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Chapter 1
Introduction

1.1 Basic Definitions

Thermodynamics is the science that seeks to predict the amount of energy needed to
bring about a change of state of a system from one equilibrium state to another. While
thermodynamics tells us nothing about the mechanisms of energy transfer, rates of change,
and time associated with a system changing from one equilibrium state to another, it is still
the lynch-pin that allow us to answer these questions.

e Definition of 'heat: Heat is energy in transit solely as a result of a temperature
difference.

e Definition of ‘work': Work is energy exchange between system and surroundings due
to any phenomenon except a temperature difference.

e Definition of 'temperature’: Temperature is a measure of the mean kinetic energy of
molecules. Absolute zero (0°K) is a state of complete motionless of molecules.

e 'Rate’: 'Rate’ implies an element of speed, how fast an event happens, and time.

e 'System': In thermodynamics, the universe can be divided into two parts. One part is
the system, the other part is the rest of the universe called the surroundings. System
can be classified as (1) isolated system where no mass or energy is transferred across
the system boundaries, (2) closed system (system) where only energy is transferred
across the system boundaries, or (3) open system (control volume) where mass and
energy can be transferred across the system boundaries. A system is any designated
region of a continuum of fixed mass. The boundaries of a system may be deformable
but they always enclose the same mass.

Surroundings

Boundary

System

Figure 1.1 Schematic diagram of the "universe", showing a system and the
surroundings.



e 'Control volume": A ‘control volume' is also any designated region of a continuum
except that it may permit matter to cross its boundaries. If the boundaries of a control
volume are such that matter may not enter or leave the control volume, the control
volume is identical to a system. In these respects, a 'system' is a subset of a 'control

volume'.

e 'Equilibrium': 'Equilibrium’ means that there are no spatial differences in the variables
that describe the condition of the system, also called the 'state’ of a system, such as its
pressure, temperature, volume, and mass (P, T, V, m), and that any changes which

occur do so infinitesimally slowly.

The laws of thermodynamics are applicable only to equilibrium states which means that the
state does not really change significantly with time, differences in variables between the state
of a system and its surroundings are of infinitesimal magnitude and that within the system
itself there are no spatial variations of the variables that determine its state. Using
thermodynamics, we can predict the amount of energy needed to change a system from an
equilibrium state to another. For example it will take about 75 kJ to change 1 kg of air at
25°C and 1 atm to 100°C and 1 atm. It will take much more energy, about 2257 kJ, to change
1 kg of water at 100°C and 1 atm to water vapor (steam) at the same temperature and

pressure.

State 1

State 1

Air, 1 atm
25°C
1 kg

Water
1 atm
100°C
1kg

—
75 kJ

required

—
2257 kJ

required

Air, 1 atm
100°C
1 kg

Steam
1 atm
100°C
1 kg

State 2

State 2

Figure 1.1 Energy required changing air or water from state 1 to state 2.

1.2 Property

A property is a macroscopic characteristic of a system such as pressure, temperature, volume,
and mass. At a given state each property has a definite value independent of how the system
arrived at that state. The properties of air in state 1 shown in Figure 1.1 are: pressure at 1 atm,

temperature at 25°C, and mass of 1 kg.

A property can be classified as extensive or intensive. An extensive property depends on the
size of the system while an intensive property is independent on the size of the system.
Consider systems (1) and (2) shown in Figure 1.2 both at 100°C and 1 atm containing 2 and 5

kg of steam, respectively.



System (2)

System (1)
100°C Al
1 atm 5 k
2 kg 9

Figure 1.2 Example of intensive and extensive properties.

Temperature, pressure, and specific volume of both systems are intensive properties. Total
mass and total volume of each system are extensive property. At 100°C and 1 atm, the
specific volume v of each system is 1.674 m®/kg. The mass of system (1) is m; = 2 kg and
that of system (2) is m, = 5 kg. The total volume of system (1) is V1 = myv = (2 kg)(1.674
m>/kg) = 3.348 m®. The total volume of system (2) is Vo = mov = (5 kg)(1.674 m*/kg) = 8.37
m®. An intensive property might be obtained from an extensive propery by dividing the
extensive property by the mass of the system.

1.3 Units

The Sl units (Systeme International d'Unites, translated Internal System of Units) are used in
this text. It happens that seven primary quantities are needed to completely describe all
natural phenomena®. The decision as to which quantities are primary is arbitrary. The units of
the primary quantities and their symbols are listed in Table 1.3-1 and are defined arbitrarily
as follows:

Meter: the length of the trajectory traveled by light in a vacuum per 1/299,792,458 s,

Kilogram: the mass of the platinum cylinder deposited at the International Office for
Weights and Measures, Sévres, France,

Second: 9,192,631,770 times the period of radiation in energy level transitions in the fine
spectral structure of **3Cs,

Kelvin: 1/273.16 of the triple point temperature of water with naturally occurring amounts of
H and O isotopes,

Amperes: the current which, on passing through two parallel infinite conducting wires of
negligible cross section, separated by 1 m and in vacuum, induces a force (per unit length) of
2x10" N/m,

Mole: the amount of a matter containing the number of particles equal to the number of
atoms in 0.012 kg of the pure isotope *2C,

Candela: the amount of perpendicular light (luminosity) of 1/60x10° m? of the surface of an
absolute black body at the melting temperature of platinum and a pressure of 101,325 Pa.
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Table 1.3-1 The seven primary quantities and their units in SI

Primary quantity Unit

Length Meter (m)
Mass Kilogram (kg)
Time Second (s)
Temperature Kelvin (K)
Electric current Ampere (A)
Amount of matter Mole (mol)
Amount of light Candela (cd)

Several of the derived quantities with units are listed in Table 1.3-2. A derived unit is a
quantity expressed in terms of a product and/or quotient of two or more primary units.

Table 1.3-2 The derived quantities and their units in SI

Derived quantity Unit
Cp, specific heat capacity J/kg-K
E, energy J=N-m, joule
F, force N = kg-m/s?, newton
k, thermal conductivity W/m-K
p, pressure Pa = N/m?, pascal
q, heat transfer rate W = J/s = kg:m?/s®, watt
q", heat flux W/m? = J/s-m?
q", heat generation rate per unit volume | W/m®
, viscosity N/m?=kg/s-m
: kg/m®
p, density

1.4 Pressure

Any force acting on a surface consists of a component perpendicular to the surface and a
component parallel to the surface. These two components are called normal force and shear
force as shown in Figure 1.4-1. Pressure is defined as a normal force per unit area on which
the force acts. The Sl pressure unit, N/m? is called a pascal (Pa). Pressure at any point is a

fluid is the same in any direction.
Normal force
Normal stress = Normal force/A F

n

Y /Shear force
Area (A) / s

Figure 1.4-1 Normal and parallel components of a force on a surface.

Ty




Consider a hole in the wall of a tank or a pipe as shown in Figure 1.4-2. The fluid pressure p
may be defined as the ratio F/A, where F is the minimum force that would have to exerted on
a frictionless plug in the hole to keep the fluid from emerging*

. agmy
N M)

Fluid ( F(N) P(N/mz)
P(N/m?) Fluid flowing through a pipe

N

Figure 1.4-2 Fluid pressure in a tank and a pipe.

The pressure at a given position measured relative to absolute zero pressure or absolute
vacuum is called the absolute pressure. Most pressure-measuring devices are calibrated to
read zero in the atmosphere as shown in Figure 1.4-3. These pressure gages indicate the
difference between the absolute pressure and the local atmospheric pressure. Pressures below
atmospheric pressure are called vacuum pressures and are measured by vacuum gages that
indicate the difference between the atmospheric pressure and the absolute pressure. Absolute,
gage, and vacuum pressures are all positive quantities and are related to each other by

I:)gage = Paps — Patm

Pvac = Patm — Pabs

atm | A

»
>

P.=0 Pabs: 0

abs

Figure 1.4-3 Absolute, gage, and vacuum pressures.
Two common pressure units are the bar and standard atmosphere:
1 bar = 10° Pa = 0.1 Mpa = 100 kPa

1 atm = 101,325 Pa = 101.325 kPa = 1.01325 bar = 14.696 psi

! R. M. Felder and R. W. Rousseau, Elementary Principles of Chemical Processes, Wiley, 2000, p.54.
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1.5 Temperature

When two objects are brought into contact and isolated from the surrounding, energy tends to
move spontaneously from one to the other. The object that gives up energy is at a higher
temperature, and the object that receives energy is at a lower temperature. We would be able
to observe that the electrical resistance of the warmer object decreases with time, and that of
the colder block increases with time; eventually there would be no change in the electrical
resistances of these objects. The two objects are then in thermal equilibiurm. They are at the
same Temperature. We could then define temperature as a measure of the tendency of an
object to spontaneously give up energy to its surroundings.

Any object with at least one measurable property that changes as its temperature changes can
be used as a thermometer. Most thermometers operate on the principle of thermal expansion:
Materials tend to occupy more volume at a given pressure when they are at a higher
temperature. A mercury thermometer is just a convenient device for measuring the volume of
a fixed amount of mercury. To define actual units for temperature we arbitrary assign 0 to the
freezing point and 100 to the boiling or steam point of water. We then mark these two points
on our mercury thermometer, measure off a hundred equally spaced intervals in between, and
declare that this thermometer now measures temperature on the Celsius (or centigrade) scale,
by definition.

The Kelvin scale is an absolute temperature scale that measures temperature from absolute
zero instead of from the freezing point of water. The relationship between these two
temperature scales is given by

T(°C) = T(K) — 273.15 (1.6-1)
By definition, the Rankin scale, is related to the Kelvin scale by a factor of 1.8:

TCR) = 1.8T(K) (1.6-2)

A degree of the same size as that on the Rankine scale is used in the Fahrenheit scale but the
zero point is shifted according to the relation

TCF) = T(°R) — 459.67 (1.6-3)

From equations (1.6-1), (1.6-2), and (1.6-3) the Fahrenheit scale can be related to the Celsius
scale by

T(°F) = 1.8T(°C) + 32
Many of the equations of thermodynamics are correct only when you measure temperature

on the absolute scale, Kelvin or Rankine. There will be no problem in using the Celcius and
Fahrenheit scales when the difference between two temperatures is needed.



1.6 Energy Balance

Energy balance is the cornerstone of heat transfer analysis. The first law of
thermodynamics is the conservation of energy, which states that energy is neither created nor
destroyed. The first law can be written for a system as

5Q = W +dE

where
dQ = heat transfer between the system and the surroundings
dW = work exchanged between the system and the surroundings
dE = accumulated energy of the system

The first law postulates the existence of a "function of state” called the accumulated energy
such that for an adiabatic system (6Q = 0) the work output is balanced by a reduction in the
accumulated energy:

dE = -8W

While 56Q and 8W are not themselves a "function of state", the difference 6Q - W is a
function of state.

Path a

State 1 Path ¢ State 2

A quantity is a function of state when the difference in its values between two states only
depends on the initial and final states and not on the paths connecting these two states. The
accumulated energy E is a state function so that,

[E(T,.P,..)~E(T,R.)], = [E(T, P ) - E(TL R

The differential of E is an exact differential for which the integral from state 1 to state 2 is
simply the difference E(T,,P,,..)—E(T,,R,,...).

2
LdE = E[l = E(T,,P,,..)—E(T,,P,....)

Heat and work are path functions and the differentials of heat and work, 6Q and W,
respectively, are nonexact differentials so that JféQ;ﬁ Q.- Q; and J.lzé\N = W, — Wy, The
following example will show that work is path dependent.
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Example 1.6-1

A gas is contained within a cylinder and piston system shown. Assuming a 'simple’ system
(expansion and compression work only), calculate the work done by the system in
transforming from state P, V; to state Py, Va.

P, Path a
........................ Path b
P1
Vi V,
Solution

1. Compute the work using path a with constant volume followed by constant pressure

fow=[""Pav = ["Pav + j PV =0+ Py(Vo- Vi) =W,

Pl Vl Pl 1

2. Compute the work using path b with constant pressure followed by constant volume

fow=[""Pdv = [""Pav + j “PAV = PyVo— Vi) + 0= W

Pl Vl Pl Vl
Clearly W, = W,

It should be noted that a constant pressure process makes 6W a function of state.

PdV = d(PV) - VdP

fow = [d(Pv)- [Vap
1 1 1
J;Zd (PV) is a function of state while ﬁ/dP is not a function of state. For constant P

2 2
Law = Ld(PV): PV[ =PaVo—P1V1=Prora (V2 - Vi)

A function of state is one whose integral of a differential of itself recovers the original
function, for example

jdu:u;de:P;jd(PV):PV
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First law as a rate equation

t t+at

N

AL YWark and heat interaction
overtime interval At

AMY

Apply the first law to the system shown over time interval At
AQ =AW + AE (1.6-1)
Divide the above equation by At

& = M + E (16_2)
At At At

We are departing from the classical thermodynamic view that deals with equilibrium because
time is not a relevant parameter for equilibrium systems. Take the limit of Eq. (1.6-2) as At

-0

limit AQ _ limit AW N limit AE
At—>0 At  At—0 At At—0 At
xR _ w  dE (1.6-3)
& S dt
. dE
=W+ — 1.6-4
q it (1.6-4)

where @ = net heat input plus heat generated (W)

g = Qin — Jout + Jgen (1.6-5)

W = net work output (W)

(il_f = accumulated energy change (W)

A control volume must be defined to apply Egs. (1.6-4) and (1.6-5).
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Example 1.6-2. ----mmmmmmmm oo oo e
Saturated steam at 99.63°C condenses on the outside of a 5-m long, 4-cm-diameter thin
horizontal copper tube by cooling liquid water that enters the tube at 25°C at an average
velocity of 3 m/s and leaves at 45°C. Liquid water density is 997 kg/m®, cp of liquid water is
4.18 kJ/kg°C. (a) Determine the rate of heat transfer to water. (b) If the rate of heat transfer
to water is 200 kW, determine the rate of condensation of steam

ST T ]

Condensing steam Q

4k

(a) The rate of heat transfer to water is given by

Q = mcy(Te—Ty)
In this equation, the mass flow rate of water is given by

m = pVvelAtbe

m = (997 kg/m®)(3 m/s)(nx0.02> m?) = 3.7586 kg/s
The heat transfer rate is then

Q = (3.7586 kg/s)(4.18 ki/kg°C)(45 — 25)°C = 314.2 kW

(b) If the rate of heat transfer to water is 200 kW, determine the rate of condensation of
steam.

We need the enthalpy for saturated liquid and saturated vapor

Specific
Temp Pressure Enthalpy Quality Phase
C MPa kJ/kg
99.63 0.1 2675 1 Saturated Vapor
99.63 0.1 417.5 0 Saturated Liquid

The rate of heat transfer to water can also be determined from

C . Q
=m hy—h m... =
Q steam ( g f) = steam h — hf

9

= 200KIs 5 0886 kgls

m. =
seam (2675 - 417.5) ki/kg
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Chapter 2
Thermodynamic Relations

2.1 Types of Thermodynamic Properties

The thermodynamic state of a system can be characterized by its properties that can be
classified as measured, fundamental, or derived properties. We want to develop relationships
to relate the changes in the fundamental and derived properties in terms of the measured
properties that are directly accessible from laboratory measurements. Some of the measured
properties are P, v, T, composition, ¢, and cy. The small letters are used to denote specific
quantities for example v is specific volume.

The fundamental properties are internal energy u and entropy s. These properties arrive from
the first and second law of thermodynamics. The first law states that energy is conserved, and
the second law states that entropy of the universe always increases.

The derived properties are defined to facilitate the energy balance of systems in which the
combination of internal energy and other properties often occurs. In open systems, the mass
that crosses the boundary between the surroundings and the system always contributes to two
terms in the energy balance: internal energy and flow work (Pv). For convenient we can
define an enthalpy (h) as

h=u+Pv (2.1-1a)
In terms of the total enthalpy H, we have
H=U+PV (2.1-1b)

We can then make an enthalpy balance for an open system in which the flow work is
included in the enthalpy term. Figure 2.1-1 shows a raindrop created from the surrounding
super saturated vapor in the atmosphere. Not only the energy U of the raindrop is needed but
also some additional energy, equal to PV, is required to push the atmosphere out of the way
to make room for the drop.

A raindrop with volume
V and internal energy U

Figure 2.1-1 An energy of U + PV is required to create a raindrop.

Enthalpy is the total energy we would need, to create a system out of nothing and put it in an
environment with constant pressure P. Or, if we could completely annihilate a system, H is
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the energy we could recover: the system’s energy plus the work done by the collapsing
atmosphere.

However, we usually are not interested in the total energy needed or the total energy that can
be recovered from a system. We will be more interested in the work involved in a system.
For isothermal surroundings, the system can extract heat from the surroundings for free, so
the work required to create the system from nothing is equal to the internal energy minus the
heat received. And if we annihilate the system, we generally cannot recover all its energy as
work since we have to dispose of its entropy by dumping some heat into the surroundings.
Therefore it is more convenient to define the Helmholtz free energy, A, for an environment at
constant temperature T

A=U-TS (2.1-2)

A is the energy that must be provided as work if we create the system out of nothing. The
heat extracted from the surroundings is TAS = T(S; — S;) = TSt where Ss is the system final
entropy and S; the system zero initial entropy. If we annihilate a system with initial entropy
Si, A is the amount of recovered work, since we have to dump some heat, equal to TS;, into
the environment to get rid of the system’s entropy.

Equation (2.1-2) includes all work, even the work done by the system’s surroundings. If the
system is in an isothermal and isobaric environment, it is more convenient to use the Gibbs
free energy

G=U-TS+PV (2.1-3)

Gibbs free energy is the work required to create a system from nothing in an environment
with constant P and constant temperature T.

We usually are more interested in the change in states of a system rather than its creation or
annihilation. We then want to look at the changes in A and G. The change in A at constant
temperature is given by

AA=AU-TAS=Q +W-TAS (2.1-4)

In this expression Q is the heat added and W is the work done on the system. If the process is

reversible then Q = TAS and the change in A is precisely equal to the work done on the

system. If the process is irreversible then Q < TAS and AA < W, the change in A is less than

the work done on the system.

For an environment with constant P and constant temperature T, the change in G is given by
AG = AU — TAS + PAV=Q + W — TAS + PAV (2.1-5)

For any process we have

Q —TAS <0 (equal sign for reversible processes) (2.1-6)
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The work term W consists of the work done by the environment, — PAV, and any “other”
work done on the system.

W = - PAV + Wother (21'7)
Substituting equations (2.1-6) and (2.1-7) into equation (2.1-5) we obtain

AG < Woiher at constant T, P (2.1-8)
EXampPle 2.1- 1. cmmmmmmm oo
Determine the electrical work required to produce one mole of hydrogen in the electrolysis of
liquid water at 298°K and 1 atm. The chemical reaction is

H20(1) — H2(g) + 0.502(g)

Data (at 298°K and 1 atm): AH = 286 kJ for this reaction, Snzo = 70 JP°K, Sy = 131 J°K,
and So, = 205 J/I°K.

SOIULION =-mm e oo e e e
G=H-TS
At constant T we have
AG = AH -TAS
The change in system entropy is given by
AS = S + 0.550, — SHao = 131 + 0.5(205) — 70 = 163.5 J/°K
The change in G is then
AG =286 kJ — (298°K)(163.5 J/°K) = 237 kJ

This is the amount of energy in terms of electrical work required to produce one mole of
hydrogen by electrolysis.

If we burn one mole of hydrogen, the amount of heat we would get is 286 kJ. If we can
combine one mole of hydrogen and half a mole of oxygen in a fuel cell to produce water we
can extract 237 kJ of electrical work. The difference AH — AG = TAS = 49 kJ is the waste
heat that must be expel by the fuel cell to get rid of the excess entropy that was in the gases.
Therefore the maximum efficiency, €sel cenn, OF the fuel cell is

Efuel cell = 237/286 = 0.829

This efficiency is higher than the 40% efficiency of electrical power plants.
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Example 2.1-2.
In a hydrogen fuel cell shown in Figure 2.1-2, hydrogen and oxygen gas pass through porous
electrodes and react to form water. Electrons are released at the anode (negative electrode)
and deposited at the cathode (positive electrode). The overall reaction is

H2(g) + 0.502(g) — H20(l)
Calculate the voltage of the cell.

Data (at 298°K and 1 atm): AG = — 237 kJ for this reaction.

FUEL

| HOW L s 7WoRK
-
ANODE CATHODE \
Oxygen
DC Electricity I%
Hydrogen ®© & ;
@ Electrons '%

Protons

Hy e 2H* 4 2¢-

Membrane 1;202 + Ze- H 1f2|]2-=

Hy 4+ 1/202=9H-0

Figure 2.1-2 A hydrogen fuel cell

Solution
In a hydrogen fuel cell?, the steps of the chemical reaction are
Anode Reaction: Hy =>2H" + 4¢”
Cathode Reaction: 0.50, + 2H" + 2¢" => H,0

Two electrons are pushed through the circuit each time the full reaction occurs. The electrical
work produced per electron is

237 kJ/(2x6.02x10%%) = 1.97x10° J = 1.23 eV
(Note: 1 eV = 1.602x10™ J)

Since 1 volt is the voltage needed to give each electron 1 eV of energy, so the fuel cell has a
voltage of 1.23 V.

1 Schroeder, D. V., An Introduction to Thermal Physics, Addision Wesley Longman, 2000
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2.2 Fundamental Property Relations

The first law for a closed system undergoing reversible process with only PV work is given
by

du = SQrev + 6Wrev
From the second law, 8Qe, = TdS, the first law can be written as
dU =TdS - pdVv (2.2-1)

We can write the change in internal energy in terms of two independent variables S and V,
that is, U = U(S, V):

du = (a_u) ds + (a_u) v (2.2-2)
as ), oV ).

Comparing equations (2.2-1) and (2.2-2) we have

T= (a_UJ and p=- [é_Uj (22-3)
as ), oV )

The four functions U, H, A, and G are collectively called thermodynamic potentials. The
expression represented by U = U(S, V) results in the partial derivatives of the thermodynamic
potentials corresponding to thermodynamic properties T and p as defined in Eq. (2.2-3).
While U can be a function of any two properties, no other grouping of independent properties
x and y, U = U(x, y), allows us to write partial derivatives in terms of thermodynamic
properties as given by Eq. (2.2-3). The three properties {U, S, V} form a fundamental
grouping.

Similarly, the change in enthalpy (H = U + pV) is given by
dH =dU + d(pV) = TdS — pdV + pdV +Vdp
dH = TdS + Vdp (2.2-4)

The change in enthalpy in terms of two independent variables S and p is

dH = (a—Hj ds+ [ 1 gp (2.2-5)
oS Jp op )
Comparing equations (2.2-4) and (2.2-5) we have
T= (ﬁj andv =| (2.2-6)
oS Jp op )
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We have two more relations for the change in Helmholtz free energy, dA, and the change in
Gibbs free energy, dG,

dA = — SdT — pdV (2.2-7)
dG = — SdT + VdpP (2.2-8)

The fundamental groupings {A, T, V} and {G, T, p} result in

S=- (%j andp=- (G—A] (2.2-9)
aT ), oV J;

S=— (ﬁj andv =| & (2.2-10)
T Jp op J;

The grouping can be obtained from the following diagram where there properties at a corner
form a fundamental grouping, for example {A, T, V} and {G, T, p}.

G p H Great physicists Have Study
Under Very Able Teachers

A Vv U

Thermodynamic properties can then be obtained from the partial derivative of the
thermodynamics potentials. Temperature can be obtained from the derivative of H or U. In
both cases, the variable opposite T in the diagram will be in the denominator of the derivative
and the remaining variable belong to the grouping will be the variable keeping constant.

%
G p H G H
A A
T —1—>S T —1—S
AV U AV U

Using this rule, we have

T= (a—UJ and T = (G—HJ
oS )y oS )

Similarly, p can be expressed in terms of the partial derivative of thermodynamic potentials
using the following diagram. Note the minus sign since V is in the negative direction of P.
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Similarly, we have

—
G P H G P H
A A
T —+—S T ——S
A \Y U A \Y U
L
S——[%j andS:—(ﬁj
T )\ aT J)p
and
G p H G p H
T — S T —> S
A V U A \Y U

V= [ﬁ] and V = (@j
op ) op ),

When we study phase equilibrium, the Gibbs free energy will be use frequently to obtain the
relations between the measured properties.
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EXample 2.2-1.2 -ommmm oo

For the Van Der Waals isotherm shown in the following figure, show that the saturation
pressure can be determined by locating the horizontal, two-phase segment of the isotherm so
that two equal areas are enclosed between it and the Van de Waals curve.

P
P, B
P\ 2

Vv
T T
—
G P H G P H
A
T —1—*»S T —>S
A \% U A \% U

From the grouping {G, T, P}, we have G = G(T, P), therefore

dG = (@j dT + (@j dP = — SdT + VdP
T ), oP ).

Along an isotherm of the equation of state, dT = 0, therefore AG = _[:ZVdP
At the saturation pressure AG = G¥ — G-=0, we have
Pa R Po R
AG=GY- G'= ["VdP+ ['VdP+ ["VdP+ [ VdP =0
PV PA PV PB
- PA F’V PB P\/ -
Since area (1) = — J.P VdP - _[P VdP, and area (2) = J.P VdP + L VdP, the saturation

pressure can be determined by locating the horizontal, two-phase segment of the isotherm so
that two equal areas are enclosed between it and the VVan Der Waals curve.

2 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999
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Maxwell Relations

The fundamental property relations are written so that the left-hand side is the differential of
a state function as follow

dU = TdS - PdV (8.3-1a)
dH = TdS + VdP (8.3-1b)
dA = — SdT — PdV (8.3-1c)
dG = — SdT + VdP (8.3-1d)

The exact differential of a function z = z(x, y) is written as

dz = [@j dx + | 2] dy = Mdx + Ndy (8.3-2)
ox ), oy ),

In this expression, we have
M= [gj and N = (gj
ox ), oy ),

A useful property of exact differential is that the order of partial differentiation does not
matter. That is

55])-(151)

ﬂ = (a_Nj (8.3-3)
oy ), oX ),
Applying equation (8.3-3) to equation (8.3-1a) we get
(a_Tj :{a_P] (8.3-4a)
oV ) oS ),

This relation is called the Maxell relation. Similarly, from the other three fundamental
property relationships we have

(5_Tj _ (a_v] ,(éj _ (a_P] | and—(éj . (a_v} (8.3-4b,c,d)
® ), ~\as ) \av ), T lar ), ). " \ar ),
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The Maxwell relations can be used to calculate entropy from PVT data. The derivative
relations of equations (8.3-1a)—(8.3-1d) then enable us to calculate U, H, A, and G. The
Maxwell relations can also be obtained from the diagram

) ={%)
oV s oS )y
The sign of the derivative is obtained from multiplication of the individual sign of each

variable in a group. For TVS the sign is (=)(-=)(+) = +, for PSV the sign is (+)(+)(-) = -
Similarly, for the other three Maxwell relations we have

G /P _H
T S
Y- (F)A(E)
= | — | = | —
op ) \es ),

U (as) (ap)
= || =|=
o ). \aT ),

- %))
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Chapter 2

2.3 Equations of State

In the calculations of energy, enthalpy, and entropy of a substance we need an accurate
representation of the relationship among pressure, volume, and temperature. Besides the
tabular and graphical presentations of the p-v-T relationship, analytical formulations, called
equation of state, constitute another way of expressing the p-v-T relationship. The equations
of state are convenient for performing the mathematical operations required to calculate u, h,
s, and other thermodynamic properties. We will discuss the virial, Van de Walls, and Soave-
Redlick-Kwong (SRK) equation of states.

2.3-1 The Virial Equation of State

The virial equation of state can be derived from the principle of statical mechanics to relate
the p-v-T behavior of a gas to the forces between molecules. A virial equation of state

expresses the quantity % as a power series in the inverse of molar volume v .
z= P _,,BO)  CO)  BO, 2.3-1)
RT v v’ v

In this equation, B, C, and D are called virial coefficient and are functions of temperature. For
a truncated virial equation with two terms we have

v, BO (2.3-2)
T v
In this equation, B(T) can be estimated from the following equations:
B(T) = RT, (Bo + wBy) (2.3-3)
Bo=0.083 — 2422 B,=0.139 — 2172
TRl TR.

In equation (2.3-3), w is the Pitzer acentric factor, which is a parameter reflecting the
geometry and polarity of a molecule. In the limiting case where there are no interactions
between the molecules, all the virial coefficients are equal to zero. Eq. (2.3-1) becomes

<l

7= - (2.3-4)

—

Eq. (2.3-4) is the ideal gas equation of state. Example 2.3-1 will illustrate the use of the virial
equation of state with one virial coefficient.
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Example 2.3- 1 --mmmmmm oo e e e

A three-liter tank contains two gram-moles of nitrogen at — 150.8°C. Estimate the tank
pressure using the ideal gas equation of state and then using the virial equation of state
truncated after the second term. Taking the second estimate to be correct, calculate the
percentage error that results from the use of the ideal gas equation at the system conditions.
Data for nitrogen: T, = 126.2 K, p. = 33.5 atm, and @ = 0.04012,

SOIULION ===
v=3.0L/2mol=15L/mol, T=-150.8+273.2=1224 K
From the ideal gas law,

RT _ (0.08206 L-atm/mol-K)(122.4 K)

ideal = — = = 6.696 atm

Pidesl = 7 1.50 L/mol
From the truncated virial equation,

oy, BO)

T v
Tr = 122.4/126.2 = 0.970
Bo=0.083 — 04—1262 =0.083 - &2126 = —0.360

Ty 0.97
B1=0.139 — &4722 =B;=0.139 - % = —0.0566
. 0.97*

B(T) = RT, (Bo + @By)

c

0.08206 L -atm/mol - K)(126.2 K)

B(T) = ( [ - 0.36 + (0.04)( — 0.0566)] = — 0.112 L/mol

33.5atm
R 0.08206 L -atm/mol-K)(122.4 K
0= R_T L 0.112) _ ( atm/mol - K) ( )(09253)
v 1.5 1.50 L/mol
p =6.196 atm

Error in using ideal gas law

g= Pt “P 100 =807 %
p

12 Felder R. M., Rousseau R. W., Elementary Principles of Chemical Processes, Wiley, 2005, pg. 202
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2.3-2 The Van de Walls Equation of State

We will use the Van de Walls equation of state to illustrate the evaluation of thermodynamic
properties. Both the Van de Walls and the SRK equations of state have two adjustable
constants but the Van de Walls equation is simpler. The Van de Walls equation of state is

_|

a
- (2.3-5)

<l

In this equation, the constant b accounts for the finite volume occupied by the molecules and

a .
the term —- accounts for the attractive forces between molecules.
v

PE) _Pﬂﬂ =0
avir, vy,

Pressure

Psal ]

v |
veal(liq) vSal(yap) Volume

Figure 2.3-1 Isotherms from the Van der Waals equation.

The Van der Waals parameters a and b can be determined from the critical properties since
there is an inflection point at the critical isotherm as shown in Figure 2.3-1. At the critical
point we have

(‘lﬁj :(52’] =0 (2.3-6)
o), vt ).

The isotherm passing through the critical point is given by

(@j R, 28, (2.3-6a)
)
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) _
(ﬂfj S - (2.3-6b)
v )

We can solve the two equations (2.3-6a) and (2.3-6b) for the two unknowns a and b.
Multiplying equation (2.3-6a) by 2 and equation (2.3-6b) by (v, — b) and add them together
we get

4a 6a ,_
\7—3 — —_A(Vc - b) =0 (23‘7)
4av, —6av, +6ab=0= ¥, =3b (2.3-8)

Substituting b =v,_/3 into equation (2.3-6a) and solving for a gives

o

azgv RT.
8

At the critical point we have

Po= < % (2.3-9)

We can use equation (2.3-9) to solve for v,

% . RTcand b = ¥, /3 into equation (2.3-9) we obtain

in terms of critical temperature and critical

pressure. Substituting a =

2 8

b — 3RT, 9vRT, _ 3RT, (3 9) _ 3RT,
T oor v 2V, 8V,

c c

Solving for v, in terms of P. and T we have

_ _ 3RT,
Ve —
8P,
Hence
D- 2
a=2y RT,= 2T RL)
8 64 P

c

Using R = 8.314 J/(mol-°K) = 8.314x10™° m*.bar/(mol-°K) and for propane, T, = 369.9°K, P
= 42.46 bar, we have

5T 2 5 2
a= 20 (RT)" _ 27 (8314x107"x369.9)" _ g 35,106 m.bar/mol
64 P 64 42.46

c
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Example 2.3-2.8 coommmmm oo

One mole of propane gas is to be expanded from 0.001 m* to 0.040 m* while in contact with
a heating bath at 100°C. The expansion is not reversible. The heat extract from the bath is
600 J. Determine the work for the expansion using the Van der Waals equation of state.

_|

a
VZ

<l

SOIULION === e

From the first law we have Au = q + w. Since the amount of heat transfer g is given (600
J/mol), we only need to evaluate Au to find w.

We write u as a function of the independent variables T and v since the values of these two
variables are given in the problem

u=u(T,v)=du= (a—u) dT + (a_uj dv
ot ), oV J;

Since the process occurs at constant T, dT = 0, we have

du = (8_uj dv
o )r

We need to express (%uj in terms of measurable properties by using the diagram
T

G P H G P H
A

T — S T —1—>S

A \Y; U A \ U
%

du = (a—uj ds + (a—uj dv = Tds — Pdv
0s ), ov ),

Therefore

du= (—TaS_PaV) dv = T(éJ —Pldv
N ),

3 Koresky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 222
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U (asj _(apj
:> —_ = PR
ov ), \aT ),

Using the Maxwell relation we have (?j = (2—_?} , the change in internal energy can now
v T v

be expressed solely in terms of measurable properties:

e ]

In terms of molar quantities
du = T(@) _P|dv
ot ),
From the Van der Waals equation: P=

(@)= B i) p]- 2
oar), VvV-b a1 ), v

Hence

0.04m* oS 0.04m* g a 004n’
AT = [ {T(—J —P}dv:j' Zdv=-2=
0.001m* o ); 0.001m® {72

Vo.001m?

Using R = 8.314 J/(mol-°K) = 8.314x10" m*-bar/(mol-°K) and for propane, T, = 369.9°K, P,
= 42.46 bar, we have

_ 27 (RT,)*> _ 27 (8.314x10°° x369.9)°

a= ‘-1 =2 = 0.36x10"® m®.bar/mol
64 P 64 42.46
Therefore
AT = -9.36x10° [ = — L | = 913x10° mbar/mol
0.04 0.001
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AT =913 J/mol
The required work for the expansion is
w =AU — q=913 - 600 = 313 J/mol
2.3-3 Soave-Redlick-Kwong (SRK) Equation
The Soave-Redlick-Kwong (SRK) equation belongs to a class of cubic equations of state
because, when expanded, they yield third-degree equations for the specific volume. The SRK

equation of state is

RT aa
= - 2.3-10
S V(V+b) ( )

In this equation, the parameter a, b, and « are empirical functions of the critical temperature
and pressure, the Pitzer acentric factor, and the system temperature. The following
correlations can be used to estimate these parameters:

— 2
a= 0.42747@

b = 0.08664 RT,

c

m = 0.48508 + 1.55171w — 0.15614°

a= [1+m(1—\/T_R)T

EXample 2.3-3 —--mmmmmm oo

A gas cylinder with a volume of 2.50 m® contains 1.00 kmol of carbon dioxide at T = 300 K.
Use the SRK equation of state to estimate the gas pressure in atm. Data for carbon dioxide:
T.=304.2 K, pc = 72.9 atm, and @ = 0.225%.

ST T ]

Tr = 300/304.2 = 0.9862

RT. =(0.08206 L-atm/mol-K)(304.2 K) = 24.96 L-atm/mol

(24.96 L -atm/mol )’
72.9 atm

(Ii'l'c )2 2 2
a=0.42747~——~ = 0.42747 = 3.6539 L“-atm/mol

C

4 Felder R. M., Rousseau R. W., Elementary Principles of Chemical Processes, Wiley, 2005, pg. 203
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RTe _ g.08664 2426 L-atm/mol _ 4 15971 /mol

P, 72.9 atm

b = 0.08664

m = 0.48508 + 1551710 — 0.1561c7 = 0.8263
a=|1+m(1-T, )T =1+ 0.8263(1—\/0.9862)}2 = 1.0115

RT aa
V-b V(V+b)

(0.08206 L -atm/mol - K) (300 K) ~ (1.0115)(3.654 L* -atm/mol®)
(2.50-0.0297) L/mol (2.50 L/mol)(2.50+0.0297) L/mol

p =9.38 atm

Example 2.3-4 —-mmmmmm oo
A stream of propane at temperature T = 423 K and pressure p(atm) flows at a rate of 100.0

kmol/hr. Use the SRK equation of state to estimate the volumetric flow rate V, , of the
stream for p = 0.7 atm, 7 atm, and 70 atm. In each case, calculate the percentage differences
between the predictions of the SRK equation and the ideal gas equation of state. Data for
propane: T, = 369.9 K, p. = 42.0 atm, and @ = 0.1525,

SOIULION —-m-m e

We first calculate a, b, and « from the following expressions:

_ 2 _
a=o0az747 %) b = 0.08664 ¢

P. P.
m=048508 + 1551710~ 0.15610",  a=|1+m(1-\T )T

The SRK equation is written in the form

(V) =p- o+ %8 =0
v-b  V(V+b)
o : , oo V)
V is then calculated using Newton’s method: v =V — @ vV —dv, where
v

5 Felder R. M., Rousseau R. W., Elementary Principles of Chemical Processes, Wiley, 2005, pg. 204
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RT  aa(2v+b)
(V-b)  [v(7+b)]

. : : : RT o
The initial value for v is obtained from ideal gas law: V ijgea = — . The iteration process
p

stops when v /dV is less than 0.0001. The percentage difference between V sgx and V igeal IS

Vldeal X 100%
2

Once V is known for a given p, the volumetric flow rate corresponding to a molar flow rate
of 100.0 kmol/hr is obtained as

(m¥hr) = ¥ (L/mo |) _mol 1m-

fI
ow OI

(100 kmol/hr) = 100 v (L/mol)

The calculations are performed using the following Matlab program:

% Example 2.4-3
Tc=369.9; % K
pc=42.0; % atm
w=0.152; % acentric factor
Rg=0.08206; % L*atm/(mol*K)
T=423; % K
p=input(p(atm) =");
Tr=T/Tc;
a=0.42747*(Rg*Tc)"2/pc;
b=0.08664*(Rg*Tc)/pc;
m = 0.48508 + 1.55171*w - 0.1561*w"2;
alfa=(1+m*(1-Tr"0.5))"2;
videal=Rg*T/p;v=videal;
for i=1:20;
f=p-Rg*T/(v-b)+alfa*a/(v*(v+h));
df=Rg*T/(v-b)"2-alfa*a*(2*v+b)/(v*(v+b))"2;
dv=f/df;
v=v-dv;
if abs(dv/v)<le-4, break, end
end
Di=(videal-v)/v*100;
Flowrate=100%*v;
fprintf(videal = %6.2f, v(L/mol) = 9%6.2f, Percentage Difference =
%6.3f\n",videal,v,Di)
fprintf('Flow rate (m3/hr) = %6.1f\n’, Flowrate)
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>> ex3d4d5

p(atm) = .7

videal = 49.588, v(L/mol) = 49.406, Percentage Difference = 0.37
Flow rate (m3/hr) = 4940.6

>> ex3d4d5

p(atm) =7

videal = 4.959, v(L/mol) = 4.775, Percentage Difference = 3.86
Flow rate (m3/hr) = 477.5

>> ex3d4d5

p(atm) =70

videal = 0.496, v(L/mol) = 0.289, Percentage Difference = 71.57
Flow rate (m3/hr) = 28.9

The SRK equation of state (and every other equation of state) is itself an approximation. At
423 K and 70 atm, the actual value for v is 0.2579 L/mol. The percentage error in the SRK
estimate (Vv = 0.289 L/mol) is 12%, and that in the ideal gas estimate (v = 0.50 L/mol) is
92%.
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Chapter 2

2.4 Properties Evaluations

This section will show the use of equation of state and property relations to evaluate
thermodynamic properties in several examples.

Example 2.4- 1. 6 <o
Propane at 350°C and 600 cm®mol is expanded in an isentropic turbine. The exhaust
pressure is atmospheric. What is the exhaust temperature? PvT behavior has been fit to the
Van der Waals equation with a = 92x10° [(atm-cm®)/mol?] and b = 91 [cm*/mol]. Solve this
using T as v as the independent variables, that is s = s(T, v). The Van der Waals equation is
given as

A
E

a
\72

<

c
The ideal gas heat capacity for propane is ?’) =1.213 + 28.785x10°T —8.824x10°T?

SOIU 0N == e m e e

Since propane is expanded in an isentropic turbine, we can construct a path such that the sum
of As is zero.

As,

T, VvV,

Choosing T and v as the independent variables the change in entropy is given by

ds = (ﬁj daT + (éj dv
T ), N J;

Sinceas:@:(ﬁj :l[@j -G
T or), T y

6 Koresky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 245
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Using Maxwell relation as shown on the following diagram, we have

(5=

Therefore ds = (;_—VdT + (a—Pj dv

oT

From the Van der Waals equation: P = RT _ % EN (@j - _R

For an isentropic process, we have

AS = J.TZC—VdT+ v R dv=0
T Vi V— b
C
%v = Ep _1=0.213 + 28.785x10°T —8.824x10°°T?

0.213In(To/T1) + 28.785x103(T, — T1) —4.412x10°5(T,* - T,%) + |n(%j =0 (E-1)

1

In terms of molar quantities

0.213In(To/T1) + 28.785x10°3(T, —T1) —4.412x10%(T% —T:2) + In| 2 b\ _p (E-1)
b
vV, —

RT, _ 82.06T,

= 8206T2
I:)2

Since R = 82.06 cm*-atm/mol-K, V, =

2-22



Substituting the following numerical values: T; = 350°C = 623.15°K, V;, = 600 cm®mol, P, =
1 atm, and b = 91 [cm*/mol] into equation (E-1), we have

0.213In(T,/623.15) + 28.785x10(T, —623.15) —4.412x10°(T,* —623.15%)

N In(82.06T2 —91) _0o (E-2)
509

We can use the following Matlab statements to solve the nonlinear equation

>> fun=inline('0.213*log(x/623.15) + 28.785e-3*(x -623.15) - 4.412e-6*(x"2 -
623.15"2)+log((82.06*x-91)/509)");
>> T2=fsolve(fun,500,optimset('Display’, off"))
T2 =
448.2512
>>

The temperature of the exhaust from the turbine is 448.3°K.
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EXample 2.4-2. 7 <o
Develop a general relationship for the change in temperature with respect to pressure at
constant entropy

)

(a) Evaluate the expression for an ideal gas.

(b) From the result in part (a), show that for an ideal gas with constant cp, an isentropic
expansion from state 1 and state 2 yields equation Pv* = const.

(c) Evaluate the expression for a gas that obeys the Van der Walls equation of state.

SOIULION =mmm e e e oo
(a) Evaluate the expression for an ideal gas

The cyclic rule can be employed to give

(ﬂ] __(ﬂj (@j
oP ) 0s Jp\ OP )1
Substituting the relation (ﬁj C—Pand(éj =— (ﬂ) yields
T )y T oP ). aT ),

(5ol
oP ), cplaT Jp

For an ideal gas: Pv =RT = (—) :%
P

oT
Therefore,
[G_T) _RT1_v
oP)s P cp cCp
(b) Show that for an ideal gas with constant cp, an isentropic expansion from state 1 and state

2 yields equation Pv* = const.

Separation of variables provides

Jdof R oP

T cp P

7 Koresky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 245
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Integration provides

R
T P.
In[—zj = In[—zj r
T P
R
. : . T P.
This expression can be rewritten as 2|2 |%
1 \P

The ideal gas law is now employed
R R R
B 1—— 1——
(e _ o), o)
2V2:_2Cp:>p2 Gy, =p\ %y
Pvi (P
where

LR _c-R_o 1
Cp Cp Cp k

If we raise both sides of the equation by a power of k, we find
P. k _ k k _
oV, =Pvy = Pv' =const.

(c) Evaluate the expression for a gas that obeys the Van der Walls equation of state.

oT T

In Part (a), we found (—j = —(ﬂj
oP ) cp\oT Jp

Using the derivative inversion rule, we find for the van der Waals equation

(ﬂ) . R3(v-b)
0T Jp RTv3 —2a(v-b)?
1 RT3(v-b)

Therefore, [a—T] =— 3 5
PJs Cp RTv® -2a(v-b)
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Example 2.4-3.8 -oommm oo

Your company has just developed a new refrigeration process. This process uses a secret gas
called Gas A. You are told that you need to come up with thermodynamic property data for
this gas. The following data have already been obtained for the superheated vapor:

P =10 bar P =12 bar
T[°C] v [mkg] s [kd/kg-"K] v [m*kg] s [kd/kg-°K]
80 0.16270 5.4960 0.13387 ?
100 0.17389 0.14347

As accurately as you can, come up with a value for s in the table above. Clearly indicate your
approach and state any assumptions that you make. Do not assume ideal gas behavior.

ST T ]
In order to solve this problem we need to relate the change in entropy from 10 to 12 bar to

the change in molar volume (for which we have complete data). First, we can rewrite the
change in entropy as

12 bar o5
AS=Sy -8 = j (—j dpP
T

10 bar

Applying a Maxwell relation, we can relate the above equation to the change in molar
volume:

12 bar 12 bar
So =51 + '[ (éj dPZS]_-l- J‘ —(ﬂj dP
0P )5 T )p

10 bar 10 bar
As 10 bar:
ov Av _4 m?3
[_j [_j _5.60x1074| T
aT Jp AT Jp kg-K
At 12 bar:

I

3
(ﬂj (ﬂj ~4.80x10~4| -
T Jo \AT Jp kg-K

. . . ov
To integrate the above entropy equation, we need an expression that relates (a_Tj to
P

pressure. Thus, we will fit a line to the data. We obtain

8 Koresky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 245
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3 3
[ﬂj —|—40x10720| ™ |lpiosx1074 T
aT Jp kg-K-Pa kg-K

Now integrate the equation to find the entropy:

1.2x107 Pa K] K]
sp=si+ | [(4.ox10‘1°)P—9.6x10‘4]dP =5.4960-0.104| —— (=5.392| ——
6 kg-K kg-K

1.0x10” Pa

EXampPle 2.4-4.0 <o oo e

You need to design a heater to preheat a gas flowing into a chemical reactor. The inlet
temperature is 27°C and the inlet pressure is 50 bar. You desire to heat the gas to 227°C and
50 bar. You are provided with an equation of state for the gas.

PV 1+ 2P witha= —0.070 PK/bar]
RT TO

N
1
Il

and with ideal gas heat capacity data:

%P = 3.58 + 3.02x10T where T is in [°K]

As accurately as you can, calculate, in [J/mol], the amount of heat required.

SOIULION === == m e o e
Energy balance: h, -y =q

Because the gas is not ideal under these conditions, we have to create a hypothetical path that
connects the initial and final states through three steps. One hypothetical path is shown
below:

P [bar]
PT, q=Ah PT,
50 + ,
I
|
I
: &l o |
Ahl | g % : Ah3
I = Rz
! |
I
|
'! Ah, step 2 |
O L
ideal gas
| |
T T
300 500 TI[K]

9 Koresky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 245
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Choosing T and P as the independent properties:
dh [@_hj a7 (a_hj dp
aT Jp oP )7

—T(ﬂj +Vvyields
P

oT

dh=cpdT + —T(ﬂj +v |dP
aT Jp

The given EOS can be rewritten as

Using Equation (@j
oP ),

v=R(l+aT1/2j
P

Taking the derivative gives: (%j :%+O.5aRT -05

P

Hence

dh = cpdT +(0.5aRT 05 P

For step 1

0
Ay = j(0-5aRT1°'5)dP —~0.5aRT 5P = 252 [L}

50 bar mol
For step 2
500 ]
Ahy =R j(;.58+ 3.02x1073T ~0.875T O hT = 7961[—J
300K mo
For step 3:
50 bar ]
Ahg= EO.SaRTZO'E’)dP = 0.5aRT P =323 {—}
0 mol
Finally summing up the three terms, we get, g = Al + Ah, + Ahg = 7888 {LJ
mo
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Chapter 3

Principles of Phase Equilibrium

3.1 Phase and Pure Substance

A phase is a quantity of matter characterized by both uniform physical structure and uniform
chemical composition. A phase can be solid, liquid, vapor or gas. The atoms in a solid phase
are fixed relative to other atoms in the solid. They are however can vibrate about this fixed
position. Like a solid, molecules within the liquid phase are in close proximity to one another
due to intermolecular forces. However, the molecules in a liquid are not fixed relative to
other molecules in the liquid. They are constantly in motion, free to move relative to one
another. More than one liquid phase can coexist such as oil and water. They are considered
separate liquid phases since they are not miscible. Similarly, solids can coexist in different
phases. For example, solid carbon can exist in the diamond phase or the graphite phase. Gas
molecules move randomly to fill the entire volume of the container in which they are housed.
The molecules continuously change direction as they colide with each other and bounce off
the container surface creating the measurable pressure p.

