f\n',stde,cor) 
 
>> gauss2 
# of Iteration = 3: e =   0.7919, h =   1.6753 
Standard error =   0.0149, Correlation coefficient =   0.9980 
 
 
The Matlab function fminsearch can also be used to fit the data to an expression with more 
than one parameter, T(t; ε, h) = ε(1 − e−ht). Table B.1-3 lists the function required by 
fminsearch. Table B.1-4 lists the program that calls fminsearch to find the two parameters 
ε = 1 and h = 1. The program also plots the fitted results with the experimental data shown in 
Figure B.1-4. 
 

______ Table B.1-3 Matlab program to define the objective function ______ 
 
function y=nlin(p) 
t=[.25 .75 1.25 1.75 2.25]; 
T=[.28 .57 0.68 0.74 0.79]; 
e=p(1);h=p(2); 
Tc=e*(1-exp(-h*t)); 
y=sum((T-Tc).^2); 
 
 

______ Table B.1-4 Matlab program to find ε and h ______ 
 
clf 
t=[.25 .75 1.25 1.75 2.25]; 
T=[.28 .57 0.68 0.74 0.79]; 
p=fminsearch('nlin',[1 1]) 
tp=.25:.1:2.25; 
e=p(1);h=p(2); 
Tc=e*(1-exp(-h*tp)); 
plot(tp,Tc,t,T,'o') 
grid on 
xlabel('t');ylabel('T') 
legend('Fitted','Data') 
 
>> nlinear 
p = 
    0.7919    1.6751 
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Appendix C  
Process Simulator 

 
Process simulator is one of the most common types of software used in process design. It can be 
used to perform steady or unsteady materials and energy balances for a wide range of process 
equipment. A user usually must follow the following steps to set up a problem on a simulator1: 
 

1.  Select all of the chemical components that are required in the process from the 
component database. 

2. Select the thermodynamic models required for the simulation. These may be different for 
different pieces of equipment. For example, the Peng Robinson equation of state can be 
used to simulate a pump. However, for a liquid-liquid extractor in the same process, it is 
necessary to use a thermodynamic model (e.g. Wilson model) that can predict liquid-
phase activity coefficients and the existence of two liquid phases. 

3. Select the topology of the flow sheet to be simulated by specifying the input and output 
streams for each piece of equipment. 

4. Select the properties (temperature, pressure, flow rate, and composition) of the feed 
streams to the process. 

5. Select the equipment specifications (parameters) for each piece of equipment in the 
process. 

6. Select the format of the output results. 
7. Select the convergence method and run the simulation. 
 

There are basically three types of solution algorithm for process simulators: sequential modular, 
equation solving (simultaneous non-molar), and simultaneous modular. In the sequential modular 
approach the process is solved equipment piece by equipment piece. In the equation solving 
technique, all the equations for the process are written out together and then the resulting matrix 
of nonlinear simultaneous equations is solved to yield the solution. The final simultaneous 
modular technique combines the modularizing of the equations relating to specific equipment 
with the efficient solution algorithms for the simultaneous equation solving technique. 
 
We will go over a sequence of events needed to simulate a two-stage compressor system using 
Provision. This process simulator uses the sequential modular algorithm in which each piece of 
equipment is solved in sequence, starting with the first then followed by the second, and so on. 
This method is not as efficient as the equation solving technique. However the user can easily 
detect the location where convergence is not obtained. 
 
Example: A 1000 lb-mole per hour mixture of 5% methane, 20% ethane, 25% propane, 30% n-
butane, and 20% n-pentane at 14.7 psia and 90°F is to be compressed first to 50 psia, then to 200 
psia using a two-stage compressor system.  An inner-stage cooler is used to cool the compressed 
gas from the first stage to its original temperature by passing the gas stream through a heat 
exchanger in which water is used as a coolant.  This is done to maintain a lower energy 
requirement for the second stage compressor.  A knockout drum is installed after the first cooler 
to remove any liquid present in the compressed gas before feeding it to the second compressor.  
If you have liquid present in a gas stream, it will damage the impeller of the compressor2. 

