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Preface

This textbook has its origins in a course that I began developing at Union College
in the mid-1980s to teach physics to life science students in a way that would inter-
est them and show the connections of fundamental physics to modern biology and
medicine. From my own research experiences and interests in biophysics, I know
that almost all areas of modern life sciences integrally involve physics in both
experimental techniques and in basic understanding of process or function.
However, I and many colleagues with whom I have spoken have been unhappy over
the years with published attempts to direct a textbook to this audience. Most such
texts are watered down engineering physics books with occasional added sections
on related biology topics that are easy to skip over or assign students to read on
their own.

As I set out to write this textbook, I had certain definite goals in mind. I wanted
to write a book that was truly directed at life science students, one that integrated
modern biology, biophysics, and medical techniques into the presentation of the mate-
rial. Believing in the less is more credo, I chose to omit certain standard topics that are
usually included in texts for this audience, while expanding on topics that have more
relevance to the life and biomedical sciences. From my experience teaching to these
students, I also wanted a book that would be shorter and could be fully covered in a
two-semester course. Although students at Union College and comparable institutions
taking this introductory course have all had some calculus, only algebra and trigonom-
etry are used in the main body of the text. At this level, I believe that calculus adds lit-
tle to the understanding of the material and can detract from focusing on the basic
physical ideas. However, I have sprinkled in optional boxed calculations that do use
some calculus where I felt they truly added to the discussion (averaging less than one
box per chapter). These “sidebars” can be omitted without any loss of continuity.

The order of topics for this text follows a more or less traditional sequence. An
exception to this is the presentation of one-dimensional mechanics through forces
and energy before introducing vectors and generalizing to motion in more than one
dimension. This allows students to focus on the physics concepts of kinematics,
forces, and energy without being distracted by the ideas of vector analysis.

Beyond the order of topics, the presentation of material is unique in that, wherever
possible, themes from biology or medicine are used to present the physics material. The
material speaks to life science students. Rather than optional sections at the end of occa-
sional chapters, life science themes are plentiful and integral to the text. The role of these
topics here is more fundamental, as can be gleaned from a list of some examples.

* The early introduction of diffusion as an example of motion (full section in
Chapter 2).

¢ The early introduction of motion in a viscous fluid as an example of one-dimensional
motion, development of Hooke’s law and elasticity with applications to biomaterials
and viscoelasticity, protein structure, and molecular dynamics calculations (all in
Chapter 3).

* Discussion of centrifugation in Chapter 5.

PREFACE
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» Examples of rotational motion kinematics of a bacteria and of a rotary motor pro-
tein, the atomic force microscope, rotational diffusion, and cell membrane
dynamics (all in Chapter 7).

* A chapter (9) on viscous fluids with discussions of blood, other complex fluids,
the human circulatory system, surface tension, and capillarity.

* A chapter (11) on sound with extensive discussions on the ear and on ultrasound.

* A chapter (13) with a molecular discussion of entropy, a section on Gibbs free
energy, a section on biological applications of statistical thermodynamics, and a
section on biological applications of nonlinear dynamics.

* Chapters (14-15) on electric forces, fields, and energy with sections on elec-
trophoresis, macromolecular charges in solution, modern electrophoresis meth-
ods, electrostatic applications to native and synthetic macromolecules, an
introduction to capacitors entirely through a discussion of cell membranes, and
sections on membrane channels and electric potential mapping of the human
body: heart, muscle, and brain.

* A chapter (16) on electric current and cell membranes covering circuits through
membrane models: included are sections on membrane electrical currents, an
overview of nerve structure and function including measurement techniques such
as patch-clamping, the electrical properties of neurons, and a second section on
membrane channels with a discussion of single-channel recording.

* Chapters on electromagnetic induction and waves (18—19) that include discus-
sion of MEG (magnetoencephalography) using SQUIDs, an entire section on
NMR, and sections on magnetic resonance imaging, laser tweezers, the quantum
theory of radiation concepts (revisited later), and the interaction of radiation with
matter, the last a primer on spectroscopy, including absorption spectroscopy,
scattering, and fluorescence.

* Four chapters (20-23) on optics include a section on optical fibers and their
applications in medicine, a section on the human eye, sections on the new light
microscopies (dark field, fluorescence, phase contrast, DIC, confocal and multi-
photon methods), discussion of polarization in biology, including birefringence
and dichroism techniques, and sections on the transmission electron microscope,
scanning EM and scanning transmission EM, and x-rays and computed tomog-
raphy (CT) methods.

» Three chapters (24-26) on modern physics (many of these ideas have been intro-
duced and used throughout the book) include discussions of the scanning tunnel-
ing microscope, a section on the laser and its applications in biology and medicine,
including holography. The chapter on nuclear physics and medical applications
(26) includes sections on dosimetry and biological effects of radiation, radioiso-
topes, and nuclear medicine, and the medical imaging methods SPECT (single
photon emission computer tomography) and PET (positron emission tomography).

As mentioned above, we’ve chosen to omit some standard topics that are either
not central to the life science themes or that students find very opaque. Omitted are
such topics as Kepler’s laws, heat engines, induction and LR/LRC circuits, AC cir-
cuits, special relativity kinematics, particle physics, and astrophysics; Gauss’s law and
Ampere’s law are presented in optional sections at the end of appropriate chapters.

Each chapter contains three types of learning aides for the student: open-ended
questions, multiple-choice questions, and quantitative problems. In about 60 of these
per chapter, we have tried to include a wide selection related to the life sciences.
Complete solutions to all of the multiple choice and other problems are available to
instructors. There are also a number of worked examples in the chapters, averaging
over six per chapter, and about 900 photos and line drawings to illustrate concepts in
the text, with many in full color.

Jay Newman
Schenectady, NY
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Introduction

1. SCIENCE, PHYSICS, AND BIOLOGY

If one examines the course catalog of a large, contemporary, university in the
United States for fields of instruction in science, one can find such titles as animal
science, astronomy, atmospheric science, biochemistry, biology, botany, chemistry,
computer science, geology, ecology, mathematical science, meteorology, physics,
psychology, toxicology, and zoology, to name but a few. Each of these is a field of
study in its own right consisting of many subtopics. On the other hand, a catalog
from a U.S. college that existed in the early 19th century probably would show at
most only two “sciences”: natural history (the progenitor of geology and biology) and
natural philosophy (physics and chemistry). Over the years, there has been an explo-
sion of speciation in science, resulting in what appears at first sight to be a techno-
logical Tower of Babel.

Although the factual content of the many branches of modern science may serve
to differentiate one from the other, all branches share certain common characteristics
and concepts. Most important, all of the sciences share a way of thinking. Science is
a search for truth predicated on the belief that there is an absolute physical reality;
things aren’t just figments of our imaginations. Science is based on observation.
Unlike the observations of creative art or religion, for example, which tend to be pri-
vate and highly personal, scientific observations are made, as best as can be done, in
a public way, that is, in a way that anyone, in principle, could repeat them.

Scientific truth is couched in models. A model is not the thing itself, but a repre-
sentation of the thing, much like a metaphor. A model is a guess about how the thing
works based on a set of empirical data. (If the dataset is very large and the model
appears to be especially useful, it is called a theory. In science, the colloquially pejo-
rative phrase, “That’s only a theory,” would never be used because in science a the-
ory is the best kind of guess one can have.) A model can be physical or pictorial or
verbal. Often in science, models are mathematical. Mathematics is an incredibly eco-
nomical way of expressing an idea. One equation can encapsulate tomes of empirical
data. Better yet, an equation can be used to predict outcomes of experiments per-
formed under conditions never seen before. In fact, prediction is the heart of science.
Science is a relentless series of predictions designed to identify the limitations of
previously established “truths.” By tearing down and supplanting prior knowledge,
science aspires to produce an ever-clearer picture of physical reality. In this sense,
science can be said to be an insatiable pursuit of provisional truth.

Physics is the most elemental of all the sciences. It attempts to explain the most
fundamental phenomena with the fewest assumptions and in the simplest terms. In
a sense, physics strives to identify and attack the “easiest” of nature’s problems.
Despite its pursuit of the fundamental, however, physics has been extraordinarily suc-
cessful in understanding a vast array of practically important questions such as how

J. Newman, Physics of the Life Sciences, DOIL: 10.1007/978-0-387-77259-2_1,
© Springer Science+Business Media, LLC 2008
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to build a better steam engine, how to place a satellite in orbit, and how energy stored
in atomic nuclei can be used to light cities, to cite just a few examples. Indeed,
physics is the basis for a huge portion of the world’s economy.

The subfields of physics bear such names as classical mechanics, thermodynamics,
electricity and magnetism, optics, relativity, and quantum mechanics. Of these, classi-
cal mechanics is usually studied first because it deals with the ideas of mass, motion,
force, and energy, concepts that underlie not only the other areas of physics, but also
astronomy, biology, chemistry, and geology, as well as all of engineering.

Like physics, biology is a study of matter and energy. The systems of matter and
energy that are of biological interest, however, are vastly more complex than those that
are the focus of physics. Biology deals with living matter, collections of atoms and
molecules that manage to harness energy to perform such extraordinary tasks as loco-
motion, reproduction, and computation (“thinking”). On the most primitive, microscopic
level, the rules obeyed by living matter are just the fundamental laws of physics. These,
as far as we can tell, are immutable. They have persisted since the origin of the universe.
On a higher level of organization, however, at the level of cells and organisms, living
matter obeys rules that can change. Mutation and evolution are the cornerstones of bio-
logical diversity. How the immutable, microscopic rules of physics are knit together into
the macroscopic fabric of life, where matter is capable of adaptive and evolving behav-
ior, is one of the great unsolved mysteries of contemporary scientific inquiry.

Until the 1950s or so, relatively few direct connections between physics and biol-
ogy had been recognized. Up to that point, most research in biology had been
descriptive, a kind of cataloging of similarities and differences. Since then, strong
linkages between biology and physics have emerged. These connections have revo-
lutionized our understanding of how life works and led to profound improvements in
pharmaceuticals and clinical procedures. The impact of physics on modern biology
and medical science is due, in part, to the introduction of new technologies used to
study biological systems and, in part, to direct applications of physics to the detailed
understanding of macromolecular processes.

Examples of new technology based on physics and used in the study of biology
and medicine abound. A huge array of new microscopies (transmission electron,
scanning electron, fluorescence, interference, polarization, scanning tunneling,
atomic force) and spectroscopies (nuclear magnetic resonance (NMR), electron
spin resonance (ESR), x-ray, neutron, and many laser-based methods such as
Raman scattering) have been developed and are now routinely used to study macro-
molecular structure and functioning. New methods in electromagnetic sensing
(e.g., superconducting quantum interference devices (SQUIDS) for measuring
extremely small magnetic fields, such as those due to nerve activity, and single-
membrane channel recording of electrical activities), laser and electronic instru-
mentation to better image events both spatially and temporally (allowing studies of
extremely fast kinetics, down to 10~ '# s, and submillimeter spatial resolutions
using ultrasound, x-rays, or magnetic resonance methods), and, of course, dramatic
improvements in computers, made possible by new physics, have all led to major
advances in our knowledge.

In conjunction with this technological progress, has come a marked increase in the
description of biological processes using fundamental physics. Detailed molecular
models of the structure and functioning of many significant biological processes are
now in hand. Most of this progress has been at the subcellular or single-cell level but
even areas of biology involving cell—cell interactions, functioning of entire organs,
developmental biology, physiology, and the ecology of plant and animal communities
are now being approached with physical models and fundamental physics approaches.
The rate at which new ideas in physics find application in biology is astonishing.
Recent developments in nonlinear dynamics in physics, for example, have already been
applied to a large variety of complex biological systems, especially in understanding
how electrical activity in the heart and brain changes from health to a state of disease.

To summarize, it is fair to say that no student of today’s life sciences will be ade-
quately educated without a firm understanding of the fundamental principles of physical
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science. It is to that aspect of the life scientist’s education that the remainder of this book
is dedicated.

2. PLAN OF THIS BOOK

Physics of the Life Sciences is designed to teach fundamental physics to students of
the life sciences. Our approach is to use modern biophysical themes as much as pos-
sible to introduce the physics and to illustrate the wide variety of applications of
physics in the life sciences. Indeed today’s doctors, scientists, nurses, and medical and
health technicians constantly use a vast array of modern technology in their work.
A working knowledge of these devices and their basic functioning is a necessity.
Our scientific knowledge base also is growing at an ever-increasing pace. Science
is rapidly becoming interdisciplinary. Scientists from many different backgrounds,
including biology, chemistry, physics, medicine, and engineering, study a vast array of
diverse biological problems. What they all have in common is the use of physics and
modern technology in attempts to understand particular biological phenomena.
Understanding involves observing, quantifying, and developing a good model that has
some predictive ability. The better our understanding of a system or phenomenon, the
better is our model in making predictions about its behavior under a larger variety of
conditions. As already mentioned, the best models are called theories, the pinnacles of
our understanding.

This book is organized into three major parts. After an introduction and an
overview of some fundamental themes in this chapter, we begin the first portion of
this book, classical mechanics and thermodynamics, in Chapters 2—13. There we
learn how to apply a few basic laws of motion for particles to understand the much
more complex motion of real macroscopic objects and fluids. Many of the funda-
mental concepts we learn in the first few of those chapters are used throughout the
book in our studies of a variety of biological systems and many important tools
used in their study. The second major topic of study is electricity and magnetism
and their synthesis in electromagnetism, found in Chapters 14-18. Aside from
gravity, these are the sources of the interactions between all objects in our daily
experience as well as between biological macromolecules. We introduce much of
the physics through biophysical topics such as electrophoresis, biological mem-
branes and channels, nerve conduction, and magnetic resonance imaging (MRI).
After having introduced the general properties of waves in Chapter 10, and applied
those ideas to sound in Chapter 11, waves are a unifying theme of the third and last
major topic of this book. In Chapter 19 electromagnetic waves are discussed, which
leads into light waves in optics and matter waves in quantum physics (Chapters
20-23 and 24-25); we conclude, in Chapter 26, with topics on nuclear physics,
nuclear medicine, and imaging methods.

Throughout, we emphasize understanding the fundamental concepts of physics
and their importance in the study of biology. To help in this, major themes and con-
cepts are developed from specific examples and problems whenever possible. Using
descriptive English to explain physical concepts can sometimes lead to confusion
because many of the words used in physics have specific meanings that differ from
those used in ordinary speech. Mathematics is the natural language of physics, allow-
ing a huge body of knowledge to be expressed in compact equations. However, with-
out an understanding and appreciation of the meanings of the variables, or letters,
used in equations, readers often view them as simply a means to obtain a numerical
answer to a problem by inserting values for the other letters, rather than as summaries
of vast amounts of knowledge. Equations are de-emphasized in this text by keeping
the most important, numbered, equations to a minimum. In addition, each chapter has
a variety of nonmathematical questions at its end designed to make the reader think
about key ideas in the chapter.

On the other hand, without mathematics it would be much more difficult to pre-
sent a complete picture of our knowledge of science and to make predictions about
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FIGURE 1.1 E. coli bacteria as
seen using a scanning electron
microscope.

the behavior of a system. As we show, Newton’s second law equation and Maxwell’s
four equations of electromagnetism together are equivalent to an enormous body of
knowledge. Without those equations, we could not easily express the same informa-
tion content in words, nor would we be able to approach the tremendous variety
of problems these equations can solve. Facility with algebra and trigonometry is
assumed here; an appendix is provided for readers to review some basics in algebra
and trigonometry as well as in scientific notation, and a few other issues. For those
readers who have had some elementary calculus, there are occasional boxed discus-
sions that use some calculus to either derive a particular result or enhance the pre-
sentation. This material is not integral to the text and can be skipped over. Each
chapter also has a variety of short-answer and open-ended problems to help in learn-
ing the material. These should be viewed as integral to the text and a fair number
should be attempted to probe understanding of the material and to develop problem-
solving skills that will be of benefit in all areas of a life-long education.

Problem solving involves some extremely useful skills, such as the ability to
extract information from a written paragraph, to find the key issue or unknown, to
develop solution strategies, and to be able to describe those methods and your solu-
tions to others. Just as critical reading skills will help throughout one’s life, problem-
solving skills are valuable tools to have in whatever one chooses to do later in life,
whether related to science or not.

A major goal of this text is for the reader to develop an appreciation of physics
as a discipline that has led to tremendous advances in our civilization. We now have
a basic, if incomplete, understanding of our world, ranging from the constituents of
atoms to biological cells to galaxies. Although our scientific knowledge has grown
explosively over the last 50 years, particularly in the life sciences, the general pub-
lic’s awareness and appreciation of science has declined. Physics of the Life Sciences
hopes to show many of the interrelationships among the sciences, particularly the
physical basis of our understanding of biology.

3. TWO EXAMPLES OF BIOPHYSICAL SYSTEMS: THE SINGLE
CELL E. COLI BACTERIA AND THE HUMAN HEART

Biological systems are extremely complex, much more so than standard physical systems
traditionally studied by physicists. With the tremendous growth of technological methods
have come interdisciplinary laboratories and scientific collaborations with a focus on
particular biological systems and questions. A glance at a list of topics discussed at vari-
ous international scientific meetings with a biological focus will show the huge array of
systems that are currently studied, including macromolecules, subcellular components,
cells, organs, whole organisms, and even interactions between
organisms. In the course of this text we show how physics and
physical technologies have been applied to many of these. Here
we briefly discuss two particularly important systems, one a cell
and one an organ, to indicate the range of questions that have
been addressed by biophysicists and other scientists.

The bacterium, Escherichia coli (E. coli), is the most
studied and well-characterized single-cell organism known.
Discovered in 1885, these bacteria are several micrometers
long rod-shaped cells (Figure 1.1), a convenient size for
optical microscopy, and can be easily, cheaply, and rapidly
grown in large quantities. The fact that huge numbers of
these organisms can be rapidly grown has led to a number
of significant biochemical discoveries including the genetic
code, glycolysis, and protein synthesis regulation, and has
made these organisms the powerhouse of genetic engineer-
ing. E. coli bacteria reappear in some of our later discussions
as a prototype cell in learning some areas of physics.
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Although relatively simple in structure, E. coli is sufficiently complex that it
exhibits many of the common structures and properties of all cells. This fact
also explains its widespread study and one has only to open, at random, almost any
book on cell biology, biochemistry, genetics, immunology, or developmental biol-
ogy, to find extensive references to E. coli. The bacterium is surrounded by a
cell wall of several layers that shields it from its environment, the intestinal tract
of humans or the solutions in a scientist’s test tube. Prominent features of the bac-
teria are its nuclear region and its dozen or so long flagella, which it uses for
propulsion. The cytoplasm, or rich broth of biomolecules outside the nuclear
region, contains over one million protein molecules and roughly an equal number
of other macromolecules and complexes, close to one hundred million small
organic molecules including the building blocks of nucleic acids and proteins,
and a similar number of small ions all suspended or dissolved in water, which make
up roughly 70% of the bacteria’s volume (Figure 1.2). The nuclear region contains
the genetic code for the bacterium in the form of a single circular DNA molecule
of nearly five million nucleotides, or building blocks, folded up into a tight struc-
ture with small special-purpose proteins. If spread out into a circle the DNA would
have a diameter of about 2 mm, but in the nucleus it occupies about a 100-fold
smaller size. There are also much smaller circular pieces of extranuclear DNA
known as plasmids, which have become extremely important in genetic engineer-
ing. The slender flagella, about twice as long as the bacterium itself, extend
out from the cell wall into the surrounding fluid, at times in coordinated helical
shapes when propelling the bacteria and at other times in uncoordinated random
directions.

E. coli bacteria have been used to study nearly all aspects of cellular and subcel-
lular problems. These range from the structure and function of particular purified
macromolecular components such as DNA, RNAs of different types, large numbers
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FIGURE 1.2 Cartoon drawing of the
inside of an E. coli showing the
membrane and a flagellum (at the
top left, with the rotary motor protein
shown just beneath the membrane
at the base of the flagellum), proteins
(middle with other smaller mole-
cules), and DNA/histones (bottom).
The drawing is made to scale and
according to relative concentrations.



FIGURE 1.3 Model of the human
heart.

FIGURE 1.4 Atomic force
microscopy image of individual
oxygen atoms arrayed on a crystal.

of different proteins, membranes and proteins bound to membranes, to more
complex whole-cell problems such as communication with the external envi-
ronment, the energy transduction mechanisms within the bacteria necessary to
sustain life, and the basis of the motility of the bacteria. Clearly the cytoplasm
is not just an unorganized soup of macromolecules, small organic molecules,
and ions, but it is a highly organized, compartmentalized, and dynamic
medium that controls the entire set of processes needed for life.

The presence of plasmid DNA in E. coli has led to its major role in genetic
engineering. Portions of DNA from other species which, for example, code for the
production of particular proteins, can be inserted, using particular enzymes, into
E. coli plasmid DNA. Many such copies of the plasmid DNA can be grown, as
bacteria reproduce every half hour under favorable conditions. Thus E. coli can
act as a DNA factory for the production of large quantities of any portion of DNA from
other organisms.

As an example of a more complex structure let’s briefly consider the human
heart and, specifically, the many aspects of its structure and function that involve a
knowledge of fundamental physics. The heart is a multicellular organ (Figure 1.3),
a structure that functions in a coherent manner to produce a cyclic process neces-
sary for life. Adult cardiac muscle cells are one of the few types of cells in humans
that are not replaced and do not divide. These permanent cells contract roughly
three billion times in a typical life, providing the force necessary to circulate blood
through the body.

How does the heart act as a pump? What are the electrical and chemical interac-
tions that control the heartbeat and keep the heart functioning in a coherent manner?
What is the ultimate mechanism by which cardiac muscle generates the contracting
force needed to pump blood to the lungs and to the body? What are the properties of
the blood and of the circulatory system external to the heart that have an impact on the
heart’s functioning? These are but some of the obvious questions that science has been
addressing for many years. We show later in this book that the details of the answers
are not completely known, but that all of these areas involve the application of a vari-
ety of physical principles. To study the flow of blood, we need an understanding of
fluid flow and especially that of a complex fluid, filled with cells so thickly that it
would otherwise behave as a solid if not for the elasticity of the cells. An understand-
ing of the basic force production in muscle involves an understanding of mechanics,
thermodynamics, and electrodynamics. Such phenomena as cell—cell interactions and
coordinated pacemaker action of cardiac muscle cells require an understanding of
electromagnetics as well as of nonlinear dynamics, a rapidly developing area of
physics. Various aspects of the heart are studied using modern physical technologies
including imaging and electrical recording methods in vivo, as well as other more
invasive methods in animal studies. In addition, we mention the technology of the
artificial heart and of heart transplants as medical areas that have associated
basic science research.

4. THE ATOMIC NATURE OF MATTER

One of the most profound ideas of contemporary science is that all macro-
scopic bodies—by which we mean bodies that can be seen with visible
light—are composite. That is, they consist of smaller chunks of matter
called atoms, whose properties are much simpler than those of the bodies
in which they are found. Atoms cannot be seen with visible light, however,
they can be visualized indirectly (Figure 1.4) through various forms of
microscopy that don’t employ light. Atoms in turn, are made of even
simpler pieces of matter called electrons, protons, and neutrons, whose
existence is based on much less direct—although strongly convincing—
evidence. There is excellent reason to infer that protons and neutrons are
also composite, made of elementary bits of matter called quarks. And that
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may not be the end of it; even quarks and electrons may be composite. One specula-
tion along these lines depicts the stuff of which they are made as extraordinarily tiny
vibrations in space and time. For our purposes, trying to understand the physics of
life, we need not worry about such esoteric ideas; we need to worry only about how
atoms and collections of atoms behave.

It is one of the most amazing facts of nature that essentially everything in the
world around us is made from fewer than 100 naturally occurring different kinds of
atoms. An atom has a central nucleus composed of protons and neutrons surrounded
by electrons. In atoms that are electrically neutral, the number of electrons equals the
number of protons. An element is some material that consists of atoms, all of which
contain the same number of protons. Thus, atoms with one proton are said to consti-
tute the element hydrogen, atoms with two protons constitute the element helium, and
so on. The Periodic Table of the Elements, first proposed in 1870 by Mendeleev, a
Russian chemist, is an organization of the known elements into groupings having
similar physical and chemical properties (Figure 1.5). Although atoms of a given ele-
ment all have the same number of protons in their nuclei, they may have different
numbers of neutrons. Two atoms with the same number of protons but different num-
ber of neutrons are said to be different isotopes of the same element. Different iso-
topes behave almost identically as far as chemical reactions are concerned, because
chemical reactions involve atomic electrons only, not the atomic nuclei.

Protons and neutrons both weigh about 2000 times more than electrons. So most of
the “stuff” of an atom resides in its nucleus. Nonetheless, atoms are mostly empty space.
The most common isotope of hydrogen consists of one proton and one electron. Suppose
we represent the proton in a hydrogen atom by the following dot: ¢. About how far away
from this dot would the electron be on average if this dot were the actual size of the pro-
ton? Where the period next to the dot is? Maybe a centimeter? 10 centimeters? A meter?
No. Actually, the electron would spend most of its time roughly 100 meters away (about
the length of a football field)! The average diameter of the electron orbit in hydrogen is
about 100,000 times the diameter of the proton. In atoms with more protons, the elec-
trons spend more time nearer the nuclei, but no matter how many protons and electrons
they contain, atoms are mostly empty. Despite that, it is very hard to squeeze the elec-
trons of an atom closer to their nucleus. It is also difficult to make the electrons of two
atoms interpenetrate. If that weren’t true, it would be impossible for objects to have
more-or-less permanent shapes and sizes.
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FIGURE 1.5 Periodic Table of the
Elements. See Appendix Il for ele-
ment names and discovery year.



AR

o T

FIGURE 1.6 Molecular model of a membrane FIGURE 1.7 Fluorescent microscopy image of the cytoplasm

showing disorder.

of a cell showing actin filament gel-like structure.

The number of atoms in a macroscopic object may well exceed 1020, The inter-
actions of these vast swarms of atoms lead to qualitatively different states of matter.
In all materials at all temperatures, the constituent atoms are in ceaseless disorga-
nized motion. In solids, the microscopic agitation of atoms is sufficiently confined
that the atoms typically do not exchange places. As a consequence, solids have an
essentially permanent shape. In fluids (i.e., gases and liquids), however, atoms can
pass by each other. This swapping of atomic positions produces the macroscopic phe-
nomenon of flow and the microscopic phenomenon of diffusion or atomic mixing
(which we study in Chapter 2). Fluids flow around inside closed containers and adopt
shapes defined by the containers. Fluids don’t have a permanent shape. Solids are
characterized by the regular and enduring arrangement of their atoms, whereas fluids
are characterized by atomic chaos.

Biological materials typically share features of both the solid and fluid states. For
example, biological membranes that surround cells or subcellular components are
basically two-dimensional highly ordered structures that also have a large degree of
mobility within them (Figure 1.6). Their constituent phospholipid molecules tend to
be aligned parallel to each other, but can move about within the plane of the mem-
brane quite rapidly by diffusion. Such highly ordered, but yet fluid structures are
termed liquid crystals. A second significant example is the gel-like nature of cellular
cytoplasm (Figure 1.7). Gels have some of the properties of solids, including a rigid-
ity, but can be greatly deformed as well. Cytoplasm is a complex material consisting
of thousands of different macromolecules, including proteins, nucleic acids, phos-
pholipids, polysaccharides, as well as smaller organic molecules and salts. Under the
control of several different types of filamentous proteins that supply an internal struc-
tural rigidity, the cytoplasm can be changed back and forth between conditions that
are more fluidlike and more solidlike.

5. MASS, DENSITY, AND THE SIZE OF ATOMS: EXERCISES
IN ESTIMATION AND UNITS

Mass is a fundamental property of matter, about which we have more to say in
Chapter 2. For now, it is sufficient to think of mass as a measure of the substance of a
body. Mass can be measured by an ordinary bathroom or grocery market scale, if the
body whose mass is being measured is of moderate size, and by more sophisticated
scales if the body is either too large or too small. Again, we discuss how scales work
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in Chapter 2. The scientific community has agreed on certain standards
of measurement called “le Systéme International de Unités” or SI units of
measurement. The ST unit of mass is the kilogram (kg). Table 1.1 lists the
SI units for various quantities that are taken as fundamental. Table 1.2
lists commonly used prefixes designating fractions and multiples of the
unit measures. A kg is roughly the mass of a rock the size of a grapefruit.
A kg weighs about 2.2 pounds. It is possible to determine the masses of
individual atoms with a delicate scale called a “mass spectrometer.” (We
discuss mass spectrometers in Chapter 17.) Compared with a rock an
atom doesn’t have very much mass. A rule for assessing the approximate
mass of an atom is to look up the number of “atomic mass units per atom”
(designated u/atom) for the atom of interest in the Periodic Table, then
multiply by 1.66 X 10727 kg/u. The number of atomic mass units per
atom is essentially the average number of protons plus neutrons in all iso-
topes of the element in question found on Earth.

Table 1.1 The Units of Measure Upon Which the International
System of Units (Sl) Is Based

Fundamental Quantity SI Unit Abbreviation
Mass kilogram kg
Length meter m

Time second s
Electrical Current ampere A
Temperature kelvin K
Number of Atoms mole mol
Light Intensity candela cd

Table 1.2 Commonly Used Prefixes for Power of Ten Multiples
or Fractions of Base Units

Power of Ten Mutiple Prefix Abbreviation
10715 femto- f
10712 pico- P
1079 nano- n
107° micro- "
1073 milli- m
1013 kilo- k
1076 mega- M
10+9 giga- G
10112 tera- T

ESTIMATES AND THE BIG PICTURE
In this book, we attempt to motivate and
illustrate important concepts with concrete
numerical examples. Detailed numerical cal-
culations undoubtedly are of use when
building a bridge or when evaluating how
much of each ingredient should go into an
explosive chemical reaction, however,
precise values are almost never necessary to
understand the essence of most physical sit-
uations. In fact, order of magnitude
estimates (estimates that round off values to
the nearest power of ten) are usually com-
pletely adequate to see why a piece of
physics is the way it is. For example,
suppose you would like to buy a new car
whose price is on the order of $10* and you
know your bank balance is on the order of
$102. Obviously, there is little point in cal-
culating whether the car’s price is $8,000 or
$12,000, or whether your balance is $80 or
$120. The big picture is that in no case will
you be able to pay cash for the car. In this
chapter we discuss many numerical exam-
ples of sizes of different quantities. In each,
please try to focus on the power of ten. The
order of magnitude is the big picture.

Example 1.1 What is the mass of a typical atom of naturally occurring carbon?

Solution: The Periodic Table (see Figure 1.5) states that naturally occurring
carbon has an atomic mass number of just about 12 u/atom. The average mass
of an atom of carbon on Earth is therefore about (12 u/atom)(1.66 X 10=27
kg/u) = 1.99 X 10726 kg/atom. In this calculation, note how the units of
the answer are manufactured from the units of the pieces. The units are
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treated like algebraic quantities so that the “u’s
(u/atom) X (kg/u) = (kg/atom)
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FIGURE 1.8 A laboratory standard
mass.
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We wish to demonstrate how knowledge of macroscopic properties sometimes
can be converted into knowledge about atoms. Let’s start with the question, how
many atoms are contained in a 1 kg mass of known composition? Suppose, for exam-
ple, we are told that the mass is solid gold. The Periodic Table tells us that gold has
about 197 u/atom. So the mass in kg of a gold atom is 197 u/atom X 1.66 X 1027
kg/u = 3.27 X 1072 kg/atom. The 1 kg is some number of atoms times the mass per
atom, so if we divide the latter value into 1 kg we find that 1 kg of gold contains 1
kg/3.27 X 10723 kg/atom ~3 X 10** atoms. (The “~” means “approximately.”)
That’s a typical number for solids: 1 kg of a solid contains from about 10%* to about
1026 atoms.

A related question is, given the volume of a body whose mass is 1 kg, what material
is the body made from? Actually, in practice one frequently measures some characteristic
lengths associated with a body rather than its volume. So, to make progress on this
problem it is necessary to recall that the volume of a rectangular solid (one for which
each side is a rectangle) is the product of a length times a width times a height. When
the solid is a cylinder with a circular cross-section, its volume is wR? times height,
where R is the radius of the circular cross-section. And, when the solid is a sphere, its
volume is 4mR3/3, where R is the radius of the sphere. (For other cases, the formulae
are more complicated. We won’t worry about such cases.) The SI unit of length is the
meter (m). (A meter is a little longer than a yard.) Thus, a volume has SI units of
meters cubed, m3.

For concreteness, suppose we want to know of what a typical physics lab 1 kg mass
is made. The one shown in Figure 1.8 is a cylinder with a round base 0.046 m in diam-
eter and 0.075 m tall (ignore the hook). As the base is a circle, its volume can be calcu-
lated by the rule V = 7R2 X height. Remember, R is the radius of the circle so it is
diameter/2. The area of the base of this mass is 1.66 X 1073 m? and its volume is 1.25
X 1074 m? (125 cc, or cm3, if you are used to volume in cubic centimeters: 1 cc = 107
m?, or 0.125 L if you prefer liters: 1 L = 1073 m?). (Please check the 1.25 X 10™4 m?
result yourself.)

The next step in this little detective story is to determine the average density of
the mass. The average density (p,,.) of a body is defined as the mass (M) of the body
divided by its volume (V): p,,. = M/V. The average density of our lab mass is there-
fore (1 kg)/(1.25 X 1074 mg) = 8 X 103 kg/m3. This is also a typical result. The
densities of most solids are a few thousand kg/m3. The last part in our sleuthing
requires consulting what is already known about solid densities, as in Table 1.3.
Inspection of such a table indicates that the density of iron (7900 kg/m?) is quite
close to 8000 kg/m3. Of course, our lab mass could be made of a mixture of atoms
(such as brass or stainless steel, e.g.) or have unseen holes inside, but if we are told
it is an elemental solid (one kind of atom) with no internal cavities, then it’s proba-
bly iron.

Table 1.3 Mass Densities of Selected Materials

Material Mass Density (kg/m°3)
Elemental Solids
Aluminum 2700
Carbon (graphite) 2250
Copper 8960
Gold 19,300
Iron 7880
Lead 11,340
Lithium 534
Silicon 2420
Uranium 18,700
(Continued)
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Table 1.3 (Continued)

Alloys, Molecular and Composite Solids

Brass 8400-8700
Steel 7800-7900
Ice (at 0°C) 917
Glass 2400-2800
Hardwoods 500-700
Soft tissue organs 1030-1060
Bone 1900
Liquids
Water (at 4°C) 1000
Blood (at 37°C) 1060
Mercury (at 0°C) 13,600
Gases
Air 1.29
Carbon dioxide 1.98
Helium 0.18
Hydrogen 0.09
Nitrogen 1.25
Oxygen 1.43

A macroscopic measurement of density of a solid body allows us to answer the
question: how far apart are atoms in the body? If we divide the density of a solid body
(mass per unit volume) by the mass per atom we get atoms per unit volume. If we take
the reciprocal of that, we get volume per atom. Now, if we pretend that each atom is
a little cube of side L, the volume per atom is [3. Thus, L is the cube root of the vol-
ume per atom; it is also the average distance between adjacent atoms. See Figure 1.9.
For iron we have 7900 kg/m3/(55.8 u/atom X 1.66 X 10727 kg/u) = 8.53 X 1028
atoms/m>. The volume per atom in solid iron is then (8.53 X 10%® atoms/m3)~1 =
1.16 X 1072° m3/atom, and the cube root of that, 2.26 X 10719 m, is the average
atomic spacing. The distance 10~ !9 m recurs frequently when considering atoms. You
will sometimes find 1 X 10719 m referred to as 1 4ngstom = 1 A, although in keeping
with the SI conventions it is more fashionable these days to use the nanometer: 1 X
1072 m = 1 nm. Thus, 2.26 X 10710 m is either 2.26 A or 0.226 nm.

The average distance between atoms in any elemental solid is roughly the same
as for iron. Some other values are: lithium = 0.20 nm, carbon (graphite) = 0.21 nm,
aluminum = 0.26 nm, copper = 0.23 nm, gold = 0.26 nm, and uranium = 0.28 nm.
Now here is another very familiar result: it is exceedingly difficult to increase the
density of a solid by squeezing it. In other words, in a solid, the atoms are crammed
together about as closely as possible. This fact and the fact that the average spacing
of atoms is about 0.2—0.3 nm for all elemental solids tells us the very interesting and
surprising result that all atoms are about the same size, despite the fact that their
atomic masses vary by a factor of over 200!

Now, you might be tempted to conclude that because liquids flow and
have no permanent shape that the spacing of atoms in liquids wouldbea O O
lot larger than in a solid. Let’s see. A familiar elemental liquid is mercury.

Its density is about 13,500 kg/m? and its u/atom is about 201. From these ONC)
values it is straightforward to calculate that the average atomic spacingin =~ O QO
liquid mercury is about 0.29 nm, not very different from the solids listed

above. How about in water? Water is a molecular liquid. The u/molecule ONG©
for water is about 18 (2 for the two hydrogen atoms and 16 for the oxygen O O
atom). Because there are three atoms per molecule, the average mass per

atom is 6 u. The density of water is about 1000 kg/m3. Consequently, the O O

MaAss, DENSITY, AND THE SIZE OF ATOMS

FIGURE 1.9 A crystal with atoms
arranged in a cubic array with
spacing L. Each atom can be
imagined to lie in a little cube with
volume L8,
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average atomic spacing in water is about 0.22 nm, again, more or less the same value
as in solids. The remarkably different physical properties of solids and liquids arise
from only very small differences in how their atoms are spaced.

What can we say about atomic spacing in gases? The most familiar gas is air, a
mixture of primarily nitrogen and oxygen molecules. Let’s say that the average u/mol-
ecule for air is about 29. Because nitrogen and oxygen molecules contain two atoms,
the average u/atom for air is about 14.5. The density of air at room temperature and at
sea level atmospheric pressure is 1.29 kg/m?3, a value that is something like 1000 times
less than water. The average atomic spacing in air is about 2.7 nm, that is, about 10
times greater than in a solid or liquid. If we squeeze a quantity of air down to 1/1000
of its normal volume, it becomes a liquid; the densities of liquid oxygen and liquid
nitrogen are almost exactly 1000 times that of air.

Because biological materials have properties midway between the solid and
liquid states the spacing of atoms in them is about 0.2-0.3 nm. We can use this idea
to assess how many atoms one might find in a typical biological cell. Cells have
somewhat different sizes, but a typical cell is roughly about 20 X 107 m = 20
micrometers = 20 wm on a side. That is, a cell has a volume roughly about 8 X
1071 m? (obtained by cubing 20 wm). If a typical atom spacing is 0.25 nm,
the volume occupied by an atom is about (0.25nm)3? = 1.5 X 1072 m3/atom.
Consequently, the number of atoms per cell is about (8 X 10713 m3/cell)/(1.5
X 10729 m3/atom) = 5 X 10'* atoms/cell.

A cell has lots of stuff in it. All cells contain DNA, for example. Drawings of
pieces of DNA in textbooks show it as a long, double helix structure. But, just how
long is it? DNA consists of multiple subunits called base pairs (“C-G” and “A-T").
The number of atoms per pair is 27. Typical animal cells have about 5 X 10° pairs
in their DNA. That corresponds to about 1.4 X 10!! atoms. Suppose that all of the
atoms in the DNA molecule were strung end to end in a linear chain. The chain
would be about (1.4 X 10! atoms) X (2.5 X 10719 m/atom) = 35 m long! Of
course, clumping atoms into base pairs of about 30 atoms each saves space. Even so,
if the pairs were strung out in a linear chain, the DNA would still be about 1 m long.
Obviously, DNA in a cell can’t be a linear chain because it would burst through the
cell membrane. It must be stored in a tight coil when “not in use” and only small
portions must be pulled apart when transcription or replication occur. Similar
conclusions can be made about other important ingredients of a cell, such as large
proteins, for example.

CHAPTER SUMMARY

Each chapter has a short summary of the major concepts
in the chapter. Please note that reading these summaries
cannot replace a careful reading of the entire chapter.

Science progresses by developing models, the best
of which are called theories. Physics, the most funda-
mental of the sciences, has had an increasing impact
and relevance in biology as new technologies and basic
understanding has developed.

As examples of physics’ recent impact on biology,
some aspects of bacteria, and of the human heart are
discussed in Section 3.

12

All matter is composite, composed fundamentally
of atoms, made of electrons, protons, and neutrons. We
can distinguish three different states of matter: solid,
liquid, and gas; but there are some common materials
in biology that fall between these, such as gels or lig-
uid crystals.

The SI unit for mass is the kilogram (kg), and
another useful unit is the atomic mass unit (u) where 1 u
= 1.66 X 10?7 kg. (Mass) density, p, is defined as the
average mass per unit volume. Using a value for the den-
sity and for the atomic weight, the typical atomic spac-
ing (comparable to atomic size) is a few nm (102 m).
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QUESTIONS

1.

Discuss the difference between the density of a
material and its volume. Which is an “intrinsic”
property of the material not depending on the
amount and which is an “extrinsic” property? Can
you think of other examples of intrinsic properties
of a material?

Why don’t the elements in the periodic table have
masses that are exactly integral multiples of 1 u? Think
about the effect of different isotopes (elements with dif-
ferent numbers of neutrons) and their natural abundance.

MULTIPLE CHOICE QUESTIONS

1.

Suppose the density of a solid is D and its average
atomic mass is M. Which of the following repre-
sents the average spacing between atoms in the
solid? (a) D/M, (b) M/D, (c) (D/M)'3, (d) (M/D)'3.
The atoms in a solid or liquid are said to be about the
same size as the atomic spacing in the solid or liquid
because (a) solids and liquids are difficult to com-
press, (b) atoms become much larger when they are in
the gas phase, (c) atoms are in electronically excited
states in the gas phase, or (d) the electrons of atoms
in solids and liquids are all confined inside the
respective nuclei.

. A large protein consists of a strand of about 10,000

atoms coiled up into a ball. If the strand were pulled
out into a line about how long (order of magnitude)
would the strand be? (a) 10* m, (b) I m, (c) 1072 m,
(d) 107%m.

The number of gold (197 u/atom) atoms in a gold ring
in the shape of a donut with a diameter of 2.0 cm and a
radius of the cross-section of 2.0 mm is (estimate order
of magnitude) (a) 1029, (b) 1022, (c) 10, (d) 1026.
The interatomic spacing in solids and liquids is about
(@) 0.2 A, (b) 0.2 nm, (c) 0.2 pm, (d) 0.2 pm.

QUESTIONS/PROBLEMS

PROBLEMS

1.

From the Periodic Table of the Elements (Figure 1.5)
calculate the mass (in kg) of an atom of naturally
occurring helium, oxygen, nitrogen, and phosphorus.
Calculate the mass (in kg) of a molecule of carbon
dioxide, a molecule of water, and a molecule of the
amino acid alanine (C;NO,H.).

What is the average distance between silicon atoms in
solid silicon?

. What is the average intermolecular spacing of

the sodium ions in a 1 M solution of NaCl? (A 1 M
solution has 1 mole of NaCl molecules, or 6.02 X
1023 of them, per liter of solution.)

Express the density of gold in units of pg/pm? and in
units of pg/nm?3,

In a cube of bacterial cytoplasm 100 nm on a side
there are roughly 450 proteins. What is the average
distance between these proteins?

The DNA in the E. coli bacteria forms a circle of about
»mm diameter if stretched out. Roughly what is the
mass of the DNA molecule? Assume the following
data for the double-stranded DNA: average molecular
weight of a nucleotide = 325 u; distance between
pairs of bases along the DNA backbone circle = 0.34
nm. If this represents about 1% of the mass of the bac-
teria, what is its total mass?

The entire E. coli chromosome is replicated in
30 min. For this to occur, the double-stranded DNA
must be partially unwound all along its length.
Assuming the roughly 400,000 turns of the DNA dou-
ble-helix unwinds starting at one end and going uni-
formly to the other end, what is the linear speed of the
unwinding site along the DNA? Recall that each turn
of the DNA helix corresponds to 10 base pairs, or to
a distance of 10 X 0.34 nm. What is the unwinding
rate in turns per minute (or revolutions per minute)?
This is comparable to a high-speed centrifuge.
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Newton’s Laws of Motion
for a Particle Moving
in One Dimension

Living cells exchange energy and matter with their surroundings. They reproduce.
Often they move about. To understand such basic aspects of life, it is essential
to understand how motion is related to force and how force is related to energy.
Explaining these relations for an object moving in one dimension is the goal of this
and the next two chapters.

Before beginning to read and master the formal discussion of motion that follows
in this chapter, however, it is very useful to remind ourselves what it feels like to
move at constant velocity and to accelerate. Recall how it feels to ride in a car along
a straight flat highway that has recently been resurfaced. If the car’s speedometer is
fixed at a constant reading you can close your eyes and not know you are moving at
all, no matter how fast the speedometer says you are moving. Of course, roads aren’t
straight and flat for very long stretches. You feel clues that you are moving from the
little bumps and turns the car makes. Riding in an elevator is probably a better exam-
ple. Once the elevator gets going, only the flashing floor numbers give any hint that
anything is happening, no matter how fast the elevator is traveling or whether you are
going up or down. In both car and elevator examples, when you feel as if you are at
rest you are moving in a straight line at a constant rate. This kind of motion is called
constant velocity. Constant velocity feels exactly like standing still.