A substance that has a fixed chemical composition throughout the system is called a pure
substance. Water, hydrogen, nitrogen, and carbon monoxide, for example, are all pure
substance. A pure substance can also be a mixture of various chemical elements or
compounds as long as the mixture is homogeneous. Air, a mixture of several compounds, is
often considered to be a pure substance because it has a uniform chemical composition. “A
mixture of two or more phases of a pure substance is still a pure substance as long as the
chemical composition of all phases is the same. A mixture of ice and liquid water, for
example, is a pure substance because both phases have the same chemical composition.”*

The state of a system at equilibrium is defined by the values of its thermodynamic properties.
System of pure substances or simple compressible systems are defined by two intensive
properties such as temperature and pressure. For any homogeneous, pure substance, all
thermodynamic functions or properties may be expressed in terms of any two given
independent properties.

v="f(T, p) or v=Vv(T, p)
u=u(T, p) or u=u(T, V)
s=s(T, p) or s=5(T, V)

The functional relations for these properties must be developed from experimental data and
are dependent on the particular chemical molecules making up the system. Only expansion or

compression works given by Ipdv are permissible in simple compressible systems
undergoes quasiequilibrium processes.

! Cengel Y. A, Boles M. A., Thermodynamics: An Engineering Approach, Mc-Graw Hill, 1998, pg. 48.
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Pressure can be expressed as a function of temperature and specific volume: p = p(T, v). The
plot of p = p(T, v) is a surface called p-v-T surface. Figure 3.1 shows the p-v-T surface of a
substance such as water that expands on freezing.

Pressure

Critical
pami

Critical

Solid Liquid point

Pressure
Pressure

L' Viypar

Trple line —

Triple point
Solid-vapor

Temperatune Specific volume
[F1)] i

Figure 3.1-1 p-v-T surface and projections for a substalnce that expands on freezing.
(a) 3-D view (b) p-T diagram (c) p-v diagram?.

The location of a point on the p-v-T surface gives the values of pressure, specific volume, and
temperature at equilibrium. The regions on the p-v-T surface labeled solid, liquid, and vapor
are single-phase regions. The state of a single phase is determined by any two of the
properties: pressure, temperature, and specific volume. The two-phase regions where two
phases exist in equilibrium separate the single-phase regions. The two-phase regions are:
liquid-vapor, solid-liquid, and solid-vapor. Temperature and pressure are dependent within
the two-phase regions. Once the temperature is specified, the pressure is determined and vice
versa. The states within the two-phase regions can be fixed by specific volume and either
temperature or pressure.

The projection of the p-v-T surface onto the p-T plane is known as the phase diagram as
shown in Figure 3.1 (b). The two-phase regions of the p-v-T surface reduce to lines in the
phase diagram. A point on any of these lines can represent any two-phase mixture at that
particular temperature and pressure. The triple line of the p-v-T surface projects onto a point
on the phase diagram called the triple point. Three phases coexist on the triple line or the
triple point.

2 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, p. 83
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The constant temperature lines of the p-v diagram are called the isotherms. For any specified
temperature less than the critical temperature, the pressure remains constant within the two-
phase region even though specific volume changes. In the single-phase liquid and vapor
regions the pressure decreases at fixed temperature as specific volume increases. For
temperature greater than or equal to the critical temperature, there is no passage across the
two-phase liquid-vapor region.

T I I I T TTT I T TTT
0 I!wPa | 0 MPa o MJ/ MPa MPa MPa 4 MPa
|

[ [ I | ||
0.00100 0.0100 0100

500,

500,

400.

300,

Temperature (°C)

200,

A hPa

——LG.L_RwLilllllllllllllllllll

100.

:

L 1111
1.00

Volume (m*kg)

Figure 3.1-2 T-v diagram for water (to scale).

Figure 3.1-2 is a T-v diagram for water. For pressure greater than or equal to the critical
pressure, temperature increases continously at fixed pressure as the specific volume increases
and there is no passage across the two-phase liquid-vapor region. The isobaric curve marked
50 MPa in Figure 3.1-2 shows this behavior. For pressure less than the critical value, there is
a two-phase region where the temperature remains constant at a fixed pressure as the two-
phase region is traversed. The isobaric curve with values of 20 MPa or less in Figure 3.1-2
shows the constant temperature during the phase change.

At 100°C, the saturated volumes of liquid and vapor water are 1.0434 cm®/g and 1,673.6
cm®/g, respectively. The quality of steam is the mass fraction of water vapor in a mixture of
liquid and vapor water. The specific volume of 100°C steam with a quality of 0.65 is given

by

v=(1- 065" +0.65v¥ = (0.35)(1.0434) + (0.65)(1,673.6) = 1088.2 cm®/g



3.2 Phase Behavior

We will consider a phase change of 1 kg of liquid water contained within a piston-cycinder
assembly as shown in Figure 3.2-1a. The water is at 20°C and 1.014 bar (or 1 atm) as
indicated by point (1) on Figure 3.2-2.

[] Watér vapor Water vapor
Liquid water Liquid warer
(1) (b} ()

Figure 3.2-1 Phase change at constant pressure for water®

p. = 22.09 MPa (3204 Ibifin.2)

30 MPa

10 MPa

Ligquid Vapor

1.014 bar (14.7 Ibffin.”)

Temperature

Liguid-vapor

100°C (212°F)

20°C

4r
(68°F) [

Specific volume

Figure 3.2-2 Sketch of T-v diagram for water*

As the water is heated at constant pressure, the temperature increases with a slight increase in
specific volume until the system reaches point (f). This is the saturated liquid state
corresponding to 1.014 bar. The saturation temperature for water at 1.014 bar is 100°C. The
liquid states along the line segment 1-f are called subcooled or compressed liquid states.
When the system is at the saturated liquid state (point f in Figure 3.2-2) any additional heat
will cause the liquid to evaporate at constant pressure as shown in Figure 3.2-1b. When a
mixture of liquid and vapor exists in equilibrium, the liquid phase is a saturated liquid and
the vapor phase is a saturated vapor. Liquid water continues to evaporate with additional heat
until it becomes all saturated vapor at point (g). Any further heating will cause an increase in
both temperature and specific volume and the saturated vapor becomes superheated vapor
denoted by point (s) in Figure 3.2-2. For a two-phase liquid-vapor mixture, the quality x is
defined as the mass fraction of vapor in the mixture

mva or
X= e (3.2-1)

mvapor + mquuid

® Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, p. 87
* Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, p. 86
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The properties of pure subtances can be obtained from tables such as Table 3.2-1 for
saturated properties of water and Table 3.2-2 for properties of superheated water vapor.
Thermodynamic properties can also be obtained from softwares, which are more convenient
since interpolations for values not directly available in the tables are not necessary.

Table 3.2-1 Thermodynamic properties of saturated water>.

Specific Volume | Internal Energy Enthalpy Entropy
m¥kg kd/kg kd/kg kd/kg-K
Sat.
Liquid | Sat. Sat. Sat. Sat. Sat. Sat. Sat.

Temp. | Press. v¢x | Vapor | Liquid | Vapor | Liquid | Evap. | Vapor | Liquid | Vapor | Temp.
°C bar 10° Vg Us Ug ht hrq hq St S °C
.01 0.00611 | 1.0002 | 206.136 0.00]2375.3 0.01]2501.3 | 2501.4 |0.0000 |9.1562 .01
4 0.00813(1.0001 | 157.232| 16.77|2380.9 | 16.782491.9|2508.7 |10.0610 [9.0514 4
5 0.00872{1.0001 | 147.120| 20.97 |2382.3 | 20.98|2489.6|2510.6 [0.0761 |9.0257 5
6 0.00935(1.0001 | 137.734| 25.19|2383.6 | 25.20|2487.2|2512.4 10.0912 |9.0003 6
8 0.01072{1.0002 | 120.917| 33.59|2386.4 | 33.60|2482.5|2516.1 |0.1212 |8.9501 8
10 0.01228 [ 1.0004 | 106.379| 42.00|2389.2 | 42.01|2477.7|2519.8 |0.1510 |8.9008 10
11 0.01312(1.0004 | 99.857| 46.20|2390.5 | 46.20|2475.4]2521.6 |0.1658 |8.8765 11
12 0.01402 [ 1.0005 | 93.784 | 50.4112391.9 | 50.41|2473.02523.4 |0.1806 |8.8524 12
13 0.01497 [ 1.0007 | 88.124 | 54.60|2393.3 | 54.60|2470.7 |2525.3 |0.1953 |8.8285 13
14 0.01598 | 1.0008 | 82.848 | 58.79|2394.7 | 58.80|2468.3|2527.1 (0.2099 |8.8048 14
15 0.01705[1.0009 | 77.926 | 62.99|2396.1 | 62.99|2465.92528.9 |0.2245 |8.7814 15
16 0.01818|1.0011 | 73.333| 67.18|2397.4 | 67.19|2463.6|2530.8 [0.2390 |8.7582 16
17 0.01938(1.0012 | 69.044 | 71.38|2398.8 | 71.38|2461.22532.6 [0.2535 |8.7351 17
18 0.02064 [ 1.0014 | 65.038 | 75.57|2400.2 | 75.58|2458.8 |2534.4 |0.2679 |8.7123 18
19 0.02198 [ 1.0016 | 61.293| 79.7612401.6 | 79.77)2456.5|2536.2 |0.2823 |8.6897 19
20 0.02339(1.0018 | 57.791| 83.95]2402.9 | 83.96|2454.1|2538.1 |0.2966 |8.6672 20
21 0.02487 [1.0020 | 54.514 | 88.14|2404.3 | 88.14|2451.8|2539.9 |0.3109 |8.6450 21
22 0.02645[1.0022 | 51.447| 92.32|2405.7 | 92.33|2449.4|2541.7 |0.3251 |8.6229 22
23 0.02810(1.0024 | 48.574| 96.51|2407.0 | 96.52|2447.0|2543.5 |0.3393 |8.6011 23
24 0.02985 [ 1.0027 | 45.883 | 100.70 | 2408.4 | 100.70 | 2444.7 | 2545.4 |0.3534 |8.5794 24
25 0.03169 [ 1.0029 | 43.360 | 104.88 | 2409.8 | 104.89 | 2442.3 | 2547.2 |0.3674 |8.5580 25

®> Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, p. 817
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Table 3.2-2 Thermodynamic properties of superheated water vapor®.

T \ u h S v u h S
°C | m¥kg | kilkg | kd/kg | kd/kg-K | m¥kg | ki/kg | ki/kg |kd/kg-K
p = 0.06 bar = 0.006 MPa p = 0.35 bar = 0.035 MPa
(Teat = 36.16°C) (Teat = 72.69°C)

Sat. | 23.739 | 2425.0 1 2567.4 | 8.3304 | 4.526 |2473.0|2631.4| 7.7158
80 |27.132(2487.3|2650.1 | 8.5804 | 4.625 [2483.712645.6| 7.7564
120 |30.219|2544.7 1 2726.0 | 8.7840 | 5.163 |2542.4|2723.1| 7.9644
160 | 33.302 | 2602.7 | 2802.5| 8.9693 | 5.696 [2601.2|2800.6 | 8.1519
200 | 36.383 |12661.4 |12879.7 | 9.1398 | 6.228 |2660.4 |2878.4 | 8.3237
240 139.462 |12721.012957.8 | 9.2982 | 6.758 |2720.3|2956.8 | 8.4828
280 |42.54012781.513036.8 | 9.4464 | 7.287 |2780.9|3036.0| 8.6314
320 |45.618 |12843.013116.7 | 9.5859 | 7.815 |2842.5|3116.1| 8.7712
360 |48.696 1 2905.513197.7 | 9.7180 | 8.344 |2905.1|3197.1| 8.9034
400 |51.774 12969.0 | 3279.6 | 9.8435 | 8.872 |2968.6 | 3279.2| 9.0291
440 154.851 |3033.53362.6 | 9.9633 | 9.400 |3033.2|3362.2| 9.1490
500 |59.467 |13132.313489.1 |10.1336 | 10.192 | 3132.1 | 3488.8 | 9.3194

p =0.70 bar = 0.07 MPa p =1.0 bar =0.10 MPa
(Tear = 89.95°C) (Teat = 99.63°C)

Sat. | 2.365 [2494.5]12660.0| 7.4797 | 1.694 |2506.1|2675.5| 7.3594
100 | 2.434 |2509.7 | 2680.0 | 7.5341 | 1.696 |2506.7 |2676.2| 7.3614
120 | 2.571 |2539.7 |2719.6 | 7.6375 | 1.793 [2537.3|2716.6 | 7.4668
160 | 2.841 |2599.4 12798.2| 7.8279 | 1.984 [2597.8|2796.2| 7.6597
200 | 3.108 |2659.112876.7 | 8.0012 | 2.172 |2658.1 |2875.3| 7.8343
240 | 3.374 |2719.312955.5| 8.1611 | 2.359 |2718.5]2954.5| 7.9949
280 | 3.640 |2780.213035.0| 8.3162 | 2.546 |2779.6|3034.2| 8.1445
320 | 3.905 |2842.013115.3 | 8.4504 | 2.732 |2841.5|3114.6 | 8.2849
360 | 4.170 |2904.6 13196.5| 8.5828 | 2.917 |2904.2 |3195.9| 8.4175
400 | 4.434 |2968.2|3278.6 | 8.7086 | 3.103 |2967.9|3278.2| 8.5435
440 | 4.698 |3032.93361.8| 8.8286 | 3.288 |3032.6 |3361.4 | 8.6636
500 | 5.095 |3131.83488.5| 8.9991 | 3.565 |3131.6|3488.1| 8.8342

® Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, p. 821
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Example 3.2-1 ---mmmmmmm oo

(a) Determine the specific volume for saturated water vapor and internal energy for saturated
liquid at 4.4°C from the following data

Specific Volume | Internal Energy
m3/kg kJ/kg

Sat.
Liquid | Sat. Sat. Sat.
Temp. | Press. vsx | Vapor |Liquid | Vapor | Temp.

°C bar 10° Vg Us Ug °C
4 0.00813|1.0001 | 157.232| 16.77]2380.9 4
5 0.0087211.0001 | 147.120| 20.97|2382.3 5

(b) Determine the specific volume and the internal energy for superheated water vapor at
90°C and 0.20 bar from the following data

T ' u h S Vv u h S
°C | m¥kg | kilkg | kilkg |ki/kg-K |mPkg | kilkg | kilkg |kd/kg-K
p = 0.06 bar = 0.006 MPa p = 0.35 bar = 0.035 MPa
(Tsat = 36.16°C) (Tsat = 72.69°C)

80 |27.132|2487.3 |2650.1 | 8.5804 | 4.625 |2483.7 | 2645.6 | 7.7564
120 (30.219 | 2544.7 | 2726.0 | 8.7840 | 5.163 | 2542.4 |2723.1| 7.9644

SOIULION == m e e
(a) Determine the specific volume for saturated water vapor at 4.4°C.
Yo
y
Yil
X, X X, X
Y=Y _ Yoo W
X=X X=X

Using linear interpolation we have

v, ~157.232 _ 147.120-157.232
4.4—-4 5-4

Vg = 157.232 + (0.4)(147.120 — 157.232) = 153.187 m°/kg
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We can also use Matlab interpolation command interp1l.
>> vg=interpl([4 5],[157.232 147.12],4.4)
vg =
153.1872
Determine the internal energy for saturated liquid at 4.4°C

u,—16.77 _ 20.97-16.77
44-4 5-4

U = 16.77 + (0.4)(20.97 — 16.77) = 19.29 kJ/kg
We can also use Matlab interpolation command interpl.
>> ul=interpl1([4 5],[20.97 16.77],4.4)
ul =
19.2900
Properties of water can also be obtained from the Steam4 program written by T.K. Nguyen.
You should note that the values from the software might be different than the values obtained

from linear interpolation since the software does not assume linear relation between the
variables. The values calculated from software are in general more accurate.

"~ Steam Properties by T.K.Nguyen, Sept. 2006. Use at your ¢

Figure 3.2-3 Propterties of saturated liquid and vapor water.
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The Catt2 program (Computer-Aided Thermodynamic Table 2) produced by Sonntag
contains properties of other compounds beside water.

/- Computer-Aided ThermodGeneral Properties X
File Tables Log Water  [meutTere—
T C1LT&P Temperature C
C2Tav
~¥ater Properties - Pressure MPa
37T&5
T 44 c =
P 0.000836 MPa A TEX Specific Yolume m3/kg
v 153.1 m3fkg CBPLV || ghcific Enthalpy ki/kg
U 2381 kliky 6 P&H
H 2509 kdiky 7 PLs EiecilEntopy gt
g 9.041 kikg/K N
9 B P&X quaiy [ Jo<=x¢=1
% 1
Phasze Saturated Vapor |~/ 0K | |x Cancel | | ? Help

Specific Internal

0.001

Figure 3.2-4 Propterties of saturated liquid and vapor water from Catt2.

(b) Determine the specific volume for superheated water vapor at 90°C and 0.20 bar

T v v
°C | m¥kg | m¥kg

0.06 bar | 0.35 bar
80 | 27.132 4.625
120| 30.219 5.163

We first need to determine v1(90°C, 0.06 bar) and v,(90°C, 0.35 bar)

v, —27.132 _ 30.219-27.132
90-80 120-80

V1 = 27.132 + (10)(30.219 — 27.132)/30 = 27.90 m*/kg

v, —4.625 _ 5.163-4.625
90-80 120-80

V2 = 4.625 + (10)(5.163 — 4.625)/30 = 4.760 m*/kg
We now determine v(90°C, 0.20 bar) from v;(90°C, 0.06 bar) and v,(90°C, 0.35 bar)

v-279 _ 476-279
0.20-0.06 0.35-0.06




v =27.9 + (0.14)(4.76 — 27.9)/0.29 = 16.73 m*/kg
We can also use the following Matlab commands.
>> v1=interp1([80 120],[27.132 30.219],90);
>> v2=interp1([80 120],[4.625 5.163],90);
>> v=interp1([.06 .35],[v1 v2],.2)

v =16.7307

Determine the internal energy for superheated water vapor at 90°C and 0.20 bar

T u u
°C | kJkg kJ/kg

0.06 bar | 0.35 bar
80 | 2487.3 | 2483.7
120| 2544.7 | 2542.4

Use the following Matlab commands, we obtain u = 2500.1 kJ/kg
>> ul=interp1([80 120],[2487.3 2544.7],90);

>> u2=interp1([80 120],[2483.7 2542.4],90);

>> y=interp1([.06 .35],[ul u2],.2)

u = 2.5001e+003

The internal energy for superheated water vapor at 90°C and 0.20 bar can also be obtained
directly from thermodynamic property software.

" Steam Properties by T.K.Nguyen, Sept. 2006. Use at yo

2:T & P known
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Chapter 3
Principles of Phase Equilibrium

3.3 Introduction to Phase Equilibrium

A system is said to be in equilibrium when its properties are uniform over the system and are
independent with time.

70°C
min
45°C
40°C
30°C 30°C
A B C

Figure 3.3 Example of equilibrium and non-equilibrium systems.

System A shown in Figure 3.3 is not at equilibrium since its temperature is a function of both
position and time. It is an unsteady state system. System B is not at equilibrium since its
temperature is a function of position. It is a steady state system. System C is at equilibrium
since its temperature is uniform and independent of time.

We can use thermodynamics to form relationships between the states of a system that
undergoes certain processes. From the first and second law we can calculate the work or heat
required for the change of states or the value of an unknown property of a given state. We
can also use thermodynamics to determine the composition of a mixture when it reaches
equilibrium between coexisting phases with or without chemical reactions.

The criterion for equilibrium can be based on the energy or entropy of the system. For a
spontaneous process, the system is at equilibrium if its energy is a minimum or its entropy is
at a maximum. At equilibrium we have

AGTp<0 (3.3-1a)
Equation (3.3-1a) says that in a closed system at constant temperature and pressure,

spontaneous processes produce negative changes in Gibbs free energy, and at equilibrium the
Gibbs free energy is at its minimum value.

G P H Great Physicists Have Study
Under Very Able Teachers

T S

A \% U

From the above diagram, we can see that equation (3.3-1) involves three variables in a group.
We can use variables belong to different groups for the equilibrium criterion.
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AHps <0, AUsy <0, or AAy7<0. (3.3-1b,c,d)
The criterion based on entropy is given as

ASyv =0, or ASyp>0. (3.3-2a,b)
Equation (3.3-2a) says that in a closed system at constant internal energy and volume,

spontaneous processes produce positive changes in entropy, and at equilibrium the entropy is
at its maximum value.

3.4 Pure Species Phase Equilibrium
3.4-1 Gibbs Free Energy as a Criterion for Chemical Equilibrium
Consider a closed system of a pure component in mechanical and thermal equilibrium and,

therefore, at constant T and P. The system can absorb energy Q at constant T. Therefore the
surroundings will have a reduction in the entropy given by

ASgyr = — % (3-4'1)

From the second law we have
ASsur + ASsys 2 0 (3.4‘2)

In this expression, the equal sign applies for reversible processes and the unequal sign applies
for irreversible processes. Combining equations (3.4-1) and (3.4-2) gives

ASsys > %

We will now drop the subscript sys for the entropy of a system (AS = ASys), the above
equation becomes

TAS>Q (3.4-3)
The first law for a closed system with only PV work is given by

Q=AU —-W = AU + PAV
Substituting Q = AU + PAV into equation (3.4-3) gives

AU + PAV —TAS<0 (3.4-4)
The Gibbs free energy is related to other properties by the following equation

G=H-TS=U+PV-TS
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The change in Gibbs free energy is then
AG = AU + PAV + VAP —TAS —SAT
At constant T and P, AT = AP = 0, the above equation becomes
AG = AU + PAV —~TAS < 0 (3.4-5)

The above equation is essentially equation (3.3-1a), AGtp < 0. Therefore in a closed system
at constant temperature and pressure, spontaneous processes produce negative changes in
Gibbs free energy, and at equilibrium the Gibbs free energy is at its minimum value. It
should be noted that the specification of two intensive properties fixes the values of all other
state properties only in the uniform equilibrium state of a single-component, single-phase
system. Thus, the equilibrium criterion specified by Eg. (3.3-1a) or (3.4-5) can be used for
identifying the final equilibrium state in an isolated system that is initially nonuniform, or in
which several phases or components are present.

3.4-2 The Chemical Potential

G P H Great Physicists Have Study
Under Very Able Teachers

T S

A Vv U

Consider the fundamental grouping {U, S, V}, we have
U=U(sS,V)

For a system with C component, the internal energy U also depends on the number of moles,
n;, of each component. Let C = 3, we have

U =U(S, V, ny, nz, n3)

The differential change in U is given by

du = [a_uj ds + (5—Uj dv + (Qj dn, + (ﬂj dn, + (ﬂ] dn;
05 Vng,ng,ng oV S.ny.ny.ng anl S\V,n,,ng anz SV,n.ng an3 SV.n.n,

In general, we have
U=U(,V,ng ... 0, ...,Nc) (3.4-6)

and

C
du = (a_uj ds + (8_Uj dv + z Q dn; (3.4-7)
oS v, oV S,n; i=1 ani SV.n;
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The subscript j denotes a component different than i. The first two coefficient of Eq. (3.4-7)

refer to conditions of constant composition. This refers to the same conditions as (%j and
\Y

(),

G P H G P H
A

T ——S T — S

A \ U A Vv U
%

Therefore

(a_uj =Tand (G_Uj =—P
0S von, oV s,

We can simplify Eq. (3.4-7) by defining the chemical potential

6ni SV.n;

Equation (3.4-7) now becomes

C
dU=TdS —PdV + > 4 dn; (3.4-8)

i=1

Adding d(PV) to each side of this equation, we obtain

C
dH =dU +d(PV) = VdP + TdS + > s, dn; (3.4-9)

i=1
Subtracting d(TS) from each side of Eq. (3.4-8) yields
C
dA=dU —d(TS) = —SdT —PdV + > 1, dn (3.4-10)
i=1

Similarly, subtracting d(TS) from each side of Eq. (3.4-9) yields

C
dG =dH —d(TS) =VdP —SdT + )_ 4 dn; (3.4-11)

i=1
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Equations (3.4-8)-(3.4-11) are applicable to closed systems where the change in the number
of moles of one or more components is caused by a chemical reaction. They are also
applicable to open systems where the change is from a transfer of matter.

G P H Great Physicists Have Study
Under Very Able Teachers
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We defined the chemical potential as

8ni SV.n;

From equations (3.4-9)-(3.4-11), we can also define the chemical potential in terms of H, A,

and G
on, SV.n; on; P.S.0; on; TV, on, T.P.n;

These definitions involve the 3 properties at each corner of the diagram. They can be
considered as alternative ways of determining a thermodynamic property. The last term in
equation (3.4-12) is the more useful definition since a process of constant temperature and
pressure is experimentally the most convenient. For a single component system G = Ng, and

oG o(N
e [ﬁj ] (—gNg)j -
1/T.Pn; T,P

A physical meaning of the chemical potential may be obtained when Eqg. (3.4-8) is applied to
a process.

C
dU=TdS —PdV + > 1 dn; (3.4-8)

i=1

From the first law, we have dU = 8Q + 6W. Therefore

C
8Q +8W =TdS —PdV + >’ 4 dn; (3.4-13)

i=1

Since this equation applies only to changes between equilibrium states, 6Q = TdS . Equation
(3.4-13) becomes
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C
SW=—PdV + >z dn; (3.4-14)

i=1

Eqg. (3.4-14) is the work interaction of a system. It contains a Pv work and a work involved a
change in mole numbers due to chemical reaction or mass transfer.

3.4-3 Vapor Liquid Phase Equilibrium
Consider an isolated system of a single component shown in Figure 3.4-1. The equilibrium
system consists of a vapor phase (I) and a liquid phase (II). For the entire system, the total
moles, internal energy, volume, and entropy, all of which are extensive variables, are the
sums of these quantities in the two phases, that is,

N=N"+N"

u=u'+U"

v=Vv+ V!

and
s=s'+g"

Vapor phase |

Figure 3.4-1 An isolated equilibrium system.
We now consider the internal energy to be a function of volume, entropy, and mole number.
u'=U's, v, NY

We can calculate the change in the internal energy for the vapor phase | due to changes in S',
V! and N'.

| | |
du':[%%TJ dst+(%gTj dVL*(g%TJ dN! (3.4-15)
VN s'.N! stv!

The partial derivatives can be written in terms of thermodynamic properties.

du' = T'ds' - P'dv' + g'dN' (3.4-16)

Solving the above equation for dS'yields
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| |
ds' = Ti,du' + i—,dv' - _?—IdN' (3.4-17a)

Similarly, for the liquid phase we have

1 1
ds" = T%du” LY _?TdN”

(3.4-17Db)
The entropy change of the entire system is
| 1 | 1
ds=ds'+ds" = Ti,du' " T%du” + :’—,dv' +TPTdvII - _?—IdN' - g—”dN“

Since the system is isolated, the total number of moles, total internal energy, and total
volume are constant.

dN=dN'+ dN"=0 = dN'= — dN"
dUu =du'+du"=0=du'= — du"

dv=dV'+dv"'=0=dVv'= —gV"

Therefore

| 1 | 1
ds = (T%_T#]du' ' (i_l—%}dv' - (g—,—%} dN/ (3.4-18)

At equilibrium, the value of S is at a maximum. Hence dS = 0. Since U', V', and N' are
independent, dS can be equal to zero only if the coefficients of dU', dV', and dN' must all
equal to zero.

T1, —T# ST =T
| 1

:—I—% = Pp'=pP"
g g T

TToTr) 7O

Therefore, the equilibrium condition for the two phases system shown in Figure 3.4-1 is

satisfied if both phases have the same temperature, the same pressure, and the same chemical
potential or Gibbs free energy.
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EXAMPIE 3.4- 1 oo
Calculate the horsepower for compressing 5,000 Ibs/hr of ethylene from 100 psia, — 40°F to
200 psia. The adiabatic efficiency of the compressor is 75%. Include your calculations and
Mollier chart.

SOIULION == e

The Mollier chart (Pressure-Enthalpy diagram) for ethylene can be obtained from the text by
Darby, R., Chemical Engineering Fluid Mechanics, Marcel Dekker, 2001, p. 511.
DQ

N

\
S
Y
Q?v

Pressure, psia

1044 1064
Enthalpy, Btu/lb
The enthalpy of ethylene at 100 psia and — 40°F can be located from the diagram to give

h, = 1044 Btu/lb

For isentropic compression, As = 0, we follow the curve where s is a constant until it reaches
the line where P = 200 psia to locate a value for the enthalpy

h, = 1064 Btu/lb

The actual increase in enthalpy of the gas is obtained from the adiabatic efficiency

1
(hz - hl)actual = ﬁ (h2 - h1)isentr0pic = 26.7 Btu/lb

The horesepower supplied by the compressor to compress 5000 Ib/hr of ethylene is
Power = 5000 x 26.7 = 133,500 Btu/hr

Power = (133,500 Btu/hr)(3.9301x10™ hp/(Btu/hr)) = 52.5 hp

" Dr. Pang's Notes
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Chapter 3

EXample 3.4-2 —m-mmmm oo

Design a refrigeration system, which supplies two levels of ammonia refrigerant at 10°C and
at — 10°C to two exchangers requiring duties of 850 and 2,500 kW, respectively. Draw a
process flow diagram (PFD) showing major equipment, flow rates in kg/s of refrigerant,
duty of each heat exchanger, duty, and horsepower of each compressor. Also, show
temperatures and pressures of all streams. There are no inter-coolers between compressors.
The compressed gas from the last stage compressor can be cooled to saturated liquid at 30°C.
Use 75% adiabatic efficiency for all compressors.

T T ]

\‘ T3’ Pl TA, P \‘
C2 C1l
/ T., P,

V2 V1
F2  f—D<de— F1  f—D<gt—

T, T,
P, P,

E2 El

Figure 3.4-2 A two level refrigeration system.

A design of a two level refrigeration system is shown in Figure 3.4-2. Saturated liquid
ammonia at T; is partially vaporized through a let-down valve V1 to T; and P;. Part of the
liquid separated by the flash drum F1 is used to provide the first level refrigeration through
the heat exchanger E1. The remaining liquid passes through a second valve where its
temperature and pressure is reduced to T, and P,. The liquid stream from the second flash
drum F2 is used for the second level refrigeration through the heat exchanger E2 where it
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becomes saturated vapor. This stream is combined with the saturated vapor from the second
flash drum and compressed back to pressure P;.

Isotherm at T,
Critical point
T, P,
______________________ Saturated vapor
Saturated liquid Isentropic line
T3,ideaI1 Pl
g
a L 7 Tl’ Pl T3l Pl
7 S A e N N NV
g
o
______________ v P,
Enthalpy

Figure 3.4-3 Pressure-Enthalpy diagram.

The problem can be solved either with a Pressure-Enthalpy diagram of ammonia as shown in
Figure 3.4-3 or with a program solving an equation of state to obtain thermodynamic
properties of a pure substance given any two other properties (for example, temperature and
pressure or saturation temperature). We will use the computer program CATT2 to obtain
thermodynamic values listed in Table 3.4-1. For this example the pressure drop across the
heat exchangers and across the flash drums will be neglected.

Saturated liquid ammonia at T; = 30°C is a defined state at P; = 1.167 MPa with enthalpy
equal to 322.4 kJ/kg as shown in the first line of the property table 3.4-1. Similarly, the
saturated properties of ammonia at 10°C and —10°C can be obtained. The mass flow rated of
saturated liquid ammonia, m_,, required to remove 2,500 kW in heat exchanger E2 is given

by

o= 2500kw
-2 h\/,z - hL,z

In this equation, hy, and h_, are the enthalpy of saturated vapor and liquid ammonia at
—10°C, respectively. Therefore
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o = 2500kw _ 2500
"2 h,-h, 1431-134.4

=1.9281 kg/s

Table 3.4-1 Thermodynamic properties of ammonia.
Specific  Specific  Specific
Type Temp Pressure Volume Enthalpy Entropy Quality Phase

C MPa m3/kg kJ/kg kJ/kg/K

1 Ammonia 30 1.167 0.00168 322.4 1.2 0 Saturated Liquid

2Ammonia 30 1.167  0.1105 1466 4.974 1Saturated Vapor

3 Ammonia 10 0.6152 0.0016 227  0.8779 0 Saturated Liquid

4 Ammonia 10 0.6152 0.2054 1452 5.204 1Saturated Vapor

5Ammonia -10  0.2909 0.001534 134.4  0.5408 0 Saturated Liquid

6 Ammonia -10 0.2909 0.4181 1431 5.467 1Saturated Vapor

7 Ammonia 39.43 0.6152 0.2343 1530 5.467 Superheated Vapor

8 Ammonia 52.64 0.6152  0.2465 1563 5.57 Superheated Vapor

9 Ammonia 38.85 0.6152 0.2338 1529 5.463 Superheated Vapor
10 Ammonia 87.57 1.167 0.1417 1628 5.463 Superheated Vapor
11 Ammonia 100.8 1.167 0.1482 1661 5.554 Superheated Vapor

m_, is also the liquid flow rate leaving flash drum F2. The vapor flow rate, m, ,, leaving the

second flash drum F2 can be determined from the mass and energy balance around valve V2
and flash drum F2.

m, = mL,Z + mv,z

In this equation m, is the saturated liquid ammonia flow rate at T; and P; entering valve V2.
The energy balance is given by

(M, +my,)hea=m ,hz+ my,hy,
Solving for m, , we have

hio—ho _ o gogq 2271344

m,,=m, -t —t2 =1
e h, —hy, 1431227

=0.1483 kg/s

The liquid flow rate through valve V2 is then

m,=1.9281 + 0.1483 = 2.0764 kg/s

The mass flow rated of saturated liquid ammonia, m ,, required to remove 850 KW in heat
exchanger E1 is given by
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o= 850kw
i h\/,l_hL,l

In this equation, hy 1 and h;_; are the enthalpy of saturated vapor and liquid ammonia at 10°C,
respectively. Therefore

o= BB0KW _ 850
' h,-h, 1452-227

=0.6939 kg/s

The liquid flow rate, m, ,, leaving flash drum F1 is the sum of the liquid flow rate through
the heat exchanger E1 and the liquid flow rate through the valve V2

m,,= Mg, + r,=0.6939 +2.0764 = 2.7703 kg/s

Similarly, the vapor flow rate, m, ,, leaving the first flash drum F1 can be determined from
the mass and energy balance around valve V1 and flash drum F1.

h —h -
T g 770332242227 5340 kg/s

m,, = m
MR —hy 1466 —322.4

The total mass flow rate m. of ammonia required for the system is then
m; = m_, + m,,=2.7703 + 0.2340 = 3.0043 kg/s

The vapor flow rate m, . from both the exchanger E1 and the flash drum F1 is given by

1,vap

M, = Mg, + m,, =0.6939 +0.2340 = 0.9279 kg/s

lvap —

We now determine the horsepower of the second compressor. The saturated vapor leaving
the second exchanger E2 and the flash drum F2 must be compressed from 0.2909 MPa to
0.6152 MPa. For isentropic work, the gas entering and exiting the compressor will have the
same entropy at 5.467 kJ/kg-°K. The enthalpy of the gas leaving the second compressor C2
due to isentropic compression is 1530 kJ/kg. For 75% adiabatic efficiency, the actual
enthalpy of the exiting gas is given by

The horsepower required of the second compressor C2 is

HP, = 2.0764x(1530 — 1431)/0.75 = 274.1 kW = 368 hp
The actual temperature T3 of the exiting gas is obtained from P, = 0.6152 MPa and hs acwal =
1563 kJ/kg. We have the gas leaving the second compressor at T3 = 52.64°C that must be

mixed with the saturated gas leaving the first heat exchanger E1 and the first flash drum F1 at
10°C. The enthalpy of the gas entering the first compressor C1 is then
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_ 2.0764 x1563 + 0.9279 x1452
2.0764 + 0.9279

h = 1528.7 k/kg

At these conditions (P1 = 0.6152 MPa, h; = 1528.7 ki/kg) T4 = 38.85°C and entropy s; =
5.463 kJ/kg-°K, the gas will be compressed to 1.167 MPa. The enthalpy of the gas leaving the
first compressor C1 due to isentropic compression is 1628 kJ/kg. For 75% adiabatic
efficiency, the actual enthalpy of the exiting gas is given by
The horsepower required of the first compressor C1 is

HP; = 3.0043x(1628 — 1528.7)/0.75 = 398 KW =534 hp
The gas leaving the first compressor C1 at P; = 1.167 MPa, hsaca = 1661.1 kJ/Kg, its

temperature Ts is 100.8°C. The gas will be condensed to saturated liquid at 30°C (1.167
MPa). The duty of the heat exchanger E3 is given by

Q3 =3.0043x(1661.1 — 322.4) = 4022 kW
3.4-4 The Clapeyron Equation
Temperature and pressure are not independent for a pure species that exists in two phases at
equilibrium. We now wish to derive an expression relating the pressure at which two phases

can coexist to the temperature of the system. At equilibrium between « and S phases, where
a and g can represent the vapor, liquid, or solid phases, we have

T*=TP P*=PP and g* = ¢ (3.4-19)
Hence, the differential changes in Gibbs free energy of each phase must be equal

dg” = dg”

a a yii B
D7) g+ [ gp= {2 g+ [ | op (3.4-20)
ar ), P ) ar ), P )

Equation (3.4-20) shows the displacement of the system from its original equilibrium state
described by Egs. (3.4-19) to another equilibrium state. This change will move the system
along one of the coexistence lines shown in Figure 3.4-5 to a new T and P where

T>T+dTandP —> P +dP
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Phase equilibrium
(coexistence line)

P
Phase B is
more stable

Phase a is
more stable

Figure 3.4-5 Surfaces of Gibbs surfaces for two phases « and f.
Applying the fundamental property relation for g to each phase yields

—5%dT + v*dP = — sPdT + vPdP (3.4-20)
Rearrangement gives

P s“—s”

dT  v*—v”?

(3.4-21)
We have g“=g" =>h*—Ts*=hP - TsP

Solving for the difference in entropy yields

a

_h"—n’
T

s* —gP

Substituting the expression for entropy into equation (3.4-21) gives

dP _ h“-h’

— = 3.4-22
I T o4

Equation (3.4-22), called the Clapeyron equation, is a general relationship among pressure,
temperature, volume change, and enthalpy change for a single component, two-phase system
at equilibrium. This equation can be applied to any kind of phase equilibrium including solid-
vapor and solid-liquid equilibria by substituting the alternative sublimation or fusion
properties into the equation.
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For solid-liquid equilibrium, we are usually interested in the change of freezing point with
pressure dT/dP. We can invert Eq. (3.4-22) to obtain

d_T B (VI _Vs)-l-
= —_hs

3.4-23
dP h! ( )

For most substances dT/dP is small and positive; however for water dT/dP is negative since
ice is less dense than liquid water. This unusual behavior for water means that ice will melt
when pressure is applied to it isothermally as shown in Figure 3.4-6. Due to this
phenomenon, you can skate on ice.

Liquid Liquid

°

P g P
E3
2
(2]

Solid Solid
Vapor Vapor
R o Most substance
WO O
60\\ 5‘3\\
-

Figure 3.4-6 P-T behavior of real flui

=
d.
For vapor-liquid equilibrium, we have

dPsat _ hv_hl

daT (W -v'T

(3.4-24)

When applied to equilibrium involving a vapor phase, the pressure is referred to as the vapor
or saturation pressure and will be denoted by P*. In the region far from the critical point, v/

<< V', the volume of the liquid is negligible compared to the volume of the vapor. If the
vapor obeys ideal gas law, Eq. (3.4-24) becomes

dPsat _ PsatAhvap
dT = RT?

(3.4-25)

In this equation, Ahy,, = h" — h'is the enthalpy of vaporization of the substance at temperature
T. Equation (3.4-25) can be rewritten in the form

e 1
R T

(3.4-26)
Integrating Eq.(3.4-26) between state 1 and state 2 yields
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sat Ah
In stat — e (11 (3.4-27)
P, R (T, T,

We can also integrate Eq. (3.4-26) using a constant of integration C,

Ah
NP = C; —— (3.4-28)
RT

Equations (3.4-27) and (3.4-28) are often called the Clausius-Clapeyron equation. They can
be used to correlate, interpolate, and extrapolate of vapor data or to estimate latent heats from
vapor pressure data. Equation (3.4-28) suggests that a plot of InP** vs. (1/T) should be a
straight line over the region where Ahy,p is a constant. Actually, it has been found that Eq.
(3.4-28) is valid over a surprisingly wide range of temperature due to a cancellation of errors
introduced by the various assumptions.

Saturation pressure data are commonly correlated in terms of the Antoine equation

B
C+T

InP = A —

(3.4-29)

The Antoine equation can be regarded as an empirical version of the Clausius-Clapeyron
equation. Values for the Antoine constants, A, B, and C can be found for various substances
in Koretsky’s text®. There are several more complex correlations® available for saturation
data that are accurate over a wider range of temperature. For example, the water vapor
pressure can be obtained accurately from the following equation™

8 .
P = Pyuexp {710-5 (Toe ~T)Y F (0.65- 0.0lT)"l} (3.4-30)

i=1

In this equation, T denotes saturation temperature (°C), P critical pressure (220.88 bars),
Teri critical temperature (374.136°C), == 1000/T(°K), and F;is given by

Fy F2 Fs F4 Fs Fe F, Fe

-741.9242 | -29.7210 | -11.55286 | -.8685635 | .1094098 | .439993 | .02520658 | .05218684

& Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 499
° Reid R. C., Praunits J. M., Poling B. E., The Properties of Gases & Liquids, McGraw-Hill, 1987
19 Keenan J. H., Steam Tables, Wiley, pg. 141
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Chapter 3

Example 3.4-310 ol

The heat of fusion of ice is 80 cal/g at 0°C and 1 atm, and the ratio of the specific volume of
water to that of ice is 1.000:1.091. The saturated vapor pressure and the heat of vaporization
of water at 0°C are 4.58 mmHg and 600 cal/g, respectively. Estimate the triple point using
these data.

T 1]

P
Solid
1atm |- —————
4.58 mmHg| - - — — _ . .
g G Triple point
LAX
O

oc T
Figure E3.4-3 P-T behavior of water.
The coordinates of point A and B are (0°C, 1 atm) and (0°C, 4.58 mmHg), respectively. The
coexistence line through A will intersect the coexistence line through B at the triple point.
For equilibrium between the solid and liquid phase we have

dgs — dgl

s s | |
G| gr+| Q| ap=|9 | gr+|D | gp
ar ). P ) ar ), P ).

Applying the fundamental property relation for g to each phase yields

— 5T + V*dP = — s'dT + V'dP
Rearrangement gives

dP _ s'—s°

ar v —v®

16 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 234
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We have =g =>h-Ts*=h'"-T¢

Solving for the difference in entropy yields

I_ . hl_hs
T

Substituting the expression for entropy into dP/dT yields

dP _ ' -p°
dr (v =v®
dP 80

= — 3.2185 cal/cm®-°K

dT _ (-0.091)(273.15)

We need to change the unit from cal/cm®°K to mmHg/°K.
1 cal =4.184 ) = 4.184 kg-m?/s® = 4.184x10" kg-cm?/s*
1 cal/cm® = 4.184x10* kg/s®-cm = 4.184x10° kg/s*m

5
1 mmHg = % kg/s*m = kg/s*m = 7.502x10"° mmHg

Therefore

j—$ = (- 3.2185)(4.184x10%)(7.502x107%) = — 1.01x10° mmHg/°K

The equation for the straight line through A(0°C, 760 mmHg) with slope dP/dT = —
1.012x10° mmHg/°K is given by

P —760

o = — 1.01x10°> mmHg/°’K (E-1)

Similarly for equilibrium between the solid and vapor phase we have

P hoh
dT v/ —v°

Neglecting the solid volume compared to the volume of the vapor and using ideal gas law we
obtain
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dP _ P(h'-h*) _ (4.58)(600)(18)

— /= " =0.33365 mmHg/°K
dT RT (1.987)(273.15%)

The equation for the straight line through B(0°C, 4.58 mmHg) with slope dP/dT = 0.33365
mmHg/°K is given by

P —4.58

o =033365 mmHg/°K (E-2)

At the triple point P = Pyand T = Ty, Equations (E-1) and (E-2) become, respectively
Pi— 760 = — 1.01x10° T; (E-3)
Pi—4.58 = 0.33365 T (E-4)
Solving the two linear equations (E-3) and (E-4) gives

T,= 7.5x10°°C

Pi=4.5825 mmHg
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3.5 Refrigeration

The most common refrigeration cycle is the vapor compression cycle shown in Figure 3.5-1.
In step 4 — 1, heat is removed at the temperature T, from the system being refrigerated by
the evaporation of a liquid under the pressure P.. In step 1 — 2, saturated vapor at P, is
compress isentropically to Py where it becomes superheated vapor. In step 2 — 3, heat Qy is
transferred to the surrounding by condensation at Ty. In step 3 — 4, the cycle is closed by
throttling the liquid to the lower pressure P.

N

T
P,
QH //
2
3 T 2
Condenser
Throttle Liquid
valve Compressor
Evaporator Isenthalp

4 T 1 Vapor

Q w 4 R

ab c S
Figure 3.5-1 A vapor-compression refrigeration cycle and its Ts diagram.

The heat transfer between the system and the surroundings can be obtained from the Ts
diagram. Since Q = ITds, the heat effect is the area under the curve representing the path. In

Figure 3.5-1 the heat Qg transferred from the refrigerator to the high temperature

environment is the area 2-3-a-c, which is negative. The heat Q. removed from the low

temperature system is the area 4-1-c-b and is positive. For the cyclic process
AU:QL+W—QH:O:>W:QH—Q|_ (35-1)

The efficiency of the refrigeration cycle, called the coefficient of performance COP, is given
by

cop = 2 (35-2)
W
The work required for the refrigeration cycle can be obtained from the Ts diagram
W = Qn— QL = (Area 2-3-a-c) — (Area 4-1-c-b)

W = Qn — Q. = (Area 1-2-3-4) + (Area 3-4-b-a)

The refrigeration cycle shown in Figure 3.5-1 is a semi-reversible cycle since all steps except
throttling are reversible.
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EXAMPIE .51 e

A vapor compression refrigeration process using NHs as the working fluid is to operate
between 20 and 80°F. Determine the coefficient of performance for the semi-reversible
operation.

SOIULION == e e e e e e

<
<

Isenthalp

h,
I_‘_> Evaporator

4 Vapor
fo
S
C S
Specific Internal Specific Specific
Type Temp  Pressure “olume Energy Enthalpy Entropy Cluality Phase
F psia ft3/1bm Btuflbm Btu/lbm  BtudbmiR
1. Armmaonia 15831 0.02665 130.9 1317 0.2741 0 Saturated Liguid
2. Ammaonia 20 4522 5904 a64.2 B16.8 1.255 1 Saturated Wapor
3. Ammaonia 20 45.22 07415 125.1 131.7 0.2833 01219 Liguid Wapor Mixtare
4. Ammaonia 165.1 153.1 2407 B15.4 G356 1.255 Superheated “apor

We will first locate the four states of the refrigeration cycle:
State 3: Saturated liquid at 80°F, hs = hy = 131.7 Btu/Ib.
State 1: Saturated vapor at 20°F, h; = 616.8 Btu/lb.
State 4: Liquid and vapor mixture at hy = 131.7 Btu/Ib and 20°C
State 2: Superheated vapor at s; = s; = 1.295 Btu/Ib-°R, Py = P, = 153.1 psia
Making energy balance around the evaporator yields
0= h4 — h1 + QL = Q|_ = h1 - h4 =616.8 — 131.7 = 485.1 Btu/lb
Making energy balance around the compressor yields

0=h;—h,+W=W=h,-h; =686.6 - 616.8 = 69.8 Btu/lb

The coefficient of performance is then

7 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 656
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EXaMPle 3.5-2 3 e
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle that
communicates thermally with a cold region at 0°C and a warm region at 26°C. Saturated
vapor enters the compressor at 0°C and saturated liquid leaves the condenser at 26°C. The
mass flow rate of the refrigerant is 0.08 kg/s. Determine (a) the compressor power, in kKW,
(b) the refrigeration capacity, in tons, (c) the coefficient of performance, and (d) the
coefficient of performance of a Carnot refrigeration cycle operating between warm and cold
regions at 26 and 0°C, respectively.

SOIUION === m o m e e e
T N
Qu
3 T 2
Condenser
Expansion
valve Compressor
Evaporator
4 T 1
W
Q
Specific Internal  Specific  Specific
Type Temp Pressure Volume Energy Enthalpy Entropy Quality Phase
C MPa m3/kg kJ/kg kJd/kg kJ/kg/K
R-134a 0 0.2928  0.06931 378.3 398.6 1.727 1 Saturated Vapor
R-134a 26 0.6854 0.000831 235.4 236 1.125 0 Saturated Liquid
R-134a 29.25 0.6854 0.0306 395.2 416.2 1.727 Superheated Vapor

(a) The compressor work is give by

W._ = m (h, — hy) = (0.08 kg/s)(416.2 — 398.6) kJ/kg = 1.408 kKW
(b) The refrigeration capacity, in tons, is

Q_ = m (hy — hy) = (0.08 kg/s)( 398.6 — 236) kJ/kg = 13.0 kW

1ton

), = (13.0 kJ/s)(60 s/min)| ———
Q.= ( R Smm)(zll kJ/min

j = 3.7 ton

(c) Tthe coefficient of performance is

3 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 539
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(d) The coefficient of performance of a Carnot refrigeration cycle operating between warm
and cold regions at 26 and 0°C, respectively

= & = — Q — = i = 273 =105
W, Q,-Q, T, -T, 299-273
T N
4 Q Liquid
3 . 2
Condenser
T, P
Expansion Compressor
valve Isenthalp
: Evaporator e | T / __________ ; Vapor
T Q. w w \ﬁ R
s

Figure 3.5-2 A vapor-compression refrigeration with irreversibilities.

