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PREFACE

Preface to the 3™ revised edition

This textbook aims to help students taking courses taught in English at CTU, Faculty of
Mechanical Engineering, in their studies of one of the most important, and, at the same time, most
difficult engineering topics. This course will be taken not only by foreign students (speaking good
English and knowing technical and mathematical terms in English), but also by Czech students
intending to improve their English while studying a professional subject (perhaps with a view to

continuing their studies abroad).

Much of the textbook is devoted to characterizing problems, especially in the first part of each
chapter. The book covers the contents of the first introductory course on Strength of Materials. We
have had an opportunity to increase the length of the textbook, and we decided to add: i) some
important explanatory notes to help the reader to penetrate into the substance of problems; ii) several
appropriate examples, showing optimum solutions. (Two kinds of examples are used: a) as integral parts of
sections of the textbook — these are not mentioned in the list of contents; b) as explanatory examples — these are

mtroduced in the list of contents).

In accordance with the ISO recommendations, the author (largely) uses [N/mm’] units, instead of
[MPa] (which were formerly also applied for the stresses exerted in solid objects, now used for the pressures in

liquids and gases).

In order to accelerate and facilitate the preparation of the manuscript, the notation of figures and
equations includes the number of the sections (or subsections), to which is added the serial number of
the figure (or equation). For example, in Sec.2.12 the (first) figure will be denoted as Fig.2.12.1, while
in subsection 2.12.1, the (first) figure will be denoted as Fig.2.12.1.1.

The author is deeply indebted to his wife, Dr. Ludmila Sochorové, for her patience and

understanding while the manuscript was being prepared.




INTRODUCTION

1. Introduction

Engineers study the mechanics of materials mainly in order to have a means of analyzing and

designing various machines and load bearing structures.

I should emphasize that the engineer’s role is not limited to analysing existing structures and
machines subjected to given loading conditions; it is of even greater importance to design new
structures and machines, that is, to select the appropriate structural components to perform a given
task. Some model examples will help the reader to gain a deeper understanding of the problems

explained here.

Both the analysis and the desigh of a given structure involve determining of stresses and
deformations. To fulfil this task, we apply both theoretical (computational) and experimental

approaches; the latter mainly for verification of computed results.

1.1 Basic concepts

1.1.1 External loads (forces)

1.1.1.1 Types of external forces
1) Surface forces, i.e. forces exerted on the body surface:

a) point (concentrated) forces, which we consider as spot loadings although they are actually
distributed over a certain surface (which is very small in comparison with the whole surface),
¢.g. concentrated loads on beams, forces in hangers, reactions in supports, etc.

b) distributed loads, which are distributed either over the whole active area of the body surface, or

over parts of it, e.g. pressure in a vessel, soil pressure, aerodynamic forces, etc.; distributed load

is given per a unit area.

2) Volume forces (i.e. forces generated by a field of force), loading the whole body mass, e.g. the dead

weight of a body, the force of inertia, centrifugal force, etc.

Types of forces can be subdivided with respect to:

1) force changes in time:
a) static loading, which can be either constant or slowly increasing from a certain value

(usually from zero) up to its nominal magnitude, and then remains unchanged. Slow force
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application is necessary so that deformation time changes can develop fully and the forces

of inertia can be neglected;

b) dynamic loading, which can be for instance:
i) impact load, characterized by great instantaneous load acceleration;

ii) cyclic load (periodically changing), which can lead to body fatigue fracture;

2) force site stability:

a) fixed load, i.e. the load point does not change in time;

b) travelling load, i.e. the load point changes in time, ¢.g. crane crab, a train loading a bridge, etc.

1.1.1.2 Static equilibrium of external loads

When studying basic problems of the classical Strength of Materials, we usually consider the sfatic

exertion of external loads. This is conditioned by the static equilibrium state of the structure,

including reactions, which must be satisfied both for forces and for couples.

1.1.2 Internal forces: stress in general bodies under general loading conditions

Although the introductory lectures will be dealing with simple members (bars, rods, booms) under

axial loading, consider first a general body subjected to several loads F;, F,, etc. (Fig.1.1.2.1)

To understand the stress condition created by these loads at some point Q, within a body of a
general shape, we shall first pass a section through Q, using a plane ¢ parallel to the yz plane
Fig.1.1.2.1a. The portion of the body to the left of the section, Fig.1.1.2.15, is subjected to some of
the original (external) loads, and to normal and shearing forces distributed over the section. We shall
denote by AR an internal force acting on a small area 44 surrounding point O and resolving it we
shall obtain AN, , AV, , respectively the normal and the shearing (internal) forces. Note that the
subscript x is used to indicate that the forces AN, , AV, are acting on a surface perpendicular to the x
axis. While the normal force AN, has a well defined direction, the shearing force AV, may have any
direction in the plane of the section. We shall, therefore, resolve AV, into two component forces, AV,
and AV,,, in directions parallel to the y and z axes, respectively. Dividing the magnitude of each force
by the area A4, and letting 44 approach zero, we define the force intensities called stress(es) on that

section, which are denoted by the Greek letters o (sigma) and 7 (tau).

B —



INTRODUCTION

The three stress components shown in Fig.1.1.2.1:
y

F4

Z
Fig.1.1.2.1
1st c i AN, X d ' |
normal stress = = an
Tl AA | 9A E
d)
aVXy . anz ‘

shearing stress components T, =

>

oA oA

We note that the first subscript in these stress components is used to indicate that the stresses
under consideration are exerted on a surface perpendicular to the x axis. The second subscript in %,
and 7, identifies the direction of the component. The normal stress is positive if the corresponding
‘arrow points in the positive x direction, i.e., if the body is in tension, and negative otherwise.
Similarly (but here from the mathematical point of view only), the shearing stress components are
positive if the corresponding arrows point, respectively, in the positive y and z directions (this has no

physical meaning).

The above analysis may also be carried out by considering the portion of the body located to the
right of the vertical plane through Q. The same magnitudes, but opposite directions, are obtained for
the normal and shearing forces. Therefore, the same values are also obtained for the corresponding
stress components, but since the section in the figure now faces the negative x axis, a positive sign for
o; will indicate that the corresponding arrow points in the negative x direction. We will discuss

problems of stress components in detail later.

1.1.3 Assumptions of solution

Right from the beginning I would like to ask you not to be afraid of this course in Strength of

Materials. Have in mind that it is based on many simplifying assumptions that will be sufficient for a

10
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number of practical applications, and will yield good results. For your information only, there are a
number of more complicated problems where it is necessary to turn to comprehensive and highly

- sophisticated analysis. These problems belong to the scientific study of theory of elasticity. Analyses
based upon theory of elasticity give much more detailed and more precise information about the state
of stress, strain, and deformation at any point within the body than the more simplified type of study
that a course in Strength of Materials deals with.

One of the most important tools serving the simplified analytical approach is Saint-Venant’s
principle. Let us consider a number of statically equivalent force systems acting over a specified small
portion of the surface of an elastic body. Statically equivalent implies that the systems all have the

same force and moment resultants. Saint-Venant’s principle states that although these various

| statically equivalent systems may have considerably different localized effects, all have essentially the
E same effect on stresses at any distance which is large compared to the dimensions of the part of the

surface on which these forces are applied.

The solution of any problem is exact only if the surface forces actually have the distribution
indicated by the theory of elasticity solution. However, even if the true forces are not distributed in
such a manner, the solution is still of value if one remembers Saint-Venant’s principle and does not

employ the solution in the immediate vicinity of the points of application of the surface forces.

Compare two axially loaded rubber rods: the first with very rigid plates on both of its ends
(transferring the action of the forces) and the second without the plates, Fig.1.1.3.1. Having plotted a
raster (grating) on the rods, the nature of Saint-Venant’s principle can be nicely traced when

examining the deformation of these rods.

—t ’

— T

Fig.1.1.3.1

11
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2. Tension and compression

2.1 Assumptions

Straight elements the longitudinal dimension of which is much greater than the other two
dimensions are known as rods (or booms and bars, respectively). They have many practical
applications. Rods (booms and bars) can have either constant or variable cross-sections. The line
connecting the cross-sectional centroids along a rod is its longitudinal axis, and if the forces coincide

with it there can be only uniaxial loading and no bending in the element.

2.2 Axially loaded bar

Hence, the simplest case to consider at the start is that of an initially straight metal rod (boom, bar)
of constant cross-section, loaded at its ends by a pair of oppositely directed collinear forces F
coinciding with the longitudinal axis of the bar (acting through the centroid of each section). For static
equilibrium the magnitudes of the forces must be equal. If the (external) forces are directed away from
the bar, the bar is said to be in fension, Fig.2.2.1q; if they are directed toward the bar, a state of

compression exists, Fig.2.2.1b.

F F F F

a) Fig. 2.2.1 b)

Under the action of this pair of applied (external) forces, internal resisting forces are set up within

the bar and their characteristics may be studied by imagining a plane that is passed through the bar
anywhere along its length (x) and oriented perpendicular to the longitudinal axis of the bar, Fig.2.2.2a.
When we do this we use the method of sections. For reasons to be discussed later, this plane should not
be ,,too close” to either end of the bar. If for purposes of analysis the portion of the bar to the right of

this plane is considered to be removed,

X X X _ By X
F F . N(x)=F N(x)=F F
a) b) )
Fig.2.2.2

then it must be replaced by whatever effect it exerts upon the left portion, see the so-called ‘free-body
diagram’ in Fig.2.2.2b. By this technique of introducing a cutting plane, the originally internal forces
N(x) now become as if external with respect to the remaining portion of the body. For the equilibrium
of the portion to the left this effect must be a horizontal force of magnitude N(x) = F. However, this

force F acting normal to the cross-section is actually the resultant of the distributed forces acting over

12
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this cross-section in a direction normal to it. We can proceed analogously with the right portion when

removing the left portion, Fig.2.2.2c.

At this point it is necessary to make some assumptions regarding the manner of variation of these
distributed forces, and since the applied force F acts through the centroid it is commonly assumed that
they are uniform across the cross-section (Fig.2.2.2b,¢). Such a distribution is pfobably never realized
exactly because of the random orientation of the crystalline grains of which the bar is composed. The
exact value of the force acting on some very small element of area of the cross-section is a function of
the nature and orientation of the crystalline structure at that point. However, over the entire cross-
section the variation is described with reasonable engineering accuracy by the assumption of a uniform

distribution.

2.3 Normal stress

Instead of speaking of the internal force acting on some small element of area, it is better for
comparative purposes to treat the normal force acting over a unit area of the cross-section, cf.
Sec.1.1.2. The intensity of normal force per unit area is termed the normal stress and is expressed in
units of force per unit area, i.e. when using SI metric units with F expressed in newtons (V) and 4 in
square meters (m?), the stress o = F/A will be expressed in N/m’. This unit is called a pascal (Pa) when
used with pressure in liquids and gases. In other branches of mechanics, we will use just N/m’.
However, one finds that the unit N/m’ is an exceedingly small quantity and that, in practice, multiples

of this unit must be used, namely, / N/mm’ = 10° N/m?

As was previously stated: if the (external) forces are directed away from the bar, the bar is said to be
in tension if they are directed toward the bar, a state of compression exists. To the tensile internal
forces or stresses we attribute positive signs (i.¢., plus-signs (+)) and the compressive internal forces or

stresses will have negative signs (i.e., minus-signs (—)).

(Important: The action of tensile and compressive forces on a bar cannot be considered as being equivalent. At
certain values of compressive forces, a phenomenon termed buckling of columns can appear, which means a

stability failure (by lateral deflection of a long slender bar.)

Note: Examples of various types of bar gripping (clamping) are shown in Fig.2.3.1. With respect to Saint-
Venant’s principle (see section 1.1.3), all these cases can be substituted by the computational model

presented in Fig.2.3.1d.

13
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1 = 00
v Z, WA_V% %M,

4 b) Fig.2.3.1 2 d)

Let us examine another example for the method of sections (Fig.2.3.2):

In this example, we shall explain an easy way in which the method of sections can be applied.
Instead of that tedious application of it when one has to draw a free-body diagram of one of the bar

portions (with the internal reactive forces), it is sufficient to imagine a section made at a chosen point x

along the bar and then add or subtract, respectively, the external forces exerted from one bar end up to

cross-section x.
First we shall investigate the value of reaction R (being an external force) assuming its action on the

right. From unique necessary equilibrium condition, we obtain

F +F,-FE-R=0= R=F +F -3F =-F, <0
1 1

X ). ¢
X
X,
F1 F2=F1 F3=3F1 R
> (&
F Il after application of the equilibrium
2 . .
£ AT N, |+ equation, both the magnitude
L1k a0 ( Rl=F)) and the actual pointing of}
F; i é R |the reaction were assessed
T
' a0 {1
1l o1 IR ||||21|ﬂ # |
[Me:fEl  Fig232

Since the result is negative, it means (when concerning external forces) that our assumption of the

reaction pointing was wrong and we must change it. After have done this, we shall take into our further

consideration this new pointing, change the sense in the picture (see Fig.2.3.2, where the crossed arrow
of R, which was originally assumed to point to the right, has been replaced with the arrow pointing to

the left), and, as far as the magnitude of R is concerned, we will consider only its absolute value

R=|-F|=F

14
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When dealing with internal forces and stresses, we shall apply the method of sections. The rod must

be divided into three regions - 1, I, IIL.

Going from the left, we sum the external forces in each region, taking into account their respective

pointings and thus obtain:

- region I ... N;(x) = F; oi(x)=F, /4>0 ...tension
- region IL.Ny (x) = F; + F; = 2F, on(x) = 2F; /A=20;(x) >0 ..tension
-region L. Ny (x) =F; +F; -3F; = -F; owm(x)=-F; /4 <0 ...compression

We can try to_go from the right, for instance in region I1I:

-regionIIl .. Ny (x)=-R=-F; Om(x)=-F, /4 <0 ...compression

2.4 Stress on an oblique plane under axial loading

In the preceding sections, the axial forces exerted on a two-force member (bar) were found to cause
normal stresses in that member. The reason was that the stresses were being determined only on planes
perpendicular to the longitudinal axis of the bar. As we shall see in this section, axial forces cause both

normal and shearing stresses on planes which are not perpendicular to the bar axis.

F o Consider now such a two-
_> F - .
<€ \ > force member, which is
\P A subjected to axial force F' (see
N - /A Fig.2.4.1). If we pass a section
F Q =~ 4 X, Vi F  p forming an angle o with a
<€ > € >y >
( v X, o normal plane and draw the
; ’ N, free-body diagrams of the
| Fig. 2.4.1 portion of members located to

the left and right of that
section, respectively, we find from the equilibrium conditions of the free bodies, that the distributed
forces acting on the section must be equivalent to force X, = F. Resolving X, into components N, and
V,, respectively normal and tangential to the section, we have
Ny, =F-cosaa V,=F: sina
Force N, represents the resultant of the normal forces distributed over the section, and force ¥V, the
resultant of the shearing forces. The average values of the corresponding normal and shearing stresses

are obtained by dividing, respectively, N, and V,by the area 4, = A/cos o of the section, Fig.2.4.2.

N F-coso V, F-sino )
Cg = Aa =— A ~Ox cos’ 0, T, =A_a='_A_ = Oy -sinol-coso (2.4.1a,b)
o o
cos ol cos ol
15
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X F
The stress in the longitudinal direction v, = A—a =—3— =0, -cosq; (2.4.1¢)
ol
coso
It holds Vol =Gy 1,2
o(x)=— Aqy
— F
>R
X | \A  v=0(x)-cosa. 6,=0(x)-cos’0. T,=0(X)-sinai-cosa,

Fig.2.4.2
2.5 Deformation

In the previous sections we analyzed the stress created in various bars when loaded. Another
important aspect of the analysis and design of structures relates to the deformations caused by loads
applied to the structure. Clearly, it is important to avoid deformations so large that they may prevent
the structure from fulfilling the purpose for which it was intended. However, the analysis of
deformations may also help us in the determination of stresses. Indeed, it is not always possible to
determine the forces in the members of a structure by applying only the principles of statics. This is
because statics is based on the assumption of undeformable, rigid structures. By considering
engineering structures as deformable and analyzing the deformations in their various members, it will
be possible for us to compute forces which are statically indeterminate, i.e., indeterminate in the
framework of statics.

Let us consider a suspended rod, of original length L, and uniform cross-sectional area 4,, Fig.2.5.1.

If we apply a load F to its end, the rod - having the uniform stress along its length - will elongate and

will have the resulting length L =L, +AL at its end.

Increment of its length, ie. total

deformation (in this case being elongation)

AL=L-L, 2.5.1)

dx+Adx expresses the elongation or reduction

X (shortening) of the rod. We define the
L=L, +AL

deformation per unit length, i.e. the ratio of

AL

deformation over an original length (on which

Fig.2.5.1 the stress distribution remains uniform.
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- in this case the whole rod length L, can be applied), called the (normal) strain and denoted by the

Greek letter epsilon
L,

(2.5.2)

Analogously, an infinitesimal rod element , originally having length dx, will change its length to be
dx+Adx. The element length dx is changed by the fotal deformation Adx. The strain is then expressed
in the following form

e(x) = % (2.5.3)

Formula (2.5.3) can be used in all cases of bars (rods) being under tension or compression (e.g.,

- cases of variable cross-section or variable load having non-uniformly distributed stress) because the

stress distribution along (over) an infinitesimal rod element dx is always considered to be uniform!

Strain is usually expressed in units of m per m (mm per mm): [m/m =I] or [mm/mm =I1], (and
consequently is dimensionless) or can also be expressed as a percentage [%].

The total deformation is sometimes used to denote the elongation in [m] or [mm].

2.6 Stress-strain curve (mechanical properties of materials)

When applying a fensile test on a specimen of a material, the stress-strain curve is obtained. The
test specimen is held in the grips of either an electrically driven or a hydraulic testing machine. As the
axial load F is gradually increased in increments, the total elongation AL over the gauge length of the
specimen is measured at each increment of load and this is continued until fracture of the specimen
takes place. Knowing the original cross-sectional area 4, and the original gauge length L, of the test
specimen, the normal stress o = F/A , and normal strain € =AL/L, may be obtained. Having obtained
numerous pairs of values of normal stress ¢ and normal strain €, the experimental data may be plotted
with these quantities considered as ordinate and abscissa, respectively. This is the stress-strain
diagram of the material for this type of loading. Stress-strain diagrams assume widely differing forms

for various materials: e.g. low-carbon steel; alloy steel (aluminium alloy has similar shape); cast iron

Lo

Fig.2.6.1
(glass, stone).
Metallic engineering materials are commonly classed as either ductile or brittle. A ductile material

* (e.g., structural steel or aluminium) is characterized by its ability to yield at normal temperatures and

17
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by having a rélatively large tensile strain up to the point of rupture, whereas a brittle material (e.g., cast

TENSION AND COMPRESSION

iron or concrete) has relatively low strain up to the same point. A standard measure of ductility is its

percent elongation, which is defined a

Percent elongation = 100.(Lg - L,)/ L,

where Lp denotes the final length of the tensile test specimen at rupture. An arbitrary strain of 0.05
mm/mm (or percent elongation of 5%) is frequently taken as the dividing line between these two
classes. For ductile materials, the percent elongation reaches up to 20%. (Another measure of ductility

is the percent reduction in area, defined as

Percent reduction in area = 100(4,-Ag)/A4,,

where 4  denotes the minimum cross-sectional area of the specimen at rupture. For structural steel, a

60 to 70% reduction in area is common.)

2.6.1 Hooke’s law ’

For any material having a stress-strain curve of the form shown in Fig.2.6.1.1, which is typical for:

a) low-carbon steel; b) aluminium alloy or alloy steel,

A +G=-E
Gﬂct 0 o- A
Gﬂl - 4
Ou I Uy oo™ B Ou U
Os — B
GY=0v—0yY Y F /
cHS B
Cep[ ]| P Opr= As Oy—>Coz24 Y
/
i Fs f
{ o= |
0,0012 o — |
0,02 ‘ i’
€e1 Spl _ 0,00 ‘ 0’2 8
,c'; 0,2% offset
- C DI e .
L N Strain-hardening | Necking |
Ov:\yield
a) b

Fig.2.6.1.1

it is evident that the relation between stress and strain is linear for comparatively small values of strain.

This linear relation between elongation and the axial force causing it (since these quantities
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respectively differ from the strain and stress only by a constant factor) was first noticed by Sir Robert
Hooke in 1678 and is called Hooke’s law. To describe this initial linear range of action of the material
we may consequently write

c=E-¢, (2.6.1.1)

where E denotes the (steep) slope of the straight-line portion of the curves in Fig.2.6.1.1a,6. The
quantity E, i.e., the ratio of the unit stress to the unit strain, is the modulus of elasticity of the material
in tension, or, as it is often called, Young’s modulus. Values of E for various engineering materials are
tabulated in handbooks (E for the most common materials is listed in the Table 2.6.7.1, cf. Sec. 2.7).
Since the unit strain £ is a pure number (being a ratio of two lengths) it is evident that £ has the same
units as does stress, i.e., MPa. For many common engineering materials the modulus of elasticity in

compression is very nearly equal to that found in tension. It should be carefully noted that the

behaviour of materials under load as discussed in this textbook is restricted (unless otherwise stated) to

the linear region of the stress-strain curve.

(Brittle materials, e.g., cast iron, have the stress-strain diagram curved in its whole region - Fig.2.6.2.1a,b. With
such materials, we cannot strictly speak about the modulus of elasticity. To simplify computation, we even here
approximate - with respect to the required accuracy - the necessary part of the diagram by a straight line -

Fig.2.6.2.1b - and the value of the respective modulus of elasticity is then given in certain limits.)

2.6.2 Mechanical characteristics of materials

The stress-strain curve shown in Fig.2.6.1.1a may be used to characterize several strength properties
of a ductile material:

The initial portion of the stress-strain curve, being a straight line with a steep slope, ends with the
ordinate of point P, known as the proportional limit. (For a brittle material, which has a stress-strain curve as
shown in Fig.2.6.2.1a,b, there is no proportional limit). The ordinate of a point almost coincident with
(slightly larger than) P is known as the elastic limit, i.e., such a maximum stress that there is no
permanent or residual deformation when the load is entirely removed. (That region of the stress-strain
curve extending from the origin to the proportional limit P is called the elastic range; that stress-strain curve
region extending from P - more precisely from the elastic limit - to the point of rupture B is called the plastic
range. This problem will be discussed in the next course in the textbook Strength of Materials IT). After a critical
value oy (point Y) of the stress has been reached, the specimen undergoes a large deformation with a
relatively small increase in the applied load. This deformation is caused by slippage of the material
along oblique surfaces and is due, therefore, primarily to shearing stresses. (The siress g is only
imaginary, i.e., such a stress as if the material maintains its elastic property even after it has exceeded oy). As we

may note from the stress-strain diagrams of two typical ductile materials (Fig.2.6.1.1a,b), the
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elongation of the specimen after it has started to yield may be 200 times as large as its deformation
before yield. After a certain maximum value of the load (corresponding to point U) has been reached,
the diameter of the portion of the specimen begins to decrease, due to local plastic instability. This
phenomenon is known as necking. After necking has begun, somewhat lower loads are sufficient to
keep the specimen elongating further, until it ruptures (point B). We note that the rupture occurs along
a cone-shaped surface which forms an angle of approximately 45° with the original surface of the
specimen. This indicates that shear is primarily responsible for the failure of ductile materials, and
confirms the fact that, under an axial load, shearing stresses are largest on surfaces forming an angle of |
45° with the load (cf. Sec.2.4 and Sec.5.2). The stress oy at which yield is initiated is called the yield ?
strength of the material, the stress oy corresponding to the maximum load applied to the specimen is
known as the ultimate strength, and the stress op corresponding to rupture is called the breaking

strength.

If a specimen made of a ductile material were loaded in compression instead of tension, the stress-
strain curve obtained would be essentially the same through its initial straight-line portion and through
the beginning of the portion corresponding to yield and strain hardening. Particularly noteworthy is the
fact that for a given steel, the yield strength is the same in both tension and compression. For larger
values of strain, the tension and compression stress-strain curves diverge, and it should be noted that

necking cannot occur in compression.

The stress-strain diagrams of Fig.2.6.1.1a,b show that structural steel and aluminium, while both
ductile, have different yield characteristics. In the case of structural steel (Fig.2.6.1.1a), the stress
remains constant over a large range of values of the strain after the onset of yield. Later the stress must
be increased to keep elongating the specimen, until the maximum value oy has been reached. This is

due to a property of the material known as strain-hardening.

(The yield strength of structural steel may be determined during the tensile test by watching the load dial. After
increasing steadily, the load is observed to suddenly drop to a slightly lower value which is maintained for a
certain period while specimen keeps elongating. In a very carefully conducted test, one may be able to distinguish
between the upper yield point, which corresponds to the load reached just before yield starts, and the lower yield
point, which corresponds to the load required to maintain yield. Since the former is transient, the latter, i.c., lower

yield point, should be used to determine the yield strength of the material.)

In the case of aluminium (Fig.2.6.1.15) and of many other ductile materials, the onset of yield is not
characterized by a horizontal portion of the stress-strain curve. Instead the stress keeps increasing -

although not linearly - until the ultimate strength is reached. Necking then begins, leading eventually to
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rupture. For such materials, one may define the yield strength by the offset method. The yield strength
at 0.2% offset (0p) - which is the most common - is obtained by drawing through the point of the
horizontal axis of abscissa £ = 0.2% (or &€ = 0.002), a line parallel to the initial straight-line portion of
the stress-strain diagram. The stress oy corresponding to the point ¥ obtained in this fashion is defined

as the yield strength at 0.2% offset.

M G (tension) Brittle materials (e.g., cast iron, glass, and stone)

y
failure \ g, are characterized by the fact that rupture occurs
oul U % without any noticeable prior change in the rate of
F”‘ elongation (Fig.2.6.2.1a,b).
0’12Fu failure 0015 & Thus, for brittle materials, there is no difference
Gw U between the ultimate strength and the breaking
o ) strength. Also, the strain at the time of rupture is
o2 tgou—_]]? much smaller for brittle than for ductile materials. |
N o When a brittle material is loaded in tension, rupture J
u ‘(_SU; — occurs alqng a surface perpendicular to the load;
a) b) while at compression, rupture occurs in a surface
Fig.2.6.2.1

parallel to the load. From Fig.2.6.2.1a, we note the
absence of any necking of the specimen. We conclude from this observation that normal stresses are

primarily responsible for the failure of brittle materials.

For most brittle materials, one finds that the ultimate strength in compression is much larger than
that in tension (Fig.2.6.2.1a). This is due to the presence of flaws, such as microscopic cracks or
cavities, which tend to weaken the material in tension, while not appreciably affecting its resistance to

compressive failure.

We recall that the stress plotted in the diagrams of Figs.2.6.1.1a,b and 2.6.2.1a was obtained by
dividing the load F by the cross-sectional area 4, of the specimen measured before any deformation
had taken place. Since the cross-sectional area of the specimen decreases as F increases, the stress
plotted in our diagrams does not represent the actual stress in the specimen. The difference between the
engineering stress o = F/A, that we computed and the true stress o; = F/A (dashed line) obtained by
dividing F by the cross-sectional area 4 of the deformed specimen becomes apparent in ductile
materials mainly after necking has started. While the engineering stress ¢ , which is directly
proportional to the load F , decreases with F during the necking phase, the true stress o; , which is

proportional to F but also inversely proportional to 4, is observed to keep increasing until rupture of

the specimen occurs (Fig.2.6.1.1a).
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2.6.3 Factor of safety: strength criterion; allowable stress; limit analysis

A structural member or a machine component must be designed so that its ultimate load is
considerably larger than the load the member or component will be allowed to carry under normal
conditions of utilization. This smaller load is generally referred to as the working load, whose
maximum value is denoted as the allowable (working) load. In many applications a linear relationship
exists between a load and the stress caused by the load. Thus, we can apply the terms: the working
stress and the allowable (working) stress, respectively. The ratio of the limit stress Oy to the working

stress o is defined as the factor of safety k : “

GY . i
kY =—L>1 (related to the yield strength); (2.6.3.1a) |
G !
\
GU . ‘
kU =—2>1 (related to the ultimate strength); (2.6.3.1d)
o)

The allowable stress is then defined when a chosen minimum factor of safety k. is applied to the f

respective limit stress, which depends on the type of material:

)
a/ ductile material... G; = —Y which holds for both tension and compression ; (2.6.3.2)
Y min
0
b/ brittle material...O ., = Ut , which holds for tension (2.6.3.3a)
U min
allc = , which holds for compression (2.6.3.3b)
U min

Based on the respective allowable stress we define the strength criterion for the respective type of

material (the criteria defined in this chapter are restricted to uniaxial loading only):

a) ductile material ... |0| <0, .. tension and compression (2.6.3.4)
(sometimes the working stress for ductile materials is also checked by ... \G\ < Oy / kU min )
b) brittle material ... O <O, .. tension (2.6.3.5a)

|G| <0,y - compression (2.6.3.5b)

The values of the factors of safety depend on the type of structures ahd their operating application.
For normal design we recommend kyy;, = 2 and ki, = 4.
Note: A limit analysis of a structure can be carried out (cf.Chap.5), taking the factor of safety (kyor ky)
to be equal to unity :

a/ with a ductile material, this refers to the yield criterion ... | ol = oy ; (2.6.3.6)
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b/ with a brittle material, this refers to the brittle fracture criterion having two parts:

for tension ...00 = Oy, ; for compression ol =0 ; (2.6.3.7a,b)

2.7 Application of Hooke’s law to deformation computation

a) Consider a homogeneous rod of length L and uniform cross-sectional area 4 subjected to a centric
axial load F at its end (Fig.2.5.1). In such a rod, normal stress (at an arbitrary point x)

Nix F
G(X) = ( ) =—=0 is constant
A, A,
and normal strain, being constant as well, can be expressed for the rod whole length L (cf. Sec.2.5) as
AL
e=—
Lo
If the stress o does not exceed the proportional limit of the material, we may apply Hooke’s law and
write
AL o© F
e=——=_= (2.7.1a)
L, E A -E
_ oL, FL,
Then, the total deformation is = = (2.7.1b)
E A,-E

b) If a rod is loaded at various points, or if it consists of several portions of various cross-sections and

possibly of various materials, we must divide it into component parts which individually satisfy the

required conditions for the application of the formulae (2.7.1a,b). Denoting respectively by N;,L;,
A;, and E; the internal force, length, cross-sectional area, and modulus of elasticity corresponding to
part i, we express the deformation of the entire rod as

AL:ZALi =Z§i ij (2.7.2)

i
¢) We recall from Sec. 2.5 that, in the case of a rod of variable cross-section, the strain £ depends upon
the position x where it is computed and is defined as & = Adx/dx (Fig.2.5.1). Solving for Adx and

substituting for £ from Eq.(2.7.1a), we express the deformation of an element of length dx as

Adx o(x o(x
=2 g(x) = -Q = Adx= —(ldx (2.7.3a)
dx E
The total deformation of the rod is obtained by integrating this expression over the length L of the rod,
ie.,
O(x
AL= _[Adx= J‘-%dx (2.7.3b)
(L) (L)
23
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Formula (2.7.3b) should be used in place of (2.7.15), not only when the cross-sectional area 4 is a
function of x, but also when the internal force N(x) depends upon x, as is the case for a rod hanging

under its own weight, or a rotating arm, etc.

Introduction of the concepts of stiffness and flexibility

Eq.(2.7.1.b) can be rewritten as

AL= =—=F-8 =

EA, k

1 L - 1 EA _ |
=E=EAOO [mm-N 1]; k=g= LOO [N-mm 1] }

which define: flexibility &, which is a deformation (elongation or shortening) whose magnitude is |
produced by a unit force;
on the other hand stiffness k numerically equals the force magnitude being necessary to
produce a unit deformation (elongation or shortening).

Note: Because the initial length L, and cross-sectional area 4, of a rod do not differ greatly numerically (when the

rod is stressed in the range of Hooke’s law) from their final magnitudes L, 4, respectively, after the rod
deformation, we do not in practice use the subscript, i.e., we put in the above formulae Ly — L and 45 — 4.

2.8 Poisson’s ratio u

In all engineering materials, the clongation AL produced by an axial tensile force F in the direction x
of the force is accompanied by a contraction in any transverse direction (for the parallelepiped in
Fig.2.8.1 the lateral total strains are Aa, Ab, in the direction of the corresponding coordinates y, z). In
order to find out more easily all total strains, we have shifted the deformed configuration into one

parallelepiped corner.

yA
F X F ‘
» > bO
’ Lo ag
AL >0
N > LAb<0
b| bo
L | a1 Aa<0  poog
« .

The strains in the respective directions are (the total strains Aa, 4b being negative, cf. Fig.2.8.1, the

strains &, , & are negative as well)

ex=£20; : sy=&S0; e;ﬁso
L, b, a,
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Assuming the rod material to be both homogeneous and isotropic, the lateral strains are equal, i.e.,
€, =¢,
The absolute value of the ratio of the lateral strain over the axial strain is called Poisson’s ratio and

is denoted by the Greek letter .. There hold the expressions:

€ e € €
u:__yz_._z; or u=_y=__2_
£X SX ex 8)(
After applying Hooke’s law, we obtain the lateral strains as a function of the load F
o F
£y :gz =_u.gx =_&_X=_L’
E EA

0

from which we can express the respective total strains

F F
Aa=a,-€ ==—a,-l- ; Ab=b,-ge, =-b,-1-
0 z 0 “’ EAO 0 y 0 u’ EAO

The range of Poisson’s ratio values for engineering materials can be obtained readily by examining the

relative change in volume of a piece of material, cf. Sec.2.9.

2.9 Relative change in volume

Let us study the change in volume of the parallelepiped from Fig.2.8.1. Its volume, being before
loading Vo=L,-a,-by,
will change after deformation as follows,
V=La:b=Ly-a,-by(1+¢,)-(1+€,)-(1+¢,)=
=V, (148, +&, +E,+8, €, +E .8, +E, €, +E, €, E, )
when taking into account the change in the parallelepiped dimensions:

L=L,+AL=L, -(1+££) =L,-(1+e,); a=a,-(1+g,); b=by-(l+e,).

0
Since the strains &, & , & , have small magnitudes, when within the range of Hooke’s law, their
mutual products can be cancelled, considering them as small quantities of higher orders. Thus,

the volume expression can be simplified into the shape
V=V, -(1+$x +e, +£Z) .
The relative change in volume can then be expressed as

V-V, AV |
=—— =g +€, +E, (2.9.1)
VO VO

O =
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For uniaxial tension (where it holds &, = ¢, =—u- £,), the expression (2.9.1) can be rewritten in the

following form and must, logically, be positive

AV 1-2
®=—=£x-(1—2u)=cx-£—ﬂ20 (2.9.2)
v, E
In order to ensure that the relative change in volume is positive, Poisson’s ratio must range
1
OSHSE (2.9.3)

We may note that an ideal material having a value x4 = 0 could be stretched in one direction without

any lateral contraction. On the other hand, an ideal material for which ¢ = 1/2 would be perfectly

incompressible (@ = 0). What may be surprising is that for rubber & — 1/2.

Introducing the constant

Ke_ E (2.9.4)
3(1-2u)
. . 16)
we write Eq. (2.9.2) in the form 0= 312 (2.9.5)

The constant K is known as the bulk modulus of the material.

(A case of special interest is that of a body subjected to a uniform hydrostatic pressure p. Each of the stress
components is then equal to -p and Eq. (2.9.1) yields @=- p. [ 3(1-24) /E] = - p /K . In this case the bulk

modulus K is called the modulus of compression of the material.)

Table of the modulus of elasticity E (cf. Sec.2.6), Poisson’s ratio ji and the coefficient of thermal

expansion a(cf. Sec.3.6) for common materials:

Table 2.9.1
Material | E.10° M o.107°

[N‘mm’]}  [-] [K']

Steel 2.1 0.3 12

Nickel 2.1 0.3 13

Copper 1.15 0.36 14
Aluminium | 0.72 0.35 23

Castiron |[0.7-1.2]0.25-0.27 9
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2.10 Principle of superposition of stresses and displacements

Let us assume that two forces load the bar in Fig.2.10.1. Consider
first that only the load F; is applied to the rod. Then, at an arbitrary point

(cross-section) x, produced are internal force N(x) = F; and stress 3

F X
o (x)=— . y
A() L 4 Fl
If, on the contrary, the load F, acts separately we obtain stress vF,
F Fig. 2.10.1
c,(x)=-% . £
A

If both loads exert simultaneously, the internal force is given as the sum of all the external forces

acting from one rod end up to the cross-section x, thus N(x) = F;+ F,. The resulting stress is then

o(x) = NAEX) _ FIXFZ _E . E

N 0 o A, A—O=Gl(x)+02(x) (2.10.1)

The resulting stress, in the considered cross-

section x, is then equal to the sum - superposition -

01102 of the separated stresses. This statement represents
187]

- a formulation of the principle of the superposition
1

of stresses. It holds under the following conditions:

My

0 €1
—> - the exerting forces, and, consequently, the
&

€1+€>

< P

Fig. 2.10.2

<

corresponding stresses act on the same axis;

- the force actions upon the body do not change
substantially owing to the body deformation.
If the o -¢grelation is linear, i.e., if it obeys Hooke’s law, the principle of the superposition of strains
also hold. This can easily be proved from Fig.2.10.2:
g corresponds to the separately exerting ;.
& corresponds to the separately exerting o ;

and the sum of strains & + & corresponds to the sum of stresses o; +065.

Note: It should be taken into account that the stress and strain state in a body may be influenced by the prior
history of the body loading, i.e., by the manufacturing technology, changes of surrounding temperature,

mounting influences, etc.
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2.11 Various effects influencing the stress and strain assessment in an axially

loaded bar

2.11.1 Variable load

Variable loading of a bar can be produced for instance by the bar’s own weight effect when
suspended, or by the bar’s own centrifugal force when revolving. |
A) A suspended bar of a uniform cross-sectional area 4 and length L , made of material having the

allowable strength o (Fig.2.11.1.1), is subjected to load F (at its free end) and its own weight

(represented by the specific weight ¥ =p.g obtained as a product of the specific mass p and the

acceleration of gravity g).

Solution: ]

i dx| By applying the method of sections on the bar, and starting from the ‘
L dy;‘ : bottom free end, the internal force, at an arbitrary point x of the bar, is |
¥ X found to be ‘

p gv | :

Fig2.1111 [F

N(x)=F+ jg-p-A-d§=F+y-A-x
0

where the integral represents the sum of the elemental gravity forces obtained as the product of the
specific weight ¥ = p.g and the elemental volume 4.d£ at an arbitrary bar point given by the auxiliary
coordinate & The second force member in the previous relation can also be obtained when taking the
bar volume V(x) = A.x from the free end up to x and multiplying it by ¥ =p.g. Dividing the internal
force by the cross-sectional area 4 we obtain the stress distribution along the bar (note that the second
member representing the stress contributed by the bar weight does not depend on the bar cross-

sectional area 4) in the form

which we shall utilize for two important purposes:

a) the strength condition (where G,,,. = o{x=L) is applied):

F
6. =—+v-L<o
A Y all

max

b) the bar deformation can be obtained by applying Eq.(2.5.3) (since the stress is variable along
the bar length) |
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L L Lc(x) .
AL = JAdx= Je(x)dx= Jde=E6[(X+y-x)dx=

2
FL ‘L FL GL
= + Y = + =ALg +AL,
EA 2E EA 2EA
(The part of the bar elongation expressed by the second member can be interpreted as AL~ (GL)/2EA when

placing the total weight G = %A4.L in the bar centroid situated at the bar half length).

B) An arm (the dimensions of which are given in Fig.2.11.1.2) rotates with an angle velocity @

& .48
X A

Approach the solution similarly as in the previous case

r\\ e with the main difference that, instead of the arm’s own
NP dCe¢ 1 L . 3 :
&\ [ weight, it is the centrifugal force (C = m.r.&/ ) which
T
® = o) stresses the member. This is a problem of centrifugal

Jorce which belongs among problems of jforces of
Fig.2.11.1.2 . o .
inertia. Applying d’Alembert’s principle, we consider

forces of inertia as being external forces and then apply the method of sections.

Another problem involving centrifugal force is a revolving ring:

Assess the stress state arising in a ring revolving (rotating) with an angular velocity @, Fig.2.11.1.3. The ring is
made of material having the specific mass p, and its thickness a is much smaller than its radius ». The ring depth is
denoted b and it cannot be very large,
otherwise the ring would pass into a

N,
dC
\ rotating cylinder and axial stress
@ would arise (parallel with the axis of
A N‘

do
Vi

revolution).

N
a 2 Solution:

m Using two radial sections mutually

b : declined about an infinitesimal angle

Fig. 2.11.1.3 N, dc dp we shall obtain a segment, in
cross-sections of which internal forces

N;, N> will arise due to the action of centrifugal force

dC=dmr-®’=r-d¢-a-b-p-r-o’

It follows from the symmetry of the ring that N, =N, = N.

From the element equilibrium we obtain
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dC—2Nsin(L—(p=0 = dC=N-do

(considering that for infinitesimally small angles holds sin [(d@)/2] =d@/2 )

Thus, in the ring cross-sections, the forces

N=j—$=a-b-‘p-(r2-61)2)=a-b-p-v2

are acting, where v [ m-s~] ... circumferential velocity.

Supposing that there is a uniformly distributed stress in the cross-sections, the circumferential stress is expressed

as

N
a-b P

Denoting the original length of the ring circumference as ¢ = 2.zr, the ring circumference will increase, while

o

rotating, to
Cy :c+Ac=2n(r+Ar)
Expressing the circumferential (or tangent) strain, we obtain

(co—c) _2m(r+Ar)-2mr _Ar

8t =
c 27nr r

Thus, we can express the radius increment, caused by the rotation, as

2
Ar=8t .r:&:g‘]_
E E

Note that the radius change is computed from the circumferential strain.

2.11.2 Variable cross-section

Assess the stress state and

X dx 0,
A, s o(x) / % A, deformation of a rod with a variable
20 \ . = E/F_ cross-section (tapered rod) loaded with
N % ZD(x) g »(8Dy 3 constant force F, Fig.2.11.2.1. (If the
@]_/ = % change in the cross-sectional area is not
_MP_Q/ \E abrupt (the conicity is moderate), the
2 b stress distribution over an arbitrary
Fig.2.11.2.1 cross-section x can be considered

v constant (Fig.2.11.2.1)).
Applying the method of sections we have:
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Internal force N( X) =F

N(X) F-a’
Stress G(X) = A(X) = A<

1

which was obtained after substitution of the relation for the cross-sectional area A(x), based on the

squared ratio of two similar triangles (Fig.2.11.2.1):

g [D]?;)JZZ(%):AA&) ; (g;):(aibjzzz

Strength criterion

a+b

2

: _ _ A ‘

e Deformation AL = IF a” d&x_Fb a F-b 1 F-b
a

(With respect to the stress variability along the rod axis, we have applied formula 2.5.3).

Note: The last example summarizes an engineering procedure leading to the results needed when solving statically
determinate (SD) structures. This procedure can be written by means of a part of flow diagram, which is
explained in Chapter 3. That flow diagram contains 10 items for solving a general structure, both SD and SI

(statically indeterminate), from which the last items from 6 to 10 contain:
Item 6) Assessing internal forces.
Item 7) Assessing stresses
Item 8) Dimensioning (using a respective strength criterion)
Item 9) Checking the actual stress distribution (when computing numerical examples)

Item 10) Assessing deformation (displacement, stiffness, flexibility)

2.11.3 Bars (cables) of uniform strength

First consider a long suspended bar, or cable, of uniform cross-sectional area. Such a cable can be,
for instance, used as a bearing component for a mine lift (having weight Q). Considering the cable
alone, loaded due to its own gravity, we shall find a linear stress distribution along its length, with the
maximum stress being at the top. It is evident that, for most of the length, the cable carrying capacity is

not utilized, and, which is worse, for a very long cable, with the uniform cross-sectional area, it might

be impossible to carry anv lift cabin at all! A solution can be found in the construction of a so called

cable of uniform strength having a variable cross-sectional area, Fig.2.11.3.1!
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In solvingr this problem, we shall not use the method of sections, but we shall write the equilibrium

equation for a cable element being cut at an arbitrary site x. Drawing the cut-out element, we attach to

both cross-sections the allowable stress oy, and write This superfluous volume part
cohverges to zero more quickly
o - Ax) = 0y - [Ax) + dA(x)] + dG = 0 thin 4V - 0
where dG = A(x)-dx p ‘g...own cable element gravity | L AX) +dA ¢
y 7 A

(p...specific mass)

Then we will find successively the expression for the cross—sectional!aﬁ:(})change A(x) along the

cable length dA(X) p-g i
_ i -

= Amax=A(x=L) 1
A) o, Nog+aNG) |
A(X) =C. e[Pg/Gau}x K \ ﬁ%P Ax)+dA(X)
Applying the boundary condition for x = 0, AX)  dx fFTFFT T Ioa
where A(x=0) = A, = Q / Gy, we obtain L - A\ 4 +dx
A(X)%¢l¢¢¢ tGau |
Y |
y dG |
Alx)=A .e[Pg/Gau]'X =_Q_.e[Pg/°a11]'X A = A
R G == TN
Q Fig.2.11.3.1

In order to define maximum cross-sectional area 4,,,, of the cable, we substitute in this formula x = L.