When the car turns or goes over a bump or speeds up or slows down, or when the
elevator starts or stops, you definitely feel it. All such instances involve change in
velocity. Change in velocity is called acceleration and acceleration can be felt. If a trin-
ket dangles by a thread from the car’s rear view mirror you can see it deflect from hang-
ing vertically at the same instant you feel acceleration. If by some bizarre chance, you
are standing on a scale as the elevator starts or stops, the scale’s reading will change
when you feel the acceleration.

Why you feel acceleration but not constant velocity, why acceleration causes the
trinket to deflect and the scale reading to change, all require an explanation. That
explanation is contained in Newton’s laws of motion, discussed in this chapter. In
order to understand the content of Newton’s laws, we have to be able to describe
motion with quantitative precision. The major goal of this chapter is to demonstrate
how a body’s interactions with its surroundings can explain changes in its motion. We
use the term force to denote a quantitative measure of interaction. The theme of this
chapter, then, is that force explains (causes) acceleration. As discussed previously, any
macroscopic body is a collection of smaller, more fundamental pieces. A complete
understanding of the changes in motion of a macroscopic body requires keeping track
of the forces experienced by every subpiece of the body due to every other subpiece
(these are called internal forces) and due to every other additional body (external
forces). In this chapter, all bodies are treated as particles and all changes in motion
arise from external interactions. This simplistic view allows us to develop powerful
tools that can subsequently be applied to more general and more realistic behaviors.
The chapter ends with a short discussion of diffusion, the random thermal motion of
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FIGURE 2.1 An object undergoing
rigid translation. All parts do what
the center of mass (+) does.

16

small particles, to contrast this type of motion with that described in the rest of the
chapter. Diffusion is an extremely important process in biology, playing a major role
in our existence through, for example, gas, nutrient, and waste exchange in the blood.

1. POSITION, VELOCITY, AND ACCELERATION
IN ONE DIMENSION

Until we get to Chapter 23, we are interested primarily in phenomena associated with
objects that can be seen (perhaps with the aid of a microscope or telescope) with ordi-
nary light. That doesn’t narrow our interests very much. On the small end, we can
certainly see inside living cells; on the large end we can see clusters of galaxies. All
objects that can be seen with light are composite, that is, composed of smaller pieces
of matter. Organisms, for example, are composed of cells; cells are composed of mol-
ecules; molecules are composed of atoms; atoms are composed of nuclei and elec-
trons. As we show in Chapter 6, we can assign to any object a unique point called the
object’s center of mass. The motion of any object can then be thought of as consist-
ing of two parts: motion of the center of mass and motion about the center of mass.
For now, just think of the center of mass as the body’s “center.”

If a body moves so that all of its composite pieces do exactly what the center of mass
does—for example, when the center of mass of the body moves 1 m north each compos-
ite piece also moves 1 m north—the body is said to undergo a rigid translation (see
Figure 2.1). An object undergoing a rigid translation can be treated as a point particle, a
mass without spatial size. Its shape and extent in space are irrelevant.

To start, imagine some object of interest moving along a straight line. The object
can be microscopic (such as a protein molecule or a bacterium) or macroscopic (such
as a car or even you, yourself). Motion along a line is called one-dimensional because
only one coordinate, x, say, is needed to describe it. Here, then, x designates the loca-
tion of the center of mass of a car measured from an arbitrary origin. There are two
directions to go along the coordinate axis from its origin. We distinguish between
them by saying one is the “positive” direction, the other the “negative.” Thus, x is a
signed number having units of length.

Whether it is the motion of our car or the motion of a molecule, in practice we
measure one position at one time, then another position at another time, and so on,
over and over. That is, in any experiment the data we collect are a sample of the
motion acquired at discrete instants. This is true irrespective of what apparatus or
technique we employ. For example, we (or a policeman) might use radar or sonar
to identify where our car is at various moments. Such devices send out a signal
and receive its echo, then another signal and its echo, on and on. Between signals
we know nothing; there are gaps in the data. The same is true if we videotape a
moving object. Video is really a succession of still frames (in the United States,
one every thirteenth of a second). We can get detailed information about the object
every frame, but nothing in between. The results, consequently, comprise a table
of positions (measured with finite precision and limited accuracy) recorded at
discrete sampling times. In other words, our experiment yields a finite set of posi-
tion values {x(z,), x(,), x(#3), . . .} where x(¢)) is the position measured at time 1,,
x(t,) is the position at time 7,, and so on. Although we believe that our car or a bac-

terium moves continuously in time (i.e., the closer ¢, and t, are to
each other, the closer x(z;) and x(z,) are to each other), the best
we can do, even if (as is frequently the case) we are aided by a
high-speed computer with lots of memory, is obtain a broken and
punctuated approximation to its theoretical, continuously flow-
ing motion.

In this book we use the International Standard (SI) units in
which lengths are measured in meters (m), although often we refer
to small fractions of meters (e.g., cm, mm, pm, and so on) or large
multiples of meters (in particular, km); see Table 2.1.

NEWTON’S LAWS OF MOTION



Table 2.1 Commonly Used Units of Distance

Name Abbreviation Multiple of a Meter Roughly Comparable to
Meter m 1 Length of your arm
Centimeter cm 1072 Length of a (new) pencil eraser
Millimeter mm 1073 Width of a pencil point
Micrometer pm 1076 Length of a cell

Nanometer nm 1079 Diameter of a small molecule
Kilometer km 10*3 Half a mile

A table of numbers is not usually a very useful way to characterize motion. Table 2.2
provides an example. In this table, we see the results of three different observers record-
ing the motion of the same remote control toy model car (Figure 2.2), using the same
coordinate system and the same starting time (i.e., the instant they all call # = 0 s), but
with three different sampling rates (one every 2 s coded in blue, one every 1 s in green,
and one every 0.5 s in red, respectively). (The second, incidentally, is the SI unit of time,
often abbreviated as just s.) There is typically too much to keep track of in a table; it’s
hard, with tabular information, to see a “big picture.”

Table 2.2 Table of Observations on the Position of a Remote Control Toy Car
as a Function of Time

Observer #1 Observer #2 Observer #3
Time (s) Position (m) Time (s) Position (m) Time (s) Position (m)
0 0.890 0 0.890 0 0.890

0.5 0.663

1 0.567 1 0.567

1.5 0.968

2 0.909 2 0.909 2 0.909
2.5 0.633

3 0.535 3 0.535

3.5 1.008

4 0.700 4 0.700 4 0.700

More useful than a table is to make a plot of the data, plotting position x(¢) versus
time ¢ with 7 (the independent variable) plotted on the horizontal axis and x(¢) (the
dependent variable) plotted on the vertical axis, as in Figure 2.3
using the same color codes for the different observers.

In the figure, we have attempted to fill in missing
information by interpolating between data points (in this case, by
simply “connecting the dots” with straight lines). Interpolation
of Observer #1’s data (in blue) gives a very crude picture of the
car’s motion over the interval O s to 4 s. Observer #2’s data (in
green) provides more detail and #3’s (in red) even more. By
interpolating, we are creating a model of the car’s motion that
will allow us to say something about where the car was at times
not observed.

The word “model” is used a lot in physics. A model is a rep-
resentation or an approximation of a thing, not the thing itself.
Some models are better than others: for example, the blue
model of the car’s motion shown in Figure 2.3 is not as infor-
mative or accurate as the red model. The former model has less
of a “database” to support it than does the latter. The blue model

PosIiTION, VELOCITY, AND ACCELERATION IN ONE DIMENSION

FIGURE 2.2 A remote controlled
car whose motion we study.
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position (m)

can be thought of as “provisional,” a kind of first approxima-
tion. As we acquire more and more data that model is replaced
by more and more sophisticated approximations.

We can imagine that if the observed sampling rate is
increased so that data are taken more and more frequently, the
resulting plots would more and more define a smoothly continu-
ous curve of some sort. In fact, if we are lucky we might even be

time (s)

FIGURE 2.3 The position data of
Table 2.2 plotted for each observer.

18

able to fit an analytic expression to the data, producing an equa-
tion model for the car’s instantaneous position, x(f), that is, an
explicit relationship between position and time that would allow
us to determine the car’s position at any instant (not just at the
times of measurement). Such analytic models are especially useful because they allow us
to make predictions about events not yet witnessed.

Given a position record such as that shown in Table 2.2, or, equivalently, in
Figure 2.3, we can define a number of useful quantitative tools. First, we have the
notion of distance traveled in some time interval. The total distance traveled in any
interval of time is the sum of the distances traveled during each subinterval of the
motion. Furthermore, each contribution is positive, irrespective of in which direction
the motion takes place. Formally, distance equals the absolute value of change in
position. Thus, according to Observer #1 in Table 2.2, the total distance covered by
the car in 4 s is 0.228 m, that is, from a position of +0.890 m out to +0.909 m (a dis-
tance of 0.019 m), then back to +0.700 m (an additional distance of 0.209 m).
According to #2, the total distance the car travels is 1.204 m, and according to #3 the
total distance is 1.938 m. Make sure you understand why.

The average speed over a certain time interval is the total distance traveled in that
interval divided by the elapsed time. So for the three observers of Table 2.2, #1 assigns
to the car’s motion an average speed of 0.228 m/s = 0.057 m/s, #2, 0.301 m/s, and #3,
0.485 m/s. (Note that in calculations units are treated as algebraic quantities.)

Next, we introduce the notion of the displacement, Ax, in a time interval 1, 1o 1,
(“7” implies “initial”, the beginning of the interval, and “f” “final”, the end of the
interval). (Here, and more generally, the Greek letter A [capital “delta”] denotes a dif-
ference between two values.) Displacement is the directed distance

Ax = x(tf) — x(t,).

Displacement can be positive, negative, or zero (as opposed to distance, which
is never negative), with the sign indicating the net direction of the associated
motion. Thus, in the example of Table 2.2, all three observers agree that the
displacement of the car, Ax, for t;=0s tot,=2sis +0.019 m (displacement
in the + direction during this interval), for 1, =2s to ty=4s is —0.209 m
(displacement in the — direction during this interval), and for the entire interval
from#; = 0stos,=4sis —0.190 m.

The average velocity v of our car is defined for a specific interval of time,
At = 1, — 1, as

Ax

" 2.1

v =
Notice that this expression is different from the average speed, because it is not
the distance traveled but the displacement that is in the numerator. Unlike the aver-
age speed, which is always positive, the average velocity can be positive, negative, or
zero depending on whether Ax is positive (moving to the right), negative (moving to
the left), or zero (either there was no motion or the object has returned to its starting
point). Again, all three observers in Table 2.2 agree that the car’s average velocity is
+0.010 m/s from ;= 0s to = 2s, —0.105 m/s from 1, =2s to t= 4, and
—0.048 m/s from ¢, = 0's to 7, = 4 s. (Contrast these results with their conclusions
about average speeds over the same interval.)
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Average velocity is a statement about the tendency for an object to move over a
finite time interval. In between the starting time and the ending time, the object can
do lots of interesting things that are not accounted for by the average velocity. Of
course, as we increase our sampling rate and make our time interval smaller and
smaller, less and less departure from the average motion will occur in an interval of
time. This leads us to a still different (more refined) concept, namely, that of instan-
taneous velociry. Imagine starting at some generic time #; = ¢ with our car at x(7) and
going to x(t + Ar) at t,= r + Az, some time later. The instantaneous velocity of the
car at time ¢, v(¢), is defined as

) X
v = lim —. (2.2)

The symbol “lim,, ,,” is read, “in the limit as At approaches 0.” Operationally, it
means “make the sampling rate so fast that the average motion and the exact motion
in the time interval Ar are indistinguishable.” You can think of this as the velocity
reported by a car’s speedometer.

As we said before, we believe that our car moves continuously in time.
Continuous, here, means that we can make a plot of position versus time without
ever lifting our pencil off our paper. There are no holes or jumps in such a plot. In
other words, we don’t believe that our car (no matter how spiffy) is ever at x(#) one
instant then at a very different x(r + Ar) an extremely short time later. Thus, despite
the fact that we are making Ar exceedingly small in the denominator of Equation
(2.2)—and therefore seemingly threatening to make Ax/Af exceedingly large—Ax in
the numerator is also getting smaller and smaller, and the ratio of the two remains
nice and finite.

Moreover, we also tacitly believe that the car’s motion is smoothly continuous.
“Smooth” means that there are no instantaneous “jerks.” If the car has a nice, finite
velocity v(¢) at time ¢, its velocity v(¢ + A¢) is not much different a short time At later.
As we argue in just a bit, smoothly continuous means a plot with neither holes nor
sharp points (cusps).

Well, the formal definition of a velocity at an instant may be clear, but how do
we actually use the definition? How, for example, do we assign a number to it? The
answers to these questions depend on what information you have at the start. First,
suppose another observer has taken a great deal more of the car’s position data and
fit a smooth curve to the data points. This smooth curve is presented to you as an
accurate model of the car’s motion at any time. Such a plot is shown in Figure 2.4a.

Let’s try to determine, from the curve given to us, the car’s instantaneous
velocity at t = 1s. The position at 1s is +0.567 m. We take a second time,
t + At = 4 s, say, and the corresponding position (read from Figure 2.3 or 2.4a or
looked up in Table 2.2) is +0.700 m. We conclude that the average velocity over
that interval is

[+0.700 m] — [+0.567 m]

V= 4s—1s = +0.044 m/s. FIGURE 2.4a Smooth curve of the

position versus time for the car.

Note that this average velocity is the same as the slope of
the line connecting the points (1s, +0.567 m) and (4 s,
+0.700 m) on the graph in Figure 2.4a (because slope is
calculated by dividing rise [or fall] in the vertical direction
by the corresponding run in the horizontal direction, and, in
this case, that is Ax/Ar).

Now, let’s take ¢ + Ar to be 3 s. Given that x(3 s) is
+0.535 m, we calculate the average velocity in this interval
to be —0.017 m/s. Then, take ¢ + At = 2's. The average
velocity from 1s to 2s is +0.342 m/s. Every interval we’ve

x (m)

PosITION, VELOCITY, AND ACCELERATION IN ONE DIMENSION 19



0.4

tangent line to curve
at (1 s, +0.567 m)

picked so far has yielded quite a different average velocity.
None of these can be said to be the instantaneous velocity at
t = 1 s, because the Azs aren’t very small in any of these exam-
ples. Now switch your attention to Figure 2.4b. Here the piece
of the plot between ¢ = 0.75 s and r = 1.25 s is magnified. If we
take r + Ar = 1.25 s, we obtain for an average velocity about

[+0.79 m] — [ +0.567 m]
125s—1s

= +0.89 m/s.

Finally, we take ¢ + Ar = 1.13. The average velocity in this

0.75

1
Time (s)

FIGURE 2.4b Zoom-in around
t = 1 s data from Figure 2.4a.

FIGURE 2.5 Velocity of the car
obtained from its position versus

time curve.

125  interval is +0.82. These last values are beginning to get closer.

We’re beginning to hone in on the desired velocity.
We see that the bold line connecting the point (1 s,
+0.567 m) to the point (1.13 s, +0.67 m) is difficult to distin-
guish from the curve passing through (1s, +0.567 m). If we magnify a piece of a
smooth curve enough at any of its points, the curve looks progressively like a little
straight line segment at that point. That line segment is called the tangent line to the
curve at the point. So, in other words, the smaller and smaller we choose At, the closer
and closer the line connecting (1 s, +0.567 m) to (1 s +A¢, x(1 s + Ap)) is to being the
tangent line to the position versus time curve at the point of interest (i.e., [1 s, +0.567
m]). And, the instantaneous velocity is the slope of the tangent line at that point (about

+0.66 m/s for our example).

Given a smoothly continuous position versus time graph (such as Figure 2.4a) we
can make a graph of how velocity varies with time by estimating the slope of the tan-
gent line to the curve at successive times and plotting the resulting values. We do this
at some selected times and then connect our best estimates in order to obtain a smooth
curve for a velocity versus time graph. In principle, one can imagine an automatic cal-
culator that could move along the curve in Figure 2.4a continuously finding the tangent,
computing its slope, and then plotting these values as we have done in Figure 2.5.

In Figure 2.5, several tangent lines to the position versus time curve (the lighter
curve) are displayed. All have zero slope and the velocity graph at those correspond-
ing times shows zero velocity. The associated instants in time correspond to “turning
points,” instants where the car changes direction. Between turning points the car
moves continuously in one direction. Thus, from instant a to instant b the car moves
toward the origin, and from instant b to instant c, the car moves away from the ori-
gin. While moving away from the origin (to more positive x-coordinates), the car’s
velocity is positive (the slope of the tangent line to the position versus time curve at
any instant in this interval is positive) and while moving toward the origin (to less

positive x-coordinates), the car’s velocity is negative. Note that at
the moments the car changes direction, its velocity is instanta-

2

position

neously equal to zero; that is, the car is instantaneously at rest.

If we had an equation for the curve in Figure 2.4a, that is, an
explicit relation between x and ¢, we could utilize Equation (2.2) to
determine an equation for how velocity varies in time. The transla-
tion of x(¢) into v(¢) is the heart of what we call calculus. These
days, computers can do this translation for us.

You can see that the velocity of our car portrayed in Figure 2.5

varies in time, much as position does. Because velocity is rate of

2 3 4 change of position, it is also useful to define rate of change of
0.5+ velocity. Indeed, as we show in Chapter 3, rate of change of veloc-
ity is the centerpiece of Newton’s laws of dynamics.
-1 The average acceleration is defined, in a similar way to the
154 velocity average velocity, as
2 a=2 2.3)
- a=—, .
Time (s) At
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where Ay = v(t) — v(1). Note that the average acceleration 10
reflects the change of the velocity with time and that in order to 8.l velocity
calculate the average acceleration from this definition, you must 6l
first have a graph of (or equations for) the velocity versus time and
then obtain the ratio in Equation (2.3) for the time interval of inter- 4+
est. The average acceleration can be positive, negative, or zero 21
depending on whether v is increasing (Av is positive), decreasing . ~{
(Av is negative), or is the same at the two ends of the time interval 01 1 | 3 \
of interest (regardless of what occurred during the interval of time). -2 4
Acceleration is change in velocity per unit time, so its units are 4l
velocity units divided by time units: (m/s)/s = m/s?, for the car
example given above. °7 acceleration

We define, analogous to instantaneous velocity, the instanta- -8 7
neous acceleration (or simply the acceleration) as ~10

Time (s)
FIGURE 2.6 Acceleration of the car
a = lim 7". (2.4) optained from the velocity data of
A~0 At Figure 2.5.

Just as velocity at any instant (for motion in one dimension) is the slope of the tan-
gent line to the position versus time curve at that instant, the acceleration at any
instant (for motion in one dimension) is the slope of the tangent line to the velocity
versus time curve. Thus, if we are given a plot of v versus ¢, we can approximate a
versus ¢ by sketching tangent lines at a number of instants, estimating the respective
slopes, plotting those values, then interpolating. Starting with the velocity plot in
Figure 2.5, we can then generate an acceleration plot, as in Figure 2.6. We identify
several instants at which the acceleration vanishes by noting where the velocity ver-
sus time curve has tangent lines with zero slope. Note that the acceleration is not zero
when the velocity is zero nor is the velocity zero when the acceleration is zero. The
two quantities measure different things and it is important to keep them straight.

Previously, we said that the motion of our car (or any other object) should result
in a position versus time graph that is both continuous and smooth, that is, with no
holes (discontinuities) or sharp points (kinks). No holes ensures that the position
doesn’t abruptly change from instant to instant. No kinks ensures that the velocity
doesn’t abruptly change from instant to instant. The analysis of motion could con-
tinue with additional quantities, such as the time-rate-of-change of acceleration, and
the time-rate-of-change of that, and so on. Remarkably, such additional quantities are
unnecessary for a complete understanding of how objects move about. Newton’s laws
of motion, the subject of the next section, tell us that acceleration is the most com-
plicated piece of motion analysis apparatus we need.

2. NEWTON'’S FIRST LAW OF MOTION

The gist of the preceding section is that there is an intimate mathematical connection
among position, velocity, and acceleration. In essence, if we know an object’s position
over time we can infer what its acceleration must have been; inversely, given its accel-
eration we can make inferences about its position. Although they are intertwined, math-
ematics and physics are not the same thing. In this section, we begin to probe the
physical rules that underlie the mathematics of motion. Constant velocity can’t be felt,
but acceleration can be. What you feel when you accelerate is physics. Acceleration is
the key that unlocks the secrets of much of the physical universe. Constant velocity
doesn’t require an explanation, but acceleration does.

Perhaps you are puzzled by the last sentence. Everyday experience tells us that to
start a body moving we have to give it a push. When we stop pushing, the body comes
to rest. In our everyday experience, rest is the natural state of things. In our everyday
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experience, it is velocity that requires a cause. It took many centuries of human intel-
lectual development before we (that is to say, Galileo, in the seventeenth century) rec-
ognized that our common experience is dominated by two phenomena that acting
together obscure from us the truth about motion. One of these, gravity, makes things fall
down. The other, friction, makes them stop.

It’s a pity that Galileo didn’t have an “air table” to play with. If he had, he
wouldn’t have had to work so hard to uncover the truth about motion. An air table has
many holes in its top, through which jets of air can be squirted. Maybe you’ve seen an
air table at a game arcade (or, perhaps in an introductory physics laboratory). Often
hockeylike games are played on them using pucks that are levitated by the squirting
air. When the air is turned off and the puck is pushed, it quickly comes to rest. Gravity
makes the puck fall to the table and friction makes it stop. When the table is level and
the air is on, the puck hovers in one place. The jets of air effectively cancel gravity out
and render friction negligible. On a properly leveled air table once a puck is pushed it
travels off at constant speed in a straight line, until it hits a sidewall. Between the ini-
tial push and when it hits the wall, no additional push is required to keep the puck
going. The natural state of a body’s motion is constant velocity (zero velocity, i.e., rest,
is a special case). No external influence is required to keep the puck moving, however,
an influence from outside is certainly required to change its velocity.

Isaac Newton, in his Principia Mathematica (1687), greatly extended Galileo’s
insight that change in motion requires cause. The first of Newton’s laws is a kind of
statement of faith. It says that

It is possible to find laboratories (“frames of reference”) in which a body’s accel-
eration is solely attributable to interactions between that body and other bodies.

In the laboratories of Newton’s first law a body never accelerates spontaneously;
every acceleration is caused by an interaction. That a body does not spontaneously
accelerate is attributed to a property of all material objects called inertia. The frames
of reference of Newton’s first law are said to be inertial frames.

It is usually desirable to observe and describe motion in inertial laboratories,
because in them every acceleration is caused by identifiable pushes and pulls and, as
we show, the associated quantitative analysis is straightforward. Spontaneous accel-
erations observed in noninertial frames necessitate inventing fictitious causes for
their explanation. For example, suppose you jump off the roof of a building (we are
not recommending you do this!). You will notice that in the frame of reference you
carry with you all objects—such as the building, people standing on the sidewalk
below, and the Earth itself—accelerate towards the sky with exactly the same accel-
eration. There is no identifiable interaction that causes all of these simultaneous
spontaneous accelerations. To explain them requires assigning a fictitious cause.
You're carrying a poor frame of reference for doing physics, a fact that will be
painfully apparent when the upward accelerating ground reaches you. People stand-
ing on the sidewalk will offer a simpler picture of what is occurring. They will say
that it is you who is accelerating, and that there is an easily identifiable cause: the pull
of gravity of the Earth. This situation is general: any frame of reference in which
accelerations occur without cause must itself be accelerating.

There is another, perhaps more common, way to state Newton’s first law, given
our understanding of an inertial reference frame.

In inertial reference frames, objects traveling at constant velocity will maintain
that velocity unless acted upon by an outside force; as a special case, objects
at rest will remain at rest unless an outside force acts.

NEWTON’S LAWS OF MOTION



It’s not hard for us to accept that an object at rest will remain at rest, but it is very
hard to accept the fact that an object will move at constant velocity unless an outside
force, one originating from another object, acts. Friction is so common in our expe-
rience that we often don’t realize it is almost always present and acting to slow
objects down.

Noninertial frames of reference abound. For example, while driving your car you
rapidly accelerate from rest at a stoplight. A box of cookies on the seat next to you
spontaneously slides toward the back of the seat and at the same time the trinket
hanging from your rear view mirror also spontaneously accelerates to the rear. No
object can be found that causes these accelerations. By speeding up, your car
becomes an accelerated reference frame. Similarly, if you spin around on a lab stool
you will observe all objects in your vicinity orbit around you in circles. Because they
travel in circular paths in your reference frame, we show later that they must accel-
erate. But, again, no object can be identified as the cause of these accelerations.
A spinning frame is noninertial.

The latter example draws attention to the following cautionary tale. As the day
passes on Earth we see remarkable events in the sky. The sun rises and sets, seem-
ingly orbiting the Earth in a circular path. Then the moon, the stars, and even the most
distant galaxies do the same thing. All traveling in circles about the Earth, all, from
our vantage point, therefore accelerating. To explain how all of these accelerated
motions occur requires a very complicated picture of how the Earth could possibly
cause them. A much simpler explanation is that the Earth is spinning: we, on the
Earth, live in a noninertial frame of reference. Does that mean we have to leave the
Earth in order to observe the validity of Newton’s law(s)? That depends on what you
want to measure. If you are doing an experiment that is completed in a few minutes
and/or is confined to a small region of the Earth, the acceleration of your laboratory
is probably ignorable. On the other hand, if you are interested in the motion of large
volumes of air moving for hours above the Earth, for example, your acceleration will
make what you see more difficult to explain. (The apparent circulation of winds
around high and low pressure cells results from the acceleration of the Earth relative
to the air. There is no body that can be identified as causing those circulations.)

3. FORCE IN ONE DIMENSION

The acceleration of any body is caused by interactions with other bodies. Dynamics
is an exact mathematical formulation of the connection between acceleration and
“interaction.” How is the qualitative notion of “interaction” made mathematically
precise? An interaction is a push or a pull. An interaction has a magnitude, or size,
and a direction. In one dimension, say along the x-axis, there are only two choices for
direction: along the positive x-axis direction or along the negative direction (right or
left along the axis). We call such objects, with both a magnitude and a direction, vec-
tor quantities; a vector quantity in one dimension is simply a signed number mea-
sured in appropriate units. Examples of vector quantities from the first section of this
chapter include position, displacement, velocity, and acceleration. Each of these has
both a magnitude and a direction associated with it. On the other hand, quantities
such as distance traveled or average speed do not have a direction and are called
scalar quantities. We indicate vector quantities by placing an arrow over their sym-
bol, for example, the acceleration vector d. The simplest assumption we can make is
that a physical interaction also can be represented mathematically by a vector quan-
tity. We call such vectors forces and our first goal is to provide an operationally
meaningful definition for force.

The definition of force we seek relies on a sequence of reasonable assumptions
and their logical consequences. First, from our study of kinematics earlier in this
chapter, we recall that acceleration, like force, also has a magnitude and a direction
and is thus a vector quantity. Everyday experience suggests that when we push an
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FIGURE 2.7 Spring scale used
to measure weight.
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initially resting object in a given direction the object accelerates in that direction. So,
we reasonably assume that when a body experiences a single interaction, the vector
force (the cause) and the vector acceleration (the result) are parallel and that one is,
at most, just a scalar multiple of the other.

Next, suppose a body experiences more than one interaction at any instant.
Interactions are represented by force vectors, therefore we assume that the vector
sum of the individual forces is equivalent to a single force that would yield the same
acceleration. The vector sum in one dimension is simply obtained by adding the
signed numbers representing the individual vectors. For example, given two accel-
eration vectors with magnitudes of 3 and 4 m/s?, both pointing along the positive x-
axis, the vector sum is 7 m/s? also along the positive x-axis, whereas if the second
vector points along the negative x-axis, the vector sum of the two is (3 — 4) = —1
m/s2, where the negative sign indicates that the direction is along the negative x-axis.
Clearly it only makes sense to add two vectors that represent the same physical
quantity, for example, accelerations. (Just as you shouldn’t add “apples and
oranges” because the result mixes the two kinds of fruit together and has no imme-
diate interpretation, adding a force to a velocity doesn’t make physical sense either.)
Vector addition in one dimension can be generalized to add any number of vectors
using simple arithmetic (Just adding positive and negative numbers). If the vectors
we are adding are force vectors acting on an object, the vector sum represents the
net force on the object. In particular, if a body is at rest or traveling with a constant
velocity (i.e., not accelerating) the vector sum of all forces acting on the body must
be zero, assuming we are in an inertial reference frame. We can exploit this quite
reasonable assumption to develop a method for measuring force.

We know that all objects near the Earth fall if they are not supported. The cause
of this downward acceleration is a field force. We say that the Earth is responsible for
this force because it exerts a “gravitational pull” on all bodies in its vicinity. It is tra-
ditional to call the force of gravity of the Earth on any object the object’s weight. We
often measure weights by using a spring scale, such as the familiar hanging scales in
a grocery store. When we place some tomatoes on a grocery scale, the tomatoes cause
a spring to stretch and a needle to deflect. The deflection of the needle is taken to be
a measure of the “weight” of the tomatoes. This happens primarily because the Earth
somehow pulls the tomatoes down toward it and the scale somehow gets in the way
and keeps the tomatoes from falling. The word more commonly used by physicists
for a pull (or a push) is force. The force the Earth exerts on the tomatoes is called
gravity. There’s a wondrous thing about gravity: gravitational pulls exist even though
the bodies involved don’t touch. The Earth reaches out across empty space and pulls
on the tomatoes. (Of course, the space between the Earth and the tomatoes isn’t really
empty: it’s filled with air. But, we can get rid of the air, in a vacuum chamber, for
example, and when we do we find that the pull of gravity is almost exactly the same.)
Forces that exist across empty space are said to be field forces. In the field force pic-
ture, the Earth is viewed as creating a “gravitational force field” in the space around
it. When the tomatoes are placed in the Earth’s field they respond by falling toward
the Earth. The scale, on the other hand, is doing something more directly to the toma-
toes. It appears to stretch only when it is in direct contact with the tomatoes. The
force the scale exerts on the tomatoes is an example of what is called a con-
tact force. When the tomatoes hang from the scale without moving, the
force down on them by the Earth is said to equal the force up on them by
the scale.

This works because of a very useful property of springs. Suspend a
simple spring from a fixed support. Attach an object to the free end of the
spring and gradually lower the object until it can be let go and remain at
rest. In this state of persistent rest, the object is not accelerating so the
spring must be exerting an upward (contact) force on the object, balancing
out the Earth’s downward pull (field) on it. We note that the spring is
stretched. The amount by which the spring has been stretched can be used
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to measure the force it is exerting. (See Figure 2.7.)
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Suppose we have another object that is identical to the one that is already hang-
ing from the spring. (We can check whether the weights of the two objects are iden-
tical by suspending them individually from the spring and noting that the stretch is
the same in both cases.) Attach the second object to the end of the spring along with
the first. We assume that these two bodies together are equivalent to a third body
whose weight is twice that of the individuals. As long as the two hanging bodies are
not too heavy (so that their combined weight does not permanently deform the
spring) the new stretch is observed to be twice that when the spring is supporting just
one of the bodies. In other words, the amount of stretch is directly proportional to the
weight the spring supports, or, equivalently, the amount of stretch of a spring is a
direct measure of how much force the spring exerts. Similarly, if we have two iden-
tical springs (two springs that stretch exactly the same amount when the same mass
is suspended from each) and we hang a single weight by both springs as in Figure
2.8, we find that they each stretch by half the distance they would stretch if they each
supported the full hanging weight. This should make sense because each spring is
supporting half the weight with an equal upward force.

In principle, we can imagine measuring any force on any object by replacing the
force we are interested in by an appropriately calibrated, stretched spring (big stiff
ones for large forces, and tiny flexible ones for small forces), keeping all other forces
as before, and generating the same acceleration as when the replaced force is present.
Because a spring exerts a force along its length, the direction of the spring corre-
sponds to the direction of the replaced force and the stretch of the spring determines
the force’s magnitude.

4. MASS AND NEWTON’S LAW OF GRAVITY

The Earth isn’t the only object that creates gravity. Every mass creates a gravitational
pull on every other mass. You actually pull the tomatoes you weigh in the grocery
toward you a little (and they pull you, too). It’s just that the Earth’s pull is so much
greater than yours, you don’t realize you’re doing it. Mass plays two roles in pro-
ducing a gravitational force. First, one mass creates a gravitational field in the space
around it. Then, a second mass placed in the field of the first experiences a force due
to the first’s field. The two masses reciprocate in their pulls. The second makes a field
of its own and the first, being in the field of the second, feels a force due to it. We say
that a gravitational field has a direction—it points toward the mass making it—and a
size, or magnitude. Let’s call the magnitude of the gravitational field made by a mass
M, g,,- The magnitude of the force this field produces when a mass m is placed in it
is defined to be F ¢ 3, . ,, = Mg, Like mass and length, force has its own SI unit, the
newton (N). (You don’t find the newton in Table 1.1 because force is not defined as
a fundamental quantity. It is expressible in terms of mass, length, and time, as we
show in the next section. Because it is expressible in terms of fundamental units it is
called a derived unit.) Gravitational field is gravitational force divided by mass, so
the units of gravitational field are newtons per kilogram, N/kg.

We say that a body’s weight (near the Earth) is the gravitational force the Earth
exerts on that body. Thus, a mass m weighs

Wmass m FEarth onm . M8Earth (2'5)

ST units of mass (the kg), distance (the m), time (the s), and force (the N) were his-
torically developed to be independent of the Earth’s gravitational pull. Thus, a
mass of 1 kg does not weigh 1 N, for example. Rather, under the SI conventions,
we find that a mass of 1kg near the Earth actually weighs about 9.8 N.
Consequently, we say that the gravitational field of the Earth is about 9.8 N/kg
near the Earth’s surface.

Why is the condition “near the Earth’s surface” important? Well, it turns out that the
strength of a mass’s gravitational field gets weaker the farther away one is from the mass.

MAss AND NEWTON’S LAW OF GRAVITY
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Very careful measurements in the laboratory show that if the centers of two uniform (i.e.,
no holes or irregularities), spherical masses, M and m, are separated by a distance r, then
M pulls m with a gravitational force whose magnitude is given by (see Figure 2.9)

Mm

FMonm=G7 (2.6)

The quantity G is independent of which masses are interacting and any other physi-
cal condition. It is a so-called “universal constant” and in SI units its value is close
to 6.67 X 107! N-m?/kg?. Equation (2.6) is known as Newton’s law of universal
gravitation. If we divide both sides of Equation (2.6) by m we get the gravitational
field produced by M at a distance r from its center:

M

8y =G~ 2.7)
r

Although Equations (2.6) and (2.7) are rigorously correct for uniform spherical
masses, they can be applied to arbitrary shaped masses to obtain approximate values
for gravitational forces and fields.

Example 2.1 What is the order of magnitude of the mass of the Earth?

Solution: The Earth is approximately a sphere with radius R, = 6.38 X 10°m
(about 4000 mi) ~ 107 m. At the Earth’s surface the r in Equation (2.7) is r ~ 107
m and we know that g, . ~ 10 N/kg at the surface. So, solving Equation (2.7)
for M, we find Mg, ~ (10 N/kg)(107 m)?/(10~ 19 N-m?/kg?) ~ 10 kg. (Make
sure you see how the units work out. A careful calculation yields 5.98 X 10%* kg.)
In other words, by making a laboratory measurement of G (and a measurement
of Rp) it is possible to “weigh the Earth.”

Example 2.2 What is the gravitational field of a typical person 1 m from
the person?

Solution: The point of this example is to obtain an approximate value we can com-
pare with the Earth’s field. Thus, we treat the person as if she were a sphere of
radius less than 1 m and take some typical value for mass, such as ~ 102kg
(remember, 1 kg weighs 2.2 pounds). One meter from the center of a 10? kg sphere
the gravitational field due to that mass is ~(10710 N-m2/kg?)(10? kg)/(1 m)? ~
1078 N/kg. Compared with the Earth’s field this is a tiny value. No wonder a
person weighing tomatoes doesn’t affect the tomatoes very much.

Example 2.3 What is an accurate value of the Earth’s gravitational field at an
altitude of 300 km (about the altitude of the Space Shuttle when it is in orbit)?

Solution: Here we want to do a formal calculation to compare with 9.8 N/kg. Recall
that in Equation (2.6) or (2.7) r is the distance from the center of the sphere causing
the field. An “altitude” is a distance above the surface of the Earth, so that r
equals Rg, 4 + 300 km. Now, a km is 1000 m, so 300 km = 3 X 10°m = 0.3 X
10°m and, therefore, r = 6.38 X 10°m + 0.3 X 10°m = 6.68 X 10° m. Putting
this value into Equation (2.7) along with Mg, = 5.98 X 10%*kg results in a
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gravitational field equal to 8.9 N/kg. In other words, where the Shuttle orbits, the
Earth’s gravitational pull is only about 9% less than at the Earth’s surface. A Shuttle
astronaut who weighs 150 pounds on Earth weighs about 137 pounds in orbit. The
pull of Earth’s gravity is what keeps weather and communications satellites and
even the moon orbiting the Earth. The Earth’s gravitational pull doesn’t suddenly
stop at the top of the atmosphere; it extends, in principle, “to infinity,” getting
weaker as r gets bigger as 1/1%.

The last statement may run counter to what you’ve heard or read about astro-
nauts in orbit. In orbit, things are said to be “weightless.” You’ve surely seen video
of astronauts floating about aboard the Shuttle. If a 150 pound astronaut tried to step
on a scale while in orbit, he wouldn’t succeed in getting a reading, because the scale
would float away. The resolution to the seeming contradiction that an astronaut can
be apparently “weightless” and yet weigh 137 pounds requires knowing something
about Newton’s laws of motion, a topic we are just beginning to explore.

Thus far in this section we have been discussing the gravitational attraction of
masses. Historically, in such discussions mass was referred to as gravitational mass,
a property that produces gravitational fields leading to gravitational forces. We now
turn to a seemingly different property of mass, inertia.

As mentioned previously, the fact that bodies are reluctant to accelerate is said to
result from an intrinsic property of matter called inertia. A body’s inertia can be assigned
a numerical value, referred to as its mass. It is a remarkable law of nature that if two bod-
ies experience the same net force (which we can check with calibrated springs) the ratio
of the magnitudes of the resulting accelerations, a,/a,, has the same numerical value
irrespective of what forces are acting, how the bodies were initially moving, or any other
external aspect of the measurement (such as the time of day, the temperature, where the
experiment is performed, and so on). With the same net force acting on each body, this
ratio depends only on which two bodies’ accelerations are being compared. The ratio
must be directly related to an intrinsic property of the bodies. Furthermore, there is a
kind of reciprocity between “heaviness” and acceleration: if body 1 feels heavier than
body 2 (so that intuitively it would seem to have more mass) the ratio a,/a, is less than 1,
and vice versa. We define the ratio of the mass of body 2 to that of body 1 to be the
numerical value of a,/a, determined by exposing both to the same net force; that is,

my, 4

— = — (2.8)
my a4

More massive objects will experience smaller accelerations for the same force, with
the accelerations inversely related to the respective masses. The unit for mass is the
kilogram (kg, defined below). When used with the meter and second, the kilogram
defines the SI (Systéme International) units (formerly known as the mks system of
units). We can define the mass (m,, say) of an object through this equation by using a
standard of mass as another object (m; = 1 kg) and by measuring the accelerations of
the two objects under the action of the same force (m, would then be just a,/a, in kg).

Example 2.4 A body with mass equal to 1 kg is pulled across a leveled air table
by a spring with constant stretch of 1 cm. The resulting acceleration of the 1 kg
mass is observed to be 0.30 m/s2. A second body of unknown mass is pulled by
the same spring with the same constant stretch. The observed acceleration of the
second mass is 0.45 m/s2. What is the mass of the second body?

(Continued)
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FIGURE 2.10 An atomic clock at
NIST (National Institute of Standards
and Technology) with an accuracy of
about 1 s in 20 million years.
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Solution: We assume that under the conditions cited, both bodies experience the
same overall force due to the spring. Because the second body has a higher
acceleration, we expect it has a mass less than 1 kg. We let m; = 1 kg and m, be
the unknown mass. Then using Equation (2.8) we have

m, = (0.30 m/s? / 0.45 m/s?) - (1 kg)
= 0.67 kg.

The procedure outlined above could be used, in principle, to measure the mass of
any object. Of course, this is not done in practice because interactions (such as colli-
sions) have the nasty potential for altering our standard and because the force that
would impart a nice acceleration to an electron would imperceptibly perturb the
motion of a kilogram. In practice, a wide range of secondary mass standards has to
be used to measure unknown masses.

The standard kilogram (kg) is a platinum—iridium alloy cylinder kept at the
International Bureau of Weights and Measures. Incidentally, standards for the meter
and second are defined more reproducibly: the second is defined as the time
needed for 9,192,631,770 vibrations of a cesium atom (a so-called atomic clock) and
the meter is defined as the distance traveled by light in a vacuum in a time of
1/299,792,458 s (Figure 2.10). This, in fact, defines the speed of light in vacuum to
be exactly ¢ = 299,792,458 m/s. In other words, the speed of light was so well deter-
mined that in 1983 the meter was redefined so as to fix the speed of light.

Although fractions and multiples of kilograms suffice for quantifying mass in
many situations, in the microworld of atoms and molecules another mass unit is more
useful: the atomic mass unit (u) is defined to be exactly 1/12 of the mass of a neutral
“carbon twelve” atom (an atom with 6 protons, 6 neutrons, and 6 electrons, often des-
ignated by the symbol '2C). The atomic mass unit is preferred over kilograms when
dealing with molecules because 1 u = 1.66 X 1027 kg, and the latter is a very small
and ungainly number with which to deal. The term dalton (D) is sometimes used to
denote the same mass unit.

To recap this section on mass, we have discussed mass from two seemingly different
approaches: gravitational mass, through Newton’s law of gravity, which produces
gravitational fields and forces on other masses, and inertial mass, defined through
the acceleration produced by forces acting on the mass. Gravitational mass is a “static”
mass with no motion required, gravitational fields and forces depending only on gravi-
tational masses and distances. Inertial mass, on the other hand, is a “dynamic” mass,
defined in terms of the acceleration response of the inertial mass to a given force of any
kind. It is not necessarily apparent that these two concepts should lead to the exact same
number for the mass of an object, but we have used the same sym-
bol m for each because it has been shown that these masses have
the same value to within better than 1 part in 10'2. This equiva-
lence of inertial and gravitational mass has been a subject of
discussion and experiment since Galileo and is still under active
research.

5. NEWTON’S SECOND LAW OF MOTION
IN ONE DIMENSION

Newton’s first law tells us that in an inertial frame of reference
a body accelerates only when it experiences a net force due to
all other bodies. Equipped with the definitions of force and
mass given above, the idea embodied in Newton’s first law—
that acceleration has a cause—can be made more precise. Thus,
Newton’s second law of motion says that
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In an inertial frame of reference, the acceleration of a body of mass m,
undergoing rigid translation, is given by

—

t

— _—  netonm

g = i (2.9)
where Pqnet onm 18 the net external force acting on the body (i.e., the sum of all

forces due to all bodies other than the mass m that push and pull on m).

Embedded in Newton’s second law are several important notions. (1) The law
says that when the acceleration of a body arises from forces, the acceleration is
caused by agents outside the body. A body cannot accelerate itself. Acceleration
requires external force. (2) When there is a net (unbalanced) force on a body, the
acceleration is in the same direction as the net force. The constant of proportionality
that converts force into acceleration is the reciprocal of the body’s mass. For a given
force, the larger the mass, the smaller the acceleration, and vice versa. (3) Finally, as
stated here, Newton’s second law is applicable to a body in rigid translation, a body
whose extent in space is ignorable, a point particle. For bodies that are tumbling or
flexing or breaking into pieces the law of motion stated above has to be clarified and
supplemented in ways we examine later.

Note that according to Equation (2.9), force has the units of mass times acceler-
ation. Thus, in SI units one unit of force is equal to 1 kg-m/s2. Because of the central
role that force plays in describing nature, force units are given their own name.
Honoring the founder of dynamics, 1kg-m/s? is defined as 1 newton (1 N). (For
calibration, a quarter pound hamburger with its bun, but minus the tomato and pickle,
weighs about 1 N.)

Mass should be carefully distinguished from weight. Mass is an intrinsic prop-
erty of an object whereas weight is the magnitude of the force of the gravitational pull
of the Earth. If a body is in free fall, Equation (2.9) says

F .
a=g="20 (2.10)

m
where g is the magnitude of the acceleration due to gravity (9.8 m/s? near the Earth’s
surface). The force Fyrayity is due to the pull of the Earth on the body whose mass is m.
The magnitude, mg, of the gravitational force is also called the body’s weight. A 1 kg
mass thus weighs 9.8 N, because, for such a body, F aravity — 1 kg X 9.8 m/s?. Note that
weight exists whether or not the object is actually accef:arating downward with accel-
eration g. A 1 kg body resting on a table near the surface of the Earth still weighs 9.8 N;
the downward pull of the Earth on it must be canceled by an upward force of 9.8 N
exerted by the table to keep it at rest. The weight of an object will vary depending on
its location. For example, an object on the moon’s surface weighs only about 1/6
what it does on Earth. This difference is due to the difference in the gravitational pull
of the moon and has to do both with the moon’s mass and radius compared to those

of the Earth.