 
1 Turton et al, Analysis, Synthesis, and Design of Chemical Processes, Prentice Hall, 1998, pg. 480 
2 Dr. Pang’s Provision Student Manual 



To open Provision, go to the Start menu, click on Programs, Simsci, and then ProII 8.0.  The 
following screen should appear: 

 

 
 

Note the different colored boxes and their meanings.  They will be very important to remember 
later on in the simulation.  Click on OK at the bottom of the box to continue into the simulation 
environment.  Next, click on File and then New.  This should bring you to the following screen: 
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This is the basic simulation environment from which you will begin each time you use 

Provision.  It is called the PFD screen.  Before you begin with the procedure given to you in the 
assignment, you need to enter the components that you will be using and your equation of state.  
First click on the Component Selection button on the top toolbar.  This button looks like this: 

.  The following screen should appear: 
 

 
 
 
 From here you can either type in the names of your desired components or you can select 
them from a list already inside Provision.  We will select our components from a list by clicking 
on the Select from Lists button.  The following screen should appear: 
 

 
 

In this assignment, all of the needed components can be found in the All Components - 
PROCESS Bank file. Click on the desired species and click Add Components, the selected 
species will appear in the bottom text box Additions to Component List. After you selected all 
species (Methane, Ethane, Propane, N-butane, Pentane, and Water) click OK to return to the 
following screen.   
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Click OK to return to the PFD screen.  Next click on the Thermodynamic Data button, 

.   

 
 

Once inside, click on Most Commonly Used and then click on Peng-Robinson in Primary 
Method: box.  Then click Add and then OK to return back to the PFD screen. We are now ready 
to begin the procedure to simulate a Two-stage Compressor System. 

Using your drawn PFD as a guide, select needed units and place them on the PFD screen one by 
one. All of the choices for equipment are located in the toolbar on the right side of the screen.  It 
is the thin vertical toolbar titled “PFD”. Click on the Compressor button and then click on the 
space in the PFD where you wish to place the compressor. Follow the same steps for Simple HX 
(1), Flash, Compressor (2), and Simple HX (2). You will notice that each unit is named by 
PROVISION, automatically. You will also notice that each name has a red border meaning that 
some conditions have to be supplied. 

Click on the Stream button on the build palette to draw the stream lines. All the possible EXIT 
ports appear on each unit as soon as the Stream button is selected. The required outlet port are 
colored red, while the optional exits are given in green. 

Add streams by clicking on the origin of the stream (either a unit exit port or an external feed 
stream, on a unoccupied part of the PFD), then click again at the destination of the stream. For 
example: to apply a feed stream to C1, click on the PFD that is not occupied by any unit, and 
then click again at compressor. Notice the name is given as S1. 
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Connect all the streams in order shown in the Figure 1. Pay attention to the number of stream. 
Each stream is numbered in the order they are created. 

 

Figure 1 A two-stage compressor system 

 It is always safe to save frequently. To save, click on File on the menu bar and click on 
Save on the File menu. Type in the file name, Case1 or any name you like, and click on 
the OK button to go back to the PFD. 

You now need to supply the required Stream and Unit Data. 

Feed Stream S1: You can select a stream or unit by double clicking on the name in PFD. Let ’s 
first start by completing the beginning feed stream, S1. Double click on S1 to select that stream. 
You can give it a name, Feed Stream, by typing it in the box next to Description: 

Click on the Flowrate and Composition... button to supply the flow rate and compositions. Since 
we know the total flow rate, click on Total Fluid Flowrate and type in 1000 lb-mol/hr. The 
border becomes blue as soon as you input the data. Fill in the composition since they have red 
borders (0.05, 0.2, 0.25, 0.3, 0.2). Click on OK button when done. 
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To satisfy the phase rule, you need two more variables. For this case you know temperature and 
pressure. To enter temperature, click on the red box named First Specification: choose 
Temperature and type in the temperature, 90oF. To enter the pressure, click on the red box 
named Second Specification: choose Pressure and type in 14.7 psia. Click on the OK button 
since all the requirements are met. S1 now has a black border. 