2.12 Strain energy

When a slowly increasing axial load F acts upon an elastic body (stressed within the range of Hooke’s

law) and, subsequently, deforms it, the work W executed by load F is stored within the body (because the

kinetic energy can be neglected) in the form of strain energy U , i.e., W= U. The strain energy is always a

scalar quantity.

F A
EA t { of
= Ccons
wW=U /
dXv 3 ’ A |
r s L
F=F(AL
X _( )
s 0|d(AL AL . X
4 FL
() =NxYA=] |F AL=ra
F/A = const o )
a) Fig.2.12.1 b)

First we will deal with a simple problem in Fig.2.12.1, where the stress is wuniformly
distributed along the rod length. In this case it holds
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wvrite the equilibriy FL EA

AL=——=F="-. (2.12.1)

lement, we attach: EA L
ne part Let us now consider the work dW done by the load F as the rod clongates by a small amount

ickl
aney d(AL). This elementary work is equal to the product of the current magnitude F of the load and the
dA corresponding small elongation d(AL) . We write

A
| dW =F-d(AL)
dx—> 0y

ange A(x) along ¢and note that the expression obtained is equal to the element of area of width d(AL) under the

load-deformation diagram. The ftotal work W, done by the nominal value F of the load as the rod
N(x)+dIN(x) undergoes the total deformation AL, is (when substituting for F and AL from Eq.2.12.1) thus

A 2 2,

L 2 2 2.-EA

AX)+A(X) W= jF-d j -AL-d(AL (2.12.2)

Call
[ idgand is equal to the area under the load-deformation diagram in Fig.2.12.1, see the vertically hatched
viv Yo area. Since it holds W = U, the total strain energy, when the stress is uniformly distributed along the

V4G bar length (where internal force N(x) = const, i.e., N = F), is expressed in the shape

bl |

| e ;

. . o
NG) p=FL (= N L] or U=——AL=A-V (2.12.3a,b)
3.1 2-EA\ 2-EA 2E
this formula x = Ly, Eq. (2.12.3b) we introduced the strain energy density

1 o’ )
A=—=—-0-€=——  per unit volume, (2.12.9)
vV 2 2E

which is equal to the area under stress-strain diagram of the material, see Fig.2.12.1c.

1 the range of HOOkeEq.(2.12.4), which holds for o = const, can be modified into the form

the body (because t - dU 1 ~ ( )
In energy is always dV 2 G( ) 8( )= (2.12.5)
in the case of variable stress ofx).
c ’ The general formula used for the total strain energy expression for an arbitrary axial loading of a
/ 2 bar (resulting in an arbitrary stress distribution along the bar length) can be readily obtained in a similar way
(see Eq. 2.12.2), by introducing the corresponding internal force N(x) and finding the strain energy
accumulated in an elementary bar length dx as
1
R dU=—=N(x)-Adx , (2.12.6a)
0 f 2 |
o’(x)
0 or, based on Eq.(2.12.5), dU=A-dV= B dv (2.12.6b)

tress is  unifornt .
After substituting for Adx from Eq.(2.7.3a) into Eq.(2.12.6a) and integrating along the bar length we

have the general formula for the fotal strain energy produced by uniaxial loading as follows

33




TENSION AND COMPRESSION

1 N (x)
5 _[ dx (2.12.7a)
or we can integrate Eq.(2.12.6b) and obtain (for uniaxial loading) T
2
(¢)
U= _[7»-dV= J‘—ﬁ-A(x)-dx (2.12.7b)
2E ; :
(L) (L) N

2.12.1 Strain energy stored in rods stressed by various type of loading.

The suspended rod in Fig 2.12.1.1 consists of two portions BC and CD made of the same material,

but of different lengths and cross sections. Determine the strain energy of the rod when it is subjected ,

to a centric load F, while also taking into account its own gravity influence (specific mass p =

specific gravity ¥ = gp). (We can express the resulting weight of each portion: G; = gp.4,L; and G, = gp.4,L,,
respectively.) |
Solution:

Applying the method of sections we have

LSS IS SIS N(Xl) =F+gpA x, }
B A /A2 ‘
L, i N(X2)=F+gpA1L1+gpA2X2=F+G1+gpA2X2 “
. %2 Applying Eq.(2.12.74), we have the strain energies U; ,U; successively
L C . for the two portions:
1 p
A X1 2 L
| - 1 N7(x,) 1 ¢ 2
F 1
-
Fig.2.12.1.1

1 F’L GL, G L
U=-—21+F 214+ 1 =U_ +F-ALy+U,#U;+U *
'"2 EA, = 2EA, 6BEA, T A A )

Analogously
b 2 1 FL, G,L, G,” L
= - | (F + gpAL, + gpA,x,)dx, = — - F+G e 2
2 = JFA, (_!( gpALy + 8pPA, vz) 2 =% EA, + ( 1) 2EA, 6EA,
=
U2 = U2F +(F+G1)AL2'Y +U2’Y * UZF +U2'Y **)

where: Ujr, Usr, Uy, Uszy ... the strain energy produced in each portion by singular action of F and

the portion’s own gravity, respectively;
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ALy, ALy .. the elongation of each portion caused by the respective own gravity

only (cf. Sec.2.11.1).

The total strain energy for the whole rod is

U=U, +U,

Note: The strain energy formula, Eq.(2.12.4), being a quadratic function with respect to forces, does not allow us

to apply the superposition principle (cf. Sec.2.10), therefore we cannot obtain the total strain energy of a
member by simply adding the partial strain energies produced by single exerted loads, see *) and **)

expressions.

2.12.2 Bars stressed by impact loading

Another case of strain energy application is when we assess the stress state of a bar hit by a moving
object (Fig.2.12.2.1).

Consider a rod BD of uniform cross section which is hit at its end B by a

_ body of mass m, Fig.2.12.2.1. The mass (a pile driver) being suspended at
G=mg
height % above the rod BC, has the potential energy
G p
\j
h AW, =mg-(h+AL,)
B with respect to the rod end B.
As the rod deforms under the impact by A4 L, dynamic stress develops
Aly .
within the rod and reaches the maximum value o,. In the case of uniform
A L rod, the stressoy has the same value throughout the rod and we can write
EA = const the elongation (contraction) of the bar due to dynamic loading in the
form (see Eq.2.7.1b)
(o)
D AL, = Ed L
Fig.2.12.2.1

After vibrating for a while, the rod will come to rest and then the static elongation
mglL G L L
tT or A m Os'g
EA A E E
remains in the rod due to the weight G = mg acting now statically which produces the static stress oy = (G/A) in
the pile driver. Such sequence of events is referred to as an impact loading.
In order to determine the maximum value o of the stress occurring at a given point of a structure subjected to

an impact load, we shall make several simplifying assumptions:

First, we shall assume that the potential (or kinetic) energy of the striking body is transferred entirely to the

structure and, thus, that the strain energy U, corresponding to the maximum deformation A L, is

1 Gdz
Uy =AW, =25

-A-L=mg(h+ALd)=G(h+G‘;3'L)

This assumption leads to the following two specific requirements:
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1. No energy should be dissipated during the impact.

2. The striking body should not bounce off the structure and retain parts of the respective kinetic, or potential,
energy. This, in turn, necessitates that the inertia of the structure is negligible, compared to the inertia of the
striking body.

Returning to the pile driver and modifying the above obtained quadratic equation, we obtain

6, -6,2-6,-2-0, -ETh=O,~

and after extracting the roots we shall find that the physically valid root is

/ 2EA
0,=0, 1+ 1+——G?h =Gst'kd*)

For 4 — 0, we obtain an interesting result stating that
Gd = 2 Y st

And for 2 >> AL, , the expression *) can be simplified into the form

2EA
Oa=Ouy g P=0u ke ™

In both expressions *) and *¥), k; means the so-called structure impact coefficient.

Note: Analogously we can solve a problem of a mine lift, which, after a certain time At [s]

of descending at a constant velocity v, is suddenly stopped.

Given: v=1 [m/s]... velocity of the cabin
At =1 [min]... time to the stoppage
m = 10° [kg]...cabin mass (G = mg [N]...cabin weight); g =9.81 [m/s?] ... gravitational acceleration
o, = 108 [N /m2]= 10? [N /mmz] ... allowable stress of the cable

E=2-10" [N/m’? = Pa] = 2 -10° [N/mm® = MPa] ... Young’s modulus of the cable

Additional terms to be considered:

3 :
L [m] ... length of the cable, from the wheel to the cabin, when it stopped \
A [m?]... cross-sectional area of the cable L | At
Ug [J=kgm®/s?] ... dynamic strain energy stored in the cable just after it has stoppea 1'
K [J] ... kinetic energy in the descending (v = const) cabin
kq [1] ... structure impact coefficient u m, (G)
Solution:

The lift kinetic energy is transferred into the strain energy of the cable holding the cabin:
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2 2
Ud__-AK:l.G_d.A.L:mV
2 E 2

Modifying the quadratic equation obtained above, we have

, .
Gd2=mv 'E:>Gd=V' EE =v- igé E =0, _‘ﬂ:ost.kd [N/mz]
A-L A L Ag G A v-At g-G-At '

where 0y = (G/A) is the static stress and L = v-At is the cable length which, in time A, is just unwound and has

to absorb the kinetic energy AK

Static dimensioning

3
o, =S =6, = 1—0% <10° = A > 9.81-107|m?]

st A
(d = \/g >0.0112[m]= 11.2[mm])

Dynamic dimensioning, where first the dynamic coefficient k; is to be assessed:

v-A-E 1-981-107% -2 10"
= 3 =184 =
g G- At 9.81-9.81-10° - 60

6, =0y - k; =184 -0

e
(=9
i

We see that such a lift (having the cabin connected directly with the cable) cannot be operated. What can be
done? This machinery needs a flexible element to be installed between the cable and the cabin to absorb the

kinetic energy:

AK =

2 2 2 2

m-v? _10°-1 =5_102[kg-m2 _kg'm
s s

-m=N-m=J].

In Chapter 8 (Sec. 8.5.2), the deflection of helical springs is discussed. When coming there, we shall design a

helical spring which can serve for that purpose, i.e., accumulate the lift kinetic energy.

2.13 Castigliano’s theorem

Let us consider a general three-dimensional (3D) elastic body loaded by forces F;, F,..., F;, ..., Fy,
being in static equilibrium, Fig.2.13.1. We denote with u; the displacement under force F; in the
direction of F; , produced by the force system. If we assume that all forces are applied simultaneously

and gradually increase from zero to their nominal values, then the work done by the force system is

U = % bt 52“— +oen F; = U ...E..F) @13.

{This work is stored within the body as elastic strain energy.)
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2. Fig2132 é@

Fig.2.13.1

Let us now increase the i-th force by an amount dF; . This slightly changes both the state of }

deformation and also the internal strain energy. The increase in the latter is given by

w=(Yar
JF,
Thus the total strain energy after the increase in the i-th force is |
|
U, =U+dU=U+(—g%)dFi (2.13.2) |

Let us reconsider this problem by first applying a very small force dF; alone to the elastic body.
Then, we apply the same forces as before, namely, F; ...F; ...F, . Due to the application of dF; there is a
displacement in the direction of dF;, which is infinitesimal and may be denoted by du;, producing an
infinitesimal strain energy (1/2) dF; du; , Fig.2.13.2. Now, when F,...F; ...F, are applied their effect on
the body will not be changed by the presence of dF; and the internal strain energy arising from
application of F,....F; ...F, , will be that indicated in (2.13.1). But as these forces are being applied the
small force dF; goes through the additional displacement u; caused by the forces Fi....F;...F,. Thus, it
gives rise to additional work dF; u ; which is stored as internal energy (note that the coefficient 1/2 is now

missing since dF; had already obtained its nominal value) and hence the total strain energy in this case is

dF.du,

U, =U+dFu, + (2.13.3)

Since the final strain energy must be independent of the order in which the forces are applied, we may

equate (2.13.2) and (2.13.3),i.e., U+ (g—g) dF, =U+dFu, + dfdy, resulting in
0
L) 2.13.4)
dF,

This is Castigliano’s theorem, named after the Italian engineer Alberto Castigliano (1847 - 1884)
who first stated that the partial derivative of the total internal strain energy with respect to any
external applied force yields the displacement of an elastic body under the point of application of that

Jorce in the direction of that force.
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(The term force here is used in its most general sense and implies either a true force or a couple. For the case of a
couple, Castigliano’s theorem yields angular movements under the point of application of the couple tending in the
sense of rotation of the couple (cf. Sec. bending))

Note: When solving statically indeterminate structures, the so called Second Castigliano’s theorem can be

used, i.e., u, = B_U = (), expressing that the statically indeterminate force makes the structure strain

i

energy to be minimum. This holds only for non-prestressed structures, cf. Chapter 3, Sec.3.3.

It is important to observe that the above derivation required that we be able to vary the i-th force
F; independently of the other forces. Thus, F; must be statically independent of the other external
forces, implying that the energy U must always be expressed in terms of statically independent forces.

(Obviously, reactions that can be determined by statics cannot be considered as independent force.)

The simplest application of this theorem is for an axially loaded (by F) prisinatic rod (dimensions
4, L; material E). Based on the strain energy formula (see Eq.2.12.3) that we assessed for such a rod
in Sec.2.12 and applying Eq.(2.13.4), we obtain
_a_U_i[FZ-LJ _FL
T OF 9F\2-EA) EA

Ug =

We will find out that this is the rod elongation AL we have already assessed.
Applying the above indicated partial derivative formally to the general expression for strain energy

accumulated in a member that is uniaxially loaded (see Eq.2.12.7a), we can write

" OF OF| ;) 2-E(x)-A(x)

(2.13.5)

Executing the proposed derivation inside the integral (because the force F - with respect to which we shall
differentiate - does not depend on the coordinate x - with respect to which we are to integrate), we obtain

N(x) oN (x)
E(x)-A(x) OF

u; = dx (2.13.6)
(L)
The expression (2.13.6), called Mohr’s integral, will also be applied, in various modifications, to
the computations of deformations when other loading types (e.g., torsion, bending) are concerned. (It is
highlighted, in formulae (2.13.5) and (2.13.6), that all the quantities might be variables. Subsequently we will not

usually do this, with the exception of forces).

Taking into account that the internal force N(x) is a linear function of the external force F;, then F;

will not appear in the derivative (Jd N(x) /J F;), which is dimensionless. The expression (2.13.6) can be

- N(x)
rewritten into the form u; = j -ni(X) dx (2.13.7)
EA
(L)
where: N(x)... the internal force acting in the site x, produced by external loading;
ni{x) = (dN/JFy ... the internal (dimensionless) force acting in the rod site x, produced by a unit
(dimensionless) load applied both in the point and direction of the looked-for displacement
(If the computed displacement has a negative sign, its pointing will be opposite to that of the unitary force.)
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Note: The presented Mohr’s integral (also called “Unit-load” method) enables an easy displacement computation
even in such cases where_no concentrated external force acts. We shall simply put the unit load into the point and
direction of the required (computed) displacement. This statement can easily be proved, when, by applying

Castigliano’s theorem, an imaginative force F is exerted in such a place and, thus, the internal force is expressed as
N = f{(F;, F ). first executing the derivation (J U /JF) and then setting F— 0 in the result, it can be found that (d N
" /@F) = n(x) also holds, and has the same meaning as stated above.

2.14 Complement
Example 2.14.1: The application of the procedure described in the note under Sec. 2.11.2 when solving a truss.
B . Solution :
Item 6: Internal forces: N, =F/sina; |N,|=F/tana
F 1
L
N,
Int. forces assumption: N,>0, N,<0, is satisfied
4 ) IN N N
Lo INz | F Item7: Stresses ©, =—1l;0,=-2%
A A
N, F N F
Item 8: Dimensioning 01 =—— =———— <0y |(52] = | 2| = SOy
A A-sino A A -tano

Item 9: Non-numerical example, i.e., no checking of the resulting stresses values

Item 10: Displacement of the pin D:
a) Geometric approach where a change in angle a is neglected, see the figure below:

1

AL,/ tga
’ . Vp
K& ALy/sino,
AL>0 1
AL AL . N,|-L .
v, =— 1+| 2|= N, ‘Ll +’ AR = —— 13 = F_L3 [[+cos®a] ®)
simnmo. tano FEA-sinoe EA-tano EA |sin"o tan” o EA -sin’ o
b) Castigliano’s theorem application: (no figure is necessary)
. . . I N4 L .
Strain energy for tension-compression U :EZW is derived by the vertical concentrated load F exerted

i i
at the pin D downwards, which results in the vertical displacement vp:
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5
% V]:vu‘_"a_U:L I\Ii'%'Li=i .F : .1 : .L +( d '(_ ! : L = 3 .Ls [1+00530L >0
d JoF EAG dF EA| sino, sino sino tano tano,) tano| EA-sin’ o
123
;\S, Notice that the vertical displacement vp, is positive, i.e., it has the same sense as the load F and is equal to the

result *) above.

There are several tasks in Chapter 2 (e.g., 2.11.1 and 2.11.2 compared with 2.11.3) looking to be

.
solvable by the same approach, but, in reality, they are basically different problems.
v ’ oD,
T I) When combining a variable load (e.g., own weight) and a variable
p cross-section (e.g., that of a conical shape) with a rod bearing a load F
the solution of such a SD structure is based also on the method of
L o D(x) sections and the 6 — 10 items of the flow diagram can be applied.
[ ])1 X
[
F
Amasz(x=L)
& II) Bars (cables) of uniform strength (Sec. 2.11.3), which are based on the
\ k P equilibrium equation of an element, see Fig.2.11.3.1. When solving this J‘;
\ / d |
A®) X problem, we shall not use the method of sections. but we shall write the {
L
equilibrium equation for a cable element being cut at an arbitrary site x. !
A v
A(x=0) = Ao
v
Q

Example 2.14.2: Truncated cone subjected to its own weight

Given: Specific weight (y=p.g); geometry (4,/4;= k, L); material (E, o.p).

A / T R=vV Task: The structure solution by using the flow diagram.

Solution:

When using the similar triangles method, we can assess the

cross-sectional areas in arbitrary sections (X-position):

) ) o

The parameter a depends on the conical bar dimensions:

2 2
Ay _ (Do) _ (a t+ Lj
' A D, a ,

Lahl

Fig.2.14.2.1
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As the rod is SD, we start with ltem 6:

Item 6: Internal forces are obtained when subtracting the weights of the cone parts graphically

denoted in Fig.2.14.2.1:
N(x)=G(x)= Y-V(x)—v-V(a)%[A(x)- x—Aj-a|=

TItem 7: Normal stress

1/A(x)
2 3
Alx) 3 |AKX) S A (x 37 x2
A simple checking: for x =a: 0} =§ a—— | =0...this is correct;
a

Y (L+a)3—a3 _Y 13 +3aL% +3a%L +a> —a3
3 3 (L+a)?

3
0y =1 Lya- 2|
3 (L+a)
_y| P +3al? +32%L
3| (L+a)

for x = L+a:

¥

Item 8: Dimensioning, i.e., G_,, = 5{

L’ +3al’ +32°L | _
(L + a)2 e
This strength criterion can be used for assessing either the rod material (y = p -g), or its size

Item 9: Checking (when solved numerically)

Item10: Deformation

L+a L+a L+a L+a 3
AL = ].Adx= ]'e(x)dx: er. %X)dxzﬁ JJr' {X—%]-dx=
a a a a X

2 L+a 2 2
zix_ws.(Lj =Lu_a_+as[ 1 _lj
3E | 2 X/, 3E 2 2 L+ a a

Note: Mind that the rod conicity must be moderate (cf. Sec.2.11.2, p.30). When this assumption is not

obeyed then this approximate method does not yield suitable results.
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3. Statically indeterminate uniaxial problems

3.1 Definition of statically indeterminate structures

In the problems considered in the preceding chapter, we could always use equilibrium equations
and the method of sections to determine the internal forces produced in the various portions of a

member under given loading conditions. Such problems are denoted as statically determinate.

There are many problems, however, in which the internal forces cannot be determined from statics
alone because there are more unknown forces (their number being n) acting on a body than there are
equations of equilibrium (their number being r). Therefore, such cases are known as statically

indeterminate problems. The degree of the static indeterminateness (denoted by s) is then given by

S=n-—r
For their solution we shall utilize an advantage of the study of Strength of Materials over the study of
Statics, when taking into account the elasticity and deformability of members, i.e., the equilibrium

equations must be completed by relations involving deformation (called deformation conditions or

compatibility equations) obtained by considering the geometry of the problem.

Some examples of SI structures will be undertaken in this chapter.

3.2 General procedure applied when solving statically indeterminate problems

When solving a statically indeterminate problem, we can generally proceed as follows:

1) Find out whether the structure under consideration is statically determinate (SD) or indeterminate
(SI). For this purpose, we can either use an exact static analysis or a tentative approach. When the
structure has been proved to be SI to acertain degree (s), the solution procedure will pass

to item 2.

2) Release the structure to the SD state, i.., all the superfluous static parameters (supports or
members) are to be removed (in the number s) and substituted by so-called SI forces (or SI couples -

cf. Secs.8.4 and 12.1), evidently in the number s.

3) Write r equations of static equilibrium (sometimes this is not necessary in order to determine the
internal forces of the undertaken structure, but it serves for the determination of all the reactions in

question).
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4) Write s relevant equations of compatibility (or geometric_equations, or deformation relations)

which must correspond to the relevant structure localities, i.e., those where the superfluous static

parameters have been removed.

5) Apply constitutive relations (or force-displacement relations), i.e., modifications of Hooke’s law,

in order to transform geometric quantities (displacements) into static quantities (forces).

Item 17 is decisive:

a) If the structure is statically indeterminate we proceed through all the following items (2 «» 5 ) as

long as we assess all unknown (external) forces (including SI forces). Since engineering tasks

consist in dimension and deformation assessment of structures, the items applied when solving

SD members (cf. Sec.14, where they are denoted as x + 1, x + 2 ...x + ), are to be added to the
above presented procedure (while being denoted by numbers from 6 to 10, since we have
substituted x = 5, which expresses the number of the above presented items for the solution of SI

forces). It follows from this that altogether ten steps are to be applied when designing a SI

structure.

b) If the structure is statically determinate we just jump from the (decisive) step 7 immediately to
step 6 and proceed as far as step 0.

Then, all problems, SD and SI, can be solved by applying the following flow diagram (chart):

?S—I@@@—@ OGP
SD

The most important items (7, 4, 8 and 70) are highlighted.

Later examples will show how to handle SI problems.
3.3 Bar attached to rigid supports

A bar BC of uniform cross-sectional area 4 and length L is attached to rigid supports. An axial load
F is applied to the bar at a distance L; from the left support, Fig.3.3.1. What are the reactions Rp and
R¢ in the supports?

Proceeding according to Sec.3.2, we have:
ad 1) The case is statically indeterminate to the first degree (1° SI) because there are two unknown

reactions Rz , Rc and only one equilibrium equation can be written (uniaxial force system).

44




o UQ |n

(¢

STATICALLY INDETERMINATE UNIAXIAL PROBLEMS

Rp F Rc

v,
@!

L1 L2

A

Fig.3.3.1

ad 2) Consider that the bar is cut just to the left of the supporting wall C, the static influence of which
is substituted by the SI force Rc , Fig.3.3.2 (R¢ is now temporarily considered as an action while

Ry remains all along as a reaction).

Ry F Re

L L,

.
P>

A

Fig.3.3.2
ad 3) Equilibrium equation
F-R,—-R.=0
ad 4) The relevant deformation relation (compatibility equation) is obtained when comparing Fig.3.3.1
and Fig.3.3.2, which results in the requirement for zero displacement of the bar at the released
point C, i.e.,
AL, =0,
where AL can be decomposed in two ways:

a) either as the sum of the elongations (or contractions) of the separate bar fields, which are

subjected to their respective internal forces, i.e.,
AL.=AL,+AL, ;
b) or as the sum of the elongations (or contractions) of the whole bar when applying the

principle of superposition of the actions exerted separately in their turn on the bar, i.e.,

ALo=AL; —[AL,

ad 5) The constitutive equations, i.e., Hooke’s law, can be expressed:

ad a) either

Rp F Rc
L Lo,
Rp u (N2
! 1‘ . r N ,
Ni'Fig333 Re
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ad b) or
R=F F R=R¢ Re
Ly e 12 L e L2
+ F
R¢
F-L i
AL, = 1 AL, |= Rc (L, +L,)
EA c EA

When substituting item 5) into 4), we obtain:

(F_Rc)'Ll + (_Rc)'Lz
EA EA

a) either AL, +AL, =

— F'Ll __Rc'(L1+L2)
EA EA

b) or AL, - ‘ALRC’

Both presented approaches (ad a/; ad b/) yield the same SI force
L

R,=F.—1 _
0 (L+Ly)

which, after executing the foregoing procedure (resulting in finding one of the two originally unknown

reactions Rp , Rc ), can finally again be considered as a reaction.

After substituting R into item 3) (equilibrium eq.) we obtain the other reaction
L2

R,=F—2 _
i (L1+L2)

Note: In order to assess the reactions Rz, R, it is also possible to apply:
i) Castigliano’s Theorem:
Based on Fig.3.3.3, we express the strain energy accumulated in the rod
1 N2

U=— i T
2EA 5§

zﬁ[le ‘L, +N22 'Lz]’

Second Castigliano’s Theorem for SI systems (non-prestressed), cf. p.38, yields

W oo U N AN
oR. EA oR, oR
1 L
=—\F-R.)-(-1)-L,+(-R_)-(-1)-L,|=0=>R_=F- 1
Ea PRI L R (1) L]=0= R =F- s
ii) The concept of flexibility: §= AL —=F= ASL , cf. p.23.
F

Based on Fig.3.3.2, where the bar was released at the point C, the compatibility equation
canbe expressed as AL, =0=F-8 —R_ (8, +§,) and the SI force R is then
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Ll
R, =F- 3, —F. 8, -F._EA _p L, , while the reaction Rz can be assessed,
81 +62 Stutal i_*_& (Ll +Lz)
EA EA
using the same concept, when the bar is released at the other support B, we have
RB —. F <« RC
LI »la L2 »

the compatibility equation AL, =0=R_ -(81 +9, )—F- 6, and R¢ (now the SI force, due to releasing
L,
the support B) is e 9% -8 - BA _._ L
b= s, o L L eL)
1 2 total T2 1 2
EA EA

Summary: This concept of flexibility is suitable for structures with loads in series, while for structures
with loads in parallel (e.g., cf. Sec 3.4) the concept of stiffness is to apply.

Now we have answered the question asked above: we know the reactions.

Ttems from 6-10 can be executed as follows:

ad 6+7) Assessment of internal forces + stresses. (Using the method of sections).

NI(X)_RB_ F'Lz

- field 1: Nl(x)=F—Rc=RB; GI(X)= A A _A-(L L )...tensz’on
171
-field 2: N, (x)=-R ; Gz(X)zNz(X)z Rc= FL ...compression

A A A(L+L,)

ol ——FL1
mae 120 AL(L+Ly)

Considering L; > L, , we shall determine |G |

ad 8) Dimensioning (using the strength criterion)
_ F' Ll

|G|max =|6‘2 _A'(Ll +L2) Scsall

Knowing, for instance, the cross-sectional area 4 we can assess the allowable load

F<FEy=A 0y

al
1

ad 9) Checking the actual stress distribution
If we had carried out the computation numerically, we should have checked the actual stress

distribution along the bar axis.

Ad 10) Displacement (deformation, stiffness, flexibility) assessment
Let us assess the displacement of the bar site where load F is applied with respect to clamping B

(i.e., the deformation ALgr of the left part of the bar).
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-

To solve this task we shall take into consideration only the BF part of the bar being subjected to
the tensile load F - R = Ry . From this follows the displacement

F-L,-L, '
pp = —————=2—->0 ..elongation.
" EA- (L,+L,)
The same result (numerically) - but with the opposite sign - will be obtained if we consider the

right FC part of the bar
F-L,-L
AL..=——12""2 _<0. contraction = |AL..|=AL.. = AL
FC EA(L1+L2) | FC| BF F

From the displacement ALr we can obtain, for instance, the flexibility of this structure with

respect to the site of the application of load F

_AL, )
o= /F EA( L+L) o N7

and the stiffness with respect to the same point

" / /AL BA-(L,+L,) [ —

Example 3.3.1: A bar of two parts BC and CB, having different cross-sections and materials, is

attached to the rigid support B and have the gap m<<L,, L, to the rigid support D.

Execute a discussion about the load F values causing the bar to be:

1) SD, i.e., F < Fgp; ii) Sli.e., F > Fgp, while obeying the strength criterion ,(5|max <Oy

SD SI
A A
B B ﬂ RB,QD Rgpsp B RB’SI ]:{B,SI
EA
L n n
1
! C "ALI.SD AL s> 0
I C > =
F c A >
\ IF Fsp F | Fs
v _
L, 2
m =
Rp st

N D D A D
Rp,sp=0 1 _T_I}D I F_AL2,51< 0

Solution: (we will apply the concept of flexibility, cf. Sec. 3.3)
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_ Reactions:... _ 8, m EA, m ‘R, =F 3, L m
Re = - = B B8, +5, 8,46
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EA, E,A, EA, E,A,
Strength criterion: lGI = max ﬁ; _R_D <5
max Al A2 all |
!
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ad 1) SD force assessing: AL, =m=F-§ =Fg =52 _m E,-A,
L
1 1

ad ii) SI force assessing:
compatibility eq. . AL, =m=F-§ —R (8, +3,), equilibriumeq..F-R; —R, =0

3.4 Parallel members connected with a rigid plate

Consider a steel tube surrounding a solid aluminum cylinder, the assembly being compressed
between infinitely rigid cover plates by centrally applied forces, as shown in Fig.3.4.1. Assess the

stresses Ost, O a1, in the two members, respectively.

F Solution: We can proceed according to the items given in Sec.3.1: J
| ad 1) In order to answer the problem, we must assess the |
decomposition of load F into two portions Fs, , Fa , which stress
L ?’: the steel and aluminum members with the internal forces Ng; , Ny,
? respectively (see Fig.3.4.2). As all forces exerting in this structure
\\{;&; BN are collinear, only one equilibrium equation (F - R = () can be
R written, confirming that the case is SI o the first degree.
Fig.3.4.1

ad 2) Since this structure has no redundant support parameters, it is not necessary to release the
structure to the SD state (and then introduce the respective SI force), according to item 2
(cf. Sec.3.1).

ad 3) The static equation can be written in the form
F-Ng, —-N, =0

ad 4) The necessary relation between the displacements of the members is based on a kinematically

admissible deformation of the structure, Fig.3.4.2. Thus, the deformation condition is

F
"ALS Fg AL ’ALSt ‘ =|ALA1|

Z y 3 ad 5) Applying Hooke’s law we have

% 7 s Ny L

7 = U SITELA

v f st st

2 L 4.
AN T, DOV SN WY N, L

R=F Rsi=Fste=Ngt  Rai=Fai=Nal IALAll W
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e e s . . . _ ESt ) ASt
Substituting item 5) into item 4) we obtain Ng=Ny =—— %
En-An
The relation *), when combined with item 3), yields
Ex-A Eg -A
Ny =F- Al Al >0 and analogously Ng;, =F- St —St >0
Ear-Aa +Eg - Ag Ep-Ap +Eg - Ag

The positive signs confirm that the internal forces were correctly assumed as compressive. After
dividing the internal forces obtained in this way by the respective cross-sectional areas we will have
stresses in both portions, respectively, as follows:
Na__ F Eai-Aal ;GSt=_NSt=_ F Egi -Agt

Aar Ap EpprAp t+EgAg
We have had to add negative signs to the resulting compressive stresses in accordance with the sign

Cal =

Ag Agi Epp-Ap+Eg-Ag

convention (cf. Sec.2.3).
Important note:

Using the concept of stiffness for expressing internal forces we have, after rearranging them and simplified
subscripts (Al =1, St=2)
E]. . Al E2 * A2
L, k . L k
: =F——>0: N, =F- 2 = 2
EI-A1+E2-A2 k, +k, ? E1‘A1+E2'A2 k, +k,
L, L, L, L,

>0

N,=F

When expressing the internal forces of structure members by using these stiffness symbols for a generalized
structure of n parallel members, i.e.,

k
N, =F 1 >0,...... N =Fk—n>0,etc.

k, +k, +..k, Tk +k, +k,

Now, when looking at the compatibility eq., (i.e., item 4), and Fig.3.4.2, we estimate that also a structure of n
parallel members deforms about the same value as each of its components themselves, 1.e.,

AL=AL, =AL, =...AL,

‘When expressing

LR . P RS e
ktotal 1(total kl kZ kn
we have
N +... N
1+N2 Nn =__1+&.“Nn :>kt0ta1=k1+k2+“.+kn'
ktotal kl k2 kn

We see that the total stiffness of a structure with parallel members equals to the sum of its components
stiffnesses (i.e., an analogy with parallel capacities in electricity).

Conclusion:

Utilizing this characteristic, we can solve internal forces and deformations of other structures having parallel
members of different type of design and loading, e.g., torsion of parallel shafts or loading parallel springs of
various designs. (See Chapter 5: Torsion of Circular Shafts where two parallel problems will be solved: Example
8.4.2 Shaft of two material and 8.5.4 Springs in parallel)
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3.5 Pin-connected framework
A vertical load F is supported by a statically indeterminate pin-connected framework (Fig.3.5.1).
All bars are made of the same material (modulus of elasticity E) and have the same cross-sectional

area A. Determine the internal forces in the bars of the framework. Determine the displacement v,.

. valil vad % & XN

Fig.3.5.1 Fig.3.5.2 Fig.3.5.3

Observing the SI procedure items (cf. Sec.3.2), we will proceed freely without marking them

numerically. Assuming that the tensile (arrows facing each other) internal forces N;, N, , N5 (which are

not in series as in Sec.3.3) exerting in the framework rods in the pin M balance the load F, Fig.3.5.2, we

can write two component equations of static equilibrium in the horizontal and vertical directions,

respectively, as follows:

N, -sino.—N, -sino, = 0; F—N,-cosa.—N, =N, -cosaa =0 (3.5.1a)
The former equation states that N;= N; = N which could be obtained immediately as a

consequence of the vertical symmetry of the framework. Substituting this equality into the latter

expression we have
F-2-(N-cosa)—N, =0 (3.5.1b)

Consulting these two sets of static relations (in set (3.5.1a) we have three unknown internal forces and
only two equilibrium equations; in Eq.(3.5.16) there are two unknown internal forces and only one
equilibrium equation) it is evident that in each case always one equation is missing, i.c., the framework
is ST to the first degree.

A supplementary equation, i.e., deformation relation, is established from consideration of the

kinematically possible deformation (Fig.3.5.3), which is used instead of releasing the SI structure,

as applied in Sec.3.3 - ie., see item 2 of the flow diagram in Sec.3.2 and its application in Sec.3.3.. The
deformed structure is shown in Fig.3.5.3 either by the dashed line B’AM>’ or by the dotted line DM™".
The dotted line to the right shows an actual deformation of a lateral rod (3 or 1). Because of the

smallness of the deformations being considered, the arc MM’ with the center at D can be replaced by
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a normal to B°M’”* and the change in the angle o can be neglected, i.e., it holds MMM’ = o . It
follows from that the elongation of the bar 3 (or 1) is M’M*’ = AL; (= AL)).

(The same effect can be obtained when, neglecting the change in the angle o, a parallel line is drawn with a lateral
rod (see the dashed line B’M’ to the left in Fig.3.5.3 ) and its original length BM is compared with the parallel
line B’M’ (representing the deformed state) ).

Thus, outgoing from the right-angled triangle MM’M’’Fig.3.5.3, the compatibility of the

displacements (deformation relation) is then expressed in the form
AL, =AL, -cosa. (3.5.2)

The respective constitutive equations are

N,-L N,-L
AL =—1—; AL, ="2 (3.5.3)
EA -coso EA
Combining the last three expressions we have
N,-L N,-L
L —=—2_".coso0. = N,=N,-cos’at=N,=N (3.5.4)
EA-coso.  EA

Substituting Eq.(3.5.4) into Eq.(3.5.1a) or Eq. (3.5.15) we obtain the internal forces in the rods as

follows:

2
N, =F—22% _N,=N; N,=F— L (3.5.5)
1+2cos” a 1+2cos” o

The forces have positive signs, which confirms that our assumption was correct and the framework

members are stressed in tension.

The displacement v, of the pin M in the vertical direction y can be obtained from the central bar
CM clongation, i.e.,
N,-L _F-L 1

vy =AL, = = .
M > EA  EA 1+42cos’al

3.6 Problems involving temperature changes

All of the members and structures that we have considered so far were assumed to remain at the
same temperature while they were being loaded. We shall now consider various situations involving
changes in temperature.

Let us first consider a homogeneous rod of uniform cross-section and length L, which rests freely

on a smooth horizontal surface. If the temperature of the rod is raised by Af, we observe that the rod
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~ elongates by an amount AL, , which is proportional to both the temperature change A and length L of

the rod. We have
ALt=OL'At-L (3.6.1)

where & is a constant characteristic of the material, called the coefficient of thermal expansion. Since
AL, and L are both expressed in units of length, or represents a quantity per degree C (Celsius or
Centigrade). With the elongation AL, there must be an associated strain
€, =A—Li=06-At (3.6.2)
L
This strain is referred to as a thermal strain because it is caused by the change in temperature of the

rod. In the SD case there is no stress associated with the strain &,

Let us consider a bar being clamped at a temperature #, between two rigid walls, Fig.3.6.1. At
temperature ¢, the rod is stress free in the configuration shown. Determine the stress in the rod when
the temperature has dropped to #;.. We know from Sec.3.3 that such a case is S1 fo the first degree .

One approach to this problem is to assume that

the bar is cut free from the wall at the right
end, Fig.3.6.2. In that event it is free to

< > contract when the temperature falls by about |
Fig.3.6.1 lAt| =t, —t, g

and the bar shortens by an amount AL,.

Rp ' Re

It is next necessary to find the statically

— indeterminate axial force R that must be
ALy, =|AL,| c

A\

Fig.3.6.2 applied to the bar to stretch it AL to restore

the right end to its original position. Shortly, after carrying out
- static equilibrium equation R,-R.=0=>R,;=R. =R

- deformation condition AL.=0= ALRC =|ALt|

and Eq.(3.6.1),1.e,,

AL |=0u|Af]-L

- constitutive and physical relations ALRC =

and combining these expressions we have thermal stress
R
c=—S=E-o-|Af]
A

which depends neither on the cross-sectional area 4 nor on the length L of the bar, and thus can be

influenced only by the temperature difference Az.
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3.7 Various types of statically indeterminate structures composed of uniaxially

stressed members

3.7.1 Structures having geometric defects due to manufacturing inaccuracy

4%4/ A swinging horizontal rigid bar BD is pinned

P
1 M 2

at point C and is intended to be supported by two

L wires (I and 2) at points B and D (Fig.3.7.1.1).

) B EA=const However, wire 1 was manufactured a bit shorter

Bl C (having the length B’M) than it should have been.
a b

& »lg »
¢ P

Thus, when mounting (assembling) the structure, a

Fig.3.7.1.1 small gap dappeared between the hinges B and B’

Determine the stress arising in the two wires after a forced junction of the hinges B and B”.

Solution:
When the structure is assembled, two tensile forces, N;and N, respectively, arise in the wires. If
we are not interested in the reaction produced at support C, there is only one static equilibrium

equation - moments taken about point C, i.c.,
N, -sinoi-a—N, -sinf-b=0 (3.7.1.1)
from which it follows that the structure is S7 fo the first degree.
To obtain the required deformation condition, a relevant, kinematically admissible, deformation of

the structure has to be assessed (cf. Sec.3.5), as shown in Fig.3.7.1.2. Based on this picture, we can

successively find out

1 v \2
AP X
N SN 'B\ 7 RAL y =6—AL1 . ZALz Y _Ya
d—AL; A yol. " sinop "7 sinB’a b
a A b

Fig.3.7.1.2

from which the deformation (compatibility) relation can be expressed in the form

0—-AL, AL,
a-sing,  b-sinf3

(3.7.1.2)

Constitutive relations are easy to assess by applying Hooke’s law as follows
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N .L/ N, L/
AL, =1——E§m (3.7.1.3a) AL, =# (3.7.1.3b)

Note that the gap & << L;, and therefore it does not appear in Eq.(3.7.1.3a), which expresses the
elongation of the wire 1, since in engineering practice, it is neglected with respect to the bar length in

algebraic sums, i.e. L;+J ~L;. Combining all the presented relations, we finally have:

ab-sin’ o.-sin’ B
a’L-sin’ 0.+ b’L-sin’B

b®-sino-sin’B
a’L-sin’ a+b*L-sin’ B

3.7.2 Statically indeterminate structure to the second degree with a temperature

influence

A bar BC is considered to be absolutely rigid and is horizontal before load F is applied at C as
shown in Fig.3.7.2.1. The connection at B is a pin, and BC is supported by two vertical rods MN and
KD of length L and an inclined rod ND. All the rods have the same cross-sectional area 4 and are
made of the same material (modulus of elasticity E). The rod KD has been heated, i.e. At;>0, after the
assembly of the structure. Find the resulting internal forces in the bars.

<
N

Solution:

1 From the free-body diagram in Fig.3.7.2.2 it is
= L )

EA=const evident that there are five unknown forces N;, N,,

B M B D | C N;, Ry, R;, while only three static equilibrium

equations are available, i.e., the structure is SI to the

A 4

F second degree (or, taking into account that the task is

to determine the internal forces in the bars, we can

K.
Fig.3.7.2.1 S

only sum the moments about B, while having three

N N, unknown forces N;, N;, N3).
Re: B Ml ! D C
?i\ Choosing the latter possibility and assuming
F
Rpy N; tensile forces being exerted in the rods we have
Fig.3.7.2.2
1 2 5 M, =F-3a+N,-2a—N, -sinff-2a—~N,-a=0
\\}/((\ AL, The structure being SI to the second degree we
ﬁk/‘ __________ i AL, \‘\\ 3 have to write two compatibility relations (see
"""""""""""""" JAL pg3723).
< a < a
3

Fig.3.7.2.3
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a) AL, =|AL,|sinp (=—AL, -sinp) b)

AI—*1=|AL3| (: AL3)
2a 2a

Constitutive equations:

Nz'L i .
AL1=M . ALZ___ﬂ ; AL3=M+&.At3.L<O
EA EA EA

(The latter deformation AL; is negative according to the kinematically possible deformation of the
structure shown in Fig.3.7.2.3, where we assume a shortening of the rod KD).

After executing all necessary algebraic operations we obtain the internal forces in the rods as
follows:

N o3F-20At-EA o 3F-20-At-EA

: .2-sin’
1 5+4-sin’B : 5+4-sin’B P
N - _OF+o-At, -EA(l+4-sin’ B)
? 5+4-sin’P

The forces N;, N; are positive (i.e., tensile) only when the following relation between the load F and
the heating Az; holds:

FZ%-&-EA-AQ.

The force N; was determined as negative, i.e., compressive, always when A1;>0 (i.e., the rod 3 is
heated).

3.7.3 Additional examples:

Example 3.7.3.1 Statically indeterminate structure to the second degree with a
temperature influence (cf. Sec. 3.7.2 , p.48) solved by Castigliano’s Theorem

A complete (slightly modified) flow diagram (cf. p.43) is applied: i.e., all the necessary parameters of
a structure are obtained: i) dimensions and ii) allowable load.

Solution:
N A
l Item 1: SI assessment:
As being interested only in internal
EA=const I g L
1‘ B forces Ny, N, N3, we have:
B M D | C
= ry 3 unknowns and
. a_ | a J: a L 1 equilibrium equation available
Ai 1 P (the moment about point B),
Fig.3.7.3.1.1 K 2; i.e., the structure is ST 2°

56

—



STATICALLY INDETERMINATE UNIAXIAL PROBLEMS

Ttem 2: The structure is to be released to obtain a SD basic system:

Two of the three rods shall be chosen to be cut:
As there is a prestressed structure— due to the rod 3 heating —one of the cut rods has to be rod 3, the
other cut rod can be either rod 1 or rod 2. Their internal forces N, and N; will be substituted by

statically indeterminate forces N,, N; (usually denoted X5, Xj3), respectively.

<

EA=const L
S 1 X2
B N, B p | o
| ALt3=(1At3L
?—L& r (L
At3>0 /13
a C

a

SR AL NP Fig. 3.7.3.1.2

Item 3: Equilibrium equations

If the values of reactions in the pin B are not requested, only the moment equilibrium equation about B

1S necessary.
M, =F-3a+X,-2a-X, -sinf-2a-N,-a=0=

)
N, =3F+2X, —2X, -sinp

Item 4: Compatibility equations (CE 1, 2) will be expressed by means of Castigliano’s Theorem:

U oU
) — =90 2) ——=—OL-A1C3-L
X, X,
Note: Here we apply: ‘
e zero in CEl, because the member 2 is deformed together with the absolutely rigid bar (BC) all the time,
i.e., they are not disconnected. (here is applied so called Second Castigliano’s Theorem, cf. Sec.2.13)

e ALg=u0 At; L in CE2, i.e., the difference between the original length of rod 3 (Li; = L) before heating
and that of Ly = L + o Aty L after heating. A negative sign is applied in CE2 because there the
compressive force N3, is produced in rod 3, which is opposite to the tension force N; assumed.