Equation (2.9) can be used to extract acceleration information from known forces
or force information from known acceleration. For example, if all the forces acting
on a particle of a given mass are known at every instant, the acceleration of that
particle for every instant can be determined from the forces. Then, by measuring the
particle’s position and velocity at any one time, this dynamically inferred accelera-
tion can be used (along with the methods we study in the next chapter) to predict the
entire future motion of the particle, as well as deduce its entire past motion.
Alternatively, if a complete record of a particle’s motion is available, the particle’s
acceleration for every instant can be calculated from kinematics and forces required
to produce that motion can then be determined.

NEWTON’S SECOND LAW OF MOTION IN ONE DIMENSION
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Example 2.5 Television pictures are created by the collisions of a narrow beam of
rapidly moving electrons with phosphor molecules on the screen of the picture tube.
Suppose an electron (mass = 9.1 X 10731 kg) in a TV is released from rest. After
release it experiences a constant electrical force of 0.001 pN (where 1 pN = 1
piconewton = 1072 N). What is the electron’s acceleration under this force?

Y

FIGURE 2.11 An electron, initially located
at the origin experiences a constant force F.

Solution: We choose a coordinate system with the x-axis lined up along the direc-
tion of the constant force and with the origin where the electron is released (see
Figure 2.11). The magnitude of the acceleration is found from Newton’s second law

a, = F /m= 0001 X 10712N/9.1 X 1073 kg = 1.1 X 10" m/s?,

Because the force is constant throughout this region of space, the acceleration
remains constant there as well, always pointing along the x-axis. Note that
gravity pulls the electron toward the Earth with an acceleration equal to about
10 m/s?. The electrical force on the electron in this picture tube is about 10!
times larger than gravity! TV designers don’t have to worry about gravity
making their pictures sag.

Newton’s second law has a wonderful range of validity and usefulness. It can be
used to aim electrons to make a better TV picture. It can tell us how macromolecules
vibrate and tumble in a cell when DNA is undergoing replication. It allows us to design
more effective brakes to make cars safer. With it we can calculate the trajectories of plan-
ets and rocket-launched satellites to explore the bodies of our solar system. (A powerful
example of such calculations is the collision of the comet Shoemaker-Levy 9 with the
planet Jupiter in which the collision time was predicted with tremendous accuracy
(Figure 2.12).) Newton’s second law is arguably one of the central ideas of all of physics.
You certainly could do less important things than practice the mantra, “Acceleration is
net force over mass; acceleration is net force over mass, . ...”

6. NEWTON’S THIRD LAW

According to Newton’s second law, acceleration requires force from outside. Swimming
fish, flying birds, and human bicyclists all accelerate because something pushes on them,
according to the second law. At first, that may sound preposterous. For example, think
of what it feels like to increase your speed while running. You feel strain in the muscles
of your legs. Or, accelerate your car to pass on a highway. You have to push down the
gas pedal. Obviously, in both cases something internal is causing the acceleration.
Well, that’s not exactly correct. Suppose you are asked to exert the same strain in your
legs but instead of running on a dry track you are placed on a beach with loosely packed,
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dry sand. The same effort doesn’t result in nearly the same accel-
eration. If you are placed instead on an ice rink, the same effort
produces even less of an outcome. Finally, if you were put in a
space suit and placed in the vacuum of space outside the Space
Shuttle, moving your legs with the same strain as before would
produce no acceleration at all. Clearly, moving your legs is
important in producing acceleration, but what you are standing
on is also important. You have to be able to push against some-
thing. That is equally true for fish and birds and accelerating cars.

The reconciliation of examples of apparent self-propulsion
with Newton’s second law, which says that self-propulsion is
impossible, requires another law of motion:

When one body exerts a force on a second body, the
second exerts a force in the opposite direction and
of equal magnitude on the first; that is,

F20nl:_F10n2

This law, Newton’s third law of motion, is sometimes referred to
as the law of action—reaction: every “action” generates an equal
and opposite “reaction.” Thus, the feet of a runner do not acceler-
ate the runner. Rather, the feet exert a force on the track, and it is
the reaction force of the track back on the feet that accelerates the
runner. When you run on a track a given effort leads to a certain

push on the Earth; the Earth pushes back on you and that push results in your acceleration.
When you run in loose sand, or on ice, you can’t exert the same force on the Earth as you
can by pushing on a dry track; the weaker push by you on the Earth is reciprocated with a

weaker push back, and, therefore, less acceleration. In space, running doesn’t result in an
acceleration because there is nothing to push against and therefore nothing to push on you.

Example 2.6 Newton’s third law can be a source of confusion to someone who
is thinking about such things for the first time. Here’s an example. A young
woman kicks a soccer ball 30 m downfield. But how? (Caution: The reasoning
that follows contains an error! Can you spot it?) That is, Newton’s third law says
that the force of her foot on the ball is exactly countered by a reaction force
exerted by the ball on her foot. The two are equal in magnitude and oppositely
directed. The sum of two equal and opposite forces is zero, so according to
Newton’s second law, if there is no net force, no acceleration is possible. But, of
course the ball does go downfield, so what goes on?

Solution: The wording of this problem illustrates a common pitfall in applying
Newton’s laws of motion. You have to be careful about identifying what is the
body of interest and what are its surroundings. If we are interested in the flight of
the soccer ball, then we have to keep track of the forces on the ball, and only those
forces. If we are interested in the motion of the woman’s foot, then we have to
keep track of the forces on her foot. The foot exerts force on the ball and the ball
accelerates as a result. The ball exerts a force on the foot and the foot accelerates
(slows down) as a result. The two forces are equal and oppositely directed,
however, they act on different bodies and each produces its own acceleration. The
two don’t act together on any one body and the fact that they add up to zero is
irrelevant for understanding what happens to the ball.

NEWTON’S THIRD LAW

FIGURE 2.12 Time series showing
the collision of a comet with Jupiter
in July 1994 as detected by the
Galileo satellite probe; the comet,
made from over 20 fragments, had
been tracked for a year and the
location and time of the impact, the
first-ever observed collision of two
solar system objects, had been
calculated very precisely.
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You may be tempted, in thinking about this example, to say something like,
“Well, the ball goes downfield because the woman is more powerful or more massive
than the ball.” Resist that temptation if you feel it creeping up on you. Keep in mind
that a not very powerful nor massive 50 kg woman can easily accelerate a 1000 kg
car (in neutral, with its brakes off, on a horizontal surface) by pushing it.

Example 2.7 Two ice skaters, a 90 kg father and his 40 kg daughter standing face
to face and holding hands, push off from each other with a constant force of 20 N
(Figure 2.13). Find their accelerations during the time they are pushing each other.

Father

Daughter

Force of daughter on father Force of father on daughter

FIGURE 2.13 Two ice skaters pushing off from each other.

Solution: Each skater exerts a 20 N force on the other. Assuming there are no
other horizontal forces acting, the man’s acceleration will be . = 20 N/90 kg
= (.22 m/s? to the left, whereas the girl’s acceleration will be a . = 20 N/40 kg
= 0.5 m/s? to the right. These accelerations occur only during the time when the
skaters are pushing against each other. Note that no matter which person (or
both) actually takes the active role in doing the pushing, the force on each per-
son has the same magnitude.

ai

Example 2.8 A book lies at rest on a horizontal table. Identify all forces acting
on the book and for each identify the appropriate reaction force.

Solution: The forces labeled “1” and “3” in Figure 2.14 are forces on the
book. Forces “2” and “4” are exerted by the book in reaction to “1” and “3”.
Force “1” is the book’s weight. It is due to the Earth’s gravitational field. If
the Earth pulls on the book, Newton’s third law says that the book must pull
back on the Earth with a force of equal magnitude. The reaction force to “1”
is a gravitational pull exerted by the book on the Earth, and is labeled “2” in
the figure. Its magnitude is the same as the book’s weight. The force “3” is an
upward force exerted by the table on the book because of contact between the
table and the book. We know there is such a force because we know the book
lies at rest, so the net force on it must be zero. When the force exerted on the
book by the table is added to the force exerted on the book by the Earth, the
two cancel. Clearly, the upward force of the table on the book must also have
the same magnitude as the book’s weight. The reaction force to “3” is a con-
tact force, “4,” exerted by the book on the table. It points down and it, too, has
the same magnitude as the book’s weight but it is not the book’s weight. If
suddenly a hole bigger than the book opened in the table below it, both “3”
and “4” would suddenly disappear, but the book’s weight “1” and the reaction
force “2” would still exist.

So, if the force “2” is due to a gravitational pull of the book how come the
Earth doesn’t accelerate toward the book with an acceleration g? Newton’s
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book

. table

Earth

FIGURE 2.14 Forces involved with a book on a table.
Forces 1 and 3 act on the book, whereas 3 and 4, and
1 and 2 represent action-reaction pairs (see discussion
of Example 2.8).

third law says that action—reaction forces are equal, not the accelerations they
produce! To find out about those, use Newton’s second law: the magnitude of the
Earth’s acceleration is the magnitude of the force on it divided by the Earth’s
mass. In other words,

. F book on Earth Myook 8 . Myook
Agarth — - -

M, Earth M, Earth M, Earth

(remember, the magnitude of the force exerted by the book is equal to the book’s
weight) and because the ratio of the mass of the book to the mass of the Earth is
on the order of 10723 the book’s pull on the Earth produces a negligible accel-
eration. Of course, if the book had a lot more mass—Iike that of another
planet—and was as close to the Earth as the book (fortunately, the pull of gravity
also depends on distance) then the acceleration of the Earth would not be negli-
gible. But, that’s another story.

7. DIFFUSION

An E. coli bacterium typically swims in a straight line for some distance, during which
time its flagella undergo a coordinated helical motion driven by a rotary molecular
motor located in the membrane at the flagella attachment sites (we study this molec-
ular motor further in Section 3 in Chapter 7; see also Figure 1.2 for a cartoon sketch).
In response to external stimuli of, for example, nutrient or oxygen level, the molecu-
lar motor may reverse and cause the flagella to become uncoordinated, resulting in a
characteristic “twiddling” motion in which the bacterium randomly gyrates about,
before finally taking off in a straight-line trajectory in some other direction. E. coli
have been shown to respond to variations in environmental factors, being attracted to
higher levels of nutrients and oxygen and repelled by poisons; this response is known
as chemotaxis. If the E. coli are either killed or have their flagella removed they are
no longer motile but they still move due to a phenomenon known as Brownian motion,
named after Robert Brown who in 1827 noticed the random thermal motions of

DIFFUSION
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FIGURE 2.15 Diffusion will tend to
equalize the numbers of molecules
in the left and right sides of the
initially sharp boundary.

FIGURE 2.16 One-dimensional ran-
dom walk with equal step size and
time interval.
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of solvent molecules with the E. coli produce random erratic motions. The
Brownian motions of such “killed” E. coli, as well as the random motions of
the solvent molecules themselves, are examples of a general process known as diffu-
sion, which is the term for such thermally driven motions at the molecular level.

Although diffusion appears, at first glance, to be random and incapable of result-
ing in useful or interesting results, diffusive phenomena abound in the biological and
physical world. In biology, diffusion is the process that controls both the exchange of
oxygen in the hemoglobin of our red blood cells and the elimination of wastes in our
kidneys. Whenever molecules move from one place to another without the expense of
energy specifically earmarked for that motion, it is by diffusion; for example, diffusion
controls the passive transport of molecules across a membrane and stored chemical
energy is required for the process known as active transport.

Often when there are concentration differences across macroscopic distances
diffusion will play a role in reducing those differences. In these cases, even though the
motion of each individual molecule may be random in direction, the collective motion
that affects the local concentration of molecules can be directed. For example, in the
case of one-dimensional diffusion, suppose there is a sharp spatial boundary in the
concentration of some molecules as shown in Figure 2.15. Then even though any
particular molecule is equally likely to move left or right, as time evolves, the varia-
tion tends to disappear because, on average, there are more molecules in the higher
concentration region moving into the lower concentration region. Examples of just this
type of diffusion are the oxygen and waste transport in the blood and kidneys
cited above. In general when there are initial concentration variations and no active,
energy-consuming processes occurring, diffusion tends to result in a uniform final
state. We show the connection of this randomization process to the science of
thermodynamics in Chapter 13.

The mathematics of diffusion in one dimension can be described by a related
problem known as the random walk. Suppose that one starts at the origin and takes
equal length steps in either the positive or negative x-direction with equal proba-
bility (this is also known as the drunkard’s walk problem). Without regard for the
details of the mathematics, it is clear that the average position of the person after
many steps is still at the origin since positive or negative steps are equally likely
and the average is simply computed by adding up the (plus and minus) displace-
ments. On the other hand, it should also be clear that as time goes on, it will
become more and more possible that the person will be found farther away from
the origin. We can characterize this motion by calculating the average of the
squares of the displacements, because these will all be positive quantities and can-
not average away to zero. A calculation shows that this mean square displacement,
<(A x)?>, is given by

<(A x)*> = Nd?,

where N is the number of steps, d is the step size, and the brackets < >
indicate taking the average value (Figure 2.16).

The one-dimensional diffusion of a “killed” E. coli can be solved
using mathematics similar to the random walk problem, but clearly the
step size and number of steps do not directly apply. The analogous equa-
tion for the mean square displacement of a diffusing bacterium is given by

<(A x)*> =2 D,
where 7 is the elapsed time and D is a constant known as the diffusion

coefficient, which is a property of the size and shape of the bacterium
as well as of the viscosity (a measure of “stickiness’) and temperature

>

step size=d
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x  of the liquid medium in which the bacterium is found. It turns out that
as this result is generalized to two (or three) spatial dimensions of
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motion, the mean square displacement has an additional 2 D¢ (or 4 Dt), so that in
three dimensions

<(A r)*> =6 Ds. (2.11)

The square root of the mean square displacement (known as the root mean square or
rms displacement) is thus proportional to /7, a result that is very different from the linear
t-dependence for a particle moving with constant velocity. Although diffusing particles
may move rapidly over short times, because of their constant random changes in direction,
the overall average displacements change much more slowly with time. The characteristic
\/t signature of displacements in diffusion appears often in our discussions of many phys-
ical as well as biophysical phenomena. For example, we show that electrical and thermal
conductivities are closely related to the diffusion of loosely bound electrons in a metal.

Example 2.9 The diffusion coefficient for sucrose in blood at 37°C is 9.6 X
10~ m%s. (a) Find the average (root mean square) distance that a typical
sucrose molecule moves (in three dimensions) in 1 h. (b) Now find how long it
takes for a typical sucrose molecule to diffuse from the center to the outer edge
of a blood capillary of diameter 8 pwm.

Solution:

(a) Simple substitution finds the rms distance to be equal to

V6Dt =V6+9.6 X 10~ m2/s-3600's = 1.4 X 10~3m.

(b) This is a problem in two dimensions (in a cross-sectional plane of the capil-
lary), so that from the above discussion, the relationship between the mean
square distance and the time is <(Ar)?> = 4 Dt. Substituting Ar = 4 um =
4 X 107® m, we find that

<(Ar?> (4 X107%m)?
4D 4-9.6 X 10~ m?/s

= 0.04 s.

Note that this answer for the time scales as the square of the capillary radius and
so increases by a factor of 4 for a capillary of twice the radius. This example
demonstrates why capillaries need to be so small in order to carry out efficient
exchange of food and wastes between the blood and surrounding tissue.

CHAPTER SUMMARY where the average values over a time interval
In one dimension, starting with the concept of At are equal to these expressions without taking the
displacement Ax, velocity and acceleration are defined as limit.

The gravitational force between any two masses is

FMonm:G 2 .

—im 2 g 2.2)
VT aAr '
Jim 2 (2.4)
= lim —, .
“ A-0 At

CHAPTER SUMMARY

given by Newton’s universal law of gravity,

Mm

(2.6)

(Continued)
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For a mass near the Earth’s surface, this force is equal
to its weight,

Wmass m FEarth onm . M8Earth (25)

with g .. = 9.8 m/s?.
Newton’s second law states that

and in the absence of a net force, the acceleration must
be equal to zero, a statement equivalent to Newton’s first
law. The third law is a statement that all forces arise from
interactions between pairs of objects; the two forces
(action and reaction) each act on one of the objects and
are equal in magnitude, but opposite in direction.

Unlike directed motion, diffusion is a random
thermal process in which the average displacement is
zero, however, the mean squared displacement is
given by

—

i — Fnet on m
a = e 2.9)

QUESTIONS

1. As a car moves steadily down a road, we can deduce
the motion of the car by following the motion of only
one piece, for example, the corner of a fender or the
license plate. However, the motion of the piece only
conveys complete information about the rigid struc-
ture of the car. Describe the motion through space
of each of the following as a car moves forward:
atire air valve, the tip of a working windshield
wiper, the top of an engine piston, and the label on a
fan belt.

2. As a person runs, describe the motion through space
of a wrist, a kneecap, and an elbow.

3. In the figure the position of an object is shown as a
function of time. Indicate whether the velocity and
acceleration in each labeled interval are positive,
Zero, or negative.

X(m)
5L
0
5 10 15 20
L t(s)
c D
-5 B >

H A «—
————

4. In the figure the velocity of four different objects is
shown as functions of time. Indicate whether the
velocity and acceleration for each labeled object are
positive, zero, or negative.

36

<(Ar)>> = 6 Dt. (2.11)
A
velocity
{0,0}
B time
C
D

. Is the average velocity during an interval of time

always equal to the sum of the initial and final veloc-
ities of the time interval divided by two? If not, give
an example showing why not.

. When an object free falls, does it travel equal

distances in equal time intervals? Does its velocity
increase by equal amounts in equal time intervals?

. In each of the following situations, first identify all

the forces acting on the object and then, for each

force, identify the reaction force and its source:

(a) A bird flying through the air

(b) A horse pulling a cart

(c) A person riding in an elevator that is accelerating
upwards

(d) A hot air balloon hovering in place

(e) A ladder leaning against a wall.

. A VW bug has a terrible head-on collision

with an 18-wheeler truck. Which vehicle experi-
ences the greatest force on impact? The greatest
acceleration?

. Tell whether the following pairs of forces are

action-reaction pairs, and include a statement about
your reasoning.
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10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

(a) The weight of a fish and the buoyant force hold-
ing it up
(b) The centripetal force on a protein molecule in a
centrifuge and the force the protein exerts on the
solvent surrounding it
(c) The weight of a free-fall skydiver and his fric-
tional drag after reaching a terminal velocity
(d) The thrust on a jellyfish and the force the jellyfish
exerts on the jet of water it expels
(e) The frictional force that allows you to walk and
the force you exert horizontally on the Earth
Describe some situations in which forces act on
an object but there is no motion. How can this
occur?
What is the difference between mass and weight?
Which of the following situations involve field forces
and which contact forces: a tug-of-war, moving
paper clips around with a horseshoe magnet, riding a
Ferris wheel, getting a shock when you reach for a
door knob, a ball falling through the air, a train
rolling on tracks, a levitated train traveling at over
340 min/h.
Two equal masses attract each other with a gravita-
tional force of 18 pN. If their separation is tripled
what will the gravitational force between them be?
A mass produces a gravitational field g at a point. If
the mass is doubled and moved twice as far
away from the point, what will the new gravitational
field be?
Discuss how you think scientists were able to deter-
mine the mass of the sun.
Explain why even though an astronaut in orbit around
the Earth is weightless, she must exert a force in order
to propel herself across the spaceship.
A person riding on the “whip” at an amusement park
watches an ice skater coast by. The ice skater
believes that she is coasting in a straight line at a
constant speed. How does the person on the “whip”
describe her motion? This same person believes that
Newton’s first law is violated for the ice skater. Why
is he wrong?
Muscle basically consists of interdigitating thick
and thin filaments that interact via cross-bridges (the
“heads” of myosin molecules). Because the force a
myosin head exerts on an actin thin filament is equal
and opposite to the force the actin exerts back on the
myosin head and thereby the thick filament, how can
the muscle generate any force?
The detailed structure of a muscle fiber includes a
series of Z-lines with actin thin filaments of opposite
polarity on either side and with thick filaments not
attached to the Z-lines as shown. The cross-bridge
interactions tend to shorten the distance between
neighboring Z-lines when a muscle contracts, but
should not a given Z-line feel symmetric forces from
the equivalent thin filament interaction on either side,
and hence not feel a net force?

QUESTIONS/PROBLEMS

00

—
_%D

20. In each of the following cases, identify the interaction

21.

pairs of forces and draw a free-body diagram of the
object in italics: (a) a book resting on a table; (b) a
book resting on a table with a paperweight on top of
the book; (c) a cart being pulled by a horse along a
level road; (d) a heavy picture being pushed horizon-
tally against the wall to hold it in place.

What causes diffusion? If a container is kept perfectly
still, without any vibrations on it whatever (e.g., covered,
in a draft-free room, atop a granite block mounted on
shock absorbers) will diffusion occur within it?

22. Why doesn’t a drop of dye, when added to water, sim-

ply grow outward uniformly from the position at
which it is first placed? (Or does it?) If you carefully
put one drop of cream atop a mug of coffee, what
happens to it? Is there any way to keep the added drop
from diffusing?

MULTIPLE CHOICE QUESTIONS

1.

The x-position of a particle is sampled every 0.5 s, as
in the following table.

Time (s) x-Position (m)
0.0 +3.0
0.5 +2.2
1.0 +3.0
1.5 +1.0
2.0 -0.5

Which one of the following must be true? (a) The
x-component of the average velocity in the interval
0.0 s to 1.0 s is 0.0 m/s. (b) The average speed in the
interval 0.0 s to 1.0 s is 0.0 m/s. (c) The x-component of
the instantaneous velocity at 1.0 s is +3.0 m/s. (d) The
x-component of the instantaneous velocity throughout
the interval 1.0 s to 2.0 s is always negative.

best fit line

L/

time

x-component of velocity

2. The x-component of a particle’s velocity is sampled

every 0.5s. The data are fit with a straight line as
shown in the figure to the right. Assuming the fit is a
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good approximation to the motion, which of the fol-
lowing best represents the x-component of the net
force on the particle as a function of time?

(@) (b)
0 o——»
time time
(©) (d
zero force
0 / 0
time

A 9.8 N force causes a 1 kg mass to have an acceler-
ation of 9.8 m/s2. This situation is most closely
related to Newton’s (a) first law of motion, (b) second
law of motion, (c) third law of motion, (d) law of uni-
versal gravitation.

A woman weighing 500 N stands in an elevator that
is traveling upward. At a given instant the speed of
the elevator, as well as that of the woman, is 10 m/s
and both are decreasing at the rate of 2 m/s2. At that
instant, the floor of the elevator exerts a force on the
woman that is (a) about 400 N, pointing up, (b) 500
N, pointing up, (c) 500 N, pointing down, (d) about
600 N, pointing up.

A soccer ball approaches a soccer player with a speed
of 10 m/s. The player heads the ball with the net
result that the ball travels off in the opposite direction
with a speed of 15 m/s. The player stays more or less
in place. During the time the player’s head is contact
with the ball the head exerts an average force of mag-
nitude 100 N. Which one of the following is true con-
cerning the magnitude of the average force the ball
exerts on the player’s head during that time? (a) It
must be about zero because the head doesn’t move
much. (b) It’s hard to say from the information given,
but it certainly must be less than 100 N or else the ball
wouldn’t reverse direction. (c) Nothing can be said
about the magnitude of the force because neither
the mass of the ball nor the time of contact is given.
(d) It’s 100 N.

A bicyclist rides for 20 s along a straight line that cor-
responds to the +x-axis covering a distance of 400 m.
She then turns her bike around; that takes another
20 s. Finally, she rides back to where she started (400
m in the —x-direction) for 40 s. The average velocity
for this trip is (a) 0, (b) +3, (¢) +10, (d) +15 m/s.
A ball is thrown directly upward. After leaving the
hand the ball is observed to be at a height A and ris-
ing. A little while later, the ball is at height B and is
instantaneously at rest. Later still the ball is observed
to be height C and falling. All during the flight

time

10.

11.

12.

13.

14.

15.

the ball is in free-fall. The acceleration of the ball
(a) points up at A, is 0 at B, and points down at C;
(b) points up during each portion of the flight; (c) is
zero during each portion of the flight; (d) points down
during each portion of the flight.

An object is thrown straight up. At the top of its path
(a) the velocity is zero and the acceleration is zero,
(b) the velocity is zero and the acceleration is equal to
the weight, (c) the velocity is down and the accelera-
tion is equal to g, (d) the velocity is zero and the
acceleration is equal to g.

Newton’s law of gravitation says that the magnitude of
the gravitational force of a body of mass M on a body of
mass m is GMm/r?. The fundamental dimensions
of Newton’s Gravitational Force are (a) [M][L][T] 2,
(b) [MPP[L]™2 (¢) [MIL]T]™Y, (d) [MI[LJAT] 2
(Here [M] represents mass, [L] length, and [T] time.)
Given that the Earth is about 1.5 X 10'! m from the sun
and takes a year (about 3.1 X 107 s) to make one revolu-
tion around the sun, the Earth’s orbital speed around the
sun is (a) 4.8 X 10° m/s, (b) 2.3 X 1015 my/s, (¢) 3.0 X
10* m/s, (d) 7.3 X 10 my/s.

Agnes is in an elevator. Andy, sitting on the ground,
observes Agnes to be traveling upward with a con-
stant speed of 5 m/s. At one instant Agnes drops a pen
from rest. Immediately after, the acceleration of the
pen according to Agnes is (a) 10 m/s%, down, (b) 0,
(c) 15 m/s%, down, (d) 5 m/s2, up.

As in the previous question, Agnes is in an elevator that
Andy (attached to the ground) sees traveling upward.
This time Andy sees the elevator’s speed increasing
by 5 m/s every second. Agnes stands on a scale in the
elevator and sees the reading to be 750 N. After the
elevator comes to a complete stop, Agnes is still on
the scale. The reading now is (a) 250 N, (b) 500 N,
(c) 750 N, (d) 1000 N.

As I apply the brakes in my car, books on the passen-
ger seat suddenly fly forward. That is most likely
because (a) the car is not an inertial reference frame,
(b) the seat supplies a forward push to make the
books accelerate, (c) there is a strong gravitational
field generated by the brakes, (d) there is a strong
magnetic field generated by the brakes.

A particle of mass m collides with a particle of mass
m,. All other interactions are negligible. The ratio of
the acceleration of mass m, to the acceleration of mass
m, at any instant during the collision (a) is small at
first, then reaches a maximum value, then goes back to
a small value, (b) depends on whether m, and m, stick
together in the collision, (c) depends on how fast each
of the particles is initially moving, (d) is always the
constant value my/m,.

A 10 kg and a 4 kg mass are acted on by the same mag-
nitude net force (which remains constant) for the same
period of time. Both masses are at rest before the force
is applied. After this time, the 10 kg mass moves with
a speed v, and the 4 kg mass moves with a speed v,.

NEWTON’S LAWS OF MOTION



16.

17.

Which of the following is true? (a) v, is equal to v,,
(b) the ratio v/v, is equal to 5/2, (c) the ratio v /v, is
equal to 2/5, (d) the ratio v /v, is equal to (2/5)2.

Can an object’s velocity change direction when its
acceleration is constant? (a) No, this is not possible
because it is always speeding up. (b) No, this is not
possible because it is always speeding up or always
slowing down, but it can never turn around. (c) Yes,
this is possible, and a rock thrown straight up is an
example. (d) Yes, this is possible, and a car that starts
from rest, speeds up, slows to a stop, and then backs
up is an example.

Can an object have increasing speed while its accel-
eration is decreasing? (a) No, this is impossible
because of the way in which acceleration is defined.
(b) No, because if acceleration is decreasing the
object will be slowing down. (c) Yes, and an example
would be an object falling in the absence of air fric-
tion. (d) Yes, and an example would be an object
released from rest in the presence of air friction.

Questions 18-21 concern interpreting the two graphs
below.

18

19.

20.

21.

. In which interval of the x versus ¢ graph (A, B, or C)

is the acceleration negative?

In which interval of the x versus ¢ graph (A, B, or C)
is the velocity constant?

In which interval of the v versus ¢ graph (A, B, C,
or D) is the acceleration constant but nonzero?

In which interval of the v versus ¢ graph (A, B, C,
or D) is the acceleration only positive?

Questions 22 and 23 refer to the following diagram.

22

v (m/s)

4 —

3 —

2 —

1

A B C |
0
0 2 4 6 t(s)

. If the above graph is for a 4 kg object, the forces acting

during each of these three intervals (A, B, C) are given

QUESTIONS/PROBLEMS

23.

24,

25.

26.

27.

28.

29.

30.

(in Newtons) by (a) (6, 0, 16), (b) (—6, 0, 16), (c) (3/2,
0, —4), (d) (6, 0, —16), (e) (3/2, 0, —16).

If the object described by the above graph starts
at the origin at t = 0, where will it be at t = 4 s?
(@x=11m,(b)x=13m,(c)x =8m, (d) x =4 m,
(e) x =22 m.

A person is holding up a picture by pushing it hori-
zontally against a vertical wall. The reaction force to
the weight of the picture is (a) the normal force on the
picture, (b) the pull upwards on the Earth equal to
the weight, (c) the frictional force on the picture at the
wall equal to the weight, (d) the frictional force on
the wall by the picture, (e) the normal force on the
wall by the picture.

Which of the following represents the correct free-
body diagram for a helium (floats in air) balloon held
by a string that is tied to a seat inside the passenger
compartment of a train traveling to the right at a
constant 60 mph?

N

A cart is being pulled along a horizontal road at
constant velocity by a horse. What is the reaction
force to the horse pulling on the cart? (a) the normal
force of the ground on the cart, (b) the weight of the
cart, (c) the friction force on the cart equal to the
pull of the horse, (d) the equal backwards pull on
the horse.

An object is thrown straight up. At the top of its path the
net force acting on it is (a) greater than its weight,
(b) greater than zero but less than the weight, (c) instan-
taneously equal to zero, (d) equal to its weight.

A trained seal at the circus sits on a chair and balances
a physics book on its nose. On top of the book sits a
basketball. Which of the objects exerts a force on the
basketball? (a) the book only; (b) both the seal and the
book; (c) the seal, the book, and the chair; (d) none of
the above.

A large truck runs into a small car and pushes it 20 m
before stopping. During the collision (a) the truck
exerts a larger force on the car than the car exerts on
the truck; (b) the truck exerts a smaller force on the
car than the car exerts on the truck; (c) the truck and
car exert equal forces on each other; (d) the car does-
n’t actually exert a force on the truck; the truck just
keeps going.

A car weighing 10,000 N initially traveling at 30 m/s
crashes into a 100 N garbage can, initially at rest,
sending it flying. During the time the car is in con-
tact with the can it exerts a force of 3000 N on the
can. During the time of contact the can exerts (a) a
force of 3000 N on the car, (b) a force considerably
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less than 3000 N on the car, (¢) a force consider-
ably greater than 3000 N on the car, (d) no force on
the car.

31. As a protein diffuses in a thin long tube (effectively
1-dimensional motion) starting from x = 0, its aver-
age position <x> and its mean square position
<x?> change with time ¢ according to (a) <x> =
<x?> =0, (b) <x>=0; <x?>xf?, (c) <x>ot
<x?>of?) (d) <x>op; <x2>or, (e) <x> = 0;
<x%>oct,

32. At a turning point in the motion of an object: (a) the
velocity can be positive or negative but the accelera-
tion must be instantaneously zero, (b) the velocity
must be instantaneously zero, but the acceleration
can be positive or negative, (c) both the velocity and
acceleration must be instantaneously zero, (d) the
velocity and acceleration must have opposite signs
(i.e., one positive and the other negative), (e) none of
the above is true.

PROBLEMS
1. Shown is a plot of velocity versus time for an object
originally at rest at the origin. Develop the corre-
sponding plot for acceleration.

\"
(m/s) 3T

2. (a) Using the data given, plot position versus time for
t =0, 4, and 8 s. Calculate the velocity for each
interval [0,4] and [4,8] and determine that the
average acceleration between these two time
intervals is zero.

T,seconds|0|1|2|3|4|5|6|7|8

X, meters | 1 |7.25| 9 |7.75| 5 |2.25| 1 |2.75| 9

(b) Now plot all nine data points. Calculate velocity
again, this time for all eight time intervals from
[0,1] through [7,8]. Calculate the average acceler-
ations for the time intervals [0,2], [2,4], [4,6],
[6,8] starting with the velocities just previously
calculated.

40

(c) Note that the given data are from the functional
expression x(¢) = 13/4 — 31> + 9t + 1. Deduce
that the data describe the motion of an object that
moves forward, stops and backs up, stops again,
and moves forward with increasing speed.

(d) Do you see how use of 4 s time intervals misses
the details of motion that is more fully described
by the use of shorter time intervals? Where is the
slope of the x(7) curve positive? Where negative?
Where zero? What is the physical meaning of the
sign of the slope of the x(¢) curve? If the slope of
the x(f) curve changes sign, what does that say
about the velocity and the acceleration of the
object?

3. Shown is a plot of acceleration versus time for an
object. Assuming that its initial position and initial
velocity are both zero in magnitude, for how long
after = 12 s, must the acceleration of —3 m/s? per-
sist, in order that the object be brought to rest?

10

a(m/s?) 5

time (s)

4. Shown is a plot of velocity versus time for a particle
starting at the origin. Sketch a plot of the acceleration
corresponding to the time interval for which velocity
is shown.

10

velocity
(m/s) 5f

5 10 15 20
time (s)
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5.

A microbiologist observes the motion of a microor-
ganism within a slide sample. Photographic records are
snapped at 5 s intervals and the successive positions of
the organism are shown. Calculate the average veloci-
ties and accelerations corresponding to the appropriate
5 s intervals, assuming the grid line spacing is 25 um,
for each of the three sets of records. Such quantitative

investigations of biological motion can reveal impor-
tant information about the organism. We show later
that the measurement of acceleration can indicate how
much force certain organs of locomotion are capable of
generating. If the organism moves by expelling fluid,
we may be able to determine the amount of fluid
ejected per unit time and its expulsion velocity.

10.

11.

someone grabs the rope.
(a) What velocity will the block have when the rope
is grabbed?

QUESTIONS/PROBLEMS

L] 5
4 10918 7 |6
15 43 % 15 1] QO 90 %
o3
[2
o1

A 1400 kg car accelerates uniformly from rest to 60 (b) In order to stop the block after an additional 5 s,
mph in 6 s. Find the net force needed to produce this what must be the constant acceleration of the
motion. block?
A car accelerates from rest uniformly to 30 mph in 5 s, (c) With what force must the rope be pulled upward to
travels at a constant 30 mph for 0.3 mi, and then decel- stop the block in those 5 s?
erates to rest in 6 s. 12. What is the acceleration of a 5 kg package being low-
(a) What is the average velocity for each interval and ered to the ground by a light rope in which there is a

for the entire trip? tension of 25 N?
(b) What is the displacement for each interval and for 13. A truck moves through a school zone at a constant

the total trip? rate of 15 m/s. A police car sees the speeding truck
(c) What is the average acceleration for the entire and starts from rest just as the truck passes it. The

trip? police car accelerates at 2 m/s? until it reaches a max-
A 0.1 kg mass stretches a linear spring by 10 cm. If imum velocity of 20 m/s. Where do the police and the
three identical masses are hung together from two truck meet and how long does it take?
such identical springs (as in Figure 2.8), by how 14. A person of mass 60 kg stands on top of a table
much will each spring stretch? located 1/2 m above the floor and then walks off the

. A Boeing 737 jet plane lands with a speed of 60 m/s edge of the table.

(about 135 mi/h) and can decelerate at a maximum (a) Draw a free-body diagram of this situation.
rate of 5 m/s? as it comes to rest. (b) During the time the person is falling to the floor,
(a) What is the minimum time needed before the what is the upwards acceleration of the Earth as

plane will come to rest? seen by the person?
(b) Could this plane land on a runway that is 2800 (c) As seen by the person, through what distance does

feet long? the Earth move up towards her in this time?
A person throws a set of keys upward to his friend in 15. The planet Pluto travels once around the sun every
a window 9.2 m above him. The keys are caught 3.0 248 years at a mean distance from the sun of
s later by the friend’s outstretched hand. 5890 X 10° km. Find its orbital speed around the
(a) With what initial velocity were the keys sun (in m/s).

thrown? 16. What is the gravitational field on the surface of the
(b) What was the velocity of the keys just before they moon? Take the mass of the moon as 7.4 X 10?2 kg

were caught? and its radius as 1.74 X 10° m and calculate g as a
Suppose that a 1 kg block attached to a light rope fraction of that on the Earth’s surface.
free-falls (with acceleration g) from rest for 5 s before 17. What is the gravitational force of the sun on

Pluto with a mass of 1.5 X 10?2kg (less than

the moon) and a mean distance from the sun of
5890 X 10° km?
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Suppose your normal weight is 1200 N standing on

a bathroom scale. If you stand on that same scale

in an elevator in a skyscraper that is accelerating

upwards at 1 m/s2, what will the scale read?

An eagle soaring overhead has a weight of 120 N. If

the area of each wing is 1.7 m2, find the force per

unit area required to support the eagle while it soars.

The electron in a hydrogen atom is attracted to the

proton in the nucleus with an electrical force of 8.2 X

1078 N. What is the acceleration (magnitude and

direction) of the electron? (According to classical

physics this acceleration keeps the electron orbiting
the nucleus.)

Two astronauts are out for a space walk near their

shuttle. They have masses of 120 kg and 140 kg suited

up in their space suits and are attached to the shuttle
by umbilical cords. With both initially at rest with
respect to the shuttle, if the 140 kg astronaut pushes

the other one with a 20 N force for 1 s,

(a) What is the acceleration of the 120 kg astronaut
during this 1 s?

(b) What is the acceleration of the 140 kg astronaut
during the same 1 s?

(c) What velocity will each have after the 1 s interval
with respect to the shuttle?

(d) If the umbilical is 10 m long, how long will it be
before they each feel another force from the tug of
the umbilical?

A heavy 40 kg crate sits on a shelf and is connected

by a taut rope to the ceiling. If it is pushed off the

shelf so that it is suspended freely find

(a) The net force on the crate.

(b) The tension force in the rope supporting the crate.

(c) If the rope is cut, what is now the net force on the
crate?

Two heavy crates (of 10 kg and 20 kg mass) sit touch-

ing on a smooth surface of ice as shown. If a 20 N

force pushes on the 10 kg crate as shown:

(a) What is the acceleration of both blocks?

(b) What is the net force on the 20 kg block?

24. A 0.01 g water strider, an insect that can

(c) What force does the 20 kg block exert on the
10 kg block?

(d) What is the origin of the force in part c?

(e) Repeat the problem if the two blocks are physically
interchanged (in parts (b) and (c) interchange the
two masses as well) and the same force pushes the
20 kg block.

13

walk on

water,” propels itself with its six legs to travel along at

0.5 m/s.

(a) What vertical force must the surface tension of
water provide to each foot?

(b) If the insect is able to travel at constant velocity by
overcoming a total resistive force from the water
of 107°N, find the horizontal force from the
water on each leg as the bug “walks.”

25. A single nonmotile cell is confined to a thin capillary

tube so that it essentially undergoes one-dimensional
diffusion with a diffusion coefficient of 10~° cm?/s.
Find (a) the time it takes for the cell to diffuse a dis-
tance of 1 cm (express your answer in hours), and (b)
the rms distance the cell will travel in 1 s (expressed in
wm). Why don’t your answers to (a) and (b) scale lin-
early so that 3600 s/h multiplied by the answer to (b)
would give a 1 cm distance?

26. As cells crawl along a surface in tissue culture their

cytoplasm is observed to undergo “retrograde” flow
in the direction opposite to the motion of the lead-
ing edge of the cell. When this motion is studied by
imaging the cell in a microscope and making a
movie of the motion, a feature in the cytoplasm is
observed to travel a distance of 1.1 wm in 25 s.
What is the speed of this retrograde flow?
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Applications of Newton’s Laws
of Motion in One Dimension

Newton’s laws of motion are a very powerful tool that allows the study of a vast array
of problems dealing with the motion of all the objects of our daily lives. Valid over
an enormous range of distances, speeds, and masses, Newton’s laws only lose their
predictive power in the microworld or when objects travel at extremely high speeds,
much higher than we are capable of propelling ordinary objects (except in particle
accelerators). In this chapter we continue our study of one-dimensional motion in
three “case studies” of interesting example applications. The goal here is to see the
power of Newton’s laws as well as to learn some interesting ideas about various types
of motion along a single direction. We gain some valuable insights and tools so that
when we generalize to study the motion of objects in the real three-dimensional
world we are well prepared for that undertaking. The case studies in this chapter
include motion when the net force is constant (we study the local gravitational force
near the Earth), one-dimensional motion of an object in a fluid (where we show that
there are frictional forces that vary with time), and the oscillatory motion of an object
attached to a spring. After learning something about springs, we next consider the
deformation of an elastic solid and the phenomenon of viscoelasticity. This is a topic
of special interest in the study of structural biomolecules such as bone and blood ves-
sels. We conclude the chapter with a discussion of the structure and dynamics of
macromolecules, specifically illustrating how to apply Newton’s second law to the
difficult problem of determining the molecular motions (here in one dimension) of
the constituent atoms of a protein.

1. THE CONSTANT FORCE

Very frequently in dealing with mechanics problems, we know the forces acting on an
object and want to predict its future motion, or perhaps even learn of its past motion.
For example, the gravitational forces acting on the planets can be calculated extremely
accurately from information on their positions relative to the sun, and these forces
then, using Newton’s second law, predict their accelerations. Knowing the position
and velocity of a planet at some time, together with its acceleration, allows scientists
to calculate the trajectories of the planets extremely accurately into the distant future.
In principle, from knowledge of the acting net force, Newton’s second law provides
the acceleration of an object as a function of time; from that one can extract informa-
tion about velocity, and then from that, position. The general case of this kind of
problem requires sophisticated mathematical tools (called solutions to “differential
equations”). But, there is one special case—in which the net force on an object is a
constant, producing a constant acceleration for extended periods—that can be treated
easily and whose solution shows us how the more general case works. As we have
seen, the gravitational force on a mass m is given by F' = mg, where g is the constant

J. Newman, Physics of the Life Sciences, DOIL: 10.1007/978-0-387-77259-2_3,
© Springer Science+Business Media, LLC 2008
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Acceleration Velocity Position free-fall acceleration due to gravity. The situation
is shown in Figure 3.1 (left), where the acceleration
is some unchanging value, g = 9.8 m/s2.

Because acceleration at any instant is the slope of
the tangent line to the velocity versus time graph at
that instant, a constant acceleration means that the
tangent line to the velocity curve has the same slope

° ° all along the curve. The only way that can be true is

0 At 0 At 0 if the velocity versus time curve is itself a straight line
Time Time Time with slope equal to the constant a. Knowing a doesn’t
FIGURE 3.1 Time-dependence of tell us everything about the velocity v, however, only

variables for constant acceleration. that in any time interval Az the velocity changes by

the amount Av = aAt. On the other hand, if the value of the velocity is known at a par-
ticular moment, then the velocity is determined at every instant for which a remains the
acceleration. In Figure 3.1(center), the velocity is specified as being v, at r = 0, for exam-
ple. When that is the case, velocity depends on time in the following explicit way.

Av =v(t) — v, = alt = a(t — 0) = at,
so that
V(1) = vy + at. 3.1

The latter relation says that once a and v, are specified, just plug into Equation (3.1) a
value of time and the velocity at that time is automatically determined.

There’s another way of understanding how to go from acceleration to velocity. In the
last chapter we said that there is a graphical interpretation of acceleration: at any instant,
it is the slope of the tangent line to the velocity versus time graph. There is another graph-
ical interpretation when we go the other way, from acceleration to velocity. Note that by
drawing vertical lines from the times at the ends of the time interval Az, we construct a
rectangle on the acceleration versus time graph (Figure 3.1-left), the base of which is Az
and the height of which is a. Because Av = aAt, we can interpret Av as the area under the
acceleration versus time graph in the associated interval Az. Now, in general, even when
acceleration is not constant, we know that Av = aAt. So, extrapolating from the constant
acceleration case, we assign the average acceleration a graphical interpretation:

a

_ (the area under the acceleration versus time graph in the interval A7)
- At '

We make use of this idea in just a moment.

Having determined velocity as a function of time, we can determine position, x, at
any time for the special case of constant acceleration as well. First, note that velocity at a
given instant is the slope of the tangent line to the position versus time graph at that
instant. Velocity is constantly changing, therefore the slope of the x versus ¢ tangent line
is also constantly changing. Thus, position versus time has a curved graph (as in
Figure 3.1-right). What is its shape? Well, first we know that Ax = vAr. Arguing by

Velocity analogy with the acceleration—velocity situation, we state that the average velocity in an
interval At is the area under the velocity versus time graph divided by Az. Let’s say that 7,

/ is the first instant of Ar and tfis the last, and that v(z;) = v, and v(z)) = vy The shape under

»»»»»»»»»»»»»» the velocity versus time graph defined by vertical lines drawn from the ends of At is a

4 i trapezoid, in particular, a right triangle sitting on top of a rectangle. See Figure 3.2.

i The area of the rectangle is v;Ar and the area of the triangle is (vf — v)At/2 (one
half base times height), so adding the two together gives the area under the graph as
(v; + v)A#/2. (Remember, this is only true for the special case of constant accelera-
0 tion.) As a result, we conclude that when acceleration is constant

0 4 15 Time
FIGURE 3.2 Finding the average
velocity during an interval of time.

