
PRETENTIOUSNESS IN ANALYTIC NUMBER THEORY

Andrew Granville

Abstract. In this report, prepared specially for the program of the XXVième Journées

Arithmétiques, we describe how, in joint work with K. Soundararajan and Antal Balog, we

have developed the notion of “pretentiousness” to help us better understand several key
questions in analytic number theory.

The prime number theorem, I

As a boy of 15 or 16, Gauss determined, by studying tables of primes, that the primes
occur with density 1

log x at around x. This translates into the guess that

π(x) := #{primes ≤ x} ≈ Li(x) where Li(x) :=

∫ x

2

dt

log t
∼ x

log x
.

The existing data lend support to Gauss’s guesstimate:

x π(x) = #{primes ≤ x} Overcount: [Li(x) − π(x)]

108 5761455 753
109 50847534 1700
1010 455052511 3103
1011 4118054813 11587
1012 37607912018 38262
1013 346065536839 108970
1014 3204941750802 314889
1015 29844570422669 1052618
1016 279238341033925 3214631
1017 2623557157654233 7956588
1018 24739954287740860 21949554
1019 234057667276344607 99877774
1020 2220819602560918840 222744643
1021 21127269486018731928 597394253
1022 201467286689315906290 1932355207
1023 1925320391606803968923 7250186214
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2 ANDREW GRANVILLE

Notice how the entries in the final column are always positive and always about half
the width of the entries in the middle column: So it seems that Gauss’s guess is always
an overcount by about

√
x. We believe that this observation is both right and wrong:

Although the last column looks to be positive and growing we believe that it eventually
turns negative, and subsequently changes sign infinitely often (see, e.g. [7]). On the other
hand we believe that the error in Gauss’s guess is never much more than

√
x — correctly

formulated this statement is equivalent to the Riemann Hypothesis.

In this talk we only need the weaker statement that π(x) ∼ x/log x, the Prime Number

Theorem. We state this in a slightly cumbersome way, as this fits better the perspective
developed herein.

The Prime Number Theorem (version 1). For any ǫ > 0 there exists xǫ such that if
x ≥ xǫ then

∣

∣

∣

∣

π(x) − x

log x

∣

∣

∣

∣

≤ ǫ
x

log x
.

Let π(x; q, a) denote the number of primes ≤ x that are ≡ a (mod q). An analogous
proof reveals that if (a, q) = 1 and x ≥ xǫ,q then

∣

∣

∣

∣

π(x; q, a)− x

φ(q) log x

∣

∣

∣

∣

≤ ǫ
x

φ(q) log x
.

A key question is to determine how small we can take xǫ,q, for a given ǫ. Calculations
reveal that one should be able to take xǫ,q just a tiny bit larger than q, say q1+δ for any
fixed δ > 0 (once q is sufficiently large). However the best results known [4] have log xǫ,q

a power of q, way off from what is expected. If we are prepared to assume the unproven
Generalized Riemann Hypothesis we do far better, being able to take xǫ,q just a tiny bit
larger than q2, though notice that this is still some way off from what we expect to be
true.

Our research in this area centres around the distribution of mean values of multiplica-
tive functions, that is functions f on the positive integers, for which

f(mn) = f(m)f(n) whenever (m,n) = 1.

Typically we will assume f : N → U where U := {z ∈ C : |z| ≤ 1} and that f is totally
multiplicative (that is when f(mn) = f(m)f(n) for all m,n ≥ 1, not just those pairs of
integers m,n that are coprime). Key examples include f(n) = 1 and f(n) = nit for some
t ∈ R, as well as the Dirichlet characters: If χ is a Dirichlet character of order m then
χ : (Z/qZ)∗ → G ⊂ U where G is the set of mth roots of unity, a finite group. So what is
the connection between the two subjects? The Mőbius function µ(n) is multiplicative and
we have the remarkably useful identity

∑

n=ab

µ(a) log b =

{

log p if n = pe

0 otherwise
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where the sum is over all pairs of positive integers a, b satisfying ab = n, and the first case
is for all powers (with e ≥ 1) of a prime p. If we sum this identity over all n ≤ x we obtain
the identity

∑

pe≤x

log p =
∑

ab≤x

µ(a) log b.