Figure 3.5-2 shows several features existed in actual vapor compression systems. The heat
transfers between the refrigerant and the warm and cold regions are not accomplished
reversibly: the refrigerant temperature in the evaporator is less than the low reservoir
temperature, Ty, and the refrigerant temperature in the condenser is greater than the high
reservoir temperature, Ty. The compressor will not have 100% efficiency so that the fluid
leaving the compressor will be at state (2), which is at higher entropy than the isentropic
compression state (2s). The coefficient of performance decreases as the average temperature
of the refrigerant in the evaporator decreases and as the average temperature of the
refrigerant in the condenser increases. If the thermal efficiency of the compressor is known,
the enthapy h, at state (2) can be determined from the following expression:

e = (Wclm)s — h25_hl
(W, /) h—h,

Due to frictions, there will be pressure drops as the refrigerant flows through the evaporator,
condenser, and piping connecting the various components. The pressure drops are ignored in
subsequent calcualtions for simplicity.
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18] [ T S —————
Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle that
communicates thermally with a cold region at — 10°C. Saturated vapor enters the compressor
at — 10°C and saturated liquid leaves the condenser at 9 bar. The mass flow rate of the
refrigerant is 0.08 kg/s. Determine (a) the compressor power, in KW, (b) the refrigeration
capacity, in tons, (c) the coefficient of performance.

SOIULION == m e e e e e e
T N
P,
T QH
3 | 2
Condenser
E i Liquid
V;<I|\3/2n3|on Compressor < 9 bar
Evaporator Isenthalp
4 T 1 -10°C Vapor
W >
QL >
ab c S
Specific Internal  Specific  Specific
Type Temp Pressure Volume Energy Enthalpy Entropy Quality Phase
C MPa m3/kg kJ/kg kJ/kg kJ/kg/K
1 R-134a -10 0.2006 0.09959  372.7 392.7 1.733 1 Saturated Vapor
2 R-134a 41.47 0.9 0.02359  402.7 423.9 1.733 Superheated Vapor
3 R-134a 35.53 0.9 0.000858 249 249.8 1.169 0 Saturated Liquid

(a) The compressor work is give by
W._ = m (h2 — hy) = (0.08 kg/s)(423 — 392.7) kJ/kg = 2.424 kW
(b) The refrigeration capacity, in tons, is

Q, = m (hy — hy) = (0.08 kg/s)( 392.7 — 249.8) ki/kg = 11.432 KW

1 ton

), = (11.432 kJ/s)(60 s/min)| ———
Q=( X ')(211 ka/min

j =3.25ton

(c) The coefficient of performance is
_ Q. _ 11432 _

¥ Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 541
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EXAMPIE .54 e

Refrigerant 134a is the working fluid in an ideal vapor-compression refrigeration cycle that
communicates thermally with a cold region at — 10°C. Saturated vapor enters the compressor
at — 10°C and liquid leaves the condenser at 9 bar and 30°C. The compressor has an
efficiency of 80%. The mass flow rate of the refrigerant is 0.08 kg/s. Determine (a) the
compressor power, in kW, (b) the refrigeration capacity, in tons, (c) the coefficient of

performance.
SOIU 0N === e e e
T N
Qu
3 T 2
Condenser
Expansion
valve Compressor
Evaporator
4 T 1
W
Q.
Specific  Specific  Specific
Type Temp Pressure Volume Enthalpy Entropy Quality Phase
C MPa m3/kg kJ/kg kJ/kg/K
1 R-134a -10 0.2006 0.09959  392.7 1.733 1 Saturated Vapor
2s R-134a 41.47 0.9 0.02359  423.9 1.733 Superheated Vapor
3 R-134a 30 0.9 0.000842 241.7 1.143 Compressed Liquid

4 R-134a -10 0.2006 0.02716  241.7 1.16 0.2671 Liquid Vapor Mixture

(a) The compressor work is give by

423.9-392.7

W_ = m (h, —hy) = m Dy =l _ (0.08 kg/s) kJ/kg = 3.12 kW
1

(b) The refrigeration capacity, in tons, is

O, = m (hy - hy) = (0.08 kg/s)( 392.7 — 241.7) ki/kg = 12.08 KW

1 ton

), = (12.08 kJ/s)(60 s/min)| ———
Q= ( X ')(211 kd/min

] = 3.44 ton

(c) Tthe coefficient of performance is

> Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 543
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3.6 Partial Molar Properties

If we mix 50 cm® of ethanol with 20 cm® of water at 25°C we will obtain 67 cm® of the
resulting solution®. The difference in the solution volume and the sum of the pure volumes
is due to the nature of the unlike ethanol-water interactions and the fact that they are different
from the water-water or ethanol-ethanol pure species interactions. When a species becomes
part of a mixture, its properties change; however it still contributes to the properties of the
mixture, since the total solution properties of the mixture depend on the amount present of
each species and its resultant interactions. We can define a partial molar property to account
for the contribution of a species to the mixture property.

We will first consider the volume of the mixture V, an extensive property, which at a
specified temperature and pressure will depend on the number of moles of each species in the

mixture. The partial molar volume of species i, V. , in a mixture is defined as

V= (ﬂJ (3.6-1)
on, T.P.n;

We use the notation n; to specify that we are holding the number of moles of all species
except species i constant when we take the partial derivative with respect to n;. A partial
molar property is always defined at constant temperature and pressure, two of the criteria for
phase equilibrium. In general, the solution property K is a function of T, P, and the number of
moles of m different species:

K =K(T, P, ng, nz, ..., Nj, ..., Npy) (3.6-2)

The differential of K can then be written as the sum of partial derivatives of each of these
independent variables, as follows:

dK = (%J dT + (%j Dy () B (3.6-3)
aT P.,n aP T.n T.Pn

i\ On,

If we multiply the number of moles in a system by an arbitrary amount « at a given T and P,
the extensive property K should also increased by that amount:

oK = K(T, P, any, any, ..., ani, ..., o) (3.6-4)

According to Euler’s theorem, the above equation is a first-order, homogeneous function of
n;. Differentiating Eq. (3.6-4) with respect to « yields

(6(aK)j k=K o[ K .
oa TP a(cml) TP 8(0!!']2) T,P.n;

16 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 263
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+n{ oK j +...+nm[ K j (3.6:5)
o) )y o, olany) )i e

Equation (3.6-5) must be valid for any value of ¢, so at « = 1, we get

K = ini(g—KJ (3.6-6)

i=1 i

The total solution volume is then given by

EXaMPIe 3,61 comm e

We need 2,000 cm® of an antifreeze solution consisting of 30-mol% methanol in water. What
volumes of pure methanol and of pure water at 25°C must be mixed to form the 2,000 cm®
antifreeze, also at 25°C? Partial molar volumes for methanol and water in a 30-mol%
methanol solution and their pure-species molar volumes, both at 25°C, are:

Methanol (1): V, = 38.632 cm® mol™ vi = 40.727 cm® mol™
Water (2):  V,=17.765 cm® mol™ v, = 18.068 cm® mol™
T T ]

The molar solution volume at 30-mol% methanol is given as
v — =L = in\Ti :)(1\7l +)(2\72
n; Ny i=1
v = (0.3)(38.632) + (0.7)(17.765) = 24.025 cm® mol™

The total number of mole required is

Volume of pure methanol is V; = x;ntvy = (0.3)(83.246)(40.727) = 1,017 cm®

Volume of pure methanol is V5 = Xontv, = (0.7)(83.246)(18.068) = 1,053 cm®

17 Smith J. M., Van Ness H. C., and Abbott M. M., Introduction to Chemical Engineering Thermodynamics, Mc
Graw Hill, 2001, pg. 377
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EXample 3.6-2------mmmmm oo e

A 20 wt% chloroform solution is obtained by mixing chloroform, CHCI3, with acetone,
CsHgO, in an insulated mixer at steady state. For every gram of solution, 9.83 J is removed to
keep the system temperature constant at 14°C. Determine the enthalpy of mixing for this
solution.

SOIU 0N === m o m e e
nl' hl
—_—
(n,+n,), h
n21 hZ
—_—
. Q
Chloroform (1), CHCl; Mw; =119.39
Acetone (2), C3HgO Mw, = 58.08

For 100 g of solution, we have
n; = 20/119.39 = 0.1675 mol CHCl;
n, = 80/58.08 = 1.3774 mol C3H¢O

Therefore Nt =n; +ny=0.1675+ 1.3774 = 1.5449 mol

A first law over the system gives
nihy + noho— (N1 +n))h—Q =0= - Q/(n1 + n2) =h — (X1hy + xzhy)
Ahpix = — Q/nt = h — (X1h1 + x2hy)
x1=0.1675/1.5449 = 0.1084
X1 =1.3774/1.5449 = 0.8916

The heat of mixing is equal to the heat removed per mole of solution
Ahmix == Q/nt=-qg = — § (x;Mw; + xsMwy)

Ahmix = — (9.83)(0.1084x119.39 + 0.8916x58.08) = 636.3 J/mol
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Chapter 3

EXAMPIe 3.6-318 oo

A 5.0 wt% H,S0y, solution at 60°F is to be concentrated to 45 wt% by evaporation of water.
The concentrated solution and water vapor leaving the evaporator at 180°F and 1 atm.
Calculate the rate at which heat must be supplied to the evaporator to process 500 Ib/hr of the
feed solution. The enthalpy-concentration chart for H,SO4-H,O is given in Figure E-1 where
the reference states pure liquid water at 32°F and pure liquid H,SO4at 77°F,

140

120

100

80

H(Btu/lb,, solution)

M

40

-60

-80

-100

-120

-140

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Mass fraction of H,S0,4

Figure E-1 Enthalpy-concentration chart for H,SO,4-H,0.

'8 Felder R. M., Rousseau R. W., Elementary Principles of Chemical Processes, Wiley, 2000
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water vapor

5 wi% solution | Evaporator m,,h,
—>

500 Ib/hr 45 wt% solution

T T ]
Making an acid balance around the evaporator yields

(0.05)(500) = (0.45)(m,) = m, = 55.56 Ib/hr
The rate of water vapor leaving the evaporator is then
m; = 500 — 55.56 = 444.44 Ib/hr
Enthalpy of the 5 wt% feed solution at 60°F is obtained from the chart
he = 10 Btu/lb
Similarly, the enthalpy of 45 wt% solution at 180°F from the chart is
h, = — 30 Btu/lb
You should note that the solution enthalpy could not be obtained from the pure properties. If
it were the value would be on the straight line connecting the enthalpies of pure water and

pure acid as shown in Figure E-1.

The enthalpy of water vapor, hy, at 180°F, 1 atm can be approximated by the enthalpy of
saturated water vapor at 180°F using steam table.

hy = 1138 Btu/lb
Making an energy balance over the evaporator gives
Q = 444.44h, + 55.56h, — 500h¢

Q = (444.44)(1138) + (55.56)(~ 30) — (500)(10) = 5.0x10° Ib/hr
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Chapter 4
Principle of Phase Equilibrium 11

4.1 The Phase Rule

We want to determine the number of intensive variables that must be specified to define a
system consisting of m non-reacting components distributed among = phases. To describe
each phase we need m—1 independent compositions, T, and P to a total of m+1 intensive
variables. The total number of variables required to specify © phases is t(m+1). For phase
equilibrium we have the following set of equations:

T =TP=...=T"
pr=pP=_ =pP"
[T G
77 S
po o b

Each row in the set of equations above contains (r—1) independent equations. Thus there are
a total of (r—1)(m+2) independent equations between the variables. The number of variables
we can independently pick (the so-called degree of freedom, f) is obtained by subtracting the

total 7(m+1) variables we need to specify by the (m—1)(m+2) independent equations.
=n(m+1) —(n-1)(m+2)=m - + 2

We can independently specify (m —t + 2) to complete define a system with m components
and & phases.

EXample 4.1-1 --ommmmmmm e oo
Determine the degree of freedom for the following system:

2X1 — X2+ 3x3=0
X1+ X +3x3=5

SOIULION == e e e -

There are three variables and two independent equations. Hence, the system has one degree
of freedom.
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EXample 4.1-2 ---mmmmmm oo
Determine the degree of freedom for the following vapor liquid equilibrium system with
three species A, B, and C.

(a) A, B, and C are present in both gas and one single liquid phase.

(b) A, B, and C are present in gas phase but only A and B are present in the single liquid
phase.

(c) A, B, and C are present in both gas and liquid phase (I) but only A and B are present in the
liquid phase (I1).

SOIU 0N === m o e e

(a) A, B, and C are present in both gas and one single liquid phase.

Number of intensive variables to specify the system is
n(m+1l)=2(3+1)=8

For phase equilibrium we have the following set of independent equations:
TL=T¢ pt=p®
Haz Hx Hs= Mg and He= HC

The degree of freedom is then
f =# of variables — # independent equations =8 - 5 =3

(b) A, B, and C are present in gas phase but only A and B are present in the single liquid
phase.

Number of intensive variables to specify the system:

Gas phase: 2+2=4
Liquid phase: 1 +2 =3

For phase equilibrium we have the following set of independent equations:
Haz M3 and Hs= s
The degree of freedom is then

F =# of variables — # independent equations =7 -4 =3
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(c) A, B, and C are present in both gas and liquid phase (1) but only A and B are present in the
liquid phase (11).

Number of intensive variables to specify the system:
Gas phase: 2+2=4
Liquid phase (1):2+2=4
Liquid phase (11): 1 +2=3
For phase equilibrium we have the following set of independent equations:

Ha'= M= My Mg = Mg = M and Hc = HMC

The degree of freedom is then

f =# of variables — # independent equations =11 -9 =2

4.2 The Fugacity

Fugacity is a derived thermodynamic property that has the units of pressure. Fugacity is an
abstract concept defined to facilitate certain calculations involved with phase and chemical
equilibrium. For a pure substance at given T and P, we have

du=vdP —sdT
At constant temperature

du = vdP (4.2-1)

If the gas is ideal, v = RT/P, Eq. (4.2-1) becomes
_p7dP _
du= RT? = du = RTd(InP) (4.2-2)

For a real gas, v #RT/P. However we define a function f called fugacity so that the change in
chemical potential with respect to P is given by an expression similar to equation (4.2-2)

du= RTd(Inf) (4.2-3)

In the limitas P — 0, f — P or f/P — 1 since ideal gas law applies as P — 0. Integrating Eq.
(4.2-3) between a reference state and the state of the system yields

Py RTIn(%J (4.2-4)
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In this equation £ is the chemical potential at the reference pressure, P°, and at the same
temperature as the chemical potential x of interest. Similarly, the fugacity, f., of a species in
solution is defined as

i — ,uio = RTIn( ;'OJ (4.2-5)

We now derive the criteria for phase equilibrium using fugacity. For phases o and f in
equilibrium we have

L= ,uiB

Substituting Eq. (4.2-5) into the above equation yields

fa £ 8
10 + RTIn( ffj = 1®P + RTIn( ffﬂj (4.2-6)

Rearranging Eq. (4.2-6) gives

£ a0 £ p
i = P = RTIn[ : ﬁ,oJ + RTIn( :J (4.2-7)

The first three terms of the equation are parts of the definition of fugacity given by Eq. (4.2-
5).

—h)

i = i = RTIn( iﬁ“’}

h>

Therefore

i
a
i

. -
0= RTln[‘i J = f* =1’/ (4.2-8)

Equation (4.2-8) forms the criterion for phase equilibrium in terms of fugacity.
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EXamMPle 4. 2-1 oo
Determine the fugacity of liquid water at 30°C and at the saturation pressure, 10 bar, and 100
bar.

SOIU 0N === e o e e

At 30°C, P = 0.0424 bar. In the limit as P — 0, f — P, therefore f** = P = 0.0424 bar.
From the definition of fugacity, we have

du = RTd(Inf) = vdP

Integrating the above equation from P** to P yields

) _ psat
RTI| | = V(P — P*) = f- = ftexp | YP— P )
£ RT

We have assumed the volume of liquid water remains constant at the saturation temperature
of 30°C.

v = 0.001004 m*/kg = (0.001004)(18.02) = 0.01809 m*/kmol

The fugacity of liquid water at 30°C and 10 bar is then

_ 5
= 0.04240xp | 001809(10-0042) <10° | _ (o
(8314.3)(303.15)
The fugacity of liquid water at 30°C and 100 bar is
_ 5
- = 0.0424exp 0.01809(100 —0.0424) x10 — 0.0455 bar
(8314.3)(303.15)

Hence the fugacity of a pure liquid varies little over a moderate pressure range.

! Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 257
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EXample 4.2-2 ---mmmmm oo
Determine the fugacity of CO, at 310°K and 1.4x10° Pa using the Van der Waals equation of
state (EOS).

Data: a = 0.3658 Pa-m®mol?, b = 4.286x10"° m*/mol
ST T ]
From the definition of fugacity, we have

dg = RTd(Inf) = vdP (E-1)

Since the equation of state is given explicitly in terms of pressure P, we need to rearrange the
above equation so that the term vdP can be easily integrated. For an ideal gas we have

RTd(InP) = vdP = % dP (E-2)
Subtracting Eq. (E-1) from Eq. (E-2) gives
RT

RTA(Inf/P) = (v —?de

Integrating the equation from O to P gives

fIP (P RT
RT jl d (Inf/P) = L [v—?j dP
fY_ 1 (( RT
In(FJ = jo [v—?J dP (E-3)

We now want to change the integrating variable from P to v using the product rule

d(Pv) = Pdv + vdP = dP = ld(Pv) _P dv
v v
Using the definition of the compressibility factor, Z = % , We have

dPv) =RTdZ =>dP= " dz- Pav= Paz- Pay
v v v
Substituting dP from the above equation to Eq. (E-3) gives
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In(iJ -1 j (v—ﬂj (Edz —Edv) (E-4)
P)  RT d= P )\z v

Expanding the right hand side of the equation yields

|n(ij :iJ‘V (E—dev+i z (ﬂ_ﬂjdz (E-5)
P RT M= v RT 7221\ z Z

We can integrate the second integral on the RHS of Eq. (E-5).

Lo (P RV Dz = ((1-taz
RT 22z = Z 1 (RTZ 2 0 Z

2Pz Raz=@z-mz)f =z-mz-1
RT 424z ©7 Z '

Hence

fy_ 1 o (RT
In(EJ = ﬁJ-V_O()[T—dev—lnz+(2—1)

We will now integrate the integral with respect to v using the Van der Waals equation of
state.

po RT 2
V— v

RT RT RT a

__|3____+_2

v v v-b v

1 ~ (RT v dv v dv v adv

— ——P |dv= — | —

RT Lw v J Lw v o heey—h Lw RTv?

ij'v E—P dv=1In—" | - a| =In—— —In

RT Jv=={_ v v-Db|,- RTv|.- v-Db v® —b

ijv ﬂ—devzln Vo p Yt 2

RT Jv=={ v v-b v’—-b RTv

LR plav=-mYsR _ 2 o pf1-2] 2

RT sv=={ v Vv RTv Vv RTv

Therefore
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fy _ b a
In(EJ ——In(l——J —ﬁ—ln2+(2—1) (E-6)

v

We need to evaluate the compressibility factor Z from the VVan der Waals equation of state.

RT a Pv Vv a
P=——- -5 = = -
V— Vv RT v-b RTv
. 1 a
1-b/v  RTv
Sincev = ZRT =7Z= L __ P 5 (E-7)
P 1 BP Z(RT)
ZRT
LetB = bp and A= iz, equation (E-7) becomes
RT (RT)
/= LB — A
1 Bz
Z
We now will rearrange the equation into the polynomial form
Z(l—EjZ =7 —A(l—EJ
Z Z
72 _gz=7-p+ 2B
Z
Z -(1+B)Z’+AZ-AB=0 (E-8)
In terms of A and B, equation (E-6) becomes
In(ij - —|n(1—5) A nz+@z-y)
P Z z
f A
Inf—|=(Z-1)-—-In(Z-B E-9
§)=@--5-me-g) €9

The fugacity can be determined from Eq. (E-9) with the values of Z obtained from the
solution of Eq. (E-8). Table 4.2-1 lists the Matlab program and the results for the fugacity
calculation. From the program, we have

f = 1.325x10° Pa
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Chapter 4

Table 4.2-1 ---mmmmm o
% Example 4.2-2, compressibility using Van der Waals EQS
%
R = 8.314; % Pa.m3/(mol.K)
a=0.3658; % Pa.m6/mol2
b=4.286e-5; % m3/mol
%
P=1.4e6; % Pa
T=310; % K
%
A=a*P/(R*T)"2;B=b*P/(R*T);
fprintf('A = %8.5e, B = %8.5e\n',A,B)
b2=-(1+B);b1=A;b0=-A*B;
fprintf('b2 = %8.5e, bl = %8.5e, b0 = %8.5e\n',b2,b1,b0)
%
% Solve for the compressibility factor Z using Newton method
%
Z=1;
for i=1:20
fz=((Z+b2)*2+b1)*Z+b0;
dfz=(3*Z2+2*b2)*Z+b1;
eZ=fz/dfz;z=7-eZ;
if abs(eZ)<.00001; break; end
end
foP=exp((Z-1)-A/Z-log(Z-B));
f=P*foP;
fprintf('Z = %8.5f, f/P = %8.5\n",Z,foP)
fprintf(‘f(Pa) = %8.5e\n’,f)

>> e4d2d2

A = 7.70954e-002, B = 2.32814e-002

b2 =-1.02328e+000, b1l = 7.70954e-002, b0 = -1.79489e-003
Z = 0.94359, f/P = 0.94642

f(Pa) = 1.32499e+006
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EXample 4.2-3 ---ommmmm oo
Use data from the steam table to calculate the fugacity of steam at 300°C and 8x10° Pa.

SOIULION ==
From the definition of fugacity for pure component we have
dg = dg = RTd(Inf)

We integrate this equation from the pressure low enough so that the fugacity is essentially the
same as the pressure.

[(dg =RT[d(n )

I1G
f= Pexp[g ;{? J (E-1)

From the steam table, at 300°C or 573.15°K and P = 10* Pa, the pressure is low enough so
that ideal gas law applies, we have

h'® = 3077 ki/kg and s'® = 9.281 ki/kg-°K

Therefore  g'® =h'® — Ts'° = 3077 — (573.15)(9.281) = — 2243 kJ/kg
g'® = — (2243)(18) = — 40,409 J/mol

At 573.15°K and P = 8x10° Pa, we have
h = 2785 kJ/kg and s = 5.791 kJ/kg-°K
g=h-Ts=-534kJ/kg =- 9,618 J/mol

Substituting the values of Gibbs free energy into equation (E-1) yields

f=pexp| -9 | = 10* exp( 9,618 - ( 40’409)j = 6.401x10° Pa
RT 8.314 x 573.15
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EXample 4.2-4 -oocomm oo
Determine the change in Gibbs energy, Ag, of CO, at 310°K, 1.4x10° Pa and at 310°K,
1.4x10" Pa using the VVan der Waals equation of state (EOS).

p= RT _a
V- \Y

Data: a = 0.3658 Pa-m®mol?, b = 4.286x10° m*/mol

(a) Evaluate Ag using the fugacity, Ag = RTIn(f./f;).
(b) Evaluate Ag using direct integration, Ag = Iv dpP.

SOIULION == m e e o e e -
(a) Evaluate Ag using the fugacity, Ag = RTIn(f./f,).
The fugacity using Van der Waals EOS is given by

£ A
|n(3j =@Z-1)-5-Ih@-8)

The compressibility Z is the largest root of the equation Z® — (1 + B)Z? + AZ — AB = 0 where

= % 77005410 (at 310°K, 1.4x10° Pa)
(RT)
bP -2 0 6
B = 0= =2:32814x107 (at 310°K, 14x10° Pa)

Table 4.2-2 lists the Matlab program to determine Z, f, and Ag with the following results at
310°K:

P(Pa) Z f(Pa)
1.4x10° 0.94359 1.325x10°
1.4x107 0.41648 6.680x10°

The change in Gibbs energy is then given by

Ag = RTIn(f/f,) = (8.314)(310)In(6.680/1.325) = 4169.23 J
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(b) Evaluate Ag using direct integration, Ag = Iv dpP.

We can use 5 points Simpson’s rule to evaluate the integral where

_ 1.4x107 -1.4x10°

4

Ag = A—;(Vl + 4v, + 2v3+ 4V + Vi)

= 3.15x10° Pa

The specific volume can be determined from v = %using the following values for P and

Z.

P(Pa) Z v(m*/mol)
1.40x10° 0.94359 1.737x10°°
4.55x10° 0.78834 4.466x10™
7.70x10° 0.48223 1.614x10™
1.085x10’ 0.35298 | g 385x10°
1.40x10’ 041648 | 7667x10°

The change in Gibbs energy is then

Ag = % (Vi + 4vp + g+ dvg + Vs) = 4471.12 ]

The result of the integral Jv dP can be improved by using more points for the Simpson’s rule

as shown in the following table

n

5

9

13

17

35

Ag(d)

4471.12

4226.39

4187.28

4175.95

4170.54

At n = 35, the value of J'v dP is almost the same as the value obtained from the expression:

Ag = RTIn(F,/f1) = 4169.23 J.
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Table 4.2-1 ----m-mmmm oo
% Example 4.2-4, change in Gibbs energy using Van der Waals EOS
%
R = 8.314; % Pa.m3/(mol.K)
a=0.3658; % Pa.m6/mol2
b=4.286e-5; % m3/mol
%
ns=input('Odd number of data point, ns = );
T=310; RT = R*T; % K
v=zeros(ns,1);
%
Pv=linspace(1.4e6,1.4e7,ns);; % Pa
Z=1;
fv=zeros(ns,1);
for ni=1:ns
P=Pv(ni);
A=a*P/(RT)"2;B=b*P/(RT);
b2=-(1+B);b1=A;b0=-A*B;
for i=1:20
fz=((Z+b2)*2+b1)*Z+b0;
dfz=(3*Z2+2*b2)*Z+b1;
eZ=fz/dfz;z=7-eZ;
if abs(eZ)<.00001; break; end
end
v(ni)=Z*RT/P;
f=P*exp((Z-1)-A/Z-log(Z-B));
fprintf('Z = %8.5f, f(Pa) = %8.3e\n',Z,f)
fv(ni)=f;
end
dg=R*T*log(fv(ns)/fv(1));
fprintf('From fugacity, dg(J) = %8.2f\n',dg)
con=(Pv(2)-Pv(1))/3;
sum=v(1)+v(ns);
fori=2:2:ns
sum=sum-+4*v(i);
end
for i=3:2:ns-1
sum=sum-+2*v(i);
end
dg=sum*con,;
fprintf('From integration of vdP, dg(J) = %8.2f\n',dg)
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>> e4d2d4

Odd number of data point, ns = 35

Z = 0.94359, f(Pa) = 1.325e+006, v(m3/mol) = 1.737e-003
= 0.92768, f(Pa) = 1.651e+006, v(m3/mol) = 1.350e-003
= 0.91127, f(Pa) = 1.966e+006, v(m3/mol) = 1.097e-003
= 0.89433, f(Pa) = 2.271e+006, v(m3/mol) = 9.177e-004
= 0.87680, f(Pa) = 2.565e+006, v(m3/mol) = 7.840e-004
= 0.85861, f(Pa) = 2.849e+006, v(m3/mol) = 6.803e-004
= 0.83967, f(Pa) = 3.123e+006, v(m3/mol) = 5.972e-004
= 0.81989, f(Pa) = 3.386e+006, v(m3/mol) = 5.291e-004
= 0.79913, f(Pa) = 3.638e+006, v(m3/mol) = 4.719e-004
= 0.77724, f(Pa) = 3.879e+006, v(m3/mol) = 4.230e-004
= 0.75399, f(Pa) = 4.110e+006, v(m3/mol) = 3.806e-004
= 0.72911, f(Pa) = 4.329e+006, v(m3/mol) = 3.431e-004
= 0.70218, f(Pa) = 4.537e+006, v(m3/mol) = 3.095e-004
= 0.67258, f(Pa) = 4.732e+006, v(m3/mol) = 2.788e-004
= 0.63934, f(Pa) = 4.916e+006, v(m3/mol) = 2.501e-004
= 0.60064, f(Pa) = 5.086e+006, v(m3/mol) = 2.225e-004
= 0.55256, f(Pa) = 5.240e+006, v(m3/mol) = 1.943e-004
= 0.48223, f(Pa) = 5.377e+006, v(m3/mol) = 1.614e-004
= 0.35936, f(Pa) = 5.484e+006, v(m3/mol) = 1.148e-004
= 0.33269, f(Pa) = 5.569e+006, v(m3/mol) = 1.016e-004
= 0.32811, f(Pa) = 5.648e+006, v(m3/mol) = 9.597e-005
= 0.32914, f(Pa) = 5.725e+006, v(m3/mol) = 9.238e-005
= 0.33267, f(Pa) = 5.801e+006, v(m3/mol) = 8.975e-005
= 0.33757, f(Pa) = 5.875e+006, v(m3/mol) = 8.767e-005
= 0.34333, f(Pa) = 5.949e+006, v(m3/mol) = 8.596e-005
= 0.34966, f(Pa) = 6.022e+006, v(m3/mol) = 8.450e-005
= 0.35638, f(Pa) = 6.095e+006, v(m3/mol) = 8.324e-005
= 0.36340, f(Pa) = 6.168e+006, v(m3/mol) = 8.212e-005
= 0.37064, f(Pa) = 6.241e+006, v(m3/mol) = 8.112e-005
= 0.37804, f(Pa) = 6.314e+006, v(m3/mol) = 8.021e-005
= 0.38557, f(Pa) = 6.387e+006, v(m3/mol) = 7.939e-005
= 0.39319, f(Pa) = 6.460e+006, v(m3/mol) = 7.863e-005
= 0.40090, f(Pa) = 6.533e+006, v(m3/mol) = 7.793e-005
= 0.40866, f(Pa) = 6.606e+006, v(m3/mol) = 7.728e-005
= 0.41648, f(Pa) = 6.680e+006, v(m3/mol) = 7.667e-005

From fugacity, dg(J) = 4169.23

From integration of vdP, dg(J) = 4170.54

>>
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Chapter 4

4.3 Fugacity of Species i in a Gas Mixture
The fugacity, ﬂv, of species i in a gas mixture depends on temperature, pressure, and
composition of the mixture.

£Y(T, P, g, My oo i) = Vi @Y (T, P, Ny, Nz, . )P (4.3-1)

In this equation, ¢ is the fugacity coefficient and m is the number of component. To

completely specify the reference state for a mixture, we need to know T P, and composition.
The reference pressure is a low enough pressure, Piow, SO that the mixture behaves as an ideal
gas. The reference temperature is that of the system of interest, Ts,s and the reference

composition is that of the system n;ss. The fugacity, f,, of a species in solution is defined as

i — ,uio = RTIn [%} (4.3-2)

At constant temperature

dui =V, dP = i — i’ = J: V. dP = RTIn(%J (4.3-3)

Many equations of state are explicit in P but not V, so it is convenient to express the partial
molar volume in terms of derivative in P.

\Ti: {ﬂ) (4.3-4)
ani TPy
Using the cyclic rule at constant T, we have
(a_VJ (@] (6_J -1 (4.3-4)
on; )i o \OV Jr,n LOP Jry,

Since the reference state and the system have the same composition, the integral in equation
(4.3-3) is carried out with both n; and T constant. Therefore the second partial derivative in
equation (4.3-4) is replaced with a total derivative.

(a_VJ d_P(mj _—
on; )., dv L oP Jry
Rearranging the equation yields
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(ﬂj dP:—(Ej dv (4.3-5)
on; TP on, TV

Equation (4.3-3) becomes

RTIN L —RTIn| | = LV Pl v (4.3-6)
f' yiplow on, T.P.n;

Equation (4.3-6) can be evaluated with an equation of state such as the Peng-Robinson
equation:

RT aa
P= - 4.3-7
v—b v’ +2bv-b? (#.31)
2
In this equation, a = 0.45724 (RT.) ,b=0.0778 RPT° , and

o= [L+(0.37464 +1542260 - 0.269920°) 1 — T, |

@ is the acentric factor. The Peng-Robinson equation of state can be expressed in terms of the
compressibility Z as

Z®+ (B -1)2*+ (A -3B?> —2B)Z + (B*+ B* —AB) = 0 (4.3-8)
In this equation, Z = L D XX A B =D xB;, where
RT i=1 j=1 i=1
P.

/ [1+ (0.37464 +1.542260 — 0.26992@2)(1— \/f )]2

ri

Aii=0.45724

A= Aji = (1 —kij)(Ai Aj)'%, ki = binary interaction parameter

P
Bi=0.0778 —
=

The smallest root of equation (4.3-8), Z", is identified with the liquid phase while the largest

root, Z", is identified with the vapor phase. Using the Peng-Robinson equation, the fugacity
coefficient of species i in a mixture is given by

. _ 1 (A d& Z+0+V2BY) B 5 o e ]
In goi—m(? 2;11A1J|n[zgl_—ﬁ%j+g(z 1) —=In(Z -B) (4.3-9)
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For the liquid Z = Z", @, = ¢, and y = x = mole fraction of species i in the liquid phase. For
the vapor Z=Z", ¢, = ¢, and y =y = mole fraction of species i in the vapor phase.

Example 4.3-1 -=-=-mcmmmmmmeme e oo e e e e e e e
Determine the fugacity coefficient of each species in a gas mixture of 20% ethane in propane

at a pressure of 50 bar and a temperature of 25°C using the Peng-Robinson EOS.

Solution

The fugacity coefficient of each species in a gas mixture might be obtained from the free
T.K. Nguyen’s program VLE. The results are displayed as follows

*¥-L Equil. using PREOS, T.K. Nguyen, Cal Poly Pomona. Use at your own risk

T,C=
P,bar =

25.00
5.000E+01

Vap. fi/(yi*P)

=SI c English 0 iterations

Compound
Ethane
Propane

Lig. fi/(yi*P) |Vap.fi,bar |Ligq. fi,bar
61165 6.11648 6.11648

18550 [7.42001 7.42001

18550

Compound
Ethane
Propane

4.884E+01 09860 184.55

4.257E+01 15240 231.05

The program Thermosolver by Koretsky can also determine the fugacity coefficient as shown

I T~
Fugacity Coefficient Solver _ [ X]

Add one ar maore species to the system. then enter atemperature and pressure. The fugacity
coeficients are listed in the summary table. The mole walues in the summary table may be edited.

—Species in System —Surnrmary
1. C2HG - Ethane # [Moles 2 A
2. C3H8E - Propane 1 0.2 06103 05799
2 04 01848 01845

add. | Bemove | Edit. |

— Temperature of System

|25 fc =]

Fressure of System
’7|50 Ibar

[

—Fugacity Coefficient
& Peng Robinson " Lee Kesler
Wiew Equations... Remowe All
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Table 4.3-1 lists the Matlab program and the results for the fugacity coefficient calculation.
Note: In this program A = am, B = bm, A;; = aij, and B; = b.

Table 4.3- 1 -mmmmm e
% Example 4.3-1, Fugacity coefficient using Peng-Robinson EOS
% Binary mixture of 20 mole % ethane (1) in propane at 50 bar and 25 C
%
Tc=[305.43 369.9]; % Degree K
Pc=[48.84 42.57]; % bar
w=[0.0986 0.1524];
m=2; P=50; T=25+273.15;y=[.2 .8];
Tr=T./Tc;Pr=P./Pc;

b=.0778 * Pr ./ Tr;

xk =.37464 + (1.54226 - .26992 * w) .* w;

alfa=1+ xk .* (1 - sqrt(Tr));

a= .45724 * alfa .* alfa .* Pr ./ (Tr.* Tr);
fori=1.m

aij(i, i) = a(i);
end
fori=1:m-1

forj=1+i:m

aij(i, J) = sart(a(i) * a());aijd, i) = aij, j);

end

end

am=0;bm=0;

fori=1:m

bm = bm + y(i) * b(i);
forj=1:m

am = am + y(i) * y(j) * aij(i, j);

end

end

b2=bm-1;bl=am-3*bm*bm-2*bm;
b0 =bm * (bm * bm + bm - am);
Z=1;
for i=1:20
fz=((Z+b2)*2+b1)*Z+b0;
dfz=(3*Z2+2*b2)*Z+b1;
eZ=fz/dfz;Zz=7-eZ;
if abs(eZ)<.00001; break; end
end
fprintf('Z = %8.5\n",Z)
s2=sqrt(2);
Tem = (Z + (1+s2 )* bm) / (Z + (1-s2 ) * bm);
ag = log(Tem)/(2*s2*bm);
fori=1:m
suma = 0;
forj=1:m
suma = suma + y(j) * aij(i, j);
end
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fuco(i) = exp(ag * (am*b(i) / bm - 2 * suma) + b(i) * (Z- 1) / bm - log(Z - bm));
fprintf('Species %g, fugacity coef. = %8.5f\n",i,fuco(i))

end

>> e4d3d1

Z = 0.16436

Species 1, fugacity coef. = 0.61165
Species 2, fugacity coef. = 0.18551

4.4 Fugacity in the Liquid Phase

In the liquid phase we also need to choose a suitable reference state with a corresponding
reference chemical potential and reference fugacity to complete the definition defined by

i — ,uio = RTIn [%} (4.4-1)
For an ideal solution, we have

ideal
fi

¢ ideal
L _ el = Rﬂnm:RTm[ﬂ j (4.4-2)

Equation (4.4-2) indicates that the fugacity of an ideal solution is linear in mole fraction to
the pure species fugacity

]:_ideal - Xifiideal (4,4-3)

If the reference state is the pure fugacity of species i, we have the Lewis/Randall rule:
fiideal - in - fi (44_4)

The activity coefficient, x, is defined as the ratio of the fugacity in the actual solution to the
fugacity in the ideal solution at the composition of the mixture.

n= fi(;eal = I 0 (44_5)

phase

= (4.4-6)
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The fugacity coefficient is a dimensionless quantity expressing how the fugacity in the vapor
phase compares to how it would hypothetically behave as an ideal gas while the activity
coefficient represents a dimensionless quantity of how the fugacity in the liquid phase
compares relative to the ideal reference state. Both of these coefficients tell us how far the
system is deviating from ideal behavior. For gases, the ideal state is a unique state where the
intermolecular interactions are zero. For liquids, on the other hand, the reference state is a
state where all the intermolecular interactions are the same.

The activity of species i in the liquid, a;, is often used for system in chemical equilibrium. It
is defined as follows:

o

= (4.4-7)

0

—h

—h

Activity

-
Lo
=
=
3
e
.
-
.
.
.
.
L
-

Activity
coefficient

0 X, 1
Figure 4.4-1 Fugacity of a binary liquid mixture.

The activity compares the fugacity of species i in the solution to the fugacity of the pure
species in its reference state. On the other hand, the activity coefficient compares the fugacity
of species i in the solution to the fugacity of species i in an ideal solution as shown in Figure
4.4-1. Comparison of Equations (4.4-5) and (4.4-7) gives a relation between the activity and
the activity coefficient.

ai = Xi%n (4.4-8)

We will normally use activity coefficients to describe non-ideal solution in phase
equilibrium. However activity will be more convenient to use when we encounter chemical
equilibrium.

In summary, the reference state for species i in the liquid (or solid) phase is just a defined
state, real or hypothetical, at a given P and x; (usually that of the system) and at the
temperature of the system. Some text will define the reference state that has the temperature
of the system as a standard state to distinguish from the reference state that is not at the
system temperature. A pure gas can be a non-ideal gas, while a pure liquid must be an ideal
solution since all intermolecular forces in a pure liquid are the same. An increase in pressure
will lead to deviation from ideal gas law, whereas deviations form ideal solution can occur at
low pressure since non-ideal behavior is mainly due to dissimilar intermolecular forces
between species in a mixture.
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Chapter 5
Applied Phase Equilibrium

5.1 Vapor-Liquid Equilibrium for Ideal Systems

The most common problems requiring contact between phases chemical engineers encounter
in the chemical, petroleum, and related industries involve vapor-liquid equilibrium. At
equilibrium, the fugacity of species i in the vapor phase is equal to that in the liquid phase

~ 1

f'= f

(5.1-1)

The fugacity of species i in the vapor phase can be expressed in terms of the mole fraction, y;,
fugacity coefficient, ¢, and total pressure, P, as

A

f'=yigr P (5.1-2)

The fugacity of species i in the liquid phase can be expressed in terms of the mole fraction,
Xi, activity coefficient, ¢, and fugacity of pure component, P, as

fil = Xin fi (5-1'3)
Therefore
Yigi P =i i (5.1-4)

If the vapor phase obeys ideal gas law, ¢ = 1, and the liquid solution is ideal, % = 1, Eq.
(5.1-4) becomes

yiP = Xifi (5.1-5)
At low pressure, fi= P, Eq. (5.1-5) becomes Raoult’s law
yiP = xP (5.1-6)

The equilibrium ratio or K-value is defined as

Ki= Ji (5.1-7)

When Raoult’s law applies we have

sat
Ki= PiP (5.1-8)
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In general, the K-values depend on temperature, pressure, and the composition in both
phases. For light hydrocarbon system (methane to decane), the K-values have been
determined semi-empirically and can be evaluated from the equations given in Table 5.1-1".
In general, K is a function of temperature, pressure, and composition.

(2) INK = -A/T2+ B - C In(P) + D/P
(3)INK =-A/T+B - C In(P)

, Where P is in psia, T isin °R

Compound A B C D Form
Methane 292860 8.2445 8951 59.8465 (1)
Ethylene 600076.9 7.90595 84677 42.94594 1)
Ethane 687248.2 7.90694 .866 49.02654 1)
Propylene  923484.7 7.71725 87871 47.67624 (1)
Propane 970688.6 7.15059 76984 6.90224 (2)
i-Butane 1166846 7.72668 92213 0 1)
n-Butane 1280557 7.94986 96455 0 1)
i-Pentane 1481583 7.58071 93159 0 @
n-Pentane 1524891 7.33129 89143 0 (1)
n-Hexane 1778901 6.96783 84634 0 @
n-Heptane 2013803 6.52914 .79543 0 1)
n-Octane 7646.816 12.48457 13152 3
n-Nonane 2551040 5.69313 .67818 0 1)
n-Decane 9760.457 13.80354 7147 3

In flash distillation, a liquid mixture is partially vaporized and the vapor is allowed to come
to equilibrium with the liquid. The process flow diagram is shown in Figure 5.1-1. The vapor

and liquid phases are then separated.

O

—>
V,y,

Figure 5.1-1 Flash distillation.

1 Wankat, P. C., Equilibrium Staged Separations, Elsevier, 1988
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Besides flash calculation, which will be discussed later, there are four types of vapor-liquid
equilibrium calculations: (1) Bubble point temperature calculation, (2) Bubble point pressure
calculation, (3) Dew point temperature calculation, and (4) Dew point pressure calculation.

Bubble point temperature calculation
In a bubble point temperature calculation, the pressure and liquid phase composition are
specified. We will solve for the temperature and the vapor composition. The solution

provides the composition of the first bubble of vapor that forms when heat is supplied to a
saturated liquid. Since the vapor mole fractions are unknown, we start with the equation

dy=1 (5.1-9)

Using the K-values: K; = L, Eqg. (5.1-9) becomes
X.

2 Kix =1 (5.1-10)

If the system contains more than two components, we might want to solve the log form of
equation (5.1-10) for better convergence

In(i Kixij: 0 (5.1-11)

EXample 5.1-1 -m-mmmmmmm oo oo
Determine the temperature and composition of the first bubble created from a saturated liquid
mixture of benzene and toluene containing 45 mole percent benzene at 200 kPa. Benzene and
toluene mixtures may be considered as ideal.

Data: Vapor pressure, Psat, data: In Psat = A — B/(T + C), where Psatjs in kPaand T is in °K.

Compound A B C

Benzene (1) 14.1603 2948.78 —44.5633

Toluene (2) 14.2515 3242.38 — 47.1806

SOIULION =-mm e e o e e s

We start with the equation
yit+y2=1 (E-1)
Substituting y; = xiP;*™*/P into equation (E-1) yields

lelsat + szzsat - P (E_2)
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With the numerical values for mole fractions and pressure, equation (E-2) becomes

0.45exp(14.1603 — 2948.78/(T — 44.5633))
+ 0.55exp(14.2515 — 3242.38/(T — 47.1806)) = 200 (E-3)

The bubble point temperature should be between the boiling points of benzene and toluene
given by

- 2948.78
14.1603 — log(200)

+ 44,5633 = 377.31°K

Tl _ 3242.38
14.2515 — log(200)

+47.1806 = 409.33°K

The solution of the nonlinear algebraic equation (E-3) can be determined using Matlab
function fsolve with inline function as follows:

fun=inline('0.45*exp(14.1603 - 2948.78/(T - 44.5633))+ 0.55*exp(14.2515 -
3242.38/(T - 47.1806)) - 200";

>> T=fsolve(fun,400,optimset('Display’, off"))

T =

391.7925

The bubble point temperature of the benzene-toluene mixture is 391.8°K. At this
temperature, the vapor pressure of benzene is

P,*! = exp(14.1603 — 2948.78/(391.7925 — 44.5633)) = 289.45 kPa

The mole fraction of benzene in the vapor phase is then

X,P™ _ (0.45)(289.45)
P 200

=0.6513

yi=

The mole fraction of toluene in the vapor phase is
y. =1 —y; =0.3487
Bubble point pressure calculation
In a bubble point pressure calculation, the temperature and liquid phase composition are

specified. We will solve for the pressure and the vapor composition. Since the vapor mole
fractions are unknown, we start with the equation

dyi=1 (5.1-12)
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Using the K-values: K; = L, Eq. (5.1-12) becomes
X.

> K —-1=0 (5.1-13)
i=1

EXample 5.1-2 —m-mmmm oo e
Determine the pressure and composition of the first bubble created from a saturated liquid
mixture of benzene and toluene containing 45 mole percent benzene at 400°K. Benzene and
toluene mixtures may be considered as ideal.

Data: Vapor pressure, Psat, data: In Psat = A — B/(T + C), where Psatjs in kPaand T is in °K.

Compound A B C

Benzene (1) 14.1603 2948.78 —44.5633

Toluene (2) 14.2515 3242.38 —47.1806

SOIUION == m oo e

We start with the equation

yity2=1 (E-1)
Substituting y; = xiP;*™/P into equation (E-1) yields

x1P1* + %P, = P (E-2)
With the numerical values for mole fractions and temperature, the bubble point pressure is

P = 0.45exp(14.1603 — 2948.78/(400 — 44.5633))
+ 0.55exp(14.2515 — 3242.38/(400 — 47.1806)) = 245.284 kPa

At 400°K, the vapor pressure of benzene is
P.* = exp(14.1603 — 2948.78/(400 — 44.5633)) = 352.160 kPa

The mole fraction of benzene in the vapor phase is then

x,P™ _ (0.45)(352.160)
P 245.284

= 0.6461

y1i=

The mole fraction of toluene in the vapor phase is

yo=1-y; =0.3539
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Dew point temperature calculation

In a dew point temperature calculation, the pressure and vapor phase composition are
specified. We will solve for the temperature and the liquid composition. The solution
provides the composition of the first drop of dew that forms from a saturated vapor. Since the
liquid mole fractions are unknown, we start with the equation

D %=1 (5.1-14)

Using the K-values: K; = L, Eq. (5.1-14) becomes
X.

m L_ )
ZK'—l (5.1-15)

EXample 5.1-3 -m-mmmmm oo
Determine the temperature and composition of the first dew created from a saturated vapor
mixture of benzene and toluene containing 45 mole percent benzene at 200 kPa. Benzene and
toluene mixtures may be considered as ideal.

Data: Vapor pressure, Psat, data: In Psat = A — B/(T + C), where Psatjs in kPaand T is in °K.

Compound A B C

Benzene (1) 14.1603 2948.78 —44.5633

Toluene (2) 14.2515 3242.38 —47.1806

SOIUION == m oo e

We start with the equation
X1+ X2=1 (E-1)

Substituting x; = yiP/P;**" into equation (E-1) yields

ylp + yZP =1 (E_2)

With the numerical values for mole fractions and pressure, equation (E-2) becomes

90/exp(14.1603 — 2948.78/(T — 44.5633))
+ 110/exp(14.2515 — 3242.38/(T — 47.1806)) = 1 (E-3)

The dew point temperature should be between the boiling points of benzene and toluene
given by
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Tpol 294878 4 5e33-377.31K

14.1603 - log(200)

. boil — 3242.38
14.2515 - log(200)

+47.1806 = 409.33°K

The solution of the nonlinear algebraic equation (E-3) can be determined using Matlab
function fsolve with inline function as follows:

>> fun=inline('90/exp(14.1603 - 2948.78/(T - 44.5633))+ 110/exp(14.2515 -
3242.38/(T - 47.1806)) - 1Y;
>> T=fsolve(fun,400,optimset('Display’, off"))
T=
398.0874

The dew point temperature of the benzene-toluene mixture is 398.1°K. At this temperature,
the vapor pressure of benzene is

P, = exp(14.1603 — 2948.78/(398.0874 — 44.5633)) = 336.70 kPa
The mole fraction of benzene in the liquid phase is then

P _ (0.45)(200)

= = =0.2673
P, 336.7

The mole fraction of toluene in the liquid phase is

X2 =1-x1=0.7327

Dew point pressure calculation

In a dew point pressure calculation, the temperature and vapor phase composition are
specified. We will solve for the pressure and the liquid composition. Since the liquid mole
fractions are unknown, we start with the equation

Sx =1 (5.1-16)

Using the K-values: K; = Y , EQ. (5.1-16) becomes
X;

m y _ i
Z?_ (5.1-17)
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If the system contains more than two components, we might want to solve the log form of
equation (5.1-17) for better convergence

In(i%)z 0 (5.1-18)

Example 5.1-4 -=-=--cmmmmeme e e e
Determine the temperature and composition of the first dew created from a saturated vapor
mixture of benzene and toluene containing 45 mole percent benzene at 400°K. Benzene and
toluene mixtures may be considered as ideal.