Vi

v,

_ 1
v=5(vi+vf).
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Now, suppose that z; = 0 and #; = 7 (a general value of time after
t = 0); then

v, + v()
2

\_/ =
Combining this with the definition of average velocity as

Ar  x() — x(0)
At t

‘7=

and writing x(0) as x,, we find

v+ v(t)
x(1) = x, + %L

After substituting from Equation (3.1) for v(¢), we have
1
x(t) = x, + vt + 5 at?. (3.2)

(The curve of x versus ¢ is consequently a parabola when acceleration is
constant.) Equations (3.1) and (3.2) represent useful relations for the
velocity and position as functions of time, respectively, of an object
undergoing motion with a constant acceleration. With a bit of algebra
one can solve for ¢ in Equation (3.1) and substitute into Equation (3.2)
in order to eliminate time and have a third (although not independent)
relation between the other variables,

V2= v(% + 2a(x — x,), (3.3)

where x and v are evaluated at the same time. Table 3.1 summarizes
these three relations, which have been derived exclusively from defin-
itions in the special case of constant acceleration. We show later that
constant acceleration arises from a situation in which the object expe-
riences a constant force, and although this is often not true, it repre-
sents the simplest case and can sometimes also be a useful
approximation to the motion. But, note that these three relations are
true in the general case of nonconstant acceleration, as long as we

It is very straightforward and elegant to
derive Equations (3.1) and (3.2) directly from
the definitions of acceleration and velocity
using calculus. The definitions of velocity
and acceleration, rewritten using derivative
notation, are

v = dx/dt
and
a = dv/dt.

Starting from the definition of a, after mul-
tiplying by dt and integrating both sides of
the equation, we can write

v t
/ dv' = / adt'.
v, 0

Integrating leads to Equation (3.1) because
the acceleration is assumed constant and
can be factored out from the integral. (If,
in fact, the acceleration is not constant but
is a known function of time then this inte-
gral expression can be solved for more
complex cases of nonconstant accelera-
tion.) Then, inserting the definition of v
into Equation (3.1), multiplying again by
dr and integrating, we have

Py t t
/ME/%M+/MM
X, 0 0

that integrates to give Equation (3.2),
because both v, and a are assumed con-
stant. By the same algebraic elimination of
t as in the text we arrive at the third relation,
Equation (3.3).

replace a by a wherever it appears. Of course, in the general case we have to be
able to calculate a (the area under the acceleration versus time graph from O to ¢,

divided by #) to make these relations useful.

Table 3.1 One-Dimensional Kinematic Relations
for Constant Acceleration Motion

Equation Variables
1. v(t) = vy + at v, a,t
2. x(#) = xy + vt + % ar? X, a,t
3. v2=v3+2a(x—x0) v, d, x
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Example 3.1 An E. coli bacterium travels a total distance of 100 wm along a
straight line from one position of rest to another. For a brief time during this
trip it accelerates from rest at a constant acceleration to a speed of 20 pwm/s and
for another brief time near the end, it decelerates (with the same magnitude of
acceleration, but oppositely directed) coming to rest after the total distance
traveled. If the total time for the trip is 5.4 s, find the time during which the
bacterium accelerates, the time during which it decelerates, its acceleration,
and the fraction of the distance traveled at constant velocity.

Solution: Here is an example of a problem in which acceleration is not constant
throughout. On the other hand, the total trip can be divided up into three differ-
ent phases, where in each acceleration is constant: (1) an acceleration from rest
(vo = 0, acceleration = +a), (2) a constant velocity portion (velocity = a con-
stant, acceleration = 0), and (3) a deceleration to rest (velocity = the same
constant as in the previous phase, acceleration = —a). We can separately write
expressions for the distances traveled in each portion and add them up to total
the 100 pm distance. Writing the distances and respective times as d |, t,, d,, ,,
and d;, 13, we have (using Equation (3.2) of Table 3.1)

1

d, = —ar?,
2

dy, = vt,,

= 1 2 — L)
dy = vt + E( —a)t;=viy — Eat3,
where v is the constant velocity of the middle portion of the trip and a is the
magnitude of the constant acceleration and deceleration. Before adding these,
we note that the times 7, and #; are equal because we can write, according to
Equation (3.1) in Table 3.1, expressions for the velocity in the first and third
intervals

v=0+ar and 0 = v + (—a)t;.

Then, using the fact that 7; = ¢, and 7, , = t, + 2¢;, we have

1 1
R, ) ) — _
dy = zatl + vty + 1y 2at1 = vty + vt = vt — 1.

Because d,, v, and 7, are given, we can solve this for 7, to find
d 100
tot
ty=t,=t,———=54——"=04s5s.
1 3 tot v 20

To then find the acceleration, we can use the velocity expressions to write
v = at,, for example, and find that

20
a=1=7=50pdm/sz.
t, 04

Finally, because the time traveled at constant velocity is 7, = 5.4 — 2(0.4) =
4.6 s, the distance traveled at constant velocity is d, = v, = 20 (4.6) = 92 pum,
representing 92% of the distance traveled in the interval.
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3.1.1. FREE-FALL: AN EXAMPLE OF CONSTANT ACCELERATION

A common situation in which there is a constant acceleration is in “free-fall.” An object
released near the Earth’s surface falls under the influence of gravity at a constant accel-
eration equal to a = 9.8 m/s, as long as air resistance is negligible. We represent the
magnitude of this free-fall acceleration by the symbol g. Actually, the acceleration any
body experiences due to gravity decreases with increasing height from the Earth’s sur-
face, but since it decreases only by about 1.5% at an altitude of 50 km (about 30 miles)
we can almost always treat it as a constant. We can analyze one-dimensional free-fall
situations without any new mathematical developments, because we already have all the
necessary relations among position, velocity, acceleration, and time for one-dimensional
motion in Table 3.1. It is usual in free-fall problems to take a coordinate system in which
x is horizontal and y is vertical (with “up” being the positive direction). In the next two
examples we treat vertical motion only. For these examples, translate the quantities in
Table 3.1 by replacing x by y, and a by —g.

Example 3.2 A tennis ball is thrown upwards with an initial speed of 12 m/s.
Find how high it will rise and how long it will take to return to its starting height.

Solution: The tennis ball rises until its velocity is momentarily zero. As it rises it
is uniformly slowed by the downward pull of gravity that acts continuously. Even
at the moment its velocity has become zero, the ball still has the same constant
downward acceleration. After coming to momentary rest, the ball continues to
accelerate downward, its speed continuously increasing.

Knowing that the highest point is characterized by a zero velocity for an
instant, we can find the maximum height the tennis ball reaches directly by using
Equation (3.3) in Table 3.1. That’s because we know initial and final velocities
and the acceleration; only the displacement is unknown. We don’t, for this part of
the problem, have to deal with time. We write Equation (3.3) in the form

Viop = Vo T 2(— 8)0op — ¥, ) = v§ — 28H,
where v, is the given initial velocity and H is the maximum height. We find
0 = (12m/s)2—2-(9.8m/s2)H, or H= 7.3 m.

The second part of the problem requires time information. One way of finding
it is to write the equation for the displacement of the ball and set it equal to zero

1
— = — (— 0)2 =
Y~ Yo = Voltound trip + %) ( g)tround trip 0.

In using this and any of the kinematic equations, we must be careful about
signs: the upward initial velocity is positive and downward acceleration is
negative. To solve for the desired quantity 7, 4 _ requires solving a quadratic
equation, although in this case a simple one. Whenever one solves a quadratic rela-
tion there are always two solutions. Which is the appropriate one for the problem
at hand requires some additional physical reasoning. For this example, we find that

eitherz 4 i 0 (one time at which the ball is indeed aty =y ), or

2vg 2-12m/s

t =24s.

round trip g 0.8 m/s2

Of course, the O s solution is physically trivial, and not the one of interest here.

(Continued)
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An alternative solution, incidentally, involves finding the separate times
for the ball to go up and down. The first time can be found from v = v, — g1,
with v = 0 at the top. We have

Yo
A
8
which we note is half of our previous answer. This result demonstrates that the
time for the ball to go up is equal to the time for it to return down, a result that
we might have assumed true from the symmetry of the motion.

Example 3.3 A ball is dropped from a height of 20 m to the ground below. A
second ball is thrown downward with a speed of 10 m/s after waiting some time
At after releasing the first ball from rest. To have both balls hit the ground at the
same time, how long should time At be?

Solution: We take the same coordinate conventions as in the previous example: up
is positive, down is negative. Also, we take y = 0 to be on the ground. (We could
have set y = 0 anywhere, such as at the launch point of both balls, for example. It
doesn’t matter where you choose your coordinate origin, but once having done so,
you have to remember to systematically keep it there in all your calculations.) The
first ball is dropped from rest (so its initial velocity is zero) and travels downward
with an acceleration —g. After time ¢, it is at position y, given by

1
y; = (+20m) + 5(—g)t%.

The +20 m in this equation represents y, at #; = 0. With y; = O m (i.e., just
about to hit the ground), we find that

Again, because we are solving a quadratic equation to find 7, there are two
times when the ball could be at y = 0 and be traveling under free-fall conditions:
in this case, *2.0s. The negative solution corresponds to a time 2.0 s before
when it is at +20 m with a velocity of zero. That is, if we launched the ball from
y = 0 with the correct upward velocity, in 2.0 s it would be at +20 m up and just
ready to fall back down. Because we want the time elapsed after the ball is
already at +20 m, we choose the positive solution.

For the first At seconds of the first ball’s flight, the second ball is at y, =
+20 m. Then, abruptly, it is thrown downward and, once in free-fall, falls
according to the equation

1
¥, = (+20m) + (—10m/s)z, + > (—9)t3,

where —10 m/s is the downward initial velocity of the ball. In this equation, 7,
is the time for the second ball to fall from +20 m to a position y,; t, is zero when
t, is At, and, in general, t, = ¢, — Az. We want the second ball to be at y = 0 at
the same instant the first ball is there. Substituting for y, (= 0) and g, we obtain
the quadratic equation
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0=20—10t, — 4.9t%.
Writing this in the standard form, ax? + bx + ¢ = 0, that is,
4.9t§ + 10z, — 20 =0,

we find two possible solutions (see the appendix on solving quadratic equations):

—10 £+ 102 —4-49-(—2
t, = 0 \/( (2)).49 9 O)=1.2s0r —33s.

(Trace through the units of the numbers in the latter expression—i.e., what are
the units of the “10,” the “20,” and the “4.9”—to assure yourself that the final
answer really does have units of s.) As in the first ball case, there are two pos-
sible times for the second ball to be at y = 0: one is positive, the time elapsed
from its release; the other is negative, a time before the moment declared to be
t, = 0 in this problem. Clearly, we want the positive solution. The time that the
second ball takes to reach the ground is 1.2 s. Therefore the person needs to
wait a time Ar = (2.0s — 1.2s) = 0.8 s after dropping the first ball before
throwing the second one.

2. MOTION IN A VISCOUS FLUID

Up until now we have assumed that all motion has occurred in the absence of any
frictional forces to slow objects down. In this section we relax that assumption to
include frictional forces in the important case of motion in a fluid, being either a lig-
uid or a gas. We show that in some cases our assumption has been realistic, whereas
in other cases it has been a poor one. The nature of the frictional drag forces on
macroscopic and microscopic objects leads to very different kinds of motion, consid-
ered below in separate discussions.

2.1. FORCES ON A MACROSCOPIC OBJECT IN A FLUID

Macroscopic objects immersed in a fluid (liquid or gas) experience two forces in addi-
tion to their weight (microscopic objects are discussed later in this section). There is a
buoyant force that always acts vertically upward and a drag (or frictional ) force directed
opposite to the velocity of the object (Figure 3.3). If the object is sinking in the fluid then
the frictional force also points upward, but if the object is rising, the frictional force will
then be downward. For now, we treat the buoyant force Fyg as a small constant correc-
tion, returning to a more detailed consideration in a discussion of fluids in Chapter 8.
In the rest of this section we investigate the drag force and its effect on motion.

An object moving in a fluid is surrounded by a thin layer of fluid, known as a
boundary layer, that moves along with it. If immersed in the fluid, as the object
moves, it must push fluid away and around itself to move forward and this motion
causes the fluid in the immediate vicinity of the object to flow. We can distinguish
two limiting types of flow based on the fluid properties, namely the fluid density p
and viscosity (or “stickiness”) m, as well as the size L and speed v of the object. The
quantity that determines the flow behavior of an object in a fluid is the Reynolds
number ¥, given by the dimensionless ratio

L
R =PV (3.4)
n

MoTION IN A Viscous FLuib

FIGURE 3.3 Forces on a
macroscopic object submerged
and falling in a fluid.
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FIGURE 3.4 Fast flowing turbulent
water in the Andes.
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Representative values for Jt are given in Table 3.2. Note that the fluid properties
in the Reynolds number are both intrinsic properties of the fluid. Two volumes of a
given fluid will always have the same density (introduced briefly in Section 5 of
Chapter 1) and viscosity, regardless of their size or shape, as long as they are at iden-
tical environmental conditions (such as temperature and pressure). Density is dis-
cussed further in Section 8.1. In general, fluids that pour very slowly such as
molasses, maple syrup, and the like are very viscous (have large viscosities) whereas
fluids such as water or alcohols, or especially gases such as air, have low viscosities.
We also study fluid viscosity further in Chapter 9.

Table 3.2 Typical Reynolds Numbers for Some Moving
Objects in a Fluid

Situation Reynolds Number
Person swimming 1,000,000
Large flying bird 100,000
Flying mosquito 100
Swimming bacteria 0.0001

For $ values much larger than 1, the fluid flow near the object is furbulent
(chaotic, swirling flow), as seen, for example, in fast flowing water near a waterfall
(Figure 3.4). Such fluid flow around an object leads to a “wake” (much like that pro-
duced by a motor boat speeding across a lake) and results in frictional forces reap-
plied to the object by the fluid that tend to slow the object. In this case the magnitude
of such a frictional, or drag, force is often proportional to the square of the object’s
speed and can be written as

1
Fe= ECpsz, (R>>1) (3.5)

where C is a drag coefficient with a value typically near 1.0 (but which may vary with
velocity, something that we ignore), p is the fluid density, and A is the effective cross-
sectional area perpendicular to the velocity v.
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If the object is not spherical, then different orientations can present different effec-
tive areas A leading to different frictional forces; for example, a thin rod oriented with
its axis along the flow velocity presents the minimum effective area, and so the mini-
mum drag force occurs leading to the rod’s most rapid flow. This can be demonstrated
by dropping two similar large flat rocks into a lake or pool of water. If the speeds of the
two rocks are compared when dropping one held vertically on edge and the other held
flattened side horizontally, the rock dropped on edge will fall at a much faster rate, due
to the decreased drag. The notion of an effective area is used by skiers, bikers, and sky-
divers, for example, to minimize frictional drag. In each case, the person can reduce the
drag force of the air that is slowing them down by huddling over and wearing tight-fit-
ting clothing so as to minimize their effective cross-sectional area (Figure 3.5).

The drag force is also proportional to the fluid density. Comparing water and air,
the two most common fluids in biology, the drag force for the same object at a given
velocity is over 800 times more in water than in air. Streamlined shapes of fish and
aquatic animals developed in order to reduce drag forces involved in swimming to min-
imize the expenditure of energy required for locomotion. Similarly, the aerodynamic
design of birds and other flying animals reduces drag in air. Frictional forces in air are
only apparent at high speeds because of the relatively low density compared to liquids.

The other limiting type of fluid flow, when R is much smaller than 1, is called
laminar flow and is an orderly smooth flow around an object, such as seen in the
streamlined nonturbulent flow of water over a rock in a stream or the smooth flow
around a kayak (Figure 3.6). In this case the magnitude of the drag is linearly propor-
tional to the relative speed of the object and fluid v; thus

Fo=fv (R <<1) (3.6)

MoTION IN A Viscous FrLuibp

FIGURE 3.5 A crouching skier
minimizes drag forces.

FIGURE 3.6 Two kayakers. Which

water flow is near-laminar, and
which turbulent?
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FIGURE 3.7 Skydivers reach a
terminal velocity in free-fall.

where fis a coefficient of friction that depends on the size
and shape of the object and the viscosity of the fluid. If the
object is spherical, then the coefficient of friction is given
by Stokes’ law as

f = 6mnr, (3.7)

where 7 is the radius of the object and 7 is the fluid
viscosity.

Looking back to Equation (3.5), we see that when
R >> 1 the density of the fluid is important, but the vis-
cosity of the fluid does not enter. In this regime, objects
are able to coast along at relatively large velocities after
having accelerated to the point where the driving force is
balanced by the drag force. In strong contrast, in the

regime of R << 1, viscous forces dominate and objects move very slowly and are not

able to “drift” for appreciable distances at all; as soon as an external or propulsion
force stops, motion ceases abruptly. To give some idea of when these limits occur, for
spherical objects with a density close to that of water, like most biological objects,
the radius must be smaller than about 40 wm in air, or about 150 wm in water, for the
frictional drag to be described by Equation (3.7) when the object is falling under its

own weight.

Let’s return to our macroscopic object in a fluid that we started to consider
in this section under the influence of gravity, buoyancy, and frictional forces.
Adding these three forces acting on the object and writing Newton’s second law,

we find that

How does an object approach its terminal
velocity in the case of a linear frictional
force?

From Equation (3.8) with F ' given by
Equation (3.6), we have

mg — Fy — fv = ma = m dv/dt.
The solution to this equation is given by

V() = V(1 — =M
= vterm(l o e_I/T)’

with v~ given by Equation (3.10) and
7 = m/f. This can be checked by direct
substitution. (Try it!) The result shows that
the terminal velocity is approached expo-
nentially, so that when =17, v(t=17) =

Verm(l = €1 = v,(0.63), and when
t = 27, vt =27 = vterm(l o e—2) =
Vierm(0-86) , and so on.

The time 7 is called the time constant
and is the time to reach 63% of the terminal
velocity from rest. In the case of our E. coli
bacterium the time constant is a very short
time of about 1 ps.
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mg — Fg — Ff= ma. (3.9)

If we imagine releasing the immersed object from rest, it will ini-
tially fall (assuming the buoyant force is less than the weight; other-
wise it will rise just as a bubble rises to the surface). However, because
the frictional force grows as the velocity increases, eventually the
net force on the object will become zero and the particle will have
zero acceleration. In this case we can set a = 0 in Equation (3.8)
and solve for the constant velocity at which the object will continue to
fall, known as the terminal velocity, v, (see Figure 3.7). Depending
upon the value of the Reynolds number, and thus whether the flow is
turbulent or laminar, we will find two different relations for the termi-
nal velocity.

Usually for free-fall objects in air (but not for microscopic objects,
which do not fall rapidly, nor for highly streamlined objects), the flow will
be turbulent, the Reynolds number large, and the terminal velocity given
by substituting Equation (3.5) into Equation (3.8) with a = 0 to find

_ 2(mg — F B)
Vierm = CpA . 3.9)
On the other hand, for objects that are streamlined so turbulence is min-
imized or when the Reynolds number is small, the flow is laminar, the fric-
tional force is linear in the velocity, and the terminal velocity will be given
by substituting Equation (3.6) into Equation (3.8) and setting @ = 0 to find

_mg—FB

Vem =" (3.10)
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Examples of terminal velocities of various objects are given in Table 3.3.

Table 3.3 Terminal Velocities of Various Objects Falling Under Gravity
in Different Fluids

Situation Terminal Velocity (m/s)
Sky diver 100 (225 mph)

Person sinking in water 1

Pollen (~0.04 mm diameter) in air 0.05

Algae spores (same diameter as pollen) in water 0.00005

2.2. FORCES ON A MICROSCOPIC OBJECT IN A FLUID

Microscopic objects behave quite differently in fluids. Constant collisions of fluid mol-
ecules with a microscopic object buffet the object about in a random path, overcoming
its weight so that it does not settle under gravity but remains suspended in the fluid. This
type of random diffusive motion is known as Brownian motion. In this case the particle
weight and buoyant forces are unimportant and the motion is entirely governed by col-
lision forces that result in diffusion, discussed in Chapter 2.

A particularly interesting case of microscopic objects’ motion in a fluid is the motil-
ity of organisms: self-propulsion using some mechanism to generate thrust. Thrust is a
propulsive force that can be produced by somehow pushing back on the surrounding
fluid to generate, by Newton’s third law, a forward-directed force. It can be generated
by squirting fluid backwards as done by clams and jellyfish, for example, or by pushing
backwards on the fluid using tentacles, fins, or arms and legs in the case of our swim-
ming (we consider this further in Chapter 6).

Consider the motion of a swimming microorganism such as an E. coli bacterium.
When the bacterial flagella that are used to generate thrust stop rotating, the viscous
forces are so great that motion ceases nearly instantaneously (within a millionth of a
second). The bacterium swims by using a set of coordinated rotating flagella to propel
itself at speeds of tens of micrometers per second. As long as the flagella rotate in a
co-ordinated manner, the dominant forces are simply thrust and frictional forces that
balance rapidly to result in constant velocity motion. The typical bacterial motion con-
sists of linear propulsion at a terminal velocity for some distance followed by periods of
“twiddling,” or uncoordinated rotation of flagella when the rotary motors powering the
flagella reverse for short times. In a uniform environment, the bacterium takes off in a
random direction again when its flagella come together to produce a coordinated thrust.
Investigators have shown that bacteria can sense variations in chemicals (nutrients, oxy-
gen, poisons) and that this results in longer straight line swimming toward or away from
chemicals in a process known as chemotaxis. The origin of the chemical detection
scheme used by bacteria remains unclear.

3. HOOKE’S LAW AND OSCILLATIONS

In this section we study the properties of springs and the motion of a mass attached to
a spring. This may seem to be a very specific application of the physics we have learned
and you may wonder why it is worthy of an entirely separate section. Linear springs,
those exerting a force linearly proportional to the extent of their stretch from equilib-
rium, can be used to model the interactions between atoms and molecules fairly well
near their equilibrium positions. In other words, under some circumstances we can pic-
ture the atoms in molecules as being held together by springs rather than by complex
electromagnetic forces. The properties of springs and the motion they produce is there-
fore of importance not only in problems dealing directly with springs, but also in the

HOOKE’S LAW AND OSCILLATIONS
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FIGURE 3.8 Hanging mass on
spring and plotted results.

<&

B,

FIGURE 3.9 An external force
stretches a linear spring by distance
X while the spring pulls back in the
opposite direction with a force of

equal magnitude, F = kx = F_,.
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much larger context of all types of linear forces. This notion is used repeatedly in this
book in modeling many different phenomena.

Let’s do an experiment with a spring. We support the spring from above and
stretch it by hanging different masses on the bottom end, as shown in Figure 3.8.
Recording the position of a mark on the bottom of the spring for each hanging mass,
we obtain the data shown in the first two columns of Table 3.4. The third column is
then obtained by calculating the differences in position of the spring mark with and
without the hanging weight to obtain the displacement from the starting position with
no hanging weight.

Table 3.4 Data for Hanging Mass on a Spring

Hanging Mass (g) Position (cm) Displacement (cm)
0 22.5 0
20 24.6 2.1
50 27.9 5.4
100 33.2 10.7
200 424 199
500 73.6 51.1

The displacement versus hanging mass data are plotted in Figure 3.8 and are
seen to be linear. In each case, the hanging weight is in equilibrium, supported by
an equal upward force due to the spring. From our data we could conclude that
(at least over a limited range of stretch of the spring) the force that the spring exerts
on the hanging mass is proportional to its displacement x from its unstretched equi-
librium length, or

F = —kx, (3.11)

where the constant of proportionality & is called the spring constant. The negative
sign indicates that the spring force is a restoring force; if the spring is stretched, the
spring force tends to pull it back to a shorter length, whereas if compressed to a
shorter length, the spring force tends to restore it to its longer equilibrium length.
Equation (3.11) is known as Hooke’s law and correctly describes the spring force for
small displacements. Using it we can determine the spring constant of our spring
from a calculation of the slope of the line in Figure 3.8. We first find directly from
the graph that Ax/Am = 0.1 cm/g = 1.0 m/kg. From this we can then calculate that
k = AF/Ax = Amg/Ax = g/(Ax/Am) = 10 N/m, using a value of g = 10 m/s%. With
any constant external force F, ,, continuously applied to maintain a stretched (as in
our hanging weight experiment) or compressed length for the spring, the spring
responds with an equal but opposite force according to Equation (3.11) (Figure 3.9).
In general, gravity need not play any role as the following discussion shows.

Let’s now take the same spring from our static equilibrium experiment with a
hanging weight and clamp it in a horizontal orientation between a fixed wall and a
mass m = 1 kg lying on a horizontal frictionless surface (an air track, e.g.) as shown
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in Figure 3.10. If we pull the mass to the right, stretching the spring 10 cm, and
then release it from rest, we can record its position as it moves under the influ-
ence of the spring force (note that you don’t need tremendous skill to record

F,

spring =

—kx

these data; there are automatic recording schemes that can do these rapid mea-
surements for you). Figure 3.11 shows a plot of these data. By inspection the
position versus time graph looks like a cosine function, with repeated oscillatory
motion of the mass on the spring. Let’s now investigate this situation further to
try to explain the observed motion.

If we consider the forces acting on our oscillating mass we first see that the vertical
forces are the weight and the normal force, equal and opposite resulting in no net verti-
cal force and therefore no vertical acceleration or velocity; the mass stays in contact with
the surface. This discussion anticipates our generalization to two-dimensional situations
later in Chapter 5, but it’s clear that the motion here is only horizontal. The only
horizontal force is that due to the spring and so, according to Newton’s second law, we
set that force equal to the product of the mass and the horizontal acceleration a.
Unlike our previous Newton’s law problems, the applied net force is now a function of
position

F =

et — kx = ma,

(3.12)
so that the acceleration of the mass is proportional to its distance from the equilib-
rium, unstretched, position of the spring, taken as x = 0. The acceleration is not a
constant, but varies with the displacement from equilibrium!

When we release the mass from rest at x = A = 10 cm, the initial acceleration of
the mass is given, from Equation (3.12), by a = —(k/m)A = —(10 N/m/1 kg)(0.1 m) =
—1.0 m/s?, where the negative sign indicates that the acceleration is in a direction
opposite to the displacement and hence will tend to restore the mass to x = 0. The
mass gains an increasing velocity back toward x = 0, all the while decreasing its accel-
eration as it approaches x = 0. At x = 0 the mass momentarily has no acceleration, but
it has gained a velocity along the negative x-axis and so continues past x = 0. Once x
is negative, the spring has been compressed and responds with a force directed back
toward the origin, along the positive x-axis. This net force results in an acceleration
also directed along the positive x-axis (in agreement with Equation (3.12) with neg-
ative x values so that @ > 0), that acts to decrease the speed of the mass. Because
the motion is symmetric about the origin, the velocity of the mass as it passes the
origin turns out to be just enough to have the mass, as it slows down, reach the posi-
tion x = —10 cm. At this point the mass momentarily stops, but is acted on by a
maximal positive acceleration equal to +(kA/m) = 1.0 m/s?. The next phase of the
motion, from x = —10 cm to x = +10 cm is the mirror image of the above descrip-
tion. The motion continues, with the mass oscillating back and forth between the
limits of x = £ A = =10 cm, where A is known as the amplitude, or maximum
distance from the origin.
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FIGURE 3.10 A block attached to
a spring sliding on a frictionless
surface.

FIGURE 3.11 Data for the position
of the mass attached to a horizontal
spring versus time.
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Example 3.4 A horizontal linear spring with a spring constant of 10 N/m is
stretched a distance of 10 cm and a 2 kg block resting on a frictionless sur-
face is attached. When the block is released, find its acceleration. What is its
acceleration after moving 10 cm? After moving 20 cm?

Solution: The horizontal force on the block when released is entirely due to the
spring and is given by Hooke’s law as F = (10 N/m)(0.1 m) = 1 N, so that the
initial acceleration is then a = F/m = 0.5 m/s%. After traveling 10 cm, the block
is at the equilibrium position of the spring and will momentarily feel no force
because the spring is unstretched. Therefore the acceleration is also zero at that
instant, even though the block is sliding with some velocity. In fact the block has
reached its maximum velocity at that point because in the next instant the spring
becomes compressed and begins to push back on the block and to decelerate it.
After traveling another 10 cm, for a total of 20 cm along the surface, the spring
is fully compressed, and by symmetry the block will have been slowed to have
zero velocity at that instant. Although the velocity is momentarily zero, the
spring force is maximal and equal to 1 N in the opposite direction to the initial
force, producing a maximal acceleration of 0.5 m/s? in that same direction.

We have qualitatively explained the oscillatory motion we observed, but can we
provide a quantitative explanation as well? Using a computer, we can curve fit the
data in Figure 3.11 to a cosine function,

27t
x=Acos(T>, (3.13)

where A, known as the amplitude, is the maximum value that x reaches and 7, known
as the period, is the repeat time of the oscillating cosine function. Reading these val-
ues directly off the graph shows that A = 10 cm and T = 2 s for these data, so that
the mass on the spring has a position that oscillates around the origin according to
x = 10 cos(7rt), with r measured in seconds and x in cm.

The motion of the mass on a spring is an example of a more general type of cyclic
or periodic motion that repeats itself with a regular time interval. Spring motion is
also known as an oscillatory motion because it is a back-and-forth periodic motion
like that of a pendulum, as contrasted with, for example, the periodic motion of the
Earth around the sun each year. The oscillatory motion of a mass on a spring repre-
sented by Equation (3.13) is known as simple harmonic motion. The term harmonic
comes from the mathematical definition of the sine and cosine as harmonic functions.
It is an ideal limit, because it represents oscillatory motion that persists forever with
the same amplitude. In Chapter 10, we return to this problem and give more realistic
models to describe oscillatory motion. In the rest of this section we pursue the ideal
motion of a mass on a horizontal spring and see what more we can learn about
simple harmonic motion.

Remembering back to the beginning of the last chapter, we can use those tech-
niques to analyze Figure 3.11 for the velocity of the mass oscillating on the horizon-
tal spring. Recall that we need to compute the slope of the smooth curve extrapolated
through the datapoints as a function of time in order to plot the velocity of the mass
as a function of time. This can be done using the help of a computer to find the results
shown in Figure 3.12. We noted above that the position versus time data looked like
a cosine curve; these new results look similar in that they oscillate with the same
period of T = 2 s but they are both shifted over in time and have a larger amplitude.
After a bit of thought we can recognize the shape of the curve to be the negative of a
sine curve, or a sine curve that has been shifted over by half of its period, and can be
represented as
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where v

max 18 the amplitude of the curve or, with T'= 2s,as v = v sin(7t). A more
complete analysis (see the box on the next page) shows the connection between the
amplitudes of the position and velocity graphs

21
Vinax = <T>A,

or in this case v = mA = (3.14)(10 cm)/s = 31.4 cm/s, in agreement with the
plotted values.

To generate a plot of the acceleration of the mass as a function of time we repeat
our computer slope calculation, this time plotting the slope of the velocity versus
time graph to obtain Figure 3.13. Note that the plot is the negative of a cosine graph,
the period is the same 2 s, and that the amplitude is even larger. We can write the
functional form of the graph as

2t
a = —amaXCOS T .

and in this case with T = 2's,a = —a_, cos(7rt). The analysis in the box below using

calculus shows that
2m\? 27
Anax — 7 A= Vmax 7 ’

(3.15)
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HOOKE’S LAW AND OSCILLATIONS

FIGURE 3.12 Velocity versus time
data (blue) obtained for the mass
on a horizontal spring from the
running slope of the position versus
time graph shown in red.

FIGURE 3.13 Acceleration versus
time (green) for the mass on a
horizontal spring example, obtained
from the running slope of the
velocity versus time graph shown
in blue.
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orin this case with 7 = 2s,a = A = (3.14)%(10 cm)/s% = 98.6 cm/s?, in agree-
ment with the graph. Note the important result from substituting Equation (3.17) into

Equation (3.16) that
27 \? 21t 27 \?
a=— (77) A cos(ﬂ-) = —<7T) by (3.18)
T T T

so that the acceleration and position of the mass are proportional, in agreement with
Equation (3.12) which states that a = —(k/m)x.

From our set of three graphs for the position, velocity, and acceleration of the
mass undergoing simple harmonic motion we see that the velocity and acceleration
changes are out of phase with the position. In particular, the velocity varies as sin
2t/T rather than cos 27r¢/7T. This is expected because, for example, when the par-
ticle is at its amplitude at t = 0, 7/2, T, ..., with its largest acceleration in the
opposite direction due to the maximal restoring force, the velocity vanishes instan-

We can solve for the displacement of the
mass on a spring directly from Newton’s
second law, Equation (3.12), by using the
definition of a

ma = md? x/df? = —kx, or

2x  k
—+—x=0.
dz2  m

This is an example of a differential equa-
tion for x(z), an equation with derivatives
and functions of x, which is to be solved for
x(t). This equation of motion for the mass
on a spring states that the second derivative
of x is proportional to —x. Trying a solution
of the form

x = A cos(wt),

and substituting this into the above equa-
tion and differentiating twice, we find that

(—w? A)cos(w 1) + %Acos(w H=0.

In order for this equation to hold we must
have

k
w?=kim or w=,[—.
m

We can also find an expression for the
velocity of the mass, Equations (3.14) and
(3.15), or (3.23), by differentiating the
equation for x,

v =dx/dt = —Aw sin(w 1).
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taneously. Similarly, while at the equilibrium position where the force
and acceleration vanish instantaneously, the particle has its maximum
velocity in either direction.

At this point in our discussion of simple harmonic motion we can
answer the important question: what determines the period of oscillation
of a mass on a spring? If we compare Equations (3.12) and (3.18), we can

write that
k 27 \?
a= ——x= —|— | x (3.19)
T

Equating the coefficients of x in this expression we can solve for the

period to find
|m
T=2m FE (3.20)

We see that the period of oscillation is proportional to the square
root of the oscillating mass and inversely proportional to the square root
of the spring constant. The larger the mass is, the larger the period, and
the stiffer the spring is, the shorter the period. These observations should
make intuitive sense. What is not so intuitive is that the period is inde-
pendent of the amplitude of the oscillation. No matter what amplitude
we give to the mass on the spring when we start the motion, the period
will be the same. This is true as long as Hooke’s law is obeyed, the so-
called “linear response” of the spring. For large amplitudes, nonlinear
forces will act and the period will no longer be independent of the
amplitude.

We can check the prediction for the period based on Equation
(3.20), by comparing its calculated value with the value read off the
plot of about 2 s. From our experimentally determined spring constant
of 10 N/m measured using hanging weights and with a value of 1 kg
for the mass used in the oscillation experiment, we find a predicted

I 2”1 2771, 1.99 S,

in good agreement with the experimental period.
A useful parameter to introduce here is the frequency f, or number
of oscillations per second (measured in hertz, Hz, or oscillations/s),
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which is simply related to the period because one oscillation occurs in a time 7, so
that

PR (3.21)

=7 2\

The larger the frequency of oscillation is, meaning the greater the number of
oscillations per second, the shorter the period. Another parameter worth introducing
is the angular frequency (or angular velocity) w, measured in rad/s, and related to the
frequency and period through

21
w =2wf=—. (3.22)
T

The angular frequency is introduced here more for convenience because the
factor (27/T) appears in many of the above equations. Rewriting some of the above

equations in terms of the angular frequency we have the following collection:

k
x=Acos(wt); v=—Awsin(wl); a=—w?x; o=, /% (3.23)

Example 3.5 A 0.1 kg mass is attached to a linear vertical spring and set into
oscillation. If 0.25 s is the shortest time for the mass to travel from its highest to
its lowest point, find the period, the frequency, and the angular frequency of the
simple harmonic motion.

Solution: The trajectory from highest to lowest point is half of a full cycle of the
motion so that the period would be 0.5 s. The frequency is then equal to 2 Hz,
because two full cycles occur in 1 s. The angular frequency is equal to w = 27f =
47 rad/s or 12.6 rad/s.

Example 3.6 A 0.5 kg mass is hung from a spring, stretching it a distance of
0.1 m. If the mass is then pulled down a further distance of 5 cm and released,
find (a) the period of the oscillations, (b) the maximum height the mass reaches
from its release point, (c) the maximum acceleration the mass experiences, and
(d) the maximum velocity of the block.

Solution: (a) According to Equation (3.20), the period of the motion depends
only on m and k. From knowing that the 0.5 kg mass initially stretches the
spring by 0.1 m, we can compute the spring constant to be k = F/x = (0.5 kg)
(9.8 m/s2)/0.1 m = 49 N/m. On substitution into Equation (3.20), we find that

T—21/%—063
T 19 .63 s.

(b) The mass oscillates with an amplitude of 5cm around the equilibrium
position (the initial suspension height). Therefore, the mass rises at most 10 cm
above its starting point where it again reaches its amplitude but above the
equilibrium position. (¢) As the mass oscillates, its acceleration is given by F . =
ma, = —kx. At first glance you might wonder why we have seemingly neglected
the weight of the hanging mass. This was intentional because in stretching the

(Continued)
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spring 0.1 m when first connected, the spring supports the weight, allowing the
mass to stay suspended at equilibrium. When the spring is further stretched, it
supplies the additional force —kx, where x is the displacement from the equilib-
rium point. The maximum acceleration thus occurs when x is at its minimum
value of —5 cm, measured from the equilibrium position, or at the starting posi-
tion. This acceleration is given by a, = —kx/m = —(49 N/m)(—0.05 m)/0.5 kg =
4.9 m/s?. At the topmost point of its oscillation 10 cm above the starting point, the
mass has this same value of acceleration but directed downward. (d) According to
Equation (3.23), the maximum velocity is given by wA, because the sine has a
maximum value of 1. To find w, we note from Equation (3.22) that

2T _ 2T 10 rad/
= = = it .
T  063s adss

Then the maximum velocity of the mass is given by wA = (10 rad/s)(0.05 m) =
0.5 m/s.

Example 3.7 The two hydrogen atoms in the hydrogen molecule H, oscillate
about the center of mass of the molecule with a natural vibrational frequency of
1.25 X 10'4 Hz. What is the spring constant of the effective spring equivalent to
the bonding forces in the molecule? You will need to know that the effective mass
of H, for motion about the center of mass is 1/2 the mass of a hydrogen atom.

Solution: We know that the angular frequency of oscillation is related to the
spring constant and the mass through Equation (3.23). Using a hydrogen mass
of lu=1.67 X 10727 kg, we can solve for k in Equation (3.23) to find

k= w?m= 2uf)?m = 472 f2m = 520 N/m.

This is a typical value for the effective spring constant of a single covalent
bond. Weaker ionic bonds, such as in NaCl, have smaller spring constants of
about 100 N/m, and double or triple bonds have stiffer spring constants, with
values up to several thousand N/m.

4. FORCES ON SOLIDS AND THEIR ELASTIC RESPONSE;
BIOMATERIALS AND VISCOELASTICITY

4.1. ELASTIC RESPONSE OF SOLIDS

Just how strong is the force that holds ordinary objects together? To get a rough idea we
can perform a pulling experiment. For example, let’s attach a weight to the end of a cop-
per wire hanging vertically that is 1 m long and has a cross-sectional area of 1076 m2. If
we add 5 kg to the end of the wire, it will stretch by about 5 X 10~% m (i.e., by about
0.5 mm). If we add 10 kg (i.e., double the added force), the stretch is about 1073 m
(double the stretch). A shorter wire of the same cross-sectional area doesn’t stretch as
much. A 0.1 m long wire (one tenth as long as the original) that has 10 kg added only
stretches by about 10™* m (one tenth as much as the original). A thicker 1 m long wire
also doesn’t stretch as much as the original. A wire that has a cross-sectional area of
1073 m? (ten times the cross-sectional area of the original) and 10 kg added stretches by
about 10~% m (one tenth as much as the original). These results can be summarized (see
Figure 3.14) by saying that the amount a copper wire stretches when a force is applied
to its ends is: (1) proportional to the applied force, (2) proportional to the original length,
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and (3) inversely proportional to the cross-sectional area. Interestingly, if we remove
the added weight, the wire returns to its original length. Such a stretch with a return
to the original form is called an elastic deformation. Of course, all of these observa-
tions are invalid if too much weight is added. If too much weight is added, the wire
can permanently stretch (plastic deformation) or even break.

The rule for elastic deformation that we have written in words can be written in
equation form:

f_yaL (3.24)
A ’ ‘

where F is the applied force, A is the cross-sectional area, L is the original length, and AL
is the stretch. The constant of proportionality is called Young’s modulus. It is a number
with units N/m? that measures the strength of a material. Materials with larger Y’s are more
difficult to pull apart than materials with smaller Ys. The left-hand side of the equation,
F/A, is called the applied stress (in this case tensile stress) measured in N/m?, or pascal
(1 Pa = 1 N/m?), whereas the ratio AL/L is the resulting (dimensionless) strain produced.

Example 3.8 Given the data in the preceding paragraph, estimate Young’s modulus
for copper.

Solution: When 10 kg is added to the 1 m wire of cross-sectional area 10~ m?
it stretches by about 1073 m. The weight of a mass of 10 kg is (10 kg) X g ~
(10 kg) X (10 N/kg), about 100 N. Thus, 100 N/10~°m? ~ ¥ (1073 m)/(1 m).
Solving for ¥, ¥ ~ 10" N/m2.

The elasticity of solids is due to the fundamental atomic nature of materials.
Individual atoms and molecules in a solid are bound to each other by electromagnetic
forces that, to a reasonable approximation, can be treated as a set of stiff connecting
springs. For small deformations this is a very good model of a solid and we can imag-
ine that the shape changes in a solid are due to small compressions or expansions
of the set of springs keeping the solid intact. This model of a solid held together by
effective springs can give rise to the entire set of properties of the solid, including its
thermal and electrical properties, although we do not study these here, as well as its
structural properties discussed below.

When a solid, which is not free to translate or rotate, is subject to external forces it will
deform. If the solid were perfectly rigid, there would be no response, or deformation, what-
soever. All real solids, however, are deformable, and it is this phenomenon that we wish to
study. In biology there are a number of structural solids whose properties are fundamental
to the life processes of the organism. These include bone; soft tissue such as cartilage, skin,
and blood vessels; shells; wood; and many others, including artificial medical implants.

Imagine putting the femur bone (the long bone of the thigh) under tension by exert-
ing forces on either end along the long axis of the bone and away from the bone’s cen-
ter (Figure 3.15). If we were to gradually increase the magnitude of the tensile force,
just as we described above for the copper wire, and measure the length of the bone as
a function of the applied force we would be able to plot the graph shown in Figure 3.16.
For relatively small applied forces, the bone stretches by small proportional amounts in
the linear portion of the graph; of course, for a bone the applied forces needed to pro-
duce a significant length change are very large as we quantitatively work out shortly. If
the applied force is removed, the femur returns to its original length because it is elas-
tic, just like a spring. As the applied forces get somewhat larger, the bone response is
no longer linear, but even beyond this linear limit on removal of the force the bone still
returns to its original length. In this range of forces, the effective springs defining the

FORCES ON SOLIDS AND THEIR ELASTIC RESPONSE

FIGURE 3.14 Results from elastic
deformation of a wire. Left three:
Wire of length L stretches a distance
AL with force F and 2AL with 2F.
Thicker wire with 2A cross-sectional
area is only stretched AL/2 by force
F. Right two: Wire of length L/2 and
area A is only stretched by AL/2 by
force F.

FIGURE 3.15 The femur under
tension.
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internal structure of the bone become nonlinear but we are still in the
elastic regime. As the applied force is further increased the femur will
break, or fracture, at a certain value, known as its ultimate strength. In

ultimate strength the adult human femur this happens when stretched by about 3%. For
— \ other materials, such as metals, glasses, and some polymers, beyond a
certain applied force, the elastic limit is reached and the material enters

a plastic regime in which it is permanently deformed even when the

qime forces are removed. For bone, the plastic regime does not exist but
plastic red every solid material will have a qualitatively similar force—elongation

curve with linear and nonlinear regimes, an elastic limit, and ultimate
strength, if not plastic and viscoelastic (see below) regimes.

The linear elastic regime is described by Equation (3.24). The same
expression also applies to the case when the applied forces tend to com-

% stretch from equilibrium

FIGURE 3.16 The upper curve is
the typical response of bone and

the lower curve shows the plastic
behavior of some other materials.

Strain angle j

FIGURE 3.17 A solid undergoing

shear deformation due to the
shearing force F.
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press the bone, as, for example, when standing upright, although the
Young’s modulus for compression is roughly 1/3 that of the modulus for
tension. This difference is due to the anisotropic nature of bone and leads
to greater strain for the same stress on compression over that on tension. In addition the
ultimate strength of bone is over 25% greater for compression than for tension. If we
rewrite Equation (3.24) in the form

YA
F=—AL,
Ly
and note that the restoring force the solid exerts is Frsore = —F> then we see that
solids also obey Hooke’s law with an effective spring constant
YA
k=—-. (3.25)
Ly

Example 3.9 Estimate Young’s modulus for compression of bone from the fol-
lowing data. The femur of an 85 kg person has an effective cross-sectional area
of about 6 cm? and a length of about 0.5 m. When the person lifts a 100 kg mass,
careful measurements show that the femur compresses by about 0.04 mm. Also,
if the ultimate compressive strength of the femur is 1.7 X 108 Pa, find the max-
imum weight that the femur can support.

Solution: The 100 kg mass is assumed to be carried equally by both legs, so that
the load on each leg is a force of (50 kg) (9.8) = 490 N. The added stress is then
found to be F/A = 8.2 X 10° Pa, which results in a strain of (0.04 mm)/(0.5 m) =
8 X 1075, Young’s modulus is then found as the ratio of the stress to strain, or ¥ =
(8.2 X 10°)/(8 X 107) = 10'0 Pa.