The contribution of the prime powers pe with e ≥ 2 to the left hand side are easily shown
to be negligible, and a good estimate for the remaining sum can easily be shown, via partial
summation, to be equivalent to a good estimate for π(x).1 Therefore a good estimate for
the right hand side must be equivalent to the prime number theorem. One can approach the
right hand side by fixing a and then summing over b; this is easy since

∑

b≤B log b = logB!
which can be very accurately estimated using Stirling’s formula. This leaves us with a sum
over a, something like

x
∑

a≤x

µ(a)

a
(log(x/a) − 1),

which can be estimated accurately, via partial summation, provided
∑

a≤A µ(a) can be for
various values of A. Thus we have sketched a justification that the prime number theorem
is “equivalent” to proving that

∑

n≤N

µ(n) = o(N).

(See, e.g. section 2.1 of [14] for a proof that these really are equivalent.) Of course µ is
a multiplicative function, but not a totally multiplicative function, which would be easier
to work with. This is easily remedied by replacing µ by Liouville’s function λ(n) which
equals µ(n) when n is squarefree and in general is given by

λ(n) = (−1)#{prime powers pe|n}.

One can also show that the prime number theorem is equivalent to proving that

(1)
∑

n≤N

λ(n) = o(N).

As above we state it in the following form:

The Prime Number Theorem (version 2). For any ǫ > 0 there exists xǫ such that if
x ≥ xǫ then

∣

∣

∣

∣

∣

∣

∑

n≤x

λ(n)

∣

∣

∣

∣

∣

∣

≤ ǫx.

Moreover if x ≥ xǫ,q then
∣

∣

∣

∣

∣

∣

∣

∣

∑

n≤x
n≡a (mod q)

λ(n)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ
x

q

1Indeed
P

pe≤x
log p ∼ x if and only if π(x) ∼ x/ log x.
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whenever (a, q) = 1.

Now, (1) can be restated as

lim
N→∞

1

N

∑

n≤N

λ(n) = 0.

Since λ(n) = 1 or −1 for every integer n, this is equivalent to the assertion that, asymp-
totically, half the values of λ(n) are 1, and half are −1. In other words

lim
N→∞

1

N
#{n ≤ N : λ(n) = 1} and lim

N→∞

1

N
#{n ≤ N : λ(n) = −1}

both exist and equal 1
2 .

Mean values of multiplicative functions

More generally one can ask, for any given totally multiplicative f : N → G, where G
is a given finite group, whether

(2) lim
N→∞

1

N
#{n ≤ N : f(n) = g}

exists, for each g ∈ G. The answer is “yes”, something that could have been proved
directly from results of Wirsing and Halasz in the early 70s had they been aware of this
nice question of Ruzsa. Once one knows that the limit in (2) always exists one can ask
whether one can obtain upper and lower bounds that depend only on the group G. For
example if f(n) = 1 for all n then the value in (2) is 0 if g 6= 1, and equals 1 if g = 1.
One can thus ask whether it is possible to get the limit 1 in (2) when g 6= 1, and whether
it is possible to get the limit 0 in (2) when g = 1? To better understand, let’s focus on
the case G = {−1, 1}. Evidently we cannot have f(n) = −1 for all n, since f(1) = 1, and
also f(4) = f(9) = f(16) = . . . = 1 since the square of both 1 and −1 equals 1. But even
more, we cannot have all three of f(2), f(3) and f(6) equal to −1, since f(6) = f(2)f(3),
and indeed the same remark applies for any three multiplicatively dependent integers. In
the 1980s Hall showed that for any totally multiplicative f : N → {−1, 1}, we must have
f(n) = 1 for at least a positive proportion of the integers n up to any given point (so
that the answer to both questions above is “no”). His proof can be extended to show that
the answer to both questions above is “no” for any finite group G; that is, there exists
a constant cG > 0 such that the proportion of integers n ≤ N with f(n) = 1 is always
≥ cG. Heath-Brown and Montgomery then asked for the minimum possible proportion of
f(n)-values that equal 1 when G = {−1, 1}. In 2001 Soundararajan and I proved [8] that
at least 17.15% of the f(n)-values must equal 1, where 17.15% is an approximation for