Such structures are called: prestressed structures, here influenced by changes in temperature.

Item 5: Instead of constitution eqs. we express the structure strain energy:

- N,.2~L1=L N2 +X,” ,1 +X,°
2EA 5 2EA sin 3

When applying the compatibility equations, we have:
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oX
a_UzL l.aN1+X2 .aX2+X3. 3 1=0 F

0X, EA 0X, sinf dX, X,
F
E)U: L 1'8N1+ ?(2 .aX2+X3-% =—OC'At3'L t]j
| oX, EA oX, sinf dX, X, |
: :
and using eq. *), we have, respectively, i

L : X .
BBTUZE Nl-(—2sm[3)+sin2B-l+X3-OJ=O—> X,=N,-2sin B # |
2 = a
X
%Hﬁ N2+ 04X, -1}=—oc-At3 L— X,=-2N, —EAa.At, #)
; i sin .

And when returning back to the Egs. *), **) and ***), we obtain stepwise: 7
|
‘ N, =3F+2(-2N, —EAq.- At,)—2sinB- (N, - 2sin> B) = }
‘ N, -(1+4+4sin’B)=3F-2-EAo- At, = 5{
3F-2-EAo- At, _ i.e., we do not still know if the ) 1
NI = 5+ 4sin’ B 20 or <0; supposition was correct or wasn’t, f;
it means that there could be either i
|
—4. . tensi i Ni,»=0 |
N, =X, = 6F - :l_ 4ES,Q?BA‘[3 sin’B20  or<0; ension or compression or N;,; = 0 >@ ]‘
N. =X = 6F + EAo.- At3 . (1 +45sin? B) 0: ie., the supppsiti_on was incorrect a.nd, ]:
3T A3 T 514 SiIl3 B <y at the same time, it means compression ) 1

These @) results coincide with those solved by using the common method for SI structures
(cf, p.55)

Further, there is to continue according the flow diagram:
Item 6: Internal forces IV; (in this case, those have been already obtained in the Item 5)

Item 7: Stress distribution |
o _&_ 3F-2-EAa-At,

A A-(5+4sin’B)

N, 6F—4-EA0€-A’[3

-2 _ L2 R-
R A-(5+4sin’p) sin P,
63:&:_6F+EAa-At3~(1+4sin3[3)<0;

A A-(5+4sin’B)

In order to assess |6]ma, We will look for the mutual influence of the two types of loading,
i.e., Fand Af;> 0.
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.. ) 2
From the shapes of 67 and 65, it is clear that they could be equal zero if F = g -o- EA - At3 .

2
From this follows that for load F > 3 o.- EA - At,, there is tension and for load F < 2 o-EA-At,,
' 3
there is compression, respectively. .

At the same time, it is necessary to assess the influence of the rod 2 tilt magnitude, given by anglef,
i.e., we will study the rod 2 extreme tilts:

N, 3F-2-EAo-At, N, 3F-2-EAo-At,
0o =—= ; o, =—= ;
LA A-5 A A-9 |
a/ f=0 62=&=6F—4'EA0€-N3_0=0; bp=9r o _N,_6F-4-EAu-At, |
A A-5 A A-9
o _&__6F+EAOC-At3_ _&__6F+5-EAOL-At3. :
A A5 7 A A9 ’ |
The maximum stress is then |6|,uq. = |63] holding for all the angles 8.

Item 8: Dimensioning

6F +EAQ.- At, - (1 + 4sin’ B)
A-(5+4sin*B)

Strength criterion for a ductile material: |cs|max = ‘G3| = SOy =—"

from which we can compute:

6F+EAa- At, - (1+4sin’ B)
o, -(5+4sin’p)
Item 9: Checking (it is to be applied for examples solved numerically).

e.g., the cross-section 4 based on F and 4t;>0: A > , etc.

Item 10: The vertical displacement at the bar position C (vc)‘can be obtained very simply from
the kinematically possible deformation, Fig.3.7.2.3, part 3.7.2, pp.48-49, where, substituting

Nl:3F—2-EAOL-At3 into ALl:Nl-L S AL = L 3F-2-EAo-At,
5+4sin’ B EA EA  5+4sin’P
As the bar BC is absolutely stiff, we obtain ;—C = & = yc = 3-AL;.
a a

L 9F -6 EAa - At
EA 5+ 4sin’ B

Then we assess v c =

For f=90°, the vertical displacement at the bar position Cis: V. =

Note:

How to apply Castigliano’s Theorem for assessing the displacement v¢ ?:

As the system is prestressed by heating, Castigliano’s Theorem can be applied only for assessing a displacement

caused with an external load (here F) from the balance position after the heating process (4¢;> 0).

Task: Assess v, when the truss is loaded only with F_(At;="0).
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Solution:
U=L2Ni2-Li=L N12+N22-_—1—+N32 =
2EA 5 2EA sinf3
3F 2+ OF -sin’ B 2-—1 +
_ L |\5+4sin’B 5+4sin’B sinf
 2EA 6F Y
+ N —
[ 5+4sin3[3j
ou 1 oN, L oN oN 1 oN
Vg=—=— YN .—-L =—|N-—+N,.- —2%. +N, - —|=
“ OoF EAT ' oF EA[laF * OF sinf 38F:l
3F__ 3, 6F  6sin'
_ L [5+4sin’B 5+4sin’B S+4sin’B S+4sin’P
EA|,_6F 6
5+4sin’B S5+4sin’B
L OF 36F -sin’ P 36F L OF N
Vo= oo o T TS - sy | ) 3
BA|(5+4sin’Bf (5+4sin’Bf (5+4sin’pf | EA 5+4sin’B

By comparing %) and %), we proved (after taking Ar;= 0) that Castigliano’s Theorem yielded a cbrrect result.

FL
For f=90°, the vertical displacement at the bar position Cis: v, = a

Conclusion:

The same result of displacement v we obtain even when substituting in the strain energy expression the @)
relations of internal forces NV; ; 3, holding for the completely loaded truss as given in the task in headings, i.e. both
Fand t;> 0. Proving is on you!

Example 3.7.3.2 Series of trusses where the middle rod has imperfections of various kind

I/ Imperfection by inaccurate manufacturing (the middle rod was produced longer by 6<<L)

a) Classical solution

Item 1: SI 1° (after connecting) Item 2... Kinematically possible deformation

I
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Item 3: Equilibrium egs. : Int. forces assumption: N;>0; N>>0; N3>0

X... (N,-N,)sinf=N, =N, =N N, =N,=N=- N,
y... N cosp + Nj cosp + N3 = 2N cosp + N3 =0 g 2cosP

AL AL
: i §=—L+|AL,|=—2L-AL
Item 4: Compatibility eq. (using Item 2) cos B | 3| cos B 3
N,-L N,-L
: stuti AL, =—1 —— . AL, =3
Item 5: Constitutive eqs. 1= A cosB 3 EA
Combining Items 3+4+5, we have
AL N,-L N, L N;-L N;-L
5= L _AL, = 1 - 3 __ 3 - 3 —
| cos P EA -cos*pB  EA 2EA cos” B EA
2 cos > 2 cos ®
N, L _N, 1+ co: B =_5EA:>N3=_8EA_ cos 3[3 <0
2cos’ B 2cos” B L L 1+2cos”pP
2 2
N, =N,=N=- N, =8EA. cos [33 mm - MPa - mm “N| >0
2cosp L 1+2cos’f mm

A simple checking of the results: 1/ the units (correct); 2/ a special simple shape and loading, e.g.,

p=0:

b) Modified Second Castigliano’s Theorem (MSCT) application

It is necessary to choose the internal force N (in the rod with imperfection) as SI force which will be used
in MSCT:
Item 1: SI 1° Item 2: It is not necessary to be applied!

i Vel Vel Item 3: Equilibrium egs.
C D : (Inter. forces assumption: N/>0; N;>0; Ns>0)

Xeoeo N1 - N2 Sille 0

Y.... Ny cosp + Nycosf} + N3 =

2N cosf3 +N;=0
J—
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Item 4: No compatibility eq. but the MSCT application :

3
a_U=i Ni.aNi .Liz__l_ -2 N, — ! . L +N,-L{=—8=
oON, EA‘{F ~ ON, EA| 2cosPl 2cosB) \ cosB

_ 3 3
N, = OEA 13 +1]=N, 1+20(;s B _ 8EA:>N3= SEA  2cos [35
L |2cos’f 2cos’ B L L 1+2cos'PB
N 2
N, =N,=N-= s _OBEA  cos’B

“2cosB L 1+2cos’P

i.e., the same results when using the classical solution a)

Analogously you can compute examples where imperfection 0 is caused by change in
temperature (important note: the trusses must be made always as symmetric structures):

y1/4 ‘6‘/ 11/
D
Ly
EA=const.
X v
y [ M
Only the centre rod 3 is heated/cooled by At;s. All the truss is heated/cooled by At .
The imperfection is: The imperfection is:
either & = o Aty Lz > 0, when the rod 3 is heated; o-At-L,
d=o0-At- L, ————— (see the figure beneath)
then cosf
- - . 2
N1=N2=N=a At,-L,-EA  cos [33 _ 2
L 1+2cos’B
N, o %At Ly -EA 2cos’ B
’ L 1+2cos’ B
AL, =o-At-L.
o-At-L;
or 0 = o Atg L3 < 0, when the rod 3 is cooled, AL, = T oosB
then
o-At,-L,-EA  cos’P Depending on:
N;y=N,=N=- 2 L ? : 1+ 2cos® B the materials of rods, the truss geometry
and the way of temperature influence,
the resulting imperfection can be:
a-At,-L,-EA  2cos®
N, = 3L3 ‘1 5 E > 8>0:>N1,2>0,N3<0;
+2c05°B 8<0:>N1,2<0,N3>0;
0=0> N1’2,3=O
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Example 3.7.3.3 Unsymmetric SI truss

Based on the SD truss solved in Chapter 2, Example B H
R . . =L
2.13.1, the SI 1° truss in Fig.e3.3.1 is created by adding ! L= sin
the vertical rod 3, connecting the pin D with the pin 3L 2= J1eB ‘
support H. This problem can be solved by: L 1 L.=L ;
,=
I/ Classical method (based on the truss kinematically N }
1 |
possible deformation); IIl/ Castigliano’s Theorem C 2 BN N3 N;>0
V} D N2> 0
. N N3>0
Solution: Fig3.7.33.1 > g
v
I/ Classical method:
Item 1: SI 1° (three int. forces N, ; 3 are unknown while_two equilibrium equations are available]
Item 2: Kinematically possible deformation 7 ~
7 ¥
We can utilize Example 2.13.1
from p.39. 1 3
Item 3: Equilibrium eqs : B
Xw N, + N, -cosB=0
. *) { ///// A
yo F=N; =N, -sinf =0 7 9 5> | 1IALy /ftan B
) >
Item 4: Compatibility eq. N [ AL /sinp AL; >0
AL, = AL, [AL| 7 ‘ |
3= .
sinp  tanf3 ALI:O\/ L<0  Fig 3.7.33.2
Item 5: Constitutive relations
AL = N,-L AL, :NZ—'L : AL3=M
I_EA-sinB EA-tanB EA
Combining all the expressions, we have
h) AL, |AL N N
AL3=,—1+1—2|:>N3: : 21 ___Zg_
sinf tanf sin“f tan“ [
. N, N,-cos’ 1+cos’ B +sin’
F-N, sinf=——+—1— B:>N1- BZ sin” B =F=
sin” 3 sin” 3 sin” B
sin” 3

1+cos’B+sin’p’

. 2R,
N, =—N, -cosp=—F-—— P °°S_B3
1+cos’ B +sin” B

sin” B }=F_[l+cos3[5+sin3[3——sin2[i}

N,=F—-N,-sinf=F-|1-
’ sinf [ 1+ cos’ B+sin’ B 1+cos’ B+sin’ B
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A simple checking of the results correctness:
. ‘ F
a/ A truss with = 0: N, =I}I{2 =0; N, =F; b/ Atruss with f#=90": N, =II\IT3 =E; N, =0
: 7
y Y
3 3+1 |
L L |
N; =N3;=F/2
C=B B=0nN3=F C=8B _ onch T
2+1 2 Bp=90
D o D
|
I/ Castigliano’s Theorem:
U 1 & N, |
= =— YN, L, =0=
oN, EA‘G oN, |
L oN 1 oON 1 oN |
L 1. - +N, - 2, +N3._3.1=0 |
EA oN, sinf} oN, tanf} oN, §
o F-N, cos P |
When modifying egs. *), we have: N, = — ; N,=-N,-cosf = —(F -N, )— s
sin 3 sin
and substituting to the expression above we assess subsequently the internal forces: , j

L[(F—Nﬂ(_ 1)‘ 1 _|_(N3_F)_cosf).cos[i_cos[.’)_|_N:‘;]=0:> "

EA sin 3 sinff / sinf sinf sinf sinf
1+cos’B
N,;=F- 7 ——
1+cos” B +sin’ B
sin’ B

! 1+ cos’ B+sin’ B

sin’ B - cosp
1+cos’ B +sin’ B
These results coincide with egs. )

N, =-N, -cosp=-F-

Again we found out that Castigliano’s Theorem did not need to design kinematically possible deformations,
which might be a quite difficult task when solving complex structures.

Example 3.7.3.4 Unsymmetric SI truss with temperature influence.

B H
These 3-rod truss is, after assembly, subjected with
heating the rod 3 about 4#; >0. To assess the internal ‘ Y
forces N; ;3 (which are assumed positive) , we will apply: X 3
U Classical method; L At; >0
I/ Modified Second Castigliano Theorem (MSCT) N, N
C 2 B Ar 3
v A — —N 1)
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Solution:

I/ Classical method:

Item 1: SI 1°

Item 2: Kinematically possible deformation (Example 2.13.1 or Ex 3.3 — Fig.e3.3.2 are utilized)

Item 3: Equilibrium eqs :
x.. N, + N, ~c.os[3 =0 )
yo. N;+N,-sinf=0
Item 4: Compatibility eq. (see Example 3.7.3.3 — Fig.3.7.3.3.2)
AL, JAL
> sinp  tanP

Item 5: Constitutive relations

AL o NoLogan,=—Nelooap SRk g ag
'~ EA -sin B EA -tan EA
Coinbining all the expressions, we have
AL
AL3=&+M:>N3+oc~m3-EA:——_NZ1 - sz
sinf tanP sin“B tan”
3
~N, -sinB+a-At, -EA = _N; +N1,°fs B
sin” B sin” B
1+cos’B+sin’B sin” B )
N;- — =0o-At,- EA= N, =0-At,-EA- 2 —
sin’ B 1+cos’B+sin” P
2.2
sin” 3 - cosf3
N, =—N, -cosf=—0-At,-EA- ;
2 1-cosp ’ 1+cos’ B +sin’ B ' )
i3
N, =-N, -sinp =—a-At, - EA- = B .
1+ cos’ P +sin” B )

I/ Castigliano’s Theorem:

Since the rod 3 is heated, we use Castigliano’s Theorem as follows:

3
U _ 1 $y N

L, =-0-At, L, =

N, EAS 0N,
L
l-aNl- ,1 +N2-8N2- ! +N3-aN3-1=—oc-At3-L
EA oN, sinf oON, tanf oN,
When modifying egs. *), we have: N, =—1_\I—3; N, =—N1-COS|3= N, ,
sin3 tan 3

and substituting to the expression above we assess subsequently the internal forces:
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L[(_ N3 ](_ .1 J 1 +N3'COSB-C?SB-C?SB+N3]=—a-At3:>
EA sinf3 sinff ] sinf sinf  sinf sinf 7

: .3
N, =-a-At, EA-— 0B
1+cos’ B +sin’ B
N in’
N, =28 — At EA — S0 B
sin3 1+cos’B+sin’ P
sin’ B - cosP

N, =% = _g.At, -EA-

- tan 3 1+ cos’ B +sin’ B

These results coincide with eqs. i)

Once again we found out that Castigliano’s Theorem did not need to design kinematically possible
deformations, which might be a quite difficult task when solving complex structures.
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4. Frameworks, trusses; application of Castigliano’s theorem

In this chapter we shall discuss the ideal framework. It is a structure consisting of straight bars
connected by ideal frictionless joints (pin connected bars). The framework is known as a fruss, or
plane framework, when all its bars lie in a plane; when this condition is not met, the structure is a
space framework. All external forces acting on a ideal framework are applied at the joints, and the
weight of each bar (when taken into account) is assumed concentrated at the two end points of the bar,
that is, at the joints. It follows then from the conditions of equilibrium of any bar that the two forces
transmitted to it from the joints at its ends must be equal in magnitude and opposite in orientation.

The bars are consequently either in pure tension or in pure compression which, in structure diagrams,

will be denoted by two arrows pointing (in respective bars) to /from each other, respectively.

4.1 Statically determinate frameworks

With frameworks, it is necessary to prove static determinateness, both external and internal. The
former is ensured when a framework is supported in a statically determinate manner. For instance, in
Fig.4.1.2, the frictionless pivot at B can transmit any horizontal and vertical reactions, and the
frictionless slide at C can transmit any vertical reaction, which can be confirmed on the basis of the

formula

Se=>.p—3, (4.1.1a)

where: s....the degree of external static indeterminateness

Z'p... the number of static parameters (reactions) in the supports

The latter can be proved by computing from the formula

s;=n—-2m+3 (4.1.1b)

where: s;...the degree of internal static indeterminateness
n...the number of framework members

m...the number of ideal frictionless joints

When a statically determinate (SD) framework is subjected to known loads, the forces in its
members can be calculated by means generally known from statics: the methods of sections; Cremon’s
diagram. Under these forces the members change their length and the elongations can be determined
without difficulty if the stress-strain law of the material is known. The shape of an SD framework is
completely determined by the length of its members and their arrangement. The displacement of a
chosen joint of the framework can then be determined theoretically by step-by-step assessed
elongations of its bars. The trouble is that the stretched lengths of the bars differ so little from the
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initial lengths that they cannot be distinguished from each other in an engineering drawing.
Nevertheless a framework bridge can easily deflect several tens of millimetres. The straightforward
geometric approach is therefore not accurate enough for solving the purely geometric problem of
obtaining the displacements of the joints of a framework from the known changes in the lengths of its

members.

For this reason it is advisable to abandon this geometric approach (commonly used with simple
frameworks solved in Secs.3.5; 3.7) and to calculate the displacements from Castigliano’s theorem.
Such a procedure can be learned readily when solving, for instance, displacements (at chosen joints

and in chosen directions) of the simple truss shown in Fig.4.1.1.

1 5 2

Ry C
B 4 3 ‘ C| R”?B 4 - 3 PN
‘ ‘ VF i B ' [Rey

Fig4.1.1 Fig4.1.2

A

We can prove that the truss is SD by applying Egs.(4.1.1q,b):
S,=3-3=0 and  s5,=5-2-4+3=0

The strain energy accumulated in a truss is assessed when summing the strain energy of all its

1< N?%i-L,
members (U=EZ E - y -, cf. Eq.2.12.3a) and, applying it on the truss in Fig.4.1.1 (where all bars

i i i
5
are of the same cross-sectional area), we have U=—ZN21 -L;.

2EA

i=1
Now, by applying Castigliano’s theorem (cf. Eq.2.13.6), or the “dummy ”(unit) load method (cf.

Eq.2.13.7), respectively, we can determine:

a) Vertical displacement of the joint where load F is attached by the expressions
_U_ 1o AN
JOF EA% ' OF

]. 5
Vg L, o Vg =EZN1 ;L 4.1.1a,b)
i=1

where: n ;£ ... the internal force in the i-¢4 bar (Fig.4.1.4) being in equilibrium with the external
forces which consist of the dummy (unit) load, applied at the joint where load F is
exerted, and its reactions.

Internal forces N; can easily be obtained by means of Cremon’s diagram (Fig.4.1.3). Analogously,

internal forces n ;r are determined. All internal forces assessed in this way together with the bar

lengths and the products of quantities showed in Formula (4.1.15), are tabulated in Table 4.1.1,

being arranged according the numbers # of the bars.
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R

I \C
RC \/,,e” C‘l”

g

Fig4.1.3 Y
b) Horizontal displacement of the slide C by expressions (cf. Sec.2.13)
5 5
ouU ) 1 oN; 1
u =\| - N '—'L' N or U="—" Nl'nl 'Ll 4.1.2a,b
¢ (aF F o EA i=1( e o oF ' © EAZ‘ S :

(Application of Eq. (4.1.2a) would require that we first attach an additional external (imaginary) force F to joint
C, where no active concentrated force is exerted in the horizontal direction, and consequently express internal
forces N, = Ni(F, F) and strain energy U = U(F, F) as functions of the two external forces F and F . The

procedure would be closed up by putting F — 0 in the result obtained; cf. Note in Sec.2.13.)

In Table 4.1.1, an extra column containing internal forces n; ¢, produced by the dummy (unit) load

attached horizontally to the slide C (Fig.4.1.5), is added.

Table 4.1.1
n Ni n;f njc Li Ni CI4F . Li Ni .Djc. Li
| - 7
1 _F.7 - 0 | a2 F-a-T 0
ARG 2
F 1 1 1
31 2 |2 | 1] a Fagy Fag
F 1 1 1
41 2 | 2 | 1] a Fag Fag
5 F 1 0 a F.a 0
) F.a.(%.,.ﬁ) F.a

Both looked-for displacements are obtained when utilizing the sums of the products of the
respective quantities listed in the last two columns of Table 4.1.1. Thus, we have

F-a (3 : ) F-a
v, =—— | 2442 U =——
FOEA \2 ¢ EA

As the displacements are positive, they pass off in the orientations of the applied dummy loads.
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4.2 Statically indeterminate frameworks

Statically indeterminate frameworks (trusses) are also called redundant frameworks.

The procedure for solving SI frameworks will

F, K 2 | F2 3 lose none of its universality when we demonstrate it
o X o
8 10 11 9 on the truss in Fig.4.2.1.
1 7 4 The degree of static indeterminateness will be
assessed by means of Eqgs.(4.1.1a,b):
5 external SI
14 15 S =Y p—3=4-3=1;
C. internal SI
77 Rox s, =n-2m+3=15-2-8+3=2;

Rey which show that the framework is SI to the third

Fig.4.2.1
degree.

In the first step we shall eliminate the superfluous

F; K | F; support parameters and redundant rods and thus create

] > Xs X, )( the basic (statically determinate) system of the
w A

framework. In this example we use fictitious sections to

release the pivot C in the horizontal direction, while

L replacing this released support parameter with an

unknown SI force X, and cause two redundant rods
X
4_2 (any from / to /7 but none from /2 to 15 because

Fig4.2.2 the structure must not change into a mechanism), for
instance, § and 9, to be out of action (for the exerting

external loads F; , F, ) by fictitious sections, (this is net clearly expressed) while letting them

transmit unknown SI forces X and X, , respectively, Fig.4.2.2.
By applying Eq.2.12.34, the strain energy can be expressed in the form

1 15 )
U=s—— 3 N?.L, (2.1)
C2BA 1T
where the internal forces exerting in the rods are expressed by applying the superposition principle

(Fig.4.2.2), as follows

where: Z; ...internal forces exerting in the rods of the basic system, produced by the assigned external

loads F; and Fy;
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nis Mo Mic ... .internal forces exerting in the rods of the basic system, produced by the
dummy (unit) loads Xz =“1"; X, ="“1"; Xc =“1", which are to be applied instead of the
unknown SI forces Xz , Xy, Xc, respectively;

As the structure is SI to the third degree we have to write three compatibility relations, for which

we will use Castigliano’s theorem (analogously to Eqs.(4.1.15) or (4.1.2b) we will express the partial

derivatives):
aU 15 aU 15 aU 15
0Xs Z:‘ P 0X, le ? 0X . Z ©

(4.2.3a,b,c)
The last relation (4.2.3¢) is easy to understand because the truss is in fact rigidly fixed at pivot C.

However, the first two affirmations (4.2.3a,b), which state that the deformations of rods § and 9,

respectively, do not differ from the deformations which the whole structure undergoes in the joints

where these redundant rods are attached, deserve an explanation:

Consider the truss to be divided into two systems 7 and IT , Fig.4.2.3. When applying Castigliano’s

theorem to each system we have

U _3U, 30Uy _ o L g

dX, 90X, 90X,

Fy

Fig.4.2.3

(The displacement MM’ of the connecting line LM in system [ is negative, since it is executed in the

opposite direction than force X, is acting. The strain energy of the further possible system II7,

comprising rod &, does not include rod 9, and therefore there holds %l)]-(ﬂ =0)
9

Egs.(4.2.1a,b,c) are occasionally called Castigliano’s second theorem, which in words states: 4

statically indeterminate force quantity makes the strain energy of a structure become minimum.

Substituting Eq.(4.2.2) into Eqs.(4.2.3a,b,¢) we will obtain

15 15 15 15 15
— 2. —
ZNi gLy _zzi nyg-Li+Xy -Zn i8-L; +X 'zni,s 9 -Li+Xc 'zni,s 0L =0

i=1 i=1 i=1 i=1 i=1

(4.2.4a)
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ZN S ZZ 5L +Xg- ang 1L + X, Zn 9L +X¢- ang n;c-L;=0

i=1 i=1 i=1 i=1 i=1
(4.2.4b)

iNi-ni,c-Li=iZi-ni,C-Li+X8-ini,8-ni,C- L, +X,- ang ‘e L+ X Zn ic-L;=0

i=1 i=1
(4.2.4¢)

Referring to Sec.4.1, we realize that the members of Eq.(4.2.44) can be interpreted:
1 &
ﬁ Z ‘N g+ L; =Agy ... displacement of connecting line KL produced by external loads

l
E A Zn is-L; 58 g ---displacement of connecting line KL produced by the unit load Xz =“1"

1 &
a 11l RITR Y 5 9 -..displacement of connecting line KL produced by the unit load

Ang =u]n

1 &
a n1 g ‘1 ¢ - L; =084 ¢ ...displacement of connecting line KL produced by the unit load

Xe="1".

When proceeding analogously with the members of Eqs.(4.2.4b,c) we can rewrite Eqs.(4.2.4a,b,¢) as

Agp +0855 +059 +850=0
Agp+055+0,,+8,-=0 (4.2.5a,b,c)

Ay +8cg+0cy +0cc =0

Egs.(4.2.5a,b,c) are called canonical equations of the force method, and can be conveniently

expressed in the matrix form as follows

(a}+[8)x) =0

4.3 Pre-stressed trusses; truss with a cooled-down member

We will determine the stress state in the truss shown in Fig.4.3.1, one member of which was
cooled down by At, < 0. The truss comprises rods of uniform cross-sectional area 4, made of the same

material having the modulus of elasticity E and the coefficient of thermal expansion c.
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D 2 ] 2 )
5 6
al 1 3 = 1 3
Aty <0

4 C +
¥ o B C
B| 2a A o AL =0 °C

| 4

Fig.4.3.1 Fig.4.3.2

Referring to Sec.3.6, it appears to be more convenient - when solving a SI structure influenced by

a change in temperature (in one or more structure members) - to release such a structure for it to

become a SD system. In this way, we can determine the difference arising in the lengths of the
members (when compared with their original state), due to the cooling of the relevant structure parts.
Subsequently, when the structure is joined into a single unit again, tensions are produced in its

members.

The strain energy accumulated in the truss

1 &,
U=——>» N4 -L;
2EA§ ‘

3 should be divided, in this case, into two basic (SD)
systems (see Fig.4.3.2 and Fig.4.3.3), as follows

6
¢ U:UI+UH=L- YN; L+ X4 L,
2BA  |iciina

where (4) in front of the sum symbol means that
the 4¢h rod is not added to it.

Fig.4.3.3 o | At . Ly

The deformation condition (compatibility relation)

U
oU _du, +a I _q|At,| L,

is obtained by applying Castigliano’s first theorem, because the structure is pre-stressed by tensions

caused by cooling and therefore the minimum strain energy condition does not hold here.

The internal force in the i-#h member and its partial derivative are
aN;

N; =Xy -n54; X, lis
4

where: ;... the internal force in the i-th bar being in equilibrium with the dummy (unit) loads,

applied at the joints BC of the basic system / , respecti\}ely.
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Applying the deformation condition and considering the above relations, we obtain successively

U 1 6 1 1 [ ¢
9X, EA {1Z¢4N8 Tt % L} EX'{;}“'H?"’ 'Li+X4.L4}=a"At4|.L4
4 i=1i i=l,i#

1 6
> X, { YnlL + L, = oAt L,
EA i=Liz4

And from this should follow the expression for the SI force X, . However, as this depends on the bar
cross-sectional area 4, we have obtained the stress oy, which is independent of 4, instead of the force
X, hence,

o {At,] L,

X
O =h T

6
i=liz4
In conclusion we can determine the stress in all the members of the truss by applying the

expression

Note 1: All the quantities entering the problem can readily be listed in a table:

Table 4.3.1
n| ng | L n?, - L Gi
1 a o - |At,| - E
Ll 2 a 4 595 +9
2-0-|At,] - E
2 1 2.a 2.a 5J5 + 9
1 a o - |At,| - E
3 2 a 4 5J5 + 9
2-0-|At,] - E
4 1 2.a 2.a 5J5 + 9
_ﬁ E'a‘_\/g _Jg'a'lAt4"E
5 2 | a5 4 5/5+9
_ﬁ é-a-«/g _‘/3'0‘"&41']3
61 2 |as 55+9
6
3 E-(5J§+5)
i=1i#4 2
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Note 2: How can we dimension cross-section 4? First we must find out if the obtained stresses satisfy

the strength criterion: | o;-l < o *%). Since, after substituting *) into **), the cross-sectional
area A is missing it is evident that this cannot yicld the dimension. It seems as if we could
make it aimost infinitely small in order to save material. Is this true? Naturally not! We shall

find the necessary magnitude of 4 if we satisfy the stability criterion as far as the members

under compression are concerned. This problem, known as buckling, will be dealt with next
term.

Note 3: If the truss is heated instead of cooled, it is evident that the SI force X4 will be negative
(compression). Since it is better to assume SI always being in tension, this will lead to an
inconsistency, which can be solved by adding a negative sign on the right hand side in the

deformation relation (i.e., 0 U/d Xy= -0 At Ly).

75




STRESS AND STRAIN

5. Stress and strain

5.1 Types of stress state

Referring to Sec.1.2.2, Fig.1.2.2.1, we determined the stress state in a general body in a section
parallel to the yz plane (passing through point Q), which consisted of three components 0y, %, % -
Passing a section through Q parallel to the zx plane, we similarly define the stress components g, 7.,
7,x . Finally, a section through Q, parallei to the xy plane yields the components G;, %, %,.. In this

way we obtained a 3D (spatial) stress state generally comprising nine stress components.

In the next section we will establish that, for instance, the

yAL

stresses T,y = Ty= T, arc complementary shearing stresses
(they can be denoted by one subscript z, which expresses the

axis to which both components are perpendicular) and in this

way, we can simplify the notification of the shearing stress
components, i.e.,

Ty =T =T, To=1Ty=%, Tn=Tx= 5, seeFig5.LL

It follows from this that the stress state in an arbitrary point

of a body is fully determined by six stress components:

three normal stress components... 0y, 0,, 0; and

three shearing stress componenis... &, 5, T,

As we remarked at the time (cf. Sec.2.4), the same state of

stress will be represented by a different set of components if
the coordinate axes (and consequently the respective sections

passing through an arbitrary point Q), are rotated, Fig.5.1.2.

Our discussion of the transformation of stress will deal mainly with 2D (plane) stress, i.e. with a

situation in which two of the faces of the cubic element are free of stresses.

If the z axis is chosen perpendicular to these faces, we have ¢, = 7, = 7, = 0, and the only
remaining stress components are :0;, Gy, 7, (cf. Sec.5.3). However, in the section 5.2, we will first

conclude the discussion of the umiaxial stress state that we started in Section 2.4.

5.2 Uniaxial stress state; complementary shearing stresses

Consider now a one-force member, which is subjected to an axial force F (Fig.5.2.1). Proceeding
in the same way as in Sec.2.4, we pass two sections p and p’ forming an angle o with the normal

plane (which is perpendicular to the rod axis) and draw the portion limited by these sections.

76

cC
fre




STRESS AND STRAIN
o ol
F ool Ox
-V 5
C : C D
P 0’ Fig.5.2.1

After decomposing F into normal N and shearing T forces, the average values of the
corresponding resulting, normal and shearing stresses are the same as expressed in Egs.(2.4.1a,b,0),

from which we choose the expression for the shearing force:

V. _F-sina _ : |
T“_A = A = 0, -sinQ - COS O (52D |

ol

Ccos O
Now, we pass two other sections ¥ and y (Fig.5.2.2), which are perpendicular to the first sections

pand p’ (with an angle, regarding the normal plane, of {7/ 2) — o) and having the area

A A 1
A(x = =—
— (n) sino
cosl| —|—O i
l: 2 |
o (n/2)-o Oo |
o Co,
F P F ANy
[ "
To
/¢ / D y v
p p’ Oo O
Acting on the section are:
N F-sino .
normal force _N=F-COS|:( ) OL] F- Sln062>(5a=; =X =Gx-sm206 **)
— sin ol
TC
and shearing force V=F- Sm[(z jl F-coso =
vV _Feosat O, -sSinQ.- cosol (5.2.2)
_(x- Aa -_— A . - X . .
— siIo
The resulting stress is V,=—=0,-sIno0_
—_— AOL
Comparing Egs. (5.2.1) and (5.2.2), we find that
T, =1, (5.2.3)
The relation (5.2.3) states that the shearing stress components exerted on faces that are mutually

perpendicular have equal values and their arvows point to/from the line of intersection of these faces.
This couple of shearing stresses is called complementary shearing stresses.

(Summing Egs. (2.4.1a) and **), we find 0, + .= Oicos’ o+ o, sin’ o = o)
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Consequences following from complementary shearing stresses:

1) The plane stress state (Fig.5.2.3) is determined with only three stress components: ¢, 0, 7.
(o

— )y
44"@ y
Ox
Ox
X
o3 Fig.5.2.3

2) When a shearing stress is acting on a cross-section in the vicinity of the profile contour (Fig.5.2.4), |

then the direction of the shearing stress acts tangentially to the contour.

(If no friction force F; acts on the bar surface, the stress 7,=0: 7=17) i

The stress T, could exist only if a friction force Fyacted on the bar

| ‘ resulting shear.stress ‘

Fig.5.2.4

“ 3) The same conclusion as for item 2) can be expressed for a corner on the profile contour (Fig.5.2.5),

o i.e., no shearing stress acts there, either.

4)

Fig.5.2.5

5.3 Plane stress state; Mohr’s circle

A plane (2D) stress state occurs for instance in a thin plate subjected to forces acting in the
midplane of the plate (Fig.5.3.1). In general, if an element is removed from a body it will be subjected
to the normal stresses o; (acting on plane £) and o, (acting on plane 7) together with the shearing

stress 7, (Fig.5.3.2).
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yA

tor
n | Tz
Ox %
---I
!/__ ;

// Z E &

2 =
Fig.5.3.2

5.3.1 Stresses in an inclined plane

To determine stress components associated with the element in Fig.5.3.2, after it has been rotated
through an angle & about the z axis, we need to determine the stress components in an inclined plane p

forming an angle o with the £ plane, see Fig.5.3.3.

ch dA,
. /ﬂ T
ox o T Ox
—] ——> &
l /é b)
T l n C)
a) Oy \—p Fig.5.3.3

If we cut the element containing a given stress state o;, 0,, 7, by the p plane into two parts we must
supply components ¢, and 7, acting on the plane o in order to hold the separated portions in static
equilibrium (Fig.5.3.3¢). If we denote as dA the area cut in the element by plane p (Fig.5.3.3b), then for the
areas belonging to the planes £ and 77, respectively, it holds

dA, =dA-cosa dA, =dA-sina, (5.3.1a,b)
The subsequent equations of static equilibrium for forces acting in the o, and 7, directions,
respectively, are written, utilizing Figs.5.3.3b,c, in the forms

6, -dA-o0, -coso-dA, -1, -sino-dA, -0, -sino-dA -1, -cosa-dA, =0

(5.3.2a,b)
T, dA-oc, -sino-dA, +7T, coso-dA, +0,-coso-dA -1, -sino-dA, =0
Applying Eqgs. (5.3.1a,b) in Eqs.(5.3.24,b) we have after arrangements
G, =0y -cos” oL+ G, - sin® oL +2 T, -sino - cosa, (5.3.30)
T, = (Gx —Gy) -sinoL- cosOl— 7T, -(cos2 o — sin® oc) (5.3.3b)

Introducing the following functions of double angles
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) 1—cos2a 5 1+ cos2a ) i
sin"go=——— , cosO=——— a Sino-cosq =—-sin20
2 2 2
we obtain Egs. (5.3.34,5) in the form

6,t06, G,—G, ,

c, = + -COS20L+ T, - sin20 (5.3.4a)
v 2 2

6,—C, |

T, =T-s1n20c—’cZ -COS20L (5.3.4b)

By means of Egs. (5.3.4a,b) we can determine the stress state 0,, 7, in an arbitrary inclined plane p

based on a known plane stress state o;, 0;, 7.

5.4 Mohr’s circle for stress

All of the information contained in the above equations may be presented in a convenient
graphical form known as Mohr’s circle. In this representation normal stresses are plotted along the
horizontal axis and shearing stresses along the vertical axis. The stresses ¢;, o;, and 7, are plotted to
scale and one membervfollowing one from Eqs.(5.3.4a,b) is successively interpreted in a geometric
manner, see Fig.5.4.1, e.g.,

- the first member in Eq.(5.3.4a) represents the distance of the circle centre C (situated on the
horizontal axis) which does not change its position when angle ¢ varies;

- by combination of Eqs.(5.3.44,b), with the exception of the first member in Eq.(5.3.4a), the
triangle CRT is obtained, the shape and size of which does not change when angle ¢ varies. The

triangle CRT, when rotating about the centre C, creates a circle whose radius is defined by the

hypotenuse of the triangle 5
—  [==2 ==2 0y —0
T} s_s  r=CT=VCR +RT = (—" y) +1,°
y 2

T, COS20L k _}R/ <
I / ey 2 \
! 2 —X(T=1,
Tp /,-";. q
\ J \ v‘_ 20(. -
0 G, +0, C Z o
T, Sin20
2 . . J
- > >l ¥ .
6,-0, Fig.5.4.1
5 cos20
_/
Gp

Thus, the point 7= T, , lying on the circle and having coordinates o, , 7, , represents the

transformation of the original stress state (o, %), existing in the plane &, into the inclined plane p
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when the plane & has been rotated (counterclockwise) by angle ¢; see Fig.5.3.3a, which is for better
illustration introduced again as Fig.5.4.2q in this section. Therefore, we can return to the original
stress state in the plane & when rotating back (clockwise) by angle ¢, which means that we put o= 0
in Bgs.(5.3.5a,b). This substitution yields oz = o; and 7z = -7, ,and the plane p will identify with &
(Fig.5.4.2b). The triangle CRT will rotate by the double angle 2¢x and will occupy the hatched triangle
CR’T’, where T’= Ty denotes the plane & position. The section 77 includes the angle #/2 with the
section & The stress state in the plane 7 will be computed when we substitute the double angle 2o =7
into Egs. (5.3.5a,b), obtaining ¢, = o, and 7, = 7, and plotted as T, in Fig.5.4.2b when we rotate the
triangle CR’T’ by 2ar =z. When summing the knowledge obtained above, and comparing Figs. 5.4.2a
and 5.4.2b, we recognize that:

i) stress components o, , 7, exerting in any section p carried out at a given point of a stressed body
correspond to a certain point 7, on the Mohr’s circle that was determined for the corresponding

stress state;

ii) the position of such a section p in a stressed body is given by angle &, while the position of the
corresponding point T, on Mohr’s circle is obtained by angle 2¢; which is carried out in the same

orientation (clockwise or counterclockwise) as angle & was determined in the element;

1 ﬂ\ 6,—0O y 0,0 y
Oy - 2 it 2 >
Gp
N — - -
& 1{,\\\ Tp
S o | S« T =T, Lo AN
| A~ ,.f’i L 20
1 ¢ 7,>0 . / To
‘ ~~~ -~ ;/ 2(1: \‘!,R’ v G
TZ e n 5 - 7y L
0 R C <0
Oy L p T \ Tz
Gy 7’
a) p T G, +0, T =T,
2
Fig.5.4.2 s
X

iii) with reference to the original rectangular element in Fig.5.4.2a, we shall introduce the sign

convention that shearing stresses (applied to the Mohr’s circle plotting (see Fig.5.4.2b)) are

positive if they tend to rotate the element clockwise, negative if they tend to rotate it

counterclockwise;

iv) based on the facts and rules presented above, the procedure for constructing Mohr’s circle can be

described:
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knowing the stresses (0;, 0;, and 7, ) exerting in two mutually perpendicular sections (& and 77), the I
respective points T¢ and T, can be plotted in the Cartesian coordinates o and 7, the connecting line ¢
of these points, representing the diameter of Mohr’s circle, intersects the coordiante ¢ in the centre of ¢

the circle which can subsequently be drawn. |

5.5 Principal stresses and principal planes |

A plane stress state o;, ¢, 7 (Fig.5.5.1a) is plotted by means of Mohr’s circle in Fig.5.5.15.

+
o4 =270
2
3
A
Ty
Ox s T3
<—
|
l 2 \ Ry o |
Tz<—I n 0l C 29 ] w
Gy r Tz 1
i v i
i ) b \ Te |
| — |
oy | 4 O, |
Fig.5.5.1 o o -

The two points 7 and 2 where the circle of Fig.5.5.1b intersects the horizontal axis are of special
interest. Point 7 corresponds to the maximum value of the normal stress ¢, while point 2 corresponds
| to its minimum value. In addition, these two points correspond to a zero value of the shearing stress =
“ Thus the values ¢ of the parameter ¢, which corresponds to points 7 and 2, may be obtained by

i ‘ setting 7, = 0 in Eq.5.3.4b. We write
I

; 2.
! . 2 tg29 = ﬁ (5.5.1) |
) Z
G X y |

\13

g/ This equation, defining the two values 27} which are 180°

O1 apart, and thus the two values ¢# which are 90° apart, can be

9 o obtained geometrically when observing the triangle CRT; in
2

1 / \T] \ Fig.5.5.1b. Either of these values may be used to determine the

Fig.5.5.1¢ orientation of the corresponding element (Fig.5.5.1c). The

planes 7 and 2
containing the faces of the element obtained in this way are called the principal plane of stress at a

given point (Q - see Fig.5.1.1) of a body, and the corresponding values 0., = 07 and G, = 03 of the
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normal stress exerted on these planes are called the principal stresses at Q. Since the two values ¢
defined by Eq.5.5.1 were obtained by setting 7, = 0 in Eq.5.3.4b, it is clear that no shearing stress is
exerted on the principal planes.

We observe from Fig.5.5.15 that

6,,=0Ctr=0, %r

. or

2
6,+0 6,—C )
0,=——"¢% (—y) +1, (5.5.2)

We can tell by inspection which of the two principal planes is subjected to G, and which to Orin-

Referring again to the circle of Fig.5.5.1b, we note that the points 3 and 4 located on the vertical
diameter of the circle correspond to the largest numerical value of the shearing stress 73 = 7 .
Observing from Fig.5.5.15 that the maximum value of the shearing stress is equal to the radius 7 of the

circle, and recalling the second member in Eq.(5.5.2), we write

2
0,—O 6,—-C 2
Ty, =——2= (Mj +T, (5.5.3)

2 2
Likewise, it can be observed from Fig.5.5.1 that the normal stress corresponding to the conditions of
maximum shearing stress is

_ _01+0, _Ox*0y
63,4 =Ogave = 9 - >

(5.5.4)

5.6 Application of Mohr’s circle to various types of stress analysis

5.6.1 3D analysis of stress

If the elements shown in Fig.5.6.1.1a,b are rotated about one of the principal axes (i.e., an axis

along which one of the principal stresses is exerted) at Q, say the x = [ axis, see Fig.5.6.1.15, the

corresponding transformation of stress may be analvzed by means of Mohr’s circle as if it were a

transformation of plane stress.