From the ultimate compressive strength, we find that the maximum weight that
the femur can support is F = (ultimate strength)(area) = (1.7 X 108) (6 X 107%) =
103 N. This enormous weight implies that normally the femur will not fracture
under compressive forces. We show below, however, that it is much more common
for large bones to fracture under bending or twisting.

An implicit assumption here is that the solid is uniform and isotropic throughout
(Y does not depend on direction). Although not considered here, in cases where the
material is anisotropic (some crystals, e.g.), Young’s modulus may differ in each of
three orthogonal directions, x, y, and z, and there will be three different expressions
for Equation (3.24) along the x-, y-, and z-axes with three different normal stresses,
strains, and Young’s moduli.

If the applied force is not normal to the surface, but parallel to the surface
(Figure 3.17), the type of stress applied is called a shear stress. In this case the
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response of the material is a shear strain deformation in which the solid dis-
torts to different extents along the direction parallel to the surface. In the lin- l

ear case, this distortion results in a constant strain angle as shown in the figure. \ /
Again the stress and strain are proportional with, in this case, the proportional-

ity constant known as the shear modulus. Once again, we remark that if the

material is anisotropic there will be various shear stresses, strains, and moduli. —
In this case there are six possible shear stresses, because for a force applied

along the x- (or y- or z-) axis, there are two possible independent planes of ori-

entation, the xy or xz (or four others) (see Figure 3.17 where the shear stress

is along the x-axis and the strain angle is shown for shear of the xy planes). / \
Corresponding to these six shear stresses there are six shear strains and six T

shear moduli.

These six shear strains and the three normal strains mentioned above for ten- FIGURE 3.18 An object immersed
sile stresses together form a 9-component, 3 X 3 array, called the strain tensor. The 1 a fluid has a pressure (force/area)
mathematics of tensor analysis allow one to write relations between the stress and acting on it from the fluid normal to

. . . . . every surface.
strain tensors that describe all of the elastic moduli and to set up any problem in
the linear deformation of solids, most of which then need to be solved numerically
by a computer. This type of analysis is used, for example, by mechanical and civil
engineers in construction projects using steel or concrete beams or by bioengineers
designing artificial limbs.

A related type of stress—strain relation is for torsion, or twist around some axis
of rotation. This is a particularly prevalent type of stress for bone and most leg frac-
tures are torsional fractures. For example, skiers are particularly susceptible to this
type of fracture because bone is weak under torsion and, as we show in Chapter 7,
long skis make it easy to twist the leg bones.

One last type of stress—strain relation should be mentioned here. When an
object is immersed in a fluid, the fluid exerts a force normal to the surface of the
object everywhere (Figure 3.18). This force per unit area is called the pressure. We
consider pressure in much more detail in Chapter 8. In this case the analogous
quantity to the strain is a small fractional change in the volume of the object and
the proportionality constant between the pressure and the strain is known as the
bulk modulus.

4.2. BIOMATERIAL STRENGTH

FIGURE 3.19 /Image of collagen
In the world of biomaterials, there are certain motifs that fibers.

recur both in structural proteins and, on a larger scale, in
bone, tissue, and muscle. On a microscopic scale, most pro-
teins involved in providing structural strength are organized
into filaments. Notable examples include actin and myosin
(the major muscle proteins), collagen (a major component of
bone and connective tissue), tubulin (the major protein in
microtubules which provide a cellular framework), and the
keratins (a class of proteins found mostly in vertebrate horn,
hoof, hair, and skin). Within this motif there are variations,
but a key point is the elastic nature of the structures formed.

Collagen is the most abundant protein in mammals and
is fundamentally a stiff triple helix that associates into bun-
dles. In connective tissue these collagen fibers are cross-
linked together in a network by a protein called elastin.
Elastin is perhaps the most elastic of known proteins and is
responsible for the high elasticity of skin and blood vessels.
In tendon, collagen bundles associate in a repetitive pattern
of filamentous structures, as shown in Figure 3.19, in associ-
ation with water, polysaccharides, and other proteins. In
bone, a very dense and specialized form of connective tissue,
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FIGURE 3.21 The phenomenon

sATCOmene

eross bridges

actin (thin)} filaments  myesin (thick) filumeats

FIGURE 3.20 Arrays of muscle filaments in a muscle fiber bundle or fibril: (left)
microscope image of longitudinal array showing thick and thin filaments overlapping

in lower right portion of photo; (center) schematic for the interpretation of the left
image. Thick filaments show up darker in the microscope image; (right) cross-sectional
view through a muscle fiber bundle showing the thick and thin filaments in a
hexagonal array.

solid deposits of minerals are present in addition. Collagen filaments are very effec-
tive at resisting tensile stresses, and the mineral deposits in bone resist compressive
stresses. The composite material bone has tensile and compressive moduli nearly
equal to that of aluminum.

Actin is a small (~5 nm) globular protein that self-associates to form long fila-
ments, known as F-actin, in the cytoplasm of cells and with other associated proteins
in the form of thin filaments in muscle. In cells, the process of actin self-association,
or polymerization, has been shown to provide sufficient force to change the shape
of cells and actin is known to be intimately involved in generating force for cellular
locomotion. Myosin, which has a rodlike “tail” end and two globular “heads,” forms
the thick filaments of muscle by the ordered aggregation of the tail portions of the
myosin together with other proteins. In muscle, these two filamentous structures, the
thin and thick filaments, interdigitate in a regular hexagonal array in a muscle fibril
(Figure 3.20). These two sets of independent filaments interact with each other via
the “cross-bridges,” or heads of myosin. In a complex chain of chemical and struc-
tural events that is only partly understood in detail, the myosin heads attach to spe-
cific sites on the actin molecules and, using the energy released by the hydrolysis of
ATP, undergo a structural change that forces the thin and thick filaments to slide rel-
ative to one another, thus shortening the muscle fibril. In a muscle, these myofibrils,
each about 1 wm diameter, are themselves organized in a series of regular arrays. All
muscles generate tension forces by shortening their overall length. Our bodies use
sets of pairwise antagonistic muscles to allow us to move our limbs about our joints

in various directions. The composite structure of muscle and tendon or
bone is a second motif in structural proteins: the overall structure con-
sists of subunits that are in turn made up of many similarly organized
smaller subunits.

t 4.3. VISCOELASTICITY

Most biomaterials do not obey a linear relationship between applied
stress and strain nor can they be analyzed solely in terms of their elas-
ticity. Biomaterials also have a viscous component to their response to
an external stress, a phenomenon known as viscoelasticity. What are

of creep.
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the characteristics of viscoelasticity? If a constant stress is applied to
a viscoelastic material for a fixed time interval, the characteristic
strain response is shown in Figure 3.21. This phenomenon is called
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FIGURE 3.23 Hysteresis shown for the deformation of liga-
ment/tendon where the graphs for application and removal
of stress do not superimpose. Also, with repeated stress,
FIGURE 3.22 Stress relaxation. the hysteresis curve also shifts to larger strains. Both of
There is no connection here to yoga. these are viscoelastic phenomena.

creep, the slow progressive deformation under constant stress. A related property,
known as stress relaxation, is illustrated in Figure 3.22 where the material is held
at constant strain, clamping its length, and the stress is found to relax over time.

If a material is subjected to a cycle of applied stress and removal of the applied
stress, the stress—strain relationship for viscoelastic materials is not reversible, as
shown in Figure 3.23 for ligament/tendon, and the material exhibits hysteresis, or
irreversible behavior. This irreversibility means that the stress—strain path on elonga-
tion is different from the path on relaxation back to the original unstressed position.
Viscoelasticity should be distinguished from plasticity, mentioned earlier in connec-
tion with nonreversible deformations at high stress, in that viscoelastic materials
return to their original shape after applied stresses are removed, but only after some
time has elapsed. Nearly all biomaterials exhibit some degree of creep, stress relax-
ation, and hysteresis, but to different extents and with different characteristic times
involved.

In order to characterize viscoelastic materials, two types of mechanical experi-
ments can be done. In one case transient constant stresses or strains are applied and the
response of the material is investigated. Usually either creep or stress relaxation is stud-
ied in this method. In the other case cyclic, or dynamic, stresses or strains are applied
and the time-dependent response of the material is investigated as a function of the fre-
quency of deformation. By examining the frequency dependence of both the elastic and
viscous moduli, separately, as functions of frequency, this method often can lead to
models for the molecular origin of the viscoelastic behavior. We mention here that other
nonmechanical types of characterization, such as ultrasonic and spectroscopic methods,
can be used to study the elastic properties of materials as well. Also, in recent years a
new type of microscopy (atomic force microscopy; see Chapter 7) has been used to
measure variations in the elastic modulus of bone with a spatial resolution of about
50 nm and has shown a strong correlation between the elastic and structural properties
of bone. In addition to characterizing natural biomaterials, viscoelastic measurements

are also performed on various implant and prosthesis materials. FIGURE 3.24 Linear springs and
Models of viscoelastic behavior usually use various com- dashpots and their analogy with
binations of simple elastic springs and simple viscous dash- elastic solids and viscous fluids.

pots (Figure 3.24), representing the ideal viscous behavior of spring: F =—kx

a simple fluid in which the stress is proportional not to the I\/\/\/\/—>

strain, but to the time rate of change of the strain as we show

when we discuss viscous fluids in Chapter 9. A dashpot is a

mechanical element, pictured as a piston, with a frictional H:|_> dashpot: F =—fv

force between the piston and outer walls of the cylinder that viscous fluid: stress = (viscosity) (strain rate)

elastic solid: stress = (elastic modulus) (strain)
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Maxwell model-in series
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Kelvin-Voigt model -in parallel

FIGURE 3.25 Two simple arrange-
ments of linear springs and dashpots
used to model the viscoelastic
properties of materials.
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depends on the velocity of the piston. These elements (ideal springs and dashpots)
can be connected in various ways (series, parallel, or combinations: Figure 3.25) in
order to model different types of viscoelastic behavior. When connected in series
(the Maxwell model) the spring, under an applied stress, will deform instantly
whereas the dashpot will deform continuously while the stress is applied. This
model is often used to describe viscoelastic fluids because those materials will flow
while the stress is applied. When connected in parallel (the Kelvin—Voigt model)
the spring will limit the deformation of the dashpot under the applied stress, and
this model is often used to describe viscoelastic solids, those materials that are more
solidlike in their behavior. In some respects this type of analysis is very similar to
electrical circuit analysis with various electrical elements connected together, a
topic that we discuss in more detail later on.

5. STRUCTURE AND MOLECULAR
DYNAMICS OF PROTEINS

Biomolecules are biologically significant molecules that are usually quite large and
are therefore also termed macromolecules. They have an enormously complex and
rich variety of structures but are made from simpler structural building blocks. For
example, proteins are all made from the 20 or so different amino acids, each of which
is a relatively small well-defined structure. Human cells manufacture on the order of
60,000 different proteins with the structure of each uniquely related to its function.
Most proteins, for example, have a very simple primary structure, simply a single lin-
ear string of amino acids forming the backbone of the protein. The sequence of amino
acids along the backbone is unique for each different protein and sometimes a single
amino acid substitution, through an error in protein manufacture by the cell or
through genetic engineering, can result in a defective protein that leads to a specific
disease. A prime example of this is sickle-cell anemia, a crippling disease that causes
red blood cells to deform and clog capillaries and which is caused by a single incor-
rect amino acid in the hemoglobin molecule.

The primary structure of a protein contains all the information necessary for the
protein to spontaneously fold and attain a unique overall conformation, or three-
dimensional structure. Scientists have discovered this by unfolding proteins through
gentle heating until they have lost all ordered structure and then cooling the proteins
to watch them spontaneous refold to form the completely native and functional structure.
Different categories of structural motifs have been discovered as more and more proteins
have had their detailed structures determined. There are various types of helical structures
in which the amino acids are arranged through ordered repeating hydrogen bonds to form
helices of different detailed structures. The a-helix (Figure 3.26, left) is a common exam-
ple, although there are many other types of known helices naturally occurring in proteins.

Another structural motif is the B-pleated sheet structure (Figure 3.26, right) in
which portions of the backbone, either contiguous or separated, associate side to side
to form a structural sheet. These locally organized regions of a protein make up what
is termed the secondary structure of the protein. Some proteins consist entirely of a
single motif; for example, there is a class of elongated proteins called the fibrous pro-
teins that are helical in structure and include the important structural macromolecules
of actin, myosin, collagen, and the keratins. Others are termed globular and can have
regions with different structural motifs (Figure 3.27 left), but yet with a unique over-
all three-dimensional structure, held together by a variety of weaker bonds and
known as the tertiary structure.

Still other proteins are composites, consisting of several independent protein
subunits that are then more loosely associated together as, for example, in hemo-
globin (Figure 3.27, right) with four such structural domains and an iron atom
bound at the juncture of the subunits. The structural relationship between the sub-
units of such composites is known as the quaternary structure. Thus, we see that
the overall structure of a protein involves strong co-valent bonding along the
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backbone, weaker local bonding determining the local conformation, and perhaps
weaker still bonding between more distant portions of the backbone to provide the
overall stability of the protein.

Recently there has been rapid growth in our understanding of not only the structural
motifs available to macromolecules (proteins in particular) but also of the design algo-
rithms or strategies nature uses to produce these motifs. This knowledge has led to major
advances in the protein folding problem: how a linear macromolecule rapidly undergoes
a structural transition to find its native three-dimensional conformation out of the huge
number of total possible conformations. There have been some successful projects to
design from scratch new small proteins—proteins that do not exist in nature—with well-
defined characteristics. This will clearly be an exciting area of future research.

Until now in our discussion we have stressed the structure of macromolecules and
the figures that have been used to illustrate the ideas have, by necessity, been static struc-
tures. This limitation of the printed page and of molecular model representations has
hampered much thinking in biophysical research. Only in recent years has the impor-
tance of the dynamics of macromolecules been completely acknowledged by scientists.

Atoms and small molecules constantly undergo very rapid and random thermal
motions. The extent of these motions depends on the local environment and the interac-
tions with neighboring atoms and molecules. Even in the solid state, atoms and small
molecules execute small vibrational motions about their equilibrium locations. Larger
macromolecules or even microscopic objects also undergo random thermal motions,
known as Brownian motion or diffusion (refer to Section 7 of Chapter 2). Not only does
the entire macromolecule move about due to the solvent collisions, but there are typically
also small structural changes rapidly occurring; there are internal motions of different
portions of the macromolecule with respect to each other, larger motions of those portions
of the macromolecule less tightly bound. Therefore all of the static molecular model rep-
resentations of structures represent time-average structures. One must keep the notion of
dynamical motions clearly in mind because many important functions of proteins involve
not only a structural role but a time-dependent dynamical role as well. In some cases the
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FIGURE 3.26 (left) a-Helix and
(right) B-sheet, with ribbons
showing folding.

FIGURE 3.27 Computer models of
(left) a generic globular protein with
helical, B-sheet (arrows), and ran-

dom coil (thin line) components,

and (right) hemoglobin with its four

identical subunits specifically
arranged.
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binding of a small molecule or ion to a macromolecule may cause a large conformational
change to occur. Even in these cases it must be kept clearly in mind that the initial and
final conformations are not frozen structures.

Molecular dynamics treats each atom in a molecule as a point particle with forces
acting on it both from external sources and from other atoms within the molecule.
These calculations were not possible until the advent of computers to not only perform
the huge number of repetitive calculations, but also to keep track of all the position and
interaction variables. Early studies focused on simple liquids in the 1960s, followed by
studies of more complex liquids in the 1970s. (Water is a prime example of a complex
liquid because it forms a variety of structures from H-bonding.) Dynamical simulations
of biological molecules began in the late 1970s with studies on small proteins.

Those first studies started a revolution in our thinking about the structural dynamics
of macromolecules. Previously, biological macromolecules were often pictured as rigid
structures, in part because our main source of information on their structure came from
high-resolution x-ray diffraction studies that gave ball and stick models based on the aver-
age positions of the atoms in the macromolecule. These static pictures of biomolecules set
the image of structural models. Computer simulations now show a remarkable degree of
motion in macromolecules, with portions of the structure having rapid, large amplitude
motion, particularly for surface, but also internal, regions. Indeed movies of the motions of
macromolecules have been made illustrating the extent of typical movement. Simulations
have become a major tool in the study of proteins and have been used to help narrow down
(or “refine”) the possible detailed structures determined by other physical methods.

The basis for molecular dynamics calculations is the solution of the equations of
motion for each atom in the protein. One begins at some arbitrary moment of time
with a set of coordinates for each atom based on information from other techniques,
most notably x-ray diffraction (see Chapter 23) and nuclear magnetic resonance
(NMR; see Chapter 18). Some assumptions are made about the interactions between
the atoms so that a set of forces, F ;> can be computed, where Fj; is the force on the ith
atom due to the jth atom. Then we can write a set of Newton’s second law equations,
one for each atom, of the form (here we illustrate the method in one dimension; it is
relatively easy to generalize this to two or three dimensions as we show in Chapter 5)

m;a; = EFU-, (3.26)
J

where the left-hand side of the equation is for the ith particle and the summation
notation X is used to indicate a sum over all the other atoms labeled j (excluding the
term i = j) to give the net force on the ith atom. With a given set of forces between
the atoms, once the accelerations are determined, they are used to solve for the veloc-
ities and positions of all the atoms at the next instant (after some very short time).
Then a new set of forces is calculated based on the new positions of the atoms and
new accelerations are used to compute the new velocities and positions. This process
is repeated countless times to generate a movie of the structure of the macromolecule
as a function of time. We show an example of how this is done just below, but the
time steps used must be very short indeed and so the number of calculations required
is enormous. As a rough rule of thumb, each picosecond (10~ !2 s) of simulation time
requires about 1 h of supercomputing time, although this is constantly decreasing as
computers are improved.

One method for performing the calculations is to divide time into steps, At, of
very short duration (~10713s) and to write difference equations using time as a
discrete variable rather than a continuous variable. To do this we can use a modified
form of Equation (3.2), the one-dimensional kinematic equation for the position as a
function of time for constant acceleration, and write the following difference
equations as approximations in one dimension.

AR

x; (t+ Ay =x; () +v; (DAt + q; (t)Tt (3.27a)
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and

Ar?
x; (t— A =x; () — v, (HAr + q, (I)T. (3.27b)
Note carefully the signs in Equation (3.27b). If we add these two equations together,
eliminating the velocity term, and substitute for a,(¢) using Equation (3.26) we have

3 Fy (0
X, (1 +A1 = 2x, () —x, (t —Ar) + ’TAﬂ. (3.28)
1

Equation (3.28) allows us to solve for the position of the ith atom at some later
time if we know its position at the present and one preceding step in time as well as
the current forces acting on it. In a similar way, if the velocities of the atoms as a
function of time are of interest, we can subtract Equation (3.27b) from (3.27a) to find

an expression for the velocity of the ith atom,

B x;(t +Ar) — x;(t —Ar)
vt = 2At '

(3.29)

These algorithms can be used to follow the positions and velocities of each atom
at successive times, remembering that the forces F;, assumed to be constant during
the time interval A, are re-evaluated after each interval of time because they are
dependent on the positions of the atoms that evolve as the calculation is performed
(Figure 3.28). To initiate a calculation one needs a set of initial coordinates, usually
obtained from other independent information on the structure of the protein or sys-
tem, as well as either a second set of initial coordinates at a slightly different time or
equivalently a set of initial velocities for each atom. Often calculations are initiated
using zero for the initial velocities in the so-called zero-temperature limit, and the
system is allowed to evolve for some time, reaching an “equilibrium distribution” of
velocities. The following very simple example illustrates the major features of a mol-
ecular dynamics calculation in one dimension.

Example 3.10 Suppose that there are three atoms of mass m along the x-axis
located at x = 0, 1, and 2 at time O and that were at x = 0.01, 1.01, and 1.99
at a time ¢t = —-0.01, with x and # measured in nm and ps, respectively (see
Figure 3.29). Using time steps of 0.01 ps, calculate the positions of each
particle for the first three steps of motion assuming the following forces are
acting.

_ 100m P . 100m _400m
2onl — o >f3on2 =~ T o >®3onl = o
&, 2 X33 13

Solution: Setting up the equations to iteratively (repeated calculations, updated
each time) solve for the positions of the three atoms, we have

x, (¢ +AD = 2x, (1) — x; (t — Ap) + 12,

F )+ F t
10n2() 3on2()(A
m

F H+ F t
20n1() 30n1()(A
m

xy (t A1) = 2x, ()= x, (1 — A1) + 12,

Xy (t + A1) = 2x;(t) — x5 (t —Ar) +

F )+ F t
10n3()m 20“3()(At)2,

(Continued)
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where we need to be careful about the
signs; for example, F, = —F; . »
according to Newton’s third law. The
table below shows the needed calculations
for each iteration. Starting with values for
x; for t = —0.01 and O ps, we first calcu-
late F;; at time O and use these forces in
the three equations above to get x; values
at t = 0.01 ps. Then these new position FIGURE 3.28 A four-atom molecule
values are used to calculate the F; at t = ST £ (0 Hiies SEpeieles o

0.01 d th . nued one step in a molecular dynamics
Ol'ps and the process 1s continued,  cqcyation. The “primed” numbers

remembering each time to increment the  show the change in position after
time by Ar. (Why is 0.01 ps a short time At, and the lines show the

enough time interval in this example?) changes in separation distances
from atom 1, reflecting changes in

interaction forces between atoms.

Time (in ps) —0.01 0 0.01 0.02 0.03 0.04 0.05

X, (in nm) 0.01 0.0 0.01 0.04 0.09 0.17 0.29

X, (in nm) 1.01 1.0 0.97 0.92 0.85 0.76 0.64

x5 (in nm) 1.99 2.0 2.01 2.02 2.03 2.04 2.04

Fy, Jm= — 100 109 129 173 287 —
) gnofm -

Fyyp /m = — 100 100 102 106 114 —
) gn3m

Fyonofm = — —100 —93 —83 =72 —61 —
~Fy on3m

From the table it is clear that particle 1 feels a positive force from both
other particles and is accelerating toward the right whereas particle 2 feels a
force toward the left from both other par- y
ticles and is accelerating toward the left.

Particle 3 is initially fairly stable in its
position, roughly balanced in the short
term by oppositely directed forces from m
the other two particles. Clearly, if nothing
else, this example illustrates the need
for a high-speed computer to follow the

motion over longer times even in one FIGURE 3.29 Three atoms of mass
dimension with few particles m for a simple molecular dynamics
p ’ calculation.

N eI
w @3
x

Of course the crux of any molecular dynamics calculation is to correctly
account for all of the forces between atoms, including forces between covalently
bonded atoms, longer-range forces between nonbonded atoms, and even forces at
the surfaces of the protein between solvent molecules and surface atoms. It has
been a triumph of molecular dynamics that such calculations have yielded an
understanding of the motions of biomolecules on a subnanosecond (<10~ s) time
scale. Limitations of computing power have restricted longer time dynamics to
approximations of specific interesting portions of a molecule where some active
mechanism is known to occur, such as a molecular hinge or a local conformational
change on binding a small molecule. Large-scale slow structural changes still await
future studies for further understanding from molecular dynamics simulations.
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CHAPTER SUMMARY
Three important examples of one-dimensional motion
are discussed in this chapter. The first case is constant
acceleration (most notably, free-fall) for which a set of
three equations is developed in Table 3.1:

w() = v, + at,
L
xX(1) = xg + vyt + Eat ,

V2 = v02 +2a(x—xy).

When an object moves through a fluid and a (non-
negligible) frictional force is present, the object will
reach a terminal velocity when the increasing frictional
force (proportional to v? in Equation (3.5) when the
Reynolds number # is much greater than 1, or to v in
Equation (3.6) when ¥} is much smaller than 1) causes
the net force on the object to vanish.

Linear springs obey Hooke’s Law,

F = —kx, (3.11)

where k is called the spring constant. A mass oscillat-
ing on a linear spring will have a position, a velocity,
and an acceleration given by

QUESTIONS

x = Acos(wt); v = —Awsin(wt);

k (3.23)
a= —w?x; w=.—

m

and will oscillate with a period 7, given by

T = 2=

When a solid undergoes a stress (F/A), its linear
response is a proportional stress (AL /L) according to

(3.20)

(3.24)

where Y is the elastic or Young’s modulus. Depending
on the relative orientation of the applied forces and the
surfaces of the solid, the applied stress can produce a
stretch, compression, shear, twist, or pressure.

Molecular dynamics is the simulation of molecular
motions by the solution of Newton’s second law in an
iterative stepwise calculation in which the time steps
are very short and the forces on and positions of all the
atoms in the molecule need to be recalculated at every
time step of the calculation.

1. A ball is thrown straight up in the air. What is its

velocity at its highest point? What is its acceleration

at that point?

. If a ball is thrown upward with a speed of 6 m/s, what

is its velocity when it returns to that height? What is

its acceleration at that time?

. If gravity always acts downward, why does it take the

same time for a ball to travel upward as it does for it

to return to the same height?

. If the velocity of a particle is a constant, what does

the graph of displacement versus time look like?

. If the acceleration of a particle increases linearly

from zero at time zero to a at time ¢, what is the aver-

age acceleration in that interval?

. Give some examples of laminar flow of a fluid? What

are some examples of turbulent flow?

. How will the Reynolds number defined in Equation

(3.4) change under the following conditions?

(a) With increasing flow for a given object in a fluid

(b) For larger objects in the same fluid and at the
same flow velocity

QUESTIONS/PROBLEMS

10.

11.

12.

(c) A given object flowing at the same velocity in a
variety of fluids with increasing viscosity (usually
as the viscosity increases, e.g., by adding a viscous
liquid to water in increasing amounts, the density
will increase as well but by a much smaller factor).

. Why is the terminal velocity at large Reynolds num-

ber independent of viscosity whereas the value at
small Reynolds number is independent of the den-
sity? Explain in terms of the relative importance of
these two parameters.

. Why does it take some time for a skydiver to reach a

terminal velocity after jumping from a plane?

Can you think of an example in which the buoyant
force on an object is greater than its weight? Will
there be a terminal velocity in that case and, if so,
describe it.

Explain in words why the force of gravity can be
ignored in writing the net force on a mass attached to
a vertical spring when measuring displacements from
the equilibrium position.

A mass oscillates on a vertical spring around its
equilibrium position with an amplitude A. Where is
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.
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the speed of the mass greatest? Least? Where is the
magnitude of the acceleration of the mass greatest?
Least?

If a mass hanging from a spring has a period of oscil-
lation of 2 s, what will the period be when a second
identical spring is also attached to support half the
weight?

Suppose two identical masses are each suspended
from identical springs. If the first is pulled down a
distance D and the second is pulled down a distance
2D, which will complete one oscillation faster?
Which will have the greatest maximum speed?

A mass oscillates on a vertical spring around its equi-
librium position with a period 7 and an amplitude A.
If a second identical mass is added to the first and the
amplitude is doubled, what is the new period of
oscillation?

A mass on a spring oscillates according to the equa-
tion x(7) = 0.035 co0s(0.6 1) (in SI units). What are the
period, frequency, angular frequency, and amplitude
of the motion?

A science museum director wishes to set up 4 spring-
mass systems to oscillate with periods that are ratios
of each other. Suppose that she wants four oscillators
with periods in the ratio 1:2:4:8. She can only find
two different types of springs with spring constants
that differ by a factor of 4 (k and 4k) and has only
seven masses, one of mass m and six of mass 4m. Can
she do it, and if so, how?

Using values that are representative of typical prod-
ucts, compute the spring constant for a suspension
spring of an automobile, of a dump truck, and of a
grocery scale.

Based on the typical values for Y and d, in solids,
what is a typical force acting between atoms in a
solid?

Springs supply a force that is described by Hooke’s
law. Because of this a simple, but useful, model to
describe the forces between atoms is to imagine that
they are connected by microscopic springs. Discuss
this picture based on your general knowledge of how
a spring pushes or pulls.

You have a choice in using steel rods for reinforcing
a supporting beam to minimize any compression. One
option is to use a rod of length L and radius r and the
other is to use two rods of length L and radius 0.6 r.
Which option will work better?

Which column can support a greater weight for a
given compression: one with a cross-sectional radius
of 5cm and a length of 50 cm or one of the same
material but with a 7.5 cm radius and a 100 cm
length?

State clearly the difference among the linear limit, the
elastic limit, and the ultimate strength of a material.
What is the difference between stress and strain?
Which one causes the other? Give some examples of
stresses and strains.

25.

26.

27.

A shock absorber of an automobile functions as a
dashpot. Is such a dashpot connected in parallel or in
series with the suspension spring? Explain how the
car behavior supports your answer.

Carefully explain in your own words what it means to
solve molecular dynamics problems iteratively.

In a molecular dynamics calculation for a protein of
40,000 molecular weight, with a mass composition of
50% carbon, 7% hydrogen, 23% oxygen, 16% nitro-
gen, and 1% sulfur, and using time steps of 0.1 ps,
calculate the total number of iterative calculations
needed to follow the dynamics for 10 ns. In the calcu-
lation, an average of 10 water molecules per amino
acid (with an average of 140 for the molecular weight
of an amino acid in the protein) are considered to
interact with the protein and each water molecule is
treated as a single source of interactions. (Hint: You
will need to compute the total number of atoms in the
protein and the number of solvent molecules to
include in the calculations.)

MULTIPLE CHOICE QUESTIONS
Questions 1-3 refer to a ball dropped from rest and falling
vertically under the influence of gravity.

1.

The ratio of the distance it falls in a 1 s interval after
4 s to the distance it falls in the next 1 s interval after
5sis (a) 9/11, (b) 36/25, (c) 25/16, (d) 36/16.

The ratio of the ball’s velocity at 5 s to that at 4 s after
5
being released is (a) 25/16, (b) 5/4, (c) " (d 1.

The ratio of the ball’s acceleration at 5s to that

5
at 4 s after being released is (a) 5/4, (b) 1, (c) "
(d) 25/16.

Which of the following is not true of an object in one-
dimensional free-fall? (a) the velocity is always zero
its highest point, (b) the velocity and acceleration are
oppositely directed while moving upwards, (c) the
acceleration is not zero at its highest point, (d) the aver-
age speed and average velocity are always the same
because the motion is one-dimensional.

. A ball is thrown vertically downward. Taking g =

10 m/s2, if in the first second it travels a distance of
7 m, at the end of 2 s it will have traveled a total dis-
tance of (a) 14 m, (b) 20 m, (c) 24 m, (d) 32 m.

. A constant horizontal force is exerted on a cart that is

initially at rest on a frictionless horizontal track. The
force acts for a time ¢ during which the cart moves a
distance d. If the force is halved and applied to the
same cart for twice the time, the cart will move a dis-
tance (a) d, (b) 2d, (c) 4d, (d) d/2.

. The frictional force on a small steel ball falling

through water is due to (a) buoyancy, (b) viscosity,
(c) turbulent flow, (d) thrust.
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10.

11.

12.

13.

14.

15.

16.

17.

. For an object immersed in a fluid, the larger the

Reynolds number is the (a) larger the viscosity of the
fluid, (b) smaller the density of the fluid, (c) slower
the object will fall, (d) none of the above.

Laminar flow is characterized by (a) wakes, (b) vortices,
(c) streamlines, (d) chaotic flow.

For objects with a density near that of water to have a
frictional force proportional to both their velocity and
to their radius while falling in water, they must have a
radius (a) above 1 mm, (b) below 150 wm, (c) between
150 pm and 1 mm, (d) it is not possible.

A mass hangs from an ideal spring. When the mass is set
into oscillation with an amplitude of 1 cm its frequency
is 10 Hz. When the amplitude is increased to 2 cm the
new frequency will be (a) 5 Hz, (b) 7 Hz, (c) 10 Hz,
(d) 20 Hz.

A 50 g mass attached to a spring oscillates vertically
with a period of 0.80 s. If the spring and mass are
placed on a horizontal surface with negligible friction
and the mass is set into motion with the same ampli-
tude as in the vertical case it will (a) oscillate about
an equilibrium point that is the same distance from
the fixed end of the spring and with the same period,
(b) oscillate about an equilibrium point that is closer
to the fixed end of the spring and with the same
period, (c) oscillate about an equilibrium point that is
the same distance from the fixed end of the spring and
with a longer period, (d) oscillate about an equilib-
rium point that is closer to the fixed end of the spring
and with a longer period.

A 50 g mass attached to a long spring is lifted 1.5 cm
and dropped from rest. The resulting frequency is
measured to be 1.25 Hz. The 50 g mass is then lifted
3.0cm and dropped from rest. The resulting fre-
quency is measured to be (a) 0.63, (b) 0.88, (c) 1.25,
(d) 2.50 Hz.

A 0.5 kg mass oscillates about the equilibrium posi-
tion on a vertical spring with spring constant 10 N/m.
Where is its equilibrium position measured from the
unstretched spring position (without the hanging
mass)? (a) 0.05 m, (b) 0, (¢) 0.49 m, (d) 5 m, (¢) none
of these.

A 10 N mass stretches a vertical spring by 10 cm.
When set into oscillation, the time for the mass to
travel from its highest to its lowest position is equal
to (take g = 10 m/s?): (a) 0.31's, (b) 0.63 s, (c) 0.99 s,
(d) 1.99 s, (e) none of these.

The frequency of harmonic motion of a 1kg mass
attached to a simple spring is 1 Hz. The spring constant
(a) is 1 N, (b) is 27 kg/m, (c) is 472 N/m, (d) cannot
be determined from the information given.
Sedimentation of spheres of the same material but
different radii in a liquid at low is a phenomenon
where larger spheres beat smaller ones to the bottom
of a container. This effect is due to the fact that (a) the
larger spheres have smaller buoyant forces on them,
(b) the pressure difference between the top and

QUESTIONS/PROBLEMS

18.

19.

20.

bottom of a larger sphere is greater than the pressure

difference between the top and bottom of a smaller

sphere, (c) larger spheres always beat smaller spheres

because their gravitational acceleration is larger, (d) the

terminal velocity of a sphere is proportional to its radius

squared.

As a skydiver jumps out of an airplane, her

(a) Vertical velocity decreases and vertical acceleration
increases.

(b) Vertical velocity decreases and vertical accelera-
tion decreases.

(c) Vertical velocity increases and vertical acceleration
increases.

(d) Vertical velocity increases and vertical acceleration
decreases.

(e) Vertical velocity increases and vertical acceleration
remains constant.

Two cylindrical artificial bones are made of the same

material and length, one with twice the radius as the

other. When the two have the same tension force

applied, the larger bone stretches by what factor

compared to the smaller bone? (a) 2, (b) 0.25, (¢) 0.5,

(d) 4, (e) 1.

Given two rods made of the same material, one with

twice the radius of the other and also with twice the

length, if the same weight is suspended from each of

the rods when held vertically, the longer rod will

stretch (a) the same as, (b) twice, (c¢) half, (d) four

times as much as the shorter rod.

PROBLEMS

1.

A rural bus travels a straight line route of 20 km total
distance. It makes a total of 5 stops along the route,
each for exactly 2 min. If its average velocity in each
driving interval is 45 km/h,

(a) What is the total time for the round-trip route?
(b) What is the average velocity for the one-way trip?

. A ball is dropped from the Sears tower in Chicago

with a height of 1454 ft (443 m). At what speed
(in m/s and in mph) will it hit the ground, neglecting
air resistance?

A truck travels on a straight road at 20 km/h for
60 km. It then continues in the same direction for
another 50 km at 40 km/h. What is the average veloc-
ity of the truck during this 110 km trip?

The driver of a blue car, moving at a speed of 80 km/h,
suddenly realizes that she is about to rear-end a red
car, moving at a speed of 60 km/h. To avoid a colli-
sion, what is the maximum speed the blue car can have
just as it reaches the red car?

A jumbo jet must reach a speed of 290 km/h on the
runway for takeoff. What is the least constant acceler-
ation needed for takeoff from a runway that is 3.30 km
long?

In a car accident, a car initially traveling at 30 min/h
(13.4 m/s) hits a tree and comes to rest in a distance

73



10.

11.

12.

13.

14.

15.

74

of 3 m. What was the deceleration of the car? How
many gs is this?

. The fastest sustained runner is the pronghorn

antelope, capable of running at 55 min/h for 1/2 mile.
How long does it take this antelope to run the
1/2 mile?

. To bring your truck to rest, you first require a certain

reaction time to begin braking; then the truck slows
under the constant braking deceleration. Suppose that
the total distance covered by your truck during these
two phases is 39.7 m when the truck’s initial velocity
is 16.7 m/s, and 17 m when the truck’s initial velocity
is 10 m/s. What are your reaction time and deceleration
of the truck?

. At the instant a traffic light turns green, a car starts

with a constant acceleration of 1.3 m/s?. At the same

instant a truck, traveling with a constant speed of

7.0 m/s, overtakes and passes the car.

(a) How far beyond the traffic signal will the car over-
take the truck?

(b) What will the velocity of the car be at that instant?

Dropped from rest at the top of a 30 m tall building, a

ball passes a window that is 1 m tall and has its lower

ledge at a height of 8 m from the ground.

(a) How long will the ball take to pass by the
window?

(b) What will be its speed when it reaches the bottom
ledge of the window?

A 0.2kg ball is thrown vertically downward at

8 m/s from the top of a 10 m tall cliff. (Neglect air

resistance.)

(a) Find the velocity with which the ball hits the
ground.

(b) How long does the ball take to hit the ground from
the instant it is thrown?

(c) If the ball rebounds upward with a velocity of 10 m/s
find the maximum height it will reach.

A ball is dropped from the top of a 45 m tall building.

A second ball is thrown down after a 1 s pause. With

what minimum initial speed should it be thrown to

reach the ground first?

A rock is dropped from a cliff 60 m high (neglect air

friction).

(a) How long does it take for the rock to hit the
ground?

(b) Find the velocity and acceleration of the rock just
before hitting the ground.

A ball, dropped from a cliff over the ocean, hits the

water in 4.0 s.

(a) How high is the cliff?

(b) If a second ball is thrown from the same cliff and
hits the water in 5.0 s, what was its initial velocity
(magnitude and direction, please)?

An automobile driver traveling at 60 mph approaches

a town that has a posted limit of 30 mph. Our driver

dutifully applies the brakes, exactly 100 yards before

the town limit, imparting a deceleration of —5 mph/s.

16.
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Nonetheless, a police officer stops him. Our driver
admits that he might have been going a bit fast out-
side of town but insists that he was always going at or
below the town’s speed limit while within its boundary.

Is his claim correct?

A person throws a ball straight upward with an initial

velocity of 15 m/s while standing on the edge of a

cliff that is 100 m high. The ball rises to some height

and then falls back down in such a way that it lands at
the base of the cliff.

(a) Determine the time it takes for the ball to reach its
maximum height and the maximum height above
the cliff.

(b) How long does it take to reach the base of the
cliff, and what is its velocity just before it strikes
the ground?

A cartoon coyote comes up with a brilliant scheme to
get lunch for himself by dropping a 500 kg boulder
on a passing animated roadrunner. Unfortunately,
when he cuts the rope holding the boulder in place,
the rope becomes tangled around his ankle, and drags
him toward the edge of the cliff. If the coyote’s mass
is 30 kg and his frantic clawing at the ground pro-
duces a force of 120 N resisting being dragged off the
cliff, what is his acceleration toward the cliff?

In a device known as an Atwood machine, two

masses (m, and m,) are connected by a massless rope

over a frictionless pulley.

(a) What is the acceleration of each mass if m; = 10
kg and m, = 20 kg?

(b) What is the tension in the cord?

A 5 kg block sits at rest on a frictionless horizontal

surface.

(a) If a constant 15 N force pushes the block to the
right, find the speed of the block after the force
has been applied for 5 s.

(b) Suppose that in part (a) there is a constant frictional
drag force of 5 N acting on the block when pushed
by the same 15 N force. Draw a carefully labeled
free-body diagram of the block, and find the accel-
eration of the block (magnitude and direction,
please).

(c) Suppose a second block of mass 2 kg is placed on
top of the 5 kg block in part (b) which is still
being pushed by the 15 N force to the right and
has the 5N frictional drag force acting on it.
Reconsider part (b) and find the net horizontal
force (magnitude and direction, please) that must
act on the 2 kg block in order for it to stay at rest
on top of the 5 kg block. What is the origin of this
force? (Hint: First consider the two blocks as one
to find their acceleration.)

A microorganism is within a water droplet atop a

microscope slide that measures 24 X 76 mm. The

organism is swimming at 0.5 mm/s at precisely the
middle of the slide and parallel to the slide’s long
axis, that is, parallel to its length. At that moment,
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someone picks up one end of the slide and the tilt
induces the water droplet to begin to move in the
same direction in which the organism is swimming. If
the water droplet picks up speed at 1 mm/s2, how long
is it until the organism goes over the edge of the
slide?

A certain car ad once boasted of zero to 60 mph in 6 s,
and 60 to zero in 3 s. What distances would be covered
by this car during the respective positive and negative
accelerations? Assume constant acceleration values
for each case.

A zoo animal paces back and forth across the front of
its cage a span of 8 m. A zoo attendant counts 1 min
for a dozen round trips of the animal. Assuming that
the creature spends as much time speeding up as
slowing down and never travels at constant speed
(i.e., it speeds up to the middle of the cage, where-
upon it begins to slow down), how fast is the animal
moving right at the middle of the cage? Assume, of
course, that both accelerations are constant.

Fleas are notorious jumpers, reaching heights of
nearly 20 cm, roughly 130 times their own height.
Assuming that the flea acquires its initial velocity in
leaving the ground over a distance of half its height,
find the average acceleration the flea must have to
reach a height of 20 cm. Express your answer as a
multiple of g.

Common terns hover in a stationary position over the
ocean watching for a tasty fish. When they see one,
they immediately stop their wings and simply free-
fall into the ocean to catch the fish. Calculate how
long a fish near the surface has to move away after the
instant a tern sees it from a height of 3 m above the
surface.

Repeat Problem 2 above, but now include air resis-
tance. Assume a ball of 3 cm radius with an average
density of 4400 kg/m?, a density of air of 1.3 kg/m?,
and a value of C = 1.

Estimate the terminal velocity of a skydiver with a
closed parachute. Take values from the previous
problem and assume the diver has a mass of 75 kg
and an effective cross-sectional area of 0.4 m2. If the
terminal speed with an open parachute is 18 km/h,
find the effective area of the parachute. The buoyant
force is negligible.

Block #1 is attached to a horizontal spring and slides
on a frictionless horizontal surface. Block #2 has the
same mass as #1 and also sits on the same friction-
less surface. It is attached to a spring with three
times the stiffness of the other one. If both blocks
have the same amplitude of motion find the ratio of
the following quantities (#2/#1): the periods of the
motion, the angular frequencies, the maximum
velocities, the maximum accelerations, and the max-
imum displacements.

Attached to a spring on a frictionless table top, a 1 kg
mass is observed to undergo horizontal simple
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harmonic motion with a period of 2.5 s after stretch-

ing the spring. The spring is then held vertically and

a 0.2 kg mass is attached and gently lowered to its

equilibrium position.

(a) Find the distance the spring is stretched.

(b) If the spring is then stretched an additional 5 cm
and released, find the period of the subsequent
motion.

(c) What is the maximum acceleration of the 0.2 kg
mass?

(d) What is its maximum velocity?

A 0.8 kg mass attached to a vertical spring under-

goes simple harmonic motion with a frequency of

0.5 Hz.

(a) What is the period of the motion and the spring
constant?

(b) If the amplitude of oscillation is 10 cm and the
mass starts at its lowest point at time zero, write
the equation describing the displacement of the
mass as a function of time and find the position of
the mass at 1, 2, 1.5 s, and at 1.25 s.

(c) Write the equation for the speed of the mass as a
function of time and find its speed at the times
given in part (b)? (Be careful to check that you
have the correct starting speed at time 0.)

Find the natural frequency of vibration of the salt

molecule NaCl given its effective mass of 13.9 atomic

mass units and a spring constant of 100 N/m.

In the dangerous sport of bungee-jumping, a thrill-

seeker jumps from a great height with an elastic cord

attached to the jumper’s ankles. Consider a 70 kg
jumper leaping from a bridge 226 m high. Suppose
further, that instead of using a specifically designed
cord, the jumper uses a 9.00 mm diameter nylon
mountain climber’s rope with an effective force con-

stant k£ = 4900 N/m.

(a) What is the length of rope needed to stop the
jumper 10 m above the ground?

(b) What is the maximum force that the rope will
exert on the daredevil?

(c) Expressing this maximum force in terms of the
weight of the jumper, did the jumper make a wise
choice to use the mountain climber’s rope?

A 70 kg daredevil stretches a steel cable between two

poles 20 m apart. He then walks along the cable, loses

his balance, and falls where he luckily lands in a

safety net, which acts like a spring with spring con-

stant k = 1750 N/m. If his speed when he strikes the
net is 10 m/s, what is the amplitude of the oscillation
as he bounces up and down?

A 2 kg mass attached to a vertically held spring is

observed to oscillate with a period of 1.5 s.

(a) Find the spring constant.

(b) If the amplitude of the oscillation is 10 cm, find
the magnitude of the maximum acceleration of the
mass and state where in the oscillation of the mass
this maximum acceleration occurs.
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(c) If the hanging mass is doubled and the amplitude
is halved, find the magnitude of the maximum
velocity of the new mass on the same spring and
state where in the oscillation of the mass this max-
imum velocity occurs.

A 0.5 kg mass is attached to a spring with a spring

constant of 8.0 N/m and vibrates with an amplitude of

10 cm.