1 − π2

6
− log(1 +

√
e) log

e

1 +
√
e

+ 2
∞
∑

n=1

1

n2

1

(1 +
√
e)n

= .1715004931 . . . ,

and this is “best possible”. It would be nice to have a combinatorial interpretation as to
why this particular constant comes up here.
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As the limit in (2) exists, we can deduce that

(3) lim
N→∞

1

N

∑

n≤N

f(n)

exists whenever f : N → G, a finite group. This leads naturally to the question as to
whether (3) exists for all totally multiplicative f : N → U? Let us study the example
f(n) = nit for given real number t: Here the mean value is

1

N

∑

n≤N

nit ≈ 1

N

∫ N

0

uitdt =
1

N

N1+it

1 + it
=

N it

1 + it
,

for sufficiently large N . This equals 1/
√

1 + t2 in absolute value, but varies in angle with
N . That is,

(4) lim
N→∞

∣

∣

∣

∣

∣

∣

1

N

∑

n≤N

f(n)

∣

∣

∣

∣

∣

∣

exists but not (3). In fact, in general, (4) exists for all totally multiplicative f : N → U,
but (3) does not necessarily exist, as we have just seen.

Next we might ask, when is

(5)

∣

∣

∣

∣

∣

∣

1

N

∑

n≤N

f(n)

∣

∣

∣

∣

∣

∣

large? That is, when is there not very much cancellation between different values of f(n)?
Evidently (5) is large when f(n) = 1 for all n ≥ 1, and, as we have just seen, more
generally when f(n) = nit for all n ≥ 1. Moreover we would not expect the mean value
(5) to change much if we simply alter the values of f by a suitably small amount (though
keeping f totally multiplicative). In other words if f(n) is more-or-less nit for some small
real t then we would expect the mean value to be “large”; or, more colloquially, if f(n)
pretends to be nit. Are there any other examples of f for which this mean value (5) is
large? The remarkable result of Halasz [9,10] states that the answer to this question is
“no”:

Halasz (1975). If the mean value of f is “large” in absolute value then f(n) pretends to
be nit for some “small” real t.

As you might expect Halasz was a little more precise in his formulation, but here
we can make do with “large” meaning > ǫ, “small” meaning |t| ≪ 1/ǫ, and “pretends”
meaning that

(6)
∑

p≤N

1 − Re(f(p)/pit)

p
is bounded.
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This last quantity is worth discussing in a little more detail: If f(n) = nit for all n ≤ N
then f(p) = pit for all p ≤ N , that is f(p)/pit = 1, or 1 − Re(f(p)/pit) = 0. In other
words, the quantity in (6) above would equal 0. As f(n) varies more from nit, we see that
the quantity in (6) grows. We can extend this to define a useful distance function for pairs
of multiplicative functions: If f and g are two multiplicative functions with values inside
or on the unit circle define

D(f, g; x)2 :=
∑

p≤x

1 − Re(f(p)g(p))

p
.

This has the desirable properties that D(f, g; x) = 0 if and only if f(p) = g(p) and |f(p)| = 1
for all primes p ≤ x, and that it satisfies the triangle inequality

D(f, g; x) + D(F,G; x) ≥ D(fF, gG; x).

Large character sums, I

One is interested in proving, for a non-principal character χ (mod q), that

(7)
∑

n≤x

χ(n) = o(x)

in as wide a range for x as possible. Burgess [3] showed that (7) holds uniformly for
x > q1/4+o(1), and the outstanding question in this area is to show that (7) holds uniformly
for x ≥ qǫ. In [9] we showed that (7) holds whenever log x/ log log q → ∞, assuming the
Generalized Riemann Hypothesis; and that (7) cannot hold for smaller x, that is when
x = (log q)A for any fixed A > 0.