A y A y ‘r 4 y Gy
y _1&1: ?Gy TGy n | T
H n
(o] T Ox T E-' Ox Projection T (e7%
__>X Q IV Q ' Xl —> 'when lookingl—
Q > 2 - _X> - > from the left v
X /2, X N
Z ’Gz z / Oy z ’Gz Q Z
a) Fig.5.6.1.1 b)

Indeed, the shearing stresses exerted on the faces perpendicular to the z axis remain equal to zero,
and the normal stress o, = o; is perpendicular to the plane yz in which the transformation takes place

and, thus, does not affect this transformation. From this it follows that, when first rotating the element
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about the x =1 axis, the other principal axes (and Principal planes) 2 and 3 (and self-evidently the
principal stresses ¢; and o3 ) can be determined. We may therefore draw two additional Mohr’s
circles of diameter 12 and 13. Thus, we use the circle of diameter 23 to determine the normal and T
shearing stresses exerted on the faces of the element as it is rotated about the x = I axis: see
Figs.5.6.1.1b and 5.6.1.2, where, for better understanding, concrete numerical values of the
stresses (0, = 60 MPa, o, = 18 MPa, o, = -30 MPa, 7, =30 MPa) were applied. Similarly, circles of
diameter 12 and 13 may be used to determine the stresses on the element as it is rotated about the 2
and 3 axes, respectively. While our analysis will be limited to rotations about the principal axes, it
could be shown that any other transformation of axes would lead to stresses represented in Fig.5.6.1.2
by a point located within the shaded area. Thus, the radius of the largest of the three circles yields the
maximum value of the shearing stress at point Q. Noting that the diameter of that circle is equal to the

difference between 6,,,, and G,.,

we write
1
T =5-|Gmax G, (5.6.1.1)
Graphical solution:
T A Tm
I InY i
| Scale of stress ko3 ]M ki3
| | |
0 1020 30 40 50 } /)’ K 15 Tmax
Tx
|/ 3 C 219 2 1 Y G= i
0 ;
\ c. |0y ‘
/ “
Ty O3 (03}
I |
‘ ! Cx = O; Flg5612
Numerical solution: B

Principal stresses o; and o; are obtained by Eq.(5.5.2) adapted for other respective subscripts as

follows
2 2
o, +0 6,—0 — — (-
6, =22t ( y ) r2 18430, [18 (30)] 1307 —
’ 2 2 2 2
324 [MPa]
=—6+384=(
—444 [MPa]

while the third principal stress has been determined as
Gl = Gx = 60 MPa

The maximum shearing stress is computed from Eq.(5.6.1.1) in the form
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. _0.=0,_60-(444)
) 2

To determine positions of the principal planes 2 and 3 we apply Eq. (5.5.1)

=522 [MPa]

_| 2
5, -0,

2:30 |
18—(=30)|

X

tg 20 1.25

20=51°20" and thus O = 25° 40’ which coincide with the graphical solution.

n
V i
% [ o

os[* Fig.5.6.1.3

5.6.2 Particular cases of 2D analysis of stress

Let us now return to the particular case of plane stress, which was discussed in Secs.5.3 through
5.6.1. We recall that, if x and y are selected in the plane of stress, we have g, = 7, = 7, = 0. This
means that the z axis, i.e., the axis perpendicular to the xy plane of stress, is one of the three principal
axes of stress and the xy plane is one of the three principal planes (which is then denoted, for
instance, as plane xy =3, see Fig.5.6.2.1). In a Mohr’s-circle diagram, this axis corresponds to
the origin 0, where ¢ =7 = 0. We also recall that the other two principal axes and planes
correspond to points I and 2, where Mohr’s circle for the xy = 3 plane intersects the o axis. If 1 and
2 are located on opposite sides of the origin O (Fig.5.6.2.1), the corresponding principal stresses
represent the maximum and minimum normal stresses at point O, and the maximum shearing stress is
equal to the maximum “in-plane” shearing stress. As noted in Sec.5.5, the planes of maximum
shearing stress correspond to points 3 and 4 of Mohr’s circle (Fig.5.5.1b), and are at 45° to the
principal planes corresponding to points 7/ and 2. They are, therefore, the shaded diagonal planes
shown in Figs.5.6.2.2a,b.

2“‘
| 02
¥
O
—_—
Q 1
3
e
Fig.5.6.2.1 @ Fig.5.6.2.2 b)
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If, on the other hand, 7 and 2 are on the same side of 0, that is, if ¢; and ¢ have the same sign,
then the circle defining Gy , Omin and 7,, is not the circle corresponding to a transformation of
stress within the xy plane. If 0; > 0> 0, as assumed in Fig.5.6.2.3, we have G = 05, Gpin =
and 7,4 is equal to the radius of the circle defined by points O=3 and 1, that is T,e = (1/2). Cyrax -
We also note that the planes of maximum shearing stress are obtained by rotating through 45° within

the 13 planes. Thus, the planes of maximum shearing stress are the shaded diagonal planes shown in

Figs.5.6.2.4a,b.

TA ,
...... E
P B i
// 3 \\\
T i ) T
Ve N max
¥ 1 G
0=3 2fwmax =01
L N - . I/
.‘\\ 4 i s
g 4% r
Fig.5.6.2.3

All variations occurring in cases of plane stress are for illustration arranged below in

Figs.5.6.2.5a,b; Figs.5.6.2.6a,b and Figs.5.6.2.7a,b.

. 40
1) ! o1
-
0,>0,>0;0,=0 :
Fig.5.6.2.5a
ii
) 52
6,=0;0,<0,<0 M
O3 ,)'
Fig.5.6.2.6a
iii
) oy
) -1
O3 -,'7'
6,>0;0,=0;0,<0
Fig.5.6.2.7a

Fig.5.6.2.4

T
o
6;=0 6, O
Fig.5.6.2.5b
T
o

03 O G1=0

Fig.5.6.2.6b

(0)
03 6,=0 0

Fig.5.6.2.7h

5.6.3 Uniaxial stress state from the standpoint of 3D analysis of stress

Simple tension (or compression) executed in the I direction is a uniaxial stress state which can be

interpreted as 0; = F / 4 and 0 = 03 = 0 (Fig.5.6.3.1). The corresponding Mohr’s diagram is

constructed in Fig.5.6.3.2.
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ign, A T
i

n of 02 = 0 - I . —

0y, F + F F . _ \ Ty

ax
, - G, = X - td a1l 1Oy >
max - ™ 2=3 1 1 (8
thin P 03=0 0
n in . ,,/
Fig.5.6.3.1 Fig.5.6.3.2

Points 2 and 3 (representing principal planes perpendicular to principal plane I) coincide and are
placed in the origin 0, in such a way that the circles between the principal planes 7 and 2 and the
principal planes I and 3 coincide while the circle between the principal planes 2 and 3 degenerates in

a point. Maximum shearing stress, being determined by the difference of the extreme principal

_5

stresses, is defined by Tnax 5

(5.6.3.1) |
and is exerted in all the sections (in an infinite number) which include angle 7/ 2 regarding the I |
direction. Eq.(5.6.3.1) can serve for determining the limit values for shearing stress in a tensile-test

specimen based on corresponding limit values of normal stress, e.g.

O
2

1)
yielding stress in shear... Ty = —21; allowable stress in shear... T, = ; etc. (5.6.3.2)

3.7 Stresses and strains in pure shear

When a circular bar (cf. Sec.8.1), either solid or hollow, is subjected to torsion, shear stresses act
over the cross sections and on the longitudinal planes (Fig.5.7.1a). Such a type of plane stress, which
is called pure shear, is represented by one couple of complementary shearing stress 7, while normal
stresses are equal to zero, i.e.,, 6, = g, = 0 (Fig.5.7.1b). Since twisted shafts are very important

machine elements it is evident that pure shear deserves special attention. (This stress type occurs, self-

evidently, not only with torsion but with many other stressed elements.)

yA 1’]

an be & [ Fig.5.7.1 e

am is 7 g

!
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Mohr’s diagram for pure shear (from the standpoint of 3D stress state) is shown in Fig.5.7.2a.
Thd1

AN Y

<P

Fig.5.7.2 E

(O]
b

From Mohr’s circle we can easily establish the principal stresses

c,=1T,; c,=0 0, =—1

z
and the principal planes from which the planes 7 and 3 are oriented at an angle of 45° with regard to

the respective original planes £ and 7, while the principal plane 2 (coinciding with the plane of the

paper) is unchanged, see Fig.5.7.2b.

Strains corresponding to pure shear are shown in Fig.5.7.3, where the deformations are greatly
exaggerated. The shear strain y is the change in angle between two lines that were originally
perpendicular to each other. Thus, the decrease in the angle at the lower left-hand corner of the
element is the shear strain y (measured in radians). This same change in angle occurs at the upper
right-hand corner, where the angle decreases, and at the two other corners, where the angles increase.
However, the lengths of the sides of the element, including the thickness perpendicular to the plane of
the paper (xy), do not change when these shear deformations occur. Therefore, the element changes its
shape from a rectangular parallelepiped (Fig.5.7.15) to an oblique parallelepiped (Fig.5.7.3a). This
change in shape is called shear distortion. If the material is linearly elastic, the shear stress for the

element in Fig.5.7.1b is related to the shear strain by Hooke’s law in shear:
1=7-G (5.7.1)

where the symbol G represents the shear modulus of elasticity.
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We can obtain a relationship among the three material constants E, G and u. For this purpose, we

utilize a comparison between Fig.5.7.3a and Fig.5.7.3b. Based on Fig.5.7.3a, we have
u+Au ¥ .
=a- COS(——xj =u+Au=a- \/E(COS—’Y—+ Sll’ll)
2 4 2 2 2

and since shearing strain ¥ is a very small quantity it holds

cosl =] and sinLY- = ¥
2 2 2

Thus, we have

u+Au=a-«/§(1+1) =u-(1+x) - Au=u-~
2 2 2

Substituting Hooke’s law for shear, Eq.(5.7.1), into the last expression we have
uT,
2 G

It is clear from Fig.5.7.3b that the expression for the diagonal elongation 4u can also be based on the

Au (5.7.2a)

principal stresses and we can write

Au 1 T T
e, =T“=E.[Gl_u.53]=iz.(1+u):>Au=u-iz-(1+u) (5.7.2b)

where we have substituted the generalized Hooke’s law (see Sec.5.8) since it is concerned with the

plane stress state.
Comparing Egs.(5.7.2a,b), we have

E
—=2(1 .
G (1+p) (5.7.3)

which is the relationship sought among the three elastic constants holding for homogeneous

and isotropic materials.

5.8 Strain in the case of a 3D stress state; generalized Hooke’s law

5.8.1 Multiaxial loading

We shall now consider a structural element subjected to loads acting in the directions of the
principal axes and thus producing normal (principal) stresses 0;, 0; and 03 which are all different
from zero. This condition is referred to as multiaxial loading. In order to express the strain
components & , & and & in terms of the exerted stress components, we shall consider separately the
effect of each element and combine the results obtained. The approach we propose will be used
separately and is based on the principle of superposition. (We have already learned (cf. Sec.2.10) that this

principle states that the effect of a given combined loadinig on a structure may be obtained by determining

separately the effects of the various loads and combining the results obtained, providing that the following
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conditions are satisfied: i) each effect is linearly related to the load which produces it; ii) the deformation
resulting from any given load is small and does not affect the conditions of application of other loads. In the case
of multiaxial loading, the first condition will be satisfied if the stresses do not exceed the proportional limit of the
material, and the second condition will also be satisfied if the stress on any given face does not cause

deformations of the other faces that are large enough to affect the computation of the stresses on those faces.)

Considering first the effect of the stress component o;, we recall from Sec.2.8 that o; causes a
strain equal to 0;/E in the I axis direction, and strains equal to —z0;/E in each of the 2 and 3
directions. Similarly, the stress component o3, if applied separately, will cause a strain 03/F in the 2
direction and strains —. 03 /E in the other two directions. Finally, the stress component o3 acts
analogously. Combining the results obtained, we conclude that the components of strain |

corresponding to the given multiaxial loading are

1
£, =E-[(51 —u-(o, +0,)] (5.8.1.1a)
1
£, =E-[cs2 —p-(o;+0,)] (5.8.1.16) |
1
€, =E-[o3 —u-(o, +0,)] (5.8.1.1c) f

5.8.2 Complex loading (a general stress condition) |
|

For the general stress condition represented by stress components o;, 0,, G, , %, %,, and 7
(Fig.5.1.1), and as long as none of the stresses involved exceeds the corresponding proportional limit,

we may apply the principle of superposition and combine the results obtained in preceding sections.

We first use Egs.(5.8.1.1a,b,c), while considering the directions x, y and z instead of the principal

directions 1, 2 and 3 :

1 -
eng-_cx—u-(cyﬂsz)

1 r "
g, =E-_cy—u-(cz+cx)_ (5.8.2.1a,b,¢)
£Z=%-:02—u (Gx+(5y) |

which can easily be proved.
Then we add corresponding expressions for shearing stresses based on Eq.(5.7.1) as follows:

X

Yx =G Yy =G’ Y. =EZ (5.8.2.2a,b,c)

Egs. (5.8.1.1a,b,c) or the set of Eqgs. (5.8.2.1a,b,¢) and (5.8.2.2a,b,¢) are called generalized Hooke's

law.
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5.8.3 Mohr’s circle for plane strain
(5.8.3.1a)

It can be proved that, analogously to plane stress, we can obtain the relations
€, —¢&
L -cos20c+y—z-sin20c

gx &
= +
(5.8.3.1b)

€g = 5
—£
Y -sm20c—y—z-cos20c

Yo _ Ex

2
describing both normal strain &, and shearing strain J,in a general direction given by angle &
y A
a.gt by,

b.y.

>
/i
i

(To derive these relations we start from the deformation of a

rectangle in Fig.5.8.3.1, where its deformed shape is plotted
b.gy
D
= 7 / Au
|

Y
¥
—
h 4
Yz &
7

! ’
i /i !
7

4 ]

!

i

i

i

with dashed lines. Neglecting small quantities of higher

A\

1]
1]

]

’l

I 4
i

1}

i

b )
)-cosa+—-8y -SIN O
u
A
= sina and A=A a

orders, we obtain
Au=(a-g, +b-y,)-cosa+b g, -sino =

a
=& t+—7Y,
u u u

= cosex and bu =

After substituting a/u =
applying known trigonometric relations, we will arrive at

Fig.5.8.3.1
Eq.(5.8.3.1a). Based on a comparison of Eq.(5.3.4a) with '
Eq.(5.8.3.1a) , it follows that the normal stresses o , G, correspond to the normal strains & .§ ,

_Au_

€q,

and, consequently, the shearing stress 7 must correspond to one half of the shearing strain, i.e., %/2.

Analogously, based on Eq.(5.3.4b), we can write Eq.(5.8.3.1b)).
Since the equations for the transformation of plane strain are of the same form as the equations

for the transformation of plane stress, the use of Mohr’s circle may be extended to the analysis of
plane strain. Constructing a plane coordinate system, we plot the normal strain components & ,&, on

the abscissa and one half of the shearing strain component 3 /2 on the ordinate. (An example, related
with strains assessed by experiments, is presented in the next -5.9.2- section)
5.9 Examples on stress/strain states

5.9.1 3D stress state solvable by the Mohr’s circle method.
Given: Stress state: o0, = - 40 N/mm 2 c,=10 N/mm’, &, = 30 N/mn?’, T, =-20 N/mm?

Plane p: inclined from plane yz about angle o = 30°
Task: Determine principal stresses 0 3, principal pianes 1,2,3, maximum shearing stress Tn,, and

the stresses in the given inclined plane p (G, 1,)
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Solution: First draw a cube where the stress-state given is illustrated (all stresses are drawn according

their signs, Fig.5.9.1.1):

Ox

i/ no problem is with normal stresses o;,,,;

ii/ but mind that the shearing stress, 7, = -20 N/mm’, having negative sign, has to be pointed in

negative semi-axes x and z, and, after having done it, the origin negative sign is not further

considered and the shearing stress sign will be subiject to a different rule when drawing the

respective Mohr’s circle.

This rule says: When the normal of a plane is turned clockwise and falls to a shearing stress

positive direction (Fig.5.9.1.2), then such a shearing stress shall be positive (and vice versa) in the
respective Mohr’s circle (Fig.5.9.1.3).

yA

Icy

" projection direction
v

a I

|

Ty — ]
n
K ’GZ

Z | Ty
RO / GX
V4 e —
Py g
,'I B
£ Oz Fig.5.9.1.1
(8
/ —_—Ty
o /P
®

N

~n

i
]
|

Fig.5.9.1.2

Mohr’s Circle method for a 3D stress state can be applied

only when at least one of the planes is a principle plane.

When checking the stress state given, we see that in the plane
having its normal parallel with y-axis is not a shearing stress,
1.e., this plane is a principle one (say 2) and thus
0, = 0; = 10 N/mm’.

Then, when projecting the 3D stress state in the direction
of y-axis, we obtain a partial 2D stress state where the
principal stress @; plays no role in equilibrium equations and

Mohr’s Circle method can be applied.

A
Op 7T

n Omax ~ Omin

A Ty(>0) max 2
11 I \d

/1 01~ Omax c

Fig.5.9.1.3
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Numerical solution: ‘

Principal stresses ¢; and o3 are obtained by Eq.(5.5.2) adapted for other respective subscripts

2 2
013=‘5x+62i Gy — O, +1y2=("40)+301r (—40)-30 02 =
2 2 2
—-5+10-v3.5% +22;

0, =-5+4031=3531 |N/mm?};
63 =—5—40.31=-4531 [N/mm2] and

0, =0, =10 [N/mmz]

Principal planes I and 3 are obtained by Eq.(5.5.1) adapted for other respective subscripts as follows

g =0.5714 = 9 =14°52"21"

)

Now the position of principal stresses and planes can

be drawn in Fig.5.9.1.4.

Maximum shearing stress is given by

(e) -0 _. 0,— O
T = S = 12 2=4031  [N/mm?] Fig.5.9.1.4

For answering the last task, it is recommendable to compare the origin stress state in Fig.5.3.3

(cf. Sec. 5.3.1), by which the Mohr’s circle was derived, with the given stress state in Fig. 5.9.1.2.:

Oy 5,
n T,
L) =1y
Ox (X Ox Oy a p |l o
DI Y — Y o= [
1 S 6 1
T, *+— n Ty -—— l .
cfFig53.3 ¥0y “L_p Fig.5.9.1.2 o,
6,+6, ©,-0, _
Based on Eq. (5.3.4a,b): G, = 5 + 5 -c0s20.+ T, - sin20.
Gx - Gy .
T, =——— SIn20— T, -cos20,
p 2 z

which can be adapted for other respective subscripts, it is possible to write similar equations for
the given task:
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6,+06, ©,—0C : 6y =6, .
, =——=+—"—*%-cos20+ T, -sin20; T, =—*—=-sin200— T, -cos2a *)
2 2 y P2 g

Comparing the stress senses and the angle senses of the inclined plane p in Fig.5.9.1.2 with those of

the origin stress state and the plane p position in Fig.5.3.3 will help us to substitute proper stress and
angle signs into Egs.*):
_ (~40)+30 ( 40)-30
a 2 2
3
=-5-35. E+ (~20)- B _ 9 [N/mm?];

2
T =#ﬂ-sin(2 :30°)—1, - cos(2-30°) = —35-—2‘/5—(— 20)% =—2031 [N/mm’]

o)

-cos(2-30°)+ (- 20)-sin(2-30°)=

p

Note: The offset a of plane p (from plane f) is substituted as positive (@ = 30°> 0) into those expressions above
since the plane p is inclined in the same sense (here clockwise) in the both figures (Fig.5.3.3 and
Fig.5.9.1.2), while the shearing stress 7, in Fig.5.9.1.2 is pointing to the different square edge than the
shearing stress 7,in Fig.5.3.3 and thus it is substituted as negative (-20 N/mm?).

5.9.2 Experimental stress analysis.

One of experimental methods for assessing the 2D stress states of structures is application of so

called strain-gauges. Generally, two basic strain-gauge sets are used:

1/ The strain-gauge cross, i,e., two mutually perpendicular strain-gages are

used when knowing the principal stress/strain (6,/€;, 0/€>) directions.

2/ The strain-gauge rosette, i,e., three strain-gages are used when not

knowing the principal stress/strain (6;/€;, 6,/€2) directions.

Given: The structure material: E = 2.1-10° N/mm’, u=0.3

The strains were measured by means of:
ad 1) the strain-gauge cross: ;= 407.5-10 % &,= 132.1-10°
ad 2) the strain-gauge rosette: &,= 343.9 -10°° , £,=160.0 1070 &,=170.3-10°°

Task: Determine the principal strains and principal stresses, cf. GHL (5.8.1.1a. b, ¢)

Solution:

Ad 1) In this case, the principal strains (¢; and &;) were measured (knowing their directions), so only

the principal stresses (¢; and o,) are computed by applying GHL (5.8.1.1a,b,¢) , which are modified:
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_ [8+u8]_21105
1-p? 21203

) 1]—2& [(

[(407.5+03-132.1)-10°*} =103 2N/ mm’]
GZ:I_%?[E” 132.1+03-407.5)-10%)= 587N /mm?] ¥

Ad 2) Based on the measured strains (&, &, &), the principal strains (g, £2) are computed with

2
€, + € €, — & vV
€, = —(0 + —— | 4+ | —| ,where the shearing strain y,/2 is assessed
> R 2

s ~

by comparing the two equal triangles in Fig.5.9.2.”

T2

y

_ (343.9 +160 170.3j 10-5 = 5 ‘
;81 ;

= 81.65 - 107° ~ G 1
g, +E, ‘
82= +- & : ?

' Fig. 5.9.2.1

2
‘., = {343 9 + 160 \/(343 9 - 160) (343.9; 160 170_3) J_10_6 N

, =374.92-107°; g, =128.98 -107°

The principal directions for this stress state can be assessed by means of the Mohr’s circle (Fig.

59.2.1) | yA 2
Ny,
Y_Z _6 91 Z
) 81.65 - 10 -
tan 20 = = = I
L-& 3M9-160 ;
2 lﬁ5°
= 0.888 = 0 = 20°4808" 45°
- » X
. o ~ - 0
The strain-gauges (x, z, y) directions in the rosette ~ -~ L‘
with those of the principal strains (1, 2) are shown in Fig. 5.9.2.2 1T
Fig. 5.9.2.2. (Mind the same sequence of strain-gauges (x—y—z) in Fig. 5.9.2.1 and Fig. 5.9.2.1!!!)

Analogously to the expressions *) , we obtain

6, = 9545[N/mm’]

the principal stresses (by means of the rosette data):

md o, = 5572[N/mm?]
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6. Strain energy

6.1 Introduction

In Sec.2.12 we discussed the elastic strain energy associated with normal stresses in members
under axial loading, see Eqs.(2.12.3a,b) and (2.12.7a,b). The strain-energy density, being equal to the
area under the stress-strain diagram of the material (Fig.2.12.1c), has been defined as the strain energy
per unit volume

dUu 1 o?(x
o= 2ol el =S,
dv 2 2E

In Sec.6.2 we shall consider strain-energy density for a general stress state, which includes the

see Eqs.(2.12.4) and (2.12.5).

strain energy associated with shearing stresses.

6.2 Strain energy for a general stress state

6.2.1 Strain energy for shearing stresses

When a material is subjected to pure shear, the originally perpendicular planes of an element, in
which the shearing stresses 7 are exerted, will undergo a shearing strain y(Fig.6.2.1.1). The 7=y curve
is assumed linear. The shearing force 7 - dx - dz brings about the total displacement % - dy . The strain
energy accumulated in the element is determined from the product of the gradually increasing

shearing force and the caused displacement in the form

| 1 1
dU=§-'cZ -dx-dz-y, -dy=5-17Z Y, -dx-dy-dz=5-1:Z Y, -dV (6.2.1.1)
— Tz
o ¥ ¥
y &y /[
e /

z /Ty dz T, ——
dx
a) b)

Fig.6.2.1.1
The strain-energy density in the case of plane shearing stress or pure shear is then
du 1 v}
A.=—= Y, = (6.2.1.2)

T _—'Tz' z
dav 2 2G

(when substituting Hooke’s law for shear).
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6.2.2 Strain energy for a general state of stress

In the preceding sections, we determined the strain energy of a body in a state of uniaxial stress
(cf. Secs.2.12 and 6.1) and in a state of plane shearing stress (Sec.6.2.1). In the case of a body in a
general state of stress characterized by the six stress components o;,0;,0;, %, T, and 7, the strain-
energy density may be obtained by adding the expressions given in Eqs.(2.12.5) and (6.2.1.2), as well
as the four other expressions obtained through a permutation of the subscripts .

In the case of the elastic deformation of an isotropic body, each of the six stress-strain relations

involved is linear, and the strain-energy density may be expressed as
du 1
=W=-2—(cx £, 0, 8, +0, €, T, Yy Ty Yy 1,07, (6.2.2.1)

being sum of two independent parts
1 1
Ao =5(c5x ‘€, +0,-€,+0, -sz) and A, ZE(T" Vet T, Yy tT, -yz) (6.2.2.2a,b)

Recalling the relations (5.8.2.1a,b,¢) and (5.8.2.2a,b,c) obtained in Sec.5.8.2, and substituting for the
strain components into Eq.(6.2.2.1), we have, for the most general state of stress at a given point of an

elastic body,
1
K=2—E[G)2(+G§,+0'§ —2-u-(cx-cy+0y -Gz+GZ-Gx)+2-(l+u)-(’t)2(+’t?,+’tg)]

(6.2.2.3)
If the principal axes at the given point are used as coordinate axes, the shearing stresses become

zero and Eq.(6.2.2.3) reduces to

1 1
k=5(61 -£,+0, €, 403 -83)=ﬁ[0% +635+03 —21L-(6,-0, +6,:03+0C3 -01)]

(6.2.2.4)

where 07,03, and o3 are the principal stresses at the given point.

In Chap.7, we shall deal with the limit state of a body subjected to a general state of stress. One of
the criteria used to predict whether a given state of stress will cause a ductile material to yield is based
on the determination of the energy per unit volume associated with the distortion, or change in shape,
of that material, and will be called, among other names, the maximum-distortion-energy criterion. We
shall, therefore, attempt to separate the strain-energy density A at a given point into two parts, a part
A, associated with a change in volume (also called the volumetric strain energy per unit volume) of
the material at that point, and a part A, associated with a distortion, or change in shape (also called
the shear strain energy per unit volume), of the material at the same point. We write, taking into
account Egs. (6.2.2.24,b),

A=Ag+A,=A, +A4 . (6.2.2.5a)
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These relations can be further subdivided as

A=Ay +hg=Ay5 + Ay +Ags t Ay (6.2.2.5b)
where 7‘0 = KVG + }\'do and 7% = KW + 7"dt (6.2.2.5¢,d)

so that we may know how the normal and shearing stresses participate in the change in volume and in

the change in shape, respectively.

In order to determine A, and Ago , We shall introduce the average value O of the normal
stresses at the point under consideration,

o,+0_,+0
o, =— 3 = (6.2.2.6)

ave
3

and set

Ox =Oave +(Gx —Gave) ; Oy =0Caye +(Gy _Gave) ; 0z=0Oave +(Gz —Gave) (6.2.2.7)

T Oy T Oave T Oy - Oave
i l !
Ox Gave _Ex»_ Gave
o, e p = Cave , 1T /t
// e Gz - Oave
a) b) Fig.6.2.2.1 ¢)

Thus, the given state of stress (Fig.6.2.2.1a) may be obtained by superposing the states of stress
shown in Fig.6.2.2.15 and c¢. We note that the state of stress described in Fig.6.2.2.1b tends to change
the volume of the element of material, but not its shape, since all the faces of the element are

subjected to the same stress 0. . On the other hand, it follows from Eqs. (6.2.2.6)>and (6.2.2.7) that
(0% = Oaye) + (Gy - cave) +(0, =0, )=0 (6.2.2.8)

which indicates that some of the stresses shown in Fig.6.2.2.1c are tensile and others compressive.
Thus, this state of stress tends to change the shape of the element. However, it does not tend to change
its volume. Indeed, recalling Eq. (2.9.1) of Sec.2.9, and substituting for strains from generalized
Hooke’s law - Eqs.(5.8.2.1a,b,¢) - we note that the dilatation @ (i.e., the change in volume per unit
volume) caused by this state of stress is

_1-2u
~E
or @ = 0, in view of Eq. (6.2.2.8). We conclude from these observations that the portion A, of the

C

[(GX — O ge) + (Gy -~ (Save) +(o, - Gave)] (6.2.2.9)

strain-energy density must be associated with the state of stress shown in Fig.6.2.2.1b, while the

portion Ay, must be associated with the state of stress shown in Fig.6.2.2.1c.
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It follows that the portion A, of the strain-energy density corresponding to a change in volume of
the element may be obtained by substituting ¢, for each of the normal stresses in Eq. (6.2.2.2a). We

have

1L _1-2.p 2
xvc_ﬁ_.3.gs (1-2-p) = — .((yx+0y+(jz) (6.2.2.10)

while recalling Eq. (6.2.2.6) to express the last shape of Eq. (6.2.2.10).

To obtain the portion Ays of the strain-energy density corresponding to the distortion of the

clement, we shall solve Eq.(6.2.2.5¢) for Ay and substitute for A5 and for Avo from Egs.(6.2.2.2a)
and (6.2.2.10), respectively. We write
Mic =hg—Aye =
1

ZE[}(GZX +0y +02Z)—6u-(6x0y +0,0, +cszc5x)—(1—2u)(c5X +0, +cz)2}

Expanding the square and rearranging terms, we have

1+
Mo =g

Noting that each of the parentheses inside the bracket is a perfect square, we obtain the following

((52x ~26,0, + czy) +(02y -20,0, +02z) +(c52Z ~26,0, + sz)]

expression for the portion Ay of the strain-energy density, i.e., for the distortion energy per unit

volume which is contributed by the normal stresses of the given general stress state,

1+u 2 2 2
Mdo =_6§[(cx—cy) +(oy—0,) +(0,-0) (6.22.11)
In order to determine A,; and A4;, we shall first substitute the stress state of pure shear 0; = —0; =

7 and 03 = 0 (cf. Sec.5.7) into Eq.(2.9.1) and obtain

®=81+82+83= u((51+02+03)=0

It follows from the result @ = 0 that shearing stresses do not contribute to the change in volume, i.e.,
Ay =0

and the strain-energy density by shearing stresses is exerted only to the change in shape. Accordihg

Eq.(6.2.2.2.b) we have

1
Mgy = %(Ti +1} +1§) (6.2.2.12)

Based on the foregoing analysis we have:

- the resulting volumetric strain energy per unit volume

Ay =Ay = 1;'%-(cx +0, +GZ)2 (6.2.2.13)
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- the resulting shear strain energy per unit volume

7"d = kdc +7‘“d’c =

=1;_—EH|:(GX —Gy)Z +(Gy _62)2 +(GZ -—GX)2 +6'(T,2( +T§, +’C§):| (6.2.2.14)

These relations can be expressed in terms of the principal stresses:

- the resulting volumetric strain energy per unit volume

1-2- 2 T

A, =—”-(cs1 +G, +03) (6.2.2.15) |

6-E 1}

- the resulting shear strain energy per unit volume |
1+ 2 2 2 |

Mg = 6—;[((51 ~-6,)" +(0,-03)" +(05-0) ] (6.2.2.16) ,
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7. Limit analysis; theories of elastic failure

7.1 Introduction

We can consider as a limit state (LS) any stress or strain state that is inadmissible for the proper

function of a structure.
The limit states listed below are those of very common practical applications:

1) LS of elasticity: when it is reached, the plastic flow of material starts to propagate in material

macrovolumes.

2) LS of ultimate strength (breakage) or fracture: when it is reached, the cohesion of the material is

broken.
3) LS of fatigue: this sets in when a structure failure occurs due to cyclic loading.

4) LS of stability: at certain values of compressive forces, a phenomenon known as buckling of columns

can appear, which means the stability failure (by lateral deflection) of a long slender bar.

We shall concentrate on:

- the LS of elasticity, which (in most cases) must not be reached, or even exceeded, in structures made
of ductile materials, and to which we relate a certain degree of safety loading (being expressed by
the safety factor ky related to the yield strength oy of the material);

- the LS of fracture (breakage) which must not be reached with a sufficient margin of safety when
loading structures made of all kinds of material; it especially serves as a measure of safety for brittle
materials, where the safety factor ky related to the respective ultimate strength oy, (in tension) or

Oy, (in compression) of the material, is to be applied.

Note that in both limit states listed here the corresponding safety factors ky and &y, respectively, must

ensure that the designed structures or components are stressed only elastically.

Haigh'’s limit surface :
Using principal stresses 07, 03, and 03 as coordinates, we will create so-called Haigh’s space, where

we can plot limit stress states as points lying on a surface in this space, which is consequently called

Haigh’s limit surface (Haigh'’s diagram). Regarding homogeneity and isotropy of the materials, the axis

of the first octant of Haigh’s space coincides with the axis of Haigh’s limit surface. There is also
Haigh’s allowable surface, which is derived from the limit surface by dividing all limit stress
coordinates by the respective minimum safety factor k., . Haigh’s diagrams will be presented below in

connection with individual theories of elastic failure.
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7.2 Theories of elastic failure

7.2.1 Uniaxial loading.

In this case, issuing from tensile tests, we can simply compare the working stress (of a designed j

structure) with the respective limit strength (cf. Sec.2.6.3) :

- Ductile materials: 1
1) The LS of elasticity is more often called the yield criterion: 1?
| Working stress | =Yield strength, ie., |(5| =0y see Eq.(2.6.3.6) 1

2) Strength Criterion (used by designers for computations of allowable load-carrying capacity of
structures):

| | Working stress | < Allowable stress, ie., |G| SOy see Eq.(2.6.3.4)

These criteria hold for both tension and compression.

- Brittle materials:

1) Fracture (breakage) criteria:

a) tension

Working stress = Ultimate strength in tension, i.e., O = Oy see Eq.(2.6.3.7a)

b) compression

| Working stress | = Ultimate strength in compression, 1.e., (5| =0y, seeEq.(2.6.3.7b)

2) Strength Criteria:

a) tension

Working stress < Allowable stress in tension ,ie., G <Oy see Eq.(2.6.3.5q)

b) compression
| Working stress| < Allowable stress in compression, 1.e., O =< Cgll.c  See Eq.(2.6.3.5b)

Haigh’s diagram for uniaxial stress is shown in Fig.7.2.1.1:

—Oc  —Oae 0<0 0 0>0 Guy O Y

Fig.7.2.1.1

where points o7, and 07, correspond to the respective limit values of the material (i.e., to the yield
strength for ductile materials and to the ultimate strength for brittle materials). Safety factors of working

stress o with respect to the limit values are determined by
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kL=& (for 6>0); kL=&°— (for 6 <0);
18)

o

7.2.2 General stress state

When dealing with the design of structures or components, the physical properties of the constituent
materials are usually found from the results of laboratory experiments which have only subjected the
materials to the simplest stress conditions. The most usual test is the simple tensile test, in which the
value of the stress at yield or at fracture (whichever occurs first) is easily determined. The strengths of
materials under complex stress systems are not generally known, except in a few particular cases. In
practice it is these complicated systems of stress that are more often encountered, and therefore it is
necessary to have some basis for determining allowable working stresses so that failure will not occur.
Thus, relevant theories of elastic failure must be postulated, the function of which is to predict from the
behaviour of the materials in a simple test when elastic failure will occur under any condition of applied

stress.

A number of theoretical criteria have been proposed, each seeking to obtain an adequate correlation
between estimated component life and that actually achieved under service load conditions for both

ductile and brittle material applications. The four main theories are:

For ductile materials:
a) Maximum shearing stress theory (Guest - Tresca)

b) Shear strain energy per unit volume (Huber - von Mises - Hencky)

For brittle materials:
¢) Maximum principal stress theory (Rankine)
d) Mohr’s modified shearing stress theory
In each case the value of the selected critical property implied in the title of the theory is determined

for both the simple tension test and a three-dimensional complex stress system. These values are then

equated to produce a so-called criterion for failure based on the respective theory.

7.3 Theories of elastic failure for ductile materials

7.3.1 Maximum-shearing-stress criterion (often denoted: “T,.; or Tresca’s criterion: or

Guest’s criterion)

This theory states that failure (i.e., critical state which prevent operational loading) can be assumed
to occur when the maximum shearing stress in the complex stress system becomes equal to that at the

yield point in the simple tensile test.
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This criterion is based on the observation that yield in ductile materials is caused by slippage of the
material along oblique surfaces and is due primarily to shearing stresses. Recalling from Sec.5.6.3 that
the maximum value of the shearing stress under a centric, axial Joad is equal to half the value of the

corresponding normal, axial stress (Eq.5.6.3.2), we conclude that the maximum shearing stress in a

tensile-test specimen is 7., = Ty = 9_21 as the specimen starts to yield. On the other hand, we saw in

Sec.5.6.1, Eq.(5.6.1.1), that, for multiaxial stress, the maximum value 7, of the shearing stress 1s
1 . . s

equal to 7., =5'(O'max — 0, ). Thus, when equalling these expressions we have Tresca’s yield

criterion in the form

o G, —O =0y (7.3.1.1)

eq — O max min
where the symbol o, , called equivalent stress (now representing the originally given complex stress

system), means that we have transformed the original multiaxial stress as if into uniaxial stress.

The strength criterion for multiaxial stress (i.e., two- or three-dimensional stress) is then expressed

analogically to Eq.(2.6.3.4) (cf. Sec.7.2) in the form

Goy = Omux — Omin < Ol (7.3.1.2)

eq — O max
Tresca’s theory produces a fairly accurate correlation with experimental results and is often used for
ductile materials in machine design. This is also one of the widely used laws of plasticity (which will be

dealt with in the next course).

7.3.2 Maximum-shear-strain-energy (or distortion-energy) criterion (often denoted: “HMH”

. . * . - .
criterion : or “von Mises” criterion)

This theory, based on determination of the distortion energy in a given material, i.c., of the energy
associated with changes in shape (as opposed to the energy associated with changes in volume, see
Sec.6.2.2) states that failure occurs when the maximum shear strain energy component in the complex
stress system is equal to that at the yield point in the tensile test, 1..

Mg =Agy (73.2.1)

where Aq in the case of a general stress state, is (Eq. 6.2.2.14)

l1+p 2 2 2 2,2, .2
Ay =ﬁ-[(cx —Gy) +(c5y —GZ) +(o,-0,) +6-(1:X +1 +TZ)
or by means of the principal stresses (Eq. 6.2.2.16)

*
The notation HMH is by Huber, von Mises, Hencky, who are three independent authors of the criterion.
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T
6-E

When substituting in these expressions the stress at the yield point in the tensile test, 1.e. 07 = Oy, 03

(o, —62)2 +(o, —63)2 +(0; —01)2]

= 03 = 0, we have the limit distortion energy per unit volume in the form

After substituting the above presented relations (Eqgs.(6.2.2.14) and (6.2.2.16)) into the limit condition
(Eq. 7.3.2.1) we obtain the HMH yield condition in the following shapes

for general stress

2 fome oo Hoa ) o (ad et =0, 032

for the stress state expressed by the principal stresses

2
‘\/2:'\/@_02>2+(02_G3)2+(63"0'1)2 =0y (7.3.2.2b)

If we denote the left hand sides of these relations as the equivalent stress o, we can write the HMH

strength criterion in the form
Oeq <o, (7.3.2.3)

where the respective forms of the left hand sides are hidden in o,.
This theory has received considerable verification in practice and is widely regarded as the most reliable

basis for design.

7.3.3 Comparison of Tresca’s and HMH vield criteria

It was stated at the end of the last two sections that each yield criterion presented there produces a .

fairly accurate correlation with experiments and is widely used in practice. Although yield criteria show
a difference in results ranging from 0 to 15.5%, designers are recommended to consider both as exact,
and to apply them arbitrarily for ductile materials. Nevertheless, some advantages (or disadvantages) of

their respective applications can be listed as below.

Advantages of Tresca’s vield criterion:

1. Simple mathematical expression (but it is necessary to know the principal stresses)
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Advantages of the HMH vield criterion:

1. It is not necessary to know the principal stresses (cf. Eq.7.3.2.2a)
2. It is not necessary to know the rank of the principal stress magnitudes.

3. All three principal stresses participate to express the equivalent stress and have the same

significance.

(The advantages of one criterion mean disadvantages for the other. Though only one advantage is observed in {

Tresca’s criterion, this is still used more frequently, mainly when dealing with problems of plasticity).

7.4 Graphical representation of the theories of elastic failure for ductile materials

Recalling Sec.7.1, the above presented theories of elastic failure enable not only mathematical
assessment of the limit analysis or allowable working conditions of structures but also their geometric

interpretation in the form of Haigh’s limit or allowable surfaces, respectively.

7.4.1 Graphical representation of Tresca’s criterion

Referring to the above obtained equivalent strength for Tresca’s yield criterion (Eq.7.3.1.1) in the

form |
Geq = Gmax _Gmin = GY

the corresponding Haigh’s limit surface is defined when we consider each of the principal stresses,

taking successively maximum or minimum value, respectively.

This procedure can be applied both for the 3D stress state or for the 2D (plane) stress state:

3D stress state: 2D (plane) stress state, e.g., 03 =0 :
G1-02=0Oy; 0;-0; =0y 01 - 02 = Oy; O2-0; =0y
0,-03=0y; O3-0; =0y 02 = Oy, -0, =0y
03-0;=0y; O;1-03=0y -0, = Oy, G, = Oy

i.e., hexahedral prism (HhP) i.c., hexagon (Hn)

7.4.2 Graphical representation of HMH criterion

Recalling Sec.7.3.2, we will observe that, when raising the Eq.(7.3.2.2b) eXpression to the second

power, we obtain

1
Oo =§-[(01 —(52)2 +(o, —63)2 +(o, —(51)2]= o3

which represents a circular cylinder serving as the limit surface in Haigh’s space. We can observe that

Tresca’s HhP is circumscribed by the HMH cylinder.
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The corresponding Haigh’s limit curve for the 2D (plane) stress state is obtained by putting one
principal plane equal to zero, e.g. 03 = 0:
2 1 2 2 2 2
Og =§-[(61 -0,) +0; +(51]=GY
which represents an ellipse circumscribing Mohr’s hexagon.
The above derived configurations, both for Tresca’s and for HMH criteria, are shown in Fig.7.4.1.1
(Haigh’s limit surfaces) and in Fig.7.4.1.2a,b (Haigh’s limit lines). In order to make the geometric
solution of plane stress problems for HMH criterion easier, the transformation of the limit ellipse into

the corresponding limit circle, by using oblique coordinates, is shown in Fig.7.4.1.25.

3D stress state

Limit surfaces

Allowable surfaces

W...working stress
Lt, L’r... limit stress (Tresca)

15.5%

HMH

/r— Tresca

Oy

Proportional ~General
Fig.7.4.1.1 loading line  loading line

2D stress state
Limit lines

A 02
Oy _— T Allowable lines A Oy
#|can
-Oy Cail O1
fi-Cal Oy
Tresca
=Call | . 01
Oy

Fig.7.4.12 a Fig.7.4.12b
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In Fig.7.4.1.1, two loading lines are plotted representing a general and a proportional type of loading,

respectively. The loading lines intersect the respective limit lines at points representing the respective

limit stress states (in Fig.7.4.1, only points Lr, L’r ,are denoted representing limit stresses with respect

to Tresca’s limit surface). Point W, which has coordinates o7, 0;, 0; , represents working stress.

The loading (straight) line of proportional type of loading, which occurs very often in practice, can be
utilized for graphic expression of the respective factor of safety for given working stress o7, 0z, 03 with
respect to Tresca’s criterion:

_OL,
oW
We can proceed analogously with respect to the HMH criterion and, when applying Fig.7.4.1.2a,b, the

k,

same procedure can be carried out for the 2D stress state.

7.5 Theories of elastic failure for brittle materials

As we saw in Chap. 2, brittle materials are characterized by the fact that, when subjected to a tensile
test, they fail suddenly through rupture - or fracture - without any prior yielding. When a structural
element or machine component made of a brittle material is under uniaxial tensile stress, the value of
the normal stress which causes it to fail is equal to the ultimate strength oy of the material as
determined from a tensile test, since both the tensile-test specimen and the element or component under
investigation are in the same state of stress. However, when a structural element or machine component

is in a state of complex stress, it is necessary to apply a suitable theory of failure.

7.5.1 Maximum-normal-stress criterion (often denoted as the “ 0,4~ criterion)

According to this criterion, a given structural element fails when the maximum normal stress O

(in tension) in that component reaches the ultimate strength Oy obtained from the tensile test of a

specimen of the same material. (It should be noted, however, that failure could also occur in compression if

the minimum principal stress .., were compressive and its value reached the value of the ultimate strength in

compression_, i.e.Op, = -0y, for the material concerned before the value 0y, was reached in tension.) _

The criterion of brittle fracture is thus

- in tension O =0, = Oy (7.5.1.1a)
- in compression G =0, =0y ' (7.5.1.1d)
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The strength criterion, obtained in similar way, is

- in tension Gy = Oumax = Oyt (7.5.1.2a)

- In compression Oy = Omin = O

(7.5.1.2b)

where the allowable stresses (G, Ourc) are defined by Eqs.(2.6.3.3a,b), respectively.

7.5.2 Mohr’s fracture criterion

According to German engineer Otto Mohr, this criterion states: With a brittle material (having Oy
< Ow) breakage (fracture) will onset in such cross-sections in which not only normal stress reaches a
great magnitude but also a certain influence of shearing stress (exerted simultaneously on those cross-
sections) will manifest (Fig.7.5.2.1). (From Mohr’s circles it is apparent that the limit points L, denoting
the stress states in which the material fracture will take place, belong to the largest circle determined by

the difference (Gyax - Omi). This means that here, similarly as with Tresca’s Criterion, medium stress

plays no role.)