(a) What are the maximum values for the magnitudes
of the speed and of the acceleration?

(b) What are the speed and the acceleration when the
mass is 6 cm from the equilibrium position?

(c) What is the time it takes the mass to move from
x=0to 8cm?

(d) What is the period of the motion?

(e) What are the displacement, velocity, and acceler-
ation as functions of time?

In an experiment to investigate Hooke’s law with springs,

weights are hung on a spring; the spring stretches to dif-

ferent lengths as shown in the table below.

(a) Make a graph of the applied force versus the
stretch of the spring and if the data are linear
obtain the slope of the best fit line. What does this
slope represent?

(b) If the spring is stretched 102 cm, what force does
the spring exert on the suspended weight?

F (N) 2 4 6 8 10 12 14 16 18
x(mm) 15 32 49 64 79 98 112 126 149

36.

37.

76

A rod-shaped bacterium (with an equivalent spherical
radius of 0.5 pwm) rotates its flagella at 100 revolu-
tions per second to propel itself at a uniform velocity
of 100 wm/s. Calculate the thrust (propulsive force)
generated by the flagella, assuming the only other
force is a frictional one given by Stokes’ law. Note that
this speed is extremely fast, namely about 50 body
lengths per second. Show that the equivalent speed for
a human would be about 200 mph. Take n = 1073 in
ST units, the value for water.

A 10 g inflated balloon falls at a constant velocity.
What is the buoyant force acting on the balloon? (The
frictional force can be neglected here.)

38.
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A 75 kg person falls from the second floor of a build-
ing and lands directly on one knee with his body
otherwise vertical.
(a) If the fall is from a height of 10 m, find the veloc-
ity on impact with the ground.
(b) If it takes 5 ms for the person to come to rest, find
the average force acting during the collision.
(c) Using the data of Example 3.9, will the femur break?
Bone has a larger Young’s modulus for stretch (1.6 X
10'9N/m?) than for compression (0.94 X 1010
N/m?). By how much is each femur, or thigh bone, of
the legs compressed when a weightlifter lifts 2200 N?
Take the dimensions of the femur to be 0.6 m long
and have an average radius of 0.01 m.
A medieval knight is “racked,” stretching his body
with a force of 1200 N. Using the data in the previous
problem, by how much will the knight’s femur bones
be stretched?
Four concrete columns, each 50 cm in diameter and
3 m tall, support a total weight of 5 X 10* N. Find the
distance that each column has been compressed by
the weight of the load. (Use an elastic modulus of
20 X 10° N/m? for concrete). Find the effective spring
constant for a column and then find the period of
small amplitude oscillations assuming an effective
spring constant equal to the sum of the values for the
four columns, and neglecting the weight of the
columns. We show later that such natural oscillations
at the corresponding frequency make such structures
susceptible to absorbing energy from external sources
(such as wind, earthquakes, etc.) leading to larger
amplitude vibrations and possible damage.
Steel pillars support a pier extending out into the
ocean from the beach. If the pillars are solid 10 X 10 cm
steel (Young’s modulus = 2.0 X 10" N/m?) and are
4 m long, find the distance each is compressed if each
pillar supports a weight of 2000 N.
A guitar is being restrung with a string having a diam-
eter of 1.4 mm and a length of 0.82 m when no tension
is applied. If the string has a Young’s modulus of
1.4 X 10'! N/m? and is tightened by wrapping it three
times around a peg with a 2.5 mm diameter, find the
tension in the string.
Fill in the steps to derive Equations (3.27), (3.28), and
(3.29) in Section 5 of the chapter.
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Work and Energy
in One Dimension

In this chapter we introduce work, kinetic energy, the energy associated with motion,
and provide a general framework for appreciating the concept of energy and its useful-
ness in all areas of science. We present these ideas for one-dimensional motion, the
theme of the previous two chapters, leaving the generalization to more than one dimen-
sion for the next chapter. A major goal of this chapter is to appreciate the extremely
important and general conservation of energy principle. It is used again and again in
future discussions of various other forms of energy, including electrical, magnetic, and
eventually their synthesis in electromagnetic energy, as well as various types of chem-
ical and nuclear energy. In addition, later we study the science of thermodynamics deal-
ing with energy and its flow in bulk matter. The conservation of energy principle is
perhaps the most important and fundamental principle of all science.

Our discussion of forces and the laws of motion thus far is entirely sufficient to be
able to describe the motion of most inanimate objects: planets, moons, and satellites, or
projectiles, and sliding and rolling objects (with some additional ideas needed here). In
fact with some added mathematics, only the generalization of these laws to three
dimensions and a knowledge of forces is needed, no matter how complex and interest-
ing the motion may be. A simple example illustrates, however, that for living organisms
force alone will not provide a sufficient framework to understand their behavior. When
you lift a heavy weight and hold it in the air you get tired even though you are not doing
any work (we show that doing work, as defined in physics, requires a displacement).
This simple observation implies that another concept, the source of forces, is needed to
understand living organisms as well as some dynamic inanimate systems. Your muscles
require energy to function and provide a force. We need to develop an appreciation of
energy as the source of force and here we begin this development.

1. WORK

When a constant net force F acts on an object of mass m originally at rest, the object
experiences an acceleration F/m, and its velocity increases. The longer the net force
acts, and correspondingly the greater the distance it acts over, the faster the object is
made to move. From our knowledge of Newton’s laws and kinematics, we can cal-
culate the velocity of the object as a function of time to be

F
v=—1, 4.1)
m

or as a function of the distance the object travels x, we can calculate the velocity to be
| F
v="\V2ax = 2Ex. “4.2)

J. Newman, Physics of the Life Sciences, DOIL: 10.1007/978-0-387-77259-2_4,
© Springer Science+Business Media, LLC 2008
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FIGURE 4.1 A hiker does no work
in supporting a backpack.
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In this and the next section we learn a different way of describing what has occurred in
this example. In words, we say that the net force has done work on the object and in
doing so has increased the energy of motion, or kinetic energy, of the object. Let’s
first carefully define work and kinetic energy and then derive a theorem that is very
general indeed and is the motivation for this alternative description.

We develop the definition of work in this chapter with the case of one-
dimensional motion in which a constant force F acts on an object, originally at rest,
along the x-axis. The work done on an object by the constant force when the object
has undergone a displacement Ax is defined to be

Wy = FAx. (constant force along x direction). 4.3)

Suppose our object is a sled being pulled by a rope along a horizontal surface. If the
rope is held horizontally then the work done by a tension force of T = 20 N along the
rope in pulling the sled a distance L = 5 m is given by Equation (4.3)as W=TL =
(20N) (5 m) = 100 N-m. The SI unit for work is the N-m which is called the joule
J; 1N-m=11).

Example 4.1 A group of campers is having a tug of war in which five of them pull
on a heavy rope toward the left and five others pull toward the right. Suppose that
each camper on the left pulls toward the left with an average force of 220 N and
each of the campers on the right pulls with an average force of only 210 N.
During the time when the rope moves a distance of 3 m to the left, how much
work does each camper do and what is the net work done by all ten of them?

Solution: Each camper on the left does an amount of work equal to (220 N)
(3 m) = 660 J, whereas each camper on the right does an amount of work equal
to —(210 N)(3 m) = —630J. Note that this work is negative because the
campers on the right, while pulling to the right, have displacements to the left.
The net amount of work done by all is then W = 5(660) — 5(630) = 150 J.
Clearly this could be found as well by computing the net force on the rope
(=50 N) and multiplying it by the displacement.

The above definition of work is in conflict with our colloquial usage of the word
work. If the campers on the right had pulled a bit harder in the example, the rope
might have not moved at all and no work would have been done, despite a great deal
of effort exerted by all. While a hiker carrying a heavy backpack is standing still she
does no work, although we would commonly say that she is doing work, using up
energy, and will get tired even standing in place. Indeed extra energy is being used
to support the weight of the backpack, but the only work done is internal work
within the muscles of the hiker. Without any displacement of the backpack or any
displacement of the tug-of-war rope, no work is done according to our def-
inition (Figure 4.1). This example shows that some care is needed in cal-
culating the work done by a force.

The above definition and discussion are fine as long as the forces act-
ing on the object are constant, but we have already seen two examples of
forces that are not constant and for which Equation (4.3) does not apply.
The frictional force in a fluid is dependent on the velocity and changes as
the object accelerates, whereas the spring force changes continually in
magnitude and periodically in direction as well. In order to modify
Equation (4.3) to be able to calculate the work done by a variable force,
we must use a “divide and conquer” strategy. From a graph of F versus x,
we divide the region of interest along the x-axis of width Ax into small
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displacement intervals, each of width éx as shown in Figure 4.2. In
each of the intervals we replace the varying force with its average
value and calculate the work for that displacement interval using
Equation (4.3), so that the contribution to the work from that small dis-
placement interval 6x is

AW =F,, bx. (4.4)

As can be seen in Figure 4.2, AW represents the area contained in the rec-
tangle with height F, . and width &x; this area is also nearly equal to the
actual area under the curve representing F for that interval of &x and
becomes more closely equal to the actual area as the width of the interval dx
gets smaller and the number of such intervals grows. These contributions to
the work from a total displacement of Ax add up to the total work given by

ave

Wp=2AW=XF, / ox, (force along x-direction),  (4.5)

where the sums are over each of the intervals. Thus, the graphical inter-
pretation of the work done in a displacement Ax is the area under the
curve representing F versus x and bounded by two vertical lines at the
beginning and end of the displacement interval.

In cases where the curve representing the force as a function of
distance is actually either a straight line or a simple curve, it may
be easy to calculate the area directly. For example, in the case of a spring
force, F = —kx, the graph is linear (Figure 4.3) and the area under the
line can be directly calculated as in the following example.

Example 4.2 Using Figure 4.3, calculate the work done in stretch-
ing a spring from x, to x,.

Solution: To stretch the spring we can use an external force equal and
opposite to the spring force, given itself by Hooke’s law as Fipring =
—kx. The work done by the external force will be positive because
the force and displacement are in the same direction, whereas the
work done by the spring will be equal in magnitude but negative. The
area between the diagonal line in Figure 4.3 representing F_ , = kx
and the x-axis in the figure is equal to the work done by the external
force. We can calculate this simply by finding the area of the large tri-
angle with apex at the origin and base extending to x, and subtract-
ing the area of the smaller triangle at the apex with base reaching x;.
The area of a triangle is given by 1/2 base X height, so we have only
to take half of the product of the base (x, or x,) times the height (kx,
or kx,) to obtain a net work of

1
Weg = 3 K63 = 59

Note that the work done by the spring is just the negative of this

spring

1
Wipring = — 5 k03 = 2. (4.6)

(Continued)

WORK

As readers who have had some calculus
and have seen some integration should rec-
ognize, the discussion leading up to the gen-
eral definition of work in one dimension,
Equation (4.5), is a prelude to defining work
as an integral. All that is missing is taking
the usual limit as the size of the intervals ox
approach zero resulting in the following
integral for the work done by the force F
directed along the displacement,

WFZ/Fdx.

The graphical interpretation of this integral
is, in fact, the area under the curve repre-
sented by the integrand F when plotted
against x between the limits of integration,
namely the displacement interval, as shown
in Figure 4.2. As an example application of
using this general definition for work, we
calculate the work done by the spring force
on an attached mass, F = —kx, as the spring
changes its position from x; to x,. We find

2
Wspring = / (_ kx) dx
2]

1
= —Ek(x% =

as found in Example 4.2. With more com-
plicated forces, the method of Example 4.2
does not work and integration must be used.

- .

Ax

FIGURE 4.2 Divide-and-conquer
strategy for calculating the work
done by a varying force.
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Fog=kx

X1 X2

FIGURE 4.3 External force stretching
a linear spring versus displacement.

2. KINETIC ENERGY AND THE WORK-ENERGY THEOREM

At the beginning of the last section we used Newton’s laws and kinematics to ana-
lyze the motion of an object with a constant net force acting on it in order to find the
velocity of the object as both a function of time and of its position. In this section we
reconsider that problem using our knowledge of work. Recall that we were consider-
ing an object that experienced a constant net force, F ., acting along the x-axis. Let
the object of mass m have a velocity of v, when it is located at position x; and move,
under the influence of F,, to position x,, where it has a velocity v,. Then we have,
because the acceleration a = F,/m = constant, from one of the kinematic relations

valid for constant acceleration,

F
3 =12+ 2( ;°t>(x2 - x)). 4.7)

We can also calculate the work done by the constant net force to be
Wiet = Free (5 — X)) (4.8)

Substituting for F,(x, — x,) from Equation (4.8) into Equation (4.7), and solving for
W, we have

1 1 )
W = 5 mvs — 5 mvy. 4.9)

The expression 1/2 mv? is defined as the translational kinetic energy KE of the mass

1
KE = 5 mv2. (4.10)

Kinetic energy is also measured in joules, where 11J equals 1 kg-m%s2. You can
“feel” 1] if you drop a 1 kg mass 10 cm onto your outstretched palm. The stinging
sensation that results is “equivalent to” about 1 J.

Example 4.3 What is the kinetic energy of a 1 ton car traveling at 75 miles/h?
Solution: A ton is a weight of 2000 pounds. One kilogram weighs 2.2 pounds so

1 ton equals 2000 pounds/2.2 pounds/kg = 910 kg. One mile is about 1600 m,
so 75 miles/h is about 1.2 X 10° m/h. One hour is 3600 s, so 75 miles/h = 1.2 X
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10° m/h X 1/3600 h/s = 33 m/s. Then the kinetic energy of the car is (1/2)(910
kg)(33 m/s)> = 5 X 10° J. If 1 J produces a sting, imagine the feeling you would
experience if 500,000 J were deposited on you.

Finally, we can rewrite Equation (4.9) in terms of kinetic energy as

W, = KE, — KE, = AKE. (4.11)

Equation (4.11) is known as the work—energy theorem. It states that the net work done
on an object is equal to the change in its kinetic energy. If the net work done on the
object is positive, its kinetic energy will increase, whereas if the net work done is
negative, the object’s kinetic energy will decrease.

What is the distinction between kinetic energy and work? Clearly, from Equation
(4.11), they are both measured in the same units, joules. Furthermore, these two quanti-
ties can exchange back and forth; work done on an object can change its kinetic energy
by either speeding it up or slowing it down, and the kinetic energy of an object can also
be used to do work on another object with which it interacts. In the next section we intro-
duce other forms of energy, associated with an object’s position due to interactions with
other objects, that can also be used to perform work and can also be changed by per-
forming work. Thus, we can think of energy, in general, as the ability to do work, the
energy itself being stored either in the motion or the external interactions of the object.

Example 4.4 Using the work—KE theorem, estimate the height to which a person
can jump from rest. Make some reasonable assumptions as needed.

Solution: Once a person leaves the ground, he is completely governed by free-fall.
Therefore, the key to a good standing high jump is to attain the fastest initial vertical
velocity on leaving the ground. This initial velocity is governed by the acceleration
obtained as the legs are stretched and push against the ground (Figure 4.4). Putting
these ideas together, and assuming that a constant net upward force F is exerted on
the person during the contact portion of the jump (the force on the person from the
ground is actually mg + F; why?), we can write that

Fy = %mv%,
where y is the distance over which the force F acts (the distance from a crouched
to extended leg position), m is the mass of the person, and v, is the initial velocity
on leaving the ground. Here we’ve assumed that the starting KE is zero when in a
crouched position and 1/2 mv% is the KE when just leaving the ground. If the
upward force from the ground varies, then think of F as its average value and

FIGURE 4.4 Standing high jump showing the upward
acceleration phase.

(Continued)
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FIGURE 4.5 In a good high jump, the person’s center of
mass actually goes under the bar.

everything else follows correctly. The height /4 that a person can jump is then given
from the kinematic relation that 12 = vg — 2gh (=0 at the highest point), so that

2
%
h=-",
28
Substituting for v, from the work—KE expression, we find that
F
el
mg

The distance y can be estimated to be at most about 1/3 the height of a person
(from a deep crouching position to full extension). Therefore, the maximum
height a person can jump is limited by the force that he can exert. We can esti-
mate this to be about the weight of the person, so that 4 ~ y, implying that a per-
son can raise his center of mass about 1/3 of his height. For a 6 foot tall person
with center of mass 3 feet above the ground, the center of mass can be raised to
about 5 feet. Based on this analysis by swinging arms and legs, this person is lim-
ited to a standing high jump of about 5 feet. Modern running high-jumpers can
achieve much higher jumps because they are both running and also able to arch
their bodies over the bar while their center of mass, a sort of average coordinate
that we study in Chapter 6, actually goes below the high bar (see Figure 4.5).

3. POTENTIAL ENERGY AND
THE CONSERVATION OF ENERGY

Just as the energy associated with an object’s motion can be used to do work, so too
can the energy of interaction of an object with other objects by virtue of its location.
This type of energy is known as potential energy. There are many types of potential
energies, each due to a specific type of position-dependent interaction energy. In this
section we learn about gravitational potential energy, due to the gravitational inter-
action between an object and the Earth, and about elastic potential energy (potential
energy of a spring), due to the Hookean forces within an object that are ultimately
related to internal molecular interactions. In the course of this book we show other
forms of potential energy including thermal, electric, magnetic, chemical, and
nuclear. We show that, within an isolated system, although energy can be converted
from one of these forms to another, the total energy of the system remains constant.

Consider a crate of mass m resting on the edge of a table, a height & above the
floor. If the crate falls from the table, gravity will do work on the crate increasing its
kinetic energy. After falling to the floor, the work done by gravity will be

W_.. = mgh.  (falling through height %). (4.12)

grav
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Applying the work—KE theorem, we could calculate the kinetic energy of the crate
just before hitting the floor as KE = mgh. Of course in the next instant the crate hits
the floor and there are very strong upward forces that act to quickly stop the crate,
doing negative work on the crate so that its ultimate kinetic energy is zero.

To then lift the crate back up and place it on the table again requires positive work to
be done by an outside force. During the lifting of the crate, both gravity and the external
lifting force act. One way to lift the crate is to very slowly raise it at constant velocity with
an equal and opposite force to its weight (as allowed by Newton’s first law), starting and
stopping with just a slight extra appropriate nudge. In this case the work done by the out-
side force (W,,, = mgh) and the work done by gravity (ngV = —mgh, negative because
of the opposite directions of the downward force of gravity and the upward displacement)
are just equal and opposite, so that the net work is zero. This makes sense because the
starting and ending kinetic energies are both zero, so that there is also no change in kinetic
energy. The work—KE theorem then says that the net work done must be zero.

In fact, regardless of the manner in which the outside force is applied and regardless
of the path of the crate in reaching the tabletop, the net amount of work done must be
zero because there is no change in kinetic energy. To lift the crate the outside force must
be at least equal to mg. If the outside force is greater than mg, there will be a net upward
force that will accelerate the crate upward. In order to have the crate end up at rest on
the table, the outside force must then be less than mg for some portion of the trip so that
during this time the net force is downward and the crate is slowed down. In any case,
because the kinetic energy change is zero, the net work done by the two applied forces
must add to zero and so the work done by the external force to lift the crate back up on
the table must always be W, = —W .= mgh, the same as in Equation (4.12).

Example 4.5 Suppose that a 3 kg package is lifted vertically from the ground
and tossed onto a counter 2 m off the ground (Figure 4.6). Imagine that for the
first meter a force equal to twice the weight of the package is exerted, and then
the person lets go of the package tossing it up to just reach the counter. Find
the work done on the package by the person and by gravity and find the
maximum speed of the package.

Solution: The work done by the person is simply the product of the force, 2 mg =
2(3)(9.8) N, and the distance of 1 m over which the force acts. We find that W, =
59 J. Similarly, the work done by the gravitational force is the product of mg and
the net displacement, 2 m, with a minus sign inserted because the weight and dis-
placement are oppositely directed. We have that W, = —59J. What is the sig-
nificance, if any, of that fact that these are equal in magnitude? If the same force
were to be exerted by the person over a shorter distance, doing less net work, the
package would not reach the counter height. On the other hand, if a larger upward

mg

FIGURE 4.6 Lifting a heavy package to then toss it
up to a shelf.

(Continued)
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force were exerted, then the package would rise above the counter level and fall
back down, arriving on the counter with some net speed. Our particular conditions
have the package just reaching the counter. To find the maximum speed of the
package, we first note that this must occur just when the package is released
(why?). We can find this speed by using the work—KE theorem, noting that the net
work done in the first 1 m is Wy + Wgrav =59 — 59/2 = 30 J, because half the
work of gravity is done in that 1 m. Equating this work with the change in kinetic

energy from zero (the package is assumed to start at rest on the ground), we have
= = 1 2l — 1 2
Wnet =30J = Emv = 5(3)\/ 5

so that the maximum speed is

2(30)
V= 3 = 4.5 m/s.

We define the gravitational potential energy at height y, relative to some refer-
ence level (y = 0) to be
PE_ . = mgy. (4.13)

grav

When an object changes its height from y, to y, in the presence of gravity, there is a cor-
responding change in PEgTaV, where APEgrav = PEgmv’ final PEgrav’ initial = M8, — ¥)s
equal in magnitude to the work done by gravity. As we have just seen, when (y, — y,) >0,
corresponding to an increase in height, the work done by gravity is negative whereas the

APEgraw is positive; similarly when (y, — y,) <0, corresponding to a decrease in height,
the work done by gravity is positive and the APE__  is negative. Thus we can write
‘grav
Wgrav = _APEgrav’ (4.14)

which states that the work done by gravity is equal to the negative of the change in
gravitational potential energy.

If gravity is the only force acting, starting with the work—energy theorem,
Equation (4.11), we can substitute Equation (4.14) for the work to find

AKE = KE, — KE, = —APEgrav = —(PEgravz - PEgraVl), (4.15)
or, rearranging Equation (4.15), we find
(KE + PE,,); = (KE + PE,, ),. (4.16)

Each side of this equation represents the total mechanical energy, £ = KE + PE__,
of the object at a fixed position. The positions 1 and 2 are completely arbitrary, there-
fore we can conclude that

Mechanical energy remains a constant of the motion,

E = KE + PE___ = constant. 4.17)

grav

This is the principle of conservation of mechanical energy.

As we have seen, the KE and PE individually are not conserved but may transform
from one to the other; however, the sum of the kinetic and gravitational potential
energies remains constant at the value of the total mechanical energy.
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The choice of reference point for gravitational potential energy is totally arbitrary;
only differences in potential energy matter in Equation (4.16), as is readily seen in the
form of Equation (4.15). When the total mechanical energy is given, however, as in
Equation (4.17), its value implicitly depends on a reference position for potential energy.

In Example 4.2 we found that the work done by a spring, with a spring constant
k, in stretching from x, to x, is given by

1
= k(2 — 2
Wipring = > k(x5 — x7). (4.18)
In a similar manner to the gravitational case, we introduce the spring potential energy
function as the negative of the corresponding work,

1
PE ine = 5 kx2. (4.19)
If a mass m is attached to the end of the spring, then following a similar procedure as that

used to get Equation (4.16), we find that if the spring force is the only force acting (sup-
pose the spring and the motion of the mass are horizontal so that gravity can be ignored)

(KE + PE ); = (KE + PE (4.20)

spring spring) 2°

We see that in the work—energy theorem, the work done by each force that can be
associated with a potential energy can be replaced by the negative of its potential
energy change. Generalizing this result, we can write that the total mechanical
energy, defined as the sum of the kinetic and all potential energies (gravitational,
spring, and any others), will be a constant of the motion if all the forces acting can
be associated with a potential energy

E=KE+PE_. +PE

grav spring

+ PE = constant. 4.21)

other
Later in Chapter 15 we add electrical potential energy to our list and in Chapter 17
we add a magnetic energy term as well. We also show in Chapter 5 that the frictional
force cannot be associated with a potential energy and that when friction acts within
a system, there is always a loss of mechanical energy to thermal energy.

Example 4.6 A spring is held vertically and a 0.1 kg mass is placed on it, com-
pressing it by 4 cm. The mass is then pulled down a further 5 cm and released
giving it an initial velocity of 1 m/s downward. Find the maximum compression
of the spring relative to its unstretched length. What is the maximum velocity of
the mass and where does it occur? What is its maximum acceleration and where
does it happen?

Solution: Refer back to Example 3.6 for a somewhat simpler related problem solved
using force considerations only. We first find the spring constant by noting that the
0.1 kg mass compresses the spring by 0.04 m at which point it is in equilibrium with
its weight balanced by the upward spring force. This means that mg = kx, so that

_mg 0.1X9.8
X 0.04

k =25 N/m.

This initial compression of the spring balances the weight of the mass and for the
subsequent motion we can ignore the gravitational potential energy changes. Once

(Continued)
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the mass is pushed down an additional distance y, and given an initial velocity v,
we can write down the initial energy relative to the equilibrium position as

E= 1 2 l 2
=35 kyg + ) mvg,
where y, is the initial displacement from the equilibrium position, itself 4 cm
below the origin, as shown in Figure 4.7. Even though the height of the mass
changes as it moves, we still do not include the gravitational potential energy
because the weight of the mass has been removed from the problem by measur-
ing displacements from the equilibrium position (see just below).
Mechanical energy is conserved therefore the spring will have an equal energy
at all points in its motion, and in particular at its amplitude A, at which point its
kinetic energy will vanish. At that point we can write the total energy as

1 1 1
EIEkAZZEky%‘FEmV%.

Solving for A, we find

) mvj 0.1-12
A= Nt = 0.052 + 55 = 0.08m.

The maximum compression of the spring is then the initial 4 cm and an addi-
tional 8 cm, for a total of 12 cm.

Alternatively, we could refer the potential energy to the point x = 0 in which
case we would write that the total energy is given by E = skx? — mgx + %mvz,
including gravitational PE as well, and then set its initial value equal to its
value at the amplitude where there is no KE, but both forms of PE. This can be
solved for the amplitude as well, but the mathematics involves solving a qua-
dratic equation and is omitted here. The result in this case is found directly to
be 12 cm from the origin, in agreement with the calculation above. You should
verify this.

As the spring relaxes and the mass rises, its maximum speed will occur at the
equilibrium position where all of the spring’s potential energy is converted to
kinetic energy. We can find this speed by writing

1 1
E=—m?2 ZEkAZ,

2 max

so that using our amplitude, we find

[k
Viax = ;A = 1.3 m/s.

Because the mass is not attached to the spring it will actually fly off the spring
on its way up as the spring decelerates; if it were attached to the spring it would
continue to oscillate. The maximum acceleration occurs at the initial amplitude
position where the spring force is greatest and has a magnitude, from
Hooke’s law, of

FIGURE 4.7 Spring arrangement for
Example 4.6.
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Before we leave this section dealing with conservation of energy, let’s consider
two biological energy aspects: energy considerations from the perspective of the
Earth and from that of a single biological cell.

The ultimate energy source for life on Earth is the sun, delivering about 5 X 10%*
J/year with about half of this getting absorbed by the surface of the Earth. Estimates
of the total fraction of this energy actually captured by photosynthetic plants, both
terrestrial and marine, are about 0.1%. Recent estimates of human energy consump-
tion give a rate of about 5 X 1020 J/year (with nearly 90% coming from fossil fuels),
which amounts to about 1/10 of the energy captured by plants on the Earth. Reserves
of fossil fuels on the Earth are estimated to be about 4 X 1023 J, with an additional
2.5 X 10%* J in radioactive nuclear fuels. Although human consumption appears to be
only a small fraction of the energy available, it is becoming increasingly clear that
the persistent use of fossil fuels is having an effect of the fraction of the solar energy
that is trapped within the Earth’s atmosphere, causing a global warming. We return
to a discussion of this “greenhouse effect” at the end of Chapter 13.

Energy considerations in biological cells are centered around the ATP (adenosine
triphosphate) molecule. ATP stores chemical energy from the oxidation of foodstuffs
(small sugar molecules) that themselves were ultimately produced using solar energy
whether they originated from plants or animals. This formation of ATP from ADP
(adenosine diphosphate) and inorganic phosphate occurs in a series of highly effi-
cient coupled reactions catalyzed by the enzyme ATP synthase (F1-ATPase), a very
interesting molecule further discussed in Section 3 of Chapter 7. The high-energy
phosphate bond, with an energy roughly twice that of a hydrogen bond, is the source
of most of the cellular energy, and therefore, of the energy used by the human body.
Each of us uses between about 50 and 75 kg of ATP each day, approximately the
weight of a person. When exercising strenuously, the rate of usage can approach
0.5 kg/min. Clearly our bodies do not contain that much ATP. It is constantly syn-
thesized with each F1-ATPase molecule capable of generating about 300 ATP mole-
cules per second. Each ATP molecule in the human body is recycled over 1000 times
per day in order to generate sufficient energy to sustain life.

4. FORCES FROM ENERGY

At the beginning of this chapter we pointed out that many situations can be analyzed
using energy concepts as well as force concepts. Are there advantages of introducing
these new ideas on energy? There is a clear need for energy concepts to understand
the production of forces in living or inanimate dynamical systems that generate
mechanical energy from chemical or other energy forms. These notions are devel-
oped over the course of this book in various ways as we learn more physics. At this
point, we have seen how to generate a potential energy function from knowledge of
the forces acting on an object. The reverse is also true; it is also possible to find the
forces acting on an object from knowledge of the potential energy function. As we
have seen, energy is a scalar quantity, whereas force is a vector quantity, in general
having x-, y-, and z-components as we study in Chapter 5, and so it is often easier to
deal with energy first and then, if needed, to calculate the forces involved from the
potential energy function. In this section we learn how this can be done.

We have seen in Equation (4.14) that the work done by gravity can be expressed
as a change in a gravitational potential energy function. When forces other than grav-
ity are present, often other potential energy functions can be defined as functions of
displacement, similar to Equation (4.13), as, for example, we have seen for springs
with Equation (4.19). Forces for which this can be done are called conservative
forces and are characterized by the fact that the work they do when acting on an
object only depends on the displacement of the object and not on its actual path,
trajectory, or velocity. Generalizing Equation (4.14) to any conservative force

W=F Ax= —APE, 4.22)
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gravity

we see that the x-component of the force can be found from knowing how
the potential energy changes in the x-direction

F - — APE (4.23)
, o .

Although this has been written for the case when the force is constant, it can also

spring be written for forces that vary from point to point. The conclusion is that the

potential energy function, which is just a scalar, contains all the information of
the force, itself a vector quantity. Although in the case of one-dimensional
motion, this does not seem to be a huge advantage, we show that the potential

FIGURE 4.8 Potential energy
functions for gravity and springs.

FIGURE 4.9 Potential energy
function for a spring, showing the
turning points corresponding to the
amplitude of oscillation. At any
location between the turning points
the total energy is divided between
PE and KE as shown by the
vertical bars.

PE

energy function contains all the information needed to calculate the force in
three dimensions as well. For this reason alone, it should be clear that using
energy concepts will often make it simpler to understand the motion of objects.

From Equation (4.23), it is clear that if the PE is increasing as x increases,
the force in the x-direction will be negative, or tending to drive the system
toward lower potential energy. On the other hand if the PE is increasing as x
decreases, the force will be in the positive direction tending again to drive the system
toward lower potential energy. Similarly, if the PE decreases as x increases, the force will
be in the positive direction, whereas if the PE decreases in the negative direction,
the force will now be in the negative direction. In all cases the force is such as to drive
the system toward lower potential energy. We show just below that at a minimum in the
potential energy versus x graph, where the slope is zero, there is no force acting in the x
direction, and such a point is an equilibrium point. This picture allows us to consider the
PE versus x graph as a sort of “slide” along which a particle always tends to move down-
hill in potential energy.

Not every force, however, can be found from a potential energy function. The
frictional force is a prime example of a nonconservative force because the work done
by this force depends on other factors than just the displacement of the object, such
as its velocity or its actual trajectory. In the development of conservation of mechan-
ical energy in the previous section, if there is a frictional force acting then the total
mechanical energy E will no longer be a constant. Starting from the work—KE theo-
rem, it is straightforward to show that the work done by the friction force is equal to
the change in mechanical energy of the system

W,= AE = AKE + APE, (4.24)

where APE represents the total change in potential energy from all conservative
forces. The lost mechanical energy shows up as other forms of energy, most notably
in the form of thermal energy in slightly warming the object and its environment.

Potential energy functions depend on the position of an object. A very useful way to
represent potential energies is through the use of graphs. Figure 4.8 shows two examples
of such graphs, one for the gravitational potential energy function and the other for the
spring potential energy function. In the case of gravity, the potential energy is linear in the
height, whereas for springs the potential energy function is qua-
dratic in the displacement of the mass from equilibrium. Given
an object with a certain total mechanical energy, in the absence
of nonconservative forces, the kinetic and potential energies
must add up to a constant total.

In the graphs of spring potential energy versus position in
Figure 4.9, a point where the constant total energy intersects the

potential energy function defines a point where the energy is
totally potential and, hence, a point at which there is no kinetic
energy. At such a turning point of the motion, the velocity is
zero and the object cannot be found beyond the turning point
where the total energy lies below the potential energy curve. If
X there are two turning points then the region between them
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defines a domain in which the particle is trapped and must
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oscillate, constantly exchanging kinetic for potential energy and vice versa. If there PE
is only one turning point, then an object will continue its motion unbounded.

In Figure 4.9, the point x = 0 where the potential energy is zero represents
the position where the kinetic energy is a maximum because the total energy is
all kinetic energy at that point. From our discussion of springs you will remem-

ber that as a mass on a spring oscillates it has its maximum speed as it passes B C

through the equilibrium point. As the mass oscillates it constantly exchanges

kinetic energy for potential energy and back again. M :
Remembering Equation (4.23), the negative of the slope of a graph of PE \./

versus x will be the force on the object in the x-direction. Thus, the steeper the
graph, the stronger the force and a positive slope (the curve for x > 0 in Figure 4.9)
corresponds to a force in the negative direction, whereas a negative slope (the FIGURE 4.10 A potential energy
curve for x < 0 in the figure) indicates a positive force. These directions should make Zzycri;'g:trsaf;?gngngoﬂg ao bf lztab/e
sense to you based on the motion of a mass on the spring. Those points that have zero (C), equilibriunf;.

slope are points where there is no force acting and are called points of equilibrium. We

can distinguish three types of equilibrium: stable, neutral, and unstable. These are dis-

tinguished by what happens if the object is slightly displaced from the equilibrium

position. For a point of stable equilibrium, there will be a restoring force tending to

maintain the equilibrium. These points are graphically represented by zero-slope

points in a potential valley or trough as in Figure 4.9. To either side of the equilibrium

point, the sign of the force determined from Equation (4.23) produces a restoring force

as shown in Figure 4.10A. Thus a mental picture of a small ball rolling on the poten-

tial energy curve will give a good idea of the nature of the forces. The steeper the walls

are, the stronger the restoring force. In the case of neutral equilibrium (Figure 4.10B),

there is no force over an interval so that a small displacement still results in no force

acting. When an object is in unstable equilibrium (Figure 4.10C), a small displace-

ment will result in a large force that tends to sweep the object farther away from the

equilibrium point. In this case the graphical picture is an equilibrium point at the top

of a hill so that the sign of the force is such as to produce an unstable equilibrium.

A

Example 4.7 Figure 4.11 shows several additional examples of one-dimensional
potential energy functions for a point mass. Examine these figures carefully and
for each indicate: (a) the turning points, if any, depending on the total energy of
the particle (E, through Es); (b) the equilibrium points and their type; (c) the
motion expected for different total energies of the particle.

Solution: A: The particle, in this case, cannot have a total energy, E = KE +
PE, less than zero, because KE = 0 always and the potential baseline every-
where is at PE = (. If the particle has an energy less than the barrier height (0 <
E < E,), and is initially found close to the origin, then the particle will have
turning points at x = 0 and at the barrier and will be trapped, bouncing back and
forth between x = 0 and the barrier. The steep walls give a very large force

(F APE . )
S = —Sslope
Ax P

when the particle hits them, simply turning it around and trapping it. There are no
equilibrium points because the particle cannot be at rest (except for the uninter-
esting case when E = 0). If the particle is initially outside the barrier wall and
traveling toward x = 0, it will rebound off the barrier and travel forever out
toward larger x values unbounded, never returning. This model potential is useful
for representing a trapped particle in the simplest potential. For energies > E,),
the particle will not be bound, but will slow down when passing over the barrier,
because the KE will decrease when the PE = E,, at the barrier.

(Continued)
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FIGURE 4.12 A general potential
energy function with a spring
potential approximation near the
equilibrium point.
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FIGURE 4.11 Three different potential energy
functions for a point mass: (A) is usually known
as a barrier potential, (B) is a typical interatomic
potential, and (C) illustrates a potential with two
minima.

B: In this case the lowest energy possible for the particle is £, and for particle
energies within the range E; < E <0, the particle will be trapped in the energy
“well” and bounce back and forth between two turning points defined by the par-
ticular energy of the particle. The collisions of the particle with the potential near
x = 0 will be harder (greater force) because the walls are steeper. There is a stable
equilibrium at the bottom of the well. If the particle has an energy E > 0, then it
will not be trapped and will, if headed toward x = 0, rebound from the potential
wall and travel off freely. This example is a common one for an electron in an atom
or an atom in a molecule, representing a single stable situation for negative energies
with positive energies indicating an ionized electron or dissociated molecule.

C: In this case the lowest energy possible is E; and a particle with energy
between E; < E < E, will clearly be trapped within the deeper well and have
two turning points and one stable equilibrium position at the bottom of the well.
If the particle energy exceeds E,, but is less than E, the particle could be trapped
in either well depending on its initial location. In either case there are two turn-
ing points and stable equilibria at the well bottoms. With an energy greater than
E, the particle is still trapped in the overall well but is now free to roam over a
larger range of x values. This example is quite a common one in chemistry and
might represent the potential seen by one molecule in its interactions with
another one. A molecule trapped in the higher-energy well might, with some
“help” from an enzyme, be able to overcome the energy barrier presented by the
middle hump (a point of unstable equilibrium) and then find the lower energy
minimum. In a different context, this potential might also be used to represent
the energies of different conformations of a macromolecule with two possible
stable states of different energies. Because of their common use in describing
atomic and molecular interactions, it is important to be comfortable with such
graphs and to know how to interpret their major features.

There is a special reason for emphasizing springs and the potential energy they
store. It is shown in the box that near the minimum of any potential energy curve, the
potential energy can be well represented by a quadratic function of the displacement
from equilibrium, just the relation that holds for springs. Given this fact, we are jus-
tified in using the pictorial representation that an object trapped near a minimum in
a potential well is, in fact, attached to a linear spring (see Figure 4.12). This is an
often-used representation for the forces on atoms or molecules near their equilibrium
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positions. We return to this theme later in the book after we learn a bit
more in Chapter 10 about oscillations and the more realistic cases when
damping (or frictional) forces are present.

5. POWER

Often when work is done on or by an object, the rate at which the work is
done, and the consequent rate at which energy is transferred, is of interest.
When a brick wall is built, the total work to lift and assemble all the bricks
can be calculated, but the rate at which the wall is built is also of separate
interest, particularly to the workers. When we expend energy doing work
with our muscles, there is a maximal rate at which we can do work based
on our bodies’ limited ability to generate tension, just as there is a maxi-
mum rate at which cars can accelerate. Similarly our hearts have a maxi-
mal rate at which they can do work pumping blood through our bodies.
Toasters and electric heaters give off heat, or thermal energy, at a rate that
we later see how to calculate. All of these rates are controlled by the appro-
priate variables of the particular problem.
The rate at which work is done is known as the power P where

P = AW (4.25)
AL .
If a constant force is acting then, using the definition of work in
Equation (4.3), we can write that power is given by

(4.26)

If the force and velocity are in the same direction, either both positive or
both negative, then the power is positive and, if there is only the one force
acting, the velocity will increase in magnitude as will the kinetic energy. If
the force is acting in the opposite direction to the velocity, then the power
is negative and the velocity will decrease in magnitude as will the kinetic
energy. Units for power are given by 1 J/s = 1 watt (W). The watt is famil-
iar from its use in electrical power, indicating the rate at which energy is
given off by light bulbs. Also, those of you who receive bills for electric
power might recognize the common unit of energy used as the kW-hr, a
product of a power measured in kW and a time measured in hours.

Any reasonably behaved mathematical
function U(x) can be written as a series,
expanded about some point x,

dU
Ux) = U(xy) + e (x — xp)
X0
1 d2U
——| = xp)?+ ..
2 dx? o

If U(x) represents any potential energy
function and x, is a position of a stable
energy minimum, then the slope dU/dx at
position x is equal to zero. Furthermore,
the value of U(x,) is arbitrary and can be
taken as zero. For small displacements
from equilibrium the remaining quadratic
term in the series dominates and if we let
the second derivative of U with respect to x
evaluated at x), a constant, be renamed &,
we have

Ulx) = %k (x — xp)*.

With (x — x,) being the displacement from
the equilibrium position, this is precisely
the expression for the potential energy of a
spring when stretched a distance (x — x)
from its equilibrium length. Graphically
this implies that near the minimum of any
(mathematically well-behaved) potential
energy curve, we can approximate the curve
as a parabola as shown in Figure 4.12. Thus
for small displacements about the stable
equilibrium position, all objects feel a
springlike restoring force.

Example 4.8 Let’s try to calculate the wind power possible to tap using high-
efficiency windmills (Figure 4.13). Assume a wind speed of 10 m/s (about 20

mph) and a windmill with rotor blades of 45 m diameter.

Solution: To calculate the maximum power possible, we need to calculate the
kinetic energy of the wind intercepted by the rotor blades of the windmill. We take
the density of air from Table 1.3 as p = 1.29 kg/m>. Then the KE = 1/2 mv? =
1/2 (pV)v2, where V is the volume of air. We can calculate the volume of air inter-
cepting the rotor blade cross-sectional area A per second by imagining a cylinder of
air with the diameter of the blades and a length given by (v)(1 s), the distance trav-
eled in 1 s. Then we can write that, first assuming all this energy is collected by the
windmill, P = AW/At = AKE/At = 1/2 pAv3. Substituting in numbers, we find
that P = 1/2 (1.29)(7 45%/4)(10)* = 1.0 X 10° W. Typical efficiencies of modern

(Continued)
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FIGURE 4.13 0.75 Megawatt generating windmills in
Minnesota.

windmills are greater than 40%. This means that roughly 40% of the wind energy
is converted into electrical energy. Note that the power has a large dependence of
wind velocity, proportional to v, so that an increase in wind speed of 10% trans-
lates into an increase in power by a factor of (1.1)> = 1.33, or a 33% increase. Good
location of windmills is therefore extremely important.

CHAPTER SUMMARY where
In one dimension, the work done by a constant force
acting along the same direction as the displacement is

KE = —mv2. (4.10)
Wy = FAx. (4.3)

Work done by conservative forces on an object can be

The net work done on an object is equal to the change related to a potential energy function PE through

in its kinetic energy, KE,

W, =KE, — KE, = AKE,  (4.11) W=FAx= — APE, (4.22)

net

(Continued)
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so that, in turn, the force acting on the object can be
determined from that potential energy function from

F =- APE (4.23)
. Ax .

Two examples are gravitational and spring potential
energy, given by

In the absence of any dissipative forces, such as
friction, the total mechanical energy E is conserved:

E=KE+PE__ + PE

grav spring
= constant.

+ PEother (4_2 1 )

Power P is the time rate of change at which work is done,

p=AW (4.25)
PEgrav = mgy. 4.13) At’ :
and and can also be written as
= e P=Ft_p 4.26
PEine = Ekx . (4.19) =F =Fv (4.26)
QUESTIONS mass mgd is converted into spring potential energy

1. Give some examples that contrast the “physics” 1/2kd*> when the mass is released from rest, so that

definition of work with the colloquial usage of
work. In particular, give some examples where no
work is done (according to our physics definition)
whereas in ordinary speech one would say that work

anced by a spring force equal to kd, so that d = mg/k.
On the other hand, the initial potential energy of the

QUESTIONS/PROBLEMS

d = 2mg/k. What is wrong with the above reasoning
and which is the correct result? (Hint: Think of what
happens in actually doing each of the two different
experiments.)

was done. 6. In our discussions the location of the zero of
. Can work be done on an object without moving it? gravitational potential energy is arbitrary but the
Give an example to illustrate your answer. zero of spring potential energy is not. Why is this
. Conservation of energy would seem to imply that the case? When the location of zero gravitational
holding a heavy weight at rest, doing no work, potential energy is shifted by a distance y,, the
should not require any energy. What is wrong with gravitational potential energy at some location
this argument? changes by mgy,, an arbitrary constant. What would
. A heavy crate sitting on the ground is lifted verti- happen if the location of zero spring potential
cally onto a table, then pushed horizontally across energy were shifted by a distance x, from its proper
the table, and then lowered vertically to the ground. location?
Fill out the following table with your answers for 7. Two springs with spring constants that differ by a
whether the work done by the external force and by factor of two are stretched (a) by the same amount,
gravity are positive, negative, or zero for each part and (b) with the same force. Compare the force
of the motion. exerted and stretch of the two springs for each
situation.
; ) ) 8. Describe, in words, the types of energy a mass on a
Portion of Motion  Gravity  External Force spring has at various points on its potential energy
Vertical lift curve shown in Figure 4.9.
Horizontal slide 9. Explai'n how the mot.ion of a marble rolling in a bgwl
Vertical lowering is similar to the motion of a mass on a spring. Think
in terms of potential energy diagrams.
10. Check that the units on both sides of Equation (4.23),
. In slowly compressing a vertical spring a distance d, a relating energy to force, agree. Why is there a minus
mass placed on top of the spring will compress sign in the equation?
the spring until it reaches equilibrium with mg bal- 11. Two students are solving a physics problem having to

do with finding the velocity of a ball when it reaches
the ground after being dropped out of a ten-story
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12.