 

Compressor C1: Double click on the compressor, C1, on the PFD. Supply the Outlet Pressure 
as 50 PSIA in the red box. Change the Adiabatic Efficiency to 80%. Default is 100%. Notice the 
box is green, meaning that the user can input data. Click on the OK button to go back to the PFD. 

 

Heat Exchanger E1: Double click on the heat exchanger, E1, on the PFD. You will see the 
PRO/II-Heat Exchanger window. Check for hot and cold streams by clicking on the Process 
Stream... button. S2 and S3 should be hot, and S8 and S9 should be cold streams. If the sides are 
not set correctly, you can correct it by clicking on the appropriate circle.  
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Click on the OK button to go back to PRO/II-Heat Exchanger window. Click on the 
Specification... button and click on the red box. Choose Hot Product Temperature which is the 
process stream going out of the heat exchanger and type in 90oF for the value. 

 

Click on the OK button to go back to PRO/II-Heat Exchanger window. Input 3 psi for Hot Side 
Pressure Drop and 2 psi for Cold Side Pressure Drop. 

 

Click on the OK button to go back to the PFD. 

Stream going to E1, S8: Double click on S8 on the PFD. Click on the Flowrate and 
Composition... button to supply the flow rate and composition. Choose Total Fluid Flowrate. 
Since the set unit is lb-mol/hr, and you have mass flow rate, lb/hr, you must do the conversion. 
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Instead of doing it by yourself, you can click on the UOM button on the menu bar. Click on Mass 
and choose lb. Click on the Change Units button to change the unit.  

 

Now enter 420000 lb/hr for the flow rate. Enter 1.00 for the water composition. Click on OK 
button when done. Click on First Specification: choose Temperature and type in the temperature, 
70oF. To enter the pressure, click on Second Specification: choose Pressure and type in 100 psia. 
Click on the OK button to go back to the PFD. 

Flash F1: Select the flash drum, F1, by double clicking on it. Click on Product Phase... to make 
sure the phases of streams, S4 and S5, are correctly set. S4 should be Vapor, and S5 should be 
Liquid. Make necessary changes by clicking on incorrect boxes and selecting the right phase. 
Click on the OK button to return to the PRO/II-Flash Drum window. 

 

Input 3 psi for the Pressure Drop. Click in the Unit Specification: box. Select Duty and type in 
0.00 for the value since it is an adiabatic flash drum. Click on the OK button when done. 
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Second Compressor C2: Double click on the compressor, C2, on the PFD. Supply the Outlet 
Pressure as 200 psia in the red box. Change the Adiabatic Efficiency to 80%.  Click on the OK 
button to go back to the PFD. 

 

Second Heat Exchanger E2: Double click on the heat exchanger, E2, on the PFD. Check for 
hot and cold streams by clicking on the Process Stream... button. S6 and S7 should be hot, and 
S10 and S11 should be cold streams. Click on the OK button when done. 
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Click at the Specification and click on the red box. Choose Hot Product Temperature and type in 
90oF for the value. Click on the OK button. 

 

Input 3 psi for the Hot Side Pressure Drop and 2 psi for the Cold Side Pressure Drop. Click on 
the OK button to go back to the PFD. 

 

Stream going to E2, S10: Double click on S10 on the PFD. Click on the Flowrate and 
Composition... button to supply the flow rate and composition. Choose Total Fluid Flowrate. 
You need to change the unit from lb/hr to lb-mol/hr. Click on the UOM button on the menu bar. 
Click on Mass and choose lb. Click on the Change Units button to change the unit.  

Now enter 420000 lb/hr for the flow rate. Enter 1.00 for the water composition. Click on OK 
button when done. Click on First Specification: choose Temperature and type in the temperature, 

 C-10



70oF. To enter the pressure, click on Second Specification: choose Pressure and type in 100 psia. 
Click on the OK button to go back to the PFD. 

 

It is now time to run your simulation.  The button for running your simulation looks like this: 

. PROVISION starts the calculation from the beginning of the simulation and goes through 
every unit operation one by one. During the calculation, each unit goes through color changes. 