T Limit curve
Th

|

Ya

|
|
|

v Q

Guc 0 Gut
Fig.7.5.2.1 Fig.7.5.2.2

Mohr’s criterion can be defined when the results of various types of tests are available for that
material. Let us first assume that a tensile test and a compressive test have been conducted and thus the
two corresponding side Mohr’s circles (having the limit values Oy ,0uc ) in Fig.7.5.2.2 have been
obtained. Such analysis corresponds to the “Giax ” Criterion, because either tension or compression
principal stresses exerted in a member are to be checked. In order to analyze the cases when the
principal stresses in a member have opposite signs, we shall now assume that a torsion test has been
conducted on the material and that its ultimate strength in shear 7y has been determined. Drawing the
circle centered at 0 representing the state of stress (i.e., pure shear, cf. Chap.8) corresponding to the
failure of the torsion-test specimen (Fig.7.5.2.2), we observe that any state of stress represented by a
circle entirely contained in that circle is also safe. Mohr’s criterion is a logical extension of this
observation: A state of stress is safe if it is represented by a circle located entirely within the area

bounded by the envelope of the circles corresponding to the available data (i.e., Oy, Ove, Tu).

It follows from experiments that this envelope, being curved only a little, can be approximated by the

tangent t to the circles representing the limit uniaxial tension and compression, respectively (Fig.7.5.3).
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Placing a circle representing a general stress state, given by G, = 07, G = 03, Which just touches

that tangent #, and utilizing the hatched similar triangles in Fig.7.5.2.3, we shall obtain

the looked-for relation in the following form:

0, t0; Oy Oue , Our
2 2 _ 2 2
1 1
E'[GUt—(GI_G3)] E'(GUC_GUt)
from which, after modification, we shall obtain:
Gl _ 63 — 1
Cuc  Oue (7.52.1)
t 1

el

1 ;
E'(GUC_GUt[ , L
| oy You \o1 G

(0} (o) (&) /| 1
- % T o0

G +03

Y
A

Fig.7.5.2.3

This expression, after being multiplied by the ultimate strength in tension oy, ,will yield
Mohr’s fracture criterion:

]
_O'Ut'63=GUt; or  G;=pP-6; =0y
ve (1.5.2.2a,b)

where we denoted the ratio of the ultimate strength in tension and compression, respectively, as

G,

Out G ali:t

—— = p <1 ;(for the respective allowable stresses, it also holds ——=p <1)
Ote Caliie (7.5.2.3a,b)
(Allowable working stresses Oy and oy, obey Egs. (2.6.3.3a,5).)
Analogously, we can obtain Mohr’s strength criterion :
Geq = Omax — P Omin S Gyt (7.5.2.4)
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7.5.3 Applicability of the criteria for brittle materials

Unlike the Yield criteria, i.e. Tresca’s and HMH criteria, valid for ductile materials, the Fracture
criteria, i.e. “Opa 7 and Mohr’s, to be applied to brittle materials, cannot substitute each other.
Appropriate applicability of each of the Fracture criteria can be traced from the philosophy of the
Mohr’s criterion derivation, see Fig.7.5.2.2, where the exact limit curve ¢ (connecting the limit points L
of the respective Mohr’s circles representing general stress states) passes from uniaxial compression to

uniaxial tension through pure shear. It follows from this that Mohr’s criterion holds for such a stress

state where a combination of positive and negative stresses occurs.

Since the expression for Mohr’s criterion was finally based on an approximate straight line ¢ in
Fig.7.5.2.3, this criterion would yield inadmissible factors of safety both for multiaxial tension and for
compression (while being quite inappropriate for the latter because the limit straight line 7 does not cut the
negative horizontal semi-axis of the diagram in Fig.7.5.2.3; cf. Sec.7.6.2, where the limit surface of Mohr’s theory
is derived) while the “Gyay » criterion holds very well for such a stress state where all stresses are

positive or negative

In general: that fracture criterion shall be applied which will yield the smaller factor of safety.

7.6 Graphical representation of the theories of elastic failure for brittle materials

The theories of elastic failure for brittle materials, discussed in Sec.7.3, have their geometric

interpretation in the form of Haigh’s limit and allowable surfaces and lines, respectively, as follows.

7.6.1 Graphical representation of maximum-normal-stress-criterion (“Guax)

Referring to the above obtained equivalent strengths for the “0;,,,, -criterion for both tension and
g q max

compression, see Eq. (7.5.1.1a,b), and taking into account that each of the principal stresses can assume

either max. or min. values, we have:

3D stress state: 2D (plane) stress state, e.g., 03 = 0 :
0,=0uw; —01=0y 6, =0u; ~01 =0y
0, =0Ou: —02=0yc 6, =0y =02 =0y
O;=0yy; —03=0y i.e., Haigh’s limit line is square

i.e., Haigh’s limit surface is cube
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7.6.2 Graphical representation of Mohr’s fracture criterion

Each of the principal stresses in this criterion, see Egs. (7.5.2.2a,b), can assume either max. or min.

values:
3D stress state: 2D (plane) stress state, e.g., 03 =0 :
S _% _. %2 _% _y O % _.  %2_%1 _,
=1 = =1 =

OSu Ouec Out Ouwe Out Oue Out Ouec

6, O3 63 O, ) G,
———=1; ———=1 —==1; -—=1
Oyt Oue Ou Oue Sut Guc

63 Oy 61 63 O G,
23 oy 228 o ~ Loy —L=q
Out Ouc Out Ouc Cuc Out
i.e., Haigh’s limit surface is a hexahedral pyramid i.e., Haigh’s limit line is a (deformed) hexagon

7.6.3 Plotting of Haigh’s limit and allowable figures

Haigh’s limit surfaces for ductile materials, i.e., graphical interpretation of Tresca’s and HMH
criteria in the case of a 3D stress state, which were a bottomless hexahedral prism and a circular
cylinder, respectively, can be applied for graphical solution of problems owing to their simple
projection. However, this is not the case for the above obtained Haigh’s limit surfaces for brittle

material according to the “0.,,” and Mohr’s criteria, since both the cube and the hexahedral pyramid

are closed and semi-closed, respectively. Therefore, only plane stress problems can have a graphical

solution by applying a square and a deformed hexagon representing the limit lines of the “G. " and

Mohr’s criteria, respectively. In Fig.7.6.3.1, the respective limit lines are plotted with thick lines, and

the respective allowable lines with thin lines.

Mohr’s fracture criterion O, 4
.! [13 2 : : - au GUt
E Gmax Cnterlon LR ] LA ER N RR NER __1LBN}I
!
-oyucl 0 Call; i ; Out
'Gallgc . O;
!
i
"Gall;c i
i
Fig.7.6.3.1 v A,
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7.7 Examples

7.7.1 Ductile material dimensioning

Given: The stress-state in a rail, loaded with one wheel of a )]

g3
B
i f
%

carriage, was assessed by experimental methods:

0, = - 800 N/mm?’, 03 = - 1100 N/mm?, 03 = - 900 N/mnr’. “ G
The rail material: oy = 400 N/mm’ 03 4
Task: Assess the factor of safety: ky -~

Solution:
First we have to recognize the type of the material given and to know which theories of elastic failure
are suitable for it. According to the fact that the yielding strength oy is given, it is clear that this

material is a ductile one, from which follows that the proper criteria are those of Tresca and HMH.

Numerical solution:

a/ Application of Tresca yielding criterion 3‘

Guy = Opu = Opn = Oy — 0, = (~800)— (~1100) = 300N /mm? ] ; ky, =9l=%=1.§

cq

b/ Application of HMH yielding criterion

SR ey ) ETCE

- % - J[(=800)= (=1100)F + [(~1100)— (— 900)P + [(—900)— (- 800)F =264.6]N / mm?]

(6]

oy _ 400 o, = -800
Kym =—L=——=151 :
Y,I-MH Geq 264.6 * ...... e,

Graphical solution:

_ L0 Oy

O3

Fig.7.7.1.1

O
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7.7.2 Brittle material dimensioning

Given: Stress-states:
2/ 6, = 80 N/mm?’, 0, = 0 N/mm’,

o, = 120 N/mm’
oo
|

O1
— /
O3
v K

-’
/

The brittle material ultimate strengths: 6y, = 160 N/mmi’; oy, = 400 N/mm’

Task: Determine factors of safety: kg

- Solution:

We know that for brittle materials two 'criteria of brittle fracture could be basically applied:

a/ “Omay criterion; b/ Mohr’s criterion.
But these two criteria depend also on the signs of the stresses applied.

Ad 1/ This is a 3D tension stress state (o, = 80 N/mm’, 0, = 20 N/mni’, o; = 120 N/mm?). When

comparing the Haigh’s limit surface of “Gq"criterion (a cube) with that of Mohr’s criterion (a
hexahedral pyramid) in the first octant of 6,5 coordinates, we see that safer results can be
obtained by the “0,,,“ criterion application. At the same time, we see that such a 3D stress state
can be solved only analytically.

Analytical (numerical) solution:

ad &/ “Gp” criterion: O = Oy =G, = 120[N/mm? ; ko = 2 _10 133
° o, 120
ad b/ Mohr’s criterion:
Ooy = O “Su.5 =0, ~Su g, =120——1@~20=112[N/mm2]
Oue Oue 400
G 160
kyy=—2=—=143
UM s 112

€q

The proper factor of safety is the minimum one, i.e., ky = 1.33 by “Gyu criterion.

Geometrical solution: for brittle materials is not used with 3D stress states.

Ad 2/ This is a 2D stress state with mixed stress signs:
(0, = 80 N/mm*, &, = 0 N/mm’, o, = -120 N/mm’),

i.e., Mohr’s criterion is to be used. But for better imagination, we will try also the “Cy,,” criterion .
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Analytical (numerical) solution:

ad a/ ‘G criterion:

i
L
L ¥

z
7

4
.

tension: Geq =Oppay = O] = SOlN/mmZ] ; Ko = Suw _ _18309 =2.0
Geq
400 . =
compression: Geq =|0|max =|G3| =120[N/mm2J s Koo = zUc = l—gg =33

ad b/ Mohr’s criterion:

G =0~ .5, =0, ——l.g, =80—%-(—120)=128[N/mm2]
GUC csUc
c 160
Iy =20 = - =125
M7, 128

€q

Mohr’s criterion

2

“Omax_ Criterion

Graphical solution:

/L

13 ”»” - . .
Omax___CYiterion. .

a
[¢]

tension:

Lo 4O
KU, 0 == =2.0

Z

=
=

compression:

k = omat
YeOmx = WO

Mohr’s criterion:

= L0 =1.25
O

g e

kU,M

Fig.7.2.1

The resulting factor of safety is kyem=1.25

Lcmax,t

Lo‘rnax,c
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8. Torsion of circular shafts

We shall analyze the stresses and strains in members of circular cross sections subjected to twisting |
couples, forques, T and T’ (Fig.8.1.1.1). Both couples have a common magnitude T , and opposite
senses (the couple T’ can also be considered as the reaction from clamping, or support, or another
machine member).

Members in torsion are encountered in many engineering applications. The most common
application is provided by transmission shafts, which are used to transmit power from one point to
another, e.g., from a steam turbine to an electric generator, or from a motor to a machine tool, or from

the engine to the rear (or front) axle of an automobile. These shafts may be either solid or hollow.

8.1 Derivation of needed relations

‘ Based on experiments, the following property of shafts is assumed: When a circular shaft is
\ subjected to torsion, every cross section remains plane and undistorted. This property will enable us to ‘
determine the distribution of shearing strains in a circular shaft; the relations between displacement
(angle of twist ¢ ) and strain (shear strain ¥), i.e., geometricdl relations; and to conclude that the |

shearing strain varies linearly with the distance from the axis of the shaft (Sec.8.1.1).

Considering deformations in the elastic range and using Hooke’s law for shearing stress and strain,
we shall determine the relation between shear strain yand stress 7 and, in addition, the distribution of

shearing stresses in a circular shaft (Sec.8.1.2).

By applying the equilibrium equation, we can finally derive all the necessary elastic torsion
SJormulas: the strength and stiffness criteria (Sec.8.1.3).

8.1.1 Geometrical relations

Detaching a cylinder of radius p from the shaft in Fig.8.1.1.1, we consider the small square element
AFCD formed by two circles of radius p at a distance of dx and two adjacent straight lines CA and DF
traced on the surface of the cylinder before any load is applied, Fig.8.1.1.2. As the shaft is subjected to
a torsional load, the element will deform into a rhombus A ’F’CD, while the originally right angle ACD
will decrease by the shearing strain y and the polar radius O4 (changing into OA’) will undergo an
angular displacement - angle of twist d@ - with respect to the polar radius O°C, see Fig.8.1.1.2. Arc 44’
can be expressed in two relations

K\A’zp-d(p and K\A'=y-dx:> 'yngg.
X
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- e
[ \ / 5 p %

T o dx T
Fig.8.1.1.1 Fig.8.1.1.2 dx
The latter relation can be rewritten as h

vy=p- 0O (8.1.1.1)
where we denote d@/dx by the symbol ¢ and refer to it as the angle of twist per unit length, or the rate
of twist.

8.1.2 Torsional stresses in the elastic range

Since the shaft deformation is entirely expressed by one shearing strain ¥ it is dealt with as pure
shear, and dnly one member of generalized Hooke’s law is of use (it is of no use to write subscripts)
Y==
G
When substituting here for ¢ from Eq.(8.1.1.1) we have

T=G-9%-p (8.1.2.1)
Since the rate of twist U does not change along a shaft of uniform cross-section subjected to a constant

torque (Fig.8.1.1.1), the product

G-d=c (8.1.2.2)
is constant and thus it holds
T=cCc-p (8.1.2.3)
which expresses that shearing stress increases proportionally with its distance from the shaft axis: it has
zero value at the shaft axis and reaches its maximum at the circumference of the circular profile, where

p = r(Fig.8.1.2.1).

A stress characteristic concerning complementary shearing stresses (cf. Sec.5.2) has the following
consequences:
1) In addition to 7 exerted in the shaft cross-sections a complementary shearing stress acts in the

shaft axial sections (Fig.8.1.2.1);
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2) Shearing stress has to be tangent to the cross-sectional contour (which is fulfilled with the

circular profile).
dp
P
r ’C'
dy
§ dA

Fig.8.1.2.1 Fig.8.1.3.1 |
dx i |

8.1.3 Torsion formulas |

When solving tasks of statics, it is necessary that the problems obey equilibrium equations. With
torsion of shafts, equilibrium between the external loading torque and the corresponding internal
resistant torque (i.e., resulting from the produced shearing stresses) will provide the required relation ‘_

between T and 7

From the cross-section of a shaft, at an arbitrary radius p, we shall cut (using two cylindrical and

two radial sections) an elementary area dd4, where shearing stress 7(p), obeying Eqs.(8.1.2.1) and |

(8.1.2.3), is exerted (Fig.8.1.3.1). Based on this, we can express an elementary torque
dT=p-1-dA = dT=c-p’-dA

‘ It holds, for the whole cross-sectional area 4,

| T=c- IP2-dA (8.1.3.1)

(A)

where the relation

3 Ipz dA =7 (8.1.3.2) |
(A) |

defines the polar moment of inertia or polar second moment of area so that we can write
| T=c-J (8.1.3.3)

When expressing constant ¢ from Eqgs.(8.1.2.3.) and (8.1.3.3), we obtain successively the relation

between shearing strain and torque:

T

; €= 7 , respectively, — T(p) =

T
c= —.
J

T
— p (8.1.3.4)
p
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Since the maximum shearing stress in a cross-section of a shaft occurs at its outer fibres with radius

r=d/2,we have

T T d
T max —T'I' or T nax =TE (8.1.3.5a)
. ) T

which can be written Tax = E (8.1.3.50)

By comparing Egs.(8.1.3.54,b), we have defined the quantity
J 2.J

7=~ or Z=—- (8.1.3.6)

T d

called the polar section modulus which is convenient for expressing the maximum shearing stress in a

given cross-section of a twisted shaft.

By applying symbol Z we determine the shearing stress at the outer fibres, which here has its maximum
value for a given cross-section of a twisted shaft. Considering that both the shaft diameter d(x) and the
exerted torque T(x) can vary along the shaft length, it is always necessary to seek for such a site x of
the shaft cross-section where the ratio T'/Z reaches its maximum. The torsional strength criterion is
then

Tonax = (%) ST (8.1.3.7a)

max

This strength criterion for torsion recalls in form the strength criterion for tension-compression, see

Eq.(2.6.3.4) in Sec.2.6.3, but there is an essential difference: torsion produces a plane state of stress,
whereas tension-compression produces only a uniaxial state of stress. We learned from Chap.7 that, in

the case of a multiaxial stress state, it is necessary to apply a suitable theory of elastic failure. In the

case of torsion ¢, is not determined, but the chosen theory is utilized for assessing the allowable
shearing stress 7,; based on the allowable stress for tension o,z As was presented in Chap.7, members
stressed predominantly in shear have to be produced from a ductile material, which means that either

Tresca’s theory or the HMH theory is to be applied. Thus, we have:
o
- for Tresca’s theory it holds T, = Tall (cf. Sec5.6.3 and 7.3.1); (8.1.3.7b)

- for the HMH theory, when we substitute into Eq.(7.3.2.24) the stress state of pure shear (e.g.,0; =0, =

: il
=0,= 1, =1, =0; ,= Tu), weobtain T, =—~. (8.1.3.7¢)
T3
When substituting for ¢ from Eq.(8.1.2.2) into Eq.(8.1.3.3) we have
T
T=0-G'J] = 0=—- (8.1.3.8)
G-J

which expresses the dependence between the rate of twist and the forgue.
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After limiting the rate of twist with a maximum allowable value ©¥,;, we obtain the torsional stiffness

criterion
ﬁ=%£ﬂan , (8.1.3.9)
while the quantity GJ is termed the torsional rigidity of the shaft and is thus given by
G-J=I (8.1.3.10)
(v

Taking into account definition ¢ = d¢ /dx, we obtain, from Eq. (8.1.3.8), the expression for the
elementary angle of twist in the form
do = 1. dx
G-J
For a constant torque 7 along a length L of the shaft we have
_T-L
=G

Formula (8.1.3.11) for the angle of twist may be used only if the shaft is homogenous (constant G),

(8.1.3.11)

has a uniform cross-section, and is loaded at its ends. In the case of varying torque T(x) and/or cross-

section J(x), the angle of twist can be calculated from

- é I_?(_X) .dx (8.1.3.12)
01
8.2 Polar second moment of area (polar moment of inertia)
As stated above the polar second moment of area J is defined as
I= [p?-dA
(4)
where, according to Fig.8.1.3.1, it holds
| dA=p-dy-dp
For a solid shaft
r 2.7 4 4
3 _w-rt_ w-d a4
Jig=[p’-dp- [dy= =y [mhmm (8.2.1)

For a hollow shaft of outside diameter D (radius R ) and inside diameter d (radius ), see Fig.8.2.1, we

can obtain (since J is a result of integration) the resulting Jpy by subtracting Jy (of the hole) from Jyp),

.D* n-d* =.D* d)*
i.e., J(D/d)=J(D)—J(d)=TC _TC =TC : 1—( ) (8.2.2)

32 32 32 D
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t
-
Fig.8.2.1 Fig.8.2.2
For the respective polar section modulus, see Sec.8.1.3, Eq.(8.1.3.6), it holds:
for a solid shaft ... Z o _n-d (8.2.3)
or a solid shaft ... =—= 2.
@ 42" 16
J .D? A |
(pra) _ T
for a hollow shaft ... Z = = 11— — 8.2.4
% ift (D/d) D/2 16 |: (D) ( )

In the case of torsion of a thin-walled pipe (Fig.8.2.2), where r>>1, we have approximately

J
J=r!2-mwr-t=2-n-r’t ; Z===2-m-r’-t (8.4.5a,b)
r
Note: Since Z is not based on integration, this cannot be obtained by addition or subtraction and the looked-for
polar section modulus of a shaft is defined by means of the corresponding polar second moment of area of

the shaft divided by its outside radius.

8.3 Strain energy in torsion and application of Castigliano’s theorem

Consider a shaft BC of length L subjected to one or several twisting couples. Denoting by J the polar
second moment of area located at a distance x from B and by T the (internal) torque in that section, we
recall that the shearing stresses in the section are 7=Tp /J.

Substituting for 7into the expression

T2

dU; = A, -dV =—dA -dx,
2G

we successively obtain

(T-p)° T? 2 T (x)
U = ) dx-da= | ([p?-dayax= [——2—ax (8.3.1)
(Vj) 2GJ 0 2GJ? ( J) (J) 2G(x) - J(x)
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For such a case, when the quantities 7, G, J are constant along the shaft length L, the strain energy for

N T?-L
torsion is given by (cf. Eq.2.12.3) U= (8.3.2)

S 2.GJ°
Knowledge of the strain energy for torsion will enable us to apply Castigliano’s theorem:
If an external torque Tj is exerted in a cross-section j, then the angle of twist @yij) of this cross-section j
with respect to a chosen section i, being situated in a distance L,
vields from © (i) = afli_j) (8.3.3)
i

After substituting here from the expression for the strain energy, we shall obtain the following

T(x) . IT(x) dx
G-J(x) T,

]

expression (o(i_j) = J. (8.3.4)
(L)
which is analogous to expression (2.13.6) used in Chap.2 (dealing with uniaxial loading - tension or

J0T(x) _ t(x)

j

compression), i.e., we can substitute and thus we have (cf. Eq.2.13.7)

T(x)
Py = | ———-t(x)-dx (8.3.5)
(=) (J)G-J(x)

where: T(x)...internal torque in an arbitrary site x acting between sections i - j having mutual distance L

(i.e., the sum of all external torques acting along one side of the shaft from one end up to
point x)
f(x)...internal torque in x produced by a dummy load (unit external torque) which is exerted in

section j where we are to determine the angle of twist with respect to section i.

Example 8.3.1: Ta=T T
Given: Two types of shaft having: f /
1) solid profile (d); A Pz ed, A - B
p [kg/m”]
2) hollow profile (Dy, dy) —Vity Wy A4 - C U0
where: Dy /d, =1.2 ;L=1m; T=12-10> kNm ; J L /

G=8.1-10* N/mm? ; 1, = 50 N/mm?
Task: Assess:

a/ Dimensions: solid shaft d; ; hollow shaft (D,, dy);

b/ Mass ratio of the shafts: m/ ;
my

¢/ The shafts angles of twist @4g,, @454 at the torque locations B with respect to the shafts fixation 4
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@—@@@@

—T(X) = -—T— =T
ZT ZT e

Solution: (apply the flow diagram)

Since the problem is SD, we start with Items 6 + 7: T(X) =T; 1(x)=

. - T
Item 8: Dimensioning.  Tresca’s strength criterion Ty, =—— < Ty

Zy
. 3 . . . 8
ad 1) Solid profile: Zyg = nlgs => dg 2 3’ 16T =13’16 1'25010 = 230.4[mm]|
T T

Chosen value: dg = 230[mm] . Though this is a bit smaller diameter than that based on Tresca,

mind that T, vy = Tall T % =57.73 N/mm? and the shaft safety is preserved 1
& 2 3 ‘
3 4
ad 2) Hollow profile: Zyy, = m-Dp 1- dp = i
16 Dy ‘
8
16 -T 1.2.
Dy > _ 16 -1.2-10 =286.9[ ] ;

n.[l_(l_lz)“].so

%)
a
[u—
I
N
(wl K=}

==
N—
S
a
B,
LY

dy, = % =239.1[mm]

Chosen values: Dy, =290[mm] ; d}, =240[mm] (Dy,/dy, =290/240 =1.21)
2
- dg

Mass ratio: ad 1) Solid profile: mg =V -p = ‘L-p

TC'D121 dh 2
ad 2) Hollow profile: my =V.p= 4 1= D_ -L-p

&

mp 2
A[-(2)

My

=2.1

Item 9: Checking of the resulting stress.

8
ad 1) Solid profile: T, = ZT _12 103 =50.23N/mm? = Tall, T<Tall, AMH
Ts 72307
16
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T _ 1.2-10°
Z1s 1290 1_(240)4
16 290

T .
Item 10: Deformation. Angles of twist (since T = 7 =const, Eq, (8.1.3.12) is to be applied)

= 47.2N/mm? <ty 7

ad 2) Hollow profile: T,y =

T
8 3
ad 1) Solid profile: @4 = 1 L4 __ 1210710 2 =5.3924-10"3rad = 18'32"
G2 g0t 20
32
ad 2) Hollow profile:
. . 8- 3
o = 4T L == 1.2 104 107 = =4.0187-10rad =13'49"
G,TE'Dh, 1— d 2.1.10%. 7290 1— 240 _
32 D 32 290

Conclusion: i) the hollow shaft is two times lighter then the solid shaft, and ii) at the same time the

hollow shaft is stiffer then the solid shaft

8.4 Statically indeterminate problems in torsion.

Such problems frequently arise in the case of torsional loadings. In Chap.3, dealing with statically
indeterminate problems in tension and compression, a generally applicable procedure (containing 5
items) leading to the solution of SI problems was presented, see Sec.3.2.

We shall apply this procedure on the following example 8.4.1:

Example 8.4.1: Determine the reactive torques at the fixed ends of the circular shaft shown in
Fig.8.4.1a, loaded by the couples T;=3.10’N.mm and T, =4.10’N.mm the location of which is given by:
a=c=400mm; b=300 mm.The cross-section of the bar is constant along the length. When

G = 8.10" % and 7, = 60 N/mm’ hold for the material of the shaft, dimension its diameter ¢ d .

Solution:

The solution is analogous to a fixed rod to which we would apply axial forces F; and F, instead of
torques 7; and T, being exerted in the shaft and then we could proceed in such a way that we would
release the rod, for instance at the clamping B and write one equilibrium equation and one compatibility

relation (ALg = 0)., for the given shaft, we can write one equilibrium equation as follows

containing two unknown reactive torques T, and Tp at the fixed ends, which confirms the member is
statically indeterminate to the first degree. We release the shaft at point B and substitute this removed

support B with a statically indeterminate torque 7 (which is considered as active during the solution)
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while a reactive torque T, will be exerted at the remaining support 4 (Fig.8.4.1b). By the following

compatibility relation

¢ =0 (8.4.2)
we express the reality that point B was originally Tzﬂ /Tl
fixed (Fig.8.4.1a), and, subsequently, no angle of 3
twist could arise there. We can specify this o) A '¢d B
condition by superposing all active torques ol r'd
which twist cross-section B with respect to i e l; "

cross-section A4, thus

obtaining
¢p = P, P +9¥p1, =0 (8.4.3)
Individual respective constitution relations are
oo =L _T,-(a+b) _
B;TB G . J b B’Tl G . J » “
Pp, = T2 (8.4.4) |
B,T2 G . J S

By combining Eqs.(8.4.3) and (8.4.4), we obtain the statically indeterminate torque 7 (while

substituting the given numerical values) in the form
a+b a
T, =T,-——~T, —=045-10" [N - mm] |
L L
The torque in the section a is identical with the reactive torque T, which we will calculate from the

equilibrium equation (after substituting for 75 ) in the form

b+c

T, =T,-T,+T, =T, - —Tl-%z1.45-107[N-mm]

The moment distribution is plotted in Fig.8.4.1¢ while having its maximum value in section b
Toax =|Ta — To| = 2.55-10" [N - mm]
The diameter of the shaft is determined by the application of relevant strength criterion, see
Eqgs.(8.1.3.7) and (8.2.3),

r-d?
16

Toax SZ-Tyy 5 where Z=

max —

d=3f% =~ 130[ mm]
T,y :
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Example 8.4.2: Another example is a shaft composed of two materials, a tube of stee/ surrounding a

tube of copper, with the entire assembly being subjected to a twisting moment (Fig.8.4.2).

Solution:

Ll

Wi
AAMMMIMIIIIIN \\\\\\\\

iy

As usual, the applicable statics equations \

(in this case being one, i.c.,

¢d1 ¢d2 ¢d3
T=TC11 +TFe

) O O

expressing that each tube will carry a
A

respective part of the applied torque
Fig.8.4.2

according to its stiffness) must be < >
supplemented by additional equations based upon the deformations of the structure in order to furnish a
number of equations equal to the number of unknowns. Because of the 1° SI of the member, there is only
one such equation, i.e.,

Teo L Tg-L
GCu Jeu GFe Jre

¢Cu = ¢Fe =
stating that the angles of twist of the two materials are equal.

Based on these relations, the torques of the copper and steel tube will be
GCu 'JCu GFe 'JFe

Cu=T' > TFezT'
Gg, I, TGg -J Gey T, + G T

, respectively.

Fe Fe

Note: This example is analogous to the example of parallel members connected with a rigid plate

solved in Sec.3.4. (Either “S?” or “Fe” subscripts denoting a steel member are used in technical literature.)

8.5 Close-coiled helical springs subjected to axial load W

Springs are energy absorbing units whose function it is to store energy and release it slowly or
rapidly depending on the particular application. In motor vehicle applications the springs act as buffers
between the vehicle itself and the external forces applied through the wheels by uneven road conditions.
In such cases the shock loads are converted into strain energy of the spring and the resulting effect on
the vehicle is much reduced. In some cases springs are merely used as positioning devices whose
function it is to return mechanisms to their original positions after some external force has been
removed. From a design point of view “good” springs store and release energy but do not significantly

absorb it. Should they do so then they will be prone to failure.
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8.5.1 Types of stress in close-coiled helical springs

Let us consider a helical spring constructed from wire in the form of a helix and subjected to axial
load W, as shown in Fig.8.5.1.1. By application of the method of sections on a cross-section of the
spring, sufficiently distant from the spring ends, we can determine its state of stress, in a plane

including the spring axis, which is produced by load W and couple M= W.D /2.

4D Fig.8.5.1.1

Consider a cross-section perpendicular to the tangent of the wire axis. In the considered cross-section
(tangent to the wire axis), we decompose these two loading factors in the directions perpendicular and

tangent to the wire axis, respectively, thus obtaining the basic types of stress state, as follows:

1. Compression component ...N = W -sino

2. Shear component ..V=W-.cosa

3. Bending component M, = -sin oL
W-D

4. Twisting component L T= 5 - oSOl

We observe that such a helix spring has a relatively complicated state of stress. But if the spring is
close-coiled, i.e., constructed in such a way that each turn of the helix is close to the adjacent turn, we
can consider the helix angle ar to be so small that it may be neglected, i.e., each turn may be considered
tob lie on a horizontal plane (if the central axis of the spring is vertical). Consequently, it holds sina = 0
and cosa = 1 and thus, the bending M, and compression N components can be neglected. The only

remaining components loading close-coiled helix spring are shearing force V =W and torque

_W-D
2

If, in addition, the helix spring (with diameter D) is constructed of a wire (with diameter d) being

(8.5.1.1)

relatively thin, and thus having so-called spring index D/d that is relatively high, i.e., D/d >> 10, then
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even a small load W (multiplied by arm D/2) causes a considerable torque. Therefore, with close-coiled
helix springs made of a thin wire it is possible to neglect the shearing force V' ~ W and consider

only torque producing shearing stress as follows

W-D
W-D
=L 2 _8 W3 z2.5-W-23 (8.5.12)
Z m-d n-d d
16
This stress must obey the strength criterion Toax = Tan (8.5.1.3)

Most springs in production do not differ greatly from the presented assumptions and thus, it is
possible to carry out the dimensioning of springs in the manner discussed above. With springs having
spring index D/d < 10, it is necessary to define the computation of spring dimensions, i.e. to consider

the combined stress of torque and shear. This procedure (cf. Sec.13.3) leads to the finding that

maximum stress occurs at the inner side of the wire section.

For instance, in the following relation
D
T =K~2.5-W-?,
presented in technical literature, coefficient x e(1.514 +1.134) corresponding to spring index
D/d €3 = 10), respectively, holds for helix angle o = 0 °. With open-coiled helical springs, similar
coefficients can be obtained including the influence of bending and compression (or tension):

for a=15°.. xe(1.441 =1.091); for a=30°... xe(1.241 +0.966)

Note: Springs are manufactured either by hot- or cold-working processes, depending on the size of the

material, the spring index, and the properties desired. In general, winding the spring induces

residual stresses through bending, but these are normal to the direction of the torsional working

stresses in a coil spring. Quite frequently in spring manufacture, these are relieved, after winding,
by a mild thermal treatment. A wide variety of spring materials are available to the designer,
including plain carbon steels, alloy steels, and corrosion-resisting steels, as well as nonferrous
materials such as phosphor bronze, spring brass, etc. An excellent material for highly stressed
springs requiring long life and subjected to shock loading is chrome silicon, which has high

values of allowable strength of about z,; = 500 N/mm.

8.5.2 Deflection of close-coiled helical springs

By means of Castigliano’s theorem (cf. Sec.2.13) we can easily assess the deflection of close-coiled
helical spring. Utilizing the above mentioned (Sec.8.5.1) simplifications, we substitute corresponding

quantities into Eq.(8.3.2) and have the strain energy accumulated in the spring in the form
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W-D)?
_ThL (T) Dy w2.pda
2.GJ d* G.4
3

where the length of the spring wire L was obtained as the circumferential length of one coil zD
multiplied by the number of active coils #, i.e., L = mD.n; and that of the wire cross-section was
substituted for J .

By applying Castigliano’s theorem we obtain the following expression for the spring deflection

ou W'8~D3-n

= = 8.5.2.1
oW T TG #8320
This expression can (by analogy with Eq.(2.7.4b)) be rewritten as

1 :
=W.— 1
YW k ‘1
By comparing the last two relations we express the spring rate (i.e. spring stiffness) ‘
G-d* 6
k=———  |N.-mm™ 8.5.2.2) ‘;
8-D’-n [ ] ( :

Example 8.5.1: A close-coiled helical spring should have a stiffness of 90 N/mm and should exert a
force of 3 kN ; the mean diameter of the coils should be 75 mm and the maximum stress should not
exceed 240 N/mm’. Calculate the required number of coils and the diameter of the steel rod from which

the spring should be made. ‘

Solution: The solution is obtained from the strength criterion (Egs. 8.5.1.2 and 8.5.1.3)

- . 3-
I=Iz2.5-W-23STaII:>d23 25-W-D =3\/2'5 310075 1 3mm
Z d T 240

By applying the stiffness criterion that can be derived from Eq.(8.5.2.2) in the form
G-d*

k=—m—

8-D”-n

we can calculate the required number of coils as

G-d* 8-10*-13*
n< =
8-D* -k, 8-75°-90

2 kall

=7.52 = n=7

Example 8.5.2: Now we can return back to the impact loading discussed in Chapter 2, namely to the
mine lift (mass m=10° kg and velocity v=1I m/s), cf. Example 2.12.1. We shall design a suitable closely
coiled helical spring (D/d = 10) made of a special material (7, = 5x1 0° N/m?, G = 8.1x10"° N/m?).

Solution: First we shall dimension the wire diameter d (using the strength criterion and estimating the
spring diameter D = 0.2 m.
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3
t=L-25wW. D3_Tau:>d>3 25 W D=3\/2'5 081 180 02 0.021m = 21mm
V4 d Ta 5-10

(the design requirement D/d = 0 is obeyed)

Expressing strain energy accumulated in helical springs and comparing with the lift kinetic energy

2 3 )
= 4%‘(3_11 =AK = m2V (Where the lift weight W=mg),

we see that only one free parameter to be assessed is the number of coils 7: " |

m-v:.-G-d* 12 - 8.1-10% . 0.021*

2 = = 255 = 3, |
8 (m-g)-D* 8-10°-9.81*-0.2° - ¢
from which we obtain that the minimum number of coils shall be n = 3. |
i
Summary: The resulting parameters of the spring are: D > 200 mm, d = 21 mm, n > 3 which can 1
2 3 92 |

. 10° .
accumulate the strain energy of AK = m2V = 0 5 ! =0.5- 103|:kg M m= J} =5-10° [kJ] |
s |

8.5.3 Springs in series

If two springs of different stiffness are joined end-on and carry a common load W, they are said to be
connected in series (Fig.8.5.3.1). This task being statically determinate, the combined stiffness and |

deflection are given by the following equations.

Deflecti y w =y +y W+W = (8.5.3.1) 1
eflection =—= =—+— 5.3
kK V7P Tk Kk,
. 1 1 1 k, -k, 2
Stiffness — =t = k=—>= (8.5.3.2)
kK k k, k, +k,
From this and from Eq.(8.5.4.3) (cf. Sec.8.5.4) we see that spring stiffness behaves W
like capacity in electrotechnics. Fig.8.5.3.1

8.5.4 Springs in parallel

If two springs are joined in such a way that they have a common deflection y they are said to be
connected in parallel (Fig.8.5.4.1). This task is statically indeterminate and its solution could be
mathematically identical with the case of “Parallel members connected with a rigid plate” in Sec.3.4
and “Tube of copper surrounded with tube of steel”, see example 8.4.2, if we there substituted (for the
respective materials)

Estar - Agyal . Greca 'JFe;Cu _
L = Rtst;al ’ L T T pe;cu
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which are stiffness in tension (compression) and torsion, respectively, and would diversify only when
the respective expressions for the respective stiffness is substituted back. In this case the load carried is

shared between the two springs and total load

W=W,+W, | 8.5.4.1) w
Now y= W W (8.5.4.2) _—2
—_ 1
k; k, e
so that Wl:W—k— ; W2=W'_k‘ ———
Substituting in Eq.(8.5.4.1) << % ; ; < N\
k k Fig.8.5.4.1
W=W-—1+W~—2=E-(k1 +k,)
k k k
i.e., combined stiffness k=k, +k, (8.5.4.3)
4 4
Where k, = G, '3dl and k, G, -3(12
8-D,"-n, 8D, -n,

Note: Now we can summarize all the parallel problems, we have mentioned so far.

Chapter 2: Tension and compression — 3.4 Parallel members connected with a rigid plate:

N, =F- L =F. Ey-An ; Ny =F. kg =F. By -Ag
kAl + kSt Euy-Ax+Eg-Ag kAl +kSt Ey Ay +Eg-Ag
Where kM=M; kStZ‘—ES;1ASt and LA1=LSt=L
L L
Chapter 8: Torsion - Example 8.4.2:
TCu =T- kCu =T- GCu ) JCu : TFe =T. kFe — GFe ) JFe
kCu'kFe GCu'J(m"'GFe'JFe kCu'kFe GCu'JCu"'GFe'JFe
where kCu = M; kFe =M and LCu = LFe =L
LCu Fe
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9. Geometric characteristics of a cross-section

The topics covered in this chapter include centroids and how to locate them, moments of inertia,
polar moments of inertia, products of inertia, parallel-axis theorem, rotation of axes, and principal

axes. Only plane areas are considered.

The terminology used in this chapter may appear puzzling to some readers. For instance, the term
“moment of inertia” is clearly a misnomer when referring to the properties of an area, since no mass is
involved. Even the word “area” is used inappropriately in the preceding discussions. When we say
“plane area”, we really mean “plane surface”. Strictly speaking, area is a measure of the size of a
surface and is not the same thing as the surface itself. In spite of these deficiencies, this terminology is
used in most present-day English and American technical literature and is so entrenched in the
engineering literature that it rarely causes confusion. However, instead of “(polar) moment of inertia”

some modern writers prefer to refer to (polar) second moment of area.

9.1 Centroids of plane areas

To obtain formulas for locating centroids, we will refer to Fig.9.1.1, which shows a plane area of
irregular shape with its centroid at point C. The yz coordinate system is oriented arbitrarily with the

origin in any point O (d4 is a differential element of area having coordinates y and z).

We define the coordinates y¢ and z¢ of the centroid, respectively, as follows:

'_[Y'dA y“ z

yo = Q. _»
C A J‘dA
(A)
(9.1.1.0,5)

jz-dA >

Zc=Qy=(A) Fig.9.1.1 ’
A IdA g.9.1.

(4)
where O, and Q, ... represent first moments of area with respect to the y and z axes, respectively;

A ... represents the area of the cross-section.

9.2 Second moments of area (moments of inertia of a plane area)

The second moments of area (Fig.9.2.1) with respect to the y and z axes, respectively, are defined
by the integrals
I, = Izz-dA ; I, = jyz-dA [m‘,‘;mm“] (9.2.1a,b)

y
(4) (a)
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in which y and z are the coordinates of the differential element of area 4 A

dA. Because the element d4 is multiplied by the square of the distance z

1 from the reference axis, moments of inertia have become called second

moments of area. Also, we see that second moments of area (unlike first C

v

moments) are always_positive quantities. If a different set of axes is
; selected, the second moments of area will have different values. - ‘ z
; To illustrate how second moments of area are obtained by Fig.9.2.1
integration, we will consider a rectangle having width b and height %

(Fig.9.2.2). The y and z axes have their origin at the centroid C. For convenience, we use a differential
element of area dA in the form of a thin horizontal strip of width b and height dy (therefore, d4 = b dy).
Since all parts of an elemental strip are the same distance from the z axis, we can express the second

moment of area I, with respect to the axis z as follows:

i b1 e
= 2, — 2 1. - : + 2
L= .[y da .[y b-dy 12 h/2 .

(A) ~h/2 y

In a similar manner, we can use an element of area in the form of a /2

vertical strip with area d4 = h dz and obtain the second moment of area
with respect to the y axis: I, = (hb3) /12). b/2|b/2
Fig.9.2.2

The second moment of area of a composite area with respect to any

particular axis is the sum of the second moments of area of its parts with respect to that same axis.

A distance known as the radius of area (radius of gyration of a plane area) is occasionally
encountered in mechanics. The radius of area of a cross-section is defined as the square root of the

second moment of area divided by the area itself of that cross-section; thus,

1
I, =4 — ; r, = L [ m; mm] (9.2.2a,b)

Y A A

in which 7, and r, denote the radii of area with respect to the y and z axes, respectively. Since the
second moment of area has units of length to the fourth power and area has units of length to the
second power, the radius of area (radius of gyration of a plane area) has units of length. Although the
radius of area does not have an obvious physical meaning, we may consider it to be the distance (from
the reference axis) at which the entire arca could be concentrated and still have the same second

moment of area as the original area.

9.3 Products of inertia
The product of inertia of a plane area is defined with respect to a set of perpendicular axes lying in

the plane of the area. Thus, referring to the area shown in Fig.9.2.1, we define the product of inertia
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with respect to the y and z axes as follows:

I, = Iy-z-dA [m4;mm4] (9.3.1)

(4)

From this definition we see that each differential element of area dA4 is multiplied by the product of its
coordinates. As a consequence, products of inertia may be positive, negative, or zero, depending upon
the position of the yz axes with respect to the area. If the area lies entirely on the first quadrant of the
axes (as in Fig.9.2.1), then the product of inertia is positive because every element d4 has positive
coordinates y and z, etc. When the area is located in more than one quadrant, the sign of the product of
inertia depends upon the distribution of the area within the quadrants. A special case arises when one
of the axes is an axis of symmetry of the area. We can easily learn that the product of inertia of an
area is zero with respect to any pair of axes in which at least one axis is an axis of symmetry of the

area and corresponding axes are called the principal axes.

9.4 Polar second moment of area (polar moment of inertia)

We have encountered the polar second moment of area in Chap.8 concerning the torsion of shafts.

Referring to Fig.9.2.1 we observe

)= jpz dA = (y2 +22)-dA = Iy2 -dA + Izz dA = T=L 4] (9.4.1)

(4) (4) (A) (4)
This equation shows the definition of the polar second moment of area in its first integral. (Note also
that the polar second moment of area with respect to an axis perpendicular to the plane of the figure at any point O
is equal to the sum of the second moments of area with respect to any two perpendicular axes y and z passing

through that same point and lying in the plane of the figure.)

For convenience, we usually refer to J simply as the polar second moment of area with respect to
point O, without mentioning the axis perpendicular to the plane of the figure. Also, to distinguish them
from polar second moments of arca, we sometimes refer to I, and I, as rectangular second moments of
area.

9.5 Properties of second moments of area

9.5.1 Parallel-axis theorem for second moments of area

The parallel-axis theorem gives the relationship between the second moment of area with respect to
a centroidal axis and the second moment of area with respect to any parallel axis. To derive the
theorem, we consider an area of arbitrary shape with centroid C (Fig.9.5.1.1). We also consider two
sets of coordinate axes: (1) the y¢ , zc axes with their origin at the centroid, and (2) a set of parallel yz
axes with their origin at any point O. The distances between the two sets of parallel axes are denoted d;

and d, . Also, we identify a differential element of area d4 having coordinates y and z with respect to
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the centroidal axes.
From the definition of the second moment of area, we can write the
following equation for the second moment of area I, with respect to the y?

y axis

= f(z+d,) dA= [22-dA+2d,- [z-dA+d,”- [dA
A (A) A) (A)

The first integral on the right-hand side is the second moment 7 ye With

respect to the yc axis. The second integral is the first moment of arca Fig.9.5.1.1
with respect to the y¢ axis (this integral equals zero because the yc axis
passes through the centroid). The third integral is the area A4 itself. Therefore, the preceding equation

and the equation that would be obtained analogously with respect to the z axis reduce, respectively, to

y=ly =1, +A-d]’ (9.5.1.1a,5)

I,=I, +A-d,> ; I,=I
Equations (9.5.1.1a,b) represent the parallel-axis theorem for second moments of area: The
second moment of area of a cross-section with respect to any axis in its plane is equal to the second
moment of area with respect a parallel centroidal axis plus the product of the area and the square of
the distance between the two axes. When using the parallel-axis theorem, it is essential to remember
that one of the two parallel axes must be a centroidal axis.
Products of inertia of an area with respect to parallel sets of axes are related by a parallel-axis
theorem that is analogous to the corresponding theorems for second moments of area (moments of

inertia) stating (see Fig.9.5.1.1)
I, =1 . +A-d,-d, (9.5.1.2)

vz Yz

9.5.2 Rotation of axes

The second moments of area (moments of inertia) of a plane figure depend upon the position of the
origin and the orientation of the reference axes. For a given origin, the moments and product of inertia
vary as the axes are rotated about that origin. The manner in which they vary, and the magnitudes of

maximum and minimum values, are discussed in this and the following sections.