13.

14.

building. One chooses the zero of gravitational poten-
tial energy to be on the ground, and the other chooses
it to be at the tenth floor of the building. Can they both
get the same answer?

Two workmen are stacking heavy cinder blocks from
the ground to a raised pallet. If one of them stacks
100 of the blocks in 20 min and the other stacks 100
of them in 30 min, which one has done more work?
Which one has the greater power output?

Two joggers run up stairs, starting out together, but
one runs up 4 flights in 15 s and stops and the other
runs up 12 flights in a minute. Which has done more
work? Over the first 15 s, which has the greater power
output? Over the minute interval, which has the
greater average power?

Which laser emits the most energy: a continuous laser
with a power level of 1072 W, or a pulsed laser emit-
ting a series of 10712 s duration pulses every 1072 s
with each pulse having a power of 107 W?

MULTIPLE CHOICE QUESTIONS

1.

94

A 1 kg mass initially compresses a vertical spring by
0.1 m. The mass is not attached to the spring and,
after being released from rest, it leaves the spring
and eventually reaches a maximum height above its
starting point of 0.5 m. There is no friction during
this motion. The change in the mass’s mechanical
energy during this process (a) must be about +5 J,
(b) must be zero, (¢) must be about —5 J, (d) cannot
be calculated because the spring constant is not
given.

The fundamental SI dimensions of work are
(a) MLT L, (b) MLT 2, (c) ML?T !, (d) ML2T 2.
A 75 kg hiker carries a 25 kg backpack up a mountain
trail with an average inclination angle of 5° over a
distance of 3 km. The total work done by the hiker is
about (a) 260 kJ, (b) 65 kJ, (c) 3000 kJ, (d) —260 kJ.
A lead ball weighing 10 N falls 0.8 m from rest into a
bucket of sand. The ball stops after making a crater
0.2 m deep. According to the work—energy theorem
the work done by the sand on the ball in bringing it to
restis (a) —10J,(b) —2J,(c) 07, (d) +101J.

. A 5kg block is accelerated from rest by a constant

force of 10 N over a distance of 1 m on a frictionless
horizontal surface. The block then slides at a constant
speed for 2 m before hitting a spring with a spring
constant of 10 N/m. The work done by the spring in
bringing the block to rest momentarily before return-
ing it in the reverse direction is (a) 10J, (b) 207,
(c) —201J,(d) —101.

A mass m is lowered gently onto a vertical spring of
length L with spring constant k until it just touches the
spring. Let y be the distance the spring is compressed and
v be the velocity of the mass. When the mass is released
from rest, the equation for conservation of energy is
@) 112 mv* + 1/2 ky?> + mgy = mgL, (b) 1/2 mv* +

10.

11.

12.

13.

172 K(L — y)? + mgy = mgL, (c) 1/2 mv* + 1/2 ky* +
mg(L —y) = mgL, (d) 1/2 mv* + 1/2 ky* + mgy = 0.

. A mass M rests on top of a vertical spring with spring

constant k. If a second mass m is stuck to mass M,
the maximum distance the spring is further com-
pressed is given by (a) mg/k, (b) mg/2k, (c) 2mg/k,
(d) (m + M)g/k.

Two identical springs with 5 N/m spring constants are
both attached to the same 2 kg mass as shown. If the
mass is pulled down slightly and released, it will oscil-
late with a period of

@) 277\/5,
5
2
CEZNES
© 2. =,
25
) 47T\F.
5

. A mass weighing 10 N is initially held at rest on a

vertical spring that is compressed by 0.1 m. When
released, the mass accelerates upward, leaves the
spring and eventually reaches a height of 0.9 m
above its starting height. The work done by the
spring on the mass is (a) —107J, (b) +117J, (c) +9J,
(d) +1017.

In the absence of friction, when an object in neutral
equilibrium is given a small momentary push, it will
(a) return to its equilibrium position, (b) stop at a new
equilibrium location, (c) move at a constant velocity
until the potential changes, (d) depends on the object
and type of potential energy function.

A bricklayer is building a wall. If the 0.5 kg bricks are
all identical with a 0.1 m height and he builds a stack 10
blocks tall and 10 blocks wide in 1 h, his power output
is (a) 3.75W, (b) 0.063 W, (c) 0.076 W, (d) 0.069 W.
(Take g = 10 m/s%)

A girl pulling a sled exerts a 20 N force horizontally
for 10 s. How much power does she generate in watts
while moving the sled 20 m? (a) 10, (b) 20, (c) 30,
(d) 40.

A block slides a distance d down a frictionless inclined
plane, with inclination angle 6, changing its height by a
displacement H. The work done by gravity is equal to
(a) mgH sin 0, (b) mgH, (c) —mgH, (d) mgd (e) —mgd.

PROBLEMS

1.

In mowing a lawn, a boy pushes a lawn mower a total
distance of 350 m over the grass with a force of 90 N
directed along the horizontal. How much work is
done by the boy? If this work were the only expendi-
ture of energy by the boy, how many such lawns

WORK AND ENERGY IN ONE DIMENSION



would he have to mow to use the energy of a 200 cal
candy bar? (use 1 calorie = 4200 J)

. As a bacterium swims through water it propels itself
with its flagella so as to overcome the frictional drag
forces and move at, more or less, constant velocity of
100 pm/s for periods of time. If the frictional drag
force on a bacterium is 0.1 wN, how much work does
the bacterium do in 1 s of sustained velocity.

. A 100 N crate sits on the ground and is attached to
one end of a rope passing over a frictionless light pul-
ley. If someone pulls down on the rope with a con-
stant force of 110 N lifting the crate a distance of 3 m,
find

(a) The work done by the person

(b) The work done by gravity

(c) The increase in potential energy of the crate

(d) The velocity of the crate after rising 3 m.

. An elevator car weighing 8000 N in a tall office build-

ing is lifted by a steel cable attached to the elevator

motor. It travels from ground level to the 50th floor, a

distance of 200 m in 75 s. Ignore the brief time during

which the elevator accelerates or decelerates.

(a) How much work is done by the motor in lifting the
elevator?

(b) At what rate is this work done?

(c) Answer the previous parts for the downward non-
stop trip.

. A ball is thrown downward from the roof of a 24 m

tall building with an initial speed of 5 m/s.

(a) Use energy principles to find the speed with
which the ball hits the ground.

(b) Find the time it took for the ball to reach the
ground.

(c) If the ball were thrown upwards from the roof
with the same speed repeat the calculations for
parts (a) and (b).

. A boy throws a 0.1 kg ball from a height of 1.2 m to

land on the roof of a building 8 m high.

(a) What is the potential energy of the ball on the roof
relative to its starting point? Relative to the
ground?

(b) What is the minimum kinetic energy the ball had
to be given to reach the roof?

(c) If the ball falls off the roof, find its kinetic energy
just before hitting the ground.

. Water leaves a garden hose held vertically with a veloc-

ity of 5 m/s. If the hose is held at a height of 2 m, find

the speed with which the water hits the ground.

. How much mechanical work is done by a 2cm

long X 0.2 mm diameter muscle fiber that shortens

by 20% during a sustained contraction generating an

average stress of 38 X 10* N/m??

. A 65 kg rock climber scales a 200 m vertical wall in

10 min. Find the work done by gravity on the hiker.

If the hiker consumed oxygen at a rate of 2 L/min,

corresponding to an internal energy production of

4 X 10* J/min, what fraction of the hiker’s energy

QUESTIONS/PROBLEMS

10.

11.

12.

13.

14.

15.

16.

was used to climb the wall? (This fraction is termed

the hiker’s efficiency.)

In throwing a 0.5 kg lacrosse ball from rest, the

lacrosse stick exerts an average force of 500 N along

a distance of 1.2 m before the ball leaves

the net.

(a) How much work was done on the ball by the stick?

(b) With what velocity does the ball leave the lacrosse
stick?

A weight lifter “snatches” a 1200 N weight by exert-

ing a 1400 N average force for the first meter off the

ground, then relaxing his grip and “getting under” the
bar to catch it and give it a final upward push.

(a) How much work is done in the first 1 m of lifting
by the man? By gravity?

(b) What velocity will the weight attain after the one
meter lift?

(c) If the man essentially exerts no force starting at 1 m
height, how much farther will the bar rise and how
long will it take to rise to that height? During that
brief time he will finalize his position to “get
under” the bar and then push it to full arm extension.

(d) How much additional work must he do to raise
the weight to 2.4 m, the height of his full arm
extension?

A 5 N/m horizontal spring is compressed 0.1 m and a

0.1 kg mass is attached. The mass glides on a fric-

tionless horizontal surface. What is the maximum

speed of the mass as it oscillates?

A 2 kg block slides back and forth on a frictionless

horizontal surface bouncing between two identical

springs with k = 5 N/m. If the maximum compression
of a spring is 0.15 m, find the gliding velocity of the
block between collisions with the springs.

A 0.2 kg mass is dropped 0.5 m onto a vertical spring

with a 10 N/m spring constant and sticks to it.

(a) What speed does the mass have as it hits the
spring?

(b) Find the equilibrium position of the mass relative
to the original position of the top of the spring as
it oscillates.

(c) Find the maximum compression of the spring.

(d) What is the maximum speed of the mass as it
oscillates on the spring?

A 20 N/m vertical spring is stretched 5 cm when a

mass is attached. If the same mass is set into oscilla-

tion after stretching the spring an additional

10 cm find

(a) The mass

(b) The maximum kinetic energy of the mass

(c) The maximum speed of the mass and where it
occurs relative to the original unstretched position
of the spring

The power stroke of the myosin protein on an actin

filament that generates tension in a muscle appears

to be a 10 nm displacement generated by about a

1 pN force. Each power stroke is accompanied by the
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17.

18.
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splitting of one ATP molecule which releases about

4.9 X 107207

(a) How much work is done by one myosin in a single
power stroke?

(b) What is the efficiency of the process; that is, what
fraction of the ATP-generated energy does useful
work?

A powerful pulsed laser emits a series of brief ns

(1077 s) pulses of light, one per ms (1073 s). If each

pulse has a power of 109 W, calculate the energy

per pulse and the average power of the laser over a

second.

A bricklayer is building a garden wall 1.0 m tall out

of bricks that are 10 cm tall, 30 cm long, and weigh

10 N each. If the wall is 3 m long

(a) How much work must be done to build the wall if
all the bricks start out at ground level?

19.

(b) If he works for two hours and then takes a one hour
lIunch followed by a two hour rest, and then returns to
finish the wall in two more hours, what is the average
power he uses to build the wall over his seven hour
day? Over his actual four hour construction time?

Two kids, Jimmy and Sally, ride on sleds on a frozen

pond at the same speed. When they are 30 m from a log

in the ice, Sally drags her foot to slow her sled down at

a constant deceleration while Jimmy continues at con-

stant velocity. Jimmy reaches the log in 5 s and Sally’s

sled comes to a stop right at the log in 10 s.

(a) What is the initial velocity of both sleds?

(b) What is the acceleration of Sally’s sled?

(c) If Sally plus sled have a combined mass of
50 kg, what is the drag force that Sally’s foot applies?

(d) How much work was done by Sally’s foot in
bringing the sled to rest?

WORK AND ENERGY IN ONE DIMENSION



Motion, Forces, and Energy
in More Than One Dimension

In the previous three chapters we have detailed the kinematics of one-dimensional
motion, forces producing the motion, their dynamical connections via Newton’s
laws, and the important concept of energy. Having built up an arsenal of tools for the
description and prediction of motion in one dimension, we need just one more added
tool in order to generalize to the study of kinematics and dynamics in two or three
dimensions. Although we obviously live in a three-dimensional world, it is very use-
ful to study two-dimensional motion, which can describe any motion confined to a
plane, for example, free-fall near the Earth’s surface—but now with horizontal
motion thrown in—or circular motion, or the local motions of a membrane protein
confined to a cell surface. We limit most of our discussion to two-dimensional
motion, but the extension to three dimensions is clear.

The missing mathematical tool that we need to complete this agenda is vector
algebra and is the opening subject of this chapter. With knowledge of vectors, the
goal of this chapter is to see how to generalize our fundamental results so far for one-
dimensional motion so that we can apply them to more realistic situations. Both kine-
matical and dynamical problems are studied as well as the generalizations of work
and energy to more than one dimension. Frictional forces are not only extremely
common, but often play either a crucial role or provide an ultimate limit to mechan-
ical motion, as we show. Both static and kinetic contact friction are discussed and
their role in some problems where one object slides over a surface is illustrated.
Circular motion is one type of regular motion in a plane and we examine the dynam-
ics of such motion with applications to the important experimental technique of cen-
trifugation. We return to circular motion as the theme of Chapter 7 on aspects of
rotational motion.

1. VECTOR ALGEBRA

Vectors are mathematical representations for quantities that have not only a magni-
tude, or amount, but also have a direction. Quantities without directionality, such as
time, speed, mass, energy, and temperature, are called scalars. These are totally
defined by an amount, given by a number and units. Vector quantities, including posi-
tion, displacement, velocity, acceleration, and force also require some specification
of their direction. This can be done graphically by representing vector quantities as
arrows (the pointed ends known as “heads” and the other ends as “tails”) with their
lengths drawn to scale according to the amount of the quantity and pointing in the
proper orientation. Thus, for example, the length of a drawn displacement vector
might scale according to the rule 1 cm = 100 km, and the length of a drawn velocity
vector might follow 1 cm = 100 km/hr.

Vector analysis originates in how displacements behave. For specificity, suppose we
view a single E. coli bacterium under a microscope and record its two-dimensional

J. Newman, Physics of the Life Sciences, DOIL: 10.1007/978-0-387-77259-2_5,
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FIGURE 5.1 Series of equal time
displacement vectors for an E. coli
with the resultant displacement.

FIGURE 5.2 When A is rigidly
translated until its tail coincides
with the tail of B, the heads of the
two vectors coincide also: there-
fore A = B.
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position at various times. From these, we can construct a series of displacement vectors,
each of which starts at the initial position and ends at the final position for that time inter-
val (Figure 5.1). Each vector is labeled using a special symbol, for example, A, to indi-
cate that it is a vector. In this text we use an arrow over a letter to indicate that it is a
vector quantity. You should discipline yourself to do the same when solving problems.
Vectors, like scalars, can be added, subtracted, and multiplied, but precisely how these
operations are done is different from the way they work for scalars (ordinary numbers).
Failure to distinguish between scalars and vectors can lead to unnecessary calculational
problems. Our first task is to learn how to add and subtract vector quantities.

If the bacterium depicted in Figure 5.1 had been made to move along a straight
line, its sequence of displacement vectors for individual time intervals would all lie
along that line. “Adding” those displacements together would simply require adding
algebraic quantities (with plus and minus signs for positive or negative displacements
as we have been doing) in order to find the net displacement over the entire time
interval. In vector language, the individual displacements would be connected
together head to tail and the net displacement, known as the resultant or vector sum,
would be an arrow (of the correct length) with its tail at the tail of the very first dis-
placement and its head at the head of the very last.

In the two-dimensional case of Figure 5.1, the net displacement is arrived at in a
similar way: the head of each individual displacement vector is connected to the tail
of the next in the sequence and the resultant (i.e., net) displacement is a vector with
its tail at the tail of the first vector and its head at the head of the final vector.

Well, this head-to-tail construction for adding displacement vectors is fine for a
sequence of displacements, but how do we add two velocity or two force vectors
together, situations where sequence has no meaning? We need to generalize the
graphical construction rule to permit the addition of two vectors even if they aren’t
originally connected in the correct head-to-tail way. We do so by defining vector
equality. Two vectors are said to be equal if they have the same length and point in
the same direction. To check whether that is true, imagine translating one vector
rigidly (no rotating as you go, please) until its tail coincides with the tail of the other.
If the two heads also coincide, the two vectors are equal. This is shown in Figure 5.2.

With the notion of vector equality, any two vectors representing the same quan-
tity can be added. Recall that you cannot add a velocity vector to a force vector; they
are like apples and oranges. Translate one rigidly until its head is at the tail of the sec-
ond. The resultant is a vector of the same kind whose tail is at the tail of the first and
whose head is at the head of the second. Which is the first vector and which the sec-
ond? It doesn’t matter. The order of the vector addition does not affect the result, as
is illustrated in Figure 5.3.

Example 5.1 Graphically add three vectors, all with tails at the origin of some
coordinate system but with heads at different points in the x—y plane:

A has head at (3,0), B has head at (2,4), and C has head at (—4,2), where the
notation means (x, y) (see Figure 5.4).

Solution: Each vector is first graphed according to its (x, y) coordinates using a
given scale. Then vectors B and C are moved so that their tails sit at the head of
the previous vector.

We then can read the resultant from the graph by reading the (x, y) coor-
dinates of its head to be A+ B+ C=(1,6). We can also measure the magni-
tude of the resultant directly by measuring its length and using the scale of
the diagram to find a magnitude of about 6.1. The direction of the resultant is
found using a protractor to be about 80° above the x-axis. Notice that the
x- and y-coordinates of the head of the resultant are equal to the sum of the
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separate x- and y-coordinates of the heads of the three vectors. We show why
this is so below.

L1
resultdnt ~C
=> ™~
y B /
= B
~ =
= X

FIGURE 5.4 Graphical addition of three
vectors.

For calculational purposes it is often very useful to refer vectors to some underlying
coordinate system. Figure 5.5 shows a vector A with its tail attached to the origin of
a Cartesian (i.e., x—y) coordinate system. The figure shows two other vectors AX and Ay,
also with tails at the origin. The latter vectors are constructed as follows. From the
head of A draw a line parallel to the y-axis; where that line intersects the x-axis is the head
of A draw a second line from the head of A parallel to the x-axis; where that line inter-
sects the y-axis is the head of A_, The vector A is called the “component vector of A in
the x-direction” and A_ the “component vector of A in the y-direction.” Now, by rigidly
translating either Ax or A, it is easy to see that A = Ax + Ay.

The promised calculational advantage to “decomposing” a vector into its coordi-
nate components requires one more idea: multiplying a vector by a scalar. When a vec-
tor is multiplied by a scalar the result is a new vector pointed parallel (or antiparallel)
to the first and with length equal to the first vector’s length times the magnitude of the
scalar. Figure 5.6 shows examples. The vector 24 is twice as long as A and points in

the same direction. The vector —0.5 A is half as long as A and points in the opposite
direction. (The reason multiplying a vector by a negative number produces a vector in
the opposite direction is this: we require that when we add A and —A the result is a vec-
tor of zero length; the only way that can be is if when the tail of —A is attached to the
head of A, in the head-to-tail addition method, the head of —A is back at the tail of A.
Then the resultant’s head and tail are at the same place and, as required, it has no length.
In other words, —A is the same size as A but antiparallel to it.)
We write the two-dimensional vector A as the ordered pair

A=(ALA),

where the (signed) numbers A and A are called the x- and y-components
of the vector A. A three- dlmensmnal vector is written as an ordered triple.
A vector is not simply a number; that’s why we use the arrow symbol.
A vector is a set of numbers, from which its magnitude and direction infor-
mation can be extracted. Because the (x, y) components of a vector are per-
pendicular to each other, the magnitude of a vector (denoted by putting the

ol
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FIGURE 5.3 Graphical addition of
three vectors, showing that the
order of addition doesn’t matter.
Start/ng at pomt i, the sum

A + B + C ends up at point f,
regardless of the order of addition.

FIGURE 5.5 The x- and
y-component vectors of
the vector A.

-
A

vector symbol inside a pair of vertical lines) can be obtained from them by
Pythagoras’ theorem; for example,

Al = VA2 + A2
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FIGURE 5.6 The result of multiply-
ing a vector by a scalar.
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The direction of a vector can be deduced by using a little trigonometry: let 6 be
the angle the vector makes with the x-axis; then

A

cos (0)=—-.
4]

Because the cosine can have the same value for more than one angle you have to draw
a picture to get the orientation of the angle right (i.e., whether 6 is above the x-axis or
below it). The component notation makes vector addition much easier and more accu-
rate than drawing head-to-tail pictures. The rule is this: when two vectors given in
component notation are added, the x-component of the resultant is the sum of the
x-components of the two vectors you started with and the y-component of the resul-
tant is the sum of the y-components (and, if necessary, the z-component is the sum of
the z-components). Note how this rule makes the calculation in Example 5.1 so much
easier.

Example 5.2 Calculate analytically the resultant of the two vectors A =(0,6)
and B = (5, 0).

Solution: C = A + B = (5,6). This sum or ordered pair completely specifies the
resultant vector. If we wanted to express the resultant in terms of its magnitude
and direction we could do so by writing

IC| = V52 +62=1738.
The direction of the resultant (sketched in Figure 5.7) is found using

c

X

cos =—=>5/7.8=0.641,
[e
so that § = 50.2°, above the x-axis.

Y

>

= X
B

FIGURE 5.7 Analytical vector addition.

Example 5.3 Given A=(5,2) and B = (-3, -5), express C=A+ B in terms of
(a) ordered pair notation, and (b) magnitude and direction.

Solution: (a) Adding separately the x- and y-components of the two vectors we
find that

C=(5-3L[12-5D=(2, —3).
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(b) We then find that the magnitude of C is given by
ICl=V22+(-32)=V13=36

and the direction, is given by

2
(=) =563°
cos (3.6)

but, this time below the x-axis. (Draw a sketch to make sure you see why.)

This procedure can clearly be generalized to add together any number of vec-
tors that lie in the x—y plane. First find each of the vector’s components along the
x- and y-axes, separately add the x- and y-components algebraically, and then
finally combine the two remaining vectors using trigonometry. Table 5.1 summa-
rizes this procedure.

Table 5.1 Steps in Component Method of Vector Addition/Subtraction

1. Make a rough sketch of the vectors, if not given.

2. Find the x-, y- (and z-) components of each vector, if not given order pair notation.

3. Perform the algebraic +/—/or multiplication by a scalar separately to each component, finding
the x-, y- (and z-) components of the resultant.

4. If needed, combine the components of the resultant, using the Pythagorean theorem and
trigonometry, to find the magnitude and direction of the resultant.

Example 5.4 Given the three vectors:

A=(2,-3,1), B=(-5,0,2), and C=(0,4,1),find
a)A+B,b) C—A,and c) A+2B—C.

Solution: For each part we add the appropriate components of each vector
separately to find:

a) A+B=(2-5],-3,[1+2])=(-3,-3,3).
b) C—A=([0-2],[4+3][1—1])=(-270).
) A+2B—C=(2-2-5,,[B3—4,[1+2:2— 1) = (-8,—74)

Can you draw the vectors involved in this example? Can you find their
magnitudes?

2. KINEMATICS

With these properties of vectors and methods for vector addition, we are now in a
position to generalize our discussion of kinematics to two- (or three-) dimensional
motion. Start by identifying a reference point and establish a Cartesian coordinate
system with its origin at this point. It doesn’t matter where the origin is or how the
axes are oriented, although some choices may make life simpler than others. We
come back to how to choose smart systems in a moment. The rigidly translating
object whose motion we wish to describe has a position vector 7 with tail at the
origin and head at the point (x, y, z). Thus, we can write r = (x,y, z). As the
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object moves x, y, and z change in time. The velocity of the object is another vector:
V= (vx,vy, v_). The components of v and the components of 7 are related just as in the
one-dimensional case:

B Ax 5 Ay I Az
v, = lim—, v, = lim—, v, = lim—.
Y A0 AL Y A0 At © A-0AT

Similarly, the object may be accelerating. Acceleration is yet another vector:
a = (a,a,a,). The components of acceleration and the components of velocity are
related analogously to the one-dimensional case:

Av AV}, sz
a, = lim—, a, = lim—, a = lim—.
A0 At Yo A0 At A0 At

When the object we are interested in is confined to move along a line, position, veloc-
ity, and acceleration are all along the same line. When the object is free to move in
space, position, velocity, and acceleration can all point in different directions. This
fact makes dealing with two- or three-dimensional motion more subtle. But, the pre-
ceding equations point out a very useful simplification: the x- (respectively, y-, z-)
component of velocity only changes due to the x- (respectively, y-, z-) component of
acceleration, and the x- (respectively, y-, z-) component of position only changes due
to the x- (respectively, y-, z-) component of velocity.

SPECIAL CASE |: CONSTANT FORCE—FREE-FALL—
PROJECTILE MOTION

In Chapter 3 we discussed the motion of an object in free-fall near the Earth where the
motion was purely vertical. Such motion results when the initial velocity of the object
has no horizontal component. Gravity is a purely vertical force resulting in a constant
vertical acceleration; as we just argued, a vertical acceleration can only produce changes
in the vertical component of velocity. So if there is no horizontal motion to start with,
gravity can’t produce any. But suppose the object is moving with some initial horizon-
tal component of velocity; what does gravity do then? It can only change the vertical
component of velocity, so the horizontal component remains unchanged during the
object’s flight. This result may surprise you: the horizontal and vertical components of
an object’s motion while it is in free-fall are completely independent of each other. Thus,
for example, if an object is dropped from rest at a certain height off the ground at the
same instant a second object is thrown from the same place with a large horizontally
directed velocity, the two will strike the ground at exactly the same time! Both of these
objects leave their starting point with zero vertical velocities. The time an object is
in free-fall depends only on the vertical distance it has to travel and its initial vertical
velocity, and because of how they start out (both start at the same point with no vertical
velocity), both of these objects travel the same vertical distance in the same time.

Because the acceleration due to gravity is vertical and because the horizontal
component of velocity in a free-fall situation cannot change, it is smart to orient our
coordinate system as follows: one axis vertical (that will cause the acceleration to
have a single component, along this vertical axis) and one axis in the direction of the
horizontal component of velocity (that will cause the velocity and position vectors to
have only two components, one vertical and one along this horizontal axis). It is usual
to call the horizontal axis x and the vertical axis y (with up as positive). The z-axis is
irrelevant; free-fall motion is at most two-dimensional.

In this coordinate system, the acceleration is the constant vector a = (0, —g). We
can use the results tabulated in Table 3.1 to fill in how the velocity and position vec-
tors vary in time, because a, = 0 and a, = —g, both constant. Just replace x by y for
the vertical component of motion. We find that under free-fall v = Vo [VOy — gt])
and 7 = ([xo + vo, 71, [yg + vg, £ — 182 1).
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Example 5.5 A cat running initially horizontally with a speed of 1.6 m/s runs
horizontally right off a table 0.80 m high. Find (a) how long the cat is in the air,
(b) how far it travels horizontally before it lands, and (c) its velocity just before
hitting the ground.

Solution: The cat’s motion is two-dimensional with the only acceleration due to
gravity once it leaves the table. We take our coordinate axes to point in the usual

way with the origin at the point the cat leaves the table. The vertical, or y, motion
can be described by

—0+0— g
y 5 8%

because the cat leaves from the origin and has no initial y-velocity. Substituting
y = —0.80 m we find the time the cat is in the air is

\/ \/2 0.80 m
=04 s.
9.8 m/s2

During this time the cat’s horizontal velocity remains constant (we neglect air
resistance), so that the cat has traveled a horizontal distance given by

x =y, t=16m/s (0.45s)=0.64 m.
To find the velocity of the cat as it is about to land, we need first to find its
y-velocity just as it hits the ground, since we already know the x-velocity has
remained constant. We find that because the initial y-velocity is zero,
v, = —gt= 98 m/s?-0.4s = —3.9 m/s.
The cat’s velocity just before hitting the ground can then be expressed as either

v = (1.6, —-3.9) (m/s)

or by
1.6
=V162+392=42m/s at 6= cos_1<42> = 68°,

where the angle is measured below the horizontal.

Example 5.6 A football is kicked with a speed of 40 m/s at an angle of 40° above
the ground. Find (a) its velocity after 1 s, (b) the maximum height it reaches and
its speed at that point, (c) the time for it to hit the ground.

Solution: We take the origin on the ground at the point the ball is kicked. (a) The
initial velocity of the football has both horizontal ((40 m/s)cos(40°) = 30.6 m/s)
and vertical ((40 m/s)sin(40°) = 25.7 m/s) components. Because there is only a

(Continued)
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FIGURE 5.8 A particle, shown
at two different times, traveling
in a circle.
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vertical acceleration, the horizontal component remains constant and the vertical
component is governed by

vy, = Vo, — 8.

Therefore, after 1 s the y-component of velocity is vy, = 25.7 m/s —9.8 m/s? (1 s) =
+15.9 m/s. We can then write the football’s velocity at 1 s as v = (30.6, 15.9) m/s.

(b) What characterizes the position of maximum height is that the y-velocity
is instantaneously zero. We can solve for this height most simply by using the
equation

22
vy = Viy 28y,

(that’s Equation (3) of Table 3.1 with y substituted for x), then setting v, to be
zero and solving for the maximum height y .,

12

Oy
Ve = g = 33.7m.

An alternative method is to first find the time to reach this position (using
v, =V, 8= 0), and then substitute this time into the equation for y (just
below). Try it. At this position the football has only a horizontal velocity, the
same as its initial horizontal velocity of 30.6 m/s.

(c) To find the time the football was in the air, we can take the equation for y

— 1 2
y_v()yt_ggts

and set y = 0 to solve for the times when the football is on the ground. As in our

previous free-fall examples, there 2are two times when the ball is at y = 0:
Yo
t = 0 (when it started out) and 7 = ?y =52s.

SPECIAL CASE II: UNIFORM CIRCULAR MOTION

The special case of circular motion deserves our consideration because of the many
important instances of such motion. Figure 5.8 shows a particle executing circular
motion. (It is useful to put a reference point at the center of the circle and reckon all posi-
tions relative to it.) Velocity is a vector and vectors have both magnitude and direction.
In circular motion the direction of the velocity vector (always tangent to the circle about
which the particle travels) is constantly changing. Thus, even if the magnitude of the
velocity remains constant (the case of so-called uniform circular motion), there must be
a nonzero acceleration, because acceleration is the time rate of change of velocity.

What is the nature of this acceleration? We consider here the case of uniform cir-
cular motion where the speed of the particle traversing the circle remains constant.
(See Figure 5.9, with the magnitudes

|V1| = |V2| =v)
We examine the particle at two instants of time separated by the interval Ar = t, — 1,.

In that time interval the particle has traveled a distance equal to vAr along the circle
and has traveled through an angle 6.
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In the same time interval, the particle’s velocity vector, while maintaining
a constant length, has also rotated through the same angle 6. (Do you see why?
Hint: the velocity vectors are rigidly attached at right angles to their respective
position vectors.). The triangle formed from v, and v, and their difference Av
and the one formed from the two position vectors 7, and 7, and the corre-
sponding displacement vector A7 are similar, as seen in Figure 5.9. (Both are
isosceles and both have the same included angle 6.) Because these triangles are
similar, we can write

[Av]  |Ar]

T

)

or, since the magnitude of the velocity is v and the magnitude of the position vector
is r,

|Av] = 2|A7].
r

Now, divide both sides of the latter equation by Ar and take the limit as Ar goes
to zero. The left-hand side becomes the magnitude of the acceleration vector at any
instant. The quantity

|A7|/At

on the right-hand side approaches the magnitude of the velocity vector at any instant;
that is, it approaches the value v. Figure 5.9 suggests that as 6 becomes smaller and
smaller (as At approaches zero), the acceleration vector points more and more in
toward the center of the circle, perpendicular to the velocity vector, which is always
tangent to the circle. This acceleration is called centripetal (from a Greek word
meaning “center-seeking”) and we can express its magnitude as

: [AV] 2
Aeent = hmAPOT = 7 (51)

Because the centripetal acceleration lies along the radius of the circle at any point
it is sometimes referred to as the radial acceleration. As the particle travels around
the circle at constant speed, it carries with it a velocity vector pointing tangent to the
circle and an acceleration vector pointing radially inward. The velocity vector always
has the same magnitude (in uniform circular motion) but its direction is constantly
changing; the same is true for the centripetal acceleration. Because the acceleration
direction is changing all the time, circular motion is not an example of constant accel-
eration, and the particle’s position at any instant cannot be obtained by using kine-

matic equations for constant acceleration such as those found in Table 3.1.

Example 5.7 A protein molecule is spinning in an ultracentrifuge at 80,000 rpm
at a fixed distance of 5 cm from the axis of rotation. Find the centripetal accel-
eration it experiences and express it in terms of a number of gs.

Solution: The protein travels in a circular trajectory of radius » = 0.05 m so that
its velocity is

rev 1lmin 27r
yv=8 X 104 —- c—— =420 m/s.
min 60s rev

(Continued)
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Then, from Equation (5.1), the centripetal acceleration of the protein is

2

Goen = = 3.5 X 109 /2.

This acceleration is 3.5 X 109/9.8 =360,000 times that of gravity, which we
call “360,000 gs.”

3. DYNAMICS

With the aid of vector analysis it is straightforward to generalize Newton’s laws of
motion and the ideas of work and energy to more complex situations in two or three
dimensions. In this section we first show how vector equations make this generalization
formally transparent, and then develop some problem-solving strategies to help in apply-
ing these ideas to understand a large variety of problems involving the translational
motion of objects.

Newton’s first and third laws require no further modification in leaping from one
to two or three dimensions. The first law singles out a special single direction because

PROBLEM-SOLVING STRATEGY

1

106

. The first step is to make a rough sketch

of the problem, if there is not already
one supplied as part of the problem,
and to identify the object(s) whose
motion is to be studied, if that is not
clear.

. The second step is to identify all the

forces acting on the object (and only
on that object) by constructing a care-
fully labeled external force diagram
(such a diagram is sometimes known
as a free-body diagram), a crucial step
in solving the problem.

. From the external force diagram, with

a set of chosen coordinate axes, the
next step is to write down the equa-
tions of motion, the component
Newton’s second law equations, being
very careful to use appropriate label-
ing and to write down the x- and
y-components in separate equations.
Once the equations of motion are
obtained, solve for the unknowns of the
problem, by performing the required
algebra.

Whenever possible, check your results
in limiting cases or in simplified
circumstances.

objects traveling at constant velocity do so along a fixed direction.
Similarly, the third law tells us that if an object exerts a force on a second
object, this second object reciprocates with an equal but opposite reaction
force acting back on the first object; these pairs of action—reaction forces
are necessarily co-linear and in that sense the third law is a one-dimen-
sional statement. We show below how the third law can be applied in
studying the motion of various objects in more than one dimension.

Newton’s second law, the key equation that relates the interactions
acting on a body to the consequent motion, is a vector equation stating that
the net vector force acting on an object divided by the mass of the object
(a scalar) is equal to the vector acceleration:

Back in Chapter 2 when we introduced Newton’s second law in one
dimension (see Equation (2.9)), we anticipated this section by writing it
in vector form even though vector algebra was not needed. Now that we
understand how to combine vectors, we can simply add all the external
forces acting on a body to obtain the vector resultant or net force.
According to Newton’s second law this net force divided by the mass of
the object is equal to the vector acceleration that the object experiences.
Let’s see how to apply these ideas to a first example.

Example 5.8 Let’s return to the father and daughter ice skaters of
Example 2.7. Suppose that the father skates backwards and holds his
daughter’s arms up at a 30° angle. Find the girl’s acceleration, ignor-
ing whatever friction there might be between her skates and the ice,
if the man pulls with a force of 30 N.
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Solution: We start with a diagram for the girl.

Force of man on girl, Fp

Force of ice on girl, Fy

Force of gravity on girl, Fw

v

FIGURE 5.10 Sketch for Example 5.8.

There are three forces acting on the girl. In addition to her weight (the force
of the gravitational pull of the Earth), there is the vertical force from the ice in
contact with her skates, and there is the pull of her father on her directed upward at
an angle of 30° with respect to the horizontal. To find the acceleration of the girl
requires adding all forces on her as vectors. Each of the forces shown above has a
vertical component and the man also exerts a force with a horizontal component. To
add the vectors we can first add the vector components separately in the vertical and
horizontal directions (with the proper signs included!).

We know that because the child glides in steady contact with the ice, she
experiences no acceleration in the vertical direction and so the net force on her
in the vertical direction must be zero. Adding together all components of force
in the vertical direction (we take up to be positive, down negative) leads to

Fy+ Fpsin30 — F, = 0.

This equation is not needed to solve for the acceleration of the child, which
is in the horizontal direction only, but it might be a useful part of a full analy-
sis of the problem. For example, we can solve for the upward force exerted on
the girl by the ice if we wanted to:

Fy, = mg — Fpsin 30 = 40 kg - 9.8 m/s> — 30 N+ 0.5 = 377 N.

Clearly this force is reduced from the force the ice would have exerted in the
absence of the father’s upward pull Fp,, which would have exactly equaled the
child’s weight. The father, in this case, is helping the ice support the girl’s weight.
So here’s a question. Can the father actually lift the girl off the ice by applying a
sufficiently large force at the same 30° angle? (Answer: Yes, but only if

mg
F =
P sin 30

= 2mg = 784 N.

Do you see why? That would be a pretty strong father, because 784 N is 176
pounds!)

Back to the original question. In the horizontal direction there is only one
component of force on the girl, the horizontal component of her father’s pull:
Fp, cos 30. According to Newton’s second law, we have

Fp cos 30
a=—"—"",
m

so that after substituting numbers for F, and m, we find that a = 0.65 m/s?
pointing to the left.
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Having completed our first multidimensional problem we note that there is a def-

inite strategy in solving problems of this type and an awareness of the steps involved
can be a great help in approaching new problems.

We conclude this section with three example problems (see box on page 106).

Example 5.9 A piano of mass 100 kg slides down a smooth (frictionless) ramp
5 m long inclined 15° with the horizontal. If the piano starts from rest, what is its
speed at the bottom of the ramp?

Solution: We start with a rough sketch of the situation and an external force diagram.

PN
N
FW
l:net
FW

FIGURE 5.11 Sketch, external force diagram, and
net force acting.

Only two forces act on the piano, gravity and the upward normal force
of the ramp. Because the piano stays on the ramp, there is no motion (in par-
ticular, no acceleration) perpendicular to the ramp and so the net force per-
pendicular to the ramp must be zero. Thus the normal force must exactly
cancel the component of the weight perpendicular to the ramp. The acute
angle between the normal and the weight is the same as the ramp’s angle of
inclination (you should prove this), therefore we can write that

Fy=F, cos b,
where 0 is 15°. The remaining component of the weight is the only unbalanced

force and it produces a net acceleration down the ramp according to Newton’s
second law

B F,, sin 0
m m

Because F|,, = mg, we have that the piano’s acceleration down the ramp is

a = gsinf = 9.8 sin 15 = 2.54 m/s2.
The form of this result should make sense because if 8 = 0, there is no acceleration
and if 6 = 90°, we have free-fall. To find the velocity of the piano at the bottom of
the ramp, assuming it starts from rest, we use the one-dimensional kinematic equa-
tion relating velocity, acceleration, and distance (Table 3.1) to find

V2 = 2ax,

so that the velocity after traveling 5 m down the ramp is v = V 2ax =

V2:254-5 =5.0m/s.
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Example 5.10 Two crates of 30 kg and 20 kg mass are connected by a light
(massless) rope while being pulled along a smooth (frictionless) floor by a hor-
izontal force of 40 N applied to the heavier crate. Find the acceleration of each
crate and the tension in the rope.

Solution: As usual, we begin by making a rough sketch and external force diagrams

for each separate component of the system that has mass. The rope, having negli-
gible mass, is not considered as an object, but simply as a means to transmit force.

N R "N, Fr,
I—’FT FT,;‘_I"FP

FIGURE 5.12 Sketch and external force diagram for Example 5.10.

The motion is one-dimensional and we really only need concern ourselves with
writing Newton’s second law for motion along the floor. We first note that
Fand F, are, by Newton’s third law, equal in magnitude. Writing one equation
for each crate, we then have

Fp—F,=mya and F,=ma,

where m; = 20 kg and m, = 30 kg, and we have explicitly used the fact that the
two crates move together with the same acceleration as long as the rope is taut.
Eliminating the tension force, we have that

_ Fp 40N

= = = 0.8 m/s2.
m +m, 50kg ;

Finally, the tension can be found by substituting into either of the Newton’s
second law expressions above to find

F;=20kg-0.8 m/s =16 N.

Note that the net force on each block is different, being (Fp — F, = 40 — 16 =
24 N) on m, and 16 N on m,. Treated as one composite object, the two crates
have a total external force equal to the 40 N applied force and a total mass of
50 kg. The ratio of the net force to the total mass also gives the solution to this
problem for the acceleration of either block.

Example 5.11 In a recently developed cell motility assay, a single myosin pro-
tein molecule can be seen to move along an actin protein filament stuck to the
bottom of a petri dish. Actin and myosin are the major constituents of muscle and
myosin can be pictured as a small molecular motor that uses chemical energy to
produce mechanical force and subsequent motion. The force generated by a sin-
gle myosin molecule has been measured to be about 5 pN (I pN = 10712 N).
Idealize the situation to consider only the myosin molecule and the actin fila-
ment, ignoring the bathing fluid, and analyze the motion using Newton’s laws.
(Actually, to visualize the myosin molecule in a microscope, a ~1 pm radius
plastic sphere is first chemically attached.)

(Continued)
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FIGURE 5.14 A sled being pulled
along the ice by a force F. Only the
component of F along the ground
does any work as the sled moves
along.
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@ microsphere

R Actin filament  “Joo"

FIGURE 5.13 Schematic of an actin
filament and myosin molecule with plastic
sphere attached. The drawing is not to
scale; the microsphere is actually relatively
much larger than the myosin whose head
rotates to generate a force allowing it to
move along the actin filament.

Solution: We first need to compute the masses involved. If we assume that the
density of the sphere is close to that of water (p = 1000 kg/m3), we can

calculate the mass of the sphere to be m = p( 3773 | = 4 X 10715 kg (myosin’s

mass of 450 kD = [4.5 X 103][1.66 X 10727] = 7.5 X 10~ 22 kg is negligible
compared to this). The actin filament is stuck to the petri dish and does not
move. Given the force exerted by the myosin molecule on the actin, an equal
and opposite force propels the (myosin + sphere) along the actin with an accel-
eration given by:

F 5x10712
— - 3 i
Umyo = 0 = A 10-15 1.3 X 10° m/s=.

If myosin with its plastic sphere accelerated at the rate found, then in 1 ms
it should move a distance of about 0.5 mm (using x = %atz). Direct measure-
ments of the displacement show discrete steps of about 10 nm that occur in a
single clock cycle of ATP hydrolysis, roughly 1 ms. Clearly our idealized prob-
lem has omitted the interactions with the surrounding solvent. These forces
play a major role in determining the motion and account for the large
discrepancy in calculated displacement.

4. WORK AND ENERGY

Work and energy are scalar quantities; therefore, at first glance, you might guess that
in the “generalization theme” of this chapter to motion in more than one dimension
these quantities are unaffected. This is not quite the case because, for example, as we
saw in our one-dimensional analysis back in the previous chapter, work involves the
product of a force and a displacement, both of which are vector quantities them-
selves. In this section we learn the general definition of work and kinetic energy. With
these definitions, the work—energy theorem and conservation of energy law we
learned in the previous chapter need no modifications but allow us to study a much
broader array of multidimensional problems.

Let’s return to the example at the beginning of the previous chapter of a sled of
mass m being pulled along an icy (frictionless) surface by a constant force acting
along a rope. If the rope is held at an angle 6 above the horizontal (Figure 5.14),
then the tension can be written as the vector sum of the horizontal x- and vertical
y-components. The y-component of the tension, being vertical, cannot contribute to
the motion along the x-direction. Its effect is to reduce the normal force of the
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ground on the sled. Therefore, we need to modify our definition of the work done
by a constant force, W = FAx, in this more general case where the force is not
necessarily along the direction of motion, because only the x-component of the ten-
sion will produce an acceleration along the x-direction. A more general definition
of work, valid for all constant forces regardless of their direction, is

Wp=F, Ax, (constant force), (5.2)
or, in terms of the angle 6 between the applied force and the displacement,
Wy = FAxcos 6. (constant force). (5.3)

Generalizing this to the case when a variable force acts on an object we can write
that the work is given by

Wp = 2XAW = X[F cos 0],,.6x, (general definition), (5.4)

ave
where we have inserted cos 6 into Equation (4.5). If several forces act on an object
we simply add up the individual (scalar) contributions to the work, keeping track of
their sign.

We defined kinetic energy as KE = 1/2 mv? for motion along one dimension. In
more than one dimension there will be components of velocity along the different
coordinate axes directions and the kinetic energy remains as originally defined as
long as we remember that the square of the net velocity is given by v? = vf + 2
(+vz2) in two (or three) dimensions. The potential energy expressions we introduced
in the previous chapter also are unaffected by the jump to higher dimensions because
gravity and spring forces are basically one-dimensional, involving only vertical dis-
tances or the stretched distance along the spring axis, respectively.

In Section 5 of the previous chapter we introduced power as the rate at which
work is done and derived an expression for it in the one-dimensional case, P = Fv.
Because both force and velocity are vectors in two and three dimensions, we need to
see how to generalize this expression for power as well. We saw in Equation (5.2) that
for a constant force, it is only the component of force along the displacement that
contributes to the work done by that force. Since the velocity is in the same direction
as the displacement (from its definition as)

Ar
At’

{}':

the power generated by a force can be written as
P=F, (5.5)

where it is only the component of the force along the velocity that does any work.