 Yellow - no calculation performed 

 Red - unit operation has not been solved 

 Green - calculation is being performed 

 Blue - unit operation has been solved 

 Dark Blue - unit operation has been calculated 

 Purple - indicate the break point 

When the calculation is finished, all the unit operations should be blue, indicating that all the 
calculations are finished for the entire case. Once the calculations are performed, you do not 
need to run the calculations again as long as you do not change anything. 

 

Reviewing and Printing the Results 

Once the calculations are performed, you are ready to check the results by generating a report. 
To generate a report, follow these steps: 

1) Click on Output from the menu bar in the main PFD. 

2) Click on Generate Report on the Output menu and supply a name (compressor or any 
name you like) to save the output file. After you click on the OK button, the program will 
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bring up the Programmer’s File Editor window. You can scroll up and down the report 
by using the scroll bars. The report lists information like PRO/II keyword input 
commands, component properties, unit operation results, and stream results. You can also 
edit the report by using the Edit menu. 

 You can print the entire report or part of the report by selecting Print in File menu. 

 

3) To close the Programmer’s File Editor window, double click on the bar located in the top 
right corner of the screen. 

 

You can view the results of any stream or unit operation by clicking on the right button of 
your mouse when the cursor is pointing on it. 

 

Printing Material and Energy Balance on PFD 

In order to include material and energy balances on your PFD, you must define a property list 
first. The property list tells PROVISION what to include in the material and energy balance 
table. Let’s define a property list that includes Stream Name, Stream Phase, Total Molar 
Rate, Temperature, Pressure, Total Enthalpy, and Total Molar Comp. Fractions. 
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Click on Option on the menu bar in the PFD window and choose Stream Property Lists. 
Click on New button in Define Stream Property List window to name the new list and type 
case1 for the List Name. 

 

Click on the OK button to go back to Define Stream Property List window and choose the 
properties to include in the list from Select Properties box. Select Stream Name and click on 
Add button to include the selected property into the list. Repeat the procedure for Stream 
Phase, Total Molar Rate, Temperature, Pressure, Total Enthalpy, and Total Molar Comp. 
Fractions. 

 

Save the list and click OK. Once the property list has been defined, you can now place the 
material and energy balance on the PFD. Follow these steps to place property table on the 
PFD: 

1. Click on Output on the menu bar in the PFD window 

2. Click on Stream Property Table on the Output menu 

3. Click on the PFD where you want to place the property table  

4. Double click on the property table to select the table 

5. Choose case1 in Property List to be used 

6. You can select the streams you want by clicking on each stream or you could 
select all by clicking on Add All. Let’s select all the streams by clicking on Add 
All. 
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7. When you click on the OK button, the PFD should look like this: 

 

Printing PFD: Click on File on the menu bar in the main PFD window and choose 
Print. Click on the OK button to start printing. You can draw or print text on the PFD 
by choosing Draw/text on the menu bar. After typing text in the box, use mouse to 
place on the PFD. 
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Appendix D Previous Exam 
CHE 303  (Winter 2005)                                                                               __________________ 
                                                                                                                      LAST NAME, FIRST  
                                                   Quiz #1 
Note: Your answers must be correct to 3 significant figures and have the appropriate units. 
I. Circle the correct relation 
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II. Circle the correct relation 
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III. A gas mixture contains 30 mol % H2O, 30 mole % N2, and 40 mol % H2.  
 
Mass fraction of H2O is     ___________ 
 
 
 
 
 
 
 
IV. Nitrogen gas flowing at the rate of 400 kg/hr enters a compressor at 1 bar and 300oK and 
leaves at 10 bar and 450oK. Cooling water enters the compressor at 290oK and leaves at 340oK. 
Cooling water flow rate is 500 kg/hr. Nitrogen (MW = 28) is an ideal gas with Cp = 1.05 
kJ/kg.oK. Heat capacity of water is 4.184 kJ/kg.oK. Gas constant R = 8.314 J/mol.oK. 
 
1) (4 pts) The entropy change of nitrogen (kJ/hr⋅oK) is   ______________ 
(Show all the work) 
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2) The entropy change of water (kJ/hr⋅oK) is    ______________ 
 
 
 
 
3) The work provided by the compressor is    ______________ 
 
 
 
 
 
 
4) If the entropy change of nitrogen is – 125 kJ/hr⋅oK and the entire process is reversible,  
 
the temperature of the exit water is    ______________ 
 
 
 
 
V.  Consider the piston-cylinder assembly shown below; 200 moles of gas expand isothermally 
after the removal of a 10,000 kg block. 
 