&  Z.sing Y-sina

@) Fig.9.5.2.1 b)
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Let us consider the plane area shown in Fig.9.5.2.14, and let us assume that the yz axes are a pair of
centroidal reference axes, i.e., passing arbitrarily through origin 0 coinciding with centroid C of this
area (0 =C). The y’, z’ axes have the same origin but are rotated through a counterclockwise angle o
with respect to the yz axes. To obtain the moments and product of inertia I,-, [,-, and [, to the rotated

axes, we first express the following geometric relations, based on Fig.9.5.2.1b,
y =y-coso—z-sino ;  zZ'=2z-cosa+y-sino
Applying Egs.(9.2.1a,b) and (9.3.1), respectively, we obtain successively

I, = J‘y’z-dA= I(y-cosa—z-sina)z-dA= |
(A) (A) ‘

(9.5.2.1q)
=cos’ o Iyz -dA —2sin¢-cosor - Iy-z-dA+sin2 - Izz -dA ;
(A) (A) (A)
or, after substituting,
2 . .2
I,=1,co8" -1, -2sino-coso+ 1, sin” a, |
and ;
| I, = jy’-z’-dA= J-(y-cosa—z-sina)-(z-cosa+y-sina)dA=...=
\
i (4) (a) (9.5.2.1b)
} _ 2 : . .2
=1I,,-cos"a+1, -sinar-cosar—1, -sinex-cosa—1, -sin” & |
Now we introduce the following trigonometric identities (the same as in Sec.5): ‘
1 . 1 . .
cos> OC:E-(1+COS20C); sin? O(.=5-(1—COSZOC) ;. 2sing-cosa =sin2¢
Then Eqs. (9.5.2.1a,b) become
I, = ! I,+1 ! I,-1 200—-1 in2
Z,_E-( + y)+5-( ,—1;)-cos2ai~I, -sin20 (9.5.2.2a)
I, = ! I,-1 in20 +1 2
vz _E( ;= y)-sm a+ly, -cosla (9.5.2.2b)

These equations are called the fransformation equations for moments and products of inertia.

A

Note that these transformation equations Lz

have the same form as the transformation Ly,

equations for plane stress (Eq. 5.3.4a,b of Iy'ZL /
|

Sec.5) except the signs at several members.

L, 1,
(Iz']:y)/z

Therefore, we can also analyze moments and 20

products of inertia with the use of Mohr’s Iy -
circle (Fig.9.5.2.2). (I7+1y)/2
‘ L Fig.9.5.2.2

A
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Of special interest are the maximum and minimum values of the second moment of area (moment of
inertia) where the products of inertia are equal to zero. These values are known as the principal second
moments of area, and the corresponding axes are known as principal axes (which, when passing
through the centroid of the figure in question, are called the principal centroidal axes and,
consequently, the corresponding second moments of area are known as the principal centroidal second

moments of area).

A

Iyz L . Based upon Fig.9.5.2.3 (which we have
T - drawn with the hatched triangle, see Fig.9.5.2.2,
L j rotated into its basic position for & = 0), we get
2% y g
y / > angle
29 by, L
21
Iy | tan29 = |—2, (9.5.2.3)
. I, -1,

Fig.9.5.2.3 which denotes the angle defining a principal
axis (cf. Eq. 5.5.1), and the principal second

moments of area, see Eq.(5.5.2), in the form

2
I,+1 I,-1I
I, = 22 Y+ ( 22 y) +1,,° (9.5.2.4)

A convention for plotting angle ¢# determined from Eq.(9.5.2.3) into a given cross-section, to
obtain the position of the respective principal axes, has not been settled. Nevertheless, it can be

observed that when a negative product of inertia (I, < 0) has been obtained, the principal axis 7

corresponding to the maximum second moment of area I; will pass through the first and third

quadrants of the yz coordinates; conversely, for I, > 0 ..._the second and fourth quadrants will be

passed through; in both cases angle ¢ is measured from that coordinate axis (y or z) with respect to

which the larger second moment of inertia (Z, or ) is obtained.

9.5.3_ Example

Determine the orientations of the principal centroidal axes and the magnitudes of the principal
centroidal second moments of area for the cross-sectional area of the Z-section shown in Fig.9.5.3.1.

Use the following numerical data: height 2 = 200 mm, width b = 90 mm, and thickness ¢ = 15 mm.

Solution: Let us use the y, z axes (Fig.9.5.3.1) as the reference axes through the centroid C. The
moments and product of inertia with respect to these axes can be obtained by dividing the area into

three rectangles and using the parallel-axis theorems.
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Second moments of area about the coordinate system - axes y, z going through the total centroid Cr:

K2 -y y
VI » L =L 134210105 mm?
I SR05a0 B ‘ 112
1[13 ] 9 h t
e =—IC-(b~); Ay -d2 =((b-t)-t)| ——=
IZC212()2y(( ))22
-~ 2 6 4
Lc, =(IZ'C2+A2-dy)-2=19.29-10 mm”;
/ )
// Vo r=C B IZ=IZcI+IZcZ=29.29-106mm4
/ /// b i z h
L R s s
[ "lb—t ) . ch1=E-t +h=56.25-10"mm
‘ i Yt Iy’c2=—'(b—t) “tf;
(h t : ) ¥ 12
dy=[=2-2 Sess=aesuonc P 2
y =3 2) SCoianiast? | ) b—t t
= Ay -dZ=(b=t)t) |22+l .
S RS CRURI =
g 2 6 4
Fia0.53 1 Iyc, =(Iy»C2+A2-dZ)-2=5.61-10 mm”
ig.9.5.3.

_ _ 100 4
Iy =Iyc, +1yc, =5.667-10"mm
Product of inertia about the same centroidal axes:

Ly =lye +2-Iypc, +Ay-dy-(-d,)+Ay-(-dy)-d, =

=o+2-o—2-((b—t)-t)-(h—l)-(ﬂ+i)=—9.366-106mm4
2 2) (2 T2

Note: Products of inertia about the profile axes of symmetry equal zero (see Fig.9.5.1.1)

Substituting these results into Eqs.(9.5.2.3) and (9.5.2.4) for the angle ¢ and the principal second

moments of area I; and /,, respectively, we get

384°

=19.2°

21,
tan29=—Y1=07930 =0
I, -1,

2

I, +1 1,1
=2 Y4 |2 Y| 41,2 =(17.48£15.07)-10° =

I, = +
1,2 2 2

I; =32.6-10°mm* ; 1, =2.40-10° mm*
The principal axis7, for the maximum second moment of area I;, were plotted in Fig.9.5.3.2 as passing

through the first and third quadrants, while the principal axis 2 passes through the second and forth

quadrants, since I,, < 0.
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Note: How to determinate the positions of maximum and minimum principal centroidal exes, respectively?

We utilize simple, but illustrative, figures:

y 2y

1= max 2 =min

v

/

Just with a simple imagination about the maximum and minimum moments of inertia of these areas, we can

determine their positions.
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BEAMS IN BENDING

10. Beams in bending_

10.1 Basic concepts

10.1.1 Introduction

Structural members are usually classified according to the types of loads they support. An axially
loaded bar supports forces whose vectors are directed along the axis of the bar, and a bar (shaft) in
torsion supports torques (or couples) whose moment vectors are directed along the axis. In this chapter
we begin our study of beams, which are structural members subjected to lateral loads, that is, to forces
or moments whose vectors are perpendicular to the axis of the bar. The beams to be discussed in this
chapter are classified as planar structures, because they lie in a single plane which is assumed to be a
plane of symmetry of the beam. If all loads act in that plane, and all deflections occur in that plane,
then we refer to that plane as a plane of bending and so-called planar bending will be obtained (i.e.,
the beam deflection curve will lie in that plane). We will also encounter so-called unsymmetric (or

spatial) bending of a beam, when its deflection is a spatial curve, see Chap.13.

10.1.2 Types of beams, loads., and reactions

When drawing sketches of beams, we identify the supports with conventional symbols indicating the
manner in whfch the beam is restrained, and also the nature of the reactive forces and moments.
However those symbols do not represent the actual physical construction. The task of representing a
real structure by an idealized model is an important aspect of engineering work. The model should be
simple enough to facilitate mathematical analysis and yet complex enough to represent the actual
behaviour of the structure with reasonable accuracy. All types of beams shown in this section will be
plotted in two modes: a) more realistic sketches; b) simple computational models; subsequently, we

will generally use the latter approach.

If a beam is supported at only one end, and in such a manner that the axis of the beam cannot rotate
at that point, it is called a cantilever beam, sce Fig.10.1.2.1a,b: the left end A of the bar is free to
deflect but

v YV VYV VYV VY Fl . E
7>MB Wo LR J YyYVYYVY l Yy )MB
BY

'y

. RB R
a) b) BT
Fig.10.1.2.1

the right end B is rigidly clamped (or fixed). The right end B is said to be ,,restrained. The reaction of
the supporting wall upon the beam consists of a vertical force Rp together with a couple Mj acting in

the plane of the applied loads.

140




BEAMS IN BENDING

A beam that is freely supported at the both ends (a pin support at end 4 preventing translation, and a
roller support at end B preventing translation in the vertical but not in the horizontal direction) is called
a simple beam. The term , freely supported” implies that the end supports are capable of exerting only
forces upon the bar (vertical reactions R, and Rp at both the pin and roller supports may act either
upwards or downwards) and are not capable of exerting any moments. Thus no restraint is offered to
the angular rotation of the ends of the bar at the supports as the bar deflects under the loads. Note that

at least one of the supports must be capable of undergoing horizontal movement so that no force will

exist in the direction of the axis of the beam. If neither end were free to move horizontally, then some

axial force would arise in the beam as it deforms under the load. Problems of this nature will not be

considered in this textbook.

aill |

A B A 3
AN
A 1‘ /7 ;T7 7
R r 3 R R
A . ‘ R A . , B
a) b
Fig.10.1.2.2

A beam freely supported at two points (that is a pin support at 4 and a roller support at B) and with one

or both ends extending beyond these supports is termed an overhanging beam.

.—;M

-g;'f, N 2
Ra RBI Ry, RBT

a)

Fig.10.1.2.3 b)

(Tt is clear that if a horizontal force loads the presented beams, the pin or fixed support, respectively,

will be capable of exerting a corresponding horizontal reaction to carry that force)

Statically determinate beams

All the beams considered above, cantilevers, simple beams, and overhanging beams, are beams in
which the reactions of the supports may be determined by equations of static equilibrium. The values of
these reactions are independent of the deformations of the beam. Such beams are said to be statically

determinate.

Statically indeterminate beams

If the number of reaction components exerted upon the beam exceeds the number of equations of static
equilibrium, then the static equations must be supplemented by equations based upon the deformation

of the beam. In such a case the beam is said to be staticdlly indeterminate, see Chap.12.
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Types of loading

Earlier pictures showed: concentrated load (applied at a point, see forces F); uniformly distributed
load (such as the load w, in Fig.10.1.2.1), in which case the magnitude is expressed as a certain number
of newtons per millimeter of length of the beam, or uniformly varying load (such as the load w(x) in
Fig.10.1.2.2); and a couple (the load M in Fig.10.1.2.3).

10.2 Shearing forces and bending moments

10.2.1 Method of sections

When a beam is loaded by forces and couples, internal stresses arise in the bar. In general, both
normal and shearing stresses will occur. In order to determine the magnitude of these stresses at any
section of the beam, it is necessary to know the resultant force and moment acting at that section. These

may be found by means of the method of sections, i.e., by applying the equations of static equilibrium.

Suppose several concentrated forces act on a simple beam as in Fig.10.2.1.1.

< b
PP c
A B I ) |
RA —_ RB? y D V 1‘

X X |
> R — R; !
* x N S 2 |

a) : b) )

Fig.10.2.1.1

We want to study the internal stresses across the section at D, located at a distance x from the left
end of the beam. Let us therefore consider the beam to be cut at D and the portion of the beam to the
right of D to have been removed. The portion removed must then be replaced by the effect it exerted
upon the portion to the left of D, and this effect will consist of a vertical shearing force together with a
couple, as represented by the vectors ¥ and M, respectively, in the free-body diagram of the left portion
of the beam shown in Fig.10.2.1.15. (To be better demonstrated, M is not drawn in the form of vector from the
mathematical stand-point). The force 7 and the couple M hold the left portion of the bar in equilibrium
under the action of forces R, , F;, F,, and the right portion under the action of forces Ry , Fj
(Fig.10.2.1.1¢). The quantities ¥ and M are taken to be positive if they have the senses indicated above,

with respect to the sense of access to section D,

- Resisting moment and bending moment

The couple M shown in Fig.10.2.1.15 above is called the resisting moment at section D, and its
magnitude may be found by a static equation which states that the sum of the moments of all forces,

and couples, respectively, about an axis through D and perpendicular to the plane of the page is zero.

Y Mp=M-R, -x+F (x—a)+F, - (x=b) =0=>M=R, -x—F (x—a) - F, - (x—b)
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Thus the resisting moment M is the moment at point D created by the moments of the reaction at 4 and
the applied forces F; and F; .The resisting moment is the resultant couple due to the stresses that are
distributed over the vertical section at D. These stresses act in the horizontal direction and are tensile in
certain portions of the cross-section, and compressive in others. Their nature will be discussed in
Sec.10.3. The algebraic sum of the moments of the external forces, and couples, respectively, to one
side of section D (defined by an arbitrary longitudinal coordinate x) about an axis through D is called

the bending moment at x:
Thus the bending moment is opposite in direction to the resisting moment, but is of the same

magnitude. When taking into account the right part, see Fig.10.2.1.1¢, we obtain
M(X) =Ry -X-F;-(X—¢)
It must hold M( X) = M(i)

The bending moment rather than the resisting moment is ordinarily used in calculations, because it can
be represented directly in terms of external loads without drawing the free-body diagram.

Resisting shear and shearing force

The vertical force ¥ shown in Fig.10.2.1.15 is called the resisting shear at section D (placed at x).

For equilibrium of forces in the vertical direction,

YF,=R,-F-F-V(x)=0 =  V(x)=R,-F-F

When examining the equilibrium of forces in the right part (Fig.10.2.1.1¢) we obtain the shearing force

V(X)=-Rg +F,

When expressing the reactions we can casily prove that it holds V(x) = V(X ). This force ¥ is actually
the resultant of shearing stresses distributed over the vertical section D at x. The nature of these
stresses will be studied in Sec.10.5. The algebraic sum of all vertical external forces to one side, either
to the left or to the right, of section D (at x) is called the shearing force at that section. The shearing

force is opposite in direction to the resisting shear but of the same magnitude.

Sign conventions

A force that tends to bend the beam in such a way that it is concave upward is said to produce a
positive bending moment (we can also say that upward external forces produce positive bending
moments), see Fig.10.2.1.2a. A force that tends to shear the left portion of the beam upward with
respect to the right portion is said to produce a positive shearing force, see Fig.10.2.1.25. Both rules are
summed in Fig.10.2.1.2¢, illustrating positive and negative sets of these internal stress resultants ¥ and

M for an approach from the left and from the right.
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10.2.2 Relationships between loads, shearing forces, and bending moments

We will now obtain some important relationships between loads, shearing forces, and bending

moments in beams. These relations are quite useful when investigating the shear forces and bending

moments throughout the entire length of a beam (which is very suitable when distributed loads are

exerted on a beam), and they are especially helpful when constructing shearing-force and bending-

moment diagrams.

As a means of obtaining the relationships, let us consider an element of a beam cut out between two
cross-sections that are a distance dx apart (Fig.10.2.2.1). The load acting on the top surface of the

element will be a distributed force that is considered to be positive when acting downwards. The

shearing forces and bending moments acting on the sides of the element are shown in their positive
orientations. In general, shearing forces and bending moments vary along the axis of the beam There,

when proceeding from the left, their values on the right-hand face of the element may be different by

infinitesimal increments dV and dM, respectively, from their values on the left-hand face, see
Fig.10.2.2.1.

— W(x)
w(x)
M(x)< V(xF 1 MEx)+dM(x)
X | ldx 7777 VE)HAV(x)
d (1)( L

Fig.10.2.2.1.

Now, we can write two equations of equilibrium for the element - one equation for the equilibrium

of forces in the vertical direction,

V(x) - w(x) - dx — [V(x) + dV] =0 = —w(x) = %Y (10.2.2.1a)
X
and one for the equilibrium of moments about, say, an axis at the right-hand side of the element,
M(x) + V(x) - dx — w(x) - dx - % ~[M(x)+dM]=0 =V(x)= % (102218)

The latter result was obtained when discarding the product of the differentials (because they are

negligible compared to the other terms).

When differentiating Eq.(10.2.2.15) once more and substituting Eq.(10.2.2.1a), we have successively
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dv _d°M d*M
- = 5 = — w(x) = 5 (10.2.2.1¢)
dx dx dx
When proceeding from the right we obtain analogous relations with changed signs in the first two:
N\ o dM o _d°M
W(x) =— ; - V(X) = ; - W(X) = > (10.2.2.24,b,c)
dx dx dx

10.2.3 General comments

When calculating the distribution of shearing forces ¥{(x) and bending moments M(x) along beams,
application of the method of sections is in most cases preferable to the above obtained relations
between V and M. On the other hand, when plotting diagrams V(x) and M(x), we always take the
relations between V and M (Eqs.10.2.2.1a,b,c or 10.2.2.2a,b,c) into account since it holds that the

ordinates from the distributed load w(x) are proportional to the slopes of the shearing force V(x)
(cf. Eq.10.2.2.1a or 10.2.2.24), and the ordinates of the shearing force V{(x) are proportional to the
slopes of the bending moments M(x) (cf. Eq.10.2.2.15 or 10.2.2.2b).

Example 10.2.3.1: Construct the shear-force and bending-moment diagrams for simple beams with

concentrated loads: a) Symmetric; b) Anti-symmetric

Ad a) Symmetric concentrated loads.

1) Solution by applying the method of sections:

F F Reactions.
A 1 om} m g 5 )
My: R,-L-F-2L-F.-L=0 = R, =F
Y4 VLRI VERIRR Vi Vet 24 3 3
Rafb——x| [ [Xeo Rp M, : RB-L—F%L—F%L:O = R, =F
V() Note: This result can be obtained simply from the symmetry.
R, l"l' F

T HR Shearing forces and bending moments.
L1l B Proceeding from the left:

L(0<x<L3): V,(x)=R, =F; M,(x)=R, -x=F-x

1 1
MG I ﬂmﬂh\ IL (L/3 < x<2L/3): V1 (x)=R,-F=0;
M,(x)=R, -x~F-(x-L/3)=F-L/3

Fig.10.2.3.1 L L < al
< x<L):
Note: The graphs are for: : - x<L):
load... symmetric Vi (X) =Rp-F-F=-F
shearing force...anti-symmetric Myg(x)=R 4 -x=F-(x-L/3)=-F(x - 2L/3)=F-(L-x)

moment... symmetric

Proceeding from the right (span III only: III. (0 <x <L/3): Vg (X)=Rp =-F; M (x)=R, -X=F-X
Note: Mind different signs of Vi (x) = = F (from the left), than Vi (X) = F (from the right), see Fig.10.2.2.1.
Try to substitute X = (L — x) into My;(X) to obtain My (x) !

2) Solution by applying the relations between w, V and M (cf. Eqs.(10.2.2.1a,b):

LT N
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As having three spans (Fig.10.2.3.2), we should apply six differential equations, while needed six

static boundary conditions and thus we could obtain three shearing forces (V(x)) and three bending

moments (M(x)) distributions, which we have obtained much more easily by the method of sections

(see above).

But when using: i) the geometrical interpretation of the relations between w, V and M and ii) the

boundary conditions, we can draw the shapes of V(x) and M(x) distribution quite correctly even without

a computation.

‘Ad b) Anti-symmetric concentrated loads.

F IRg| !
A 1 I I {g
Fl / The analytical solution by the method of sections is here agaiy
L3 L3N 137w . , ‘
R, ‘ X" X %Rp more convenient than that of the relations between w, V and M,
N L » while for the graphical illustration, it is conversely.
V(x) F Reactions.
AT TS R,
1155111 B 1 1EATITHIE 9<% Mp: Ro-L-F2L+Flr=0 = r,=E
rllllliz 3 3 3
Mj: Rp-L+FZL-Flir=o0 = Rp=-f
M(x) 7 3 3 3
q >
llllHIH““" Note: Since the reaction Rp is negative (which means - when

load. .. anti-symmetric concerning external forces - that our assumption of the reaction pointing

shearing force... symmetric
moment... anti-symmetric

Fig.10.2.3.2

was wrong), we must change that (cf. Fig.2.3.3)!

1) Solution by applying the method of sections:

Shearing forces and bending moments.

Proceeding from the left:
L(0<x<L/3): VI(X)zRA=§; MI(X)=RA'X:§'X
F v .
1L (L/3 < x<2L/3): VH(X)=RA—F=—2—;MH(X)=RA-x—F- x & =E(l—2-3
3 3 3 L
Proceeding from the right:

2) Geometric interpretation by applying the relations between w, V and M:

Shearing force distribution:

From the left: From the right:

,here w(x) =0 = 0y =0,

—w(x):d—V,herew(x)=0 =oy=0; w(;—g)=dV
dx
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i.e., the zero slope 1s in all the V(x) or V(x) spans.

Boundary coditions for drawing V(x): i/ Apply forces Ry, F, F and Ry in scale. ¥ >0 I l V(X)>0
X

ii/ Mind the ¥(x) / V(X) signs when proceeding from the left/right respectively: X > >

Bending moment distribution:

From the left : From the rightt:
V(x)= i\f , = Oy depends -V(x)=
on the V(x) signs and values on the V(x) signs and values

Boundary conditions for drawing:
i) Basic BC are at the ends (from the left or right):
x=0,M(x=0)=My,orx =L, M(Z=L)=M,,

M>0 T 1Y m(x)>0

X X
x=L, Mx=L)=Mg,orx =0, M(x=0)=Mps -
(here My = Mg =0)
F IRs| ! Detail |
A I i I i (from the left) v?
ositive slope 1 JA
E S F G I g O 10
Xe— V(X) wi (x)=0 | wy (x)=0 Wm ()=0
5. ) \
o
- when 1= aym=0 § _ V?.Pf X F
S X X= k_’. >
pointing | é v oyn=0 Oy ¥ ' oy =0 W A0y 0
R T 2 R < B VI:Fl/ 3 VHI=F1/ 3
. negative slope 1 1
[V 0 VH:"FZ/ 3
positive ar\,/n <0 Omn< 0 ayn=09y _ _ _ |
M(X) aM “n&\““ * \aM I >0 zM dMI/dX— tanaM I>0
| + L X BES -1 %3
negative '/ \r.ﬁ\\\aM,I >0
Ty - <0
Since V; = Vp, these lines are parallel //’ AMyp/dx= tantay >0
Fig.10.2.3.3 dMpy/dx =tanayy (= -2dMy/dx=-2dMy/dx)<0

Example 10.2.3.2: Construct the shear-force and bending-moment diagrams for a simple beam with a
uniform load of intensity w, acting over part of the span (Fig.10.2.3.4).
1) Solution by applying the method of sections:

Reactions. We begin the analysis by determining the reactions of the beam from the free-body
diagram of the entire beam (Fig.10.2.3.4). Taking the moments about ends B and 4 gives two equations

of equilibrium, from which we find, respectively,

-b-(b+2
My: RB-L—wo-b-(b/2+a)=() — R_B=WO 2(L a)
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As a check on these results we can write an equation of equilibrium in the vertical direction, and can

verify that it reduces to an identity.

Shearing forces and bending moments. To obtain V(x) and M(x) for the entire beam, we must consider

the three segments of the beam individually.
Proceeding from the left: L. (0<x<a): VI(X) =R, M; (x) =R, -x

I a<x<a+b): Vp(x)=R, —w,-(x—-a); Mpy(x)=R, -x-

Proceeding from the right: IIL. (0 <x <a): Vi (i) =-Rg; My ()_() =Ry X
2) Solution by applying the relations between V and M :

Wo
l In this approach it is not necessary to start with the
A — B determination of the reactions.
£ X ST . . .
Rul__a b ¢ fr Shearing forces and bending moments. To obtain V{(x)
J L A % and M{x) for the entire beam, we must consider the three
R4 segments of the beam individually.
A
V o Proceeding from the left while applying

m Rs  Bgs.(102.2.1a,5):

m"‘VH"'m"’”W’!\HH|||||||nm.|.....,

Fig.102.34 M;(x)= [V{(x)-dx=[C,-dx =C, - x+C,

I(O<x<a)'
J.WI )-dx = Cl, forw;(x)=0

w ..."l.ll|||||||u|||||\\\\\\u\\\\H\!!\!\1\\\\“\\“\”\“\“\“

II. (a<x<a+b):

(o]

Vi(x)=—[wp(x)-dx=-w, x+Cy; forwy(x)=w
2

Proceeding from the right while applying Eqs.(10.2.2.24,b):

O<x<a): V(X IWIH (X)-dx=Cs; forwy(X)=0

M () = - [Vig (%) - d& =— [C,-dx = —C;-X+Cy
In order to obtain the integration coefficients C; + Cy, we apply six static boundary conditions as
follows:
1) forx = 0; M;(x=0) = 0;2) and 3) forx = a; V; (x=a) = Vi (x=a) and M; (x=a) = My (x=a);
4)and S) forx =a+band x=c; Vy(x =a+tb)=Vy(x=c);, My(x=a+b) =My (x=c);
6)for Xx=0; My (x=0)=0

from which (after substitution in the respective equations) we have:
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It can be readily found that after substituting these determined integral coefficients into the
respective equations from above (according the relations between V(x) and M(x) ) we obtain
identical solutions with those determined by applying the method of sections.

We now construct the shearing-force and bending-moment diagrams (Figs.10.2.3.4). The
shearing-force diagram consists of horizontal straight lines in the unloaded regions of the beam
and an inclined straight line with negative slope in the loaded region, as expected from
Egs.(10.2.2.1a) and (10.2.2.2a). The bending-moment diagram consists of two inclined straight lines in
the unloaded portions of the beam and a parabolic curve in the loaded portion. The inclined lines have
slopes equal to R, and ~R;, respectively, as expected from Eqs.(10.2.2.15) and (10.2.2.2b). Also, each
of these inclined lines is tangent to the parabolic curve at the point where it meets the curve. This
conclusion follows from the fact that there are no abrupt changes in the magnitude of V(x) at these
points. Hence, from Eqs.(10.2.2.15) and (10.2.2.2b), we see that the slope of the bending-moment
diagram does not change abruptly at these points.

Maximum bending moment. The maximum moment occurs where the shearing force equals zero.

This point can be found by setting V' (x) = 0 and the obtained value x = x, , denoting the position of
the extreme, is then substituted into My (x,) = My ,
which yields

w,-b
8-12

b
X, =a+ﬁ-(b+2-c) = My = (b+2~c)(4-a-L+2-d-c+b2)

Conclusions. The maximum positive and negative bending moments in a beam may occur at the
following cross-sections: i) where a concentrated load is applied and the shearing force changes signs;
i) where the shearing force equals zero; iii) at a point on an inner-span support where a vertical
reaction is present; iv) where a couple is applied. When several loads act on a beam, it may be
preferable to obtain bending-moment diagrams by superposition (or summation) of the diagrams

obtained for each of the loads acting separately.
10.3 Stresses in beams

The effect of forces or couples (that lie in a plane containing the longitudinal axis of the beam and act
perpendicular to the longitudinal axis, and the plane containing the forces is assumed to be a plane of
symmetry of the beam) is to impart deflection perpendicular to the longitudinal axis of the bar and to

set up both normal and shearing stresses on any across-section of the beam perpendicular to its axis.

Types of bending

If couples are applied to the ends of the beam and no forces act on it, the bending is termed pure

bending and such a beam has only normal stresses with no shearing stresses set up in it. Pure bending
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will be dealt with in Sec.10.3.1. Bending produced by forces that do not form couples is called

ordinary bending, and a beam subjected to it has both normal and shearing stresses acting within it.

Problems connected with shearing stresses in a beam will be discussed in Sec.10.3.2.

10.3.1 Bending formulas

Nature of beam action for pure bending

It is convenient to imagine a beam to be composed of an infinite number of thin longitudinal rods or
fibers. Each longitudinal fibre is assumed to act independently of each other fibre, i.e., there are no
lateral pressures or shearing stresses between adjacent fibres. The beam of Fig.10.3.1.1, for example,
will deflect downward and the fibres in the lower part of the beam will undergo extension, while those
in the upper part are shortened. These changes in the lengths of the fibres set up stresses in them. Those
that are extended have tensile stresses acting on the fibres in the direction of the longitudinal axis of the
beam, while those that are shortened are subject to compressive stresses. There is always one surface in
the beam that contains fibres that do not undergo any extension or compression, and thus are not
subjected to any tensile or compressive stress. This surface is called the neutral surface of the beam.
The intersection of the neutral surface with any cross-section of the beam perpendicular to its
longitudinal axis is called the neutral axis. All fibres on one side of the neutral axis are in a state of
tension, while those on the opposite side are in compression.

&1 &
Before loading \ /

( 2

M Adx <0
M <' ‘ )" £ <0
= -__ . g @ NA«@ ---‘8 = O

> Adx>0

S Adx Adx>0
do £>0

Fig.10.3.1.1
A hypothesis known as Bernoulli’s hypothesis has been proved for pure bending. It states:

Plane sections, which were perpendicular to the longitudinal beam axis before the beam was deformed,

remain plane and perpendicular to the deformed longitudinal beam axis.

In order to derive the necessary relations we can proceed analogously to the torsion of shafts:

1) The relation between the displacement and strain.

Comparing the hatched similar triangles (having the same angle d¢) in this picture we can write:
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dx _ Ad

Py
where p represents the curvature radius of the deformed longitudinal axis of the beam and we can
express the curvature k= 1/p of the deformed axis (which plays here the role of a displacement). We will
solve the equation in such a way that the strain € is obtained and expressed as a function of the

curvature K, i.e.,

Adx 1
—_— =y = E=XK'y (cf. Eq.8.1.1.1) (10.3.1)
dx p

2) _The relation between stress and strain

Application of Hooke’s law combined with Eq. (10.3.1) yields
¢
c=E-e=E-x-y=cy = c=— or c=E-K (cf Eq8123) (10.3.2a,b)
: y

from which follows that the stress magnitude is proportional to its distance from the neutral axis (NA)
having its extreme values 07 and 0; at the most distant fibres with ordinates y = e; ; e, , respectively
(Fig.10.3.1.24,b). To plot the stress diagram with respect to the beam cross-section, it is necessary to

turn it into the cross-sectional plane, see Fig.10.3.1.25.

o P y |02|=0max
M } - $ M ] 5 —_—
er=e b,
( '> v /A Z=ENA

g & { 61‘: %Z/ﬁ E ........ —

G

Fig.10.3.1.2
3/ Equations of static equilibrium.

When deriving bending formulas we need to apply three equations of static equilibrium, since we

must find out (Fig.10.3.1.3):

o) the position of the neutral axis given by the following

Ay=Ty answers:
dA a) what cross-sectional point does it pass through?
y b) how is the neutral axis inclined to the given
G —
y z=NA coordinate system?
y N B) the relation between the bending moment and stress
Z, ad o) a) We will find out this answer when applying the

Fig.10.3.1.3 equilibrium equation for the forces acting upon the

beam in the Jongitudinal direction. Since no external force is
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exerted on the beam in this direction the sum of the internal normal forces (Eq.10.3.2 was applied)

must equal zero N= IG*dA= _[c-y-dA=c- _fy-dA=O
(a) (A) (a)

The last integral in this expression means the first moment of the cross-sectional area and this is equal
to zero only if the neutral axis passes through the centroid.
ad o) b) We will find out this answer when applying the equilibrium equation saying: if the forces

acting upon the beam, and producing bending moments, lie in the plane containing the x and y

axes and thus intersecting the cross-sectional plane in the track (denoted T, which coincides

with the axis y, then the moments of the internal forces with respect to the cross-sectional

axis y = Ty, must equal zero. Let us now consider that the neutral axis coincides with the

axis z (z = NA), then we can write

M, = fz-6-dA=c- [z-y-dA=c-1,=0
(a) (4)
We see that this condition can be fulfilled only when the product of inertia of the cross-

sectional area [, with respect to the axes y =Tyand z = NA equals zero.

(It follows from this, for instance, that if Ty, coincides with one of the principal axes, e.g., y=2,
NA will coincide with the second principal axis z =/, being perpendicular to y. Otherwise, the axes y

=Ty and 7 = NA must form a skew coordinate system for which it holds that 1,, = 0.)

ad B) When expressing the moment of the internal forces with respect to the axis g =NA:

M= [y-6-dA=c- [y*-dA=c' ], = =M (10.3.3)
4) (A) IZ

and afterwards substituting here for ¢ from Eq.(10.3.2a), we will find the relation {M, g} the so-

M
called flexure formula in the form G=I—-y (cf. Eq.8.1.3.4) (10.3.4)
Z
This bending stress acquires extreme values in the extreme fibres of the cross-section at distances

e;, e; from NA, respectively, see Fig.10.3.1.25,

Maximum tensile stress Maximum compression stress
M M M M
O, =—'¢; =— O,=——+e,=—— 10.3.54,b)
1 IZ 1 I_Z 2 [z 2 I_z (
¢ )

The Strength criterion for a beam made of a ductile material (loaded in pure bending) is obtained for a

fibre of the beam cross-section that is at the extreme distance e from NA:

M

= Zﬂ <G, (cf Eq.8.1.3.4) (10.3.6)
b

O max
—Z
€
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To obtain the Strength criterion for brittle material (pure bending) it is necessary to check both tension

and compression (cf. Secs.2.6.3 and 7.2.1): 61 £ G,51-1 ; [Oo| < G y1-c (respectively). (10.3.7a,b)
1 all;t 2 all;c P

The so-called section modulus in bending Ly =—— (10.3.8)

(where Iy, ... the second moment of area with respect to NA) was introduced in Eq.(10.3.6),

analogously as for the torsion of shafts (Eq.8.1.3.6).

10.4 Strain energy in bending

Since pure bending is a uniaxial stress state, we will start from Eq.(2.12.5) for strain energy.
Consider now a loaded beam and let M be the bending moment at a distance x from one end.
Neglecting for the time being the effect of shear, and taking into account only the normal stresses given
by the flexure formula (Eq.10.3.3), we substitute this expression into Eq.(2.12.5) and write

U= _[a—z-dV: jMz(;)'zyz-dv
) 2E v) 2E 1,

Setting dV = dA dx, where dA represents an element of the cross-sectional area and dx an element of

the length of the beam, and recalling that M°/2EI, is a function of x alone, we have

Iy rdx = J-% -dx (10.4.1)

(L) z

_(J.ZEI

where we recall that the integral in parentheses represents the second moment of area of the cross-

section about its NA.

10.5 Shearing stress in beams (ordinary bending)

Ordinary bending is very common in practice, because in a beam loaded by transverse forces acting
perpendicular to the axis of the beam, not only are the bending stresses parallel to the axis of the bar
produced (due to the bending moment M), but the shearing stresses (due to the shear force V) also act

over cross-sections of the beam perpendicular to the axis of the bar. We will study this problem now to

find out when we can neglect the influence of shearing stress. and when we cannot.

10.5.1 Distribution of the shearing stress in a beam with a rectangular cross-section

The actual distribution of the shearing stress in a beam cross-section of a general shape is difficult to
define. But when dealing with tall, narrow sections, we can define it quite easily. Let us consider a
rectangular section (Fig.10.5.1.1) with a height to width ratio of A/» > 2. For this we can assume: i) the
shearing stresses are parallel with the vertical shear force V, i.e. with the axis y, and they depend on the
position y, i.e. Z(y); ii) the shearing stresses are uniform along the whole section width, i.e. along the z

axis. Cutting an element dx from the beam in the longitudinal direction we realize that, due to different
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values of bending moments in section x, i.e. M(x), and in the section x + dx, i.e. M(x) + dM, there are
different magnitudes of normal stresses depending on the positions of the sections on the x axis, i.e.
o(x) and ofx) +do; respectively. From that element we shall use only the lower part cut at a distance y
from the neutral axis NA=z. Evidently, such an element (being loaded in the longitudinal direction with
the resulting normal forces N(x) and N(x) + dN, to the left and to the right, respectively) would not rest
in static equilibrium if a certain shear force (resulting from the shearing stress 7,) did not exert on its

upper surface.

y A h
I 2| 2=hA
M M+ dM yIE
D) | e
A 4
c c+do ‘#’% ’
[ >\ [ P " N+ dN
X gl dx < b
dx, Fig.10.5.1.1

The equilibrium equation is
N+dN-N-71,-b-dx=0
The resulting normal force exerted on the left hand side of the element is given by
N= '[G -dA =
A)

M M M
( (a) 7 * (a) i

The integral J-T] -dA = Q expresses the first moment of the area 4 (a part cut off from the cross-
(A)
section at an arbitrary ordinate y) with respect to the neutral axis NA. Analogously, we will obtain the

. . . . M+dM
resulting force acting on the right hand side of the element N+dN=———-Q. After

z
substituting into the equilibrium equation and rearranging it (and applying the differential relation
between the bending moment M and the shear force V, see Eq.(10.2.2.1b), we obtain the shearing stress
in the form
_VQ
T I,-b

(This formula is known also as Zhurawski’s theorem)

T (10.5.1.1)

(V... the shear force acting in the particular cross-section of the beam;
Q... the first moment with respect to the NA of the part of the cross-sectional area that is separated
by a horizontal line passing at a distance y from the NA, or briefly: the first moment of the cut-off

part of the cross-section;
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I....the second moment of the cross-sectional area with respect to NA;

b... the width of the section in the investigated locality)

As an example we recommend you to continue solving the given section while applying this
expression. You will assess that the shearing stress distribution obeys the parabola law with its

maximum value at N4, where y = 0, hence, o = (3/2) Tove -

y4 dy h/2
4 v V-b- J.Ydy
h/2 [LEre. Tave 2
R , Y = e |17 2] | 105.12)
b/2b/2 T |

(The average shearing stress 7, = V/bh is based on its imaginary uniform distribution over the section.)

(Analogously to Eq.(10.5.1.2), the distribution of the shearing stress can be derived, based on Eq.(10.5.1.1), for

other sections having a relatively narrow wall thickness. Note that the assessment of shearing stresses will be

important mainly for thin-walled sections. It should be observed that we always cut a given cross-section in the

direction of the smallest thickness at the investigated place in the section.)

The influence of shearing stress will produce deplanation (warping) of the cross-section of the

beam ensuing from the fact that the individual section [Ny - elements, situated above
each other, undergo the shear strain in a different intensity ‘\\‘T NA | according to the
magnitude of the shearing stress which is the largest in the \ \‘\\ NA, while in the upper
and lower extreme fibers, the shearing stress equals zero. Of | x ,_i_: course, this is 1in
contradiction with Bernoulli’s hypothesis, according to dx which “beam sections

being plane before deformation remain plane after deformation”. Owing to this fact, the normal stress

distribution will also not remain linear. Clearly, since the stress state of beams under ordinary bending

contains both normal and shearing stresses, this is a plane stress state and the normal bending stress

will not be the principal stress. Bernoulli’s hypothesis and the linear distribution of normal bending

stress (being the principal stress) would hold _exactly only under pure bending. Thus, some small

deviations from Bernoulli’s hypothesis arise when dealing with ordinary bending which produces shear

as well. These deviations can be neglected if the effect of the bending moment outweighs the shear

force effect, which is confirmed for instance by the following example:

Determine the limit ratio h/L for a cantilever of length L with the rectangular section of |
height/width = h/b = a, when the influence of the shearing stress will have the same effect on the beam

strength as does the normal stress.
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M [~—F Omax = Oan . FL 6FL

> Pure bending: 0, = — =0y = Oy =—752
] . h%b h
CRYY L | R 7 ] =c%“ 6

é Pure shear: T 3V T C.i s 3Fa
ure shear: = —= =_—al =_ "

Y . max 2 bh all 2 all h2

Ra=F JJ”G;I v= (Tresca’s criterion has been applied)
[M|ppa= FL

Comparing the two results, we obtain the limit ratio%=2. Evidently, this represents a very short

beam with a very high section. It follows from this that for a ‘normally grown beam’ (slim) we can
neglect the influence of shear and consider only the normal bending stress (as principal stress) being

produced in such beams.

10.5.2 Distribution of the shearing stress in thin-walled open sections (shear centres)

This section consists of two principal parts: first, evaluating the shearing stress acting on the cross-
section when bending occurs about one of the principal axes, and second, determining the resultant of
those stresses. The so-called shear centre (or centre of flexure) is located on the line of action of the
resultant.

Let us mvestigate the shearing stress in the channel section of Fig.10.5.2.1. loaded by a shear force
V acting perpendicularly to z, which is the axis of symmetry of this channel section and where, thus, the
shear centre must self-evidently be located. We begin by considering the shearing stress at section s in

the top flange. When applying Eq.(10.5.1.1) we have

V(Stfh)
V-Q 2 V-h
T.. = = = -S
A Y I, t; 21,

z

(10.5.2.1)

As this equation shows, the shearing stress increases linearly with distance s. When substituting s = b,
we obtain the maximum stress T,ma 1 the flange. In a section located at a distance y from NA, the

shearing stress 7, acting in the web is calculated as follows:

B e i o I e e

T = = —
21 -t

z z w z W

(10.5.2.2)
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4 H [BHE Tz oy y“H v
i /=¢ : +——| BRBRE
E 4 |
h yI ¢ > Tz;ma * S C Z S C Z
i by Y > >
ty # € e
3 IEERRIE ‘:t»——w——»—ﬂ \7“__ ooy 1 RRARR
b ;e HHBEEEE
" TY;JLax Ty H "V:
, a) b)
Fig.10.5.2.1 Fig.10.5.2.2

The stress 7, in the web acts downward and increases in magnitude until N4 is reached. When y = 7/2,
we obtain 7, (/2) = 1, (b) . (t /1,,), while for y = 0 this equation gives the maximum shearing stress,

V-Q=v-h_(b te h)

7,
SPELLb 20,

10.5.2.3
v ( )

w
The shearing stresses in the web vary parabolically, as shown in Fig.10.5.2.1, although the variation is
not large. The ratio of 7, to 7, (#/2), if we take, for instance, typical values of # = 2b and ¢ = 2¢, ,
18 Tuax /T, (W2) = 1.25.

The horizontal shear force H in either flange and the vertical shear force ¥ in the web can be found

by

41,

Z

b 5 b
H= Ity te- ds—J-Vz'Ih.S-tf-ds Vohty b7 V= .[T -dy =V (10.5.2.4)
0 0

(Try for yourself. Compute I7by substituting from Eq. (10.5.2.1) and thus confirming the shown identity.)