Data: Vapor pressure, Psat, data: In Psat = A — B/(T + C), where Psat is in kPa and T is in °K.

Compound A B C

Benzene (1) 14.1603 2948.78 — 445633

Toluene (2) 14.2515 3242.38 — 47.1806

T T ]

We start with the equation
X1+X2=1 (E-1)
Substituting x; = yiP/P;*™ into equation (E-1) yields

WP YR g po b (E-2)
P, P, Y1 n Y,

sat sat
Pl P2

With the numerical values for mole fractions and temperature, equation (E-2) becomes

1
0.45 0.55

+
exp(14.1603 — 2948.78 /(400 — 44.5633))  exp(14.2515 — 3242.38/(400 — 47.1806))

P =209.98 kPa
At 400°K, the vapor pressure of benzene is

P,% = exp(14.1603 — 2948.78/(400 — 44.5633)) = 352.160 kPa
The mole fraction of benzene in the liquid phase is then

_ YiP _ (0.45)(209.98)

= I =0.2683
P, 352.16
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Chapter 5

EXample 5.1-5 —mmmmmm oo
Construct a Txy diagram for a mixture of benzene and toluene at 200 kPa. Benzene and
toluene mixtures may be considered as ideal.

Data: Vapor pressure, Psa, data: In Psat = A — B/(T + C), where Psatis in kPa and T is in K.

Compound A B C

Benzene (1) 14.1603 2948.78 — 44,5633

Toluene (2) 14.2515 3242.38 —47.1806

ST T ]

The temperature for the Txy diagram should be between the boiling points of benzene and
toluene given by

boil _ 2948.78
14.1603 — log(200)

+44.5633 = 377.31K

boil _ 3242.38
14.2515 — log(200)

+47.1806 = 409.33 K

The simplest procedure is to choose a temperature T between 377.31 K and 409.33 K,
evaluate the vapor pressures, and solve for x and y from the following equations:

y. B Psat

Ji = i E-1

X; P =
At 400°K, the vapor pressure of benzene and toluene are given by

P,* = exp(14.1603 — 2948.78/(400 — 44.5633)) = 352.160 kPa

P,*" = exp(14.2515 — 3242.38/(400 — 47.1806)) = 157.8406 kPa
Therefore

y, _ 352.16 _ -

Y1 =y, = Ky X; = 1.7608x E-1

x, 200 _tTM 1 =

1-y, _157.841 =1-y; =Ky (1-x1)=0.7892 (1 - x1) (E-1)

1-x 200

Substituting Eq. (E-2) into (E-1) yields

1-Kix1 =Ko (1-x1)
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Therefore

1-K, _  1-0.7892

= =0.2170
K,—K, 1.7608—0.7892

X1 =

Y1 = K1 X1 = 1.7608X1 =0.3820

The Matlab program listed in Table E5-1 plots the Txy diagram shown in Figure E5-1.

410

I I I

| —— Saturated liquid
! - - - Saturated vapor
|

|

I

405

400

395

T(K)

390

385

380

Figure E5-1 Calculated Txy diagram of benzene and toluene at 200 kPa.

Table E5-1-m-mommmmm oo oo oo oo e
% Example 5.1-5, Txy diagram for benzene-toluene mixture at 200 kPa
%

P=200; % kPa

A=[14.1603 14.2515]; B=[2948.78 3242.38]; C=[-44.5633 -47.1806];
% Boling point at 200 kPa

Tb=B./(A-log(P))-C;

fprintf('Boiling point of Benzene at P = %g, Tb = %6.2f C\n',P,Tb(1))
fprintf('Boiling point of Toluene at P = %g, Tb = %6.2f C\n',P,Tb(2))
T=linspace(Tb(1),Tb(2),50);

K1l=exp(A(1)-B(1)./(T+C(1)))/P;

K2=exp(A(2)-B(2)./(T+C(2)))/P;

x=(1-K2)./(K1-K2); y = K1.*x;
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ymin=round(Tb(1)-1);ymax=round(Th(2)+1);

plot(x,T,y,T,"")

axis([0 1 ymin ymax]);

grid on

xlabel(x,y");ylabel('T(K)")

legend('Saturated liquid','Saturated vapor")

EXAMPIE 5.1-67 mmmmmmmmmmm e
We want to condense the following vapor mixture at 100°F.

| Ethylene C,H4: 20% | Ethane C;Hg: 20% | Propane CsHg: 40% | n-Buane C4Hio: 20% |

Determine the dew point pressure and the pressure required to totally condense the vapor
using the K-values.

Data:

Equilibrium K values for light hydrocarbon systems
INnK=-A/T2+B-C In(P) + D/P+ E/P2 where P is in psia, T is in °R
Compound A B C D E

Ethylene 600076.9 7.90595 84677 0 42. 94594
Ethane 687248.2 7.90694 .866 0 49.02654
Propane 970688.6 7.15059 .76984 6.90224 0
n-Butane 1280557 7.94986 .96455 0 0

T T ]

For dew point pressure calculation, the liquid mole fractions are unknown. We start with the
equation

Yx =1 (E-1)

Using the K-values: K; = y, , EQ. (E-1) becomes

- i
=L E-2
Ik E2)
We will solve the log form of equation (E-2) for better convergence

In (i%} =0 (E-3)

? Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 266
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We will use Newton’s method to solve Eq. (E-3). A review of Newton’s method is given in
Appendix A. The procedure for the calculation is as follows:

1) Estimate vapor pressure, Pi**, by setting Ki = 1 and solve for P;** using only the three

constants A, B, and C in the expression for the equilibrium ratio.

1 A
eofio-4)

2) Assume a pressure P =05 y,R*™

i=1
3) Evaluate K; = K; (T, P)
4) Evaluate f(P) = In (Z%}
i=1 I\
5) Evaluate K; = K; (T, P + dP) and f(P + dP)
6) Since the slope of the curve f(P) versus P is approximated by

f(P+dP)-f(P) _ f(P)
dP P-P

cal

Slope =

The calculated Py is given by

f(P)dP
f(P+dP)— f(P)

Pea =P —

Steps (3-6) are repeated until |Pcy —P| < error tolerance

In a bubble point pressure calculation, the temperature and liquid phase composition are
specified. We will solve for the pressure and the vapor composition. Since the vapor mole
fractions are unknown, we start with the equation

2 vi=1 (E-4)

Using the K-values: K; = L, Eq. (E-4) becomes
X.

iKixi -1=0 (E-5)

We will also use Newton’s method to solve Eq. (E-5). The procedure for the calculation is as
follows:
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1) Estimate vapor pressure, Pi**, by setting Ki = 1 and solve for P;** using only the three

constants A, B, and C in the expression for the equilibrium ratio.

1 A
eofio-4)

2) Assume a pressure P = > x,R*™
i=1

3) Evaluate K; = K; (T, P)

4) Evaluate f(P) = > K;x, - 1

i=1
5) Evaluate K; = K; (T, P + dP) and f(P + dP)

6) Since the slope of the curve f(P) versus P is approximated by

f(P+dP)—f(P) _ f(P)
dP " P-P

cal

Slope =

The calculated Py is given by

f (P)dP

Pea =P —
f(P+dP)— f(P)

Steps (3-6) are repeated until |Pcy —P| < error tolerance.

The following Matlab program can be used to determine the dew and bubble point pressure
calculation:

% Example 5.1-6,

% Dew point pressure calculation

%

T=100+460;

A=[600076.9 687248.2 970688.6 1280577];
B=[7.90595 7.90694 7.15059 7.94986];
C=[0.84677 0.866 0.76984 0.96455];

D=[0 0 6.90224 0],

E=[42.94594 49.02654 0 0];

% Estimate vapor pressure by setting Ki=1
Pisat=exp((B-A/(T*T))./C);

yi=[.2 .2 .4 .2];
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Pe=yi*Pisat’; % Estimate pressure from vapor pressure and composition
P=.5*Pe;
fK="exp(-A/(T*T)+B-C*log(P)+D/P+E/(P*P))';
dP=1;eP=1;
while abs(eP)>.1
Ki=eval(fK);fP=log(sum(yi./Ki));
Psav=P;P=P+dP;
Ki=eval(fK);fdP=log(sum(yi./Ki));
eP=fP*dP/(fdP-fP);
P=Psav-eP;
end
Ki=eval(fK);x=yi./(Ki);
fprintf('Dew point pressure, P(psia) = %8.2f\n",P)
disp('Species: Ethylene Ethane Propane n-Butane')

fprintf('y = ");disp(yi)
fprintf('’x = ";disp(x)
disp(* ")

% Bubble point pressure calculation
xi=yi;eP=1;P=Pe;
while abs(eP)>.1
Ki=eval(fK);fP=xi*Ki'-1;
Psav=P;P=P+dP;
Ki=eval(fK);fdP=xi*Ki'-1;
eP=fP*dP/(fdP-fP);
P=Psav-eP;
end
Ki=eval(fK);y=xi.*Ki;
fprintf('Bubble point pressure, P(psia) = %8.2f\n’,P)
disp('Species: Ethylene Ethane Propane n-Butane')

fprintf(’x = ");disp(xi)
fprintf(y = ).disp(y)
>> e5d1d6

Dew point pressure, P(psia) = 163.64

Species: Ethylene  Ethane Propane n-Butane
y= 0.2000 0.2000 0.4000 0.2000

X = 0.0374 0.0544 0.3364 0.5718

Bubble point pressure, P(psia) = 449.30

Species: Ethylene  Ethane Propane n-Butane
X = 0.2000 0.2000 0.4000 0.2000

y= 0.4545 0.3064 0.2128 0.0264
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5.2 Isothermal Flash Calculation Using K-values

In flash distillation, a liquid mixture is partially vaporized and the vapor is allowed to come
to equilibrium with the liquid. The process flow diagram is shown in Figure 5.2-1. The vapor

and liquid phases are then separated.
—

V, Y,
)

F, X

Figure 5.2-1 Flash distillation.

Making a component i balance gives

FXie = Vi + Lxi = Vy; + (F = V)X
Defining f = V/F, Eq. (5.2-1) becomes
Xie = fyi + (1 =X
The above equation can be solved for y;

L _ux.+xi
yI—KiXi— f i f

or for x;,

_ Xir
T f(K 1) +1

Xi

(5.2-1)

(5.2-2)

(5.2-3)

(5.2-4)

We will discuss the solution for two cases of isothermal flash calculation. In the first case,
the fraction of the feed vaporized, f, is specified and in the second case f is determined.
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Case 1: Fraction of the feed, f, vaporized is specified

The feed composition x; and the fraction f of the feed vaporized are given at a specified
separator pressure P, the temperature T and compositions x; and y; can be calculated by
solving the equation:

N —_ XiF —
25=2 f(K,(T,P)-1)+1 =1

i=1
The procedure for the calculation is as follows:

1) Determine the bubble, T, and dew, T4, point temperatures at the feed composition.
2) Assume a temperature T =Ty + (1 — )Ty
3) Evaluate K; = K; (T, P)

Xie

4) Evaluate f(T) = > (K TP D1 1

5) Evaluate K; = K; (T + dT, P) and f(T + dT)
6) Since the slope of the curve f(T) versus T is approximated by

(T +dT)=f(T) _ f(T)
- dT CT-T,,

Slope

The calculated Ty is given by

f(T)dT

Tea=T -
f(T+dT)- f(T)

Steps (3-6) are repeated until [Tey — T| < error tolerance
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Case 2: Fraction of the feed, f, vaporized is determined

If the feed composition Xz, temperature T and pressure P of separator are given, then the
fraction of the feed vaporized V/F and compositions x; and y; can be calculated. Egs. (5.2-3)
and (5.2-4) can be arranged so that f = V/F is the only unknown.

Sy - Y% =0 (5.2-5)

KIXIF _ XiF — -
Zf(Ki ~1)+1 zf(Ki—1)+1 0 (2:6)
DXie _ )

z f(K _1)+1-0 (5.2-7)

Equation (5.2-7), which is known as the Rachford-Rice equation, has excellent convergent
properties and can be solved by Newton’s method. Take the derivative of the function F with
respect to V/F (or f),

1)2X|F -
Z f(K e (5.2-8)

The following procedure can be used to solve for V/F:
1) Evaluate K; = K; (T, P)
2) Check to see if T is between T, and Tj.

If all K-values are greater than 1, the feed is a superheated vapor above the dew
point®. If all K-values are less than 1, the feed is a subcooled liquid below the bubble point. If
one or more K-values are greater than 1 and one or more K-values are less than 1 we need to

evaluate Eq. (5.2-7)atf=0and atf = 1.

2a) If Z(Ki —1)X;- <0, the feed is below its bubble point.
2b) z (K Xie > 0 the feed is above its dew point.

3) Assume f = 0.5

¥ Seader J. D., and Henley E. J., Separation Process Principles, Wiley, 1998, pg. 180.
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4) Evaluate F = Z f(K _11))(';1
(Ki 1)
f(K, —1) +1f

5) Evaluate d—F
df

_Z[

dF

6) LetER:FIW,and f=f-ER

7) If abs(ER) > .001 go to step 4, otherwise

Xi:L andyi:

KiXi
f(K —1)+1

Example 5.2-1 ---ommm e oo oo

The following mixture is fed to a flash drum at 200 psia.

| Ethylene C;H,: 20% | Ethane CoHs: 20% | Propane CsHg: 40%

| n-Buane C4H1o: 20% |

Determine the temperature and the composition of the vapor and liquid streams leaving the

flash drum if 40% of the feed is vaporized.

Data:
Equilibrium K values for light hydrocarbon systems
InK=-A/T2+ B - C In(P) + D/P+ E/P2, where P is in psia, T is in °R
Compound A B C D E
Ethylene 600076.9 7.90595 84677 0 42.94594
Ethane 687248.2 7.90694 .866 0 49.02654
Propane 970688.6 7.15059 76984 6.90224 0
n-Butane 1280557 7.94986 96455 0 0
T T ] e

% Example 5.2-1, Isothermal Flash with f=V/F specified
% Dew point temperature calculation

%

P=200; % psia

f=0.4;

A=[600076.9 687248.2 970688.6 1280577];
B=[7.90595 7.90694 7.15059 7.94986];

C=[0.84677 0.866 0.76984 0.96455];

D=[0 0 6.90224 0];

E=[42.94594 49.02654 0 0];

% Estimate the saturation temperature by setting Ki=1
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Tsat=sqrt(A./(B-C*log(P)));
zi=[.2 .2 .4 .2]yi=zi;
Te=yi*Tsat’; % Estimate temperature from saturation temperature and composition
T=Te,
fK="exp(-A/(T*T)+B-C*log(P)+D/P+E/(P*P))';
dT=1;eT=1;
while abs(eT)>.1
Ki=eval(fK);fT=sum(yi./Ki)-1;
Tsav=T,;T=T+dT;
Ki=eval(fK);fdT=sum(yi./Ki)-1;
eT=fT*dT/(fdT-fT);
T=Tsav-eT,
end
Td=T;
fprintf('Dew point temperature, T(R) = %8.2\n",T)
disp(* ')
% Bubble point temperature calculation
xi=zi,eT=1;T=Te;
while abs(eT)>.1
Ki=eval(fK);fT=log(xi*Ki");
Tsav=T,;T=T+dT;
Ki=eval(fK);fdT=log(xi*Ki");
eT=fT*dT/(fdT-fT);
T=Tsav-eT,
end
Tbh=T;
fprintf('Bubble point temperature, T(R) = %8.2\n",T)
disp(' ')
T=*Td+(1-f)*Tb;
eT=1;
for i=1:20
Ki=eval(fK);fT=sum(zi./(f*(Ki-1)+1))-1;
Tsav=T,;T=T+dT;
Ki=eval(fK);fdT=sum(zi./(f*(Ki-1)+1))-1;
eT=fT*dT/(fdT-fT);
T=Tsav-eT,;
if abs(eT)<.1, break, end
end
Ki=eval(fK)
x=zi./(f*(Ki-1)+1);y=x.*Ki;
fprintf('Flash temperature, T(R) = %8.2f, V/IF = %8.4A\n', T f)
disp('Species: Ethylene Ethane Propane n-Butane')
fprintf('Feed z =");disp(zi)
fprintf('’x = ");disp(x)
fprintf(y = );disp(y)
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>> e5d2d1
Dew point temperature, T(R) = 574.80

Bubble point temperature, T(R) = 490.69
Flash temperature, T(R) = 523.98, V/IF = 0.4000

Species: Ethylene  Ethane Propane n-Butane
Feedz= 0.2000 0.2000 0.4000 0.2000

X = 0.1013 0.1329 0.4649 0.3010
y= 0.3481 0.3007 0.3027 0.0485
Ki = 3.4382 2.2630 0.6510 0.1613
Example 5.2-2 --~----r-m=mmmmemme e

The following mixture is fed to a flash drum at 200 psia.

| Ethylene C,H4: 20% | Ethane C;Hg: 20% | Propane CsHg: 40% | n-Buane C4Hio: 20% |

Determine the fraction of the feed vaporized and the composition of the vapor and liquid
streams leaving the flash drum if the drum is at 400°R, 600°R, and 525°R.

Data:
Equilibrium K values for light hydrocarbon systems
InK=-A/T2+ B - C In(P) + D/P+ E/P2, where P is in psia, T is in °R
Compound A B C D E
Ethylene 600076.9 7.90595 84677 0 42.94594
Ethane 687248.2 7.90694 .866 0 49.02654
Propane 970688.6 7.15059 .76984 6.90224 0
n-Butane 1280557 7.94986 .96455 0 0
SOIULION == m e e e e e

% Example 5.2-2, Isothermal Flash with T specified
% Dew point temperature calculation

%

P=200; % psia

T=input('Drum temperature T(R) =");
A=[600076.9 687248.2 970688.6 1280577];
B=[7.90595 7.90694 7.15059 7.94986];
C=[0.84677 0.866 0.76984 0.96455];

D=[0 0 6.90224 0],

E=[42.94594 49.02654 0 0];

zi=[.2 .2 .4 .2],
fK="exp(-A/(T*T)+B-C*log(P)+D/P+E/(P*P))';
Ki=eval(fK);Km=Ki-1;
fO=Km*zi';f1=sum(Km.*zi./Ki);

if f0<O
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disp(‘'Feed is subcooled liquid’)
elseif f1>0
disp(‘'Feed is superheated vapor')
else
for i=1:20
Km=Ki-1;
F=sum((Km.*zi)./(f*Km+1));
dF=-sum((Km.*2).*zi./(f*Km+1).72);
eR=F/dF;f=f-eR;
if abs(eR)<.0001, break, end
end
x=zi./(fF*fKm+1);y=x.*Ki;
fprintf('Flash temperature, T(R) = %8.2f, V/IF = %8.4\n", T,f)
disp('Species: Ethylene Ethane Propane n-Butane')
fprintf('Feed z =');disp(zi)

fprintf('’x = ;disp(x)
fprintf('y = ";disp(y)
fprintf('Ki = ");disp(Ki)
end
>> e5d2d2

Drum temperature T(R) = 400
Feed is subcooled liquid

>> e5d2d2
Drum temperature T(R) = 600
Feed is superheated vapor

>> e5d2d2

Drum temperature T(R) = 525

Flash temperature, T(R) = 525.00, V/IF = 0.4116
Species: Ethylene  Ethane Propane n-Butane
Feedz= 0.2000 0.2000 0.4000 0.2000

X = 0.0992 0.1308 0.4651 0.3049
y= 0.3441 0.2989 0.3070 0.0501
Ki = 3.4674 2.2851 0.6600 0.1642

TK Nguyen’s program (KEQUI) can perform vapor-liquid equilibrium for

hydrocarbons using K-values.
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i@ Equilibrium using K values, Aug 20, 03

1:Bubble T
:Dew point T

5:Iso-Flash
6: V/F-Flash
7:K ratio

9:Psat
N:New system

W 8: Tsat
T, R = 560 P,psia =(163.64 Choose an option

n-Butane

Species v X K ratio
Ethylene 2 03737 5.352E+00
Ethane 2 05436 3.679E+00
Propane 4 33644 1.189E+00
n-Butane 57183 3.498E-01

1: Bubble T
2:Dew point T

3: Bubble P
4:Dew point P 8:Tsat

i@ Equilibrium using K values, Aug 20, 03

5:Tso-Flash
6: V/F-Flash
7:K ratio

9:Psat
N:New system

T, R = 560 P,psia =[449.3 Choose an option
n-Butane
Species X y K ratio
Ethylene 2 45448 2.272E+00
Ethane 2 30636 1.532 E+00
Propane 4 21276 5.319E-01
n-Butane 02641 1.320E-01

i@ Equilibrium using K values, Aug 20, 03

1:Bubble T 5:Iso-Flash 9:Psat Cale |
2:Dew point T 6: V/F-Flash :New system '
3:Bubble P 7:K ratio Quit
4: Dew point P 8:Tsat

P,psia =200 Choose an option V/F =.40000
n-Butane
Species Feed X y K ratio
Ethylene 2 10125 34812 3.438E+00
Ethane 2 13287 30069 2.263E+00
Propane 4 .46490 30265 6.510E-01
n-Butane 30098 .04854 1.613E-01
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Chapter 5
5.3 Vapor-Liquid Equilibrium with Non-ideal Liquid

In this section we will consider the vapor liquid equilibrium calculation of some real binary
system where the pressure is low enough for the vapor phase to be an ideal gas. At
equilibrium, the fugacity of species i in the vapor phase is equal to that in the liquid phase

~ 1

f'= f

(5.3-1)

The fugacity of species i in the vapor phase can be expressed in terms of the mole fraction, y;,
fugacity coefficient, ¢, and total pressure, P, as

~

f'=yigr P (5.3-2)

The fugacity of species i in the liquid phase can be expressed in terms of the mole fraction,
Xi, activity coefficient, y, and fugacity of pure component, f;, as

]:il = Xin fi (5-3'3)
Therefore
Yigi P =Xixi fi (5.3-4)

If the vapor phase obeys ideal gas law, ¢’ = 1, and at low pressure, f; = P, Eq. (5.3-4)
becomes

yiP = xiyP™ (5.3-5)

The activity coefficient, », can be obtained from experimental data and fitted to different
activity coefficient models. The better-known models are the Margules, Van Laar, Wilson,
NTRL, and UNIQAC equations. The activity coefficient model is normally obtained from the
excess Gibbs energy, gF, defined by

oF= S xGF (5.3-6)

In this equation, the partial molar excess Gibbs energy is given by
el

GE — G _ Gideal :,Ui_,uiidealz RTlnff—lzRT In %

ideal
i

Therefore, the excess Gibbs energy is given in terms of activity coefficient as

gF=RT Y x Iny (5.3-7)
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The activity coefficient model must satisfy the following two conditions:
1) It must provide an ideal solution as the mole fraction of one species approach one. That is
gc=0forx;=lorx,=1

2) It must satisfy the Gibbs-Duhem equation

Xl(M] +X2(a|n—7/2] :0
OXy TP OXy TP

The simplest non-ideal equation for the excess Gibbs energy that satisfies these two
conditions is

9= = AX1Xz (5.3-8)

From the definition of the partial excess Gibbs energy we have

n.n
~c_ [0GF d(ng®) a[ni;j
(), ), e

T,P,n, T,P.n,

on, on, on,
T,P.n,
GE=A n, n,n, — n22
1 2 2
n+n, (N +n,) (n, +n,)
Therefore
n 2
GE=RTIhn=A—2
: T M w0,y

The equation for activity coefficient in terms of mole fraction is then
RTIn 1 = Axp? (5.3-9a)
Similarly

RTIn 5 = Ax{? (5.3-9b)

The parameter A can be obtained by fitting Eq. (5.3-9) with experimental data. This
parameter may change with temperature and pressure, but it is independent of the
composition of the system. More sophisticated model for the excess Gibbs energy will yield
activity coefficient equation with more than one parameter that might better fit the
experimental data.
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The four common equations for activity coefficient are listed in Table 5.3-1. The Wilson
model is preferred due to its improved ability to correct for temperature changes*. However
the Wilson model should not be used for vapor-liquid equilibrium system that contains two
liquid phases (LLE).

Table 5.3-1 Common Binary Activity Coefficient Models

Model Recommended for
Margules | In 5 = x,’[a + 2(b —a)xi] Aromatics, alcohol, ketones,
In 3 = x:’[b + 2(a —b)x.] and ethers
Van Laar A
In n= >
[L+ (Ax, / Bx,)]
In » = B
b=
[L+(Bx, / Ax)]
Wilson In 1 = — In[X1 + X2A12] Aromatics, alcohol, ketones,
T A A § ethers, C4-Cyg hydrocarbons
+ X 12 _ 21
| X XA X+ XAy
In 72 =—In[xz + X1A2]
+ Xl A21 _ AlZ
| Xy + XAy X+ XA, |
NRTL r } Aqueous organics, LLE
In 51 = x52 Ty n [ZPYASY f g
2 2
L+ %A ) (% +x0AL, )" |
In 5 = X12 TyAy _ z'12A212 .
_(Xl + X2A21) (Xz + XlAlZ) |

Example 5.3-1 ---mmmmmm oo oo
Find the bubble point pressure and vapor composition for a liquid mixture of 41.2 mol%
ethanol (1) and n-hexane (2) at 331°K.>

Data: Activity from Van Laar equations:

A In 7 = B
2 [L+(Bx, / Ax)[

Inpy=
7 [L+ (Ax /Bx,)[

A =2.409,and B=1.970

Vapor pressure: (P in kPa and T in °K)

3423.53 In P, = 14.0568 — 2825.42

In P =16.1952 - ————"— __ e ——
T —55.7152 T —42.7089

*http://students.aiche.org/pdfs/thermodynamics.pdf, 11/27/04
® Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 279
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SOIULION ==
At 331°K

P.**" = exp[16.1952 — 3423.53/(331 — 55.7152)] = 42.9 kPa

P, = exp[14.0568 — 2825.42/(331 — 42.7089)] = 70.54 kPa

For the liquid solution with x; = 0.412 and x, = 0.588, we have

In = 2409 ~ =0.699 = 5 =2.011
[1+(2.409x, /1.970x,)]

In = 1.790 - =0.4195 = 55 = 1.521
[1+(1.790x, / 2.409x,)]

The partial pressure of ethanol is evaluated from
P, = xu1P:% = (0.412)(2.011)(42.9) = 35.55 kPa
Similarly, the partial pressure of n-hexane is given by
P, = X75P,™ = (0.588)(1.521)(70.54) = 63.09 kPa
The bubble point pressure is then
P =P;+ P, =35.55 + 63.09 = 98.64 kPa
Mole fraction of ethanol in the vapor phase is calculated from
y1 = P1/P = 35.55/98.64 = 0.360

The actual data for this system is Pexy = 101.3 kPa, and y1 exp = 0.350
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Example 5.3-2 --mmmmmmm oo
Estimate the bubble point temperature and vapor composition for a acetone (1) and water (2)
liquid mixture with x; = 0.01 at a total pressure of 101.3 kPa®. Use the Wilson model with
the parameters

Alz = 01173, A21 =0.4227
Vapor pressure: (P in kPa and T in °K)

207595 | 0wt qq5a6y_ 398544
T - 345228 T -38.9974

In P =14.71712 -
SOIULION —-mm e
Since the vapor mole fractions are unknown, we start with the equation
yity2=1 (E-1)
Substituting y; = xi#P;*/P into equation (E-1) yields
X171P1™ + Xo0P* = P (E-2)

For x; =0.01, x, = 0.99, A1» =0.1173, and A1 = 0.4227 we have

I 7= — IN[xe + XoAn] + 30| — D2 Da | =25703 = 5 = 13.069
| X+ XA X+ XA, |

In » = A A 1. 4 _

n % =—In[x2 + x3A21] + X1 21 - 12 =7.4112x10™ = 5 = 1.0007
| Xy + XAy X+ XA, |

With the numerical values for mole fractions and pressure, equation (E-2) becomes

(0.01)(13.069)exp(14.71712 — 2975.95/(T — 34.5228))
+ (0.99)(1.0007)exp(16.5362 — 3985.44/(T — 38.9974)) = 101.3  (E-3)

.13069exp(14.71712 — 2975.95/(T — 34.5228))
+0.9907exp(16.5362 — 3985.44/(T — 38.9974)) = 101.3 (E-4)

Since the boiling point of pure water at 101.3 kPa is 373°K and acetone is more volatile than
water we will use 370°K as the first guess to the root of the nonlinear algebraic equation (E-
4). The solution can be determined using Matlab function fsolve with inline function as
follows:

>> fun=inline(.13069*exp(14.71712 - 2975.95/(T - 34.5228))+ 0.9907*exp(16.5362 -
3985.44/(T - 38.9974)) - 101.3)

® Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 279
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>> T=fsolve(fun,370,optimset('Display’, off"))
T =
361.7142

The bubble point temperature of the acetone-water mixture is 361.7°K. At this temperature,
the vapor pressure of acetone is

P, = exp(14.1603 — 2948.78/(391.7925 — 44.5633)) = 289.45 kPa

The mole fraction of benzene in the vapor phase is then

x,P™ _ (0.45)(289.45)
P 200

=0.6513

yi=

The mole fraction of toluene in the vapor phase is

y2 =1-y; =0.3487
Example 5.3-3 —---mommm oo
Estimate the dew point temperature and liquid composition for a acetone (1) and water (2)
vapor mixture with y; = 0.40 at a total pressure of 101.3 kPa’. Use the Wilson model with the
parameters

Alz = 01173, A21 =0.4227
Vapor pressure: (P in kPa and T in °K)

2975.95 In P, = 16,5362 — 3985.44
T —34.5228 T —38.9974

In P =14.71712 -
T T ] e
Since the liquid mole fractions are unknown, we start with the equation
X1+X2=1 (E-1)
Substituting x; = yiP/#Pi*™ into equation (E-1) yields
Y1P/ P + yoPl Py = 1 (E-2)

Since the activity coefficients depend on the liquid mole fractions, we assume a value for x;:

Letx; =0.1,thenx, =1-x;=0.9

" Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 279
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Start lteration

With A1, =0.1173, and Ay, = 0.4227 we have

In 7 = — e+ xoAn] +x0| D2 Aa | 542913
| X + X,Ap, X, + XAy |

In 75 = —In[Xz + X1A21] + X1 Aa __ Ap = 7 =1.0484
| X, + XAy X+ XA, |

With the numerical values for mole fractions, pressure, and activity coefficients, equation (E-
2) becomes

(0.1)(101.3)/5.42913/exp(14.71712 — 2975.95/(T — 34.5228))
+(0.9)(101.3)/1.0484/exp(16.5362 — 3985.44/(T — 38.9974)) = 1 (E-3)

We solve equation (E-3) for temperature and obtain T = 359.196°K with an initial guess of
370°K. We now need to calculate the liquid mole fractions

X1 = yaP/%P™ =0.0289813, and
X2 = yzplj/gpgsat =0.971019

We now need to update values for the activity coefficients:

In 1= — In[xe + XoAsg] + 30| P2 Aa | 2102315
| X+ XA X XA, |

In 72 =—In[x2 + XsAz] + X1 Ay Ay = 7% = 1.00555
| Xy + XAy X+ XA, |

The liquid mole fractions are then reevaluated:
x1 = y1P/nP1™ = 0.0153783, and
X2 = Y2oPl3oP,™ = 1.01239

The summation of the liquid mole fractions is given by
X1 + X2 = 0.0153783 + 1.01239 = 1.02777

Since the summation is not equal to 1, we need to recalculate the liquid mole fractions using
the normalized mole fractions as the guessed values

X1 = 0.0153783/1.02777 = 0.0149628
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Xp = 1.01239/1.02777 = 0.985037
We then go back to the Start Iteration and repeat the procedure using 359.196°K as the
initial temperature for the solution of the non-linear equation (E-3). The final results after
two iterations are

x; = 0.0122297, x, = 0.987814, and T = 359.942°K
Table 3.5-2 lists the Matlab program used for the calculation.

Table 5.3-2 Matlab program for dew point calculation

% Example 5.3-3
%

yl=.4,y2=1-y1,

P=101.3;

% Assume a value for x1
x1=.1;x2=1-x1,

lamdal2 = 0.1173;lamda21 = 0.4227;
%

dT=1;

% Assume T

T=370;

% Solving for T using Newton's method
for k=1:20

Al=x1 + x2*lamdal2; A2=x2 + x1*lamda21,;
gamal=exp(-log(Al)+x2*(lamdal2/Al-lamda21/A2));
gama2=exp(-log(A2)+x1*(lamda21/A2-lamdal2/Al));

fprintf('’x1 = %g, x2 = %g\n’,x1,x2)

fprintf('gamal = %g, gama2 = %g\n',gamal,gama?2)

for i=1:20

fT=yl/gamallexp(14.71712 -2975.95/(T-34.5228)) + y2/gama2/exp(16.5362 -
3985.44/(T - 38.9974))-1/P;

T=T+dT;

fT2=yl/gamal/exp(14.71712 -2975.95/(T-34.5228)) + y2/gama2/exp(16.5362 -
3985.44/(T - 38.9974))-1/P;

eT=fT*dT/(fT2-fT);

% New value for T

T=T-dT-eT;

fprintf('T(K) = %g\n',T)

if abs(eT)<.001, break, end

end

x1l=yl*P/gamal/exp(14.71712 -2975.95/(T-34.5228));x2=y2*P/gama2/exp(16.5362 -
3985.44/(T - 38.9974));

% Update the values of gamal and gamaz2 at new values of x1 and x2

Al=x1 + x2*lamdal2; A2=x2 + x1*lamdaZ21;
gamal=exp(-log(Al)+x2*(lamdal2/Al-lamda21/A2));
gama2=exp(-log(A2)+x1*(lamda21/A2-lamdal2/Al));

fprintf('’x1 = %g, x2 = %g\n’,x1,x2)
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fprintf('gamal = %g, gama2 = %g\n',gamal,gama2)

x1=y1*P/gamal/exp(14.71712 -2975.95/(T-34.5228));x2=y2*P/gama2/exp(16.5362 -
3985.44/(T - 38.9974));

% Check if x1+x2=1;

sumx=x1+x2;

fprintf('’x1 = %g, X2 = %g, sumx = %g\n',x1,x2, sumx)

% New values for x1 and x2

x1=x1/sumx;x2=x2/sumx;

if abs(sumx-1)<.0001, break, end

end

>> e5d3d3

x1=0.1,x2=0.9

gamal = 5.42913, gama2 = 1.0484

T(K) = 355.948

T(K) = 359.037

T(K) = 359.199

T(K) = 359.196

T(K) = 359.196

x1 =0.0289813, x2 = 0.971019

gamal = 10.2315, gama2 = 1.00555

x1 =0.0153783, x2 = 1.01239, sumx = 1.02777
x1 =0.0149628, x2 = 0.985037

gamal = 12.2028, gama2 = 1.00161

T(K) = 359.946

T(K) = 359.942

T(K) = 359.942

x1 =0.0126257, x2 = 0.987374

gamal = 12.5979, gama2 = 1.00116

x1 =0.0122297, x2 = 0.987814, sumx = 1.00004

EXample 5.3-4 —m-mmmmm oo
Construct a Txy diagram for a mixture of ethanol (1) with hexane (2) at a total pressure of

101.3 kPa. Use the Wilson model with the parameters
A12 = 00952, A21 =0.2713

Vapor pressure: (P in kPa and T in °K)

342353 | ot q40s6q_ 282542

InP,*'=16.1952 - ——"—"__ _—
T —55.7172 T -42.7089

SOIULION == e e e -

To construct a Txy diagram, we start with a value of x;. The problem becomes a bubble point
temperature calculation. Since the composition in the vapor phase is not known, we have

yi+y2=1 (E-1)
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Substituting yi = xi#Pi™/P into equation (E-1) yields
X171P1™ + X290P"* = P (E-2)

For a given value of xy, the activity coefficients can be obtained from

In 7= — N[+ XoAss] +%0| — D2 Aau [ =25703 = 4 =13.069
| X + XoAp X, + XA, |
_ A A 1. -4 _
In 3% =—In[x2 + X1A21] + X1 21 - 12 =7.4112x10™ = 5 = 1.0007
| X, + XAy X XA, |

With the known values for mole fractions, activity coefficient, and pressure, equation (E-2)
becomes

X1716xp(16.1952 — 3423.53/(T-55.7152))
+ (1 — x1) ;5exp(14.0568-2825.42/(T — 42.7089)) = 101.3 (E-3)

Equation (E-3) can be solved by Newton method for the temperature at a given value of x;.
The boiling point of pure ethanol and hexane can be obtained from the vapor pressure
equation. We start the calculation with x; = 0.002 and use the boiling point of hexane as the
initial guess for the bubble point temperature of the mixture. After each bubble point
calculation, we increase x; by a small amount and repeat the calculation using the previous
temperature as the initial guess. The following Matlab program can be used to construct a
Txy diagram at 101.3 kPa.
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% Example 5.3-4: Construct a Txy diagramfor ethanol (1) and hexane (2) mixture

% at a total pressure (kPa) of

P=101.3;

% Use the Wilson equation with parameters

G12 =0.0952; G21 = 0.2713;

% Vapor pressure data: P(kPa), T(K)

plsat = 'exp(16.1952-3423.53/(T-55.7152))';

p2sat = 'exp(14.0568-2825.42/(T-42.7089));

% Estimate boiling points

Tbh1 = 3423.53/(16.1952-log(P))+55.7152;

Th2 = 2825.42/(14.0568-log(P))+42.7089;

x1=[0 .002 .004 .006 .008 .01 .015];

x2=linspace(.02,.92,46);

x3=[.93 .94 .95 .96 .97 .98 .985 .990 .995 1];

xp=[x1 x2 x3];np=length(xp);

YP=Xp; TP=Xp;

Tp(1)=Tb2;Tp(np)=Th1;

dT =.01;

% Will not work with this guess: T = y1*Tb1+y2*Tb2

T=Th2;

for i=2:np
x1=xp(i);x2=1-x1;

% Evaluate activity coefficients

teml = x1 + x2*G12; tem2 = x2 + x1*G21;

gaml = exp(-log(tem1)+x2*(G12/tem1-G21l/tem2));

gam2 = exp(-log(tem2)+x1*(G21/tem2-G12/teml));

for k=1:20
fT=x1*gaml*eval(plsat)+x2*gam2*eval(p2sat)-P;
T=T+dT;

fT2=x1*gaml*eval(plsat)+x2*gam2*eval(p2sat)-P;
dfT=(fT2-fT)/dT; eT=fT/dfT;
T=T-dT-eT;
if abs(eT)<.001, break ,end

end

Tp()=T,;

yp(i)=x1*gaml*eval(plsat)/P;

fprintf('T(K) = %8.2f , x=%8.4f;y = %8.4f, iteration = %g\n',T,x1,yp(i),k)

end

plot(xp,Tp,yp,Tp,"")

axis([0 1 330 355])

xlabel('x,y");ylabel('T(K)");

grid on

legend('x','y")
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Figure E-1: Txy diagram for ethanol-hexane mixture at 101.3 kPa.
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Chapter 5
5.4 Fitting Activity Coefficient Models with VLE Data

One vapor-liquid equilibrium data point is sufficient to determine the two parameters of he
activity coefficient equations. This data point provides T, P, x;, and y; so that the activity
coefficients can be determined from

% = YiPIP™ (5.4-1)
The equations for the Margules model are

In 51 = x2’[a + 2(b —a)xd], In 5 = x:°[b + 2(a —b)x2] (5.4-2a,b)

Solving for the two parameters a and b from Egs. (5.4-2a) and (5.4-2b) yields

a= (Z_L]M +2M, b = (z_i]mi +2M (5.4-3a,b)
X2 X2 Xl Xl Xl X2

The equations for the VVan Laar model are

A B
Inn= , In»= 5.4-4a,b
T e (Ax BT " L+ (Bx, | AT ( )

Solving for the two parameters A and B from Egs. (5.4-4a) and (5.4-4b) yields

2 2
A= (1+M] Iy, B= (1+M] Iy (5.4-5a,b)
x, Iny, X, Iny,

If more than one data point is available, curve fitting should be used to determine the
parameters for the activity coefficient equations. As an example, Figure 5.4-1 plots the model
equation that predicts temperature as a function of time using two parameters € and h. This is
similar to the activity coefficient model where the activity coefficient depends on liquid mole
fraction and two parameters. The relationship between the temperature T; obtained from the
model equation and the experimental value Ty, can be expressed generally as

Ti,exp =Ti(t; & h) + e (B.1-2)
In this equation e; is a random error that can be negative or positive. T; is a function of the

independent variable t; and the parameters h and e. The random error is also called the
residual, which is the difference between the calculated and measured values.
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Figure 5.4-1. Relationship between the model equation and the data

Nonlinear regression is based on determining the values of the parameters that minimize the
sum of the squares of the residuals called an objective function Foy;.

(r-T,

iexp

(B.1-3)

N N N
FObj = Zelz = Z(Ti,exp _Ti )2 =
i=1 i=1

i=1 i

In this equation N is the number of data points or measured temperatures in this case. The
two parameters are adjusted until the objection function reaches a minimum. This nonlinear
regression procedure is presented in more details in Appendix B.

In some cases, the activity coefficient equations can be rearranged so that a linear curve
fitting can be used to obtain the parameters.
The equations for the Margules model are

In 51 = x.°[a + 2(b —a)xd], In 5 = x:°[b + 2(a —b)x2] (5.4-2a,b)

These equations can be rearranged to

In V1 = ax, + 2(b —a)X1X2, |n72 = le + 2(a —b)X1X2 (54-6&,b)

X, Xy

Adding Eq.(5.4-6a) to (5.4-6Db) yields

In In
X2 Xl

We now define a new function Q = x;In 1 + x2In 5, so that

In In
Q -7 172 — g, +bx = al—x1) + bxs
X1X2 X2 Xl
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za+ (b-a)x (5.4-7)
X1X2

The plot of versus x; will yield a straight line with slope = (b — a) and intercept = a. If

XX,

. . In In
data is available for only one component, we can plot # VS. X; Of 72/2
X

2 1
numerical values for the parameters a and b. If data is available for both components, Eq.
(5.4-7) should be used to average out the experimental error.

VS. X, to obtain

The Van Laar equations can also be arranged so that the data can be fitted by a linear
equation. The equations for the Van Laar model are

A B
In » = , In » = 5.4-4a,b
" L+ (Ax /Bx,)T " L+ (B, 1 AX)T ( )

Taking the inverse of each term we have

2 2
1 _ [1+(Ax/Bx,)] | 1 _ [1+(Bx, [ Ax,)] (5.4-80.0)
Iny, A Iny, B
Taking the square root of each term yields
1 _ 1 JAx 1 .1 ,¥Bx (5.4-9a,b)
Jiny, VA B X, \/Inyz VB OA X

Again, if there is only data for one component, we can plot either Eq. (5.4-9a) or (5.4-9b) to
obtain the numerical values for A and B. If there are two sets of data, we will use the
following linear form

EXample 5.4-1 ---mmmmmmm oo

Use the given VLE data for the ethanol (1)-benzene (2) system at 40°C to determine
Margules and Van Laar parameters®. The vapor pressures for ethanol and benzene at 40°C
are 134.02 mmHg and 182.78 mmHg, respectively.

X1 020 |.095 [.204 |.378 |.490 |.592 |.702 |.802 |.880 |.943 |.987

Y1 145 1280 |.332 | .362 |.384 |.405 |.440 | .507 |.605 |.747 | .912

P,mmHg | 208.4 | 239.8 | 249.1 | 252.3 | 248.8 | 245.7 | 237.3 | 219.4 | 196.3 | 169.5 | 145.6

SOIULION == m e e o e e -

® Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 281
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First, we need to determine the activity coefficients from the experimental data from the
following equation

sat

yiP = Xi}/iPi
Applying the equation for the first data point (x; = .020, y; = .145, and P = 208.4) yields

Lo WP (0.145)(208.4) _ .. ,,

x P (0.02)(134.02)

_ ([@-y,)P _ (0.855)(208.4) _

- 0.99474
27 A—x)P™  (0.98)(182.78)
From equation (5.4-7)
Q a+m-ay (5.4-7)
XlXZ

The plot of Q versus x; will yield a straight line with slope = (b — @) and intercept = a.
X1X2

Table 5.4-1a lists the Matlab program used to determine the Margules parameters using

linear curve fitting. Figure E-1 shows the fitted line and the experimental data. Figure E-2

shows the calculated and measured mole fraction of ethanol. The two obtained Margules

parameters are

a=2.173,and b=1.539
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Table 5.4-18 -------mmm oo
% Example 5.4-1, Determination of Margules parameters a and b
x=[.020 .095 .204 .378 .490 .592 .702 .802 .880 .943 .987];
y=[.145 .280 .332 .362 .384 .405 .440 .507 .605 .747 .912];
P=[208.4 239.8 249.1 252.3 248.8 245.7 237.3 219.4 196.3 169.5 145.6];
Pvapl1=134.02;Pvap2=182.78;

% Evaluate gamma,g from y*P = x*g*Pvap

X2=1-x;

gl=y.*P./(x*Pvapl);g2=(1-y).*P./(x2*Pvap?2);

% Parameters for Margules equation
ym=(x.*log(g1)+x2.*log(g2))./(x.*X2);

c=polyfit(x,ym,1);

% c(1) = slope, c(2) = intercept

a=c(2);b=c(1)+a;

fprintf(‘'Margules parameters: a = %g b = %g \n',a,b)
xp=0:.02:1;xp2=1-xp;
glc=exp(xp2.*xp2.*(a+2*(b-a)*xp));g2c=exp(xp.*xp.*(b+2*(a-b)*xp2));
Plc=xp.*glc*Pvapl;P2c=xp2.*g2c*Pvap2;ylc=P1lc./(P1c+P2c);
xc=[0 1],

yc=polyval(c,xc);

figure(1)

plot(xc,yc,x,ym,'0")

grid on

legend('Fitted’,'Data’)

xlabel('x1");ylabel('Q/(x1*x2)")

figure(2)

plot(xp,ylc,x,y,'0")

grid on

xlabel('x1");ylabel('y1")

legend('Fitted’,'Data’)

>> e5d4d1

Margules parameters: a = 2.17278 b = 1.53949
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Figure E-1 Determination of Margues parameters
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x1

Figure E-2 Calculated and measured mole fraction of ethanol.
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Chapter 5

For Van Laar model, the plot of % versus x; will yield a straight line with slope = %

and intercept = % Table 5.4-1b lists the Matlab program used to determine the Van Laar

parameters using linear curve fitting. Figure E-3 shows the fitted line and the experimental
data. Figure E-4 shows the calculated and measured mole fraction of ethanol. The two
obtained Van Laar parameters are

A =2.186, and B = 1.555

Table 5.4-1bh ----mm e oo
% Example 5.4-1, Determination of Van Laar parameters A and B
x=[.020 .095 .204 .378 .490 .592 .702 .802 .880 .943 .987];
y=[.145 .280 .332 .362 .384 .405 .440 .507 .605 .747 .912];
P=[208.4 239.8 249.1 252.3 248.8 245.7 237.3 219.4 196.3 169.5 145.6];
Pvapl1=134.02;Pvap2=182.78;

% Evaluate gamma,g from y*P = x*g*Pvap

X2=1-x;

gl=y.*P./(x*Pvapl);g2=(1-y).*P./(x2*Pvap2);
ym=(x.*log(gl)+x2.*log(g2))./(x.*x2);

xp=0.02:.02:.98;xp2=1-xp;

% Parameters for van Laar equation

yv=1.0./ym;

c=polyfit(x,yv,1);

% c(1) = slope, c(2) = intercept

A=1/c(2);B=A/(A*c(1)+1);

fprintf('Van Laar parameters: A = %g B = %g \n',A,B)
glv=exp(A./(1+A*xp./(B*xp2))."2);g2v=exp(B./(1+B*xp2./(A*xp))."2);
P1=xp.*glv*Pvapl;P2=xp2.*g2v*Pvap2;ylv=P1./(P1+P2);

xc=[0 1];

yc=polyval(c,xc);

figure(1)

plot(xc,yc,x,yv,'0")

grid on

legend('Fitted','Data’)

xlabel('x1");ylabel('(x1*x2)/Q")

figure(2)

plot(xp,ylv,x,y,'0")

grid on

xlabel('x1");ylabel('y1’)

legend('Fitted’,'Data’)

>> e5d4d1b
Van Laar parameters: A = 2.18558 B = 1.55458
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Figure E-3 Determination of VVan Laar parameters

x1

Figure E-4 Calculated and measured mole fraction of ethanol.
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EXample 5.4-2 ---mmmmmm oo

Use the given VLE data for the methanol (1)-carbon tetrachloride (2) system at 20°C to
determine Wilson parameters’. The vapor pressures for methanol and carbon tetrachloride at
20°C are 96.87 mmHg and 92.08 mmHg, respectively.