Assum PvT behavior can be described by the Van der Waals equation e that the ⎟
⎠
⎞

⎜
⎝
⎛ −

−
= 2v

a
bv

RTP  

with a = 0.5 [J⋅m3/mol2] and b = 4×10-5 [m3/mol] and that the ideal gas heat capacity has a 
constant value of cP = 35 J/(mol⋅oK), R = 8.314 J/mol⋅oK. 

0.4 m
A = 0.1 m2

Patm

A = 0.1 m2

Patm

Isothermal
expansion

Weightless, frictionless piston

 
 
) (4 pts) Determine the temperature of the system ____________ 1

(Show all the work) 
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CHE 303  (Winter 2005)                                                                               __________________ 
                                                                                                                      LAST NAME, FIRST  
                                                   Quiz #2 
Note: Your answers must be correct to 3 significant figures and have the appropriate units. 
I. Circle the correct relation 
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II. For the van der Waals equation:  P = 
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III. The following data are available at 25oC for graphite and diamond: 
 
 Δg(25oC, 1 atm) = gdiamond − ggraphite = 2866 [J/mol], ρdiamond = 3.51 [g/cm3], and ρgraphite = 
2.26 [g/cm3]. 
 
(3) The pressure at which these two forms of carbon are in equilibrium at 25oC can be 
determined from the following equation 
 

 (A) ( )( )1
mol
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⎢⎣
⎡ Pvv diamgraph  (B) ( )( )1

mol
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⎡ Pvv graphdiam  

 

 (C) ( )Pvv diamgraph −=⎥⎦
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⎢⎣
⎡

mol
J 2866   (D) ( )Pvv graphdiam −=⎥⎦

⎤
⎢⎣
⎡

mol
J 2866  

 
 
 
 
(4) In the correct equation to determine the pressure in [Pa] where Δg(25oC, 1 atm) = 2866 
[J/mol], the numerical value of vgraph (with the correct unit) is 
     ___________ 
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IV. At 25oC, the vapor pressure of water is 3.169 kPa and at 35oC the vapor pressure of water is 
5.628 kPa. Estimate the enthalpy of vaporization of water in kJ/mol.  

Note: 
dT
dP  = ( )Tvv

hh
lv

lv

−
− , gas constant R = 8.314 J/mol⋅oK 

5)        ______________ 
 
 
 
 
 
 
 
 
 
V. (6) Calculate the power (kJ/hr) for compressing 5,000 kg/hr of methane from 0.8 Mpa, 210oK 
to 4 Mpa. The adiabatic efficiency of the compressor is 75%. 
(P-h diagram is given for methane)  ____________ 
 
 
 
 
 
 
 
VI. (7) Saturated liquid methane at 3 MPa is reduced to 1 MPa through an expansion (let-down) 
valve. The vapor fraction of methane leaving the valve is 
(P-h diagram is given for methane)  ___________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VII. The equilibrium conditions for two phases I and II of a single component are 
 
 A) TI = TII, PI = PII, hI = hII  B) TI = TII, PI = PII, sI = sII 
 
 C) TI = TII, PI = PII, uI = uII  D) None of the above 
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VIII.  Consider the piston-cylinder assembly shown below; 200 moles of gas expand 
isothermally after the removal of a 10,000 kg block. 
 

Assum PvT behavior can be described by the Van der Waals equation e that the ⎟
⎠
⎞

⎜
⎝
⎛ −

−
= 2v

a
bv

RTP  

with a = 0.5 [J⋅m /mol2] and b = 4×10-5 [m3/mol] and that the ideal gas heat capacity has a 3

constant value of cP = 35 J/(mol⋅oK), R = 8.314 J/mol⋅oK. 

