
Understanding Tableau’s Fast Data Engine

PRESENTED BY

Matthew Eldridge

Richard Wesley

©2011 Tableau Software Inc. All rights reserved.

Understanding Tableau’s Fast Data Engine

• What is the Data Engine?

• Tableau’s purpose-built analytic database for extracts

• What are we going to talk about?

• Functionality

• Past, present, and future

• Tips & tricks

• Performance

• Understanding performance on desktop and server

• Maximizing performance of your extract

• Questions? Please ask!

©2011 Tableau Software Inc. All rights reserved.

Past: new in 6.0 (October 2010)

• The Data Engine!

• in-memory analytic database

• column oriented

• memory use determined by referenced columns

• graceful degradation under memory pressure

• laptop to server scalability

• 32-bit and 64-bit executables

• single interchangeable database format

• much faster queries

©2011 Tableau Software Inc. All rights reserved.

Present: new in 6.1 (June 2011)

• Incremental refresh

• Add new rows to an existing extract

• Incremental append

• Add data from a file to an existing extract

• Faster extract creation

• faster text file parsing

• faster database query and load

• faster column compression

©2011 Tableau Software Inc. All rights reserved.

©2011 Tableau Software Inc. All rights reserved.

Incremental refresh (6.1)

• Append new rows from a data

warehouse

• New rows determined via

primary key or a time

stamp

• Much faster than a full

refresh

• Can be scheduled on server

• Updated or deleted rows

 full refresh

• Example: performance data

from automated nightly tests of

Tableau

©2011 Tableau Software Inc. All rights reserved.

Incremental append (6.1)

• Append new rows from a local

file (Access, CSV, Excel)

• Use case: weekly (daily, etc.)

drops of new data

©2011 Tableau Software Inc. All rights reserved.

Faster extract creation (6.1)

• Fast text parser for CSV data

• Requires:

• Single table (no joins, no custom SQL)

• Import all data (no filters, no aggregation)

• Much much much faster than Jet

• Handles files larger than 4GB

©2011 Tableau Software Inc. All rights reserved.

Future: coming in 7.0 (Samurai!)

• Server support for shared extracts

• Server managed data sources shared across workbooks

• Extracts remain on Tableau Server

• Queries executed by Data Engine server

• Support for scheduled full & incremental refresh

• Publish a data source to the server from desktop

• Connect to a published data source from desktop

• Talk: “Managing Extracts with Tableau Server”

©2011 Tableau Software Inc. All rights reserved.

Tips & tricks: Getting the most out of extracts

• Extract filters

• Aggregate data

• Hiding columns

• Raw SQL

©2011 Tableau Software Inc. All rights reserved.

Extract filters

• Filters applied to query of

source database

• Limit data to values of

interest

• Example: use a date filter

together with incremental

refresh

©2011 Tableau Software Inc. All rights reserved.

Aggregate data

• Reduce extracted data to less detailed aggregates

• Grouped by visible (non-hidden) dimensions

• Measures aggregated according to default aggregation (SUM)

• Less data smaller extracts  faster queries!

• Number of Records is the number of source rows in each row

of the extract

• Think about your aggregations

• Average of averages may not be what you expect…

• … but SUM([column]) / SUM([Number of Records]) is the same

as the underlying average!

©2011 Tableau Software Inc. All rights reserved.

Hiding columns

• Hidden dimensions and measures

are not included in the extract

• Remove sensitive data

• Reduce extract size

• Reduce extract creation time

• One click option

• Unhiding a column will require

refreshing extract

• Note: columns in use will always

be included in the extract, whether

or not they are hidden

©2011 Tableau Software Inc. All rights reserved.

Raw SQL (7.0)

• Raw SQL calculations materialized when extract created

• Can be used just like any other column

• Editing calculation will invalidate it until extract is refreshed

• Note, aggregate raw SQL calculations are not supported

• Example: convert usernames into opaque identifiers

• RAWSQL_STR(“md5(%1)”,[username])

• “eldridge”  "08cfc6800e414c144a850ac10aee8f0d"

©2011 Tableau Software Inc. All rights reserved.

Performance

• Is it fast enough? Hooray!

• Data

• Optimize input types

• Optimize input data

• Optimize calculations

• Hardware

• Memory

• CPU

• Disk

• Troubleshooting

©2011 Tableau Software Inc. All rights reserved.

Performance: Optimize input types

• Clean up data types

• Dates are smaller than time stamps, etc.

• Prefer integer to decimal(n,0)

• However, Data Engine doesn’t care about declared string widths

• Storage size automatically minimized for integers and reals

• Don’t check datetime => date

• Don’t check real => integer

• Users should still fix these

• Can improve source database performance as well

©2011 Tableau Software Inc. All rights reserved.