Now suppose that (7) fails for some character χ. By Halasz’s theorem we know that
χ(n) pretends to be nit for some suitably small t. Hence χ2(n) pretends to be n2it and we
might expect (7) to fail with χ replaced by χ2. Indeed, in [11], we prove that if (7) fails
for χ = χi (mod q) for some xi > qǫ for i = 1 and 2, then (7) fails for χ = χ1χ2 for some
x > qδ with δ = δ(ǫ) > 0.

The prime number theorem, II

Now that we have seen what pretentious means, a potentially complicated function
looking very much like something far simpler, let us study an early example from the history
of analytic number theory. By 1896 researchers only needed to show that ζ(1 + it) 6= 0 for
all non-zero real t, in order to complete the proof of the Prime Number Theorem. Both
Hadamard and de la Vallée Poussin established that if ζ(1 + it) = 0 then ζ(1 + 2it) = ∞
contradicting the fact that ζ(s) is analytic except at s = 1. In his book [4], Davenport
explains this by noting that if ζ(1 + it) = 0 then the pit would “predominantly” point
towards −1, so that the p2it would “predominantly” point towards 1. A clever identity of
Mertens allows one to establish this connection rather elegantly, but here we go back to
the original heuristic and see that it can be viewed as an early example of pretentiousness.
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A pretentious proof of the Prime Number Theorem: We know that ζ(s) is analytic in
Re(s) > 1 except at s = 1. Suppose that ζ(1+ it) = 0 and that the zero at 1+ it has order
r ≥ 1. Then ζ(1+∆+it) ≈ c∆r for some non-zero constant c when |∆| is sufficiently small,
as may be proved by studying the Taylor series for ζ(s) around 1+ it. Taking ∆ = 1/ logx
for sufficiently large x one can show that this is equivalent (see Appendix 1) to

∏

p≤x

(

1 − 1

p1+it

)−1

≈ c1
(log x)r

,

which can be rewritten as

∏

p≤x

(

1 +
e−it log p

p

)

≈ c2
(log x)r

,

for some non-zero constants c1, c2. Now Mertens’ theorem states that

∏

p≤x

(

1 − 1

p

)

∼ e−γ

log x
.

Since |1−1/p1+it| ≥ 1−1/p, the last two estimates are incompatible unless r = 1. In that
case we can directly compare the two estimates to deduce that p−it = e−it log p pretends
to be −1; more precisely that D(p−it,−1; x) is bounded. Squaring, we find that p−2it

pretends to be (−1)2 = 1 (or, more precisely, D(p−2it, 1; x) ≤ 2D(p−it,−1; x) is bounded),
and then reversing all of the steps above we deduce that ζ(1 + ∆ + 2it) ≈ c′′/∆ for ∆ > 0
sufficiently small, that is ζ(s) diverges at s = 1 + 2it, contradicting the fact that it is
analytic at this point. �

In this proof we deduced that p−it pretends to be −1; we note that, if that were the case
then nit pretends to be λ(n).

Large character sums, II

Let χ be a character mod q > 1. How large can

max
χ

∣

∣

∣

∣

∣

∣

∑

n≤x

χ(n)

∣

∣

∣

∣

∣

∣

be? By periodicity we know that this is ≤ q. The first important result on this question
is the 1919 Pólya-Vinogradov inequality [17,19] which states that

∣

∣

∣

∣

∣

∣

∑

n≤x

χ(n)

∣

∣

∣

∣

∣

∣

≤ √
q log q,
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which was improved by Montgomery and Vaughan in 1977 [15], assuming the Generalized
Riemann Hypothesis, to

(8)

∣

∣

∣

∣

∣

∣

∑

n≤x

χ(n)

∣

∣

∣

∣

∣

∣

≪ √
q log log q.

In 1932 Paley [16] showed that this bound is best possible, up to the evaluation of the
constant, by constructing quadratic characters χ (mod q) which pretend to be 1 for the
primes p ≤ c log q. Similarly if there are quadratic characters χ (mod q) which pretend to
be 1 for the primes p ≤ qǫ then the Pólya-Vinogradov inequality cannot be improved.2

So when can |∑n≤x χ(n)| be large? Say >
√
q(log q)1−δ for some fixed small δ > 0.