X1 .020 |.040 |.100 |.200 |.300 |.e00 |.700 |.800 |.900 | .960
Y1 344 | 391 | 430 | .449 | 462 | 494 | 512 | .546 |.662 |.792
P,mmHg | 136.6 | 146.4 | 154.8 | 158.0 | 159.5 | 159.9 | 157.5 | 152.0 | 135.5 | 117.2

SOIULION =-mm e o e e -
The activity coefficients can be calculated from the experimental data using the following
equation

yiP = Xi}/iF)isat
Applying the equation for the first data point (x; =.020, y; = .344, and P = 136.6) yields

yiP _ (0.344)(136.6) _,, ,
x P (0.02)(96.87)

n=

. (-y)P _ (0.656)(1366) _ goq
(1-x )P  (0.98)(92.08)

The experimental Q% function is evaluated as
Q%" =x4In 5 + x2In p (E-1)

The calculated Q° function is obtained by substituting Eqgs. (E-2) and (E-3) for In 7 and In
7 Into equation (E-1)

In 7 = — In[Xa + XoAso] +%0| — D2 Au (E-2)
| X + XA, X, + X1A21_

In 75 = — In[xo + xaAor] +3a| B Aw (E-3)
| X, + XAy X+ XA, |

Q%' = — xaIn[xq + X2A12] — XoIn[X2 + X1A21] (E-4)

The parameters Ajz and Az; can be obtained by minimizing the following objective function

Foay= > (0"~}

i=1

" Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 287
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Table 4.5-2 lists the Matlab program used to determine the Wilson parameters Fminsearch.
Figure E-5 shows the calculated and measured mole fraction of methanol. The two obtained
Wilson parameters are

A1 =0.0666, and Ay =3.118

Table 5.4-1D --mmm oo
% Example 5.4-2

% Determine parameters in the Wilson equation by minimizing the objective
% function sum[(Qexp-Qcal)i]*2, using fmins (Matlab function)

% Initial guesses

G12 =.2; G21 =.4;

gcal=fminsearch(‘ofq',[G12 G21]);

fprintf(G12 = %g , G21 = %g \n',gcal(1),gcal(2))
G12=gcal(1);G21=gcal(2);

x=[.020 .040 .100 .200 .300 .600 .700 .800 .900 .960];

y=[.344 .391 .430 .449 .462 .494 .512 .546 .662 .792];
Pvapl1=96.87;Pvap2=92.08;

Xp=0.02:.02:.98;xp2=1-xp;

tem=G12./(xp+xp2*G12)-G21./(xp2+xp*G21);
gl=exp(xp2.*tem)./(xp+xp2*G12);g2=exp(-xp.*tem)./(xp2+xp*G21);
P1l=xp.*g1*Pvapl;P2=xp2.*g2*Pvap2;ylw=P1./(P1+P2);
plot(xp,ylw,X,y,'0")

grid on

xlabel('x1");ylabel('y1")

legend('Fitted’,'Data’)

function yy=ofq(G)

% Example 5.4-2, function to evaluate the objective function Fobj
% ofg=sum[(Qexp-Qcal)i]*2

x=[.020 .040 .100 .200 .300 .600 .700 .800 .900 .960];

y=[.344 .391 .430 .449 .462 .494 .512 .546 .662 .792];

P=[136.6 146.4 154.8 158.0 159.5 159.9 157.5 152.0 135.5 117.2];
Pvap1=96.87;Pvap2=92.08;

% Evaluate gamma,g from y*P = x*g*Pvap
x2=1-x;G12=G(1);G21=G(2);
gl=y.*P./(x*Pvapl);g2=(1-y).*P./(x2*Pvap2);

%

Qexp=(x.*log(g1)+x2.*log(g2));
Qcal=-x.*log(x+G12*x2)-x2.*log(x2+G21*x);
yy=sum((Qexp-Qcal)."2);

>> ebd4d?2
G12 = 0.0665678 , G21 = 0.311822
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Figure E-5 Calculated and measured mole fraction of methanol.

5.5 Azeotropes

When deviations from Raoult’s law are large enough, the Tx and Ty curves can go through a
maximum or a minimum. The extreme point (either minimum or maximum) is called
azeotrope where the liquid mole fraction is equal to the vapor mole fraction for each species:

Xi = Vi (5.5-1)

A system that exhibits a maximum in pressure (positive deviations from Raoult’s law) will
exhibits a minimum in temperature called minimum boiling azeotrope as shown the top part
of Figure 5.5-1 for a mixture of chloroform and hexane. The Pxy diagram is plotted at 318 K
and the Txy diagram is plotted at 1 atm. This is the case when the like interaction is stronger
than the unlike interaction between the molecules. The mixture will require less energy to go
to the vapor phase and hence will boil at a lower temperature that that of the pure
components.

If the unlike interaction is stronger than the like interaction we have negative deviations from
Raoult’s law and the system will exhibit a minimum in pressure or a maximum in
temperature called maximum boiling azeotrope. A mixture of acetone and chloroform shows
this behavior in the bottom part of Figure 5.5-1. The Pxy diagram is plotted at 328 K and the
Txy diagram is plotted at 1 atm. The data for vapor pressure and Wilson model are from the
Thermosolver program by Koretsky. This program can also plot Pxy and Txy diagrams for
different mixtures. Table 5.5-1 lists the Matlab program used to produce Figure 5.5-1.
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Chloroform-Hexane Chloroform-Hexane
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Figure 5.5-1 Top: minimum boiling azeotrope for chloroform and n-Hexane system.
Bottom: maximum boiling azeotrope for acetone and chloroform system

Table 5.5-1 --mmmmm oo
% Figure 5.5-1: Construct a Txy diagramfor chloroform (1) and hexane (2) mixture
% at a total pressure (atm) of

P=1,

% Use the Wilson equation with parameters

G12 =1.2042; G21 = 0.39799;

% Vapor pressure data: P(atm), T(K)

plsat = 'exp(9.33984-2696.79/(T-46.14))";

p2sat = 'exp(9.20324-2697.55/(T-48.78))";

% Estimate boiling points

Th1l = 2696.79/(9.33984-log(P))+46.14;

Th2 = 2697.55/(9.20324-log(P))+48.78;

x1=[0 .002 .004 .006 .008 .01 .015];

x2=linspace(.02,.92,46);

x3=[.93 .94 .95 .96 .97 .98 .985 .990 .995 1];

xp=[x1 x2 x3];np=length(xp);

YP=Xp; Tp=Xp;

Tp(1)=Th2;Tp(np)=Th1;

dT =.01;

T=Tb2;
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for i=2:np
x1=xp(i);x2=1-x1;

% Evaluate activity coefficients

teml = x1 + x2*G12; tem2 = x2 + x1*G21,

gaml = exp(-log(tem1)+x2*(G12/tem1-G21/tem2));

gam2 = exp(-log(tem2)+x1*(G21/tem2-G12/teml));

for k=1:20
fT=x1*gaml*eval(plsat)+x2*gam2*eval(p2sat)-P;
T=T+dT;

fT2=x1*gaml*eval(plsat)+x2*gam2*eval(p2sat)-P;
dfT=(fT2-fT)/dT; eT=fT/dfT;
T=T-dT-eT;
if abs(eT)<.001, break ,end

end

Tp()=T,;

yp(i)=x1*gaml*eval(plsat)/P;

fprintf(T(K) = %8.2f , x=%8.4f;y = %8.4f, iteration = %g\n',T,x1,yp(i),K)

end

subplot(2,2,2); plot(xp,Tp,yp,Tp,"")

axis([0 1 333 343))

xlabel('x,y");ylabel('T(K)');title('Chloroform-Hexane")

grid on

legend('x','y")

%

% Construct a Pxy diagramfor chloroform (1) and hexane (2) mixture

% at a temperature (K) of

T=318;

plvap=eval(plsat);p2vap=eval(p2sat);

Xp2=1-Xp;

teml = xp + xp2*G12; tem2 = xp2 + xp*G21;

gaml = exp(-log(tem1)+xp2.*(G12./tem1-G21./tem2));

gam2 = exp(-log(tem2)+xp.*(G21./tem2-G12./teml));

pl=xp.*gaml*plvap;p2=xp2.*gam2*p2vap;

Pp=pl+p2;yp=pl./Pp;

subplot(2,2,1); plot(xp,Pp,yp,Pp,"")

axis([0 1 0.4 0.6])

xlabel('x,y");ylabel('P(atm)’);title('Chloroform-Hexane")

grid on

legend('x','y",2)

%

% Figure 5.5-1: Construct a Txy diagramfor acetone (1) and chloroform (2) mixture

% at a total pressure (atm) of

P=1,

% Use the Wilson equation with parameters

G12 =1.324; G21 = 1.7314;

% Vapor pressure data: P(atm), T(K)

plsat = 'exp(10.0179-2940.46/(T-35.93))";

p2sat = 'exp(9.33984-2696.79/(T-46.14))";

% Estimate boiling points
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Th1l = 2940.46/(10.0179-log(P))+35.93;

Th2 = 2696.79/(9.33984-log(P))+46.14;

x1=[0 .002 .004 .006 .008 .01 .015];

x2=linspace(.02,.92,46);

x3=[.93 .94 .95 .96 .97 .98 .985 .990 .995 1];

Xp=[x1 x2 x3];np=Ilength(xp);

YP=Xp;TP=Xp;

Tp(1)=Tb2;Tp(np)=Th1;

dT =.01;

T=Tbh2;

for i=2:np
x1=xp(i);x2=1-x1;

% Evaluate activity coefficients

teml = x1 + x2*G12; tem2 = x2 + x1*G21,

gaml = exp(-log(tem1)+x2*(G12/tem1-G21/tem2));

gam2 = exp(-log(tem2)+x1*(G21/tem2-G12/teml));

for k=1:20
fT=x1*gaml*eval(plsat)+x2*gam2*eval(p2sat)-P;
T=T+dT;

fT2=x1*gaml*eval(plsat)+x2*gam2*eval(p2sat)-P;
dfT=(fT2-fT)/dT; eT=fT/dfT;
T=T-dT-eT;
if abs(eT)<.001, break ,end

end

Tp()=T,;

yp(i)=x1*gaml*eval(plsat)/P;

fprintf('T(K) = %8.2f , x=%8.4f;y = %8.4f, iteration = %g\n',T,x1,yp(i),k)

end

subplot(2,2,4); plot(xp,Tp,yp,Tp,"")

axis([0 1 329 340])

xlabel('x,y");ylabel('T(K)');title('Acetone-Chloroform")

grid on

legend('x','y")

%

% Construct a Pxy diagramfor acetone (1) and chloroform (2) mixture

% at a temperature (K) of

T=328;

plvap=eval(plsat);p2vap=eval(p2sat);

Xp2=1-Xp;

teml = xp + xp2*G12; tem2 = xp2 + xp*G21;

gaml = exp(-log(tem1)+xp2.*(G12./tem1-G21./tem2));

gam2 = exp(-log(tem2)+xp.*(G21./tem2-G12./teml));

pl=xp.*gaml*plvap;p2=xp2.*gam2*p2vap;

Pp=pl+p2;yp=pl./Pp;

subplot(2,2,3); plot(xp,Pp,yp,Pp,"")

axis([0 1 0.65 1.0])

xlabel('x,y");ylabel('P(atm)’);title('Acetone-Chloroform®)

grid on

legend('x','y",2)
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Chapter 5

The total pressure, P'® for an ideal mixture is given by
Pideal - lelsat + (1 _ Xl)stat (5.5‘1)
For a non-ideal system, the total pressure is given by

P= xy1P™ + (1 - xq)P2™ (5.5-2)

If 71 and 7> 1 we have P > P or a positive deviation from Raoult’s law. Similarly, if »
and 7 < 1 we have P < P'® or a negative deviation from Raoult’s law. Figure 5.5-2 shows

both positive and negative deviation of the Px curves.

Ideal

sat
P,

sat
P,

0 X 1
Figure 5.5-2 Positive and negative deviation from Raoult’s law.

The azeotrope can be used to determine the two parameters for an activity coefficient model.
For vapor-liquid equilibrium at low pressure we have
yiP = xiyP™ (5.5-3)

Since the vapor and liquid compositions are equal at the azeotrope, the condition for
equilibrium becomes

P = yP™ (5.5-4)

Since both the saturation pressure and the azeotrope pressure are measurable, the activity
coefficient can simply be obtained from Eq. (5.5-2) at the azeotropic composition.
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Example 5.5-1 ---mmmmmmmm oo

At T = 64.3°K and P = 760 mmHg, the system methanol (1)-methyl ketone (2) forms an
azeotrope containing 84.2 mol% of methanol®. The vapor pressures for methanol and carbon
tetrachloride at 20°C are 96.87 mmHg and 92.08 mmHg, respectively. Determine the
parameters in Wilson equation.

sat -

Vapor pressure: (P in mmHg and T in °C)

147411 logs P,™ = 6.97421 — 1209.6

logyo P = 7.87863 —
G T +230 T +216

SOIULION =~
The saturation pressures at 64.3°K can be determined from the given Antoine ’s equations to
give

P, = 736.94 mmHg, and P,™ = 455.86 mmHg.

We then use Eq. (5.5-4) to determine the activity coefficients

P
P=uP™ = x= = (5.5-4)
Hence
n= 60 1.031, )= 60 1.667
736.94 455.86
The Wilson equations are given by
In 1= — In[x + XeAsz] + x| P2 A (E-1)
X XA, X+ XA |
In 75 = — In[Xo + XaAo] + 31| — Dot Do (E-2)
| Xy + XAy X+ XA, |
Egs (E-1) and (E-2) can be combined as x;(E-1) + X2(E-2) to give
xlln nt len Yo =— xlln[xl + X2A12] - len[Xz + X1A21] (E-3)
Combining the log’s terms yields
[71()(1 + XzAlz)]Xl [72()(2 + X1A21)]X2 =1 (E-4)

& Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 328
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Solving for A,; in terms of Ay, and substituting into (E-1) gives an equation with just one
unknown Aj;

X /%
A X 72)1(2 [7/1 (Xl + A]_z X, )] =1 (E-4)
b |:X1+12A12X2} * (Xij In[7/1(x1 +ApX, )]

Equation (E-4) can be solved with the known values of activity coefficients and liquid mole
fractions:

1 =1.031, 5= 1667, x; = 0.842, and x, = 0.158

Once Aj;is evaluated, we can determine A,; from Eq. (E-1)

Ay _ Ay

(E-1)
Xl + X2A12 X2 + X1A21

In n=- In[x1 + X2A12] + X2|:

Rearranging Eq. (E-1) so that only the unknown A»; is on the left side of the equation yields

Ay — A _ [In it In(xl + XA, )] (E-5)
XZ + X1A21 Xl + X2A12 XZ
The RHS of Eq. (E-5) is a known quantity C, therefore
L =C = Ay =Cxy + Cx1A21
X, + XAy
The value of Ay; is then evaluated
Cx
Ao = 2 E-6
n (E-6)

Table 5.5-1 lists the Matlab program that solves equation (E-4) for Aj; by Newton method
and evaluates A from equation (E-6). The following values are obtained

A12=1.0818, C = 0.79349, and A,; = 0.3778
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Table 5.5-1 —--mmmmmm oo
% Example 5.5-1, Determination of Wilson parameters from azeotropic composition
01=1.031;92=1.667;x=.842;x2=1-X;
02X2=02*X2;X2X=X2/X;
f='(02x2/(1-G12*x/(x+G12*x2)+log(gl*(x+G12*x2))/x2x))"x2x*g1*(x+G12*x2)-1";
G12=1;dG=.01;
for i=1:20
fG=eval(f);G12=G12+dG;fG2=eval(f);
dfG=(fG2-fG)/dG;eG=fG/dfG;
G12=G12-dG-eG;
if abs(eG)<.001, break, end
end
fprintf('G12 = %8.4\n',G12)
c=G12/(x+x2*G12)-(log(gl)+log(x+x2*G12))/x2;
G21=c*x2/(1-c*x);
fprintf(G21 = %8.4\n',G21)

>> ebdbdl
Gl2 = 1.0818
G21= 0.3778

5.6 Estimation of Activity Coefficients

We sometime need to estimate activity coefficients at the desired conditions from data
available at other conditions.

EXamPIe 5.6-1 m-mmmm oo oo e

We need equilibrium data for the design of an absorber to remove acetone from an air stream
using water as a solvent®. The equilibrium data for the acetone (1)-water (2) system are given
at 25°C as follows:

X1 0.0194 0.0289 0.0449 0.0556 0.0939
Vi 0.5234 0.6212 0.7168 0.7591 0.8351
P(mmHg) 50.1 61.8 81.3 91.9 126.1

Use the given data to determine the vapor equilibrium mole fractions of acetone in the
system where air is also present so that the total pressure is maintained at 760 mmHg. At
25°C the vapor pressures are: P;** = 230.05 mmHg and P, = 23.76 mmHg.

SOIULION == e e e -

(Vapor phase) (Vapor phase)
Acetone + water Acetone + water + air
System A System B
Acetone + water Acetone + water
(Liquid phase) (Liquid phase)
(A) Data are available (B) Data are needed

Figure E-1 Air is present in the system B where data are needed.

° Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 352
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In this problem we need to estimate activity coefficients at the desired condition (Figure E-
1B) from data available at other conditions (Figure E-1A). We first determine the activity
coefficients from the data available from system A using the equilibrium relation

yiP = xiyP™ (E-1)
For the first data point (x; = 0.0194, y; = 0.5234, and P = 50.1 mmHg) we have

= yllt:at __(05234)(501) _ o0
X, (0.0194)(230.05)

Similar calculations lead to the following table

X1 0.0194 0.0289 0.0449 0.0556 0.0939
" 5.88 5.77 5.64 5.45 4.88
P(mmHg) 50.1 61.8 81.3 91.9 126.1

At equilibrium in system B where air is present we also use the equilibrium relation for
acetone

y1iP = x31P1™ (E-2)

In equation (E-2), P is the total pressure of system B, 760 mmHg, and » is the activity
coefficient obtained from the data of system A. We have assumed that air is essentially
insoluble in acetone-water solution and therefore the activity coefficients of system B are the
same as those of system A. The vapor mole fraction of acetone in system B is then calculated
from

X1 P _ %,7,(230.05)
P 760

yi=

For the first data point (x; = 0.0194 and j; = 5.88) we have

J, = (0.0194)(5.88)(230.05)
! 760

=0.0345

The following table lists the mole fractions of acetone in the vapor phase in system B at the
given mole fractions of acetone in the liquid phase:

X1 0.0194 0.0289 0.0449 0.0556 0.0939
Vi 0.0345 0.0505 0.0767 0.0917 0.1387
P(mmHg) 760 760 760 760 760
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EXample 5.6-2 ----mmmmmmm oo

We want to estimate the solubility (mole fraction) of ethane (1) in n-heptanol (2) at 25°C and
20 atm™®. At 25°C the solubility of ethane in n-heptanol at 1 atm is x; = 0.0159. The activity
coefficients in this system can be represented by

In 31 =B(1 - x1)?

The K; values (Ky = f;"/f;°) for ethane are given and n-heptanol may be considered
nonvolatile. At 25°C and 1 atm: K; = 27.0 and at 25°C and 20 atm: K; = 1.62
T T ]

At 25°C and 20 atm we have

A

flG = flL = y1f1G = X1}/1f1L =V = X1]/1(f1L/f1G) =>V1= X1}/1K1
Since n-heptanol may be considered nonvolatile, y; = 1, the above equation becomes
1=1.62x11 (E-1)

We can use equation (E-1) to find the solubility if y is known. We now evaluate 5 at 25°C
and 1 atm

1
= xnKi=>1=(0.0159)127) > n= —— =2.3294
y1= XK ( Wn(@27) = n (0.0159)(27)

We then determine the parameter B from the activity coefficient equation In 51 = B(1 — x3)?

In(2.3294)

= 20 - 08731
(1-0.0159)>

If we assume that B is the same for the system at 20 atm then we can solve equation (E-1).
Taking the log of equation (E-1) yields
0=1n(1.62) + In(x2) + In(32) = In(1.62) + In(x;) + 0.8731(1 — x1)*> (E-2)

The solution of the nonlinear algebraic equation (E-2) can be determined using Matlab
function fsolve with inline function as follows:

>> ff=inline('log(1.62)+log(x)+0.8731*(1-x)"2")
>> x=fsolve(ff,0.5,optimset('Display’,'off"))
X =

0.4933

Hence the solubility of ethane in n-heptanol at 25°C and 20 atm is x; = 0.4933

5.7 Phase Behavior in Partially Miscible Systems

9 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 354
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When like interactions are significantly stronger than unlike interactions, liquids can split
into two different partially miscible phases to lower the total Gibbs phases energy of the
system. The separation method of liquid-liquid extraction, found in the chemical, petroleum,
and related process industries, uses the partial liquid miscibility to separate a component
from a liquid stream. The application of the extraction method involves the use of solvent to
preferentially dissolve one of two or more components from another liquid phase. This
process requires a system of three or more components. We will first focus our attention to
understand the behavior of binary systems.

T B
Constant pressure
V
A
L&V
L"&V £
T3" S D Lﬁ
L* L“&L°
T R
G 3 H
X is X, XI‘]S

Figure 5.7-1 Constant-pressure diagram for a partially miscible binary system®.

The phase behavior of a partially miscible binary system at constant pressure is shown in
Figure 5.7-1. Point E denotes the state where two liquid phases and a vapor phase are in
equilibrium. According to the phase rule for m = 2 components, we have

F=m-n+2=2-3+2=1

There is only one degree of freedom for this system at E. Figure 5.7-1 is depicted at a
specified pressure, therefore the temperature, T3, and compositions are fixed by the
equilibrium constraints. The liquid phase « contains mostly species 2 with a mole fraction of
species 1 equal to x*1sc where the subscript s denotes the saturated or maximum solubility of
species 1 in the solution. The second liquid phase £ contains mole fraction of species 1 equal
to xP1sp. At temperature less than Ts; a three-phase system would have a vapor pressure less
than the pressure specified by Figure 5.7-1, and therefore the vapor phase cannot exit at this
specified pressure. Below the temperature T3, Figure 5.7-1 is divided into three liquid
regions label L% L, and L* & LP. In the region L* or L” only a single liquid phase can exists
and in the region L* & L" two liquid phases exist. The region L* represents liquid phase «
that is rich in species 2 and the region L represents liquid phase Bthat is rich in species 1. At
the temperature T, the liquid phase L” can have a concentration of species 1 in the range 0 <
x*1 < X%, and the liquid phase L can have a concentration of species 1 in the range xP;s < x;
< 1. If the overall mole fraction of species 1 is in the range x%s < x; < xP1, there will be two

1 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 342
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separate liquid phases with mole fraction of species 1 in each phase to be x%s and X i
respectively.

EXample 5.7-1 —mmmmmm oo oo
If one mole of species 1 is mixed with one mole of species 2 at a temperature T, such that
x*15= 0.18 and xP1; = 0.81, determine the amount of liquid in each phase.

SOIU 0N === e o e e

The overall mole fraction of species 1 in the mixture is 0.5, which is in the range x%;s < x; <
xP1s. Therefore we will have two liquid phases.

Let n* and n? be the moles of liquid in each phase « and /3 respectively, we have
n“+nP=2

Applying the mole balance for species 1 yields
x“sn®+ xPinP = 1= 0.18n“+ 0.81n" =1

1-(0.18)(2)

0.182-n")+0.81nP=1=nP=
0.81-0.18

=1.0159

n*=0.9841

Hence we have 0.9841 moles of liquid « with 0.18 mole fraction of species 1 and 1.0159
moles of liquid g with 0.81 mole fraction of species 1.

EXample 5.7-2 —--mmmmmmm e oo
If one mole of species 1 is mixed with 9 moles of species 2 at a temperature T, such that x“;5
=0.18 and x";s = 0.81, determine the amount of liquid in each phase.

ST T ]

The overall mole fraction of species 1 in the mixture is 0.1 which is less than x%;s = 0.18.
Therefore all ten moles are in liquid phase « with x; = 0.10.
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Chapter 5

Constant temperature

Xl
Figure 5.7-2 Constant-temperature diagram for a partially miscible binary system®.

The phase behavior of a partially miscible binary system at constant temperature is shown in
Figure 5.7-2. Point E denotes the state where two liquid phases and a vapor phase are in
equilibrium. Since the temperature specified by Figure 5.7-2 satisfies the requirement for one
degree of freedom, the pressure, P3;, and compositions are fixed by the equilibrium
constraints. At pressure higher than P, the vapor phase cannot exist. Above the pressure Ps,,
Figure 5.7-2 is divided into three liquid regions label L% LP, and L* & L". In the region L* or
LP only a single liquid phase can exists and in the region L* & L” two liquid phases exist. The
region L* represents liquid phase « that is rich in species 2 and the region L" represents liquid
phase £ that is rich in species 1. The boundaries for the liquid phases are almost vertical
because of negligible change in mutual solubility with pressure. For a binary mixture of
species 1 and 2 in LLE (liquid-liquid equilibrium) we have

A

fi"= fiﬂ (5.7-1)

The fugacity of species i in each liquid phase can be expressed in term of the mole fraction,
Xi, activity coefficient, x, and fugacity of pure component, f;, as

X1 i = P (5.7-2)
We will assume that the following equations describe the behavior of the activity coefficients

In 51 = A(1 - x;)?, and In 7 = A x° (5.7-3a,b)
Substituting Egs. (5.7-3a,b) into Eq. (5.72) yields

x*1exp[A(L — x*1)?] = xPrexp[A(1 — xP1)?] (5.7-4)

12 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 342
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(1 - x"Dexp[A(X"1)°] = (1 — X 1)exp[A(x"1)’] (5.7-5)
Equations (5.7-4) and (5.7-5) can be solved for the two unknowns x*; and x*; (or x*sand x1
as denoted in Figure 5.7-1). The reason for partial liquid miscibility can be understood if we
consider the Gibbs free energy change on forming a solution from n, mol of pure liquid 1 and
n, mol of pure liquid 2. We have

AG = G — n1g; — N202 (57-6)
In this equation, G is the Gibbs free energy of the solution and is given by

G= Nyta + Noter (57-7)
Combining Egs. (5.7-6) and (5.7-7) gives

AG = ny(za— 91) + 22— ) (5.7-8)

Dividing Eq. (5.7-8) by the total number of moles (n;1 + n,) yields only intensive properties

AG
n, +n,

= X1(ta — 01) + Xo(2 — 92) (5.7-9)

From the definition of the fugacity, we have
£l

Hi— Iuio =RT In%: RT In Xin (5.7-10)

If the standard state is pure liquid 4° = giand f° =f;, Eq. (5.7-9) becomes

Ag = X1RT In X+ XoRT In X2)»
Rearranging the equation gives

A9 _ x1ln X3 + x1In 1 + x2In X2 + X2In 35 (5.7-11)

If Egs. (5.7-3a,b: In 1 = A(1 — x1)% and In 5 = A x;%) are used for the activity coefficient, we
have

% = XaIn Xq + XoIn Xo + X1A(L — X1)? + XA X412 (5.7-12)

Equation (5.7-12) is plotted in Figure 5.7-3 for three values of A: A =1, 2, and 3 for the
bottom, middle, and top curve respectively. The solid portion of the top curve between C and
D represents a hypothetical single liquid phase. Since the points on this curve have a higher
free energy than points on the dash line CD, the liquid will exist in two liquid phases with
compositions corresponding to the points C and D to lower the free energy of the system.

5-58



e g

04—~

0.6 0.7 0.8 0.9

0
x1
Figure 5.7-3 Constant-pressure diagram for a binary system with
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In 51 = A1 —x1)®and In 3% = A x;%

Table 5.7-1 <
% Figure 5.7

Table 5.7-1 lists the Matlab program used to plot Figure 5.7-3.
clf

-3

length(Av);
x1=0.02:0.02:0.98;x=[.001 .003 .005 .007 .01 .015 x1 .985 .99 .993 .995 .997 .999];

Av=1:3;
x2=1

nv

_X'

hold on;

for i

=1:nv

Av(i);
X.*log(x)+x2.*l0g(x2)+A*X.*X2.A2+A*X2.*X."2;

A=
dg

1-x;

X.*log(x)+x2.*l0g(x2)+A*X.*X2.A2+A*X2.*X."2;

plot(x,dg,"");xlabel('x1");ylabel('dg/RT";

x=[0.0707 0.9292];x2
grid on

plot(x,dg)
dg

end
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The compositions corresponding to the points C and D can be determined by solving Egs.
(5.7-4) and (5.7-5) with A = 3:

x*1exp[3(1 — x*1)?] = xP1exp[3(1 — xP1)?] (5.7-13)
(1 — x*)exp[3(x*1)] = (1 — xP)exp[3(xP1)?] (5.7-14)

We can find the solution to Egs. (5.7-13) and (5.7-14) by minimizing the following objective
functions

y =12+ 122 (5.7-15)
In this equation, we have

f1 = x“exp[3(1 — x*)*] — xPrexp[3(1 - xP1)?] = 0 (5.7-16)

f2 = (1 — x*)exp[3(x*)*] - (1 — xP1)exp[3(x"1)?] = 0 (5.7-17)

The objective function, y, will be minimized (equal to zero) when f1 = 0 and f2 = 0. Table
5.7-2 lists the function LLE representing the objective function y. The Matlab command
fminsearch is then used to minimize the objective function.

Table 5.7-2 ---mmm oo
function y=lle(x)
f1=x(1)*exp(3*(1-x(1))"2)-x(2)*exp(3*(1-x(2))*2);
f2=(1-x(1))*exp(3*x(1)"2)-(1-x(2))*exp(3*x(2)"2);
y=f1*f1+f2*f2;

>> fminsearch('lle’,[.1 .9])

ans =
0.0707 0.9292

The compositions corresponding to the points C and D are
x% = 0.0707 and x"; = 0.9292
Any mixture with an overall composition in the range 0.0707 < x; < 0.9292 will exist as a

LLE system with liquid phase « that is rich in species 2 and liquid phase g that is rich in
species 1.
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EXample 5.7-3 ---mmmmmmm oo
Calculate the equilibrium composition of the two liquid phases in a binary mixture of methyl
diethylamine (1) and water (2) at 1 bar and 20°C*®. The following Margules model can be
used for this binary system:

(A+SB) 2 4B 3
Inp=>—L1-x1)"——(1-x
T (1—x1) RT( 1)
= (A38) 2, 9B s
RT RT

In these equations, A = 6349 J/mol and B = — 384 J/mol
T T ]
We have for LLE system

X7 i = X £ (E-1)
Therefore

(A+3B) (A+3B)
[—T(l [T(l

a ay2 4B @37 _ of gy 4B B \3
X 1eX - X - —(1-x = x"1ex - X - —(1-x
18Xp 1) RT( 1)°] = X"1exp 1) RT( )]

(1 -x" )exp[( B)< PP 2 () = (0 - K exp (A =3B) 38)( )+ o 00

We can find the solution to the above equations by minimizing the following objective
functions
y=f1%+ f2? (E-2)

In this equation, we have
_a (A+3B) o \2 4B o \3 B (A+3B) B \2 4B B \3
fl=x"exp[———(1 -x") " — — (1 -x —xexp[—(1-x"1) = —(1-x
1exp[ RT ( 1) RT ( 1)7] 1exp[ RT ( 1) RT ( 1)7]

33) "

2= (1= xexpl B3R (e 4 22 () - (- xexpl 2R () 4 22 60

The objective function, y, will be minimized (equal to zero) when f1 = 0 and f2 = 0. Table E-
1 lists the function E5d7d3 representing the objective function y. The Matlab command
fminsearch is then used to minimize the objective function.

3 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 400
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Table E-1 -------mmm oo

function y=e5d7d3(x)

RT=8.314*293.15;

A=6349;B=-384;

c1=(A+3*B)/RT;c2=(A-3*B)/RT;c3=4*B/RT;
f1=x(1)*exp(c1*(1-x(1))"2-c3*(1-x(1))"3)-x(2)*exp(cl*(1-x(2))"2-c3*(1-x(2))"3);
f2=(1-x(1))*exp(c2*x(1)*2+c3*x(1)"3)-(1-x(2))*exp(c2*x(2)2+c3*x(2)"3);
y=f1*f1+f2*f2;

>> fminsearch('e5d7d3',[.1 .9])
ans =
0.1014 0.8553

The equilibrium compositions are
x% = 0.1014 and x"; = 0.8553

The solutions can also be obtained from the intersections of the curves of x;71 and (1 — X1)%
versus X; as shown in Figure E-1.

I
— xI*gammal
--- (1-x1)*gamma2
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Chapter 5
Applied Phase Equilibrium

5.8 Vapor-Liquid-Liquid Equilibrium: VLLE

T B
Constant pressure
v
A
TP L"&V
Vapor phase
L&V .
T3n C D Lﬁ
L* L*&L*
T R
Liquid phase o
G B H
Xuls X, XI‘]S
Figure 5.8-1a VLLE problem. Figure 5.8-1b A partial miscible system.

We will consider a system as shown in Figure 5.8-1a when three phases are in equilibrium: a
vapor phase and two liquid phases, « and £. The phase behavior of a partially miscible
binary system at constant pressure is shown in Figure 5.8-1b. Point E denotes the state where
two liquid phases and a vapor phase are in equilibrium. According to the phase rule for m = 2
components, we have

F=m-n+2=2-3+42=1

There is only one degree of freedom for this system at E. Figure 5.8-1b is depicted at a
specified pressure, therefore the temperature, T3, and compositions are fixed by the
equilibrium constraints. Below the temperature Ts,, Figure 5.8-1b is divided into three liquid
regions label L% L, and L* & L. In the region L* or L” only a single liquid phase can exists
and in the region L* & L" two liquid phases exist. The region L* represents liquid phase «
that is rich in species 2 and the region L represents liquid phase Bthat is rich in species 1. At
the temperature T, the liquid phase L* can have a concentration of species 1 in the range 0 <
x*1 < X%, and the liquid phase L? can have a concentration of species 1 in the range x%;s < xP;
< 1. If the overall mole fraction of species 1 is in the range x*1s < x1 < x4, there will be two
separate liquid phases with mole fraction of species 1 in each phase to be x%s and Xx"is
respectively.

At the temperature T3, only liquid phase « is present at low x; and only liquid phase £ is

present at high x;. However, at mole fraction x; in between these two single-phase regions,
both « and £ liquid phases can coexist along with the vapor. The ordinates of point C, D, and
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E provide the mole fractions of species 1 in liquid phase «, in liquid phase g, and in vapor
phase, respectively.

For a binary mixture of species 1 and 2 in VLLE (Vapor-liquid-liquid equilibrium) we have

A

f=fo=f” (5.8-1)

The fugacity of species i in each liquid phase can be expressed in term of the mole fraction,
Xi, activity coefficient, x, and fugacity of pure component, f;, as

A

f-v = Xia%a fi = Xiﬁ]/i13 fi (5.8-2)

For system at low pressure ﬂv =yiP and f; = P;**. Therefore
yj_P = X]_a]/j_aplsat = XlB]/]_BPlsat (58-3)

(1-y)P = (1 -x19%"P5" = (1 - xP)ppP,™ (5.8-4)

We will assume that the following equations describe the behavior of the activity coefficients
In 51 = A(1 - x)?, and In 5 = Ax/? (5.8-5a,b)
Substituting the expression for activity coefficients into Egs. (5.8-3) and (5.8-4) yields
yiP = x*1exp[A(L — x*1)’IP** = xP1exp[A(1 — x"1)*]P™ (5.8-6)
(1 -y)P = (1 - x*D)exp[AXx*)*IP2" = (1 - X" )exp[A(")’IP™  (5.8-7)

At a given temperature, the four unknowns yi, x*1, x*1, and P can be determined from the
solutions of the above four nonlinear equations.

EXAMPle 5.8-11 mmmmmmmmeeeee e

A binary mixture exhibits vapor-liquid-liquid equilibrium at 300°K. The following Margules
model can be used for this binary system:

b 2 b 2
Inyn=—(1-x7) and In » = — x;°, where b = 6235 J/mol.
n=grd-x) 2Rt M

The saturation pressures are given by P;** = 100 kPa and P,™ = 50 kPa. Determine the
composition of the three phases and the total pressure.

SOIULION == e
For the two liquid phases in equilibrium we have

 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 406
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f%= f,ﬁ (E-l)

The fugacity of species i in each liquid phase can be expressed in term of the mole fraction,
Xi, activity coefficient, x, and fugacity of pure component, f;, as

X5 fi = P £y (E-2)
We are given following equations for the behavior of the activity coefficients

In 1 = A(1 - x;)?, and In 7% = A x;° (E-3)
Substituting Egs. (E-3) into Eq. (E-2) yields

x*1exp[A(L — x*4)?] = xPrexp[A(L — xP1)7] (E-4)

(1 - x"Dexp[A(x"1)*] = (1 - x"1)exp[A(X"1)’] (E-5)

We can find the solution to Egs. (E-4) and (E-5) by minimizing the following objective
functions

y=f12 + f2? (E-6)
In this equation, we have

f1 = x*1exp[A(1 — x*1)?] = xPrexp[A(1 — xP1)?] = 0 (E-7)

f2 = (1 — x*)exp[A(x*“)?] — (1 — xP)exp[A(xP))?] = 0 (E-8)

The objective function, y, will be minimized (equal to zero) when f1 = 0 and f2 = 0. Table E-
1 lists the function e5d8d1 representing the objective function y. The Matlab command
fminsearch is then used to minimize the objective function.

Table E-1 ------mmm oo
function y=e5d8d1(x)

RT=8.314*300;

A=6235/RT,
f1=x(1)*exp(A*(1-x(1))"2)-x(2)*exp(A*(1-x(2))"2);
2=(1-x(1))*exp(A*x(1)"2)-(1-x(2))*exp(A*x(2)"2);
y=f1*f1+f2*f2;

>> fminsearch('e5d8d1',[.1 .9])
ans =
0.1448 0.8552

The equilibrium compositions are

x% = 0.1448 and x*; = 0.8552
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6235 6235

We have A = =
RT (8.314)(300)

= 2.4998. The partial pressures are calculated as

P = x%exp[A(L — x*1)%]P** = (0.1448)exp[(2.4998)(0.8552)?](100) = 90.11 kPa

P, = (1 — x*)exp[A(x*1)?]P"™ = (0.8552)exp[(2.4998)(0.1448)?](50) = 45.06 kPa

P=P;+P,=90.11 + 45.06 = 135.17 kPa
The mole fraction of species 1 in the vapor phase is then

y1 = P4/P =90.11/135.17 = 0.6667

EXample 5.8-2 1 e

At 70°C the system 1-2 exhibits partial liquid miscibility with x*; = 0.3 and x?; = 0.7. The
vapor pressures are given by P;*' = 600 mmHg and P,** = 500 mmHg. Calculate:

1) The vapor mole fraction of species 1 and the total pressure when two liquid phases and a
vapor phase are in equilibrium.

2) The vapor mole fraction of species 1 and the total pressure when a vapor phase is in
equilibrium with a liquid phase containing a mole fraction of species 1 of 0.1.

The following Margules model can be used for this binary system:

In 51 = A(1 - x1)* and In 7 = Ax;?

SOIULION == e e e e e e

L* &V
L"&V
\
Constant temperature
Xals Xl Xﬁls

Figure E-1 Constant-temperature diagram for a partially miscible binary system

1) The vapor mole fraction of species 1 and the total pressure when two liquid phases and a
vapor phase are in equilibrium.

For the two liquid phases in equilibrium we have

> Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 369
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f%= f,ﬁ (E-l)

The fugacity of species i in each liquid phase can be expressed in term of the mole fraction,
Xi, activity coefficient, x, and fugacity of pure component, f;, as

X5 fi = P £y (E-2)
Applying Eqg. (E-2) to species 1 yields

x1*1* = X" 7P = Inx® + In 1 = Inx." + In 5P (E-3)
Since x*; = 0.3 and x"; = 0.7 we have

In0.3+A(1-0.3)>=In0.7+A(1 - 0.7)°

A(0.7° - 0.3%) = In(7/3) = A = 2.1182
The values of the activity coefficients are then

7 = exp[A(1 — x1)?] = exp[(2.1182)(0.7)%] = 2.8234

7" = exp[Ax:’] = exp[(2.1182)(0.3)*] = 1.2100
The partial pressure of each species is calculated as

P1 = x:“1*P1% = (0.3)(2.8234)(600) = 508.21 mmHg

Py = X% P> = (0.7)(1.2100)(500) = 423.51 mmHg
The total pressure is

P=P;+ P;=931.72 mmHg
The vapor mole faction is then

y1 = Py/P = 0.545

2) The vapor mole fraction of species 1 and the total pressure when a vapor phase is in
equilibrium with a liquid phase containing a mole fraction of species 1 of 0.1.

Since x; = 0.1 < x*; = 0.3, we have liquid phase «a. The values of the activity coefficients are
then

7% = exp[A(1 — x1)?] = exp[(2.1182)(0.9)%] = 5.5610
7™ = exp[Ax:?] = exp[(2.1182)(0.1)°] = 1.0214

The partial pressure of each species is calculated as
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P = x:“1*P:* = (0.1)(5.5610)(600) = 333.66 mmHg
Py = X% P> = (0.9)(1.0214)(500) = 459.63 mmHg
The total pressure is
P=P;+ P;=793.29 mmHg
The vapor mole faction is then
y1 = P1/P = 0.4206

EXample 5.8-3 10 o

At 25°C a binary system containing components 1 and 2 is in a state of vapor-liquid-liquid
equilibrium. The compositions of the saturated liquid phases are: x*1s = 0.02 and x*1; = 0.98.
The vapor pressures are given by P, = 0.1 atm and P,* = 1.0 atm. Calculate:

1) The vapor mole fraction of species 1 and the total pressure when two liquid phases and a
vapor phase are in equilibrium.

2) The vapor mole fraction of species 1 and the total pressure when a vapor phase is in
equilibrium with a liquid phase containing a mole fraction x; of 0.01.

3) At 25°C a vapor containing 20% species 1 and 80% species 2 initially at 0.1 atm is
compressed isothermally. Find the dew point pressure and liquid composition.

SOIULION === ==
1) The vapor mole fraction of species 1 and the total pressure when two liquid phases and a
vapor phase are in equilibrium.

Since the system is at low pressure, we have
Y1P — X1a71aplsat — XlB]/lBPlsat (E-l)
(L-y)P = (1-x")p%"P™ = (1 - x.) P2 (E-2)

Since we do not have the data for activity coefficient and x;* = x*;s= 0.98 ~ 1, we assume "
= 1 (Raoult’s law). Therefore

P1=yiP = x* PP = (0.98)(1)(0.1) = 0.098 atm
Similarly

P,=(1-y)P = (1-x%»*P, = (0.98)(1)(1) = 0.98 atm
The total pressure is

P=P;+P,=1.078 atm

16 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 370
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The vapor mole faction is then
y1 = P1/P =0.0909

2) The vapor mole fraction of species 1 and the total pressure when a vapor phase is in
equilibrium with a liquid phase containing a mole fraction x; of 0.01.

P B
ch & I_B Lﬁ

P

L&V
L&V

B

X' 0909 0.2 X, X'
Figure E-1 Constant-temperature diagram for a partially miscible binary system.

From part (1) we have P; = 0.098 atm. Since x;* = 0.02 we assume Henry’s law will apply
for species 1 in liquid phase «

P; =0.098 atm = x;*H,;* = H,* = % =4.9 atm

For x; = 0.01 = Py = x;H,* = (0.01)(4.9) = 0.049 atm

Since x,* = 0.99 we assume Raoult’s law will apply for species 2 in liquid phase «
P, = x*P,* = (0.99)(1) = 0.99 atm

The total pressure is
P=P;+P,=0.049 + 0.99 = 1.039 atm

The vapor mole faction is then

y1 = P1/P =0.049/1.039 = 0.0472

3) At 25°C a vapor containing 20% species 1 and 80% species 2 initially at 0.1 atm is
compressed isothermally. Find the dew point pressure and liquid composition.

From the phase diagram (Figure E-1), we have liquid phase £ at the dew point for the vapor
mixture with 20% species 1.
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The mole fraction of species 1 in liquid phase g will be close to 1 and the mole fraction of
species 2 in liquid phase g will be close to zero. Therefore we can apply Raoult’s law to
species 1 and Henry’s law to species 2.

P:=yiP =% P (E-3)

P, = y,P = x,"H, (E-4)

The Henry’s law constant can be determined from the data given in part (1)

P, = 0.98 atm = x",H,? = 0.02H,° = H,P = % = 49 atm

Since the mole fraction in the liquid phase must add up to 1, we have
X"+ %"= 1

Substituting the mole fractions from Eqgs. (E-3) and (E-4) into the above expression yields

The dew point pressure is then

_ 1 N
P= v, v, - 02,08 = 0.496 atm

Plsat P2 sat 0 ) 1 49

The mole fraction of species 1 in liquid phase gis given by

Y,P _ (0.2)(0.496)
Plsat 0'1

X" = =0.9919

5-70



Chapter 5

EXAMPIE 5.8-47 mmmmmeemeee e

A hydrocarbon has a vapor pressure of 2 atm at 20°C. The solubility of water in this liquid
hydrocarbon is xys = 0.00021. Estimate the necessary equilibrium data to design a distillation
column to remove water from the hydrocarbon.

T T

Vapor phase

Hydrocarbon phase o

Water phase 3

Figure E-1 Vapor-liquid-liquid equilibrium system.

Let « denotes the hydrocarbon phase and S denotes the water phase. We have the following
equilibrium relations

Ph — Xha%aphsat - XhB%BPhsat (E‘l)

Pu= (1 - X" P = (1= ") 30 Pu™ (E-2)

The solubility of liquid hydrocarbon in liquid water is also negligible so we have
mn =1, }/WB ~ 1, and x,,’ ~ 1.

Therefore
Ph= xn"3"Pp’ = (1)(1)Py™* = P
Pu = X' % Pu™ = ()(L)PW™ = Py™

The mole fraction of water in the vapor phase is

Yw T 175 =0.0114

P +P, 2x760+17.5

7 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 370
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For the estimation of equilibrium data for the hydrocarbon liquid containing less than the
saturation water content, we assume that Henry’s law applies to the water in this « phase:

Pw = XWOL}/WOLPWS&t = X Hw

(02

The Henry’s law constant, H,,"“, can be evaluated from the saturation condition

Ho' = h __175 = 8.33x10* mmHg
x,“ 000021

The partial pressure of water vapor is then

Pw= 8.33x10","
The partial pressure of hydrocarbon is essentially the vapor pressure

Ph= X3P = (1)(1)Py™™ = Py = (2)(760) = 1520 mmHg
The vapor mole fraction of water is

yuz Po_ = 8.33x10%x,"
" R +P, 833x10%x,” +1520

The relative volatility of water to hydrocarbon, awn, is @ measure of the ease of separation by
distillation. The relative volatility is defined as

/X
Ohwh = Y Xy ~ yw/XW
Yo !/ X
Therefore
B B 8.33x 10"
Ohwh = yW/XW =

8.33x10%x,,“ +1520

4 4
For st < 10% qupo _ 833x10°  833x10° _
8.33x10°x,” +1520 1520

The higher the value of an compares to unity, the better the separation. The value of 55 for
relativity volatility for this system indicates that separation by distillation would be very easy
to accomplish.
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5.9 The Thermodynamics of Osmosis

We will consider the equilibrium state of liquid mixtures in two regions separated by a
membrane that is permeable to some of the species present and impermeable to others. This
situation is illustrated in Figure 5.9-1 where a semi-permeable membrane separates regions A
that contains a nondiffusing solute and region B that contains only water.

Water and 7$
non-diffusable h water
solute :
A ‘"
= A I pP°

Figure 5.9-1 Osmotic pressure © = P* — P® = o°gh

Water will diffuse from region B into region A until the chemical potential or fugacity of
water on each side of the membrane is the same. This phenomenon is called osmosis and the
pressure difference between regions A and B at equilibrium is the osmotic pressure of region
A. The chemical potential of species i, x4, is defined by the following relations

#__[aGJ _[aH] _(auj _[aAJ
e = | — =| = = | =
on, T.P.n; on; P.S.n; on; SV.n; on; VT

In these expressions, the subscript j denotes the moles of every species except i is a constant.
The definition can be obtained from the following diagram

G P H Great Physicists Have Study
Under Very Able Teachers

T S

A Vv U
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We now want an expression that gives us the solution osmotic pressure as a function of the
solute concentration. At equilibrium

fr (T, PA, xg) = £.2(T, PP) (5.9-1)
where f (T, P®) is the fugacity of water as a pure component and f0 (T, PA, Xs) is the

fugacity of water as it exists in solution with solute at mole fraction xs. A similar equation is
not written for the solute since it cannot diffuse through the membrane. Equation (5.9-1) can

be expressed in terms of the pure water fugacity using the activity coefficient y,,
Y Xu T (T, PY) = 1.0 (T, PB) (5.9-2)

The fugacity is a thermodynamic function defined by

(T, P) = PeXp{g(T’ P = iU P)} = Pexp {%f (v—%de}

In this expression g(T, P) is the molar Gibbs free energy and g'®(T, P) is the molar Gibbs free
energy as the fluid approached ideal gas state. The water fugacities at states (T, P*) and (T,
P®) are then

A A
|nLAF)) = i JP (V_Ejdp
P RT P

pE RT %0 P
Since P* > P®
A B A
|nLAP):iJ.P V—ﬂ dp+i PB V—ﬂ dP
P RT P RT P

A B A A
nf(T’P ) :Inf(T’P ) +irvdP— PP

|
pA Pt RT JP° P° P

v is the molar volume of water, an incompressible liquid

RGO

B A _ pB A
- f(T,BP ) N v(P" - P%) —InP—

I
RT p®

In

In

f(T,PY _, f(T,P°) , v(P*-P°)
A RT
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f(T.PY _ £(T.P%)  [v(P*-P)
P~ pA I

From the equality of fugacity, equation (5.9-2) 74 x5 f,0 (T, P*) = £2 (T, P®), we have

i (P* —P°)

— ¢8B B
AT }—fW(T,P)

2 xE 82 (T, P9) exp{

Since f (T, P?) = f2 (T, P®) = pure water fugacity

—v&(PA—PB)}

A XA =ex
Yw Aw p{ RT

The osmotic pressure is then

n:PA—PB=—€¥4n@m@) (5.9-3)

w
For an ideal aqueous solution at 298°K with xw = 0.98, »y = 1, the osmotic pressure is

n:PA—PBz—ggJMmﬁ

W

X 3
8.314x10° P2 M 9980 )
mol -° K

n= — In(0.98) = 27.8 bar

18 x107°m? / mol

For ideal solution and small solute concentration, x,; ~ 1, and In(x;, ) ~ — (1 —xj)

RT RT RT
Hence n=——In(xy)» —/— (L -%y)= —— X& (5.9-4)
VW VW VW
(A= Moles solute _ Moles solute
®  Moles solute + Moles solvent  Moles solvent
x_? _ Moles solute _ Moles solute
Vg

Volume solventj Volume solvent

(Moles solvent)
Moles solvent

The ideal dilute solution osmotic pressure, described by equation (5.9-4), is known as van’t
Hoff’s law. This equation can also be written in terms of the mass concentration ps
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n= i x" =RT Cs= RT-£5 (5.9-5)
Viy Mwg
Mass solute

and Mws = molecular weight of solute. Equation (5.9-5) can be

where ps =
Volume solvent

used to determine solvent activity coefficient in a solvent-solute system provided a semi-
permeable membrane can be found.

n= PA—PB:—gIn(;/VCXVC)

W

Osmotic pressure measurements are more commonly used to determine the molecular
weights of proteins and other macromolecules using an osmometer shown in Figure 5.9-2. At
equilibrium the osmotic pressure z is equal to pgh, where p is the solution density and h is
the difference in liquid heights. Equation (5.9-5) is then solved for the molecular weight of
the solute.