Performance: Optimize input data

• Nothing’s faster than removing the data ahead of time

• Reduces extract size and creation time

• Hide unused columns

• Extract filters

• Aggregate extracts

• Harder than pre-filtering, but can yield huge performance increases

©2011 Tableau Software Inc. All rights reserved.

Performance: Optimize calculations

• Pre-computed calculations are

faster than ad hoc calcs

•  Calcs are already evaluated

when you use them!

• Optimize command

• Creates additional columns

that materialize your

calculations

• Applies to both measures and

dimensions

• Removes materialized

columns for deleted

calculations

• Automatically performed when

extract refreshed

• Restrictions on materialized calcs

• Never applied to aggregate calculations

• Can only reference fields from datasource

• No parameters, no secondary datasources

• Only applied to dimensions in 6.1

©2011 Tableau Software Inc. All rights reserved.

Performance: Optimize calculations

• Aggregate calculations cannot be materialized

• Sometimes can be decomposed

• Example:

• Calculation for budgeted average selling price, BudgetASP:
SUM([Price] * IF [Market]=“West” THEN 1.2 ELSE 1.0 END)

/ SUM([ItemCount])

• Becomes

• BudgetSellingPrice :

[Price] * IF [Market]=“West” THEN 1.2 ELSE 1.0 END

• BudgetASP :

SUM([BudgetSellingPrice]) / SUM([ItemCount])

• BudgetSellingPrice can be materialized, BudgetASP cannot

©2011 Tableau Software Inc. All rights reserved.

Performance: Optimize calculations

• Data Engine goes to pains to optimize their evaluation, but

nothing is faster than no calculation at all!

• Materialize string calculations

• Eliminates slower functions:

• left/mid/right

• find/contains

• concatenate (+)

• casts (converting to other types)

• Don’t use the database to format data!

• Materialize slow functions

• Materialize if/case whenever possible

©2011 Tableau Software Inc. All rights reserved.

Performance: Optimize calculations

• Write fast calculations

• When binning, division is faster than if/then/else or case

• IF [day] < 7 then “Week 1”

ELSEIF [day] < 14 then “Week 2”

…

• INT([day] / 7)

• Use aliases to name the bins

• Date arithmetic is faster than string parsing:

• MID(STR([ymd]),4,2)+”/”+RIGHT(STR([ymd]),2)+”/”+…

• DATEADD(„year‟, INT([ymd]/10000), #1900-01-01#)…

• These changes work for most databases

©2011 Tableau Software Inc. All rights reserved.

Performance: Memory

• How much is enough?

• Data Engine only reads the columns used in the query

 extracts larger than memory can remain practical

• If the queried data doesn’t fit in memory, performance will be limited

• Hard disk is at least 100x slower than memory

• Consider actual usage

• Desktop: multiple extracts per workbook

• Server: potentially as many different extracts open as there are active

sessions

• 64-bit OS ideal, increased memory on a 32-bit OS can still yield

performance benefits

©2011 Tableau Software Inc. All rights reserved.

Performance: CPU

• Processor speed

• Given data that fits in memory, a faster processor will typically

result in faster query execution

• Defining “faster” is tricky: clock frequency, cache size, memory

bandwidth, …

• Multiple cores/processors

• Data engine is single threaded for most operations

• Extract creation parallelizes sorting

• Shared data engine in server runs multiple queries in parallel,

limited by number of cores

©2011 Tableau Software Inc. All rights reserved.

Performance: Disk

• Avoid network volumes

• Network disks are almost always slower than local disks

• Significant performance issues for data engine in particular

• Larger disk

• Intermediate storage during extract creation can be significantly

larger than final extract size

• Put temp directory on a distinct disk from extract storage

• Faster disk

• Will improve performance in some cases

• Initial query time

• Creation of large extracts

©2011 Tableau Software Inc. All rights reserved.

Performance: Troubleshooting

• Look out for…

• Anything that interferes with the disk

• Windows Search

• Windows Defender

• Antivirus software

• Disk defragmentation (Diskeeper)

• Anything that interferes with the network software

• Uncommon, but can corrupt desktop’s and server’s communication

with the Data Engine

©2011 Tableau Software Inc. All rights reserved.

Performance: Summary

• Fix data types

• Remove unnecessary data

• Leverage materialized calculations

• 64-bit OS & enough memory

©2011 Tableau Software Inc. All rights reserved.

Please give your response to the following: Excellent Great Good Average Poor Bad Very Bad

What was the value of this session to you? a b c d e f g

What are the chances you will apply what you
learned in this session in your work?

h i j k l m n

What are the chances you would recommend this
session to a colleague?

o p q r s t u

Each text evaluation you send enters you into a drawing for an iPad!

Please evaluate this session (TCC11 413)
Understanding Tableau's Fast Data Engine

Text to 32075

Provide additional comments after an asterisk “*”

Sample text: TCC11 413aho*That was great!

In the body of the message, type: TCC11<space>413

then letters from the table below to indicate each response.