Soundararajan and I [10] proved that if the character sum is this large then χ pretends to
be a character ψ (mod m) where m ≤ (log q)1/3. In fact χ(p) ≈ ψ(p) for a surprisingly
large proportion of the primes p ≤ q, which is surely impossible, though that is hard to
prove.

One extra observation: If one has such a large character sum then one can show that
χ(−1)ψ(−1) = −1. This allows us to get a contradiction for χ of fixed, odd order.

Proof sketch when χ has order 3. In this case χ(n) = 0, 1, ω or ω2 for all integers n.
Now χ(−1)2 = χ(1)2 = 1 so that χ(−1) = 1, as χ cannot take the value −1. Therefore
ψ(−1) = 1 · ψ(−1) = χ(−1) · ψ(−1) = −1. Hence for most small primes p ≡ −1 (mod m)
we have χ(p) ≈ ψ(p) = ψ(−1) = −1, which is impossible since none of 0, 1, ω or ω2 are
close to −1.

In [10] we proved the following result:

Theorem. If χ (mod q) has odd order g > 1 then

∣

∣

∣

∣

∣

∣

∑

n≤x

χ(n)

∣

∣

∣

∣

∣

∣

≪ √
q(log q)1−δg+o(1),

where δg = 1
2(1 − sin(π/g)

π/g ) > 0 (for example 1 − δ3 ≈ 11/12). Moreover, assuming the

Generalized Riemann Hypothesis we have

∣

∣

∣

∣

∣

∣

∑

n≤x

χ(n)

∣

∣

∣

∣

∣

∣

≪ √
q(log log q)1−δg .

A surprising revelation was that Montgomery and Vaughan’s result (8) does not re-
quire the Generalized Riemann Hypothesis nor the Riemann Hypothesis for L(s, χ) but
rather the Riemann Hypothesis for L(s, χψ). Note that χψ is a character with large
conductor which pretends to be 1.

2We do not believe that such q exist, but we do not know how to prove that they don’t.
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Suppose that we have a large character sum for χ, so that χ pretends to be ψ, a
character with relatively small modulus, and χ(−1)ψ(−1) = −1. Then χ2 pretends to
be ψ2 with χ2(−1)ψ2(−1) = (−1)2 = 1, and χ3 pretends to be ψ3 with χ3(−1)ψ3(−1) =
(−1)3 = −1, so we might guess that there is a a large character sum for χ3. More generally,
we prove in Theorem 2 of [10] that if characters χ1, χ2 and χ3 (mod q) have large character
sums then so does χ1χ2χ3. In particular note that if we have a big character sum for χ
(mod q) of order 6, then we do for χ3 (mod q) which has order 2.

Multiplicative functions in arithmetic progressions

Earlier we saw that if
∣

∣

∣

1
N

∑

n≤N f(n)
∣

∣

∣
is large then f(n) is nit-pretentious for some

“small” real t. What about if
∣

∣

∣

∣

∣

∣

∣

∣

1

N

∑

n≤N
n≡a (mod q)

f(n)

∣

∣

∣

∣

∣

∣

∣

∣

is large? There are several obvious examples for which this sum is large, for examples
f(n) = nit, and f(n) = χ(n) where χ is a Dirichlet character mod q (since then f(n) =
χ(n) = χ(a) for each n in the sum). One also has the two multiplied together, that is
f(n) = χ(n)nit, and no more (as shown in [1]):

Theorem. If the mean value of f is “large” in an arithmetic progression mod q then f(n)
pretends to be χ(n)nit for some Dirichlet character χ mod q and some “small” real t.

Pretentiousness is repulsive

Can a multiplicative function f be pretentious in more than one way? In other words,
can there exist two characters ψ and χ with small conductors such that f(n) ≈ ψ(n)nit

and f(n) ≈ χ(n)niu for most n ≤ x? If so then χ(n)niu ≈ ψ(n)nit for most n ≤ x, and
hence (χψ)(n) ≈ ni(u−t) for most n ≤ x, which we know is impossible as χψ is itself a
character with small conductor. More precisely we have

D(f(n), χ(n)niu; x) + D(f(n), ψ(n)nit; x) ≥ D((χψ)(n), ni(u−t); x) ≫ (log log x)1/2.