0.4 m
A = 0.1 m2

Patm

A = 0.1 m2

Patm

Isothermal
expansion

Weightless, frictionless piston

 
 
) (4 pts) Determine the work [J] done by the gas on the surrounding ____________ 9

(Show all the work) 

 D-6



CHE 303  (Winter 2005)                                                                               __________________ 
                                                                                                                      LAST NAME, FIRST  
                                                   Quiz #3 
Note: Your answers must be correct to 3 significant figures and have the appropriate units. 
I. Circle the correct relation 
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II. A vapor-compression refrigeration process using ammonia as the working fluid is to operate 
between 32oF and 86oF. In step (4) → (1) heat is supplied to the fluid at 32oF under the pressure 
P1. The saturated vapor at P1 is then compressed isentropically to P2, where it becomes 
superheated vapor, state (2). Removal of heat from this vapor leads to cooling at constant 
pressure followed by condensation at 86oF, step (2) → (3). The cycle is closed by passing the 
saturated liquid at (3) through a let-down valve to the lower pressure at (4). The four states are 
given (not in any particular order) as follow 
 
 T(oF) P(psia) h(Btu/lb) s(Btu/lb⋅oR) 
 32 63.1 621.5 1.2734 
 32    0.2941 
 86 171.5 139.0 0.2867 
 157.6  681.6 
1) The heat transferred (Btu/lb) in step (4) → (1) is QL =  __________ 
  
 
 
2) The heat transferred (Btu/lb) in step  (2) → (3) is QH =  __________ 
  
 
 
3) The work supplied (Btu/lb) by the compressor is W =  __________ 
  
 
 
4) The entropy (Btu/lb⋅oR) at state (2) is   __________ 
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III. The free energy change for the following change in state is 685 cal/mol at 25oC 
 
  carbon (graphite, 1 atm)  carbon (diamond, 1 atm) 
 
The pressure at which these two forms of carbon are in equilibrium at 25oC is 14,959 atm. The 
densities of graphite and diamond are 2.26 and 3.51 g/cm3, respectively, at 25oC independent of 
pressure. Determine Δg (cal/g) for the following processes at 25oC (cal = 41.3 cm3⋅atm) 
 
1)  carbon (graphite, 1 atm)  carbon (graphite, 14,959 atm)  ______________ 
 
 
 
 
 
 
2) carbon (graphite, 14,959 atm)  carbon (diamond, 14,959 atm)  ______________ 
 
 
 
 
 
 
IV.  The vapor pressure of liquid water at 20oC is 0.0234 bar. Specific volume of water is 0.0180 
m3/kmol. Gas constant R = 8314.3 Pa⋅m3/kmol⋅oK. 1 bar = 105 Pa. 
 
The fugacity of water at 20oC and 200 bar is    _________ 
 
 
 
 
 
 
 
 
V.  (4 pts, show all your work) What fraction f of the volume of a rigid tube must be occupied by 
liquid water at 100oC (the remainder being water vapor) so that when the tube is heated the 
contents will pass through the critical state? Data: critical state vc = 3.155×10-3 m3/kg, at 100oC: 
vG = 1.044×10-3 m3/kg, vL = 1.673 m3/kg. 
    f =  __________ 
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CHE 303  (Winter 2005)                                                                           __________________ 
                                                                                                                   LAST NAME, FIRST  
                                                   Quiz #4 
Note: Your answers must be correct to 3 significant figures and have the appropriate units. 
 
I.  A. The fugacity of a component in a perfect gas mixture is equal to its partial pressure. 
 B. At low pressure the fugacity of a liquid is equal to its vapor pressure. 
1. A and B are true 2. Only A is true 3. Only B is true 4. A and B are false 
 
 
II. Calculate the fugacity of steam at 450oC and 10 MPa.          f = __________ 
 Data: At 450oC and 0.01 MPa:  g = − 3672.8 kJ/kg 
  At 450oC and 10 MPa:  g = − 1399.9 kJ/kg  
  Gas constant R = 8.314 J/(mol.oK), molecular weight of water = 18 
  dg = RT d(ln f) 
 
 
 
 
 
 
 
 
 
 
 