Mws = RT 25
T

Solvent
solute mixture

il

Solvent

)
Semipermeable
membrane

Figure 5.9-2 A graphical depiction of a simple osmometer.

EXAMPIE 5.9-1. 18 e

The polymer polyvinyl chloride (PVC) is soluble in solvent cyclohexanone. At 25°C it is
found that if a 2 g of a specific batch of PVC per liter of solvent is placed in an osmometer,
the height h to which the pure cyclohexanone rises is 0.85 cm. Use this information to
estimate the molecular weight of the PVC polymer. Density of cyclohexanone is 0.98 g/cm®.

T T ]
n= pgh= 980% x9.81 1 «8.5x10° m = 81.72 Pa
S

Mws = RT 25
T

'8 Sandler, Chemical and Engineering Thermodynamics, Wiley, 1999, p.605
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3

Pa M, 298.15 Kx2,000 -3 /81.72 Pa = 60,670 g/mol
mol - K m

Mws = 8.314

If the dilute solution contains N ideal solutes then

n= RTYC,,

i=1

The term osmole is defined as one mole of a nondiffusing and nondissociating substance.
One mole of a dissociating substance such as NaCl is equivalent to two osmoles. The number
of osmoles per liter of solution is called osmolarity. For physiological solutions, it is
convenient to work in terms of milliosmoles (mOsm) or milliosmolar (mOsM). The number
of particles formed by a given solute determines osmotic pressure. Each nondiffusing particle
in the solution contributes the same amount to the osmotic pressure regardless of the size of
the particle.

The osmotic pressure difference between the interstitial and plasma fluids is due to the
plasma proteins since the proteins do not readily pass through the capillary wall. The osmotic
pressure created by the proteins is given the special name of colloid osmotic pressure or
oncotic pressure. For human plasma, the colloid osmotic pressure is about 28 mmHg; 19
mmHg caused by the plasma proteins and 9 mmHg caused by the cations within the plasma
that are retained through electrostatic interaction with the negative surface charges of the
proteins.

Hvpotonic solution . Isotonic solution vaigrtcmic solution
Figure 5.9-3 Osmosis of water through red blood cell ™.

If a cell such as red blood cell is placed in a hypotonic solution that has a lower concentration
of solutes or osmolarity, then the establishment of osmotic equilibrium requires the osmosis
of water into the cell resulting in swelling of the cell. If the cell is placed in a hypertonic
solution with a higher concentration of solutes or osmolarity, then osmotic equilibrium
requires osmosis of water out of the cell resulting in shrinkage of the cell. An isotonic
solution has the same osmolarity of the cell and will not cause any osmosis of water as
shown in Figure 5.9-3. A 0.9 weight percent solution of sodium chloride or a 5 weight
percent solution of glucose is just about isotonic with respect to a cell.

9 Seeley R.R, Stephens T.D., Tate P., Anatomy & Physiology, McGraw Hill, 2003
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EXAMPIE 5.9- 22 e
Experiments show that at 0°C a 0.2 molarity sucrose solution has an osmotic pressure
(relative to pure water) of 4.76 atm whereas a 0.2 molarity NaCl solution has an osmotic
pressure of 8.75 atm. Estimate the fraction of the NaCl molecules that are dissociated at this
temperature and concentration.

SOIUTION == m e e

Sucrose NaCl
solution solution

/!
Semipermeable
membrane

Assume that all the sucrose dissolves and let « be the dissociated fraction of NaCl. When a
salt dissociates each ion contributes to the osmotic pressure

NaCl < Na" + CI~

If o is the fraction of NaCl that is dissociated then 1 — « is the fraction that is not dissociated.
Since each dissociated NaCl molecule contributes 2 ions and each undissociated molecules
contributes 1 molecules, the osmolarity of the NaCl solution is

N

ZCNaCI,i =[2a+ (1 - a)]Cnaci

i=1
The osmolarity of the sucrose solution is

N

ZCSucrose,i = CSUCI'OSE

i=1

Therefore,
Tnacl  — RT (e +1)Cq g4 1= 8.75 — 1838
ﬂ.Sucrose RTCSucrose 76

Hence = 0.838

% Weiss T.F., Cellular Biophysics Transport, MIT Press, 1996, pg. 258
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Chapter 5

5.10 Distribution of a solute between two liquid phases

5.10a Solubility of a Solid in a Liquid Phase The solubility of a solid in a liquid solvent
and the distribution of a solute between two liquid phases will be considered in this section.
When a solute is transported from one phase to another, the solute must cross the interface
between phases as shown in Figue 5.10-1. We assume that the solute at the interface is in
phase equilibrium. If the mole fraction y; is known at a given temperature, X; can be
determined from the equilibrium relation and vice-versa.

Vapor Liquid Vapor Liquid
A X y A
Yi \
Xi yi X
y
-« 1 X
Mass transfer from the liquid Mass transfer from the gas
to the gas phase to the liquid phase

Figure 5.10-1 Solute transport across the interface.

5.10a Solubility of a solid in a liquid solvent Consider a binary system with solute (2) in
equilibrium with solvent (1) as shown in Figure 5.10-2. We assume that the solvent is not
soluble in the solid so that the solid solute will exist as a pure phase. At equilibrium, the

fugacity of the solute in the solid phase, f,, is equal to the fugacity of the solute in solution,

f,°'. The fugacity f, is related to the fugacity of pure liquid solute, f,, at the equilibrium
temperature and pressure of the solution by

fZSOI = X2 fZL = fzs (510-1)

Figure 5.10-2 Solute (2) in solvent (1).

In equation (5.10-1) x, is the solubility or the equilibrium mole fraction of solute in solution
and » is the activity coefficient of the solute. Solving for the solubility gives

o= L T2 (5.10-2)
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The ratio S/, may be estimated by

f, AH" (1 1
- =€ — = 5.10-3
f, Xp{ R (T T H ( )

m

In this expression, AH™ is the enthalpy of fusion at the normal melting temperature T.,. For
an ideal solution the activity s is equal to 1. For non-ideal solutions, an appropriate activity
coefficient model must be used to calculate the solubility. For non-polar solutes and solvents,
the activity coefficient might be obtained from the Scatchard-Hildebrand equation:

VzL (51 _ 52)2(1312 } (5.10-4)

=ex
7] p { RT

In this equation V,- is the molar volume of the solute as a subcooled liquid at the temperature
of the solution. However, V- is usually assumed to be the same as the molar volume of the

solute as a liquid at the melting point. The &’s are the solubility parameters for the solute and
the solvent, and @, is the volume fraction of the solvent defined by the following equation.

L
o= — (5.10-5)
XV, + XV,

The solubility parameter is given by

1/2
AH'® —RT
&= [V—Lj (5.10-6)

The heat of evaporation can be obtained from the heat of sublimation and the heat of fusion.
AH"™ = AH* — AH" (5.10-7)

If the vapor pressure of the solid is known as a function of temperature, the heat of
sublimation can be estimated.

InP*=A— ? (5.10-8)

If the solid is in equilibrium with the vapor we have
dGY=—8VdT + VVdP** = — §°dT + V°dP™ = dG® (5.10-9)

Rearranging this equation gives

L Fournier, R. L., “Basic Transport Phenomena in Biomedical Engineering”, Taylor & Francis, 2007, p. 57
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dpsat _ SV_sS B ASsV

= 5.10-10
dT  vV-v® AvY ( )

Since AS®Y = AH®V/T, and we can neglect the volar volume of the solid in comparision to the
volume of the vapor, equation (5.10-10) becomes

dpsat _ AH sV Psat

5.10-11
dT RT? ( )
We assume ideal gas law in equation (5.10-11), which may be written as follows:
sat S
dinP __AH (5.10-12)
1 R
dl =
)
Taking derivative of equation (5.10-8), In P*' = A — TE , We obtain
sat N
dinP™ _ _go_AHT L anvs AH* =RB (5.10-13)

i
T
EXAMPIE 5,101,722 mmmmmm e

A drug has a molecular weight of 230 and a melting temperature of 155°C. Estimate the
solubility of this drug in benzene and in n-hexane at 25°C assuming

a) Ideal solution
b) Nonideal solution using the Scatchard-Hildebrand equation

Data:

Heat of fusion of the drug 4300 cal/mol

Density of the drug 1.04 g/cm® at 25°C

Vapor pressure of the solid drug In P**(mm Hg) = 27.3 - %
Molar volume of benzene 89.4 cm*/mol

Solubility parameter for benzene 9.2 (cal/cm®)*?

Molar volume of n-hexane 131.6 cm*/mol

Solubility parameter for n-hexane 7.3 (cal/cm®)*?
SOIULION —-mm e

a) The ideal solubility of the drug is given by

2 Fournier, R. L., “Basic Transport Phenomena in Biomedical Engineering”, Taylor & Francis, 2007, p. 58
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_ 1 1 _ AH™( 1 1 :
Xg= — —T =exp R T T where =1

m

Xo = €Xp 4300 cal/mol ( 1 1 jK_l ~ 0.110
1.987 cal/(mol - K) \ 273.15+155 298.15

The solubility is the same whether the solvent is benzene or n-hexane.

b) Nonideal solution using the Scatchard-Hildebrand equation

In P**(mm Hg) = 27.3 - 8926
T(K)
dIn P __AH v

= AH®Y = AH®* = 8926R

AH3*™ = (8926 K)(1.987 cal/mol-K) = 17736.9 cal/mol
The heat of evaporation of the drug is then estimated:
AH™ = AH™ — AH™ =17,736.9 — 4,300 = 13,436.9

The solubility parameter of the drug is given by
1/2
_ [ AH/* —RT
é - V_L
1/2
13,436.9 cal/mol — (1.987 cal/mol - K)(298 K)

Lo
[1.04 cm /gj(230 g/mol)

G = = 7.62 (cal/cm®)*

The drug solubility is calculated from

VzL (51 — 52)2 CI)f
RT

lelL
L
XV, + XV,

Substituting j» = exp{ } and @; = —into the above equation we
have

5-82



AH"[ 1 1
% [27)

X2 = L 2 L
exp Vz (51 — 52) (1_ X, )Vl
RT (L= X,)V," + XV,

The above equation is implicit in the solubility x, and can be written as

AH"( 1 1
R, T
f(Xz) =X2— i =
exp VzL (51 — 52)2 (1_ Xz)VlL
RT (L= %,)V," + XV,

The nonlinear equation f(x,) = 0 can be solved using Matlab function fzero with the ideal
solution as the initial guess. The solubility of drug in benzene is evaluated using the
fzero('solubility’,0.11) with the function solubility representing f(xz) = 0.

>> x2=fzero('solubility’,0.11)
X2 =
5.3999e-002

function y=solubility(x)

dHmM=4300; % cal/mol

R=1.987; % cal/(mol*K)

TK=273.15; % K

Tm=155+TK;

dHsub=R*8926; % cal/mol

dHvap=dHsub-dHm;

VL2=230/1.04; % molar volume of drug (cm3/mol)
T=25+TK;

del2=((dHvap-R*T)/VL2)"0.5; % solubility parameter for the drug (cal/cm3)"0.5
VL1=89.4; % molar volume of solvent, benzene (cm3/mol)
del1=9.2; % solubility parameter for benzene (cal/cm3)*0.5
tem1=VL2*(dell-del2)"2/(R*T);
tem2=(1-x)*VL1/((1-X)*VL1+x*VL2);
gamma2=exp(tem1*tem2/2);
y=x-exp(dHm*(1/Tm-1/T)/R)/gammaz2;

The solubility of drug in n-hexane is evaluated using the fzero('solhexane',0.11) with the
function solhexane representing f(x;) = 0.

>> x2=fzero('solhexane’,0.11)
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x2 = 1.0748e-001

function y=solhexane(x)

dHmM=4300; % cal/mol

R=1.987; % cal/(mol*K)

TK=273.15; % K

Tm=155+TK;

dHsub=R*8926; % cal/mol

dHvap=dHsub-dHm;

VL2=230/1.04; % molar volume of drug (cm3/mol)
T=25+TK;

del2=((dHvap-R*T)/VL2)"0.5; % solubility parameter for the drug (cal/cm3)*0.5
VL1=131.6; % molar volume of solvent, n-hexane (cm3/mol)
dell=7.3; % solubility parameter for n-hexane (cal/cm3)"0.5
tem1=VL2*(dell-del2)"2/(R*T);
tem2=(1-x)*VL1/((1-X)*VL1+x*VL2);
gammaz2=exp(tem1*tem2°2);
y=x-exp(dHm*(1/Tm-1/T)/R)/gammaz2;

The drug and n-hexane form an ideal solution since the solubility calculated using non-ideal
model (x2 = 0.1075) is very close to the ideal model (X2,igeat = 0.11).

5.10b Distribution of a solute between liquid phases One or more of the components in a
liquid mixture might be separated by contacting the mixture with another liquid in the
process of liquid extraction. The separation is due to the unequal distribution of a solute
between two partially miscible liquid phases. Through the process of liquid extraction, a
product such as penicillin produced in fermentation mixtures can be extracted into a suitable
solvent and purified from the fermentation broth. Choice of solvent extraction would depend
on toxicity, cost, degree of miscibility with the fermentation broth, and selectivity for the
solute.

We normally have three components, A, B, and C and two phases in equilibrium in a liquid-
liquid system. From the phase rule, the degree of freedom F is given by

F=C+2-P=3+2-2=3 (5.10-14)

The variables are temperature, pressure, and four concentrations. Four concentration occur
since the mole fraction of the components in a phase must be equal to one:

Xa+Xg+Xc =1
If pressure and temperature are fixed, which is the usual case, then, at equilbirum, setting one
concentration in either phase defines the system. Consider an equilibrium system from the

mixing of N; moles of solutes, N, moles of solvent 2, and N3 moles of solvent 3. At
equilibrium, the fugacity of component i in phase I is equal to its fugacity in phase II.

yix TP = K (T, P) (5.10-15)
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In this equation f'(T, P) = f" (T, P) = fi(T, P) = fugacity of pure component i at the same
temperature and pressure of the system. Equation (5.10-15) becomes

7il XiI = 7i” Xi” (5.10-16)

The distribution coefficient or the equilibrium constant K; is defined as the ratio of the mole
fraction of component i in the two phases.

| 1

Ki= 2 =i (5.10-17)
X 7i

In liquid-liquid equilibrium system, the two partially miscible liquid phases usually form a

non-ideal solution. The activity coefficients should be determined from multi-component

activity models that can describe liquid-liquid equilibrium system.

Equilateral triangular coordinates can be used to represent the equilibrium data for a three-
component system as shown in Figure 5.10-3. Each of the three corners represents a pure
component, A, B, or C. The point M represents a mixture with xa = 0.4, xg = 0.2, and Xc =
0.4.The perpendicular distance from the point M to the base AB represents the mole fraction
Xc of C in the mixture at M, the distance to the base CB represents the mole fraction xa of A,
and the distance to the base AC represents the mole fraction xg of B.

0.6

0.3 \ 0.7
o2 L NNNININNN N o
o1 LNONININININININ/ N o
VAVAVAVAVAVAVAVAVAVAN

1
\ A} AY AY A} AY N \

0=
Al 09 08 07 06 05 04 03 02 01 0B
Xa

Figure 5.10-3 Equilateral triangular coordinates.
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A common phase diagram where components A and B are partially miscible is shown in
Figure 5.10-4. In this system, liquid C dissolves completely in A or B. Liquid A is only
slightly soluble in B and B slightly soluble in A. The phase diagram is separated into two
regions by a curved or phase envelope. The region outside the curved envelope is the one
phase region and the region inside the curved envelope is the two-phase region. Any original
mixture with composition in the two-phase region will separate out into two phases with the
equilibrium compositions connected by the tie line. For example, a mixture with 5 moles of
A, 3 moles of B, and 2 moles of C will not exist at equilibrium as a solution at point M.
Instead this mixture will separate into liquid phase | and liquid phase Il with compositions
given by point a and b respectively. Liquid phase | has the compositions xa; = 0.79, Xg,; =
0.03, and xc; = 0.18. Liquid phase Il has the compositions xa; = 0.08, xg;; = 0.68, and xc =
0.24. The moles of liquid in each phase can be determined from the materials balance.

XaL' + xanLl" = 5 moles

one-phase region

0.6  equilibrium tie line

0.8

0.2

two-phase region

0‘\ \ \\/\\/ \ \ \ \ \ \ \1
Al 09 08 07 06 05 04 03 02 01 0B

Figure 5.10-4 Liquid-liquid phase diagram where components
A and B are partially miscible.

Since L' + L" = 10 moles, we have

0.79L' + (0.08)(10 - Ly =5 = L' = 98

= — —  =50916 moles
0.79-0.08

L" = 4.084 moles
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The liquid-liquid equilibrium system will be simplified if the two solvents are immiscible.
Usually solvents are selected to minimize their mutual solubility so immiscible system is a
reasonable assumption. In many biological applications the solute concentration is so low
that the activity coefficients approach their infinite dilution values and the distribution
coefficient is a constant. Consider an equilibrium system from the mixing of N; moles of
solutes, N, moles of solvent 2, and N3 moles of solvent 3. If the solute concentration is low
then N; << N3 and N; << Ns. For a system with two immiscible liquid phases at equilibrium,
a mole balance of the solutes is given by

N1=xgL' + xgl" (5.10-18)
In this equation L' is the moles of solvent 2 and some solute in liquid phase | and L" is the
moles of solvent 3 and some solute in liquid phase Il. Since the solute is present at such small
quantity the value of L' and L" are assumed to be constant and equal to N, and Nj
respectively. Equation (5.10-18) becomes

N1 =Xz N2 + X111 N3 (5.10-18)

If the distribution coefficient is known, x1; = K1 X1,;1, then the mole fraction of the solute in
phase Il can be solved:

N1 =Kg X3 N2+ Xen N3 = Xgn = (5.10-19)

EXAMPIE 5.10-2. 22 mmmmmme e
We have 0.01 moles (N;) of drug dissolved in 100 moles of water (N3). We then add to this
phase 100 moles (N,) of octanol. The octanol-water partition coefficient for the drug is 89.

|
X.
Ki= * =89
Xi
For this system, octanol (phase 1) and water (phase Il) are immiscible. Estimate the mole
fractions of the drug in the two phases once equilibrium has been attained and the %
extraction of the drug from the aqueous phase.
T T ]
Making a mole balance for the drug gives
Ng=Xgy1 N2+ X111 N3
Substituting x1,; = Ky X1, into the above equation we obtain

N1=Kq Xg,1 N2 + X110 N3

The mole fraction of the drug in the water phase is

2 Fournier, R. L., “Basic Transport Phenomena in Biomedical Engineering”, Taylor & Francis, 2007, p. 71
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N, _ 001

= =1.11x10°
KN, +N, 89x100+100

Xy, =

The mole fraction of the drug in the octanol phase is
X11 = Ky Xon = (89)(1.11x10°%) = 9.889x10”
The % extraction of the drug from the aqueous phase is given by

X, N -5
% extraction =~ 2 , 100 = 2:889x107°x100 ) _ 95 8906
N, 0.01

EXAMPIE 5.10-3.2 wmmmeemm e
Purification of an Antibiotic

Benzylpenicillin is an older antibiotic effective against pneumococcal and meningoccal
infections, anthrax, and Lyme disease. As part of a purification process, 200 mg of
benzylpenicilin is mixed with 25 ml of n-octanol and 25 mL of water. After equilibrium is
established, there is a water-rich phase that contains essentially no n-octanol and an octanol-
rich phase that contains 74 mol % n-octanol and 26 mol % water. Determine the
concentrations of benzylpenicillin in each of these phases.

Data: The molecular weight of benzylpenicillin is 334.5, that of n-octanol is 130.23, the
liquid density of n-octanol is 0.826 g/cm®, and

_ Cg _ mg B/(ml n-octanol) _

o 65.5
Cg mg B/(ml water)

T T ]

Since n-octanol is insoluble in water, the number of moles of n-octanol in the octanol-rich
phase is

25 mL x 0.826 g/mL
130.23 g/mol

= 0.1586 mol

The amount of water in the octanol-rich phase is

0.1586 mol octanol x 0.26 mol water = 0.0557 mol water

0.74 mol octanol

Assuming no change in volume upon mixing, the volume of the octanol-rich phase is

# sandler, S. 1., “Chemical, Biochemical, and Engineering Thermodyanmics”, Wiley, 2006, p. 643
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_ 0.1586 mol x130.23 g/mol N 0.0557 mol x 18 g/mol
0.826 g/mL 1 g/mL

VO = 26.0028 mL

The volume of the water-rich phase is
VW =50 mL - 26.0028 mL = 23.997 mL
The total number of moles of benzylpenicillin is

0.2¢g

——%Y  =5981x10" mol
334.4 g/mol

Making a mole balance on of benzylpenicillin gives
5.981x10* mol = C¥ VW + c2Vv° = C} VW + KowgsCY V°
5.981x10™* mol = C¥ (23.997 + 65.5x26.003) = C x1727.52 mL
CY =3.462x107 mol/mL = 1.158x10™ g/mL = 0.1158 mg/mL
CS =KowgsCl =65.5x3.462x10" =2.268x10™ mol/mL

Co = 7.585x10° g/mL = 7.585 mg/mL

5.10c Single-Stage Equilibrium Extraction

L”,X

1l,in

l Agueous Stream

LI 7 Xl,out
—— | Extractor | —

l L” 1 Xll,out

Figure 5.10-5 Single stage equilibrium liquid-liquid extraction.

Figure 5.10-5 shows a single stage liquid extractor where a pure flowing solvent stream at
molar flow rate L' is contacted with an aqueous stream flowing at L" with a solute of mole
fraction x;;i». We assume that the solvent and water are immiscible and there is no change in
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flowrates of L' or L". The streams leaving the liquid extractor are at equilibrium so that X out
= KXy 0ut- Making a mole balance on the solute gives

L" Xilin = L' Xiout T L" Xit,out = I—IKXII,out +L" Xi1,out
L" xiin = (L'K + L") X1 out (5.10-20)
Solving for X out / X1 0ut We 0Obtain

Xll,out — L” — 1 1

X, KL +L" _1 KL'  1+E
| o

(5.10-21)

|
In equation (5.10-21), E is defined as the extraction factor, T__!T The amount of solute

entering the extractor is L" x;i». The amount of solute extracted from the aqueous phase 1l is
L" Xi1in — L" Xu1.0ut. The % extraction of the solute from phase 11 is then given by

- L“ Xijin — L” Xii out X out
% extraction = L“ — [x100 = | 1-—— | x100
X

11,in Xll,in

11 1] ][ L B S ——————————

A drug is in an aqueous (phase I1) stream flowing at 100 moles/min at a drug mole fraction of
0.01. The aqueous stream is then contacted with an extractor with a pure solvent (phase 1)
flowing at 200 moles/min. The distribution coefficient for this particular drug is given by

|
Ki= X_'” =6
Xi
Determine the equilibrium mole fraction of the drug in the streams exiting the extractor and

the % extraction of the drug from the aqueous stream.

SOIULION === o e -

L" = 100 moles/min, x,. = 0.01

Il,in

l Agqueous Stream

o i LI H Xl,out
L = 200 moles/min »| Extractor |— 5

l L” 1 Xll,out

% Fournier, R. L., “Basic Transport Phenomena in Biomedical Engineering”, Taylor & Francis, 2007, p. 72
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Making a mole balance on the solute gives
1 — | 1l — | 1
L™ Xiin =L Xiout + L Xi10ut = L' KX 0ut + L Xinout

L" Xy1in = (LK + L") Xy1.0ut

Solving for X out / X1 0ut We 0Obtain

Xt out L' 1 1 1 _
ot = = = = = 0.0769
Xpm KU #L" KL 1+E o (6)(200)
L" 100

Xi1out = (0.01)( 0.0769) = 7.69%x10™, X out = (6)( 7.69x10) = 4.62x10°

L|| o Lll X X
% extraction = ( Xivin ”*’“‘] x100 = [1—MJ x100 = (1 - 0.0769) x100 = 92.3 %

I1,in
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Chapter 6
Chemical Equilibrium

6.1 Introduction

Chemical reaction engineering and separation processes are the two fields unique to chemical
engineering. The design of chemical reactor often requires extensive repetitive calculations
with the help of sophisticated computer models now available to design engineer. Analysis of
chemical reactions is central to the design of chemical reactor. We will first review the
stoichiometry of the reactions.

Consider the following reaction in which a moles of species A react with  moles of species
B to produce p moles of R and v moles of S.

oA+ B < pR+15

or PR+)S-—aA-B =0
4

or D vili=0
i=1

where 1j = stoichiometric coefficient of species l;
1 Is positive if lj is a product
1; is negative if Ij is a reactant
viis zero if ljis an inert

For example, consider the reaction A+ 2B« CorC —A -2B=0,then vc =1, va= -1,

and vc = —2. At any time the moles N; of species I; can be related to the initial moles N;, of
species |; by the following relation

Ni=Nic+ 1 ¢

where the quantity £ which has the same unit as N;, is called the molar extent of reaction.
The definition of £

is not the same as the definition for the fractional conversion f



f= N, —N; _ moles reacted
moles fed

N.

10

The relation between the molar extent of reaction and the fractional conversion is

¢ is not restricted to lie between 0 and 1. In fact, the molar extent of reaction may be negative
if the reaction proceeds in the reverse direction to that indicated (e. g., if C is dissociated to
form A and B).

EXampPle 6.1- 1. —-mmmmmmmm oo oo
Consider the following gas phase reaction at 400°K and 2 atm.

A+2B<C
The mole fractions of the reactive species at equilibrium satisfy the relation

Yo _—11124

2

YaYs

Starting with equimolar quantities of A and B, and no C, calculate ya, yg, and yc, the molar

extent of reaction, and the fractional conversion of A and B if the reaction proceeds to
equilibrium.

ST T 0]
A B C Total

Initial 1 1 0 2

Final 1-¢ 1-2¢ e 2(1-0)

Since Nao = Npo — ¢ and Ng = N, — 24. The mole fraction of each species is then
calculated

1-¢ _
2(1-2)

1226 and ye = 5

= 20-0) 20-)

«~y YB T

From the equilibrium relation yc = 1.1124 y, y2 or

& - 1.1124><0.5( 1-2¢ J
2(1-¢) 2(1-¢)

2¢(1- &) =0.5562(1 — 20)2
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4.2248 (2 —4.2248¢+ 0.5562 =0
There are two roots: ¢; = 0.156 and &, = 0.844
If £=0.844then Ng = Ng, —24'=1-2¢ <0: not possible

Therefore the molar extent of reaction £ must be equal to 0.156, and

1-2¢ ¢
Vg = =0.408, and yc = —=—— =10.092
P21-¢) 2(1-¢)
fa= Noo =N, o€ =0.156, and fg = Noo =N _ 26 _ 310
NAio Aio Bio Bio

*hhkhkkhkhkhkkhkhkhkkhhkhkhhkhkhhhkhhhkhhhkhhhhhkhkhhhhkhhkhkhhhkhhkhkihhkhhhkhhhhihhhhhkkhhihkkhiikkiiikkx

From the relation N; = Nj, + 1;¢; the rate of change of the number of moles of species i
can be written as follows:

dN, _ d¢

dt dt

For chemists and chemical engineers, the rate of change of the number of moles is usually
written in terms of the reaction rate per unit volume r:

%: W d_é/: riV
dt dt

where V is the reactor volume.

Order of Reactions

When reaction rates are determined experimentally, is often found that the expression for
the reaction rate can be expressed in the following way:

v, d u
ri= vld_f = kCiC{

In this equation C, and Cg are the reactant concentration, and the constant of proportionality
k is the reaction rate constant. The exponents of the concentrations, « and g, are called the
orders of the reaction. In this case the reaction would be called “of order o with respect to
A, “of order S’ with respect to B, or “of order « plus £’ overall. For a reaction with
stoichiometry A — products, a first order reaction will give the rate of consumption of A per
unit reactor volume as rp = kC,, and a second order reaction will give ra = k(Ca)?
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Sometimes the rate of consumption of A is independent of the concentration of A, or
a = k
Note that the unit of k is dependent on the order of the reaction. The zero-order reaction is

controlled by something other than the concentration of A. In fact, zero-order kinetics are
very common in the case of catalyzed reactions.

Type of Reactors

Batch reactor: There is neither inflow of reactants nor outflow of products while the
reaction is being carried out.

Semibatch reactor: While the reaction is being carried out, there is either inflow of
reactants or outflow of products but not both.

Continuous-stirred tank reactor CSTR: While the reaction is being carried out, there are
inflow of reactants and outflow of products. Except for startup and shutdown, the CSTR is
normally run at steady state, and is well mixed. As a result of mixing, the temperature and
concentration are assumed to be identical everywhere within the reactor including the exit
point.

Tubular reactor: It consists of a cylindrical pipe and is normally operated at steady state.
For the systems in which the flow is highly turbulent, the flow field may be modeled by that
of plug flow. The reactor is then called continuous plug-flow reactor PFR. The reactants are
continuously consumed as they flow down the length of the reactor. The concentrations vary
continuously only in the axial direction through the reactor but not in the radial direction.

BATCH SEMIBATCH

Filling Draining

2 PFR

Figure 6.1-1. Common reactor types



EXample 6.1-2. —---mmm oo oo e
The following second order, irreversible gas phase reaction

AB —> A + B, where k = 2.0x10* cm®mol-min
is allowed to decompose isothermally in a constant pressure batch reactor. The reactor
initially contains pure AB with a volume of 2.0 m® at 2.5 atm and 500°C. Assuming ideal

behavior, determine the time for the reaction to reach 90% conversion.

T 1]

Let X = fractional conversion, n, = initial moles of AB in the reactor. The moles of A and B in
the reactor at any time are given by

Na = Ng = NoX

We have
AB A B Total
Initial No 0 0 No
Final No(1 — X) NoX NoX No(1 + X)

Applying the mass balance for AB in the reactor gives

kn,?(1- X)?

y (E-1)

£, @ X01 = - K(Cae)?V = -

Since the pressure is a constant, the volume must change since the number of moles
change. From the ideal gas law

PV _ n (l1+X)RT

= =V =Vl +X)
PV, n,RT
Equation (E-1) becomes
201 _ w2
B 0d_X:_knO (1-X) = V, jx 1+X2
dt V,(1+ X) kn, 0 (1-X)

We can use partial fraction to obtain

1-Xx _a b _ -1 2
(1+X)2 1-X (1+X)* 1-X (1+X)?

Therefore,
0.9
t= Vo - dx 2] X 1=V [In(l—x)+ 2 }
kn, o 1-X o (1-X) kn, 1-X ],
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Vv 1 V
t=—1In(0.)+2(=-1) | = —[In(0.2) +18
om0 +2(G-D)| = o In0+18]
From the ideal gas law
o -RT = RT [In(0.2) +18]
n P k

(0]
Substituting the numerical values gives

.= 8205x773

= In(0.1) +18| = 1.2685](In(0.1) + 18| = 19.91 min
2><104><2.5[ 0.) ] [ 0 ]

We use the ideal gas constant R = 82.05 atm-cm®/mol-°K
6.2 Chemical Reaction and Gibbs Energy

We apply the same principle to solve phase equilibrium problems to chemical equilibrium.
Consider the following ideal gas reaction at a total pressure of 1 bar®.

A, + B, < 2AB (62-1)

For a system in which we initially have 1 mole of A, and 1 mole of B,, the moles of A; and
B, in the reactor at any time are given by

Na2= Ng2= 1-¢ (6.2-2)

In this expression ¢'is the molar extent of reaction. We have

Ao B, AB Total
Initial 1 1 0 2
Final 1-¢ 1-¢ 28 2

The total Gibbs energy is given by
G= Znigi = Zni:ui = Naz2pp2 + N2z + NABLIAB (6.2-3)

The chemical potential of each component in an ideal gas mixture is given by

P_
i=gi" +RTIn| —— 6.2-4
Hi= Qi (1bar] ( )

! Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 435
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In this expression, the reference state is the ideal gas state at the temperature of the reaction
and a partial pressure of 1 bar. Since we specified the pressure of the reference state, gi° is a
function of only temperature. Substitution of equation (6.2-4) into equation (6.2-3) yields

G = na20°a2 + Ne20%82 + Nasg ae + RT[NA2INPA2 + NeaINPes + NaglnPag]  (6.2-5)
In this expression, the partial pressures must have units of bar. Since P; = y;P, we have

G = na20°a2 + Ne20%82 + Nasg ae + RT[Na2INya2 + Na2lnys, + Naglnyag]

+ RT(na2 + Ng2 + Nag)INn P
In terms of the molar extent of reaction, we have
G=(1-9(°2+9%:2) +2£0°a8 + RT[(1 - Olnyaz + (1 — Inygy + 28 Inyag] + 2RT INP

We will consider the system with the following numerical values: T = 1000°K, P = 1 bar,
0°A2 = 9% = 0, and g°ag = — 9.5 kd/mol. With a gas constant value R = 8.314 J/mol-°K, we
have RT = 8.314 kJ/mol. The Gibbs energy is plotted as a function of £ in Figure 6.2-1. The
pure species Gibbs energy is labeled “Term 1”.

Term1=(1-0)(9°2 *+ 9°s2) + 2£0°a8

G(kJ)

Figure 6.2-1 Gibbs energy of the system A, + B, < 2AB.
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Table 6.2-1 lists the Matlab program used to plot Figure 6.2-1.

Table 6.2-1 ---mmmmm oo
% Figure 6.2-1:1 = A2,2=B2,and 3 =AB

%

03=-9.5; RT=8.314;

zeta=.02:.02:.98;

yl=(1-zeta)/2;y2=y1,;

y3=zeta;
G=2*zeta*g3+RT*((1-zeta).*log(yl)+(1-zeta).*log(y2)+2*zeta.*log(y3));
G1=2*RT*log(.5);Gn=2*g3;

zetap=[0 zeta 1];Gp=[G1 G Gn];

plot(zetap,Gp,[0 1],[0 Gn],"")

grid on

xlabel('Zeta');ylabel('G(kJ)";

legend('G','Term 1")

The product, species AB, has lower Gibbs energy than the reactants, species A, and Bs.
However, the equilibrium conversion is not pure species AB, but rather the composition at
which the Gibbs energy is a minimum. This is due to the fact that a mixture has much higher
entropy than a pure component. The system can lower the Gibbs energy if the reaction is not
completed. Starting with pure reactants or product, the system will have a minimum Gibbs
energy when all three species are present. The contribution to the Gibbs energy of the system
due to mixing is given by the expression

AGpix = RT[(l — g)lnyAg + (1 — é’)lnsz + 2§InyAB]

We only need to specify the amount of each of the elements that are present and the system
temperature and pressure to predict the equilibrium state of the system. The change in Gibbs
energy with respect to temperature, pressure, and the number of moles is given by

C
dG =VdP —SdT + > s dn; (6.2-6)
i=1

When the composition change is the result of a single chemical reaction we have

N = Nip + u¢'= dni= vdg
At constant temperature and pressure, the change in Gibbs energy is given by

dGrp = D uv dg

There is no change in Gibbs energy at equilibrium: dGrp=0= (g} = Z‘/iﬂi =0
T,P
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Chapter 6
6.3 The Condition of Equilibrium for a Chemical Reaction

At constant temperature and pressure, the system comes to chemical equilibrium when the
Gibbs energy is a minimum.

dGrp= D mv, d¢ (6.3-1)
L oG
At equilibrium: dGrp=0= (—J = > vy =0 (6.3-2)
0 Jrp

Equation (6.3-2) is the condition of equilibrium for a chemical reaction that can be solved if
we relate chemical potential to fugacity. From the definition of the fugacity in a mixture we
have

dei=RTdIn f, (6.3-3)

Integrating this equation between a standard state, denoted by the superscript °, and the
equilibrium state yields

A

4i=gi° +RT In% (6.3-4)

In this equation, the standard state is defined as the pure species at the temperature of the
reaction and a pressure of 1 bar (or 1 atm, when appropriate). Since the Gibbs energy is not a
strong function of pressure we will freely interchange 1 atm and 1 bar as the reference state
pressure. We should note the difference between a standard state and a reference state. In a
standard state, only pressure and physical form (gas, liquid, or crystal structure for solid) are
specified while in reference state temperature, pressure and physical form are specified. For
the reference state the temperature can be specified to be different from the reaction
temperature. For the standard state the temperature must be the temperature of the reaction.
Since the pressure is specified in the standard state, the pure species molar Gibbs energy, g;°,
is a function of temperature only. Substituting equation (6.3-4) into equation (6.3-2) gives

fi _

o T 0 (6.3-5)

> v +RTY v In

The ratio of fugacities is called activity &, a new thermodynamic function:

4 = fL (6.3-6)
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While the fugacity fi depends only on the state of the system, the numerical value of the
activity also depend on the choice of standard state. Rearranging equation (6.3-5) and using
the mathematical identity that the sum of logarithms is equal to the log of the products gives

In H[%J __2MG A, (6.3-7)

RT RT

We have defined a new term, Ag,’= Zvigi° , which is called the standards Gibbs free

energy change of reaction or simply the Gibbs energy of reaction. The product on the left
hand side of equation (6.3-7) is called the equilibrium constant K

K = H( f J | (6.3-8)

f'o

Equation (6.3-7) can now be written as

InK=— 29m_ (6.3-9)
RT

The reaction equation for a single reaction may be written as
2 vili=0 (6.3-10)

When more than one chemical reaction is required to describe chemical equilibrium in a
system we need one equation for each reaction j or

2.vilij=0 (6.3-11)

The change in Gibbs energy of the system is then

dG = Z [z yijvijj dg (6.3-12)

At equilibrium G is a minimum, and all partial derivatives with respect to extent of reaction ¢
must equal zero

oG
(a_é/j]Typ = iz'uijvij =0 (63-13)

Equation (6.3-13) applies to each reaction, and at equilibrium the equilibrium constant for
each reaction must be satisfied.
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6.4 Calculation of Equilibrium Constant from Data
The Gibbs energy of reaction may be obtained from the Gibbs energy of formation which is

the Gibbs energy of reaction when the species of interested is formed from its pure elements,
as found in nature, that is,

Ag s
Elements Species i
<>

The Gibbs energy of formation of a pure element, as it is found in nature, is equal to zero.
The Gibbs energy of formation is available for many species at 25°C and 1 bar. The Gibbs
energy of reaction is then given by

AQ° xn 208 = ZViAgof,ZQB (6.4-1)

In this equation, the stoichiometric coefficients for products are positive and those for
reactants are negative. The equilibrium constant is then evaluated:

Ag ° rxn,298
RT

InK=-

EXAMPIE 6.4-1.2 <
Calculate the equilibrium constant for the following reaction using the data at 298°K

H20(g) + CH30H(g) <> CO»(g) + 3H2(g)

H20(9) CH30H(g) COx(9) H2(9)

Ag’ (K3/mol) — 228,57 —161.96 — 394.36 0

SO U O ==
AQ°rnss = ) ViAQ°t 298
AQ°rn208 = (AQ°f)coz + 3(AY°)H2 — (AG°)H20 — (AQ°F)cH3oH
AQ®onzss = (— 394.36)c0s + 3(0)n2 — (= 228.57)20 — (— 161.96)crson

Agorxn,298 = —3.83 kd/mol

The equilibrium constant is then

K = exp| - Ag rxn,298 = exp| - — 3,830 = 4.69
RT (8.314)(298.15)

Z Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 444
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EXAMPIE 6.4-2. —-mmmmmmm oo e e e
Find the equilibrium concentration of N,O4(g) [Nitrogen nitroxide] due to the chemical
reaction at 25°C and 1 atm.

N204(g) < 2NO2(9)

The following data are available:

1) N204(9) < Na(g) + 202(g) Agorxn,1 =- Agof,Nzo4 = — 23.41 kcal/mol
(2)  0.5Nz(g) + O2(g) « NO2(g) AQ°n2 = AQ°No2 = 12.24 kcal/mol
T T

The reaction N2O4(g) < 2NO,(g) may be obtained by combining reactions (1) and (2)
(1) +2(2) = N204(g) < 2NO2(g)

Therefore
AQ°rxn = AQ rxn1 + 2A0%n2 = — AQ%tN204 + 2A0% No2 = — 23.41 +2(12.24)

AQ°n = 1.11 kcal/mol = 4644 J/mol = — RT In K

K = exp L exp| — 4,644 =0.1563
RT (8.314)(298.15)

The equilibrium constant K can also be expressed in terms of the activities:

~ 2
[ fuo, J
a’ fu
K — NO, — ,\NOZ (E-l)
aN204 fN204
fuo,

% = P°02 = P°N204 = 1 atm, equation (E-1) becomes

Assume ideal gas ﬂ =P f.

o I Ul B e
K = NO, _ NO, _ 1atm (E-Z)

1’:\N 20, ) PN 204 y N20, P
fl\? O, P’\?204 1atm

Since P =1 atm, equation (E-2) becomes
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{ Yno,P jz
1 atm 2
K = = Ivo. 1563 (E-3)

Yn,o0,P Yn,0,
1atm

We have
N>O4 NO, Total
Initial 1 0 1
Final 1-¢ 24 1+¢

The mole fractions of N,O4and NO; are given by

_1-¢ _ 2
YN204 1+ ¢ YNO2 1+ ¢

Substituting Yn2o04 and ynoz into equation (E-3) gives

&)

U+¢) o1s63— % _ 01563
1-¢ 1-)1+7)
1+¢

482015631~ ) = &= 20 = (= 01923

The equilibrium concentration of N2O4(g) is then

1-¢
=—2 =0.6774
YN204 1+

If the Gibbs energies of formation are available at the reaction temperature, the equilibrium
constant can be calculated directly from

K = exp(_ Ag ran

RT

However most reactions we want to study are at temperatures different than 25°C where data
are not available. We need an expression to determine the equilibrium constant at any
temperature from one set of Gibbs energy data.
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6.5 Variation of Equilibrium Constant with Temperature

. oh . . .
Since ¢, = (a—j and expressions for ¢, as a function of temperature are available for many
P

species, if we could relate Gibbs energy to enthalpy we might found an equation to determine
the temperature dependence of the equilibrium constant.

—
G P H G P H
A A
T —1—>S T >S
AV U AV U
L
o oG
From the thermodynamic diagram we have S = — T or
P
© =_ % (6.5-1)
aT ),

Taking the derivative of g%/T with respect to T yields

9 g_lo :lagio _g_io (6.5-2)
oT( T ToT T? '
Substituting (%_‘j = — 5% into equation (6.5-2) gives
P
09 )__s _9
G_T(?J T (659

Since g% = h% — Ts%, we have
8 M s oS 9 - (6.5-4)

Comparing equations (6.5-3) and (6.5-4) yields

o9’ _ ;
A 659
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Since InK=- 29 =~ A (6.5-6)

RT RT
o (8g) 1y, (8] K 657
oT | RT | "R Tl T oT
anK) _ 1 o ARe
==Yy i = Al 6.5-8
oT R 2Vigr = Ry (6.5-8)

In equation (6.5-8) we have defined the enthalpy of reaction Ah%y, = ZVihf. For

exothermic reaction (Ah°«, < 0), the equilibrium constant decreases as temperature increases,
since RT? is always positive. For endothermic reaction (Ah%y, < 0), the equilibrium constant
increases as temperature increases. The enthalpy of reaction can be determined at any
temperature based on the enthalpy of reaction at 298°K and heat capacity data from the
equation

h xn — Ah xn208 T J- (Z Vi p, (65-9)

C..
Let % = A + BT + C;T?, equation (6.5-9) becomes

ARy = AR08 + R LT%(ZVA +S VBT + > 1CT?)dT (6.5-10)
Integrating equation (6.5-10) yields

Ah®n = AR® 0208 + R[AA(T —298) + —(T2 —298°% + A3C (T* —298% ] (6.5-11)

In this equation we have defined AA= > v,A , AB= ) v/B
(6.5-11) can also be written as

:B;, and AC = ) v,C; . Equation

Ah° = Ahgon + R[AAT + A—ZBT2 A3C T3] (6.5-12)
where
0 2 AB 3
Ahcon - Ah rxn, 298 — R[298AA + 298 2 + 298 ] (6.5‘13)

Substituting Ah%xn = Ahcon + R[AAT + %TZ + %ﬁ] into equation (6.5-8)
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a(InK) _ Ahg,
oT RT?

(6.5-8)

We obtain

oK) _ Ahy,  AA  AB  AC, (65-14)
oT ~RTZ T 2 3

Integrating equation (6.5-14) from 298°K (or any temperature T;) to T yields

n| Ko |- A (110 A L]+ 2B (r T1)+—(T2 T.) (6.5-15)
Ky R (T T, T,) 2

Coi
If the heat capacity has the form — . = A + BT + C;T? + DiT?, equation (6.5-9) becomes

.
AP = AbCn0s + R [ (AA+ ABT + ACT? + ADT 2)dT (6.5-16)
Integrating equation (6.5-16) yields

Ao = AhPran 208 + RIAA(T — 298)+—(T2 298°) + A3C (T3 —298%) — AD(%_Z_Sl)Sj]

Let Ahcon = Ah®yn20s — R[298AA + 2982A—2B + 2983% - ZA—D] the expression for heat of

reaction is then

Ah®n = Ahcon + R[AAT + A—ZBT2 A; - —]

We need to integrate the following equation

a0nK) _ Ah,,  AA L ABAC. AD

oT RT? T 2 3 T?

The equation for equilibrium constant as a function of temperature is finally

In ﬁ = — Ahcon l—i + AAln l +_(T Tl)-l-_(-l-2 T1)+£ iZ_LZ
T T T T 2\ h
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Chapter 6

EXAMPIE 6.5-1.3 <o
Calculate the equilibrium constant for the following reaction at 60°C using the data at 298°K

H20(g) + CH30H(g) < COx(g) + 3H2(g)

H20(9) CH3OH(9) CO2(9) H2(9)
AQP 208 (kJ/mol) — 228.57 —161.96 —394.36 0
Ah®% 29 (kJ/mol) —241.82 — 200.66 —393.51 0
SOIULION ==

The equilibrium constant as a function of temperature is given by

o(InK) _ Ahg, (E-1)
oT RT?

Since the data are available at 25°C and K is needed at 60°C, we can integrate equation (E-1)
assuming constant Ah’

xn

Ahp, = ARG e = ZviAh?,zga
AhD: 565 = (AN%f)coz + 3(Ah°DHz — (Ah°)H20 — (Ah°HcHzon
Ahfxnyzgg = (= 393.51)coz2 + 3(0)n2 — (— 241.82)20 — (— 200.66)cH3oH

AhJ = Ahp e = 48.97 kJ/mol
The equilibrium constant K at 298°K is evaluated
AQ°mn 208 = (AQ°f)coz + 3(AG°)H2 — (AQ°f)H20 — (AQ°)cHaon
AQ°ran208 = (— 394.36)coz + 3(0)rz — (— 228.57)r20 — (— 161.96)cH3oH
AQ° 208 = — 3.83 kd/mol

The equilibrium constant at 298°K is then

K = exp| - Ag rxn,298 = exp| - - 3,830 = 4.69
RT (8.314)(298.15)

¥ Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 445
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Integrating equation (E-1) from 298°K to 333°K vyields

Kazs - Ahr(:(n (i_ 1 )
K o R \T 298

| K gas :_48,970( 11 j: 08
4.69 8.314 (333 298 '

In

K333 =37.44

EXAMPIE 6.5-2.F -

Formaldehyde, CH,O, is produced by the gas-phase pyrolysis of methanol, CH3OH,
according to the reaction

CH30H(g) < CH,0(g) + Hz(9)

1) Determine the equilibrium constant at room temperature.
2) Determine the equilibrium constant at 600°C and 1 bar assuming (a) Ah?

o = constant, and
(b) Ah;, = Ah (T).

C.
The heat capacity has the form: % =A+BT+CT?+DT?

Solution

CH20(g) CH3OH(g) Ha(g)
AQ’% 205 (kJ/mol) ~110.0 ~162.0 0
Ah% 295 (kJ/mol) ~116.0 —200.7 0
1% 1 -1 1
A 2.264 2.211 3.249
Bi 7.022x10° 1.222x107 0.422x10°°
Ci —1.877x10° — 3.45x10°® 0
D 0 0 0.083x10°

1) Determine the equilibrium constant at room temperature.