Exponential sums

If
∣

∣

∣

∑

n≤x f(n)e2iπnα
∣

∣

∣
is large then

• α is close to some rational a/b with b “small” (by [15]);
• f(n) pretends to be ψ(n)nit where ψ is a character of conductor b and t is “small”.

This characterization (given in [11]) has tremendous impact on questions that can be
attacked by the circle method. For example, the number of solutions to

a+ b = c
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in integers a, b, c ≤ x with f(a) = f(b) = f(c) = 1 where f : N → {−1, 1}, is

≥ 1

2
% of #{a, b, c ∈ N : a, b, c ≤ x and a+ b = c}.

Here 1
2
% is really (17.15%)3, where we have the 17.15% from before.

More generally, if f1, f2, f3 are three totally multiplicative functions whose values all
lie in U, such that

∣

∣

∣

∣

∣

∣

∣

∣

∑

a,b,c≤N
a+b=c

f1(a)f2(b)f3(c)

∣

∣

∣

∣

∣

∣

∣

∣

≥ ǫ
N2

2

then f1(n), f2(n), f3(n) pretend to be ψ1(n)nit1 , ψ2(n)nit2 , ψ3(n)nit3 , respectively, where
the ti are bounded, the ψi are characters to small moduli, and ψ1ψ2ψ3 is principal.

Prime number theorem for arithmetic progressions

We saw earlier that the primes up to x are equi-distributed in the arithmetic progres-
sions mod q provided x ≥ xǫ,q, and that this has been proved unconditionally only for
xǫ,q exponential in a power of q. However, in the late 1960s, Bombieri and Vinogradov [2]
proved that one can take xǫ,q just a little bigger than q2 for “most” q. It takes a little
explanation to give the precise definition of “most” here, so we shall instead describe a
variant, due to Gallagher, which is useful in many applications since it gives an explicit
description of the exceptional moduli q if there are any:

Theorem. (Gallagher, 1970) Let λ be Liouville’s function. Given ǫ > 0 there exists A > 1
such that

∣

∣

∣

∣

∣

∣

∣

∣

∑

n≤x
n≡a (mod q)

λ(n)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ
x

q

for all (a, q) = 1 and all q ≤ x1/A, except perhaps those q that are multiples of some
exceptional modulus r. If such a modulus r exists then there is a character ψ (mod r)
such that

∣

∣

∣

∣

∣

∣

∣

∣

∑

n≤x
n≡a (mod q)

λ(n) − ψ(a)
∑

n≤x
n≡1 (mod q)

λ(n)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ
x

q

whenever (a, q) = 1 and r divides q, with q ≤ x1/A. If this occurs then λ(n) is ψ(n)nit–
pretentious for some small real t.

If this last case occurs, it would contradict the Generalized Riemann Hypothesis.
In fact since λ(n) is real-valued one can deduce that t = 0, that ψ must be a real-valued
character, and that there is a zero of the L(s, ψ) lying very close to s = 1. This exceptional
zero is known as a “Siegel zero”, and is typically believed to lie deep in the theory of
Dirichlet L-functions.

We have proved the following generalization of Gallagher’s theorem in [1]:
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Theorem. (Balog, Soundararajan, Granville) Let f : N → U be any totally multiplicative
function. Given ǫ > 0 there exists A > 1 such that

∣

∣

∣

∣

∣

∣

∣

∣

∑

n≤x
n≡a (mod q)

f(n)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ
x

q

for all (a, q) = 1 and all q ≤ x1/A, except perhaps those q that are multiples of some
exceptional modulus r. If such a modulus r exists then there is a character ψ (mod r)
such that

∣

∣

∣

∣

∣

∣

∣

∣

∑

n≤x
n≡a (mod q)

f(n) − ψ(a)
∑

n≤x
n≡1 (mod q)

f(n)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ
x

q

whenever (a, q) = 1 and r divides q, with q ≤ x1/A. If this occurs then f(n) is ψ(n)nit–
pretentious for some small real t.