 
III. Two compounds A and B are known to form ideal liquid solutions. A vapor mixture 
containing 40 mol% of A and 60 mol% of B is initially at 100oF and 1 atm. The vapor pressures 
of A and B at this temperature are  = 0.90 atm and  = 1.50 atm. This mixture is 
compressed isothermally. 

sat
AP sat

BP

1. The dew point pressure is    ____________ 
 
 
 
 
2. The bubble point pressure is    ____________ 
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IV. A vessel initially containing propane at 520oR is connected to a nitrogen cylinder, and the 
pressure is increased to 300 psia. The vapor pressure of propane at 520oR is 155 psia. Nitrogen is 
insoluble in liquid propane. 
1. Assume ideal solution, mol fraction of propane in the vapor phase is ____________ 
 
 
 
 
 
 
 
 
 
2. Using K value from table 1, mol fraction of propane in the vapor phase is ____________ 
 

Table 1. Equilibrium K values for light hydrocarbon systems 
(Ref: Equilibrium Staged Separations by Wankat) 

============================================================= 
 (1) ln K = -A/T2 + B - C ln(P) + D/P2 
 (2) ln K = -A/T2 + B - C ln(P) + D/P ,  where P is in psia, T is in oR 

  compound A B C D Form  
============================================================= 

 Propane 970688.6 7.15059 .76984 6.90224 (2) 
 n-Butane 1280557 7.94986 .96455 0 (1) 
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V. A liquid containing 60 mol% propane (C3) and 40 mol% n-butane (C4) is subjected to a flash 
vaporization process at a pressure of 20 psia where the temperature inside the flash drum is 
475oR. At these condition KC3 = 2.4284, KC4 = 0.5405 (from Table 1). 
1. The exit mol fraction of propane in the vapor phase is ____________ 
 
 
 
 
 
 
2. If the exit mol fraction of propane in the liquid phase is 0.3, V/F = ____________ 
 
 
 
 
 
 
3. The boiling point of pure n-butane at 20 psia is ____________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VI. A. In a closed system at constant T and P, a spontaneous process will increase Gibbs free 
energy, G, until a maximum value for G is reached at equilibrium. 
 B. For an isolated system, a process that would move the system to a less constrained 
equilibrium state will decrease the entropy of the system. 
 
1. A and B are true 2. Only A is true 3. Only B is true 4. A and B are false  
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CHE 303  (Winter 2005)                                                                      _______________________ 
                                                                                                              LAST NAME, FIRST  
                                                   Quiz #5 
Note: Your answers must be correct to 3 significant figures and have the appropriate units. 
 
I. At 25oC a binary system containing components A and B is in a state of liquid-liquid vapor 
equilibrium. The mixture is not ideal however Raoult’s and Henry’s laws can be applied.  The 
compositions of the saturated liquid phases are 
  = 0.02,  = 0.98 and  = 0.97,  = 0.03 I

Asx I
Bsx II

Asx II
Bsx

The vapor pressure at 25oC are:  = 0.2 atm,  = 0.8 atm o
AP o

BP
 
1) The vapor mole fraction of A at three-phase equilibrium is ________ 
 
 
 
 
 
 
 
 
2) The vapor mole fraction of A in equilibrium with xA = 0.01 is  ________ 
 
 
 
 
 
 
 
 
 
 
3) The vapor mole fraction of A in equilibrium with xA = 0.99 is  ________ 
 
 
 
 
 
 
 
 
 
 
 
4) At 25oC a vapor containing 10 mol % A and 90 mol % B initially at 0.1 atm is compressed  
 
isothermally until liquid phase I is formed. The dew point pressure is _________ 
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II. In the system A-B, activity coefficients can be expressed by ln γA = 0.5  and ln γB = 0.5 . 
The vapor pressure of A and B at 80oC are:  = 650 mm Hg,  = 900 mmHg. There is an 
azeotrope in this system. 