AQ°xn208 = ZviAg" f,208

AQ°mn208 = (AQ%f)cHzo + (AQ°1)H2 — (AQ%f)chHzoH

Agorxn,298 = (— llO-O)CHZO + 3(0)H2 - (— 162-O)CH30H

Agorxn,298 =52 kJ/mol

6-18
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The equilibrium constant is then

K =exp| ~ 29 m28 | _gypl - =92000 ) _ g 95,q0
RT (8.314)(298.15)

. aCH OaH . - 0
Since K = —=—=, very little formaldehyde will form at 298°K.
a‘CH3OH

2a) Determine the equilibrium constant at 600°C and 1 bar assuming Ah°_ = constant

rxn

The equilibrium constant as a function of temperature is given by

o(InK) _ Ahg, (E-1)
oT RT?

We need the enthalpy of reaction Ah° _to calculate K at 600°C.

rxn

rxn

Ahp, = Ah:xn,zs)s = ZViAh(f),zga
AhY 565 = (A%f)chzo + (AM°)H2 — (Ah°F)chson
Ah;)xn,298 = (— 116-0)CH20 + (O)Hz — (— 200-7)CH3OH

Ah?

rxn

= ARy, 505 = 84.7 kd/mol

Integrating equation (E-1) from 298°K to 873°K yields

i Ko — _ AR, (1 1 j

K yos R (T 298
Ken 84,700( 11 j=22'5
7.75x10" 8.314 \ 873 298

Kg73 = 4.66

2b) Determine the equilibrium constant at 600°C and 1 bar assuming Ah° = Ah°_(T)

rxn rxn

The equilibrium constant at 600°C can be evaluated from
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In Ky :_% 11 + AAln T +A—B(T—T1)+£(T2—T12)+£ 11
K, R (T T, T 2 6 2

In this expression

Ah?
Ay _ Aleonzss _ oggap + 298288 4 pgg22C _ AD 4 )
R R 2 3 298
AA= D v,A =3.302, AB = >v,B, = —4.776x10%,
AC = ) vC, = 157x10%, AD = > v,D, = 0.083x10°

Substituting the numerical values into equation (E-2)

_ -3 -6 3
ANy _ 84700 ogey 309y + (2982)£ 4.772 x10 )+ (2983)[1.57210 j_ 8.3x10°

R 8.314 298

% = 0.43x10° °K

Performing the calculation for the equilibrium constant gives

|n(MJ = 23.15 = Kg73 = 7.75x10%xp(23.15) = 8.8
298

6.6 Homogeneous Gas Phase Reaction

The equilibrium constant is given by the expression

K = n( ffio J | (6.6-1)

For gas phase we choose the standard state pressure to be ideal gas at 1 bar, therefore
fi® =1 bar (6.6-2)

The fugacity in equation (6.6-1) must have unit of bar and becomes

k = 11(f,[bar])" = 11y, P[oar]) (6.6-3)
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For the calculation of the equilibrium concentration we usually assume ¢. = ¢; so that
equation (6.6-3) can be written as

K= H(yi(Pi P)Vi

For an ideal gas ¢, = 1, equation (6.6-3) can be simplified to

K=T11y,"P"

(6.6-4)

EXAMPIE 6.6-1.% ~=-mmmmmmmmmmmmmmmmmemeeeeeeeeee e e

Ethylene is produced from the decomposition of ethane according to the reaction

C2Hg(g) < CoHa(g) + H2(9)

Determine the equilibrium composition at 1000°C and 1 bar assuming Ah°_ = constant.

rxn

CaHe(9) CaHa(9) H2(9)
Agof’293 (kJ/IT]Ol) - 32.84 68.15 0
Ahof’298 (kJ/moI) — 84.68 52.26 0
W -1 1 1
SOIULION === === m e e

Determine the equilibrium constant at room temperature

AQ° 208 = ZviAg° f 208

AQ°ran208 = (AQ°f)cama + (AQ°DH2 — (AQ%f)came

Agorxn,298 = (68-15)C2H4 + 3(0)H2 — (— 32-84)C2H6

Agorxn,298 =100.99 kJ/mol

The equilibrium constant is then

K=exp (—

Ag ° rxn,298

RT

o

100,990

~ (8.314)(298.15)

j =2.0246x10®

The equilibrium constant as a function of temperature is given by

a(InK) _

Ah?

rxn

oT

RT?

® Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 451
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We need the enthalpy of reaction Ah°_to calculate K at 1000°C.

rxn

Ahp, = Ah:xn,zgs = ZviAh?,ZQB
ANY. 565 = (A°f)cama + (Ah°f)H2 — (Ah%f)came
Ah:')xn,298 = (52.26)02H4 + (O)Hz - (— 84.68)(;2H6

Ah?

rxn

= ARy, 205 = 136.94 kJ/mol

Integrating equation (E-1) from 298°K to 873°K yields

In K1273 - _ Ahr?(n (i_ 1 j
K yos R (T 298

In —Kon = 136’940( 1 1 j =42.3331
2.0246 x 10" 8.314 (1273 298

K173 =4.9133

The equilibrium constant K can also be expressed in terms of the activities:

o))
(= Zendn, _ Lfen | T (E-2)
ac,H, fCZHG
&)
Assume ideal gas ﬂ = P;, fi® = P°cans = P%cona = P°h2 = 1 bar, equation (E-2) becomes
(]8) (12 bl
. fcozHi f. ) _ \Pow \Pi,) _ ( 1bar ) Lbar (£-3)
% w
( f, } 1 bar

PCZHG
Peun
Since P =1 bar, equation (E-3) becomes
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5

lbar \1b

K = ar ar - yCzH4sz = 4,9133 (E_4)
Yo, P Yere
1 bar

We have C2He(g) & CaHa(9) + Ha(g)

CzHe C2H4 Hz Total
Initial 1 0 0 1
Final 1-¢ 4 4 1+¢

The mole fractions of C,Hg, C,H4, and Hy are given by

1-¢ 4 4

==, = —=— andyup = ——
YcaHs 1: YcoH4 1+ ¢ YH2 147

Substituting the mole fractions in terms of extent of reaction into equation (E-4) gives

i)

4913 S 240133
1-¢ (1-4)1+¢)
1+
_ ~ _ 49133 _
£=491331-O) = ¢ soras - 08309

£=0.9115

The equilibrium concentration of C,Hy(g) is then

4
=2 =0.4769
YcaH4a 1+ ¢

Example 6.6-2, =-===-=s-m=mememmmm e e e e e
Calculate the partial pressure of monatomic hydrogen in hydrogen gas at 2000°K and 1 atm
for

0.5H2(9) < H(9)

Data: Ahy,, e = 217,990 J/mol, As;,, 5 = 49.35 J/mol-°K, heat capacity of H(g) = 1.5R, and
heat capacity of H,(g) = 31 J/mol-°K.

ST T ]



2000°K
0.5H, > H(9)

Ah, Ah,

298°K )

0.5H,

0] — 0] 0
AQ rxn,2000 = AN 1xn2000 — TAS" 1xn.2000

The heat of reaction Ah®yn 2000 and the entropy of reaction As®«n 2000 Can be calculated using
the heat capacity data as follows:

Ahorxn,2000 = 0.5Cp,H2(298 — 2000) + Ahorxnggg + Cp'H(ZOOO — 298)
AhOrxn,ZOOO = Ahorxnlzgg + 1702(Cp’H - 0.5Cp’H2) = 217,990 + 1702(1.5X8.314 - 0.5)(31) = 212,830 \]

2000
AS° —0. 298d_T+A0 + zoood_T:AO + _o. In 2029
S rxn,2000 0 5Cp,H2 J‘ZOOO T S rxn,298 Cp,H »[298 T S rxn,298 (Cp,H 0 5Cp,HZ) 298

AS°rxn 2000 = 39.35 + (1.5x8.314 — 0.5x31) In% = 43.58 J/mol-°K

Agorxn,ZOOO = AhOrxn,ZOOO - TASOrxn’ZOOO = 212,830 - 2000(43.58) = 125,670 J/m0|

The equilibrium constant is given by
K = exp| - AQ " rxn,2000 ~ exp| - 125,670 — 599510
RT (8.314)(2000)

For ideal gas, the fugacity can be replaced by pressure with standard state pressure equal to 1
atm.

Py
laim _ P, _ P, _ 4
= = = =5.22x10
PHZ 05 (PHZ )0.5 (1 - P, )0.5 x
latm

The partial pressure of monatomic hydrogen is then

Py = 5.22x10™ atm
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Chapter 6

EXAMPIE 6.6-1. 0 <o
Ammonia is produced from a stoichiometric feed of nitrogen and hydrogen.

N2(g) + 3H2(g) <> 2NH3(9)

Determine the maximum possible conversion at 500°C and 300 bar using (a) ideal gas law
and (b) the Van der Waals equation of state.

C.
The heat capacity has the form: % = A + BT + CT? + DT

NHs(g) N2(9) H2(9)

Agof’293 (kJ/IT]Ol) —16.45 0 0
Ahof’298 (kJ/I’ﬂOl) -46.11 0 0

Y 2 -1 -3

A 3.578 3.280 3.249

B; 3.020x10° 0.593x107 0.422x10°°

Ci 0 0 0

Di —0.186x10° 0.040x10° 0.083x10°

T T ]

Determine the equilibrium constant at room temperature
AQ°rnss = D ViAG°t 298
AQ°rn.20 = 2(AG°)nHs — (AQ RNz — 3(AQ )H2
AQ°rn208 = 2(— 16.45)nH3 — (0)nz2 — 3(0)H2 = — 32.9 kd/mol

The equilibrium constant is then

K= exp(— A9 ra29 rx”’zggj = exp( —32,900 j =5.81x10°

RT ~ (8.314)(298.15)

The standard heat of reaction is needed to evaluate equilibrium constant at 500°C
Ah?xn,298 = ZviAh?,zgs

AND 565 = 2(Ah°)NHs — (Ah°f)nz — 3(AR°f)k2

® Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 454
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ANZ 205 = 2(—46.11)nH3 — (O)nz — 3(0)H2 = — 92.22 kd/mol

The equilibrium constant at 500°C can be evaluated from

In Ke oo Ahy (11 + AAln T +A—B(T—T1)+£ iz—iz (E-1)
K+, R \T T, T 2 2 \T° T,

In this expression

Ah?
Aoy _ Az 129gp + 296228 _ 4D (E-2)
R R 2 298
AA= D v,A = -5.8T71, AB = )v,B; =4.180x10°,
AC=>'vC =0, AD = > v,D, = -0.661x10°
Substituting the numerical values into equation (E-2)
_ -3 _ 5
Ahy, _ —92,220 [(298)(~5.871) + (298) 4.180x107 ) -0.661x10 ]
R 8.314 3 298
Ah

Zeon = _9.75%10° °K
R

Performing the calculation for the equilibrium constant gives

|n(hj = —24.39 = K773 = 5.81x10%xp(- 24.39) = 1.483x10°

298

The equilibrium constant K can also be expressed in terms of the activities:

~ 2
[ fNH3 J
al%ng f’\?Hs
K= = ; (E-3)

We choose the standard state pressure to be ideal gas at 1 bar, therefore

f° =1 bar
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The fugacity of species i in the vapor phase can be expressed in terms of the mole fraction, y;,
fugacity coefficient, ¢, , and total pressure, P, as

~

f,. =vyip, P
Hence
2 ~2
K= TP oo (E-4)
Yn, PN, YH,PH,

(a) 1deal gas law

For ideal gas, ¢, = 1, the equilibrium constant is simplified to

p? (E-5)

We have N2(g) + 3H2(9) < 2NHs(9)

N, H, NH; Total
Initial 1 3 0 4
Final 1-¢ 3(1-9) 20 4-2¢

The mole fractions of N,, H,, and NH3 are given by

= = 2 V= ,and = ——
YN2 4_2 YH2 4_2 YNH3 4_2

Substituting the mole fractions in terms of extent of reaction into equation (E-5) yields

N
N
~
|
N
o~
N—
N
B
N

105 < (26
T T oy

For P = 300 bar, we have
(20)%(4-20) = 1.3347(1 - H(3-39)°
We can use the following Matlab statements to solve the nonlinear equation
>> ffzinline('(2*z)"2*(4-2*z)"2-1.3347*(1-z)*(3-3*2)"3");
>> zeta=fsolve(ff,.5,optimset('Display’', off"))

Zeta =
0.3676
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The extent of reaction at 500°K and 300 bar is £= 0.3676.

(b) The Van der Waals equation of state.

We assume that ¢, = ¢ = fugacity of pure species that can be evaluated from the Van de
Waals equation of state

|n@:(z—1)—§—|n (Z -B) (E-6)

From Example 4.2-2, the Van der Waals equation of state P = RT _ % can be written in

v-b v

terms of the compressibility factor Z = % as

Z -(1+B)Z°+AZ-AB=0 (E-7)
. . bP aP
In this equation B = T and A = (RTY? where the constant a and b can be evaluated from
the critical properties:
2
a= z @ and b = RT, (E-8)
64 P 8P

c c

Table E-1 lists the critical properties, the parameters a and b evaluated from equation (E-8),
the compressibility from equation (E-7), and the fugacity coefficient from equation (E-6).

Table E-1 Summary of Fugacity Coefficient Calculation

NHs(g) N2(g) Ha(g)
T.[°K] 405.5 126.2 33.3
P [atm] 111.3 33.5 12.8
a [Pa-m®mol’] 0.425 0.137 0.0249
b [m®mol] 3.74x10° 3.86x10° 2.67x10°
YA 0.897 1.105 1.11
Oi 0.885 1.098 1114
The fugacity coefficients can be substituted into equation (E-4)
2 ~2
K= TP oo (E-4)
yNZ(DN2 yHZ(DH2
y2
K=0516—"5-P?
Yn, Y,
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In terms of the extent of reaction the above equation becomes

1.483x10° = 0.516 (2¢) (4~ 25)23 p2
1-<)B-3%)

For P = 300 bar, we have
(20)%(4 -20) = 2.5868(1 — O)(3-39)°
We can use the following Matlab statements to solve the nonlinear equation

>> ff=inline('(2*z)"2*(4-2*z)"2-2.5868*(1-z2)*(3-3*2)"3");
>> zeta=fsolve(ff,.5,optimset('Display’', off"))
zeta =

0.4311

The extent of reaction at 500°K and 300 bar is £= 0.4311.

Table E-2 lists the Matlab program to evaluate the fugacity coefficient

Table E-2 —---mmmmmm oo
% Example 6.6-1c, compressibility using Van der Waals EQS
%
R = 8.314; % Pa.m3/(mol.K)
Tc=[405.5 126.2 33.3] ; % Degree K
Pc=[111.3 33.5 12.8]*1.01325€5 ; %Pa
av=27*(R*Tc).»2./(64*Pc); % Pa.m6/mol2
bv=R*Tc./(8*Pc); % m3/mol
name="NH3*N2*H2";
%
P=3e7; % Pa
T=773; % K
foric=1:3

ib=3*(ic-1)+1;ie=ib+2;

ni=name(ib:ie);

a=av(ic);b=bv(ic);
%
disp(ni)
fprintf('a(Pa.m6/mol2) = %g, b(m3/mol) = %g\n',a,b)
A=a*P/(R*T)"2;B=b*P/(R*T);
fprintf('A = %8.5e, B = %8.5e\n',A,B)
b2=-(1+B);b1=A;b0=-A*B;
fprintf('b2 = %8.5e, bl = %8.5e, b0 = %8.5e\n',b2,b1,b0)
Z=1;
for i=1:20

fz=((Z+b2)*2+b1)*Z+b0;
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dfz=(3*Z2+2*b2)*Z+b1;
eZ=fz/dfz;Z=7-eZ;
if abs(eZ)<.00001; break; end
end
foP=exp((Z-1)-A/Z-log(Z-B));
fprintf('Z = %8.5f, f/P = %8.5f\n",Z,foP)
end

>> e6d6dlc

NH3

a(Pa.m6/mol2) = 0.425181, b(m3/mol) = 3.73679e-005

A = 3.08828e-001, B = 1.74434e-001

b2 =-1.17443e+000, bl = 3.08828e-001, b0 = -5.38700e-002
Z = 0.89713, f/P = 0.88484

*N2

a(Pa.m6/mol2) = 0.136824, b(m3/mol) = 3.86383e-005

A =9.93810e-002, B = 1.80364e-001

b2 =-1.18036e+000, bl = 9.93810e-002, b0 = -1.79247e-002
Z = 110511, f/P = 1.09792

*H2

a(Pa.m6/mol2) = 0.0249325, b(m3/mol) = 2.66832e-005

A = 1.81096e-002, B = 1.24557e-001

b2 = -1.12456e+000, bl = 1.81096e-002, b0 = -2.25568e-003
Z = 1.11007, f/P = 1.11444

6.7 Heterogeneous Reaction

We will consider an equilibrium system with a gas phase and one or more condensed phases.
The mole fractions in the equilibrium relations refer to the mole fraction in a given phase, not
the total mole fraction. When the heterogeneous system is in equilibrium, there will be
chemical equilibrium in the gas phase and also phase equilibrium between species in the gas
phase and the pure condensed phases. When a pure condensed phase is present, the partial
pressure of that component in the gas phase will equal the vapor or saturation pressure of the
pure condensed phase. Hence a pure condensed phase cannot exist if the partial pressure of
that component is less than the vapor pressure.

The activity of a pure condensed phase is given by
f
a= —
f [o]
In this definition, f is the fugacity of the pure solid in the equilibrium system and f° is the
fugacity of the pure condensed phase at 1 bar. For a pure substance at given T and P, we have
du=vdP —sdT (6.7-1)
At constant temperature
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du=vdP = RTd(Inf) (6.7-2)

Integrating equation (6.7-2) from the standard pressure 1 bar to the pressure of the system
yields

RT [ d(Inf) = jl'?/dp

RTIn (%] =RTIna=v(P -1) (6.7-3)

We have assumed incompressible for the volume of the condensed phase. The activity is
given by

a=exp [%} (6.7-3)

Except for very high pressures the activity is close to unity. The state of the pure condensed
phase at equilibrium is not significantly different from the standard state.

EXAMPIE 6,717 =mmmmmem e
Determine the activity of liquid water at 30°C and at the saturation pressure, 10 bar, and 100
bar.

T T ]

At 30°C, P**' = 0.0424 bar. We will assume the volume of liquid water remains constant at
the saturation temperature of 30°C.

v = 0.001004 m®/kg = (0.001004)(18.02) = 0.01809 m*/kmol

The activity of liquid water at 30°C and 0.0424 bar is

_ [V(P —1)} _ {0.01809(0.0424—1) x10°
azexp| ———=| =ex

= 0.9993
(8314.3)(303.15) }

The activity of liquid water at 30°C and 10 bar is then

_ {0.01809(10 —0.0424) x10°
a=ex

= 1.0065
(8314.3)(303.15) }

The activity of liquid water at 30°C and 100 bar is

" Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 257
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{0.01809(100 ~0.0424) x10°
a=ex

=1.0736
(8314.3)(303.15) }

Hence the fugacity of a pure liquid varies little over a moderate pressure range.

EXAMPIE 6.7-28 mmmmmm e
Determine the equilibrium conversion for the isomerization reaction of methylcyclopentane
(CH3CsHo) to cyclohexane (CsH12) at 298°K. Gibbs energies of formation are given at 298°K
as: Agof,CH305Hg =31.72 [kJ/moI] and Agofﬁceng =26.89 [kJ/moI]

SOIULION =-mm e o e e -

Determine the equilibrium constant at room temperature
AQ°rn 208 = ZviAgof,zs)s
Agorxn,298 = (Agof)cele - (Agof)Cch5Hg =26.89 — 31.72 = — 4.83 kJ/mol

The equilibrium constant is then

O —
K =exp (— M] = exp( 4,830 ] =7.0182

RT ~ (8.314)(298.15)

The equilibrium constant is also given by the expression

_ fi Vi_ X7 i ) -
oo

Except for very high pressure the ratio % = exp [%} is close to unity. Equation (E-1)

becomes
K= H(Xi7i )Vi (E-2)
: . v XcH 4
For ideal solution: K =TI(x,)" = —"2 = =7.0182
Xenc, 1-¢
$= ;8122 = 0.8753 = 87.5% of the liquid exists as cyclohexane.

& Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 456
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EXAMPIE 6.7-3% mmmmm e
Calcium carbonate can dissociate according to the following reaction:

CaCOs(s) < Ca0(s) + COz(g)

Determine the equilibrium pressure for a closed system with pure CaCOj3 in vacuum at
1000°K. Assume that the two solid phases are completely immiscible.

CaCOs(s) Ca0(s) CO(0)
AQ° 1000 (kI/mol) —951.25 —531.09 —395.81

SOIULION =-mm e o e e -
The equilibrium constant K can be expressed in terms of the activities:

fCaO fCOz
f (o] .I: 0o
Acao aco2 Ca0 Co,

K= = = (E'l)
aCaCOa 1:c;aco3
f(‘f’aCO:.3

Since we have pure solid phases:

I feao = feao exp[%} ~ 1 at low pressure

_f

Acaco, —

f _
ac, o G0 exp[V(P 1)} ~ 1 at low pressure

0 T o
fCaCO3 fCaco3

For the gas phase

Therefore K = P, ==exp (——

The Gibbs energy of reaction is given by

° Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 457
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AQ° rxn 1000 = z V,AQ° f 1000

AQ°mn1000 = (AQ°)cao + (AG°)coz — (AG°H)cacos
AQ°rn000 = (—531.09)ca0 + (— 395.81)co2 — (— 951.25)cacos

AQ° 1000 = 24.35 kJ/mol

K = exp (_ Ag rxn,moo] - o ( 24,350

- =0.0535
RT (8.314)(298.15)

Therefore, calcium carbonate will dissociate at 1000°K until the pressure reaches 0.0535 bar
or until all the available CaCO3(s) reacted.

6.8 Thermodynamics of Pack Cementation

Pack cementation is a process where a pure element or master alloy is deposited on the
surface of a superalloy to extend its life in corrosive and oxidizing environments at high
temperature. There are four constituents to this process: a filler, a pure element or master
alloy, an activator, and a substrate. The inert or filler provides a medium for vapor transport,
e.g., aluminum oxide Al,Os;. The pure element or master alloy will be deposited on the
substrate. The activator is used to transport the master alloy through the filler to the substrate,
which is the surface of the superalloy. We will consider the case where aluminum with AlF;
activator will be mixed with aluminum oxide powder in a pack cementation process at
1400°K. A schematic of the process is shown in Figure 6.8-1 where the system is maintained
at 1 atm in an environment of Argon gas. The bulk pack is the region where aluminum and
activator exist within the filler. In the depleted zone, there is no aluminum or activator. For
this process aluminum is transferred from the bulk pack to the substrate in the form of
aluminum flouride vapor, under the action of the thermodynamic activity gradient that exists
between the pack and substrate.

Bulk Depleted
pack zone

Substrate

Figure 6.8-1 Schematic of pack aluminizing process.
At the bulk pack the following reactions will occur

AlIF(s) = AlFs(g) (6.8-1)
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2AI(1) + AlF3(s) = 3AIF(g) (6.8-2)
Al(l) + 2AIF5(s) = 3AIF,(Q) (6.8-3)
2A|F3(g) = A|2F6(g) (68-4)
Since the melting point of pure aluminum is 933.6°K, aluminum will exist in the bulk pack as
a liquid. The five partial pressures (Pair, Pair2, Pairs, Paizrs, and Pay) in the bulk pack can be
obtained from the four equilibrium conditions above and the assumption that

Pair + Pair2 + Pairs + Paizrs + Par = 1 atm (6.8-5)

Table 6.8-1 provides data for the Gibbs energies of formation for the species present in the
process.

Table 6.8-1 Ag°mn1400 in kcal/mol-°K
Thermodynamic Data for Mineral Technology, L. B. Pankrats, J. M. Stuve, and N. A. Gokcen
Species | AlF3(c) AlF(g) AlF,(g) AlFs(g) | Al(c,l) | AlFs(g)

AQ°rnaa00 | —274.125 | —88.241 | - 173.235 | —267.838 0 —532.504

The equilibrium constant K is then calculated from
K = exp(— Ag° 1400 /RT) (6.8-6)
In this equation, Ag°nna0 = D V;AQ° t 1400

The equilibrium constant K; for reaction (6.8-2): [2Al(l) + AIF;(s) = 3AIF(g)] can be
expressed in terms of the activities:

3
a'AIF

2
Anir,2al

K = (6.8-7)

Since we have pure solid and liquid phase:

fae  far RT
aa = f_@' = f_/j)' = exp[v(P_l)} =1
o fa RT
For the gas phase
Q= am - YaeP
MRS latm AR



The equilibrium constants for the four reactions (6.8-1) - (6.8-4) are then related to the partial
pressures by the following relations

Ky = Pares (6.8-8)

Ko = Pag’ (6.8-9)

Ks = Pair2’ (6.8-10)

Ky = % (6.8-11)
AIF3

The five partial pressures can be easily determined from equations (6.8-8)-(6.8-11) and
equation (6.8-5). The results are

Pairs = 0.1043, Pajr = 0.3241, Pajr2 = 0.0327, Pajzrs = 0.0035, and Pa, = 0.5353

The following Matlab program is used to evaluate the partial pressures
% Aluminum packing with AIF3 activator

% T = 1400 K

R =1.987;T = 1400;RT = R*T;P=1,;

% Data at 1400 K

dGAIF3c = -274.125;dGAIF3 = -267.838;

dGAIF = -88.241; dGAIF2 = -173.235;

dGHF = -67.047; dGAI2F6 = -532.504;

%

dGr = dGAIF3 - dGAIF3c; K1 = exp(-1000*dGr/RT);

dGr = 3*dGAIF- dGAIF3c; K2 = exp(-1000*dGr/RT);

dGr = 3*dGAIF2 - 2*dGAIF3c; K3 = exp(-1000*dGr/RT);

dGr = dGAI2F6 - 2*dGAIF3; K4 = exp(-1000*dGr/RT);

% Evaluate the partial pressure at the bulk pack

%

PAIF3 = K1; PAIF = K2/\(1/3); PAIF2 = K3"\(1/3); PAI2F6 = K4*PAIF3"2;
PAr =1 - (PAIF3 + PAIF + PAIF2 + PAI2F6);

disp(‘Partial pressure in atm, diffusion in argon")

disp('PAIF3 PAIF PAIF2 PAI2F6 PAr)
fprintf('%10.3e %10.3e %10.3e %10.3e %10.3e
%10.3e\n',PAIF3,PAIF,PAIF2,PAI2F6,PAr)

>> c6d8
Partial pressure in atm, diffusion in argon
PAIF3 PAIF PAIF2 PAI2F6 PAr

1.043e-001 3.241e-001 3.270e-002 3.481e-003 5.353e-001
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6.9 Equilibrium in Electrochemical Systems

In electrochemical systems we can obtain work by applying an electric potential to two
electrodes. A galvanic cell is an electrochemical cell that uses a spontaneous reaction to
produce useful work. When copper and iron pipes are connected, a galvanic cell is created as
shown in Figure 6.9-1. Electron will flow from iron with lower electron affinity to copper
with higher affinity until a few volts counterbalancing electrical potential is established
between them. An electrochemical cell also needs an electrolytic solution in contact with the
two metals that allows ions to be transported from one metal to the other. Water is an

electrolyte since it contains H*, OH", and other ions.

Anions (-)
migrate
toward
anode

Iron pipe: anode;
metal oxidizing
reaction occurs here

Electron flow
—

Metallic connection

Water: electrolyte; contains ions

Fe(OH), H.(9) T
—

H —>

<«——OH

Cations (+)
migrate
toward
cathode

Copper pipe: cathode;
reducing reaction
occurs here

Figure 6.9-1 Schematic of a galvanic cell.

An electrolytic cell is an electrochemical cell that requires electrical work to induce a
reaction that would not occur spontaneously. An example of an electrolytic cell is shown in

Figure 6.9-2 where both electrodes are immersed in a common electrolyte.

Anions (-)
migrate
toward
anode

Electron flow
— >
(E)

T 0,(0)
Cu2+_>

—
H

<«—— SO,

Cations (+)
migrate
toward
cathode

Figure 6.9-2 Schematic of an electrolytic cell.

At the cathode we have reduction of cupric ions to grow solid copper:
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Cu?*(l) + 2e” - Cu(s) (6.9-1)
At the anode we have oxidation of the water:
H,O(l) — 0.50,(g) + 2H™(1) + 2¢ (6.9-2)

The reaction (6.9-1) occurring on the cathode and reaction (6.9-2) occurring on the anode are
called half-cell reactions. The overall reaction is obtained by adding the oxidation and
reduction half reactions:

H,0() + Cu?*(l) = 0.50,(g) + 2H*(I) + Cu(s) (6.9-3)

Electrochemical cells can contain different electrolyte compositions at the anode and the
cathode. An example shown in Figure 6.9-3 is an alternative electroplating process for
copper in which zinc is oxidized at the anode and goes into solution as Zn*". This cell is
galvanic since the copper growth occurs spontaneously without the input of electrical work.
The two electrolytes are separated by a salt bridge that allows a net charge to be transferred
from one electrolyte solution to the other but does not allow undesired mixing of the
electrolyte. A salt bridge in impermeable to the ions. It can be a simple porous disk or a gel
saturated with a strong electrolyte such as KCI.

Electron flow
—_—

- +
ZnS0O, CuSO,
Anions (-) Cations (+)
migrate cations anions migrate
toward toward
anode cathode
Salt
bridge
Electrolyte 1 Electrolyte 2

Figure 6.9-3 A galvanic cell with a salt bridge.
A shorthand notation has been developed to describe electrochemical cells. Starting at the
anode, we pass through the electrolyte to the cathode and indicate the active species in
chemical notation. A vertical bar separates two phases, that is, phase 1| phase 2. A double bar
indicates a salt bridge or an impermeable separation of the phases, that is, phase 1|| phase 2.
The short hand notation for the electrolytic cell shown in Figure 6.9-2 is:

Pt|O2(g)|H2S04(1), CuSO4(1)|Cu(s) (6.9-4)

The short hand notation for the galvanic cell shown in Figure 6.9-3 is:

Zn(s)[ZnS04(1)[|CuSO4(1)|Cu(s) (6.9-5)
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The differential electrical work, 8W", can be related to the electric potential difference
between the cathode and the anode, E, and the differential amount of charge transferred, dQ,
by the equation:

W™ = - EdQ (6.9-6)

The sign convention for equation (6.9-6) is chosen so that when the cathode has a positive
potential with respect to the anode, the process is spontaneous, while a negative potential
indicates that work is required for the process to proceed. The oxidation half-reaction at the
anode causes a flow of electrons in the external circuit; therefore the differential charge
transferred can be related to the extent of reaction as follows:

{charge transferred} = { molee” liberated }{charge

- . - }{extent of reaction}
molespecies reacting | | molee

dQ = zFd¢ (6.9-7)
In this equation, z is the number of moles of electron liberated per mole of species that reacts
and F is Faraday’s constant, 96,485 C/(mole €°), which represents the charge of 1 mole of
electrons. Substituting dQ from equation (6.9-7) into equation (6.9-6) yields

W™ = — zEFd¢ (6.9-8)
For reversible reaction with non-Pv work we have

SW' = (dG)rp = > sy, d& (6.9-9)

Comparing equations (6.9-8) and (6.9-9) we obtain

—ZEF = Zﬂi‘/i = Z(gf +RT In%}/i (6.9-10)
Assuming the activity of the solids in equation (6.9-10) is unity, we obtain
—ZEF = Agp,, +RTIn { H (yiéi P)Vi } H (Xi7i )Vi (6.9-11)
vapors liquids

Electrochemical cells typically operate at low pressure so we can assume ¢.= 1. For the

liquid in the electrolyte, the standard state is 1-m solution where m denotes molality (moles
per kg of solvent). Equation (6.9-11) becomes

—ZEF = Ag°, + RTIn{H( i)V‘}H(Ciyi ) (6.9-12)

vapors liquids
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In this equation, the concentration c; is in molality. If a species in the liquid concentration of
1 mole per kg of solvent and its interactions corresponding to an ideal solution, it has cjy = 1.
Dividing equation (6.9-12) by zF yields

E=Ep, - f—; In{H(Pi )V‘}H(Cm )’ (6.9-12)

vapors liquids

In this equation, the standard potential of reaction is defined as

Ena =— 2o (6.9-13)
RT

The standard potential of reaction is obtained from thermochemical data and is measured
with reference to hydrogen-hydrogen ion oxidation reaction, whose potential is defined as
zero:

Ha(g) — 2H(I) + 2¢ E°=00V (6.9-14)

EXAMPIE 6,731 oo
The reverse copper disproportion reaction has been proposed to etch solid copper:

Cu + Cu?*(l) > 2Cu*(l)

Determine the equilibrium constant of the disproportionation reaction using the following
half-cell reactions:

Cu®*(l) + e Cu*(l) E°=0.153 V

Cu—Cu'(l) +e E°=-0.521V
SOIUION == m i m e
The sum of the half-cell reactions gives the copper disproportion reaction, therefore

E ,= 0.153-0.521 =-0.368 V

xn

Agl[')xn =-zFE;

rxn

= (-1)(96,485)(— 0.368) = 35.5 kJ/mol

Since Ag;,, >0, this reaction will not occur spontaneously. The equilibrium K constant is then

o]
K=K=exp _ A | exp| — 35,500 =6.01x107
RT (8.314)(298.15)

19 Koretsky M.D., Engineering and Chemical Thermodynamics, Wiley, 2004, pg. 466
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6.10 Complex Chemical Equilibrium

We want to determine the number of intensive variables that must be specified to define a
system consisting of m identifiable chemical species distributed among n phases. To describe
each phase we need m—1 independent compositions, T, and P to a total of m+1 intensive
variables. The total number of variables required to specify = phases is n(m+1). For phase
equilibrium we have the following set of equations:

T =TP=_.. =T"
P =pPP= . =P"
o o
Hy— M3 = = M3
po o wh

Each row in the set of equations above contains (r—1) independent equations. Thus there are
a total of (xm—1)(m+2) independent equations between the variables. In addition to these
equations there are R equations from the number of independent reactions

2 Hv=0 (=1..R)

There might be additional equations, expressible in terms of intensive variables, which apply
to the system. These equations will be called additional constraints and their number will be
designated s. The total number of independent equations involving intensive variables is
therefore

(t-1)(m+2) + R + s

The number of variables we can independently pick (the so-called degree of freedom, f) is
obtained by subtracting the total =(m+1) variables we need to specify by the [(t-1)(m+2) +

R + s] independent equations.
f =n(m+1) —[(r-1)(m+2) +R+s]=m+2 -t —R -5
We can independently specify (m + 2 — © — R —s) to complete define a system with m

components and w phases. The combination of (m— R — s) is called the phase rule
components, C. We now need to determine the number of independent reaction, R, among
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the chemical species in a system. The procedure will be illustrated by the following
examples.

EXxample 6.10-1. 1 coommme e

In a reacting system at equilibrium, the following species are considered to be present: COy,
CO, C, CHy, Hy, H,0O, and N,. Determine the number of phase rule components and the
number of independent reactions.

SOIULION —=mm e

We will first create a coefficient matrix called the g matrix as follows:

C @) H N

CO, 1 2 0 0
CO 1 1 0 0
C 1 0 0 0
CH,4 1 0 4 0
H» 0 0 2 0
N3 0 0 0 2
H.0 0 1 2 0

The number of phase rule components, C, is equal to the rank of the £ matrix. The rank of a
matrix is the order of the largest determinant having a nonzero value that can be created from
the matrix. The order of a determinant, or a square matrix, is the number of rows or columns.
For this example, the rank of the matrix is equal to or less than 4. A fourth order nonzero
determinant can be formed from the £ matrix. Therefore C = 4. The rank of the # matrix can
also be founded from the following Matlab statement:

>>rank([1200;1100;1000;21040,0020,0002;0120))

ans =
4

Since C=m-R —s, and s = 0. The number of independent reaction R is
R=m-C=7-4=3

We now need to find the three independent reactions. First we write the formation reaction
for each of the 4 molecular species (CO,, CO, CHy4, and H,0).

C+0,=CO, )
C +0.50, = CO )
C+2H,=CH,4 3)
H, + 0. 50, = H,O (4)

Since free oxygen is not among the m species, we can eliminate O, from the above set by
using the second equation

1 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, 1999, pg. 535
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C+050,=CO= 050,=C0O -C
Equation (1) becomes

C+2C0O -2C=C0O; = 2CO=C+C0O,
Equation (4) becomes

H,+CO-C=H,O0O= H,+CO=C+H,0

We now have a set of three independent reactions

2CO =C +CO, (E-1)
C+2H,=CH, (E-2)
H, + CO =C + H,0 (E-3)

It should be noted that there are more than one set of 3 independent reactions.

EXample 6.10-2, —--mmnmmmmm oo e

In a reacting system at equilibrium, the following species are considered to be present: Hy,
ethane (C;Hg), CO, H,0, and methanol (CH3OH). Determine the number of phase rule
components and the number of independent reactions.

SOIULION == e e

The g matrix is created as follows

H» CoHs CO H.0 CH3;0H
C 0 2 1 0 1
H 2 6 0 2 4
©) 0 6 0 1 1

The rank of the g matrix is 3 = C (number of phase rule components)
Since C=m-R —s, and s = 0. The number of independent reaction R is

R=m-C=5-3=2
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Appendix A
Solving Algebraic Equations

A.1 The Newton-Raphson Method

The Newton-Raphson method and its modification is probably the most widely used of all
root-finding methods. Starting with an initial guess x; at the root, the next guess x, is the
intersection of the tangent from the point [x;, f(x;)] to the x-axis. The next guess xs is the
intersection of the tangent from the point [x», f(x2)] to the x-axis as shown in Figure A.1. The
process can be repeated until the desired tolerance is attained.

/

f(x)

Figure A.1 Graphical depiction of the Newton-Raphson method.

The Newton-Raphson method can be derived from the definition of a slope

F(x) = f(x)-0 _ X = X{ — f(x)

X; =X, f I(Xl)
In general, from the point [x,, f(Xn)], the next guess is calculated as

f(x,)
F(x,)

Xn+1 = Xn—

The derivative or slope f(x,) can be approximated numerically as

f(x, +Ax)— f(x,)
AX

' (xn) =

A-1



EXample A L-L —-mmmmmm oo oo
Solve f(x) = x* + 4x* — 10 using the Newton-Raphson method for a root in [1, 2].

SOIULION =-mm e oo e
f(x,)
f(x,)

From the formula Xn+1 = Xn—

f(xn) = x° +4x2—10 = (X)) = 3x + 8%,

X2 +4x%-10

Xn+1 = Xn—
3xZ +8X,

Using the initial guess, X, = 1.5, Xn+1 IS estimated as

3 2
Xy = 15— 12 FAXLS 10y 743
3x1.5° +8x15

A Matlab program for the Newton-Raphson method is listed in Table A.1 where the function
f(x) is an input to the program. The statement eval(f) is used to evaluate the function at a
f(x, +Ax)— f(x,)

given value of x. The derivative is evaluated numerically using f’(x,) = A
X

with Ax = 0.01. A sample result is given at the end of the program.

Table ALl --mmmmm o
% Example A.1: Newton method with numerical derivative
%
f=input(‘f(x)=",'s");
tol=input('error tolerance =1e-5, new tolerance=");
if length(tol)==0,tol=1e-5;end
x1=input(’ First guess=");
x=x1; fx=eval(f);
for i=1:100
if abs(fx)<tol, break,end
x=x+.01;
ff=eval(f);
fdx=(ff-fx)/.01;
x1=x1-fx/fdx;
x=x1,
fx=eval(f);
fprintf('i = %g, x = %gq, fx = %g\n',i,x,fx)
end
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>>eldl

f(X)=x"3+4*x"2-10

error tolerance =1e-5, new tolerance=
First guess=1.5

i=1,x=1.37391, fx = 0.143874
i=2,x=1.36531, fx = 0.00129871

i =3, x=1.36523, fx = 6.39291e-006

A.2 Newton’s Method for Systems of Nonlinear Algebraic Equations

Consider two equations f;(x1, X2) and fa(x4, X2) for which the roots are desired. Let p,, p>be

the guessed values for the roots. f;(x1, X2) and f,(x1, X2) can be expanded about point (p;,, p>)
to obtain

of of
fi(x0 %o) = fu( P, pO) + DLk — pO) + L (w, — p2)=0
1(X1, x2) =fui(py, p7) ox, (X1—p;) ox, (x2— p;)

of of
fo(x1, X2) = fa(py, Py)+ —2(X1— p)+ —2(X2— py) =0
2(X1, X2) = fa( Py, P;) axl(l p,) aXz(z p;)

Let y) = (x:— p;)and yJ =(x2— p5), the above set can be written in the matrix form

of  ofy
X, 0, M :_{fl(pf,p;))}
o, My |y f,(py, p3)
O0X, OX,

or
IPY? = - FE®)

In general, the superscript (0) can be replaced by (k-1)
IEH Dy = - F(p'Y)

J(p™?) is the Jacobian matrix of the system. The new guessed values x at iteration k are
given by

- K) — (k-1 k-1
x = p® = pk 4 ylkD
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Example A.2-1

Use Newton’s method with the initial guess x = [0.1 0.1 —0.1] to obtain the solutions to the
following equations®

f1(X1, X2, X3) = 3X3 — COS(X2 X3) — % =0

fo(X1, Xo, X3) = X2 — 81(x2 + 0.1)* + sin x3 + 1.06 = 0

107 -3

fo(X1, X2, X3) = €7 + 20x3 + =0

Solution
The following two formulas can be applied to obtain the roots
I D =~ Fp')

J(p™Y) is the Jacobian matrix of the system.

of, of, of
J(p*Y) = o, o, o
0%, OX, OXg
| 0%, OX, OX4 |

F(p®?) is the column vector of the given functions

£, (%01 %55 %5)
F(p(k-l)) = | f,(X, X5, X5)
fa(X0, X5, %;)

The new guessed values x at iteration k are given by

- K) — (k-1 k-1
x = p® = pld 4 ykeD

Table A.2-1 lists the Matlab program to evaluate the roots from the given initial guesses.

Table A.2-1 Matlab program for Example A.2-1 -------------
% Newton Method for set of nonlinear equations

%

f1="3*x(1)-cos(x(2)*x(3))-.5";
f2="x(1)*x(1)-81*(x(2)+.1)"2+sin(x(3))+1.06';
f3="exp(-x(1)*x(2))+20*x(3)+10*pi/3-1" ;

! Numerical Analysis by Burden and Faires
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% Initial guess

%

x=[0.1 0.1 -0.1];

for i=1:5

f=[eval(f1) eval(f2) eval(f3)];

Jt=[3 2*x(1) -X(2)*exp(-x(1)*x(2))

X(3)*sin(x(2)*x(3)) -162*(x(2)+.1) -x(1)*exp(-x(1)*x(2))
X(2)*sin(x(2)*x(3)) cos(x(3)) 20]";

%

dx=Jt\f";

X=x-dX';

fprintf('’x = ");disp(x)

end

>> eld5d1

x= 0.4999 0.0195 -0.5215

x= 0.5000 0.0016 -0.5236

x= 0.5000 0.0000 -0.5236

x= 0.5000 0.0000 -0.5236
= 0.5000 0.0000 -0.5236

Matlab can also evaluate the Jacobian matrix of the system analytically as shown in Table
A.2-2

Table A.2-2 Matlab program for Example A.2-1 -------------

% Newton Method with Jacobian matrix evaluated analytically by Matlab

%

syms x1 x2 x3

F=[3*x1-cos(x2*x3)-.5
x172-81*(x2+.1)"2+sin(x3)+1.06
exp(-x1*x2)+20*x3+(10*pi-3)/3];

Jac=[diff(F,x1) diff(F,x2) diff(F,x3)];

x1=.1;x2=.1;x3=-.1;

k=0;

disp(" k x1 X2 x3')

fprintf('%3.0f %210.7f %10.7f %10.7f\n'k,x1,x2,x3)

for k=1:10

Am=eval(Jac);Bc=eval(F);

yk=Am\Bc;

x1=x1-yk(1);

x2=x2-yk(2);

x3=x3-yk(3);

fprintf('%3.0f %10.7f %10.7f %10.7f\n",k,x1,x2,x3)

if max(abs(yk))<.00001, break, end

end

>> eld5d1b
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Jac =

[
[

O, wWNEFLOX

3, sin(x2*x3)*x3, sin(x2*x3)*x2]

2*x1,

X1
0.1000000
0.4998697
0.5000142
0.5000001
0.5000000
0.5000000

-162*x2-81/5,
[ -x2*exp(-x1*x2), -x1*exp(-x1*x2),

X2
0.1000000
0.0194668
0.0015886
0.0000124
0.0000000
0.0000000

X3
-0.1000000
-0.5215205
-0.5235570
-0.5235985
-0.5235988
-0.5235988

cos(x3)]
20]

Solving set of nonlinear equations with Excel

Use the initial guess x = [0.1 0.1 —0.1] to obtain the solutions to the following equations

f1(X1, X2, X3) = 3X3 — COS(X2 X3) — % =0

fo(X1, X2, X3) = X2 — 81(x2 + 0.1)* + sin x3 + 1.06 = 0

fo(X1, X2, X3) = €792 + 20x3 +

¥4 Microsoft Excel - Nonlinear.xls

J@ File Edit View [nsert Format Tools Data Window Help Acrobat

107 -3

=0

DeE&any

SBRRAI oo

= A AE WS 150% @,

A-6

D8 - -
A B C D E

1 X y z

2 0.1 0.1 -0.1
3 f1 -1.19995

4 f2 -2.26983

o 3 8.46202

6 Obj. func  78.1977



Appendix B

Curve Fitting

B.1 Nonlinear Curve Fitting

A sample consists of a layer of aluminum and a layer of a composite coating is tested in a
vacuum chamber by measuring its temperature as a function of time. The behavior of the
sample temperature has a nonlinear dependence on the emissivity ¢ of the sample and the
heat transfer coefficient h between the coating and the vacuum air.

Insulation

- Aluminum

Composite
coating

Vacuum chamber

Figure B.1-1. A sample enclosed within a testing chamber.

The unknown parameters h and ¢ may be obtained by fitting the model equation to
experimental data as shown in Figure B.1.2 where the curve represents the model equation
and the circles represent the data.

260

Temperature(K)

200 I I I I I I I I I

Figure B.1-2. Transient temperature of a typical sample.
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To illustrate how this is done, first consider a portion of the graph in Figure B.1-2 that is re-
plotted in Figure B.1-3. The relationship between the temperature T; obtained from the model
equation and the experimental value T;ex, Can be expressed generally as

Ti,exp =T (t; g, h) + € (8.1-2)
where e; is a random error that can be negative or positive. T; is a function of the independent

variable t; and the parameters h and €. The random error is also called the residual, which is
the difference between the calculated and measured values.

G S——

rd

t,
Figure B.1-3. Relationship between the model equation and the data

Nonlinear regression is based on determining the values of the parameters that minimize the
sum of the squares of the residuals called an objective function Foy;.

N N N
Fan= D60 = D Ty T =21 T, B.19)
i=1 i=1

i=1 i

Where N is the number of data points or measured temperatures in this case. The temperature
from equation B.1-2 can be expanded in a Taylor series around h and ¢ and curtailed after the
first derivative.

T T+8T”A +8TijAh (B.1-4)
ij+1= Tij = Aeg ' d-
W e oh

Where j is the guess and j+1 is the prediction, Ae = g+ — g, and Ah = hj;1 — h;. We have
linearized the original model with respect to the parameters h and & Equation (B.1-4) can be
substituted into Eqg. (B.1-2) to yield

Tiow =Ty = Dl ag+ i Ap g (B.1-5a)
i,exp i oz oh i .

or in matrix form



{D} = [Z]{AA} + {E} (B.1-5b)

where [Z;] is the matrix of partial derivatives of the function (called the Jacobian matrix)
evaluated at the guess j, the vector {D}contains the differences between the measure
temperature and the calculated temperature at the guess j, the vector {AA}contains the
changes in the parameter values, and the vector {E} contains the residuals. It should be noted

that as the final values of the parameters are obtained after the iterations vector {D} is the
same as vector {E}.

oT, T, ]
aa.l(f" aa.llj Tl,exp _Tl,j €,
Z2 Y2 T —To Ag e
[21=] 65 on | ADF=q 20 2 {AAR = e {BFS 0
afN 6‘I"N Thew =T j Ex
L 0 oh |
We minimize the objective function
N N )
FObj = ZeIZ = Z(Ti,exp _Ti) (81'3)
i=1 i=1

by taking its derivative with respect to each of the parameters and setting the resulting
equation to zero.

oF,, N .
= 23T, -T,) =0 (B.1-63)

o€ = o€

oF bi N oT.
M= 2NT . —T) ZL =0 B.1-6b
= ;( o =T (B.1-6b)

This algorithm is Gauss-Newton method for minimizing the sum of the squares of the
residuals between data and nonlinear functions. Equations (B.1-6a) and (B.1-6b) can be
combined in a matrix form

[Z]'{E}=0 (B.1-7)

where [Zj]T is the transpose of [Z;]. Let consider N = 3 so we can see the combination from
(B.1-6a) and (B.1-6b) to (B.1-7).

or, oT, oIy | (T

_ —L — 1,ex]
os 0O O¢ T i
oT, oT, 0T, 2.6xp

oh oh oh | Tees—Ts

1

T
T,: =0

Substitute {E} = {D} - [Z;]{AA} from Eq. (B.1-5b) into (B.1-7)
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[Z1'{{D} - [Z{aA}} =0
or

[Z]'[Z{AAY = {[Z]'{D}} (B.1-8)
The Jacobian matrix [Z;] may be evaluated numerically for the model equation (B.1-1).