The three internal forces acting on the cross-section (Fig.10.5.2.1) have a resultant ¥, = V that
intersects the z axis at the shear center S (Fig.10.5.2.2a). Hence, the moment of the three forces about
any point (here S) in the cross-section must be equal to the moment of the force ¥, about the same

point:

2 2
H-h—-V-e=0 = e=HVh=h :Ifb (10.5.2.5)

Z

where e is the distance from the centerline of the web to the shear centre S, and the moment of the

resultant force V, is zero (Fig.10.5.2.2b). Note that a channel beam will undergo bending without

twisting whenever it is loaded by forces acting through the shear centre. If the loads act parallel to the y

axis but through some point other than the shear centre, they can be replaced by a statically equivalent

force system consisting of loads through the shear centre and a twisting couple.
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10.5.3 Strain energy in shear

Strain energy in shear produced by shearing force ¥ and accumulated in a beam of length L and a
rectangular cross-section of height # and width b (i.e., 4 = bh), where the vertical shearing stress
distribution 7 is given by Eq.(10.5.1.2), the beam volume element by dV = b.dx.dy and 7,,. = V/A4, is

successively expressed as follows:

L

Z b 9 % 2 a 6t v
U= j;G-dV=Oj——-—-rzave- | 1—(%) -dy -dx=§-j .dx

2G 4 2GA

V) —% 0

We observe that this expression differs from the expected shape (to be analogous to the other strain
energies obtained so far - cf. Eqgs. (2.12.7a), (8.3.2) and (10.4.1)) by a coefficient g = 6/5 = 1.2,
holding for the rectangular cross-section. Coefficient 3, depending on the considered type of the beam

cross-section, must of course be derived case by case. Other special cases:

for a circular profile... B = 32/27=1.18; for W-beams (I-profile)... B = 2.4 +3.8

10.5.4 Examples

10.5.4.1 Thin-walled pipe with a very narrow gap

1) Determine the shear centre of a thin-walled pipe with a very narrow gap caused when the pipe weld

is broken. T ...internal torque caused by
<., the shearing stresses
e=2r YA ' .cut
- >~ Use Eq. (10.5.1.1), 1= 2
V=F G I,-b
T(Q=mn/2 max . . .
~~~~~ — : » where substitute (using polar coordinates
TR da, | B . . r
t dA and expressions for thin pipes, because — > 5):
______ t
Shear Z Y
center out — Er-sin\p-t-r-d\y:rzt(l—cosq)),
S * . z [
..... z=N.A. dA,
/1 Tmax J 1 p2n, 3
/ I,=—== r“.t-r-dp=nr’t,b=t
=575 h Ty
R =V ...the reaction ) dA,
of the resultant v | and obtain
of internal forces PN _
and moments T(0=37/2)
Fig. 10.5.4.1
V-cht V-r2(1—cos A%
1o)= 2= (3 ?) =—(l—cosQ)
I,-b rot-t Tt
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Interesting shearing stress values:  T(T) = ~. [1+ (— l)] =2 v = Tmax
' Trt Tt

T(0)=7~'(21T)=nlrt-(l—l)=0; 1:(71:/2)=T(3n/2)=%-(1_0)=%;

The internal torque 7, caused by the shearing stresses when summing their moments about the pole O, is:

2n 2n v 2n v v
T= IdT=r~ jt-dA¢=r~—- j(l—coscp)-t-r-d(p=r-—-[(p—sin(p](zjn=r-—-[21t]=2-V-r
) ; mit o T n

The external couple ¥+ e has to be equal to the internal torque T, which yields the shear center position S:

€ =21 (see Fig 10.5.4.1)

Note: A discussion about important consequences, following from non-coinciding the cross-section  center O
with the shear center S, will be carried out in the Chapter 13 — Combined loading,
where the pipe is used as a cantilever bearing a vertical load F at its free end (Complement 13.7).

10.5.4.2 Example on Zhurawski’s theorem application i

This example should help you with the proper Zhurawski’s theorem application and with your
imagination of the shearing stress distribution in thin-walled beams. We will show that on a W- profile.

1) The vertical shearing stress (z;) distribution in the web and flanges.
LY

Detail of the T, distribution at the jump
of the profile thickness, i.e.,y=h/2 - t:

e ....3,;‘ _ P = TZ,W(y = h/2 b t)

= i

. . V.QH
The vertical shearing stress distribution (along the W-profile heights /). T,.1] w (y ) = %——
z " Pfl,w
a) Flanges: From the comparison of T, g (v = Iv2 — t) with that exerted in the web, 1., (y = W2 - 1), we
can see the influence of the sudden jump in the profile thickness.

1
2

(For the horizontal cutting: QU = . (% - y)- _(%—;y_) =b- {(g)z - y2] .

>

1, ﬂ(y_%"t):Eﬂé——%)«Tz,w(ﬁ%—t): V-[b.t-(%_%)] )

B I,-d

z
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At the same time, we know that the flange being cut with horizontal sections contradicts to

the requirement that the Zhurawski’s theorem can be applied only for narrow profiles.

b) Web: It is evident that the web obeys this requirement and we have
(when neglecting ¢ compared with %)

——t-y 2 2
=b-t|=———|[+d:|=—t-y || E——+y|=b-t-—+d-| ———
Q (2 2 2 Y 7 2 g 2
h h2 2 2
V-{b-t-2+d-[?—yjﬂ V.I:b.t.g.kd.,l}g_}
Tz,w (Y) = ) TZ,max =

1,-d

2) The horizontal shearing stress (t,) distribution in the flanges

Ty(V)

Ty(V) f Yy =Tnm

: b/2 —-t/2 = h/2
6(y = h/2 — t/2)
: . l
Aot V.(v-t)-(hl—t V-t-h
e Vedbyj) veb
IZ'b(ﬂ) IZ't Iz't

Note: As the symbol by in the denominator of the Zhurawski Theorem, there has to be applied such a

profile thickness which is perpendicular to the shearing stress to be assessed

(i.e., here by =t for7,p)
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11. Deflections of beams

11.1 Introduction

When a beam with a straight longitudinal axis is loaded by lateral forces or couples, the axis is
deformed into a curve v(x) (see Fig.10.3.1.1), called the deflection curve of the beam. In Sec.10.3 we
used the curvature of the deflection curve to determine the normal strains and stresses in a beam.
However, we did not develop a method for finding the deflections themselves. In this chapter, we will
determine the equation of the deflection curve (Sec.11.2) and also find deﬂéctions at specific points
along the axis of the beam by applying Castigliano’s theorem and its derivations (Sec.11.3). The
calculation of deflections is an important part of structural analysis and design. It is, for instance, an

essential ingredient in the analysis of statically indeterminate beams (Chap.12).

11.2 Differential equation of the deflection curve

In Sec.10.3 we derived Eqs.(10.3.2b) and (10.3.3), from which we obtain successively the relation
between the curvature of beam and the bending moment in the form (the x in the parentheses stresses

that these quantities are in general functions of the longitudinal coordinate x)

M M
E-x(x) = 18 = K(x)=E_.IiZ’(‘l_) (11.2.1)
Based on differential geometry we have
odtog V7 —~ (11.2.2)
T[]

where ... v’ =dv /dx and v’ = & v /(dx)’ represent the respective derivatives of the deflection curve

with respect to x.

Since the deflections of the beams are very shallow, it holds (v’)> <<I for the quadrate of the
slopes of the deflections, and Eq.(11.2.2) can be simplified as ¥ = v’’ (we can also take v’ =g@ = @).

Based on this simplification, and taking into account that positive bending moments produce concave
deflection curves for which it holds v’’< 0, the combination of Egs.(11.2.1) and (11.2.2) yields the

basic differential equation of the deflection curve of a beam (Bernoulli’s equation).

v’ = ——I\—/I(i (11.2.3)
E-I,(x)
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This (slightly rearranged) equation can undergo two furtherk differentiations with respect to x, and
then the relations between w, V and M (Eqgs.10.2.2.1a,b) can be substituted, which yields
successively

E-I,-v'=-M; E-I,-v"=-M’=-V; B[ vV =-M"=w (11.2.4a,b,c)
We will refer to these equations as the bending-moment equation, the shearing-force equation, and

the load equation, respectively. The general procedure consists of integrating the equations and then

evaluating the constants of integration from the boundary conditions (BC) pertaining to the beam.

There are two types of the boundary conditions pertaining to the beam:
1) static B.C ... knowledge of V and/or M at specific sections of the beam;

2) geometric B.C ... knowledge of @and/or v at specific sections of the beam

11.3 Application of Castigliano’s theorem

Referring to Sec.2.13, Castigliano’s theorem provides a means for finding the deflections of a
structure from the strain energy of the structure. To illustrate how to proceed with beams, consider a
cantilever beam of uniform cross-section with a concentrated load F acting at the free end
(Fig.11.3.1). The strain energy of this beam is obtained from Eq.(10.4.1), where it is substituted M =
—-Fx:

L
J-Fx?-dx=
0

F2 R L3
6EI,

1
 2EI,

Now take the derivative of this expression with respect to the load F:

(0)—a—U—i[F2'L3 _PU 11.3.1
YT TR 6EL, ) T 3EI (3.1

Z

(The only displacements that can be found from Castigliano’s theorem are

" those that correspond to loads acting on the structure. If we wish to

C F calculate a displacement at a point on a structure where there is no load,

L2 L2 then an imaginary load ¥ corresponding fo the desired displacement must

be applied to the structure. We can then determine the displacement by

Fig.11.3.1 evaluating the strain energy and taking the partial derivative with respect to

the imaginary load #. The result is the displacement produced by the actual

Joads and the imaginary load acting simultaneously. By setting the imagin: ictitious, or dummy) load equal to

zero (F — 0), we obtain the displacement produced only by the actual load, cf. Note in Sec. 2.13.)
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11.3.1 Differentiation under the integral sign

As we can observe from Eq.(10.4.1), finding the strain energy requires the integration of the
square of the bending moment. This may lead in general to lengthy integrations, especially when
more than two loads act on the beam. For instance, if the bending moment expression has three terms,
its square may have as many as six terms, each of which must be integrated. After the integrations
have been completed and the strain energy has been determined, we differentiate the strain energy to
obtain the deflections. However, we can bypass the step of finding the strain energy by differentiating

before integrating:

ou o jMZ(X)-dX=J.M(X) oM

YiTOF, T o J 2EI, El, OF

BT dx (11.3.1.1a)

L) (L)
(The indication M(x) in the integrals is to stress that we must express the bending moment at an
arbitrary beam point determined by coordinate x). This procedure, which does not eliminate the
integrations but makes them much simpler, is called Mohr’s integral. Considering that the bending
moment M(x) is always a linear function of the concentrated load F; (either a real or_a dummy load),

Eq.(11.3.1.1a) can be rewritten in the form:

_ (M)
Vi —(J)E—Iz-mi(x)-dx (11.3.1.15)

where m; = JdM /JF; represents the rate of change of the bending moment M(x) with respect to the
load Fj, that is, it is equal to the bending moment produced by a (dummy) load of unit value applied
at point (#) and in the desired direction of the looked-for displacement (cf. Sec.2.13: Eq.(2.13.7);
Sec.4.1: Eqgs.(4.1.15) and (4.1.2b); and Sec.8.3: Eq.(8.3.5)). To confirm that you understand this
method, recall the beam in Fig.11.3.1 and determine the deflection at its centre (point C) by applying
a (dummy) unit force at point C. After using Eq.(11.3.1.1b). ‘

(Note that the integral will separate into two integrals: for 0 <x <L/2, and L /2 <x <L) you will

obtain

/2 L 3
1 L 5 F-L
— —F- (- —F. = - . =—" A1
Ve =g 6[( x)- 0 dx+L7|.2( F-x) [ (X 2)} dx 23 E (11.3.1.2)

Egs.(11.3.1.1a,b) can be slightly modified in order to determine the slope of the deflection curve
of a beam at a desired point i, where either the real or the imaginary couple M, is exerted, as follows

510 M(x) 9 M(x
=8Mi= j E(IZ).al\lzl..dxz J‘L-mi(x)-dx

1 (L) , V4

0, (11.3.1.3)

(L)
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where m; = dM /dM; represents the rate of change of the bending moment M(x) with respect to the

couple M, that is, it is equal to the bending moment produced by a (dummy) couple of unit value

applied at the point i.

11.3.2 Geometric interpretation of Mohr’s integral (Verescagin’s rule)

Considering that m;(x) = x g is always a linear function (Fig.11.3.2.1), Mohr’s integral can be
rearranged successively in the form
IM(X)-X-thC-dX = tgot - Ix-dAM =-1g0-Qp = Ay Xc - 180 = Ay - myc
(L) - (D

3
M) dAw=MGdx where the quantities have been substituted as follows:

dAy = M(x)-dx... the elementary moment area;

X Ay ... the moment area; ‘
Qa,, = IX'dAM=AM'Xc |
] (L)
» ...the first moment of the moment area about the origin;
)g :
myc ...the ordinate of the (dummy) unit force moment under |
Xc Fig.11.3.2.1 the centroid of Ay ‘

Since both 4,,and m;c can generally consist of a number n of types of areas we define the expression
1 n
Vi Q4 z_'ZAM;j T (11.3.2.1)
El =

known as Verescagin’s rule. This is the counterpart to Eq.(11.3.1.15) and thus serves for determining
the deflection of a beam at point i when m;,c is produced by a dummy unit load, or the counterpart to
Eq.(11.3.1.2). It thus also serves for determining the slope of the deflection curve of a beam at point i
when m;,c is produced by a dummy unit couple._

Note: When applying the bending-moment equation, the shear-force equation, and load equation
(Egs.11.2.4a,b,c) on the cantilever in Fig.11.3.1, where w(x) = 0, we obtain successively (while
proceeding from the right):

El.v (x)=0; EI.v”=C,=V(x); EI-v"(x) = C, -x+C, = ~M(x);
2 3 x2

X X
El-@(x) = EI-v/(x) = C, -7+C2 x+Cj; El - v(x)=C;-—+C, -7+C3 x+Cy

6

Boundary conditions:

I) static BC: forx=0 hold ) V(0)=F = C,=F
D MO) =0 = C;=0
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IT) geometric BC: for x =L hold 3) (L) ~ v’ =0 = C;=—FL*/2
HYvL)=0 = C,=—FL’/3

After substituting for the integration constants obtained, we have:

V(x)=F, Mx)=-Fx ¢x oL {@2‘1} v(x)=F'L3 [@3‘3'%2}

T om |\L 6EI |\L

When setting x = 0 and x = L/2 into the last two expressions, we obtain deformations at the

free end and in the middle of the beam, respectively:

- slope of the deflection curve:

2

2El

(note the negative sign corresponding to the coordinate system in Fig.11.3.1)

(L) 3 B (in the middle of the cantilever at point C)
— = —=—- mn € Mmi co € cantilever at poiny
N2)" 78 2E P

- deflection:
F-12

V(O) = 3 EL (compare this result with Eq.11.3.1, obtained by Castigliano’s theorem)
5

L F.1)
V(Ej = 4_8 . I (compare this result with Eq.11.3.1.2, obtained by Mohr’s integral)

11.4 Influence coefficients; Maxwell’s theorem of reciprocal displacements

11.4.1 Influence coefficients

Influence coefficient My = % [mm N_l] (11.4.1.1)

J
expresses the deflection at a given point i of a beam produced by a unit load ;=17 acting at another
given point j of the beam. It follows from this definition that the above defined influence factor is in

substance the flexibility of the beam with respect to points i and j.

Analogous influence coefficients: (11.4.1.2a,b,¢)
Vi = % [N_l] ...the slope of the deflection curve at i produced by F;=1 at j
j
— Vv _
n;j = I\/Il [N l] ...the deflection of the beam at i produced by a unit couple M;=1 at j

J
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0,
M

Wij = [(mm N) _1] ...the slope of the deflection curve at i produced by M,=1 at j
i

All the influence coefficients can be calculated, for instance, by applying Verescagin’s rule:

a load F, or a couple M, being equal to unit, i.e., F; =1 (or M; =1), is applied at point j where the
beam is to be loaded and a dummy unit load (or couple) “7” is applied at i, where the required

deflection (or slope of the deflection curve) is to be calculated, respectively.

11.4.2 Maxwell’s theorem of reciprocal displacements

Consider a beam subjected to two loads F; and F; at points i and j, respectively, as shown in

Fig.11.4.2.1. Let F; be gradually applied first, producing a deflection v; = F; 1;; at i.
1
Work done = E-Fi ‘B -ny

When F; is applied it will produce a deflection v; = F; 77;; at j and an additional deflection F; 77;; at i

(the latter occurring in the presence of a now constant load F;).
1
Extra work done = E . F_] . F_] . nJJ + Fi . F_] : nlj

total work done .. WA——;- F-F-n;+ 1 F F T|JJ+F F My (11.42.1)

Similarly, if the loads were applied in reverse order and the load F;at i produced an additional

deflection F;77,; at j, then

1 1
total work done ... Wp = E F F My + F Fn;+ F F - My (1142.2)
EFn; l
2 i 1 F F_] Fl 2 J JTIJJ
Q AT
~, B =
Ny |00 = U,y (X_)____ e
/ i lF Fm e / \Fj
FiFmj 2 HH FiFim;i
Fig.11.4.2.1

Equaling eqgs.(11.4.2.1) and (11.4.2.2) we obtain Maxwell’s theorem of reciprocal displacements
-1 — — -1
1) T]ij=nji[mm'N ];Z)Wij =‘I’ji[(mm'N) ]

3) Yy = \pﬁ[N"l] ;4 My =M [N_l]; Y = Mji [N_l]
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In the above expressions, the other four modes of influence coefficients are also presented - note the
compatibility of the units at all the modes. Fig.11.4.2.2 shows the influence coefficients of mode 5),

which are equal numerically to each other.

T le =1 M; =1 _ 11
R ]
""‘]ﬁ --------—""//7%7 AN 741 —"’7;7A77
\IIIJ ﬁ
Fig.11.4.2.2 v
11.5 Examples

11.5.1 Model beam example with anti-symmetric distributed load.

Given: Load ... W, = 5 N/mm
Material ... E=2.1x 10°MPa; o,,=180 N/mm’
Dimension ... L= 1.5 m; h/b = 2 (rectangle)

wy> 0 :
C |||||||||||||||| ||H B Wo<0 A h/% z=NA.

L2 L2 b

A
h 4
A

A
A4

Fig.11.5.1.1

Task: Use the general flow diagram (Chap.3) for assessing all the important beam parameters

?S—I@@@—@ O-O—O—-®
SD

The first consideration:_

Since having two equilibrium egs. available for two unknown reactions (a plane system of parallel

forces), the beam is statically determinate (SD) and we will start form the item 6.

Solution: w,>0 T m

Wol/2

w2 [T
“ Lo woe<0 1/

e Fig.11.5.1.2

P

Reactions: (needed only when applying the method of sectioﬁs)
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Supposing the reaction senses (Fig.11.5.1.2) and then applying two moment equilibrium eqs., we have:

Mc:Ry-L-w,- 12‘ 31‘ W, - % %—O:RA— LT—S E‘?—O_ms IN] >o,
R, >0, i.e., our supposition of the R, sense was correct
My :Rg-L-w,- 12‘3i“+ 12“2 0=>Rc=Ww, —5 @4875 N >0,
Rc> 0, i.e., our supposition of the R sense was correct
—_ . L L
Now we can apply the force_equilibrium eg. for checking: Rc —R 5 —w E +w, 5 =0

1.e., the reactions were computed correctly.

Item 6: Shearing force V(x), bending moment M(x):

1) Applying the method of sections:

w,>0 1 Im —
e w2 ¢ X R4
AN
Wo<0 12
L »
Rc Ry
Vix) MU i
Mmax
M(x &
inflexion point A =

load. .. anti-symmetric M
shearing force... symmetric
moment... anti-symmetric  Fig.11.5.1.3

2) Applying the relations between w, V and M:
SpanI: 0<x<L/2 (from the left): ;

—W(X)—d—V:>V
dx

V(x):—:>M jv

SpanII: 0<x <L/2 (from the right)
-\ dV
w(x)=g:V .[WO dX=w, X+C3;
—V(i)=— = M(X

Static boundary conditions (SBC):
2

Iw dx =-w, - x+Cy5

J- Wo X+C1)dX —WO'X?+C1'X+C2

SpanI: 0<x<L/2 (from the left)

V(x) = R¢ — wox = wL/4 — wex [N]

V(L/2) = w,L/4 — woL/2 = — woL/4 [N]

M(x) = Rc X — WoX * X/2 = WoL/4 - X — wex*/2 [Nmm)]

M(L/2) = w,L*/8 —w,L%/8 = 0 [Nmm]

M= M(L/4) = w,L/4 - L/4 — w(L/4)*2 =

= w,L%32 [Nmm]

SpanII: 0<X <L/2 (from the right)

V(X)=Rp— WX =w,L/4 — w,X [N]

V(L/2) = w,L/4 — w,L/2= — woL/4 [N]

M(X)=— Ry X +WoX- X/2=
=—w,L/4X +W,x2/2 [Nmm)];

M(L/2) = w,L*/8 — w,L*/8 = 0 [Nmm]

M max = M(L/4) = w,L*/32 [Nmm]

2

(%)

-2 J

= - [V(®)-dx = [(wo - X +C3)- dR =-w, -X?—c3 X+Cy

Fromtheleft: 1) x=0:M(0)=0=0=-w, -07+c1 0+Cy=>Cy =0

168

1,



Ry S

P T —

DEFLECTION OF BEAMS

i 2
From the right: 2) i=O:M(O)=0:>O=—WO-%—C3-0+C4:>C4=O
‘ x=£and )_(=£:>M(X=EJ=M[X=£):>
At the boundary position B: 3) 2 2 2 2
12 L 12 L
~Wy —+Cj-—=-w, —-C3-==C;=-C
Wo ) 12 Wo 5 3 ) 1 3
x=£and SZ=£:>V x=£ =V i=£ =
2 2 2 2
D w, Lic=wy iy -cp=2ow, Eo
2 2 2
L
C1=—C3—W0'E

After substituting the integration constants assessed, we obtain the concluding results which coincide
with those (*) computed by the method of sections (above).

Item 7: Bending (normal) stresses:

o) M(x) _ N;('X) _3 h/;(x)[NH;mm;n =N/mm2} ) %///% ___________ ’
Zy b b /Z %ézENA
b

6
Item 8: Dimensioning Fig.11.5.1.4 s(x)
W 12 5 5 5
o M "3 3 wo L <oy b33 3-wg L =3\/3-1.5~(1.5-10 )2 — 13.93{mm]
X 7y h2.b 16 4p3 2 64 -0y 64180
6

Based on this, chose next highest size: e.g., b =15 [mm], h = 2b = 30 [mm]

Item 9: Checking

_ 3 5-1500
16 4.153

Item 10: Deformation by the Mohr’s Integral (MI)

= 156[MPa] < Oy = 180 [MPa], which is suitable.

o max

A specific task: Assess the tangent slope at the inflection point B (@) using MI:

I I
X M(x)
T w, <.05>0_ R, 0B = mg (x)- dx
B . EI
C u 5 (L) 7z
W,
e B A :
R X Span I— from the left II — from the right
¢ L2 L2
« > M x2 X2 L _
) L (X) “]0.747.)(_“]0.7 WO.T_WO.Z.X
1/L
X g9 X 1 1 _
g 1 v mg (X) f'x —I'X
< —> /7777  |boundar | 0<x<L/2 0<x<L/2
1/L Fig.11.5.1.5
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1 L/2
08 = [M(x) mp(x)- dx+ -
El, |
L/2 2
T o . 7
EI, | 4 2L

-2 15003
= é WEI = é% = 0.0043[rad] = 0.249° = 14'56"
’ 2:10° 39#

Since gz >0, it turns counterclockwise, as it was assumed by the unit “dummy couple".

11.5.2 Beam with a hinge

When a beam is designed with a hinge at a certain

position, then the beam lacks here its ability to transfer M=0

bending moments, while the shearing force transfer is not V( v

interrupted (Fig.11.5.2.1).

Fig.11.5.2.1

Assess the distribution of shearing forces ¥(x) and bending moments M(x) in the beam bellow.

w, = F/L

u U u F Solution:
hd Y It is necessary to start with the beam part
2 b BA C 72§7D (CD) which is situated between two
L 7V L3 | L3 | L3 _
— hinges (here between the hinge C — the one
IComputation modeT‘ in the beam — and the hinge D — the support
Wo F hinge where the beam can be bent freely).
u Z c In this way, the reaction R of the part
/7; 77 F /7777 CD can be then applied as an action R¢ to
% statically equivalent mode]l y the part ABC.
Wo Re /77f7 Results:
I Re fo 1 1_ 1
Rpy=—w,-L-——F=-F;
AT 6 T3
R R
’* B - R
I I R.II| v RB—EWO'L‘FEF:gF,
Raf LGOI T |
F’ Rp Re=Rp==F
M) v c="b75
Vg
M' + I 1 1
+ ext — . . —_—— .
T Mlet =5 F-L; Mg=-FL
Xew= L/3 1
Mg =—=F-L
Fig.11.5.2.2 ‘ 6
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Note:

This beam, having 3 supports, looks like to be SI 1°, but the hinge C decreases the degree of

statical indeterminateness, i.¢., this beam is SI 0° = SD.

Warning:

Generally, the position of hinges changes the beam SI degree.

Let us see the originally SI 2° beam where a certain number of hinges is added:

SI 1°
srze * lF d o IF SD. lF
/| g .y j .y b)ﬂ% e )ﬂ%
) C
i Fig.11.5.2.3

But not always the added hinges make the beam to become SD.

On the contrary, the hinges can even make the beam a mechanism (of several degrees of freedom).

SI2° MF 1°
— - — For instance, if one hinge is added into the overhanging part
;I of the originally SI 2° beam (Fig.11.5.2.34), this does not
j e e influence the SI degree of the whole beam. Its prevailing
Fig.11.5.2.4

part remains SI 2° while one part changes into a

mechanism of one degree of freedom (MF 1°) (see Fig.11.5.2.4).
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12. Statically indeterminate beams

If a beam loaded by transversal (vertically oriented) loads or by couples is supported with » > 2
static parameters (corresponding to n reactive forces), it is said to be statically indeterminate to the

(n-2) degree.

12.1 General procedure for the solution of S7 structures applied on beams

In Sec.3.2, we defined the procedure for solving ST structures. This was applied again in Sec.8.4,

although in the first case we were dealing with the tension and compression of rods, and in the second

case with the torsion of shafts. In a similar manner, we can apply the same items to the solution of S/

beams. We will give an example and will proceed in various modes:

A beam of circular section (¢d; EI = const), with an overhang, is clamped at 4 and supported by a
roller support at B (Fig.12.1.1). Determine the deflection of the beam at the point of application of
load F.

Solution: As we know from Sec3.l, a
Ma, ] A B F
displacement of an ST structure can be solved
< only after the corresponding SI forces (or
1Ra L Rp L couples) have been determined and the strength
h criterion has been applied (used for structure
Fig.12.1.1

dimensioning).

The determination of ST forces (couples) will be performed in two modes:

Mode I (Fig.12.1.2): The basic (SD) system
A “1" LB will be obtained (in this case it will be a

h

Rg cantilever) when removing the roller support B
and compensating it with SI force Rp. The
Rg.L o .

B & compatibility relation (in combination with the

F.2L W corresponding Verescagin constitutive relation)

is expressed for this basic system as follows (a

Fig.12.1.2 dummy unit force is applied at B):

1

172




o e e et e e S e o =it -

STATICALLY INDETERMINATE BEAMS

Mode Il (Fig.12.1.3): The basic (SD) system will be obtained (in this case it will be a simple beam

e with an overhang) when removing the fixation 4
661“ MA . y

F and compensating it with SI couple M, . The
( ( y compatibility relation (in combination with the

corresponding Verescagin constitutive relation) is

M, ﬂ@“ﬂﬂm L expressed for this basic system as follows (a
w%mgl f dummy unit couple is applied at 4):

1
lv @ ¢A=O=E'ZAM;i'mC;i =
: S O=MA£-2+(_FL£).1 = MA=E
Fig.12.1.3 2 3 2/ 3 2

We can easily prove that the two results correspond with each other by expressing the couple at the

fixation 4 by substituting for Rp from the solution obtained in Mode I:

M, =R, -L—F-2L=§F-L—F-2L=£2Ii

Now, to dimension the beam, we determine the maximum bending moment. It can be exerted at 4 or at
B. The latter bending moment being Mg =-F-L,

we write the strength criterion as follows:

M Mg F-L
O 1max =%Sﬁall = O max =| 7 |= - d3 Scall
32

From this we can determine either dimension ¢d or allowable load F. Finally, utilizing Fig.12.1.3 and

adding another dummy unit load at point F (where F is applied), we can determine the required

deflection

3
O e POV (v | W
EI 2 3 2\ 3 12 . rn-d*

64

Note: Beams that have more than one span and that are continuous through their lengths are known
as continuous beams. It is usually advantageous to select the bending moments at the
intermediate supports as redundant. This choice simplifies the calculations because it leads to
a set of simultaneous equations in which no more than three unknowns appear in any one
equation, regardless of the number of redundant intermediate supports. Because of this fact,
this variation of the method of superposition is known as the method of three moments.
(Another advantage of this method is that the deflection calculations are simpler because only simple

beams are involved.) The method of three moments will be discussed at lectures and seminars.
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12.2 Examples

12.2.1 Complete solution of a ST beam.

A beam with four supports, loaded with a concentrated force F and a distributed load w,
(Fig.12.2.1.1), is to be solved by the general flow diagram (see Chap.3).

=F/L
4ﬂz_iF For four unknowns, there are two equilibrium
2; egs. available, i.e., the beam is SI 2° and thus
STATT STATT STITT .

0 1 3 two static parameters shall be removed to

” L N L 2. L

Fig.12.2.1.1 obtain a basic SD system.
Item 2:

Now there is a question how such a basic SD system can be obtained. Generally, three essential

Itein 1:

releasing modes exist.

Mode 1 — by removing two supports, here the middle ones, and substituting them with the SI forces

R, » (this mode is usually a first idea of students), while the forces Ry 3 being reactions:
(Item 3: The equilibrium egs. - needed for assessing all the reactions - will be different for all the modes

and can be applied after assessing the SI forces/moments)

|
IF “1” “1» =F/L
I R, i %

\
Timnmm_

3

W
I

‘l
+

o

]
Il

b
T
jm
¥
Y
¥
v
Y
¥
%‘

1
@ P
i = g
-\
- ~
- ~
- ~
- -~ - @ N ~ ~
i - o m2
Fig.12.2.1.2

Item 4 (depending on the releasing mode applied) |
leads to the compatibility egs:

1 n
v, =0 ='ﬁiz=1:AMi My

Vo = ZAMJ My

|
(Vertical lines, denoting the breaks of the respective
unit dummy loads, are cutting the respective moment
areas Ay into a number of partial areas Ay, which are
very difficult to compute with. So you can see that such
a mode I would be very much time-consuming).

Note:

A better approach is obtained when two side supports
are removed, i.e., Ry; or R;; become the SI forces.

Such a task is recommendable for individual study.

ﬁ?ﬁz

Rol Tr,
Feeq

or 1
P —— m?,gl I Y
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Mode 2 — by cutting the beam through the supports on the three SD simply supported beam parts
and connecting these parts with the so-called support bending moments M, ,

11
I M] o M2 W0=F/L
S ] guu— 4
' . & Fig.12.2.1.3a
0 1’ 1" 2 2 3

Item 4: Compatibility equations easily follow from comparing the support tangent angles
(Fig.12.2.1.3b):

I _ o, o_ I

¢ ==0,; ¢, =-0,
(Mind the negative signs at the right side of the equations, which is clear when comparing Fig.12.2.1.3b
and Fig.12.2.1.3¢)

1 | 10
W, = F/L »
I
IF o NI Fig.12.2.1.3b
0" AN
o 2 (S e
0 1 1 2 3

Item 5: Verescagin Rule is recommended as the constitutive relations (Fig.12.2.1.3c)

I 'jM? I ') C I

F
VN N ( LI
-------- I' '.H RRIL N ", I]I'
0 "’1/(' 1% 1§ %”1 ‘Pzné 2% 2N /7;7“7
1 v B o woL%/8 =
FL/4 n ! =FL/8
‘f M, Myl
M 6‘“1” “1” ’E
1
@1 ® Fig.12.2.1.3¢

1 L|(FL 1)1 1 2 111( 1)2( 1)1
—— || =2 M L=2. 0 =—|| M- L-=]- 24| M, -L-=|~|.
I EIH4 2)2 ( ! 2) 3]% EI[ PE) 37 (7 )3

n 1 1N 1 1 2
2 EI[ ! 2) 3 ( 2 2) 3}’

i 2
111_1( 1}2 wOL_Lz 1

Ms-L-—
277

8 3)2

After substituting into the compatibility equations and rearranging, these relations yield:

FL _FL

1= M=o
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Item 6: M(x), i.e., the bending moment distribution.

d 1 7 2 “ 3 “
FL/4
+ r 2
| - w, .L*/8 = FL/8
Xextl > . .. < K""-;exm
M,=-FL/24 N
Mexa . 7 “."x. :
............... M,=|- FL/12 Mexan
------- /
@ \‘\ ""-.\‘.“ .__,.l
® Fig.12.2.1.3d
S .

Computing reactions:

o) If all the reactions are needed:

F
L2

v

M
\ ) ! RO.L_F._I_J—M1=0:> ROZiF
R 2 12
R, L R, Fig.12.2.1.4a

3L
Fip )Mz R0'2L+R1'L—F'7—M2—02
A 2 D - 15_ 5
7 e < /77177 Ri=—F==F
R, L R|_ L Rlpgio214 24 8

-t »
-— L

When applying Fig.12.2.1.2, we obtain

: 2
L L 12 F
R0-3L+R1-2L+R2-L—F-s——wo-—=0:> R,=—-F=—
2 2 24 2
. w, =F/L
The last reaction R; can be assessed span from the last span: M; C
Fig.12.2.14c 7omzld2, /7457
A T, A
R,™ "ol Ry
2 -+ L.
woL FL : 11 11
R;-L-——2—-My,=R3:-L-—-M,=0= R3=—w,L=—F
3 2 3 5 2 3 24 O 24
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Checking: Equilibrium equation of forces in the vertical direction is satisfied:

5 5 1. 11
F+w,-L-Rg-Ry—-R,—Rs= 2F—-—~F-2F——F-—F=
° 07 T2 73 12 8 2 24

_p 48-10-15-12-11
24

B) If only a middle reaction is needed, e.g., R;:

o I TURTY G, T
L_j H |

R!.L- F—+M =0=> R|= F R/'L+M,-M,=0= R!=—F
2 12 24

7 1 14_ 1 _ 15 5
R;=R}+R =—F+—F=—F+—F=—"F=2_F -
1 1 1 12 24 24 24 24 3 ....-resulting R,y

Item 8: Dimensioning

Extreme bending moments can be assessed using Fig.12.2.1.3d, Fig.12.2.1.4a and Fig.12.2.1.4d:
In the span I, based on Fig.12.2.1.4a, we compute:

L 5 L 5

MextI = 1{O +—=—F-—=—FL = 0.2IFL
2 12 2 24
In the span I11, we have to determine first the extreme pesition X, ., according the relation
V(x ) =dM/dx . Then Meys is at the position where V(X ) =0.
I w0 F/L
Using Fig.12.2.1.4d we have: ﬂ”
V(&) = Ry = W, - X = 0 =

R, 11 ‘ TR
Rem = — = — - w,L/w Uy Xem |
T 24

w 24

o

wo(ﬂ L) Fig.12.2.1.4d
WoxextIH = E w,L - E L - 24 —

2 24 24 2
121 o _ 121

= o —— FL = 0.105 - FL
1152 1152

Comparing Me.q With Mgy, we conclude that: M, . = M

Mextl]] = R3 * Xextm T

= 0.21 - FL

and then the strength criterion is: M,,=021-FL<Z, -0,

extl

from which i) either the necessary dimension (hidden in modulus in bending Zj,),

ii) or the allowable load F,; can be assessed.,

Item 9: Checking is applied with numerically solved examples.
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Item 10: Deformation

For instance, the beam deflection v (at the force F position) is to be assessed.

L2 IF

0 L ! L

& »
>

w, =F/L

Fig.12.2.1.5a

7 77

AN

y
o )

L

<
<

This operation is not necessary to perform with the SI task, but with a basic SD system.

We showed four basic SD systems in the Item 2. When comparing them from the point of deflection

assessment, it is even more clear how disadvantageous would be to apply the releasing modes with
removing two supports, e.g., see Fig.12.2.1.2, and then compute deflections dealing with the whole
beam of those three spans.

The deflection vr assessment will be very easy, when applying the releasing mode 2, where only
the span 1 is necessary for this task. For this purpose we utilize Fig.12.2.1.4a and apply the respective
unit “dummy load”: l“l”

L/2

I S M
0: - 24 > 1k Since the moment shapes are simple, we use
{ 3 Vg P ar 7 = 1 n
Ry j L R R, Verescagin rule (VR): vy = ﬁ ZAM;j ‘M C;
- > =1
(Important note:
o FL/4 _ . .
Before starting VR, we look for a possible break in the
A v m(x) course. If that is found, all the M(x) courses is to be
" = *)p—  divided at this position.)
= - FL/L2 1 [(FL L 1)(2 L
1L VF:...__. —_e— e { e — e — 2+
375 IL/4 ElI 4 2 2,13 4
m @ N
M 1 L
2L 2 L + M L1y(2L It Ml-E-l 122 =
32 32 2 2 2)\3 4 2 2)\3 4

Fig.12.2.1.5b

1 | F? | 1 |F® ( FL)I?| 3 FL’
Vp=—|—+M| — |=— | —+| = | = |=—-—>0
EI | 48 16 EI | 48 12 ) 16 192 EI

(i.e., downwards as the unit dummy load pointing)

Task: Assess the beam tangent slope at the support 1 (¢;) as individual study. The simplest solution is

when using the span II:

I Result:
0= =
STATT ST :
1 L 7 144 EI
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13. Combined loading

13.1 Introduction

The objective of analysing combined loadings is to determine the largest stresses anywhere in the
structure. To do this, critical points should be selected at cross-sections where the stress resultants have
their largest values. Furthermore, within these cross-sections, points should be selected where normal
stresses and/or shearing stresses have their largest values. By using good judgment in selecting the
points, we often can be reasonably certain of obtaining the absolute maximum stresses in the structure.
However, it is sometimes difficult to recognize in advance where the maximum stresses in the member
are to be found. Then it may be necessary to investigate the stresses at a large number of points, perhaps
even using trial-and-error in the selection of points. Other strategies may also prove fruitful - such as
deriving equations specific to the problem at hand or making simplifying assumptions to facilitate an

otherwise difficult analysis.

13.2 Unsymmetric bending

Our analysis of both pure and ordinary bending has been limited so far to members possessing at
least one plane of symmetry and subjected to couples acting in that plane. Because of the symmetry of
such members, and of their loadings, we conclude that the members will remain symmetric with respect
to the plane of couples, and will thus bend in that plane, i.e., plane bending will take place. In other
words: NA (neutral axis) is perpendicular to T, (track of the acting moment). Strictly speaking, we
have assumed couples acting in a plane which intersects the cross-sectional plane in the track T,
coinciding with one of the centroidal principal axes of the cross-section. Consequently, N4 of this

bending coincides with the other centroidal principal axis.

We shall now consider situations where bending couples do not act in a plane of symmetry of the
member, either because they act in a different plane, or because the member does not possess any plane
of symmetry. In such situations, we cannot assume that the member will still bend in the plane of the
couples, i.e., unsymmetric bending, or more generally, spatial or oblique bending takes place (its

deflection curve is a spatial curve). Such tasks of combined stress are 1D - tasks.

Unsymmetric bending can be solved as a combined load of two plane bendings. Let us assume that

the yz axes of the cross-section in Fig.13.2.1 are the principal axes. The bending moment vector M

(being perpendicular to the plane in which it is exerted) will be decomposed into

My =M -sino; M, =M:cosal
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] y A M
Op =04 +Oyp Z]E ' Tm 6= zyE
/ oL
N —4
~ o
\,\.\‘ I
"'\.\N Zn / YE
N M, || z
My 1%, B
/ ™ N.\'
\ / '\.\; .\
ad
M
Fig.13.2.1 ﬁﬂﬂl ™~ O —I—yzE

We shall first determine the position of NA. Assuming that point N(yy , zy) lies on N4, the resulting

stress at N must be equal to zero, i.e.,

M singl cosQL
GN_I_'ZN+_I—'YN= "ZN yn [=0
y Z y z
I
which yields IN ——Z tgo (13.2.1a)
Zy I,
t I
This relation can be rewritten as —gE- =-=z (13.2.1b)
tgo. I,

and interpreted as follows:

When angle o is measured from principal axis y to Ty (the track of the exerted couple) then

angle # is measured from principal axis z to NA (the neutral axis of the combination) in the same sense,

The maximum stress of the unsymmetric bending occurs at point E, which has the maximum
distance from N4, and, observing that we are dealing with uniaxial stress, the strength criterion is

expressed as

sin o cosQOL

I, I,

O max = Mmax ) ‘YE < Can> (13.2.2)
where M,,,, indicates that, in addition to the maximally stressed cross-sectional point E, we must find
that cross-section of the investigated beam at which the maximum bending moment is acting.

Conclusion: This stress combination deals with all types of beam profile
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Example 13.2.1
Given: Z 10 section, where the vertical axis y coincides with the track of moments Ty i.e., y = Tir.
Size: Material:
- y=Tum
h=100 mm  p_5 1105 N/mm?
b _ 55 2 -2 ENTEV A EAEIE
d= 65mm Oy =120N/mm
t= 8 mm

Task: Find out the allowable bending moment M, the profile can bear.

AR R b

RN
2

Fig.13.2.1.1

R

St a e

AN PO
255

2
o

e
SRR R

o

2R
(e

e
ks

Step by step solution: L

P

1) a) Assessing the principal second moments of area I; and I, and the position (79 of the principal axes
1(max) and 2(min), cf. Example 9.5.1.
Results:1;=27.0x 10’ mm®, ,=2.4 x 10° mm*, tg9 = 0492 — 9=262"=a

b) Decomposing given couple M (exerted in the vertical plane and intersecting the cross-section in the

moment track y=Ty — which is not a principal axis and thus an unsymmetric bending arises) into two plane
bending components:
M; =M cos a(exerted in the plane going through the principal axis 2 and having its neutral axis
— NA; - in the principal axis 1)
M,=Msina (exerted in the plane going through the principal axis 7 and having tits neutral axis
— NA; - in the principal axis 2)

2) a) Assessing the NA4 position of unsymmetric bending by using Eq.13.2.1.25.

tgf I _
w0 I, = tgf=5.55 2 y=Tnm
b) Assessing the maximum stress
position E (£} as maximum
distance from NA (Fig.13.2.1.2a)

hq-"'

s

PR
HEsHLaR
ey

R
5k;

s
X
5

s
ZIRREROR

¢) Assessing the allowable bending

)
s
i

i

a2oshetdtes
&

moment to be borne by the profile

P,
e
X

z . The maximum distance \1
- X = ]
Omax = Ojp T O3 = "X * ™ of the point E; from NA
M M ok imeans that the 6., is there
_ My 20 - R s
T, T T —
1 2 v B £ The same holds for the point E,, ]
ot o e A
: \-\‘ g I N ] only the stress sign is different %
M| 8%, | SO N oo I »
= I 2 I € C.n T
! 2 B=E’ Fig.13.2.1.2a
. 13.2.1.
6 % .
M, = 1.9 - 10°Nmm = 1.9[kNm)] “
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- ¢) Geometrical assessment of the unsymmetric ;
bending NA @
For this purpose we draw the stress \

distribution the two plane bendings in scale

(this supposes to draw the solved profile in scale
from the start):

COS O
. a2
S1a _ 1 = 0.48
Osp M _sm o b]
I

Ratios measured from Fig.13.2.1.2b are

22 2967 and S = 59 Fig.13.2.1.2b
bl ez
€
Then EZ- = COSO D> €, = % cCOS O = 1.%0 . €08 26.2° = 449[mm]

2
These relations yield: e, =~ 44.9-0.59 = 26.5 = [mm]

When comparing Figs. 13.2.1.2a,b, it is clear that points E, E” coincide with B B’, which can be

used for the geometrical checking of the maximum stress: Omax = OlE T O2F = O +Osp

The more precise drawing, the more precise results.

13.3 Bars with axial loads

Structural members are often subjected to the simultaneous action of bending loads and axial loads.
This happens, for instance, when a beam is loaded with a force having a different angle than 90° with

respect to the beam axis. In such a case, besides shear Jorce V and bending moment M, normal force N

is exerted in the cross-section of the beam.

Another load developing a simultaneous bending moment M and normal force N action in the cross-
section of a bar (but without shear Jorce V) is an eccentric axial load, which is an axial load (normal
with respect to the cross-section) that does not act through the centroid of the cross-section. An
example is shown in Fig.13.3.1, where the bar is subjected to a tensile load N acting on the z axis

(which is the axis of symmetry) at distance e from the x axis (the x axis passes through the centroids of

the cross-sections). The distance e is called the eccentricity of the load.
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Ay
e uN e T N NA/_ ry ‘
» » < / N |
NI
Sul e,
N Fig.13.3.2
MMM ©: =« :
) cssz-e z
© I,
o ﬂﬂ ® o, +0,
R Ena b)
) Fig.13.3.1 Fig.13.3.3

The eccentric load N is statically equivalent to a normal force N acting along the x axis and a bending
moment M = N.e., both being constant along the x axis. The normal stress at any point in the bar is

(Fig.13.3.1a)

6=06,+0, =—+ .z (13.3.1)

>z

N-e
IY

The extreme stresses are in the extreme fibers 7 and 2 (see Fig.13.3.1b, where distances z; and z, are

considered absolute values)

N
oy=_t——z ad o= z, (133.2)

A 1

_N-e
y Iy

This problem, being a problem of uniaxial stress state, has the strength criteria holding for ductile

and brittle materials, respectively,

max(|(51 ;|0‘2D <0, and ‘(51| A |<52| SO, AO (13.3.3)

The position of NA (the neutral axis of the combination) can be obtained from Eq.(13.3.1) by setting

the stress o equal to zero and solving for the coordinate z, which we now denote as &y, . Expressing the

; second moment of area I, by the radius of area 7, according to Eq.(9.2.2a), the result is

2

N N-e N £ I
GNA:OZXJFX?'&NA:X 1+?Nf = iNA=—% (13.3.4)
c

The negative sign means that N4 lies at the side opposite (with respect to the coordinate origin) to that
at which load N is applied. Eq. (13.3.4) can be geometrically interpreted by means of Euclid’s theorem,
as shown in Fig.(13.3.2).
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If the load point N(e, e, ) does not lie on one of the centroidal principal axes we obtain the triple
combined load: tension (compression) and unsymmetric bending (i.e., plane bending + plane bending),
and we solve such problems by combining procedures from Secs.13.2 and 13.3. Analogously to Eq.

(13.3.4) the position of N4 of this combination is then given by two intercepts (7y, , £y ) of the two

principal axes y=2, z=], respectively:

2 2
r T
My = ——2 E =—1 (13.3.5a,b)
e, e,

From Eqs.(13.3.4) and (13.3.54, b), respectively, we see that the eccentricity e, , e, is reduced, the
distances 77y, , £, increase and N4 moves away from the centroid. In the limit, as e,, e, approach zero,
the load acts at the centroid, N4 is at an infinite distance, and the stress distribution is uniform. If the
eccentricity is increased, the distances v € na decrease and N4 moves toward the centroid. In the
limit, as e,, e, become extremely large, the load acts at an infinite distance, NA passes through the

centroid, and the stress distribution is the same as in pure bending.

The core of a cross-section (CCS): If the axial load is applied with a small eccentricity, N4 may lie
outside the beam. When that happens, the normal stresses will have the same sign throughout the cross-
section, and the bar will be entirely in tension or entirely in compression. This condition is important,
for instance, when a compressive load acts on a material that is very weak in tension, such as concrete,

stone, or ceramics. With such materials we must be sure that the load produces only compression on the

cross-sections: and this will be accomplished only when loads will act inside, or at the boundaries, of

the so-called core of the cross-section. How to define C: CS: imagining that N4 can at most be tangent to

a given cross-section, we try all possibilities and from each attempt we obtain the respective coordinates
s> Enva, and Egs.(13.3.54, b) will subsequently yield the looked-for coordinates e, e, of CCS. (As an
example, CCS is constructed for a rectangular cross-section in Fig.13.3.3, where points 7 and 2 of the
core correspond to tangents #; and ¢, to the rectangle, respectively, and the points 7 on the right bottom
abscissa of the core correspond to the bundle of vertex tangents # to the left upper corner of the
rectangle).

Conclusion: This stress combination deals with all types of beam profile

13.4 Bending and torsion

Recalling Chap.8, we acknowledge that shafts are important machine members, which for instance
transfer, by means of torsion, the power from the engine to the wheels of cars, etc. Unfortunately,
torsion is almost always accompanied by bending. From that standpoint, we can consider bending as a
parasite which deteriorates the resulting effect.

Fig.13.4.1a shows a cross-section of a shaft, subjected to simultaneous bending and torsion. The
maximum bending stresses are at fibers C and D (cf. Sec.10.3: Egs.(10.3.54, b) and (10.3.6)) and the

maximum shearing stresses (produced by torsion) are exerted in the cross-section circumference
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(cf. Sec.8.1.3: Eqs.8.1.3.5a,b). It follows from this that the maximum stresses of the combined load are
at fibers C and D.

AT
C Ob n
N "4 Cb S
-/ Ob Or = 0
D ) S~ 3
) Fig.13.4.1 b)

Taking an element from these maximally stressed fibers, we observe that we are dealing with a
plane stress state for which we will find, by means of Mohr’s circle, principal stresses as follows
(Fig.13.4.1b):

2
(0

Because shafts need ductile materials (due to the exerted shearing stress), Tresca’s (Eq.7.3.1.2) and

HMH (Eq.7.3.2.2a) strength criteria must be applied and we have, respectively,

Goq =01 — 63 =40,  +4:1> S0, and o, =40, +3-7> <0,  (134.2ab)
(.=0,0,=0,=0and 7, = 1,= 0, , = 7 were substituted in Eq.(7.3.2.2a)).
Egs.(13.4.2a,b) can be expressed by one relation:

Geq = Vcbz +(0€'T)2 < Gall (13420)

where o= 2 for Tresca’s criterion and a = V'3 for HMH criterion.
When substituting from Eq.(10.3.6) and Eq.(8.1.3.5b) into Eq.(13.4.2¢), we obtain the strength criterion

for the combined bending + torsion as follows:

2 2
c,, = (M) +[0c Tj <o (13.4.3)
eq Zb ZT - all T
where we have added the respective subscripts to the respective section moduli of circular profiles:
3 3
-d -d
forbending ... Z, = and for torsion ... Zp = =2-7Zy (13.4.4a,b)
32 16
Issuing from the relation in Eq.(13.4.4b), we can rewrite Eq.(13.4.3) in the form
2
1 T M
Cog =—— M2 +(a._) L Gy » (13.4.4)
Zy 2 Zy v
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from which we can, for instance, calculate the shaft diameter

(32-M
d>3—— (13.4.5)
-G

Conclusion: This 2D stress combination, concerning shafts, deals only with circular profiles

Example 13.4.1

Given: A simply supported overhanging shaft (Fig. 13.4.1), with two cog-wheels, transmitting power
from the wheel 7 (F;) to the wheel 2(F,):

Shaft length: Shaft material: Maximum torque: Tmax =10kNm
3L=15m E=2.1-10° N/mm?
Wheels size: G, =150N/ mm?

d1= lm, d2=0.8m 1 =03

Task: Assess the shaft diameter d satisfying the strength criterion.

T =F2 ‘ d2/2

< >

. 5 ) > T=F1-d1/21/m

F,
F, F, \
L L L ) =d,

Fig.13.4.1.1

Solution:

This problem (Fig.13.4.1.1) is a combination of torsion and bending. The torsion is the agent of

transmitting the power, while the bending is a “parasite” which causes an excessive shaft mass to be

designed and has no direct contribution to the power transmission. At the same time, the bending is here
exerted in two planes (the vertical and horizontal ones), i.e., we encounter with another combination of

two plane bendings. But, as shaft profiles are always circular, it results only in a plane bending. The

resulting bending moments is then obtained by a geometrical summing:

M =M2 + M}

The explanation, which follows. should help us with solving similar structures subjected to

combined stresses. The solution of a structure subjected to combined stress consists in looking for:
1) the maximally loaded structure section, and then

2) the section point where the combined stress reaches its maximum.
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F,
A B C DJL vertical bending

AT AT S
MC;V_Fz'L
2 2

A
v
A
A
A 4

B MB;V =

horizotal bending

F-L
MB;hle

LA ER RN tOrSlOn

Ti= 0 Tof Tap = const, [T o g G2 g,
g %2 1 o,
2

d
2

Fig.13.4.1.2
The maximum loaded structure section need not be obvious for the first look, i.e., there can be

several possible sections where the combination of internal forces/moments could be maximum. In the
given problem, such possible sections are: the section B (where the load F is exerted) or the section C
(a support). This conclusion comes from the extreme positions with the vertical/horizontal bending

moment courses and with the torque course. The first span 4B is excluded, since the T,5= 0 and the

bending moment combination cannot reach its maximum there as well.

The loads assessment:

According Fig.13.4.1.1, we have

T=F .ﬂ:F .d_2:>1: =2.l=2.19=20[kN] and F =2._T_=2.£=25[kN]
1 2 1 2
2 2 4 1 d, 08

Mc., =F, -L=25-0.5=12.5kNm]; Mp. =M=6.zskNm;
Cyv 2 B;v 7

F-L 2005
2

Mg;h = = S[kNm]; Mcih = O[kNm]

The resulting bending moments: Mg = 1[M123;V + M%;V = 8[kNm]; M = Mc.y = 12.5[kNm]
AsTg =T = 10[kNm), the decisive indicator is that of the bending moment M = 12.5[kNm], ie.,

the section C is the maximally loaded section.

ad 2) It was derived in the section (13.4) that, due to necessity of using ductile materials in the shaft

production, Tresca’s or HMH strength criteria are to be applied (Eq. 13.4.4) - here at the section C:

2
1 Meg: 32-M.,.
Ceq. =5 M2 + 0. 1C =€ <5, — d> 32 %C _ (.1028[m]=102.8[mm]

( Tresca’s strength criterion was applied, i.e., a = 2)

187

, ,




COMBINED LOADING

Now it is on the designer to choose the suitable diameter d (satisfying both the technological and

economical conditions).

Note: The bending moment (though being the parasite) is chosen as the equivalent agent

2
M, q= M2+ [a,%J , because the (logic) equivalent torque (7,,) would not have such a (mathematically)

simple shape. It is on the student to derive the expression T,

13.5 Torsion and tension (compression)

This combined loading torsion + tension, produced by normal load N and torque 7, differs from the
preceding bending + torsion only in the nature of the normal stresses which - being produced in this

case by tension or compression - are distributed uniformly over the cross-section of the shafts.

We can readily prove that the maximally stressed fibers of the cross-section occur on the cross-

section circumference that is the same type of planar stress state as we can see in Fig.13.4.15. It follows

from this that the equivalent stress for the combined loading forsion + fension has the same form as
Eq.(13.4.2¢), with the only difference that the bending stress

Cp = 3 will be substituted by the tension stress G, = 3 which leads to the cubic equation
n-d n-d
32 4
2 2
o, = (4'N) +(oc 16'Tj <o (13.5.1)
. n-d? n-d’ :

It is clear that calculation of the shaft diameter will be a much more difficult task in this case.

Therefore, the engineering approach is based on a suitable estimation of the diameter magnitude and

subsequent verification by Eq. (13.5.1). It will help you if the estimation is based on previous separate
calculations of the diameter: i) considering the member loaded only in tension by N and thus obtaining
dy ; ii) considering the member loaded only in forsion by T and thus obtaining dr . Greater values (with
an increment) then have to be verified by Eq.(13.5.1). |

Conclusion: This 2D stress combination, concerning shafts, deals only with circular profiles

13.6 Bending and shear

Strictly speaking, this combined load occurs at every ordinary bending. Recalling the example in the
last part of Sec.10.5.1, we observe that shearing stress is rarely taken into account when dimensioning a
normally designed (not very short) beam of solid cross-section, because the shear can be neglected.
When referring to thin-walled members, the situation may be quite different and the influence of

shearing stress needs to be taken into account.
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F lF oL,
? v >
7 07 Bk
Py ; ? —_—

L

=N
=

=%
MM RIS v = F = §

- W Fig.13.6.1

Consider a wide-flange cantilever (having second moment of area I, and length L) subjected to a

; concentrated force F at its free end (Fig.13.6.1). We will observe the stress distributions over the cross-
: section at the fixation (where the maximum bending moment A = F.L is exerted while the shear
force V = F is constant along the whole beam length). The stress state is there produced by: 1)
bending (cf. Sec.10.3); and 1ii) shear (cf. Sec.10.5.2). We will discover three suspicious localities,

denoted 71, 2 and 3, where extreme stresses can occur, and which must obey the respective strength

criteria as follows:

. . F-L h
Loc. 7: maximum bending stress O;=—=—X<0y
I, 2
Z
F. c h =~ B
Loc. 2: maximum shearing stress T, = 2 STy = all . Q,=b-tp-—+t,  —
I, -t, o 2 8

Loc. 3: combination of bending + shearing stress (having a similar nature as in Secs.13.4 and 13.5)

; F'L (h F-Q h
Geq;3=\/(532+(0"13) Scau;(’a:I—'(E— f);T3=I -t3; Q3zb'tf'5

z z

w
(when expressing the first moments of the cut areas of the cross-section with respect to N4 =z, i.e., O

and O3, we neglected the flange thickness # in the algebraic sums with the cross-section height /)

Conclusion: This 2D stress combination deals mainly with short beams made of thin-walled
profiles (cf. Sec.10.5.1)

13.7 Complement

There are other cases of combined stresses. One of them can be found for instance when returning to the

Example 10.5.3.1, where a thin-walled pipe with a very narrow gap (e.g., arisen by the weld cracking) has

been studied so far only from the standpoint of shearing stress and the connected phenomenon of shear
center caused by ordinary bending (Fig.10.5.3.1). Now we can deal with a practical case when such a

member is used as a cantilever. When studying it in detail, we will come to two types of combination

depending of the load F position:
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1) @) shear +p) bending+y) torsion, when the load F position coincides with the vertical axis y

(Fig.13.7.1), or at any other F position with the exception of that at the shear center; 7
2) @) shear +3) bending, when the load F goes through the shear center (Fig.13.7.2).

Ad 1) The combination of @)shear +f)bending+y)torsion.

F
e
Tz Mg
I
AN
B A
e ]
Rp L L R, means the reaction of the resultant of internal
V(x) shearing force V = F and internal torque T = F-e
F  overlying at the shearing center S
Ru-F ) lying 2
M(®x) Py
I
Mo =
=FL
T(x) [i T=F-e Thetorque Ty, needs no rule for signs

Fig.13.7.1
Stress distribution along the B cross-section (at the clamping), where the internal forces (moments

reach the maximum values:

ad @) Shearing force V3 = F: ad ) Bending moment M,,,, = My = FL:
M FL
(by Zhurawski) | Z | = V. of. Sec.105.4.1 Opmax = Zmax = —
2 Tt b et
V . Q;ut
T =
v(®) b

i) v Fig.13.7.2
TV -_— =E
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ad y) Torque T = F-2e.

The further problem for a designer is to realize what type of torsion is to be applied in this

case. In consequence of the gap in the originally hollow

circular profile (caused, for instance, by the weld cracking),

this case is not the torsion of a circular profile, which is

discussed in Chap.8. The problems of torsion of non-
circular profiles, we will discuss in the subject of the
Strength of Materials 11, in the next term. But even there,
in the corresponding Chapter 4: “Torsion of bars with non-

circular profiles”, such a problem is not completely

explained. A complete solution need to analyze so called

“restrained torsion”, which will be discussed in special

advanced subjects on Theory of Elasticity in further study.

At the present state of knowledge, only a concept of the pipe deformation can be shown, see

Fig.13.7.3.

Ad 2) The load F is applied at the shear center S, i.e., combination @) shear + ) bending

Based on Fig.13.7.2, the stress distributions of this combination

are expressed as follows:

Ze Op()= M y= :rI"’Jt -T-sind; ’cv(oc)=%-(l—cosoc)

z

Tresca’s Strength criterion: Ggq = \/sz +4- ‘cvz <O, 1

Assessing Opg may (cf. Fig.13.7.2):

. s T v
a) Looking for suspicious localities: for a = 7/2, o, = h = FI; ; Ty (——) =
max
Z, Tt

AYS
fora=n, 0 =0; tyln)]=—=1
V() rt Vmaz

oo
b) Exact approach: —% = 9 [ FL
do.  do|\ mrit

In this way the maximum equivalent stress (6eq;max) can be assessed.

2 F 2
-r-sinocj +4-—-(l—cosoc)2} =0= 0,
Tt

The exact approach (b) is a bit laborious, so, in practice, the tentative approach (a) is preferred.
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14. Design for fatigue strength

14.1 Introduction

What is fatigue? It is the progressive failure of a part under repeated, cyclic, or fluctuating loading.
- When proper precautions against creep and corrosion are provided, a structure subjected to steady,

static_ load less than the limit strength of the metal should theoretically last for ever.

- On the other hand, if a structure is subjected to a cyclic, repeated, or fluctuating load, it may

fracture at a stress level Jess than that required to cause failure under static conditions.

- Fatigue failure starts from a single crack (or cracks at two or more locations) and propagates until
ultimate failure occurs.

- The criterion for fatigue failure is the simultaneous action of cyclic stress, temsile stress, and
plastic strain.

If we investigate a fracture surface due to fatigue, two zones can be observed: a fatigue zone and a

rupture zone (Fig.14.1.1 shows a typical fatigue section with identifying marks):

i) The fatigue zone is the area of crack propagation which begins with a small crack developing at a
point of discontinuity in the material, e.g., a change in cross-section, a keyway, a hole, internal
cracks, or even irregularities caused by machining, etc. Once a crack has developed, the stress-
concentration effect becomes greater, the crack progresses more rapidly, and the stressed area

decreases in size.

ii) The rupture zone is the area of final failure. Tt is the consequence of the gradual crack
propagation bringing about an increase in stress magnitude until, finally, the remaining area fails

suddenly (and whether the material is ductile or brittle, the rupture zone has a brittle character).

Rupture zone

Fatigue zone

Origin of

fatigue crack ™ ;
Herringbone [~ Concave marks known as
pattern or granular clamshells or stop marks

Fig.14.1.1

When machine parts fail statically, they usually develop a very large deflection, because the stress

has exceeded the yield strength, and the part is replaced before fracture actually occurs. Thus many
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static failures are visible, and give warning in advance. However, a fatigue failure gives no warning; it
is sudden and total, and hence dangerous. It is a relatively simple matter to design against a static
failure because our knowledge is quite complete. But fatigue is a much more complicated
phenomenon, only partially understood,v and an engineer seeking to rise to the top of the profession
must acquire as much knowledge of the subject as possible. Anyone who lacks knowledge of fatigue
can double or triple factors of safety and get a design that will not fail. However, such a design will

not compete in today’s market, and neither will the engineers who produce them.

14.2 Fatigue strength; the S-N diagram

To determine their strength under the action of fatigue loads, specimens are subjected to

repeated or varving forces of specified magnitudes while the cycles of the stress reversals are

i counted to destruction, and the results obtained are plotted as an S-N (Wohler's) diagram. To

establish the fatigue strength of a material, quite a number of tests are necessary, because of the

f statistical nature of fatigue. (For the rotating-beam test, which is the simplest one, a constant bending i
load is applied, and the number of revolutions (stress reversals) of the beam required for failure is
recorded). A typical S-N diagram for steel and aluminium is shown in Fig.14.2.1. The ordinate is the
failure stress, expressed as a percentage of the ultimate strength Sy (limit strengths in this chapter will
be denoted by S with respective subscripts) for the material, and the abscissa is the number of cycles
N at which failure occurred. Note that the number of cycles is plotted on a logarithmic scale. (The
chart may be plotted on semilog or log-log papers). The curve for steel becomes horizontal after
manifesting a knee at about 10" cycles, and beyond this knee failure will not occur, no matter how
great the number of cycles. The failure stress corresponding to the knee, known as the endurance
limit Sg, is about 50% of the ultimate tensile strength Sy for ordinary static loading. For nonferrous
metals, such as aluminium and copper, a typical S-N curve shows that the stress at failure continues
to decrease as the number of loading cycles is increased. For such metals, the fatigue limit Sr,; is
arbitrarily defined as the stress corresponding to failure after 5x10° cycles, or about 25% of the
ultimate strength.

The specimens for basic experiments are carefully polished, usually small, without imperfections
(notches). Other types of experiments have been carried out with specimens: 1) of various size;
2) with various types of notches and other imperfections; 3) variously machined (varying roughness);
4) influence of technological processes (heat treating, etc.).

Since there are so many forms of structures and ways of loading them, the design of machines
cannot be based on experimental investigations only. Many experiments serve for verification of

engineer’s computation.
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4 Failure stress
(Percent of ultimate

tensile stren,
10 gth)
801
Steel
60 A
| Aluminum ;\
40 h Endurance :
20~ Fatigue limit
0 L ! li|mjt l i L
v r Fig.14.2.1
10° 10* 10° 10° 107 10°| 10° Nymber of completely g

5x10° reversed cycles N

14.3 Endurance-limit modifying factors

It is unrealistic to expect the endurance limit of a mechanical member to match values obtained in
the laboratory. We employ a variety of modifying factors, each of which is intended to account for a
simple effect: GE* =k, -ky -k, kg k. ki-Op (14.3.1a)

* =W (14.3.15)

where: |

Czech notations: OF

Ok ... endurance limit of a real mechanical element; gg...endurance limit of a rotating specimen;

kg = Mp ... surface factor; kp =€y ... size factor; k... reliability factor; kg ...temperature factor;

ko = 1 ... modifying factor for stress concentration; kf... miscellaneous-effects factor.

Surface finish (k, ="p ):

The quality of the surface finish has a great influence on fatigue life. Roughness of the surface

operates as stress concentrators. The better the material, the worse the influence of surface

roughness.
Size effects (kp = €y ):

When the volume of material subjected to a high stress is large, there is a larger probability of

failure(interacting with a critical flaw). Surface processing: case hardening, surface finish, cold

working, induce residual compressive stresses in an element - an effective tool for improving its

fatigue life. However, these effects go to a certain surface depth only, so the larger the size of the 1
element, the smaller the favourable effects of surface processing.

Temperature (k.): High temperatures mobilize dislocations and reduce the fatigue resistance in ‘

many materials. There is no fatigue limit for materials operating at high temperature. This means that

the S-N diagram for steels has no knee.
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Stress - concentration effects (k,):

Most mechanical parts have notches, grooves, holes, or other kinds of discontinuities which alter the
stress distribution.

Theoretical stress concentration factors; K¢ (Czech notation: o)

(0]
Stretching (Fig.14.3.1a) and bending (Fig.14.3.10): K¢=Opmax /G (00=—122%)

)
T
Torsion: K ts =Tmax /To (O = 2% )
0
AF /'\ "
A ) i
Omax ic ) "
Omax | A ‘ B M
/s .ﬁ ' W J 60 =i . n;d?,
| > >~ v 32
b =
] A=bt s
PO \_/t ‘
| ’ TN A {
e B
% Fig.14.3.1 "

K; and K ;s (0 and 0 ) need not be applied to static stresses in ductile materials but must be used

on the static stresses in high-strength, low-ductility, case-hardened, and/or heavily cold-worked

materials and mainly when parts are subjected to fatigue loading.

However, it turns out that some materials are not very semsitive to the existence of notches or

discontinuities, and hence the full values of the theoretical stress concentration factors need not be

used. For these materials it is convenient to use a reduced value of K, which is defined as

K, = endurance limit of notch - free specimens B (1432)

endurance limit of notched specimens

where Kf (Czech notation PB) is the fatigue stress-concentration factor. To avoid a great many
troublesome problems, K, = B is treated as a factor which reduces the strength of a member.
Therefore we shall call K, = B the fatigue-strength reduction factor. This means that the fnodifying
factor k, of Eq.(14.3.1) and K;= [} have the relation k,=1I/K,= 1/p.

Notch sensitivity q is defined by the equation: 0<q= Iéf——: = B—_ll <1 (14.3.3)

(the better the material, the greater the notch sensitivity - in limits reaching 7, i.e., 100%)

From this follows the expression for K and its magnitude interval based on values of g:

1<K;=1+q(K,~1)<K,or ISB=1+q(a-1)< o (14.3.4)
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Miscellaneous - effects:

Residual stress, corrosion, frettage corrosion (this phenomenon is the result of microscopic motions of

tightly fitting parts, e.g., bolted joints, bearing-race fits, wheel hubs), etc.

14.4 Fluctuating stresses

It is quite often necessary to determine the stress of parts corresponding to stress situations other
than complete reversals. In design, stresses often fluctuate without passing through zero. Fig.14.4.1
illustrates some of the various stress-time relationships which may occur. The components of stress

with which we must deal, some of which are shown in Fig.14.4.1aq, are

O --- MAXIMUM StIESS; Opip ... Minimum stress; o, ... stress range;
Oy ... limit mean stress; O ... working mean stress;
0 ... limit stress amplitude; @, ... working stress amplitude
The subscripts of these components can be applied to shearing stresses as well as normal stresses. The
following relations are evident from Fig.14.4.a:

o, = Jmax * Omin and G, = Jmax ~ Omin (14.4.1a,b)

2 2

Although some of the stress components have been defined by using an ideal sine stress-time relation,

the exact shape of the curve does not appear to be of particular significance.

1) fluctuating stress 2) repeated stress

Stress , Stress ,

G,
max /\‘Ga/\ K Grmax ‘G .
G ‘ ANTA

WAV . X
a G

Omin ',
0 Opmin= 0 ; O3 = O Time
0 G, <0, Time
3) completely reversed stress 4) incompletely reversed stress
Stress , Stress ,

Ormax P ) 3 O'max L
/\ ! X /_\ Tlme‘ /_\ ‘Ga /\ T
VAN o TN
vy @ v 0 N/ v ? v

Omin
O'min

szo 0y~ O

Fig.14.4.1
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14.4.1 Smith’s and Haigh’s fatigue diagrams

Now that we have defined the various components of stress associated with a part subjected to
fluctuating stress, we want to vary both the mean stress and the stress vamplitude, in order to learn
something about the fatigue resistance of parts when subjected to such situations. Two methods of
plotting the results of such tests are in general use, and are both shown in Fig.14.4.1.1a,b, where: '
Oy = Sg...endurance limit (for laboratory specimens); Oy = Sy... yield strength; oy = Sy... ultimate
strength; O = Sp...fictitious strength (= 20y for structural steel). (The symbol S is often used in
U.S. literature)

Stress 4 Max. stress R Stres§
amplitude
Sk / F g
i Y |,
Sy / 9 ,/"/0/_/”'U
Omay /o G = - K k \‘\
Se ° / O, S \\ /
y, 4 Y s E L . ‘
Mean stress 00, G, i 1 g?A’gM) |
4 Gomin - o Y 4 W (62;0m) 5 \\(fSAC’GMC) i :
WA L (Ga;0Mm) a
£ > oW N~ . ‘
]7 0 Sy S Mean stress 0 Sy Sr Mean
Parallel Min. stress stress
Se f
a) b ) |
Fig.14.4.1.1
Smith’s diagram of Fig.14.4.1.1a has the mean stress plotted along the abscissa, and all other

components of stress plotted on the ordinate, with tension in the positive direction. The endurance
limit Sy is plotted on the ordinate above and below the origin. The mean-stress line is a 45 line
passing through the origin. The best average through the experimental points of failure (plotted as
small circles) will be obtained by constructing curved lines from points Sg above and below the origin
to point U, lying on the mean-stress line, which represents the tensile strength Sy of the part. The
modified Smith diagram makes approximate use of tangents to the potential curved lines at +Sg and
—Sy and hence intersecting the mean-stress line at point F, representing the fictitious strength Sr (=
28y for structural steel) of the part. (In U.S. literature we encounter the so-called modified Goodman
diagram, which is more conservative, because it uses straight lines outgoing from points Sz above
and below the origin and intersecting the mean-stress line at point U). Note that the yield strength Sy
is also plotted on both axes, because yielding would be the criterion of failure if G}, exceeded Sy.
When the mean stress is compression, failure is defined by two heavy lines originating at +Sg and —Sg
and drawn downward and to the left. When the mean stress is tension, failure is defined by the
maximum-stress line or by the yield strength as indicated by the heavy outline to the right of the

ordinate.
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Another fatigue diagram that we will employ frequently for design purposes is that of
Fig.14.4.1.1b, called Haigh’s diagram (in English literature called the modified Goodman line). Here
the mean stress is also plotted on the abscissa. However, the ordinate has only the stress amplitude oy
(0, ) plotted along it and is limited by the endurance limit Sg. Straight lines from Sg to F (the
fictitious strength Sr) on the abscissa and from Sy on the ordinate to Sy on the abscissa (defining
tensile yielding) correspond to the part of Smith’s diagram situated above the mean-stress line. The
intersection of the two lines is the transition point between a failure by fatigue and a failure by

yielding. The heavy outline therefore specifies when failure by either method will occur.

14.4.2 Safety factors for fatigue strength

When we assume proportional loading (the stress amplitude will increase proportionally to the
mean stress), Haigh'’s diagram can be placed in equation forms for machine computation by writing

the equations of the straight lines in intercept forms.

A) Failure by fatigue (the straight line between Sg and Sy in Fig.14.4.1.15)

. — L Oa ,OwMm
Writing the straight line equation in intercept form ——+ S_ =1 (14.4.2.1)
' E F

and defining the safety factor by

_ﬁl_GA_GM

=== =0, =k-0,; oy=k-o_; (14.4.2.2) |
OW o, o, A voM ” |
_ : : 1 _C, On
we obtain the following relation —=—t— (14.4.2.3a)
k Sg Sy

from which we can determine the safety factor of the designed machine member.

Eq.(14.4.2.3a) will be applied for the following stress-time relations:
1) completely reversed stress (Fig.14.4.1¢); 2) incompletely reversed stress (Fig.14.4.1d);
3) repeated stress (Fig.14.4.1b); 4) fluctuating stress (Fig.14.4.1a) with relatively high amplitude

up to ratio oyc /Ouc given by point C in Haigh's diagram (Fig.14.4.1.1a)

B) Failure by yielding (the straight line between Syand Sy in Fig.14.4.1.16)

Proceeding in the same way we obtain successively

2

OL
Oa ,OM _y _OL, _0Or _Owm. 1_9.,0m (14.4.2.35)
Sy Sy OW o, o© k Sy Sy

Eq.(14.4.2.3b) will be applied for fluctuating stress (Fig.14.4.1a) with relatively low amplitude, for

m

ratios < Ouc /Ouc , corresponding to the right part of Haigh'’s diagram from point C in Fig.14.4.1.1b.
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Note: The expression (14.4.2.3a), holding for laboratory specimens, is modified for real parts (see

Egs. (143.1a) as ~=224%m (o 1_O%a | Om, (14.4.2.3¢c) |
k SE SF k OF OF !

14.5 Stresses due to combined loading

One of the most frequently encountered problems in design is that of a rotating shaft subjected to
a constant torque and a stationary bending load. The problem is even more complicated when it is
realized that the bending stresses as well as the shear stresses produced by torsion may have both
mean and alternating components. In this section we shall present a method of using Tresca’s theory
or the distortion-energy (HMH) theory applied to fatigue to solve this problem, because all available
experimental evidence shows these theories to be conservative.

To derive a safety factor for a combination of bending + torsion it is convenient to consider both
loadings as completely reverse loadings with amplitudes o, and 7, , respectively. Issuing from
Eq.(13.4.2¢), we express the fatigue limit state (considering limit amplitudes oy and 7; ) of the

combination as

2
GA;eq=\/GA2+(OL-TA) <og (14.5.1)
Introducing the endurance limit for torsion 7z = 0 /& (analogously to Eqgs.(8.1.3.7b,c)), based on

bending, we can rewrite Eq.(14.5.1) in the form

2 2
[G_Aj + (T_A) ~1 (14.5.2)
Op Tg

which represents an ellipse in the coordiate system oy and 7, . Taking into consideration a
proportional increase of both loadings, we can express the looked-for safety factoras k = oy /0, =

7,/7, , and, after substitution for oy and 7 into Eq.(14.5.2), we have

1 ? ? 1 1
== {9*1] + (T_:J =t (14.5.3)
k O TE kG k‘L’

where we introduced the endurance limit oy (Bq.14.3.1) holding for a real part instead of o for a

laboratory specimen. Furthermore, in Eq.(14.5.3), we substitute the factors of safety ksand k. as if
the bending and torsion took place separately.

With a certain approximation, we can apply Eq.(14.5.3) for all types of cycles (cf. Fig.14.4.1),
even when considering a type of cyclic loading for bending that is different than that for torsion. In
general, we will calculate ks and k; from Eqs.(14.4.2.3a,b), while taking into account the respective

types of cyclic loading. For instance, when a shaft is subjected to a completely reversed bending and

to a constant torque, we can calculate kg from Eq.(14.4.2.3qa), where substituting g, = 0, and k; from

Eq.(14.4.2.3b), where substituting 7, = 0.
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14.6 Examples on comparing different types of cyclic modes.

DESIGN FOR FATIGUE STRENGTH

A rod, with a bilateral notch, is subjected in tension with a load F. The rod dimensions can be

seen in Fig.14.6.1. F
%@ Given: material — oy,= 750 MPa;
. 50 p1 t=8 required factor of safety k =2,
J\
RS (RS
40 N Task: Assess allowable load based on a type of cyclic mode:
Fie 1461 |/ PR P ﬂ 1) Static load; 2) Repeated load; 3) Completely reversed stress
ig.14.6. Aif@
Solution: F Stres‘f
Ad 1) Static load Oy
-F F F Onon

The working stress O

o = =— = Gw (¢)
A 40-8 320 "
Using Smith’s diagram (Fig.14.6.2), we obtain oy = 450 MPa
for the given material 0

0,=0; Time
k=22 -0 5 romiN]= o, =290 _sfvpa = N/mm’ |
Coom _F_ 320
320

Stress 1 VRN RN

1
Omax \ s, o OLim= OA1tOM
Opm I— A { . Gl' >
IR Time
0 Omin=0; G, = O, Time
Ca; O, 4 Stress High’s diagram 1 o o '
1 amplitude s & The factor of safety: — = : +—— *) :
Oy . | O OFict ‘:
L Repeated stress line The working stress: 3‘
"
Og S
(GA=GM) Ga=6m=£' 1 _—_E. 1 = F
2 Ajotch 2 8:40 640
W (6,= O~ Mean
450 " 0 \ﬁ\ \\\\\\\\\ — stress  The fictitious limit: &g ~ 26y = 1500 [MPa]
0 Oy GFic GMV; Om (this simple relation holds for structural steels ) :
14.6.1
The endurace limit: ¢} = O M " &v _ 300 - 0.92 - 0.84 = 113.8[N / mm2]
B 2.037
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The parameters applied: (though older but instructive diagrams are used)
The size effect (for the given dimension b = 40 mm): &,= 0.84 (Fig.14.6.3)

The surface finish (for the given material oy, = 750 MPa and fine grinding): fip = 0.92 (Fig.14.6.4)

| Ga, Om [MPa] Smith’s diagram
| .
\ ot
| 1000. —
\
| 900
| 800 . |
| 700 ; / For the material given
1 500 i ' (ou:= 750 MPa), |
) ‘ ' we read: |
| 2 // Zamso | _ 450 MPa: |
| M 74 11 650 oy = a;
| % 11550
| ; 300/ A 0E=300 MPa
4 ~11 450 ,
| 200 71 1370 L
| ' o0 - / Tension - compression
‘ 1 —
0 1 1| _ ,  Figl462
O [MPa] |
~ Size effect |
gy ' < . :
v Tension - compression w ae .
1,01 : % ’
! \ ‘ . _ Surface factor ,
. =l ' : Fine polishin
\{ eyg(% 1.me-003 ol B L
09—\ b 09 e mean polishing
. e T oo Y S fine grinding
\% 1..carbon steel 98 \* '.'“““““ ~——d mzan grinding
08 i \\\ 2.alloy steel 47 [ XCh, {rough-machining
™ \\\ 1 GE ) &
07 —— ek \ - surfacs with scales
_‘ . B3 \"@ <t - =
0,8 ‘gz : = \‘“\ water corrosion
P2 2 IO, N Y I S ﬁ?‘-“f‘:-sac{twatermrmsiah
05 oL 1 | I N R
3 0 50 : 100 50 300 500 700 900 1100 1300 1500 Oyt
. $D [mm] .
Fig.14.6.3 Fig.14.6.4
The fatigue stress-concentration factor # depends on the theoretical stress concentration factor
o= 2.28 (see Fig.14.6.5) and the material notch sensitivity g = 0.82, which are found in Fig. 14.6.6
based on the given material o, = 750 MPa.
i
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Theoretical stress concentration factor a for flat bars with a bilateral notch subjected to
tension or bending
0 X 3 as XY
o? 3 %05
oh &g Y- L9,
6 ¥ X
,0‘ p i B d 0;45 01%\
When comparing the 0 \0 =20 tension Xy
bar given (Fig.14.6.5) +19 %2, “0
with the model shape, \5 F-18 e G
Wephave's AN i 4 47 %57 bending
——=—=05 N - F SRR
B-b 10 N B b T 830, ¢
. =16 L. %
and N -+ - e
5 \\\ 3 ::
P_2 0125, I
b 40 k% T
After conecting these \ 5 =X
two positions, we N, 6~ T
obtain: N T ‘
0=228 < 8- T ‘
N i 0 e
al ___h__}‘ I
3 s
' i

Influence of the notch radius on
'q the notch sensitivity factor

|

1,0 : GUt—%"MP“ fzich95 —1
0.9 _, : 1200 0.8

s oo —— 1, | g B-1_ 1
&U.B;/,// o - | 0<qg= a1 =
07| N B=q - (a-1)+1=

//// B =081-(228-1)+1=2037
W/ |
0.3 7

o / Tension - compression '

B / o Fig.14.6.6

P

o
-
N
w
>

p [mm]
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The allowable load F;:

Using the expression *), derived from the Haight’s diagram (Fig.14.6.1], we obtain

¥ F
1_1_0% , On _ 640 , 640 _p.1477.107° =
k 2 op Oge [113.8 1500
. 5
F, = 1'4772 107 _ 33848[N] = 33.848[kN]

Ad 3) Completely reversed stress:

Stressa
o +— o~ Load F,
) A 1

Cmax T F 7~ ¥ G, Finax F

ey N 1% AVVANN

0 ! Time 0 \ / IF " Time
o — ‘t F ? —-
min \ 1 \ ! min
\ 7 \vl
On=0
o, = Fa = Fa = Fa
The stress amplitude: a Anotch 8-40 320

The allowable load amplitade F,; o

) = k = Op _ 113 .8 —~ F,_ = 113.8 - 320 _ 18.2[kN]
o, F a8 2
640
Conclusion:

Comparing all the three cyclic modes, we can see that the stress changing is for technical materials
quite adverse process, especially when tension alternates compression (cf. the completely reversed

stress)
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15. Thin-walled shells

-

Membrane stress ’ RN
15.1 Introduction

Shells are structure elements of a

planary character, i.e., one dimension -

thickness - of which is much smaller Fig.15.1.1 s

Bending stress

(< 10x) than the other two dimensions.

Generally, there are all the types of stresses (studied so far) exerted in the shell walls (tension-
compression, shear, torsion and bending), from which two types (tension = membrane stress and

bending stress) are shown in Fig.15.1.1
15.2 Membranes

In this chapter we will discuss only thin shells (membranes) of revolution (undergoing axi-
symmetric deformation), the analysis of which is based on the consideration of axi-symmetric normal

stresses uniformly distributed across the thickness of the shell wall. Consequently, such shells are

not able to withstand Joads producing bending, and both the loading forces and the reaction forces

of their supports must obey this condition. We will discuss thin-walled pressure vessels, such as

cylindrical, spherical, conical, and toroidal shells subjected to internal or external pressure from a gas
or a liquid.

Axis of symmetry

/_’ \ The shell of revolution shown in Fig.15.2,1 is

formed by rotating a plane curve (the meridian)

about an axis lying in the plane of the curve. We

_______________