2
Bx 2

Ax
o

AP o
BP

 
5) If the azeotrope mole fraction xA is 0.17458 the azeotrope pressure is  _________ 
 
 
 
 
 
 
6) The azeotrope mole fraction xA can be determine from 
A) exp{[  − (1 − xA)2]} = /  B) exp{[ 2  − (1 − xA)2]} = /  2

Ax o
BP o

AP Ax o
AP o

BP
C) exp{[  − (1 − )]} = /  D) None of the above 2

Ax 2
Ax o

AP o
BP

 
 
 
 
 
 
 
 
 
III. A system contains 40 mol % toluene, 30 mol % ethylbenzene, and 30 mol % water. Mixtures 
of ethylbenzene and toluene obey Raoult's law and the hydrocarbons are completely immiscible 
in water. The system pressure is 1 atm. (Note T = toluene, EB = ethylbenzene, W = water) 
 
7) The bubble point temperature can be determine by solving the following equation: 
 
A) .3 + .4 + .3  = 1 atm  B) + .4 + .3  = 1 atm o

wP o
TP o

EBP o
wP o

TP o
EBP

C) + o
wP

7
4 o

TP + 
7
3 o

EBP  = 1 atm  D) None of the above 

 
 
 
 
8) If the hydrocarbon phase condenses first, the dew point temperature can be determine from 
 

A) o
TP

atm4. + o
EBP

atm3. = 1   B) o
WP

atm3. + o
TP

atm4. + o
EBP

atm3. = 1  

C) o
TP

atm
7
4 + o

EBP
atm

7
3 = 1   C) None of the above 
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IV.(9) A solute diffuses through a membrane that separates two compartments A and B that have 
different initial concentrations. The solute concentrations in the two compartments as a function 
of time, CA and CB are shown in Figure 1. The volumes of the two compartments are VA and VB. 
 
(A) VA < VB  (B) Solute diffuses from compartment B to A. 
 
a. A and B are true    b. Only A is true     c. Only B is true          d. A and B are false 

0

5

10

CA

CB

t  
Figure 1. Concentration of solute as a function of time in compartments A and B. 

 
 
 
 
 
 
V.(10) Measurements show that the osmolarity of human tears is 320 mosmol/L. Determine the 
value of the osmotic pressure of human tears in pascals at 300oK. 

 π =  RT , gas constant R = 8.314∑
=

N

i
iSC

1
, Kmol

mPa
⋅
⋅ 3

  

    
  π =  ________ 
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Answers to CHE303 Quizzes 2005 
 

Quiz #1 
I. (D) 
II. (B) 
III. 0.37 
IV. 1) − 103.19 kJ/hr⋅K 2) 332.76 kJ/hr⋅K 3) 167,600 kJ/hr 4) 307.9 K 
 
Quiz #2 
I. (D) 
II. (D) 
III. 3) (A)   4) 5.31×10-6 m3/mol 
IV. 43.87 kJ/mol 
V. 1.33×106 kJ/hr 
VI. 0.313 
VII. (D) 
VIII. 4.31×105 J 

 
Quiz #3 

I.  (C) 
II.  1) 482.5 Btu/lb 2) 542.6 Btu/lb 3) 60.1 Btu/lb  4) 1.2734 Btu/lb⋅oR 
III.  1) 106.3 cal/g 2) 0 
IV.  0.0271 bar 
V.  0.6695 
 
Quiz #4 
I. (1) 
II. 9.0209 MPa 
III. 1) 1.1842 atm 2) 1.260 atm 
IV. 1) 0.5167  2) 0.4461 
V. 1) 0.591  2) 0.7001  3) 503oR 
VI. (4) 

 
Quiz #5 
I.  1) 0.1984        2) 0.10901  3) 0.431  4) 0.8808 atm 
II.  5) 913.88 mmHg 6) (D) 
III.  7) (C) 8) (A) 
IV.  (d) 
V.  7.98×105 Pa 


	ADP1AD.tmp
	The cyclic rule can be employed to give
	Separation of variables provides
	In Part (a), we found 

	ADP13F.tmp
	with (x = 0.01. A sample result is given at the end of the program.

	ADP156.tmp
	Appendix D Previous Exam
	V. 1.33(106 kJ/hr
	VI. 0.313

	I. (1)
	II. 9.0209 MPa
	III. 1) 1.1842 atm 2) 1.260 atm
	IV. 1) 0.5167  2) 0.4461
	V. 1) 0.591  2) 0.7001  3) 503oR
	VI. (4)