T, _ Ti(s+ds,h)-Ti(s,h) (B.1-9a)
o€ og |

T, _ Ti(e,h+6h)-T(s,h) (B.1-9b)
oh oh |

Typically, 8¢ can be chosen to be 0.01 and 8h can be chosen to be 0.01 W/m?K. Thus, the
Gauss-Newton method consists of solving Eq. (B.1-8) for {AA}, which can be employed to
compute improved values for the parameters h and &.

§+1 = g + Ag (from {AA})

hjx1 = hj + Ah (from {AA})
This procedure is repeated until the solution converges that is until Ag and Ah fall below an
acceptable criterion. The Gauss-Newton method is a common algorithm that can be found in

many numerical method texts. However, this description follows the notations and
development by Chapra and Canale.

Example B.1-1

Fit the function T(t; &, h) = ¢(1 — e ™) to the data.

t 0.25 0.75 1.25 1.75 2.25
T 0.28 0.75 0.68 0.74 0.79

Use initial guesses of h =1 and ¢ = 1 for the parameters.
Solution
The partial derivatives of the function with respect to the parameters h and ¢ are

I _ 1 eand T = ge
& oh

—ht

B-4



9 L | 192212 0.1947]

o¢ ch
ot o1, | |05276 03543

[Zl1=| 2= on |=|07135 0.3581
a_;_ 81:' 0.8962 0.3041
N N 0.8946 0.2371
| O¢ oh | -

The matrix multiplied by its transpose results in

[0.2212 0.1947]
0.5276 0.3543
0.7135 0.3581
0.8962 0.3041
0.8946 0.2371

0.2212 0.5276 0.7135 0.8962 0.8946}

[zl = {o 1947 0.3543 0.3581 0.3041 0.2371

T 2.3194 0.9489
[Zi]'[Z] =
0.9489 0.4404

The vector {D} consists of the differences between the measurements T and the model
predictions T(t; &, h) = g(1 —e™)

0.28-0.2212| [ 0.0588 |
0.57-0.5276 0.0424

{D}=0.68-0.7135| = | -0.0335
0.74-0.8262| |-0.0862
10.79-0.8946 | | —0.1046 |

The vector {D} is pre-multiplied by [Z;]" to give

[ 0.0588 ]
0.0424
; 02212 0.5276 0.7135 0.8962 0.8946 —~0.1533
[Z]{D} = ~0.0335 | =
0.1947 0.3543 0.3581 0.3041 0.2371 —0.0365
~0.0862
|~ 0.1046

The vector {AA} can be calculated by using MATLAB statement dA=ZjTZ)\ZjTD ({AA} =
{[Z1'Z]\Z1{D}})

0.5019

(AA} = {— 0.2714}
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The next guesses for the parameters £and h are
€=1-0.2715=0.7285
h=1+0.5019 =1.5019
Table B.1-1 lists the MATLAB program with the results of two iterations.

Table B.1-1

% Gauss-Newton method

%

t=[0.25 0.75 1.25 1.75 2.25];

T=[0.28 0.57 0.68 0.74 0.79];

e=1;h=1,;

Tmodel="e*(1-exp(-h*t))’;
dTde="1-exp(-h*t)’;dTdh="e*t.*exp(-h*t)';
for i=1:2

Zj=[eval(dTde) eval(dTdh)];
ZiTZ|=Zj*Z]

D=T-eval(Tmodel)

ZjTD=Zj*D

dA=ZjTZ\ZjTD

e=e+dA(1);

h=h+dA(2);

fprintf(lteration #%g: e = %8.4f, h = %8.41\n',i,e,h)
end

>> Gauss
ZjTZj =
2.3194 0.9489
0.9489 0.4404
D=
0.0588
0.0424
-0.0335
-0.0862
-0.1046
Z|TD =
-0.1534
-0.0366
dA =
-0.2715
0.5019
Iteration #1: e = 0.7285, h= 1.5019
ZjTZj =
3.0660 0.4162
0.4162 0.0780
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D=
0.0519
0.0777
0.0629
0.0641
0.0863

ZjTD =
0.2648
0.0397

dA =
0.0625
0.1758

lteration #2: e = 0.7910, h= 1.6777

Table B.1-2 lists the Matlab program that solves for the two parameters € and h until the
maximum change of the parameters between two successive iterations is less than 0.01. The
standard error and the correlation coefficient of the fitted values are also evaluated. The
standard error stde is determine from

stde :NL i(TLexp ~T.f= S where S = i(T
- i=1

2
2 & N -2 )

iexp

The standard error quantifies the spread around the regression curve. A crude measure of the
goodness-of-fit is given by the correlation coefficient r

r= \/E’ where St = i(-ri‘exp _-ITi,exp )2
‘ i=1

In this expression T, .. is the mean of the experimental dependent variable.

i.exp

Table B.1-2 Gauss Newton method for nonlinear curve fitting

% Gauss-Newton method

%

t=[0.25 0.75 1.25 1.75 2.25]
T=[0.28 0.57 0.68 0.74 0.79];
e=1;h=1;
Tmodel="e*(1-exp(-h*t))";
dTde="1l-exp(-h*t)';dTdh="e*t.*exp(-h*t)’;
for i=1:20

Zj=[eval(dTde) eval(dTdh)];
ZiTZj=2j"*Zj,
D=T-eval(Tmodel);
ZjTD=Zj"*D;

dA=ZjTZ)\Z|TD;

e=e+dA(1);

h=h+dA(2);



if max(abs(dA))<.01,break, end

end

fprintf(‘# of Iteration = %g: e = %8.4f, h = %8.4f\n',i,e,h)
S=sum((T-eval(Tmodel)).*2);

stde=sqrt(S/(length(t)-2));

Tave=mean(T);Sdev=sum((T-Tave)."2);

cor=sqrt(1-S/Sdev);

fprintf('Standard error = %8.4f, Correlation coefficient = %8.4f\n',stde,cor)

>> gauss2
# of lteration =3: e = 0.7919, h= 1.6753
Standard error = 0.0149, Correlation coefficient = 0.9980

The Matlab function fminsearch can also be used to fit the data to an expression with more
than one parameter, T(t; €, h) = g(1 — e™). Table B.1-3 lists the function required by
fminsearch. Table B.1-4 lists the program that calls fminsearch to find the two parameters
¢ =1 and h = 1. The program also plots the fitted results with the experimental data shown in
Figure B.1-4.

Table B.1-3 Matlab program to define the objective function

function y=nlin(p)

t=[.25 .75 1.25 1.75 2.25];
T=[.28 .57 0.68 0.74 0.79];
e=p(1);h=p(2);
Tc=e*(1-exp(-h*t));
y=sum((T-Tc)."2);

Table B.1-4 Matlab program to find € and h

clf

t=[.25 .75 1.25 1.75 2.25];
T=[.28 .57 0.68 0.74 0.79];
p=fminsearch('nlin’,[1 1])
tp=.25:.1:2.25;
e=p(1);h=p(2);
Tc=e*(1-exp(-h*tp));
plot(tp,Tc,t,T,'0")

grid on
xlabel('t");ylabel('T")
legend('Fitted','Data’)

>> nlinear
p =
0.7919 1.6751




Appendix C
Process Simulator

Process simulator is one of the most common types of software used in process design. It can be
used to perform steady or unsteady materials and energy balances for a wide range of process
equipment. A user usually must follow the following steps to set up a problem on a simulator*:

1. Select all of the chemical components that are required in the process from the
component database.

2. Select the thermodynamic models required for the simulation. These may be different for
different pieces of equipment. For example, the Peng Robinson equation of state can be
used to simulate a pump. However, for a liquid-liquid extractor in the same process, it is
necessary to use a thermodynamic model (e.g. Wilson model) that can predict liquid-
phase activity coefficients and the existence of two liquid phases.

3. Select the topology of the flow sheet to be simulated by specifying the input and output
streams for each piece of equipment.

4. Select the properties (temperature, pressure, flow rate, and composition) of the feed
streams to the process.

5. Select the equipment specifications (parameters) for each piece of equipment in the
process.

6. Select the format of the output results.

7. Select the convergence method and run the simulation.

There are basically three types of solution algorithm for process simulators: sequential modular,
equation solving (simultaneous non-molar), and simultaneous modular. In the sequential modular
approach the process is solved equipment piece by equipment piece. In the equation solving
technique, all the equations for the process are written out together and then the resulting matrix
of nonlinear simultaneous equations is solved to yield the solution. The final simultaneous
modular technique combines the modularizing of the equations relating to specific equipment
with the efficient solution algorithms for the simultaneous equation solving technique.

We will go over a sequence of events needed to simulate a two-stage compressor system using
Provision. This process simulator uses the sequential modular algorithm in which each piece of
equipment is solved in sequence, starting with the first then followed by the second, and so on.
This method is not as efficient as the equation solving technique. However the user can easily
detect the location where convergence is not obtained.

Example: A 1000 Ib-mole per hour mixture of 5% methane, 20% ethane, 25% propane, 30% n-
butane, and 20% n-pentane at 14.7 psia and 90°F is to be compressed first to 50 psia, then to 200
psia using a two-stage compressor system. An inner-stage cooler is used to cool the compressed
gas from the first stage to its original temperature by passing the gas stream through a heat
exchanger in which water is used as a coolant. This is done to maintain a lower energy
requirement for the second stage compressor. A knockout drum is installed after the first cooler
to remove any liquid present in the compressed gas before feeding it to the second compressor.
If you have liquid present in a gas stream, it will damage the impeller of the compressor?.

! Turton et al, Analysis, Synthesis, and Design of Chemical Processes, Prentice Hall, 1998, pg. 480
2 Dr. Pang’s Provision Student Manual
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To open Provision, go to the Start menu, click on Programs, Simsci, and then Proll 8.0. The

following screen should appear:

PRO/Il with PROVISION

File Edit Input Output Tool: Draw Wiew Option: Window Help

Welcome To PROVISION

Beginner or expert, process simulation with PROVISION is easyl If you
are new to process simulation and would like a brief overview of
FROAI's PROVISION Interface, then press:

The Quick Reference Card and the PROZD with PROVISION Tutorial Guide
Guide contain additional information on getting started.

To create a new simulation, select File/New from the menu bar.

FROVISION uses colors to convey the statuz of input data. The following
are samples of how colors are uzed to indicate data entry status:

.: I:l [rata or action iz required
I:l Default data or action, user may overide
I:l Uszer-zupplied data, entry satisfied

],:E Caution, uzer-supplied data outside normal limits

To bypass [or restore] this windows for future PROVISION sessions,
zelect OptionsMwelcome to PROYISION from the menu bar.

Note the different colored boxes and their meanings. They will be very important to remember
later on in the simulation. Click on OK at the bottom of the box to continue into the simulation
environment. Next, click on File and then New. This should bring you to the following screen:

PRO/II with PROYISION - Untitled - [Flowsheet]
ﬂﬁle Edit Input ©utput Tools Draw  View Options ‘Window Help

10|
NEET

0= EHE 4T 2B (B8]l e 58 52w B -0 — =8 a @S] 0@l B x =

Sl

00 & 2 s

|Eelecl items fram the PFD palette ta lay out a lowsheet.

PFD ]

Block
Diagram

Distillation

3

Side Colurnn

[

Shortcut

>

Hixer

<

Spliteer

<

Simple Hx

D

Rigorous Hx

AIRCOOLHK

=

#start H e |] 4T|PRO/IT with PROVISIO... B]Document1 —Mlcrosuftw...l
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This is the basic simulation environment from which you will begin each time you use
Provision. It is called the PFD screen. Before you begin with the procedure given to you in the
assignment, you need to enter the components that you will be using and your equation of state.
First click on the Component Selection button on the top toolbar. This button looks like this:

2
- ===. The following screen should appear:

| SIMSCI - Component Selection

UOK  Range Help Owerview  Status  Maotes
List of Selected Components:
1~ Rearder List
Tiop
Campanent Selection
From System or User-generated Databank L I
Companent: l fadd-
[ ovary I
Select from Lists..
Eattom |
Petroleum. | Lzer-defined | Palymer |
rEditList—————
Delete |
D atabank Hierarchy. .. I Campanent Phases.. I
Rename,.. |
Ok Cancel

|EnlEr the name of the desired component

From here you can either type in the names of your desired components or you can select
them from a list already inside Provision. We will select our components from a list by clicking
on the Select from Lists button. The following screen should appear:

Component Selection - List/Search

Lok Fange Help

Component Family: Sort/Search by tatch
ﬂojt Eongmorlly_l Hsec‘lj ﬂ % Full Name " |nitial String
rocarbon Lightends
All Components - PROCESS Bank € SIMSCI Name/Alias " Embedded Substing
4l Components - SIMSCI Bank " Chemical Formula
Acids
| Alcohals LI Search Sting: IME— Seanch
Companent Full Mame: SIMSCl Mame/dlias: Farmula:
MERCURY MERCURY Ha -
MESITYL OXIDE MESOXD CEH100
METHACROLEIN MACROLM C4HE0
METHACRYLIC ACID HOME C4HEDZ
METHACRYLOMITRILE MACRLNIT C4H5N
METHAME METHAME CH4
METHANETHIOL, METHYL MERCAPTAN METHIOL CH45 ;I
Lidd Components | Femove Components |
Additions to Component List:
METHANE METHANE CH4 -
ETHAME ETHAME C2HE 0K
PROPANE PROPAME C3HE
nBUTANE BUTAME C4H10 Cancel
PEMTANE PEMTAME CoH12 =~
T R

In this assignment, all of the needed components can be found in the All Components -
PROCESS Bank file. Click on the desired species and click Add Components, the selected
species will appear in the bottom text box Additions to Component List. After you selected all
species (Methane, Ethane, Propane, N-butane, Pentane, and Water) click OK to return to the
following screen.
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SIMSCI - Component Selection

WdM  Range Help Owverviews  Statuz  Maotes
Ligt of Selected Components: N
METHANE eorder List
ETHANE _ Tw |
Component Selection PROPAME
From System o User-generated Databark———— | [BUTANE u |
Tom Systern or User-generated D atabanl PENTANE g
Component: I Add - | Hz0
Dot |
Eiattom |
Petroleum... I Userdefined... | Palymer... I
r Edit List
" [elete |
Databank Hierarchy... I Companent Phases. .. I
Bename,. |

Ok Cancel

Click OK to return to the PFD screen. Next click on the Thermodynamic Data button,

T

SIMSCI - Thermodynamic Data

Lok  Fange Help Owverviews  Statuz  Motes

[ Selection of Property Calculation System
Categary Primary Methad: Defined Systems:

fogt Commonly Used 4 | [SoaveRedich-Kwon
&)l Primary kb ethods Add > |
E quations of State Grayson-Streed
Liquid Activity Braun K10
Generalized Comelations Ideal
Special Packages NRTL DR St
Electrolyte > | Jumiguac
[ &ctions for Selected Property Calculation Systemn
b odify... I Delete I Rename... |
oK | Cancel |

Once inside, click on Most Commonly Used and then click on Peng-Robinson in Primary
Method: box. Then click Add and then OK to return back to the PFD screen. We are now ready
to begin the procedure to simulate a Two-stage Compressor System.

Using your drawn PFD as a guide, select needed units and place them on the PFD screen one by
one. All of the choices for equipment are located in the toolbar on the right side of the screen. It
is the thin vertical toolbar titled “PFD”. Click on the Compressor button and then click on the
space in the PFD where you wish to place the compressor. Follow the same steps for Simple HX
(1), Flash, Compressor (2), and Simple HX (2). You will notice that each unit is named by
PROVISION, automatically. You will also notice that each name has a red border meaning that
some conditions have to be supplied.

Click on the Stream button on the build palette to draw the stream lines. All the possible EXIT
ports appear on each unit as soon as the Stream button is selected. The required outlet port are
colored red, while the optional exits are given in green.

Add streams by clicking on the origin of the stream (either a unit exit port or an external feed
stream, on a unoccupied part of the PFD), then click again at the destination of the stream. For
example: to apply a feed stream to C1, click on the PFD that is not occupied by any unit, and
then click again at compressor. Notice the name is given as S1.
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Connect all the streams in order shown in the Figure 1. Pay attention to the number of stream.
Each stream is numbered in the order they are created.

Figure 1 A two-stage compressor system

> It is always safe to save frequently. To save, click on File on the menu bar and click on
Save on the File menu. Type in the file name, Casel or any name you like, and click on
the OK button to go back to the PFD.

You now need to supply the required Stream and Unit Data.

Feed Stream S1: You can select a stream or unit by double clicking on the name in PFD. Let ’s
first start by completing the beginning feed stream, S1. Double click on S1 to select that stream.
You can give it a name, Feed Stream, by typing it in the box next to Description:

Click on the Flowrate and Composition... button to supply the flow rate and compositions. Since
we know the total flow rate, click on Total Fluid Flowrate and type in 1000 Ib-mol/hr. The
border becomes blue as soon as you input the data. Fill in the composition since they have red
borders (0.05, 0.2, 0.25, 0.3, 0.2). Click on OK button when done.

Stream Data - Flowrate and Com

UOM  Hange Help Tag

Specify flowrate and compasition far streamm 51

r~ Fluid Flowsrate S pecification

" Tatal Fluid Flovrate: 1000.0{ Ib-malhr

" Individual Component Flowrates

Component Composition

I ole
METHANE 0.050000
ETHAME 0.20000
FPROFPAME 025000
BUTANE 0.20000
FEMTAME jp.20000
H20

[ Womalize Component Flowrates
Bagzed on Specified Fluid Flowrate

Clear Compositions | Tatal: 1.0000

ak I Cancel

|E nter the compasition
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To satisfy the phase rule, you need two more variables. For this case you know temperature and
pressure. To enter temperature, click on the red box named First Specification: choose
Temperature and type in the temperature, 90°F. To enter the pressure, click on the red box
named Second Specification: choose Pressure and type in 14.7 psia. Click on the OK button
since all the requirements are met. S1 now has a black border.

PRO/II - Stream Data

UOM  Range Help Tag Ovwerview  Status MHotes
Stream: Descriptian: |Feed Stream
Tao Unit: il
r Stream Type
Composzition D efined | Flowrate and Composition... I
Solids Only Stream Stream Solids Data... |

Stream Polymer Data. .. |

i~ Thermal Condition
First S pecification:

|Temperature |;| | SU.DD| F
Second Specification:
|Pressure |;| | 14. ?DD| pzia
Thermodynamic System: |Determined Frorm Connectivity |;|
0K | Cancel I

e

Compressor C1: Double click on the compressor, C1, on the PFD. Supply the Outlet Pressure
as 50 PSIA in the red box. Change the Adiabatic Efficiency to 80%. Default is 100%. Notice the
box is green, meaning that the user can input data. Click on the OK button to go back to the PFD.

PRO/II - Compressor

0k Define  Range Help Owerview  Statuz  Motes

Product Ui
Phases. .
Description: I

ﬁ_ gg:ﬁ;_" Thermedpriamic System: | D efaul (PROT) [~]

Calculational

Method. . Inlet Pressure: I— psia
Outlet Temperature Estimate; l:l F

r Pressure, Work or Head Specification

|Dutlet Pressure |;| | SU.UUU| psia Enter Curve... |

~ Efficiency ar Temperature Specification

|Adiabatic Efficiency |;| | ED.DDDD| Percent Enter Curve... |

[perating Speed: I— FFr

Heference Speed: l— FErM

feliawimrumm (utlet Bressure: I— psia —IDK

Felative Convergence Talerance; lm Cancel |

O T e

Heat Exchanger E1: Double click on the heat exchanger, E1, on the PFD. You will see the
PRO/I1-Heat Exchanger window. Check for hot and cold streams by clicking on the Process
Stream... button. S2 and S3 should be hot, and S8 and S9 should be cold streams. If the sides are
not set correctly, you can correct it by clicking on the appropriate circle.
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Heat Exchanger - Pro

ok Define  FHange Help
r~ Specify Infarmation for
 Hot {* Cold Froduct Fhases...
Feeds: Products:
58 59
~ Specify Information for
& Hat ¢ Cald Praduct Fhases...
Feeds: Products:
52 EE
0K | Cancel |

Snerifu the side Az a4 cold side

Click on the OK button to go back to PRO/II-Heat Exchanger window. Click on the
Specification... button and click on the red box. Choose Hot Product Temperature which is the
process stream going out of the heat exchanger and type in 90°F for the value.

Heat Exchanger - Specifications

UdkM  Define Range Help
S pecification: | Hot Product Temperature |;|
Walue: f0.00| F
Relative Tolerance: 0.000100
Area: I iz
U4 alue: I BTU fhr-fte-F
Mawimum Allowable UFA: I BTU he-F
oK | Cancel |

|Entel the specification value

|F'ush to provide operating specification

Click on the OK button to go back to PRO/II-Heat Exchanger window. Input 3 psi for Hot Side
Pressure Drop and 2 psi for Cold Side Pressure Drop.

PRO/II - Heat Exchanger

UDOM  Define  Range Help Owverviews  Statuz  Motes
Linit: Diescription: I
rHot Side r Cold Side
Frocess Stream... Process Stream... Speciication...
|hility Stream... Iklity Stream. . Eonﬁgﬁration...
Aitach bo Column... Attach bo Column... Zones Analysis....
Frezzure Drop: Prezzure Dirop: Frint Mptiots...
Thermodynamic Svstem: Thermodynamic System:
| Default [PROT] [=]| ||Detaut (PRO] |~ 0k |
Cancel |

Click on the OK button to go back to the PFD.

Stream going to E1, S8: Double click on S8 on the PFD. Click on the Flowrate and
Composition... button to supply the flow rate and composition. Choose Total Fluid Flowrate.
Since the set unit is Ib-mol/hr, and you have mass flow rate, Ib/hr, you must do the conversion.

C-7



Instead of doing it by yourself, you can click on the UOM button on the menu bar. Click on Mass
and choose Ib. Click on the Change Units button to change the unit.

Convert Units-of-Measu X

Change 1b-ralshr ta 1B L}
[~ Long descriptions

[Cofivert
alue

Change

Units Caticel

Now enter 420000 Ib/hr for the flow rate. Enter 1.00 for the water composition. Click on OK
button when done. Click on First Specification: choose Temperature and type in the temperature,
70°F. To enter the pressure, click on Second Specification: choose Pressure and type in 100 psia.
Click on the OK button to go back to the PFD.

Flash F1: Select the flash drum, F1, by double clicking on it. Click on Product Phase... to make
sure the phases of streams, S4 and S5, are correctly set. S4 should be Vapor, and S5 should be
Liquid. Make necessary changes by clicking on incorrect boxes and selecting the right phase.
Click on the OK button to return to the PRO/11-Flash Drum window.

Flash Product Phases

Ok Define FHange Help

Products: Phases:
54 Wapor
55 Liquid

NN

Cancel |

Input 3 psi for the Pressure Drop. Click in the Unit Specification: box. Select Duty and type in
0.00 for the value since it is an adiabatic flash drum. Click on the OK button when done.



PRO/II - Flash Drum

UoM  Define  Fange Help Overviews  Statuz  Motes
Unit: D escription: I

i~ First Specification X
Thermadynamic System:

IPressule Dirop |;| | 3.DDDU| psi IDefauIt [PROT) v|
- Second Specification

Uit Specification: |Duty =1 | .00000] 5 10¢ BTU b
' Product Specification:

Parameter = walue within the default talerance

Temperature Estimate: F Product Phases...
Fressure Estimate; psia Frint Options....
Fzeudostream Flowrate: 0.00000  [b-mal?hr .

0K I Cancal I

Second Compressor C2: Double click on the compressor, C2, on the PFD. Supply the Outlet
Pressure as 200 psia in the red box. Change the Adiabatic Efficiency to 80%. Click on the OK
button to go back to the PFD.

PRO/II - Compressor

U0k Define  Ranage Help Owerviews  Statuz  Motes

Pioduct Uni
Phases

Description: I

I gg:ﬁ;}"_ Themodyriamic System: IDefauIl [PRO1) |L|
Calculational
ket edl... Inlet Pressure: I psia

Outlet Temperature E stimate: I:I F
- Pressure, Work or Head Specification

IDutIet Pressure u | 200 DD| psia Enter Eune: I

i~ Efficiency or Temperature 5 pecification

IAdiabatic Efficiency u | BD.DDUD|F'ercent Enter Cumve... I

[Operating Speed: I FF
Heference Speed: I EE
I awimurm utlet Pressure: I psia Ok |

Relative Canvergence Talerance: I 0.001 0000 Cancel |

o e e

Second Heat Exchanger E2: Double click on the heat exchanger, E2, on the PFD. Check for
hot and cold streams by clicking on the Process Stream... button. S6 and S7 should be hot, and
S10 and S11 should be cold streams. Click on the OK button when done.



Heat Exchanger - P

Ok Define Hange Help

r Specify Infarmatian faor
" Hat & Cold Froduct Phases,..
Feeds: Products:
510 511

r~ Specify Information for

& Hot  Cold Product Phases...
Feeds: Products:
SE 57

ak | Cancel |

|Specify the zide az a cold zide

Click at the Specification and click on the red box. Choose Hot Product Temperature and type in
90°F for the value. Click on the OK button.

Udk  Define  Fange Help
Specification: IHot Product Temperature ILI
Walue: jan.oo| F
Relative Tolerance: 0000100
Alga fte
U4 alue: BTU hr-frz-F
aximum Allovable LA BTUhr-F
0K | Cancel |

Enter the specification walue

Input 3 psi for the Hot Side Pressure Drop and 2 psi for the Cold Side Pressure Drop. Click on
the OK button to go back to the PFD.

PRO/II - Heat Exchanger

UOM  Define  Range Help Owerview  Status  Maotes
Unit: Description: I
rHaotSide——— ~Cold Side
| Process Stream... | Process Stream. .. Specification...
Lkility Strear... Ltility Strear... Configuration. ..
Attach to Column... Attach to Calumn... Zohes Analysiz...
Prezsure Drop: Pressue Dop: Britit Dptions...
Thermaodynamic Spstem: Thermodynamic Spstem:
| Detaul (PRO1) [=]| ||DefautPROT) I~ oK. |
Cancel |

|Enter the cold side pressure drop value

Stream going to E2, S10: Double click on S10 on the PFD. Click on the Flowrate and
Composition... button to supply the flow rate and composition. Choose Total Fluid Flowrate.
You need to change the unit from Ib/hr to Ib-mol/hr. Click on the UOM button on the menu bar.
Click on Mass and choose Ib. Click on the Change Units button to change the unit.

Now enter 420000 Ib/hr for the flow rate. Enter 1.00 for the water composition. Click on OK
button when done. Click on First Specification: choose Temperature and type in the temperature,
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70°F. To enter the pressure, click on Second Specification: choose Pressure and type in 100 psia.
Click on the OK button to go back to the PFD.

PRO/II - Stream Data

Udk  Range Help Tag Overview  Statu:

Motes

Strear: (510 Dezcription: I

Ta Unit: E2
- Stream Type

Composzition Defined
Petroleumn Aszay
Referenced to Stream |

Flowrate and Composition... I

Solids Drly Stream Shieam Solids Data...

Stream Polymer Data... |

i~ Thermal Condition
First 5 pecification:

ITemperature |;| | ?D.DD| F
Second Specificatian:
IPressule |;| | 1DD.DD| psia
Themodynamic System: |Determined From Connectivity |;|
Ok I Cancel |

[Frtar straam nracsra

It is now time to run your simulation. The button for running your simulation looks like this:

. PROVISION starts the calculation from the beginning of the simulation and goes through
every unit operation one by one. During the calculation, each unit goes through color changes.

Yellow - no calculation performed

Red - unit operation has not been solved
Green - calculation is being performed
Blue - unit operation has been solved
Dark Blue - unit operation has been calculated
Purple - indicate the break point

When the calculation is finished, all the unit operations should be blue, indicating that all the
calculations are finished for the entire case. Once the calculations are performed, you do not
need to run the calculations again as long as you do not change anything.

Reviewing and Printing the Results

Once the calculations are performed, you are ready to check the results by generating a report.
To generate a report, follow these steps:

1) Click on Output from the menu bar in the main PFD.

2) Click on Generate Report on the Output menu and supply a name (compressor or any
name you like) to save the output file. After you click on the OK button, the program will
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bring up the Programmer’s File Editor window. You can scroll up and down the report
by using the scroll bars. The report lists information like PRO/II keyword input
commands, component properties, unit operation results, and stream results. You can also
edit the report by using the Edit menu.

You can print the entire report or part of the report by selecting Print in File menu.

B Programmer’s File Editor - [compressor.out] _ ol x
File Edit Options Template Execute Macro Window Help =%
I 7 [ P RN HEEIERE
$ Generated by PRO/II Keyword Generation System <(version 6.0> 1=
$ Generated on: Mon Jul 26 09:04:03 2004 I
TITLE
SEQUENCE SIMSCI
COMPONENT DATA
LIBID 1,METHANE/2, ETHANE/3,PROPANE/Y4,BUTANE/S,PENTANE/6 ,H20
THERMODYNAMIC DATA
METHOD SYSTEM=PR, SET=PRO1, DEFAULT
STREAM DATA
PROPERTY STREAM=31, TEMPERATURE=9@, PRESSURE=14.7, PHASE:=M, &
RATE(M)=1000, COMPOSITION(M)=1,0.05/2,0.2/3,0.25/4,0.3/5,0.2
PROPERTY 3STREAM=38, TEMPERATURE=70, PRESSURE=100, PHASE:=M, &
RATE(WT)=420000, COMPOSITION(M)=6,1
PROPERTY STREAM=310, TEMPERATURE=TO, PRESSURE=100, PHASE:=M, &
RATE(WT)=420000, COMPOSITION(M)=6,1
NAME $1,Feed Stream
UNIT OPERATIONS
COMPRESSOR UID=C1
FEED $§1
PRODUCT U=S52
OPERATION CALCULATION=ASME, PRES=50, EFF=80
HX  UID=E1
HOT FEED=%2, M=S3, DP=3
COLD FEED=%8, M=%9, DP=2
CONFIGURE COUNTER
OPER HTEMP-=90
FLASH UID=F1
FEED $§3
PRODUCT U=S4, W=$5
ADIABATIC DP=3
. rNMPRFESSNR IITN=M2? ml
[Ln 1 Tl ['721 | [wR|  |PecOf [Nowiap [DOS INS |MUM [ A

|

[Page 11 Sec1 13717 [atLe®  n4 cols4 |[rEc [iRe BT jovR [ B

3) To close the Programmer’s File Editor window, double click on the bar located in the top
right corner of the screen.

& Programmer’s File Editor - [compressor.out _ ol x|
File Edit Options Template Execute Macro Window Help _|= x|
—

You can view the results of any stream or unit operation by clicking on the right button of
your mouse when the cursor is pointing on it.

Printing Material and Energy Balance on PFD

In order to include material and energy balances on your PFD, you must define a property list
first. The property list tells PROVISION what to include in the material and energy balance
table. Let’s define a property list that includes Stream Name, Stream Phase, Total Molar
Rate, Temperature, Pressure, Total Enthalpy, and Total Molar Comp. Fractions.
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Click on Option on the menu bar in the PFD window and choose Stream Property Lists.
Click on New button in Define Stream Property List window to name the new list and type
casel for the List Name.

List Mame: IcaseTl

Copy List: I Mone LI

0K I Cancel |

Click on the OK button to go back to Define Stream Property List window and choose the
properties to include in the list from Select Properties box. Select Stream Name and click on
Add button to include the selected property into the list. Repeat the procedure for Stream
Phase, Total Molar Rate, Temperature, Pressure, Total Enthalpy, and Total Molar Comp.
Fractions.

Define Stream Property List

IEM  Hange Help

. Mew... | Save | Set az Default I
Froperty List:
Delete... | Sawve ... | Heset Default I
- Define Propertie:
Select Properties Property Description L0k Format
Double Line a | [Stream Mame Stream Mame ) ]
Single Line ﬂ Stream Phase Stream Phase %3 _pl
Tent Total Molar Rate Total Molar R ate Input Units 3 Down
Stream Mame Temperature Temperature Input Unitz A Q
Stream Description Pressure Pressure Input Unitz A T
Stream Phaze Tatal Enthalpy Total Enthalpy Input Unitz 2 P
Total Molar Rate Total Molar Comp. Fractions Total Molar Comp. Fractions .4
Total Mass Rate M
Total Std. Lig. Rate
Tatal Std. Yapar Rate ml
Temperature
Preszure ﬂ Clear |
[ln ]3]
Add > [escrption: Format: I Heplace
—I " I ! Input Wnits ;l
! Dutput Wnits
~

(18 I Cancel I

Save the list and click OK. Once the property list has been defined, you can now place the
material and energy balance on the PFD. Follow these steps to place property table on the
PFD:

1. Click on Output on the menu bar in the PFD window

2. Click on Stream Property Table on the Output menu

3. Click on the PFD where you want to place the property table

4. Double click on the property table to select the table

5. Choose casel in Property List to be used

6. You can select the streams you want by clicking on each stream or you could

select all by clicking on Add All. Let’s select all the streams by clicking on Add
All.
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Stream Property Table

IO Fange Help

Overview

Property List to be used:

Table &ppearance

Define Component Groups...

[~ Display Row Grid Lines
[~ Show Border Only
[ Allow Multiple Riows

fef @i & tre arms/Faw

-
=
|

Lire Width: I_'Iil

Borderwidth: | 2]

Cell Character width: | 10—
[

- Stream Selection

@ Include All Streams
™ Include Flowshest
Source/Sink Streams

Available Streams:

Add - |
Ldd Al |
- Hemove |
Remove Al |

Dizplayed Streams:

0K |

Cancel |

T T T ST

L

7. When you click on the OK button, the PFD should look like this:

Steam Name 1 s2 = S = = =) = = S0 s11
Siream Dezoription Feed Stream
Phare = apr Mizd = Liqrk Vel Mizd et et et e r
Tempe =t F amm 13345 amm 958G 5000 1280E amm T00m A T00m ke
Pregsine [2=15) 1Wim qaom om “am “omm anmm 157 0m imomm s imomm emm
Flowai LB-MOLHR onom oo onom I 2 xomx arised I 2 ID3a ID3a I3 I
Coompee Hiow
METHANE oo 1121] oo oo om opst oo omm omm omm omm
ETHAHE 0zm 0o 0zm k1 3 onis 0 k1 3 oom oom oom oom
PROPANE 0z3a 023 0z3a 02 omz2 02 02 oom oom oom oom
BUTANE 0am 03am 0am 0am 02a 0am 0am omm omm omm omm
PENTANE 0zm 0am 0zm O.1za og1s 01za O.1za omm omm omm oomm
HZO omm oom omm omm omm omm omm imm imm imm imm

Printing PFD: Click on File on the menu bar in the main PFD window and choose
Print. Click on the OK button to start printing. You can draw or print text on the PFD
by choosing Draw/text on the menu bar. After typing text in the box, use mouse to

place on the PFD.
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Appendix D Previous Exam
CHE 303 (Winter 2005)

LAST NAME, FIRST
Quiz #1
Note: Your answers must be correct to 3 significant figures and have the appropriate units.

l. Circle the correct relation

G @y @@ ()
oP ); ot Jp oP J; T Jp
o @y @)
oP ); N Jp oP ); aT Jp

I1. Circle the correct relation
AEE @
s Cp\OP); oP)s cplaTl Jp
oFiE  eE-1
. ¢, \oP; oP ), Co \OT Jp

I11. A gas mixture contains 30 mol % H,0, 30 mole % N, and 40 mol % H..

Mass fraction of H,O is

IV. Nitrogen gas flowing at the rate of 400 kg/hr enters a compressor at 1 bar and 300°K and
leaves at 10 bar and 450°K. Cooling water enters the compressor at 290°K and leaves at 340°K.
Cooling water flow rate is 500 kg/hr. Nitrogen (MW = 28) is an ideal gas with Cp = 1.05
kJ/kg.°K. Heat capacity of water is 4.184 kJ/kg.°K. Gas constant R = 8.314 J/mol.°K.

1) (4 pts) The entropy change of nitrogen (kJ/hr-°K) is
(Show all the work)
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2) The entropy change of water (kJ/hr-°K) is

3) The work provided by the compressor is

4) If the entropy change of nitrogen is — 125 kJ/hr-°K and the entire process is reversible,

the temperature of the exit water is

V. Consider the piston-cylinder assembly shown below; 200 moles of gas expand isothermally
after the removal of a 10,000 kg block.

Assume that the PvT behavior can be described by the VVan der Waals equation (P = R—Tb —%)
v-b v

with a = 0.5 [J:-m®mol®] and b = 4x10®° [m*mol] and that the ideal gas heat capacity has a
constant value of cp = 35 J/(mol-°K), R = 8.314 J/mol-°K.

Weightless, frictionless piston

Patm
Isothermal A=0.1m>
P.m expansion
10,000 kg
A=0.1m’
0.4m

1) (4 pts) Determine the temperature of the system
(Show all the work)
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CHE 303 (Winter 2005)

LAST NAME, FIRST
Quiz #2
Note: Your answers must be correct to 3 significant figures and have the appropriate units.

I. Circle the correct relation

(A)ds = 24T + (@j dv (B) ds= 2 qT - (@j dv
T ot ), T ot ),
c
(C)ds = —2 T + (@) dv (D) ds = SvqT + [@) dv
T aT ), T ot ),
1. For the van der Waals equation: P = R—Tb - iz, we have
v-b v
ov Rv¥(v—b ov Rv¥(v—b
@ () =Rl () o RN
oT Jo RTV®+2a(v-b) oT ) RTV’—a(v-b)
©) (ﬂj B Rv3(v—b) (D) ﬂ] B RV3(v—b)
T Jo RTV? +2a(v—b)’ oT Jp  RTv® -2a(v-b)?

I11. The following data are available at 25°C for graphite and diamond:

Ag(25OC, 1 atm) = Qdiamond — Jgraphite = 2866 [J/mol], Pdiamond = 3.51 [g/Cm3], and Pyraphite =
2.26 [g/cm®].

(3) The pressure at which these two forms of carbon are in equilibrium at 25°C can be
determined from the following equation

S S

(A) 2866 _m_ol_ = (Vgraph ~ Viam XP _l) (B) 2866 _m_ol_ = (Vdiam ~ Vgraph XP _1)
— J -— - J _

(©) 2886 7 |- (Vyrapn — Veian JP (0) 2866 - |- (Vatam = Varapn JP

(4) In the correct equation to determine the pressure in [Pa] where Ag(25°C, 1 atm) = 2866
[J/mol], the numerical value of vgapn (With the correct unit) is
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IV. At 25°C, the vapor pressure of water is 3.169 kPa and at 35°C the vapor pressure of water is
5.628 kPa. Estimate the enthalpy of vaporization of water in kJ/mol.

dP _ h'-h'
Note: — = , gas constant R = 8.314 J/mol-°K
a1~ (v =v')

5)

V. (6) Calculate the power (kJ/hr) for compressing 5,000 kg/hr of methane from 0.8 Mpa, 210°K
to 4 Mpa. The adiabatic efficiency of the compressor is 75%.
(P-h diagram is given for methane)

V1. (7) Saturated liquid methane at 3 MPa is reduced to 1 MPa through an expansion (let-down)
valve. The vapor fraction of methane leaving the valve is
(P-h diagram is given for methane)

VI1. The equilibrium conditions for two phases | and 11 of a single component are
A) TI — TII PI — P“ hl — hII B) -I-I — T“ PI — P“ SI — S“

OT=1"P=pP" u=u" D) None of the above
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VIIl.  Consider the piston-cylinder assembly shown below; 200 moles of gas expand
isothermally after the removal of a 10,000 kg block.

Assume that the PvT behavior can be described by the VVan der Waals equation (P = R—Tb —%)
v-b v

with a = 0.5 [J:-m®mol?] and b = 4x10®° [m*mol] and that the ideal gas heat capacity has a
constant value of cp = 35 J/(mol-°K), R = 8.314 J/mol-°K.

Weightless, frictionless piston

Patm
Isothermal A=0.1m’
P, expansion
10,000 kg >
A=0.1m’
0.4m

9) (4 pts) Determine the work [J] done by the gas on the surrounding
(Show all the work)
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CHE 303 (Winter 2005)

Quiz #3

LAST NAME, FIRST

Note: Your answers must be correct to 3 significant figures and have the appropriate units.
I. Circle the correct relation
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I1. A vapor-compression refrigeration process using ammonia as the working fluid is to operate
between 320F and 86°F. In step (4) — (1) heat is supplied to the fluid at 320F under the pressure
P1. The saturated vapor at Pp is then compressed isentropically to Py, where it becomes
superheated vapor, state (2). Removal of heat from this vapor leads to cooling at constant
pressure followed by condensation at 86°F, step (2) — (3). The cycle is closed by passing the
saturated liquid at (3) through a let-down valve to the lower pressure at (4). The four states are
given (not in any particular order) as follow

T(°F) P(psia) h(Btu/lb) s(Btu/lb-°R)
32 63.1 621.5 1.2734
32 0.2941
86 1715 139.0 0.2867
157.6 681.6

1) The heat transferred (Btu/Ib) in step (4) —> (1) is Q.=

2) The heat transferred (Btu/lb) in step (2) — (3) is Qu=

3) The work supplied (Btu/lb) by the compressor is W=

4) The entropy (Btu/Ib-°R) at state (2) is
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I11. The free energy change for the following change in state is 685 cal/mol at 25°C

carbon (graphite, 1 atm) - carbon (diamond, 1 atm)
The pressure at which these two forms of carbon are in equilibrium at 25°C is 14,959 atm. The
densities of graphite and diamond are 2.26 and 3.51 g/cm?®, respectively, at 25°C independent of

pressure. Determine Ag (cal/g) for the following processes at 25°C (cal = 41.3 cm>-atm)

1) carbon (graphite, 1 atm) - carbon (graphite, 14,959 atm)

2) carbon (graphite, 14,959 atm) - carbon (diamond, 14,959 atm)

IV. The vapor pressure of liquid water at 20°C is 0.0234 bar. Specific volume of water is 0.0180
m?>/kmol. Gas constant R = 8314.3 Pa-m%kmol-°K. 1 bar = 10° Pa.

The fugacity of water at 20°C and 200 bar is

V. (4 pts, show all your work) What fraction f of the volume of a rigid tube must be occupied by
liquid water at 100°C (the remainder being water vapor) so that when the tube is heated the
contents will pass through the critical state? Data: critical state v¢ = 3.155x10° m3/kg, at 100°C:
VG = 1.044x10° m3/kg, vL = 1.673 m3/kg.

f=
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CHE 303 (Winter 2005)

LAST NAME, FIRST
Quiz #4
Note: Your answers must be correct to 3 significant figures and have the appropriate units.

I. A. The fugacity of a component in a perfect gas mixture is equal to its partial pressure.
B. At low pressure the fugacity of a liquid is equal to its vapor pressure.

1. Aand B are true 2.0nly Alistrue 3.0Only B is true 4. A and B are false

I1. Calculate the fugacity of steam at 4500C and 10 MPa. f=
Data: At 450°C and 0.01 MPa: g =—3672.8 kJ/kg
At 4500C and 10 MPa: g =-1399.9 kJ/kg
Gas constant R = 8.314 J/(mol-°K), molecular weight of water = 18
dg=RTd(Inf)

I11. Two compounds A and B are known to form ideal liquid solutions. A vapor mixture
containing 40 mol% of A and 60 mol% of B is initially at 100°F and 1 atm. The vapor pressures
of A and B at this temperature are P;* = 0.90 atm and P;* = 1.50 atm. This mixture is

compressed isothermally.
1. The dew point pressure is

2. The bubble point pressure is
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IV. A vessel initially containing propane at 520°R is connected to a nitrogen cylinder, and the
pressure is increased to 300 psia. The vapor pressure of propane at 520°R is 155 psia. Nitrogen is
insoluble in liquid propane.

1. Assume ideal solution, mol fraction of propane in the vapor phase is

2. Using K value from table 1, mol fraction of propane in the vapor phase is

Table 1. Equilibrium K values for light hydrocarbon systems

(2) INnK=-A/T2+B-CIn(P) + D/P, where P is in psia, T is in °R

compound A B C D Form
Propane 970688.6 7.15059 .76984 6.90224 (2)
n-Butane 1280557 7.94986 96455 0 (1)
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V. A liquid containing 60 mol% propane (C3) and 40 mol% n-butane (C4) is subjected to a flash
vaporization process at a pressure of 20 psia where the temperature inside the flash drum is
47509R. At these condition Kc3 = 2.4284, Kcg = 0.5405 (from Table 1).

1. The exit mol fraction of propane in the vapor phase is

2. If the exit mol fraction of propane in the liquid phase is 0.3, V/F =

3. The boiling point of pure n-butane at 20 psia is

VI. A. In a closed system at constant T and P, a spontaneous process will increase Gibbs free
energy, G, until a maximum value for G is reached at equilibrium.

B. For an isolated system, a process that would move the system to a less constrained
equilibrium state will decrease the entropy of the system.

1.Aand Baretrue 2.0Only Ais true 3. Only B is true 4. A and B are false
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CHE 303 (Winter 2005)

LAST NAME, FIRST
Quiz #5
Note: Your answers must be correct to 3 significant figures and have the appropriate units.
I. At 250C a binary system containing components A and B is in a state of liquid-liquid vapor

equilibrium. The mixture is not ideal however Raoult’s and Henry’s laws can be applied. The
compositions of the saturated liquid phases are

x\, =0.02,x., =0.98and x!. =0.97, x!. =0.03
The vapor pressure at 25°C are: P, =0.2 atm, P; = 0.8 atm

1) The vapor mole fraction of A at three-phase equilibrium is

2) The vapor mole fraction of A in equilibrium with xa = 0.01 is

3) The vapor mole fraction of A in equilibrium with xa = 0.99 is

4) At 259C a vapor containing 10 mol % A and 90 mol % B initially at 0.1 atm is compressed

isothermally until liquid phase I is formed. The dew point pressure is
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I1. In the system A-B, activity coefficients can be expressed by Inya = 0.5x3 and Inyg = 0.5 X5 .
The vapor pressure of A and B at 80°C are: Py = 650 mm Hg, Py = 900 mmHg. There is an
azeotrope in this system.

5) If the azeotrope mole fraction xa is 0.17458 the azeotrope pressure is

6) The azeotrope mole fraction xa can be determine from
A) exp{[x; — (L —xa)’]} = PJ/P; B) exp{[xi — (L —xa)’]} = PJ/P;
C)exp{[x: —(1- x3)]}=P/P? D) None of the above

I11. A system contains 40 mol % toluene, 30 mol % ethylbenzene, and 30 mol % water. Mixtures
of ethylbenzene and toluene obey Raoult's law and the hydrocarbons are completely immiscible
in water. The system pressure is 1 atm. (Note T = toluene, EB = ethylbenzene, W = water)

7) The bubble point temperature can be determine by solving the following equation:

A) 3P+ 4P+ 3P, =1atm B) Po+.4P’+ .3P5 =1atm
C) P2+ ; P>+ % P% =1latm D) None of the above

8) If the hydrocarbon phase condenses first, the dew point temperature can be determine from

A) .4a£m + .3a:m _q B) .BaEm + .4a£m + .3a:m _q
I:)T I:)EB IDW PT PEB
C) 4atr:1 + 3atEn =1 C) None of the above
7P; 7P
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1V.(9) A solute diffuses through a membrane that separates two compartments A and B that have
different initial concentrations. The solute concentrations in the two compartments as a function
of time, C* and C® are shown in Figure 1. The volumes of the two compartments are V* and V.

(A) VA < VB (B) Solute diffuses from compartment B to A.
a.Aand Baretrue b.Only Aistrue c.Only B istrue d. A and B are false
10—+
. CA
S
£ “
0 t

Figure 1. Concentration of solute as a function of time in compartments A and B.

V.(10) Measurements show that the osmolarity of human tears is 320 mosmol/L. Determine the
value of the osmotic pressure of human tears in pascals at 300°K.

N Pa-m?®
n= RT ) Cq;, gas constant R = 8.314
= mol - K
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Answers to CHE303 Quizzes 2005

Quiz #1

l. (D)

1. (B)

1. 037

IV. 1)-103.19 kJ/hr-K 2) 332.76 kd/hr-K  3) 167,600 kJ/hr 4) 307.9 K

Quiz #2

l. (D)

I. (D)

1. 3)(A) 4) 5.31x10° m*/mol
1IV. 43.87 kJ/mol

V.  1.33x10°kJ/hr

VI. 0.313

VII. (D)
VI, 4.31x10°J
Quiz #3
l. (C)
I 1) 482.5 Btu/lb  2) 542.6 Btu/lb 3) 60.1 Btu/lb 4) 1.2734 Btu/lb-°"R

. 1)106.3cally  2)0
1IV. 0.0271 bar

V. 0.6695

Quiz #4

l. (1)

1. 9.0209 MPa

1. 1)1.1842atm  2)1.260 atm

IV. 1)0.5167 2) 0.4461

V. 1) 0.591 2) 0.7001 3) 5030R
VI. (@)

Quiz #5

l. 1) 0.1984 2) 0.10901 3) 0.431 4) 0.8808 atm
1. 5) 913.88 mmHg 6) (D)

. 7)(C) 8) (A)

Iv. (d)

V. 7.98x10° Pa
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