Gallagher’s theorem is the special case f(n) = λ(n) of this theorem. If we let f(n) =
ψ(n)nit then the second case of the theorem does occur quite naturally. I am not sure what
this implies about Siegel zeros, except to say that we are unlikely to rule out the possibility
of their existence from an approach involving only the arithmetic theory of multiplicative
functions.

This result gives mean value theorems for the coefficients of the Dirichlet series
L(s, fχ) (where L(s, f) :=

∑

n≥1 f(n)/ns) with proofs quite different from the usual

“Tauberian methods” (indeed I can not see how these can be applied here).

One can write down a more precise version of our theorem: For xc ≥ x1/A ≥ 3 one
can take

ǫ =
1√

logA
.

For small q, that is q ≤ (log x)C , one can take

ǫ =
1

(log x)1/3+o(1)
+

q

(log x)1+o(1)
;

and we can show that 1/3 + o(1) cannot be replaced by 1.
One step in the proof of this theorem is reminiscent of some of the recent developments

in additive combinatorics. It can be paraphrased as “if a periodic function looks like a
character then it more-or-less is a character”. Specifically, if g has period q, with g(1) = 1
and |g(ab) − g(a)g(b)| ≤ ǫ (≤ 1/4) whenever (a, b) = 1 then there exists a character χ
(mod q) such that |χ(a) − g(a)| ≤ 2ǫ whenever (a, q) = 1.

How deep is the proof of our theorem? Given how far it generalizes Gallagher’s
theorem one might believe that it is necessary to use even deeper facts about the zeros
of Dirichlet L-functions. On the other hand, given the generality of the result, one might
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expect a proof that is more combinatorial in nature and less tied in with the distribution
of prime numbers:

In our proof we require, for B and C sufficiently large and for each (a, q) = 1, “lots”
of primes ≡ a (mod q) in an interval [qB , 2qB], or “lots” of P2s ≡ a (mod q) in an interval
[qC , 2qC ] (where a “P2” is the product of two different primes.)

Our original proof used the theory of L-functions non-trivially: We noted that by
Gallagher’s theorem we have enough such primes except when there is a Siegel zero for
some character ψ (mod q) and ψ(a) = 1. In that case almost all primes of this size satisfy
ψ(p) = −1, so that most of the P2s n made up of these primes satisfy ψ(n) = 1.

Subsequently we observed that our result follows if something like

log x
∑

p≤x
p≡a (mod q)

log p+
∑

p1p2≤x
p1p2≡a (mod q)

log p1 log p2 ∼ 2x logx

φ(q)

holds for each (a, q) = 1 for a suitable value of x. Selberg [18] showed this for x ≥ eq in
his elementary proof of the prime number theorem for arithmetic progressions, a value of
x which is far too large for our purposes. However in 1981 Friedlander [5] conveniently
showed something close to this for all x ≥ q3B using sieve methods, which means that our
theorem can be proven, avoiding deeper consideration of the zeros of L-functions.

Appendix 1: Truncating Euler products

If ∆ = 1/ logx then ∆ > 0 so that ζ(1 + ∆ + it) =
∏

p(1 − 1/p1+∆+it)−1. Hence

log(ζ(1 + ∆ + it)
∏

p≤x(1 − 1/p1+it)) equals

∑

p≤x

log
(

(1 − 1/p1+it))(1 − 1/p1+∆+it)−1
)

−
∑

p>x

log
(

1 − 1/p1+∆+it
)

.

The absolute value of this is

≤
∑

p≤x

1

|p1+it|

(

1 − 1

p∆

)

+
∑

p>x

1

p1+∆
+ 2

∑

p

1

p2

≪
∑

p≤x

∆ log p

p
+

∫

u>x

du

u1+∆ log u
+ 1

≪ ∆ log x+
x−∆

∆ log x
+ 1 ≪ 1.

Hence

ζ(1 + ∆ + it) ≍
∏

p≤x

(

1 − 1

p1+it

)
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