~~~~~ cut an element of the membrane bounded by two

__________
-

closely adjacent parallel circles whose planes are

Shell normal to the vertical axis of symmetry of the
element Parallel

circle shell and two closely adjacent generators, or

Meridian ) meridians, of the shell. We use #; to denote the
Fig.15.2.1

radius of curvature of the meridian (which varies
along the length of the meridian), and r, to denote the radius of curvature of the shell surface in a
direction perpendicular to the meridian (Fig.15.2.2a). The centre of curvature corresponding to 7,
must lie on the axis of symmetry, although the centre for »; does not (in general) lie there. An internal
pressure p acting normal to the curved surface of the shell gives rise to meridional stresses 07 and

hoop (circumferential) stresses 0z as indicated in the figure. These stresses are orthogonal to one
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another and act in the plane of the shell wall. Since no shearing stresses are produced, the stresses o3
| and o are principal stresses.
‘ Axis of symmetry dp2

o + higher-order
terms

Gy.t.1,.dB + higher-order terms
Gz.t.l'l.dfx dos2 1.LI2 B g

Axis of symmetry

oy.t.r.do
dprz o

: b)
Fig.15.2.2

Fig.15.2.2b shows the hoop forces more clearly, as seen by looking along the axis of symmetry. Jt

is evident that each of the hoop stresses o is exerted on the area ¢ .(r;.do) and produces the force

vector 0, .t .(r; .de) which makes an angle dff /2 with the tangent to the element. The component of
. dB . . .
these hoop forces, 2-G,-t-1,-dot- Sm_Z— or, since df /2 is small, G, -t-1; -dot-df , is acting

normal to the shell. Analogously, the meridional forces appear in Fig.15.2.2¢ and have a component
o;-t'1, -dB-do. acting normal to the shell. Pressure p acts over an area (r;.d@) . (72 .dpf) , so that

the equation of equilibrium in the normal direction becomes

After dividing this equation by t.r; .do.r;.df , we obtain Laplace’s formula
(8] 6
01,9 _P

(15.2.1)
rp 1, t

This fundamental equation, called the Laplace theorem, applies to axi-symmetric deformations of all

thin shells (membranes) of revolution.

A second equation (since there are two unknowns o7, 0; ) is yielded by consideration of the
vertical equilibrium of the entire shell with respect to some convenient parallel circle of arbitrary
position y from which we obtain the meridional stress o; (Fig.15.2.3):

_Q+Q+Qs

2-w-r-t-cosol

61-2-m-r-t-cosa—Q;-Qy—-Q3=0 = O©, (15.2.2)
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a | ! vLiquid level
' - T here: 27z .r.t..the area of the circular ring (with
s "“ ,"' s v|Y radius ) obtained by the section of a
T\ {101
\ §Q& / Y plane (at an arbitrary ordinate y)
v : :
perpendicular to the axis of the shell;
Q
Qs Fig. 15.2.3

Q; ... the load produced by the pressurizing medium (liquid, or gas) above section y;
0, ... the weight of the liquid beneath section y (for gas 0, = 0);
O; ... the weight of the shell material beneath section y.

Note: How to support a membrane?

To ensure the membrane stress state a
bandage is needed or to use a tangent
conical support

would destroy the membrane stress state,

15.3 Pressure vessels.

Basic components of pressure vessels are thin-walled shells, i.c., membranes. Such a pressure

vessel often consists of a cylindrical body closed with lids (in this case hemispherical ones), see Fig

15.3.1. /M
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When studying the Laplace formulas, (15.1) and (15.2), it is clear that this problem is SD and thus the

items of the general solving flow diagram, to be applied, are those of 6 — 10.

The items 6 and 7 are substituted just with the Laplace formulas:

206




R

THIN-WALLED PRESSURE VESSELS

- cylinder: S -|-G—2 _P (15.2.1), where 6;=06,, G, =G, =®©.I; =T,

n r t
which yields. ¢ = P t d ;
+Q, + :
=R H 150 Ghere 0y = 0, Q= D, = =0, = 0, =R
2-mw-1-t-cosdl 2t
: .. 0y O, P o L pr
- hemisphere — lid: —* + == = =, where 6; = 6, = 6, which yields 6 = ~—
n r, t 2t

Items 8: Dimensioning (when comparing the vessel parts, the maximum stress state is that in the

cylindrical one). Using Tresca’s Strength Criterion: Ggq = O — Oy = Oy = Plegs all »

O, - ¢

. T . .
we can assess either pyy < ,or toy 2 pT , depending on the given parameters.

Gall
Items 9: For numerical computation only.

Items 10: We can assess the change in radii:
Ar, 1 pr2
—L=g = E [Gt —-U- Ga] = Ar, = E[z - H] (when separated)

- cylinder:

pr’
- lids: Arp, = 2Bt [1 - !.L] (when separated)
Important remark:

2
The difference assessed between those two displacements is:  § = Ar, —Arp = Hpr

This can only be reacted by fhe introduction of shear forces and moments as showri m Fig.(15.3.1),

where V = shearing force and M = bending moment, both per unit length. When dealing with a static

load, this disproportion arisen is compensated with both elastic and plastic deformations of the two

parts. But a great problem could appear with a ¢yclic loading, which can lead even to a low-cyclic

fatigue fracture.

15.4 Centrifuge
Another interesting problem is to assess the allowable wall thickness #,; of a centrifuge
(Fig.15.4.1) having dimensions: » >> ¢, material: E, o, ps (specific mass), and rotating with the
angular velocity of w/rad/s]. The centrifuge contains a liquid of specific mass p;,
Solution:
The centrifuge is stressed with the tangent stress 6; = 04, + 0y, where:

i/ 6,,=pg-Vv’,ie., the tangent stress caused by the centrifuge shell revolution (cf. Sec.2.11.1,

revolving ring), when neglecting a reinforcing influence of the centrifuge lids.
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Note: How assess the force action of the rotating liquid?
The originally horizontal level of the liquid is gradually changed, by the rotation, into a paraboloid, which,
at a high angular velocity w, can be app. considered as a hollow cylinder (Fig.15.4.1). The centrifugal
force of the liquid cylinder loads the centrifuge shell with a pressure p .The pressure p can be computed
by utilizing the so called hydrostatic paradox:
Using the liquid elementary parallelepiped of a unit base (AV =1 - 1 - dX), computing its centrifugal

Jorce, summing by integration, we obtain the liquid pressure:
Iy

p = J.GSZ-X-pL-l-l-dx
IlL

The Tresca’s strength criterion: 6,, =6, —0,,, =0, <0, where

2 2
0, - @ Ig —Ip
2 - 2
Omax = Ot = Oy + O = Pg (1‘ (D) + " Ig
Gmin = Gr = 0
The allowable membrane thickness 7, is then:
2 2
s — T
IR G s T 1y S kj.i.m3
. 2 m®  §?
all = | 2 =m
lO'aH—PS'(I"m)J N
m - s’

That checking of the units is recommendable, since it helps tc prove the result correctness.
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