Given these modifications of the definitions of work and kinetic energy, the
work—energy theorem and conservation of energy stand as presented in the previous
chapter. This section concludes with two examples.

Example 5.12 Let’s reanalyze Example 5.9 using energy ideas. Recall that a
piano of 100 kg mass is sliding down a frictionless ramp 5 m long inclined at
an angle of 15° starting from rest and the problem is to find its speed at the
bottom.

(Continued)
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Solution: In the example we found the velocity using Newton’s laws and kine-
matics equations. Let’s solve this problem in two ways using energy ideas: first
using the work—energy theorem and second using conservation of energy. First,
only the component of the weight acting down the inclined plane contributes to the
work; this component is given by mg sin 0 (see Figure 5.15) and acts over a dis-
tance of A/sin . Therefore, the work done by gravity is simply equal to the product

h
W = mg sin 6 () = mgh.

sin 6

mg

FIGURE 5.15 A: A block sliding down an inclined plane;
and B: the same block falling vertically.

Setting this work equal to the change in kinetic energy (initially zero) we have that
mgh = 1/2 mv?,
so that we find the speed at the bottom to be
v="V2gh=50m/s.

Second, using conservation of energy ideas, the piano starts from rest at height
h with a total initial energy given by

E; = mgh,

and ends up at the bottom of the ramp with only kinetic energy, because & = 0
at the bottom. Therefore, because total energy is conserved, we can write an
identical equation as several lines ago, that mgh = 1/2 my2, to find the same
numerical result for the speed as well.

Which method is easier? Since we know the form for the gravitational potential
energy (that it only depends on the height /) it was simpler to keep track of
the total constant energy. Note that if the piano were to fall vertically through
height A, the speed at the bottom would be the same (but of course the piano
would be so much the worse!). The work done by gravity is given by the product
of mg and h, and does not depend on the path taken by the object but simply on
its weight and overall height change. On the other hand, the ramp is useful to
steer the velocity of the piano.

Example 5.13 In a loop-the-loop roller coaster ride (Figure 5.16) the car of mass
m starts from rest at point A at a height H. The loop-the-loop has a height of H/3.
Assuming no friction, find: (a) the speed of the roller coaster car at point B at
the top of the loop-the-loop and (b) the speed of the car at point C.

Solution: (a) The initial mechanical energy of the roller coaster at point A is
completely gravitational potential energy mgH relative to a zero of potential
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FIGURE 5.16 A loop-the-loop roller coaster,
showing the car at the start and upside down
near the top of the loop.

energy at the bottom. Because we are assuming that there is no friction, mechan-
ical energy is conserved and the mechanical energy at point B must also be equal
to mgH. But the energy at point B is actually partly gravitational potential and
partly kinetic so that we can write

H 1 ,
EAngHZEBng§+5mv,

where we have used the fact that the roller coaster is at a height of H/3 at B and
has a velocity vg. Solving this equation for the speed at B, we find that

_ |2(mgh —Ymghy  |4gH
VB— m - 3 .

(b) At point C, there is no potential energy, so that the full initial mechanical
energy is transformed into kinetic energy and we have

1
E, =mgh= ECZEmVZC'

Solving this for Ve WE have that
Ve = \/2 gH,

an expression that should look somewhat familiar to you. This result tells us that
the speed of the roller coaster at C is the same as it would be if the car just fell
vertically through height H. Of course, the track has provided a softer “landing”
for the car and steered it so it is traveling horizontally instead of falling, but the
speed of the car is given by the free-fall result.

5. CONTACT FRICTIONAL FORCES

Up until now in our discussion of mechanics we have basically ignored one of the
most common forces of our everyday experience, friction. Only in our discussion of
the motion of an object in a fluid did we consider the resistive force of friction. In this
section we discuss the common frictional force acting between two solid objects in
contact with each other, as, for example, a book on a table surface. Only under certain
very unusual circumstances can these contact frictional forces be neglected, circum-
stances such as motion on a smooth ice surface or on a cushion of air. Usually contact
friction will be an important force and, in fact, friction is an essential force for most
types of motion. Without it we would not be able to walk, automobiles would not be
able to move, and even machinery would not be able to function (Figure 5.17).
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FIGURE 5.17 Friction is essential
to lots of activities, human and
otherwise.

FIGURE 5.18 Microscopic
irregularities on a smooth copper
surface. The stripes are about
1.5 nm apatrt.
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Imagine two solid objects sliding relative to each other, such as a block sliding
on a table surface. Friction is the contact force acting parallel to the surface of con-
tact (as contrasted with the normal force which is also a contact force but is directed
perpendicular to the contact surface). It is produced by electromagnetic interactions
between the molecules at the contacting surfaces of the two objects. On a micro-
scopic scale, these surfaces are rough and irregular (Figure 5.18). Molecules at
microscopic contact points bond together and as the block slides along the table these
bonds constantly are broken and reform, thus slowing the block. Such a frictional
force between moving objects is always in a direction to slow the motion and is called
sliding friction or kinetic friction. The frictional force on a block is directed opposite
to its velocity. It is found that although the frictional force depends on the nature of
the material surfaces, surprisingly, it does not depend on the contact area (to a good
approximation). The kinetic friction is proportional to the normal force Fy, and can
be written as

Fip = Wiy (3.6)

where w, is the coefficient of kinetic friction, which depends on the
two material surfaces. This is clearly not a vector equation because
F is parallel and F is perpendicular to the surface. Often a point
of confusion for the student, this equation should make sense in
terms of magnitudes because the larger Fy is, the more contact
between microscopically irregular surfaces and the greater the fric-
tional force. This equation is an empirical approximate one and the
coefficient of kinetic friction depends on the degree of smoothness
of the surfaces, as well as on whether they are wet or lubricated.
Clearly the relation is not a general law, but a useful approximate
relation that emphasizes the fact that only the normal force and the
nature of the materials are factors in determining the kinetic friction.
The area of contact does not enter the equation, so that in our exam-
ple of a block on a table, the block will experience the same fric-
tional force sliding on any of its surfaces, regardless of their size. We
are not able to calculate the kinetic friction from the fundamental
principles of electromagnetic interactions.

Example 5.14 Let’s again reconsider the problem of Example 5.9
in which a 100 kg piano slides down a ramp inclined at 15° with
the horizontal, but suppose now that we include friction. If the
coefficient of sliding friction is 0.2, find the acceleration of the
piano down the ramp and its velocity at the bottom after sliding
5 m from rest.
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Solution: Using the external force diagram, we
can write Newton’s second law for the two
orthogonal directions, along the ramp and per-
pendicular to it. We have that

Fwsine—karIma, lF':

FIGURE 5.19 External force
where a is the acceleration down the ramp and diagram for Example 5.14.

Fy—F, cos6=0.

In the second equation, the acceleration is zero because the piano only acceler-
ates along the ramp and not perpendicular to it. We also need the relation for the
kinetic friction force

F,(fer,kFN.

Solving for F, from the second equation to find F), = mg cosf = 100-9.8 -
cos 15 = 950 N we then find that F,= u, F), = 0.2-950 = 190 N.
Substitution into the first equation then a{lows us to solve for the acceleration

a = (mgsin6 — F; )/m = (100-9.8 -sin 15 — 190)/100 = 0.64 m/s?,

compared to the value of 2.54 m/s? found in the absence of friction in Example
5.9. Using this value for the acceleration, we can find the velocity of the piano
after sliding 5 m to the bottom of the ramp:

v="\V2ax=V2:064-5=25m/s

compared to the value of 5 m/s found in the absence of friction.

We can also solve for the velocity of the piano at the bottom of the ramp
using work—energy ideas. The total initial mechanical energy of the piano is
entirely gravitational potential energy at the top of the ramp and is given by
E; = mgh, where h = 5 sin 15 = 1.29 m. Similarly at the bottom of the ramp
the total final mechanical energy is kinetic energy given by Ef = 1/2 mv%. Now,
unlike the situation in the absence of friction for which mechanical energy is
conserved, in the presence of friction the initial mechanical energy is reduced
by the work of friction, which is negative, resulting in a decreased final
mechanical energy. The work done by friction is always negative because fric-
tional forces always act in a direction opposing the motion and therefore are
directed opposite to the displacement. The work of friction is found from
Wfr = —I;{/x = —pwlyx = .—Q.2(950)(5) = —950 J. Our energy equation is
given by = Ef — E;. This is the work—kinetic energy theorem, where each
mechanical energy term on the right is given by the sum of the kinetic and
potential energies at one time of the problem. In our case we have that —950J =
1/2 mv?> — mgh, and substituting in for the mass and height of the ramp we can
solve for the final velocity of the piano at the bottom of the ramp, obtaining the
same value as above.
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When two objects are in contact, but at rest with respect to each other, there are
also molecular bonds that form between contact points. Just sitting at rest does not
result in any net force along a direction parallel to the contact surface; if there were,
this force would spontaneously make the object accelerate. But if we try to push a
block with a force directed along the table surface, the molecular bonds supply a fric-
tional force in the opposite direction, opposing the impending motion. This type of
friction is called static friction and arises in response to an applied force that would
otherwise result in motion. As long as there is no motion, the static friction force is
always as large as it has to be to cause a net balance of all forces on the block.

Imagine applying a force to our block on the table, starting with a small force and
increasing its strength gradually. Until the molecular bonds are ruptured to allow motion,
the static friction is exactly equal and opposite to the applied force and there is no motion.
Once a threshold applied force is exceeded, the bonds then rupture and motion occurs. It
is found that this maximum static friction force depends solely on the nature of the two
surface materials and the normal force but not on the surface area, and is given by

F

sfr, max My

F,, (5.7)

where u is the coefficient of static friction. Although this equation looks very simi-
lar to Equation (5.6), you need to keep the differences clearly in mind. This equation
is for the maximum static friction force and holds only for impending motion. In gen-
eral, the static friction force will be less than, or at most equal to u Fy:

Fy = p, Fy. (5.8)

Note again that these equations are not vector equations, but simply relations between
magnitudes of forces, because the frictional forces are parallel to the contact surfaces,
whereas the normal forces are perpendicular to those same surfaces. It is almost
always the case that ug is greater than w,, a fact that agrees with our experience: it is
easier to keep a heavy crate moving than it is to start its motion. Table 5.2 gives some
values for coefficients of friction.

Table 5.2 Static and Kinetic Coefficients of Friction

Object and Surface T e
Steel on steel (dry) 0.7 0.6
Steel on ice 0.03 0.02
Metal on metal (lubricated) 0.15 0.07
Rubber on concrete (dry) 1.0 0.9
Human joints (lubricated

with synovial fluid) 0.005 0.005

“Values are approximate and vary greatly with the surface
conditions.

Example 5.15 Two identical blocks of 20 kg mass are attached by a light cord
going over a frictionless pulley at the edge of a tabletop with one block on the
tabletop whereas the other is free to fall vertically as shown in Figure 5.20. The
coefficients of static and kinetic friction between the table and the one block are
0.6 and 0.4, respectively. Analyze the motion to decide if the blocks move and,
if so, find their acceleration to the left or right and the tension in the cord.

Solution: The external force diagrams for the two blocks are first drawn in
Figure 5.20, being careful to label them appropriately.
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FIGURE 5.20 Sketch and external force diagrams for
Example 5.15.

From the diagram we can write down the set of Newton’s second law equations
governing the motion:

Fy—F, =0

2]

for the vertical forces on the block on the table because there is no vertical accel-
eration for block 1, and assuming for the moment that there is motion,

T—karzmla and FW2—T=m2a

for the forces along the direction of motion for each block. Implicit in these last
two equations is the fact that if motion occurs, the block on the table will move
to the right, the rope will remain taut, and the tension force acting on each block
is the same. To see whether the block on the table in fact moves, we need to find
the maximum static friction force acting to the left and compare it to the net
force pulling the block to the right when there is no motion; this force is just
equal to the hanging weight m,g. That the tension force in the rope equals the
weight of the hanging block when no motion occurs follows from the last equa-
tion above with a = 0. Using the first equation for the normal force, we can find
that the maximum static friction force, given by uFy, is equal to

str, max MM 8 = 120 N.

Comparing this with the much larger value of m,g = 196 N implies that the block
must move to the right; the maximum static friction is not enough to cancel the
pull of the tension force to the right. Because the blocks do move, the appropri-
ate frictional force is due to sliding friction. Returning to our equations and elim-
inating the tension from the two F' = ma equations (this can be done most easily
by separately adding the left- and right-hand sides of the equations), we have that

m,g — kar = (m; + m,)a.
Substituting wu, Fy for the friction force, we find that
myg — ,u,kFN1 = (m; + m,)a

Finally, substituting m g for the normal force, and solving for a, we find

(Continued)
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FIGURE 5.21 A car going around
a turn has a centripetal force F
supplied by the tires.
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a_ng_l-‘vkm1g
my + m,

= 2.9 m/s2.

We can find the tension in the cord by substituting this result for a into either of
the F = ma equations that have the tension force in them, resulting in a value of
T =140 N.

We intuitively believe that as the two surfaces in contact with each other are
made smoother, the frictional force between them should decrease, and this is often
the case. However, as two surfaces are made ultrasmooth, so that, even on a micro-
scopic scale a substantial portion of the surfaces are in close contact, the frictional
forces dramatically increase. This is due to the large increase in molecular bonds, or
microwelds, that then form. At a microscopic level, computing the strength of the
forces between surfaces is a formidable problem.

6. CIRCULAR MOTION DYNAMICS

Recall from earlier in this chapter that a particle traveling in a circle at constant speed
has an acceleration directed toward the center of the circle, known as the centripetal
acceleration. In order for a particle to travel in uniform circular motion a net force must
be applied to it in the direction of the centripetal acceleration. This force, known as the
centripetal force, might be supplied, for example, by a tension force due to a cord
attached to the particle that is being swung in a circular trajectory. In the case of a car
traveling along a circular exit ramp of a highway, the centripetal force is supplied by
friction between the tires and the road (Figure 5.21). The term centripetal force is used
for the net “center-directed” force, regardless of its origin, and is not a new type of
force. An object traveling in uniform circular motion satisfies Newton’s second law, but
with an acceleration that is specifically equal to the centripetal acceleration

2
me (5.9)

F_ .= ma
et r

n cent

In uniform circular motion the net force must point toward the center of the cir-
cle. The key to analyzing uniform circular motion is to draw a careful external force
diagram and to substitute the net inward radial force into Equation (5.9). Two exam-

ples should help to illustrate this method.

Example 5.16 A Ferris wheel of radius 20 m is rotating at 1.5 revolutions per
minute. Find the forces exerted on an 80 kg man by his seat when he is at the top
or at the bottom of the wheel as it rotates.

Solution: When he is at the top or bottom of his motion, the only two forces that
act on the man are gravity and the upward push of the seat, as shown in the exter-
nal force diagrams in Figure 5.22.

According to Newton’s second law, at the top of the Ferris wheel we must have
that

V2
FW— N=ma=m7
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FIGURE 5.22 Ferris wheel and external force
diagram of man at top and bottom points of the
circular path.

where v and r are the velocity and radius of the circular Ferris wheel, and m
is the man’s mass. Because 1.5 rpm, for a 20 m radius wheel, gives a linear
velocity of

1.5 27r
60 s

% = 3.1 m/s

we can solve for the normal force to find

B v\ 312\
Fy=m g—7 = 80- 9.8—70 = 746 N.

At the bottom of the Ferris wheel, the external force diagram looks the same, but
the normal force must be larger than the man’s weight, because it must produce
a net force in toward the center of the wheel. In this case, we write that

Fy—F,= m7,

so that at the bottom, the normal force is given by

F, = ( +vz>—80-<98+3'12>—822N
n=ml g+ . 20 .

The seat in which the man sits must supply this variable force in order to keep
him orbiting in circular motion. At other points along the circular trajectory, the
seat must supply the necessary centripetal force at an appropriate angle to the
vertical. For example, at the two points along the axle height, the seat must
supply the entire horizontal centripetal force as well as a vertical force to bal-
ance the man’s weight as indicated in the sketch below.
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Example 5.17 A car travels at constant speed around a circular highway exit
ramp with a 200 m radius banked at a 3° angle. The roadway is sloped (see
Figure 5.23a) so that when a car travels at a particular speed, the horizontal
component of the normal is sufficient to provide the needed centripetal accel-
eration without any friction. What is the speed for which the exit ramp is
designed?

=

& »
< >

r

FIGURE 5.23A Car on a banked
circular highway exit ramp of radius r.

Solution: The external force diagram for the car is complicated with five forces
acting on the car (Figure 5.23b). In addition to its weight and the normal force
there are frictional forces in two directions as well as a power driving force pro-
pelling the car forward. The forward propulsion force balances the rear frictional
force (Fy,) so that the car travels at a constant speed.

x Fpo

Fi1

Fw

FIGURE 5.23B External force diagram of a car on a banked
roadway.

In terms of the centripetal force needed to keep the car in its circular path, only
the horizontal components of both the normal force and the sideways directed
frictional force contribute. The banked road is designed so that a car traveling at
the designated speed needs no sideways directed friction to travel the exit ramp.
At that speed (and only that speed) the frictional force F,; can be set equal to
zero and we have that the horizontal component of the normal is equal to the
centripetal force

el
Fysin 3° = m—.
r

The normal force has a vertical component just equal to the weight of the car, or
Fycos 3° = mg.

Eliminating the normal force from these two equations, we find that

2

v
tan 3° = —,
rg
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so that the speed for which the road was designed is given by
v="Vrgtan3° = 10.1 m/s2 or 23 mph.

Cars going around the exit ramp at higher speeds (needing greater centripetal
acceleration) must have a frictional force whose inward horizontal component
also contributes to the centripetal force needed to keep the car in its circular path
or the car will veer outward. Similarly, cars traveling at a slower speed will need
a frictional force directed radially outward to reduce the total centripetal force to
the corresponding value of mv?/r or the car will veer radially inward off the cir-
cular roadbed.

There is often some confusion about whether an object traveling in a circle has a
force on it that is directed radially outward, often termed a “centrifugal force.” This
“force” seems to arise naturally from our experience. Clothes spinning in a clothes
dryer fly outward against the drum; we “feel” an outward force on us as we sit in a
car that makes a sharp inward turn; as we ride a roller coaster “around the world” we
feel squashed down in our seats. These “centrifugal forces” are not caused by a real
push or pull; they are not real forces. They are caused by trying to understand or by
experiencing nature from an accelerating, or noninertial, frame of reference.

In reality, when sitting in a moving car, we tend to keep going in a straight line
unless we are pulled to travel with the accelerating car as it makes a turn. An object
dropped out the car window as the car makes a sharp turn will not fly radially out-
ward as if it had a “centrifugal force” on it, but will move along a tangent to the ini-
tial path of the car, in accord with Newton’s first law. Once dropped out of the
window, there are no longer any horizontal forces acting and the object will maintain
a constant horizontal velocity, disregarding any air friction, while accelerating
(falling) vertically to the ground. Our bodies also follow Newton’s laws and need a
force to make them turn with the car. This force is supplied by a friction force
between the seat and our bodies to keep us moving with the car as it turns; we seem
to “feel” an outward directed force only because our body must supply the force
needed to keep our upper torso sitting upright as the seat pulls us along with the car
as it turns.

If a particle is traveling in a circle but also changing its speed then, in addition
to a real centripetal acceleration, there will be an acceleration directed tangentially,
along the velocity vector. In this case of nonuniform circular motion, the two com-
ponents of acceleration, centripetal and tangential, vary as the particle moves along
the circle (Figure 5.24). The centripetal acceleration is always directed toward the
center of the circle and equal to v?*/r, but now also varies in magnitude as
v changes. A nonzero tangential acceleration as a result of a tangentially applied
force will result in a varying speed of the particle, and a consequently varying cen-
tripetal force.

Example 5.18 Consider a car exiting a highway on a circular 3° banked exit
ramp (Figure 5.25). If the car enters the ramp at 65 mph and slows to 35 mph at
the end of the quarter-circular 200 m radius ramp with a constant deceleration,

find the magnitude of the net acceleration of the car at the beginning and end of FIGURE 5.24 An object in nonuni-
the ramp. form circular motion. As the speed
. increases due to a tangential accel-
(Continued) eration, so does the centripetal
acceleration.
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FIGURE 5.26 A side view of a
horizontal centrifuge tube showing
a sedimenting molecule with a net
inward force acting on it.
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Ay Solution: First, we find the constant tangential
‘—';’};‘ acceleration of the car. Using the one-dimensional

“ang kinematics equation when the acceleration is con-

FIGURE 5.25 The stant, v = v3 + 2ax with x = 777/2 corresponding to
components of accelera-  ,ne_quarter of a circle, and converting the velocities

tion of a decelerating car _
traveling along a banked to m/s (1 mph = 0.447 m/s), we have

roadway, with velocity

opposite in direction V2 — V%
to a,,,, both oriented a=———= —0.96 m/s2
perpendicular to the page. 2x

where the negative sign indicates a deceleration. Although this tangential accel-
eration is constant on the ramp, the centripetal acceleration varies as the speed
varies, from

2
T=42m

acent =

at65mphtoa, =12 m/s? at 35 mph. Therefore, combining these two orthog-
onal accelerations using the Pythagorean theorem, we find the net acceleration

at each location: a,., = Va2, + atzang = 4.3 m/s? at the start and 1.5 m/s? at
the end of the ramp.

7. CENTRIFUGATION

Sedimentation refers to the process by which particles in a fluid settle to the bot-
tom under the influence of gravity. Microscopic particles or macromolecules that
normally remain in suspension due to thermal collisions with solvent molecules
can be made to sediment under the influence of additional external forces. A num-
ber of types of external forces have been used to speed up sedimentation, including
electrical and magnetic forces. Here we discuss the most common method used,
centrifugation, to artificially increase gravity in order to sediment suspended
objects.

Let us imagine a centrifuge tube, containing a solution of proteins, spinning
about a vertical axis in a centrifuge (Figure 5.26).

The path of a protein is basically circular as the centrifuge tube spins, with a
very small drift velocity v, outward (or radial) toward the bottom of the tube. The
protein does not fall vertically because of its microscopic size and the collisional
forces from the solvent that keep it suspended. If we analyze the horizontal forces
acting on the protein, treating it as a particle, there are two forces that provide the
net centripetal force required to produce circular motion. These are the buoyant
and frictional forces acting in response to the protein’s slow drift velocity. The
frictional force has a magnitude F, = fv, taken from Equation (3.6), and acts in the
direction opposite to the drift velocity or toward the center of the (nearly) circular
trajectory. Arising from the increasing pressure in the solvent with increasing
depth in the tube, the buoyant force also points toward the center of the circle.
This pressure variation is due to the fluid deeper in the tube (closer to the tube bot-
tom) having to support the fluid farther out near the top of the tube and maintain
its circular motion. At any instant the fluid near the bottom of the tube, if not con-
strained by the tube would fly off tangentially. The tube bottom is being driven
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against the fluid to provide the centripetal force to steer it around in a
circle, just as in a clothes dryer the walls push the clothes radially
inward to keep them traveling around in a circular path within the
dryer. Fluid farther up the tube is given its centripetal force by the
fluid nearer the bottom of the tube. We show in Chapter 8 that this
pressure variation gives rise to a buoyant force.

Newton’s second law in the radial direction is then

v, + Fp=ma (5.10)

cent’
where the buoyant force is, as we study in more detail in Chapter 8, equal
to the effective weight of the displaced fluid. In this case the weight of
the displaced fluid is not due to an acceleration g downward, but rather
to a.., directed outward along the centrifuge tube, so that F B = My
with m equal to the mass of the displaced water. Remember that v, is
the speed of the protein as it moves radially outward along the length of
the tube. Substituting the expression for the buoyant force and solving
for the ratio of the protein sedimentation velocity to its acceleration,
known as the sedimentation coefficient s, we find

r

acent f

v _(m—mo)

(5.11)

s =

The sedimentation coefficient has units of seconds, from the ratio
of a velocity to an acceleration, but because typical values are on the
order of 10713 s, we define the Svedberg (S), with 1 S = 10713 s, and
use it as a fundamental unit for sedimentation coefficients. Table 5.3
lists some sedimentation coefficients of biological materials, together
with the times required to sediment them at various accelerations mea-
sured in multiples of g. Sedimentation coefficients are seen to depend
on the particle mass, frictional properties and also the fluid density
(through the term m)), and are often used to characterize macromole-
cules; indeed many are named simply by their sedimentation coeffi-
cients such as the 30 S and 50 S ribosomes.

Today’s ultracentrifuges routinely attain rotational speeds of over
75,000 rpm, representing accelerations of several million g’s. Spinning

How is the sedimentation coefficient deter-
mined experimentally?
From the definition of s we can write,

v, =dridt =sa

cent”
Now,

12

aoe =
cent r

where v means the speed of the protein as it
orbits around its circular path (and not the
radial drift speed). We can write

2mr
V==
T

where T is the time to complete one revolu-
tion. Thus, dr/r = sw?dt, where w = 27/T,
which can be integrated from r,, (at time 7))
to r (at time ¢) to yield

In[r(n] = In[ry(t)] + ws(t — 1,).

This equation is the basis for determining
the sedimentation coefficient from a series
of measurements of the boundary between
the solution and the pure solvent, r(¢), as it
moves down the centrifuge tube. A plot of
In[r(#)] as a function of (¢ — ¢,) should be
a straight line with a slope of w?’s, and
because w is known s can be found.

solutions at these speeds allows the “pelleting” of even soluble proteins at the bottom
of the centrifuge tube after hours of spinning. Every laboratory that studies biomole-
cules or cells is equipped with centrifuges for the preparation, and often for the char-
acterization, of materials. Figure 5.27 shows a typical ultracentrifuge and a “rotor”
that is used to hold the sample tubes. The figure also shows the results of an accident
in which the extremely high energies involved in spinning the rotor at high speeds led

to the destruction of a centrifuge.

TABLE 5.3 Typical Sedimentation Coefficients, Accelerations, and Corresponding

Approximate Times Needed to Spin Down a Sample in a Centrifuge Tube

Sample Sed. Coeff (S) No. gs to Pellet Time to Pellet
Whole cells 109 100 10 min
Cell nuclei 10° 700 10 min
Mitochondria 104 7000 10 min
Ribosomes 30,50 S 100,000 2h

Soluble proteins 1 -5 (globular) 500,000 hours

5 =20 (elongated)

CENTRIFUGATION
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remains after accident in which a rotor exploded while spinning.

CHAPTER SUMMARY
This chapter generalizes our description and analysis of
motion to more than one spatial dimension. The kine-
matical equations of Table 3.1 are generalized in a
straightforward way using vector analysis, so that, for
example, for free-fall along the vertical y-direction:

a=(0,-yg),

V= (Vors [V()y — g,

- 1
and 7 = ([xo + vo, 1], [V + vy t = > g ),

where the parenthesis notation AXZ(AX, Ay) indicates
the x- and y-components of the vector A.

An object moving in a circle has a centripetal
acceleration given in magnitude by

V2
cent FX

5.1

a

and a centripetal force acting on it given, in
magnitude, by

38}

— (5.9)

= ma =
cent r

net
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Newton’s second law is generalized using vector
analysis and can be written in a transparent form
F et = Ma, meaning that only the net force in a particu-
lar direction, say x, will act to produce an acceleration
along the x-direction.

The work done by a force pointing in any direction

on an object moving along the x-axis is defined by

Wp = 2 AW = X[Fcos 6],,.6x (5.4)

ave~

where F cos 6 gives the component of the force along
the x-direction and the summation allows for a vari-
able force to be considered constant over short inter-
vals of distance éx (see the discussion of Equation
(4.5) as well).

Friction can be empirically described in the two
cases of sliding (kinetic) motion and of static impend-
ing motion by

Figr = i F (5.6)
Fy = mFy,. (5.8)

It is particularly important to see the examples
worked out in this chapter and to practice doing prob-
lems in order to appreciate the awesome power of
Newton’s laws coupled with vector analysis.

MoTiON, FORCES, AND ENERGY IN MORE THAN ONE DIMENSION
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QUESTIONS

1.

10.
11.

12.

13.

If we chose to orient our x- and y-axes at 45° to the
vertical rather than horizontal and vertical, write down
the corresponding equations of motion (analogous to
Table 3.1) along the x- and y-axes.

Name as many physical quantities as you can that you
believe to be vector in nature. Now name as many that
you believe to be scalar in nature. Compare your lists
with those of your classmates. Attempt to resolve any
differences by challenging each other’s reasoning and
supporting evidence. (Just in case you overlook them,
consider in your list: temperature, weight, volume of
an object, and density.)

A vector quantity has both magnitude and direction.
If the measurement of a particular physical property
requires the use of signed numbers (i.e., both positive
and negative numbers) is the property necessarily a
vector?

Describe a coordinate system useful for detailing the
position of an object within the field of view of a
microscope.

Is time a vector? If so, what is its direction? What
does time measure? Is there any meaning to “nega-
tive time”? Could you tell if something were moving
backwards in time? If all time everywhere slowed
down or speeded up, would there be any way to
detect it?

Can you add a vector and a scalar (in any way that is
useful or makes physical sense)? What about multi-
plying together a scalar and a vector? What about
multiplying two vectors together? What sort of possi-
ble complications or ambiguities might arise with
such operations?

Show how you can add three vectors together, all of
which have the same magnitude, and end up with a
zero result. Can this sort of “vector addition to zero”
work with any number of vectors?

What is the relationship between a vector and a coor-
dinate system? Between a vector and the number
line? What properties or values of a vector depend on
the coordinate system used to express it?

. Give examples of two objects that have different

positions but undergo identical displacements.
(Hint: Think of a group of choreographed stage
dancers.)

Does a vector of zero magnitude have a direction?
Compare the driving patterns of a single typical day
for a local delivery truck, and a long-distance freight
truckdriver. Compare instantaneous velocity, average
velocity, presence or absence of acceleration (constant
velocity or not), net displacement, and distance logged
on the odometer.

Two marbles sitting on a tabletop are flicked off, one
just falling vertically and the other shot out horizon-
tally off the table. Which one hits the ground first?
The string on a yoyo breaks while doing an “around
the world” just as the yoyo is at the top of its orbit.
What happens?

QUESTIONS/PROBLEMS

14.

15.

16.

17.

18.

19.

If a protein in a centrifuge feels a centripetal force
directed in toward the axis of rotation, why does it
slowly migrate radially outward and not radially
inward?

Sketch (nonartistic) external force diagrams for each
of the following, showing all the forces acting on the
object.

(a) A high jumper clearing the highbar

(b) A canoe being paddled along

(c) A boy riding on an escalator

(d) A jet airplane cruising at a constant speed

(e) A lead weight sinking in the ocean

Two blocks, one sitting on a table and the other
heavier one hanging over its edge, are connected by
a light string as shown in the figure. Which force
makes the block on the table move, the tension in
the string or the weight of the hanging block? Are
these two forces equal?

+—

Two blocks of equal mass sit on a tabletop and are
connected by a light string. A second string is pulled
with a force F as shown in the figure. If you draw an
external force diagram and do some thinking you
will see that the tension force that pulls the left
block is /2. Why does the right block of equal mass
need a force F to pull it at the same acceleration?

[ ] —

Two blocks, each of mass m and connected by a light
string, hang over a frictionless pulley at rest as shown
in the figure. Why do the blocks remain at rest even
though there is a net downward force due to gravity
of 2 mg?

A man is mowing his lawn by pushing on the handle
of a push lawnmower (see the figure). Why is the
upward normal force on the mower from the ground
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20.

21.

22,

23.

24.

not equal to the weight of the mower? To what is
it equal?

Why is it usually easier to keep a heavy object mov-
ing than to start it moving from rest?

Is the work done by friction always negative? Give an
example to illustrate your answer.

It is an apparent paradox that making two surfaces
smoother and smoother will eventually increase the
frictional force between them. Why is this true?
Explain clearly in words why the work done by fric-
tion cannot be expressed as a difference in a potential
energy function, as can be done, for example, for the
work done by gravity.

A large cube of mass M is accelerated across a level
frictionless surface by a finger applying a constant
horizontal push P. A small cube of mass m is held in
place on the front face of the large cube by static fric-
tion, as shown in the figure.

e m]

A student is asked to draw external force (free body) dia-
grams for the two masses in this problem. Each force is
given a descriptive name and the object that causes each
force is identified. The student’s diagrams are shown
below. Please make whatever alterations are necessary
to make these diagrams correct. You may add or delete
forces, change the sizes of the forces shown (so that

A normal force
(due to surface)
normal force
(due to surface)
Y
friction push, P push, P
(due to m) (due to finger) (due to finger)
< O > o—
M m
4
weight of m
(due to Earth)
weight of M
¥ (due to Earth)
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25.

26.

27.

28.

accelerations are qualitatively correct), and change the

labels to more accurately identify what the force is and

from where it comes.

For the previous question, which of the following, if

any, are true? Circle the letter of any true statement.

(a) The surface over which the large cube slides exerts
a force on the large cube parallel to the surface
with magnitude equal to P.

(b) The surface over which the large cube slides exerts
a force on the large cube parallel to the surface
with magnitude equal to Mg.

(c) The surface over which the large cube slides exerts
an upward vertical force on the large cube with
magnitude equal to P.

(d) The surface over which the large cube slides exerts
an upward vertical force on the large cube with
magnitude equal to Mg.

(e) The surface over which the large cube slides exerts
an upward vertical force on the large cube with
magnitude equal to (M + m)g.

(f) The large cube exerts a force in the horizontal direc-
tion on the small cube with magnitude equal to P.

(g) The large cube exerts a force in the horizontal
direction on the small cube with magnitude less
than P,

(h) The large cube exerts a force in the horizontal direc-
tion on the small cube with magnitude greater than P,

(i) The large cube exerts a force in the horizontal
direction on the small cube with magnitude
equal to mg.

(j) The large cube exerts an upward vertical force on
the small cube with magnitude equal to P.

(k) The large cube exerts an upward vertical force on
the small cube with magnitude equal to mg.

Is it possible to have a heavy crate slide up an inclined
plane and have it come to rest at its highest point
without sliding back down? Why or why not? If pos-
sible, what conditions would have to be met for this
to happen?
Two blocks, each weighing 10 N and connected
by massless strings, are pulled across a horizontal table
at constant speed, as shown in the figure. The force of
kinetic friction on each block is 5 N. Draw an external
force diagram for block A. In the diagram label each
force, identify what body causes it, and make sure the
forces have the correct relative magnitudes.

According to the definition of work, the work done by
an external force in moving a heavy crate along a hor-
izontal surface should be the same whether the force

MoTiON, FORCES, AND ENERGY IN MORE THAN ONE DIMENSION



29.

30.

31.

32.

33.

34.

is pulling upward at a 45° angle or pushing downward
at a 45° angle. In practice it is easier to pull the crate
than to push it at 45°. Why is this so?

A cart carries a parcel as shown in the figure to the right.
The parcel is not lashed down. The mass of the parcel is
M and the mass of the cart is 5 M. The cart is traveling
to the right and is slowing down. As the cart slows, the
parcel doesn’t slip over the surface of the cart. Draw
external force diagrams for the parcel and for the cart,
labeling each force and the body that is responsible
for the force. The relative sizes of the forces should
be qualitatively correct.

parcel

A
N

cart

() )

Two blocks are attached by a light string with one
resting on a rough table and the other hanging over
the edge via a frictionless pulley as shown in the fig-
ure for Question 16 above. If the blocks are initially
at rest, the tension force is equal to the hanging
weight. As the weight of the hanging block is
increased, eventually the blocks will move. At that
point is the tension in the string more, the same, or
less than the weight of the hanging block? If the
hanging weight were continuously increased, would
the tension force change gradually or abruptly when
the blocks move?

In the Ferris wheel example (Example 5.16), can the
normal force of the seat on the man ever be zero? If
so, find an equation for the required velocity of the
man for this to occur.

Why is a high-speed curved roadway banked? If a car
goes around such a curve with too rapid a velocity, in
which direction must a frictional force act on the tires
of the car to keep it on the road? If a car goes around
such a curve too slowly in which direction must the
frictional force act?

Why do you feel a “centrifugal force” directed radi-
ally outward when you ride in a car and make a
sharp inward turn? Is this a real force? What is the
origin of the centripetal force on the car? On you in
the car?

A girl does an around-the-world with a yo-yo. Which
of the following vectors for the yo-yo are along the
string direction: the velocity, the centripetal accelera-
tion, the displacement for a one-half revolution, and
the tangential acceleration?

QUESTIONS/PROBLEMS

35.

36.

37.

38.

39.

40.

41.

For an object undergoing circular motion, assum-

ing all other variables to be constant, fill in the

blanks with “increases”, “decreases”, or “remains

the same”:

(a) As the object speeds up, the magnitude of the cen-
tripetal acceleration

(b) When the object has a constant negatlve tan-
gential acceleration, the centripetal acceleration
magnitude _____

(c) When the object has no tangentlal acceleration, the
centripetal acceleration magnitude

For an object in circular motion, state whether the fol—

lowing are true or false.

(a) The velocity is always perpendicular to the cen-
tripetal acceleration.

(b) With the circle center as origin, the displacement
is always perpendicular to the velocity.

(c) Because the velocity is not constant, there is
always a tangential acceleration.

(d) The net acceleration can never point outside the
circular orbit.

Small enough particles will not sediment in a glass

of water even if their density is greater than that of

water. Why don’t all particles that are denser than

water, regardless of size, sediment?

Which will sediment faster in a centrifuge: a 30 S

ribosome spinning at 103 g’s or a 50 S ribosome spin-

ning at 50,000 g’s?

A particle is traveling in uniform circular motion

about a circle of radius r with speed v. Write a vector

expression for its acceleration at any point in terms of

its angle from the x-axis, which goes through the cir-

cle center. Use ordered pair notation.

If, as a particle executes uniform circular motion in

the x—y plane, the particle also has a constant speed

along the z-axis, describe its trajectory in words and

write a vector equation for its position using order

triplet notation.

One variation of centrifugation uses a solvent mix-

ture (typically an aqueous sucrose solution of vary-

ing concentration) with an increasing density with

depth along the centrifuge tube. The sample to be

studied is layered on the top of the tube and the tube

is spun so that it lies horizontally (in a swinging

bucket rotor; see the figure). Known as density

gradient centrifugation, what do you expect to

happen if the density range includes the density of

the sample macromolecules? (Hint: Consider

Equation (5.10).)

AL
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instantaneous speed? (a) 10 m/s, (b) 50 m/s, (c) 70 m/s,
(d) 2,500 m/s.

MULTIPLE CHOICE QUESTIONS
1. The figure shows a vector A and two coordinate axes.

The components of the vector (DA along these axes
are most likely

v

v
(e}
A

v
o

A

. One force vector has components (5 N, —3 N) and
a second has components (—2 N, 2 N). These forces
produce a net force with scalar components
(@) (—=10N, =6 N), (b) (7N, =5N), (¢) (=5 N,7N),
(d) BN, —1N).

. VectorsA, B, and C are related to each other as shown.
The magnitude A = 3 and the magnitude B = 4. The
magnitude C must be between (a) 1 and 7, (b) 5 and
7,(c) =7 and 1, (d) 1 and 5.

—
A
—>
C

10.

A girl is riding on the outer edge of a merry-
go-round with a streamer pulling a rubber ball
attached by a string. If the string breaks, as seen by
someone on the ground the ball will (a) fall
vertically down, (b) fly radially outward from the
merry-go-round, falling vertically as it goes, (c) fall
vertically while traveling tangentially forward
from the merry-go-round, (d) fall vertically while
traveling tangentially backward from the merry-
go-round.

A ball is attached to a string and spun in a circle in a
horizontal plane. The physical forces acting on the
ball include its (a) weight and the centrifugal force,
(b) weight and the tension force, (c) weight and the
centripetal force, (d) weight and the force of the hand
holding the string.

A 1000 kg block sits on a frictionless table, con-
nected by a massless rope over a frictionless pulley to
a 0.01 kg washer hanging off the edge of a table. The
magnitude of the acceleration of the washer will be
(a) 0 m/s2, (b) 0 m/s2 < a <9.8m/s2, (c) 9.8 m/s2,
(d) a > 9.8 m/s2.

=

In the previous question, the magnitude of the
acceleration of the block will be (a) 0 m/s?,
(b) 0m/s> <a<9.8m/s%, (c) 9.8m/s?, (d) a>
9.8 m/s.

11. A wrench is dropped from rest from the top of the

mast of a sailboat traveling (forward) at 10 m/s in

. The magnitude of the force vector with components still water. Ignoring air resistance and assuming the

(5N, =5N)is (a) 0.0, (b) 5.0, (c) 7.1, (d) 25.0 N. mast is vertical, the wrench hits the deck (a) directly

. A force Fl has x-component +5 N, and y-component next to the mast, (b) some distance away from the

+2 N. A second force F, has x-component —3 N, and mast to the rear of the boat, (c) some distance away

y-component —3 N. The x- and y-components, from the mast to the front of the boat, (d) in an

respectively, of 17“1— Fz are (a) 8N, 5N, (b) 7N, unpredictable place because there is insufficient
—6N, (c) 3N, —1N, (d) 3.16 N, 18.4° below the information.

positive x-axis. 12. A skier skis in a straight line down a hill gradually

. The velocity of a particle at one instant has an x-
component of +30 m/s and a y-component of —40 m/s.
Given that the instantaneous speed is the magnitude
of the instantaneous velocity, what is the particle’s
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picking up speed as he goes. Which of the following
could plausibly be an external force diagram for the
skier during this motion? Assume air resistance is
negligible.
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force of force of
contact of contact of
hill on skis hill on skis

A

o

‘V

weight weight
a b

Questions 13 and 14 refer to a block pulled up an
inclined plane, with inclination angle 6, by a constant
force F applied at an angle ® measured from the inclined
plane.

13.

14.

15.

16.

17.

18.

The work done by the force F in sliding the block a dis-

tance d along the incline is (a) Fd sin ®, (b) Fd cos 6,

(¢c) Fd sin 6, (d) Fd cos .

The magnitude of the work done by gravity for the

same motion is given by (a) mgd sin 0, (b) mgd sin ®,

(c) mgd, (d) mgd cos 6.

Suppose a ball is thrown with an initial velocity of 8 m/s

at a 60° angle above the horizontal and stays in the air

for 1.1 s. How far (in m) will it travel in the horizontal

direction? (a) 7.6, (b) 8.8, (c) 4.4, (d) 5.9, (e) 10.3.

A yo-yo with mass M is spun in a loop-the-loop of

radius R at a constant speed v. The tension in the string

is 7. What is the centripetal force on the yo-yo when at

the bottom of its trajectory? (a) 7 — Mg, (b) Mg — T,

(c) Mg + T, (d) T — Mg + Mv?/R, () none of these.

Two identical blocks of mass m are tied together (by

a light cord) and pulled up a rough inclined plane at

constant speed by a pulling force F directed along the

incline and applied to the upper block. Which of the

following statements is true?

(a) The work done by F is zero because the blocks
move at constant speed.

(b) The total friction force must equal F because the
blocks move at constant speed.

(c) The tension in the cord is F because the two
blocks are identical.

(d) The work done by F is equal in magnitude to the
work done by gravity plus the work done by friction.

(e) None of the above is true.

For the previous problem, a free-body diagram of the

lower block would include all of the following forces

except

(a) mg down

(b) T up along the incline

QUESTIONS/PROBLEMS

force of
acceleration

19.

20.

21.

force of
contact of
hill on skis

normal

friction

weight weight

(c) F up along the incline

(d) Friction down along the incline

(e) Normal force perpendicular up from the surface

Two identical blocks of mass m are tied together by

a light cord. One sits on a horizontal frictionless

surface and the other one hangs over a frictionless

light pulley and is held in place. When released from
rest, the hanging block falls a distance d. Which of
the following is a true statement?

(a) The tension in the rope is equal to mg.

(b) The work done by gravity on the hanging mass is
equal to the gain in KE of the block on the fric-
tionless surface.

(c) The work done by the tension in the cord equals
the gain in KE of both blocks.

(d) The tension in the rope plus the normal force on
the block on the horizontal surface adds up to mg.

(e) The work done by gravity on the hanging block is
equal to the gain in KE of both blocks.

A ball attached to a string is spun around in a hori-

zontal circle. If the string is cut quickly at an instant

of time, the ball’s initial velocity points

(a) Radially outward because the ball felt a centrifugal
force

(b) Radially inward because the string exerted a
centripetal force

(c) Vertically downward because of its weight

(d) Tangentially because of Newton’s first law

(e) Somewhere between radially outward and tangen-
tially depending on its speed

In a frictionless roller coaster, if the car starts from rest

at a height equal to twice that of the loop-the-loop por-

tion, the speed at the top of the loop (point A) can be
found by (a) equating the initial potential energy to the
kinetic energy at point A, (b) by equating the initial
kinetic energy to the sum of the potential and kinetic
energy at point A, (c¢) by equating half the initial
potential energy to the kinetic energy at point A,
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22,

23.

24,

25.

26.

27.

28.

29.

(d) by equating half the initial potential energy to the
sum of the potential and kinetic energies at point A.
The net work done by all the forces in sliding a crate
from rest up an inclined plane, coming to rest at the
top (a) is always zero because there is no change in
kinetic energy, (b) is nonzero and depends on the
height of the plane, (c) is nonzero but depends on
the path up the incline as well as its height because
the work done by friction depends on the path, (d) is
nonzero but depends on the details of the force
applied by the person as well as the factors of part (c),
(e) none of the above.

In the loop-the-loop demonstration in which a small
cart rolls around the looped track, the condition that
needs to be satisfied for the cart to just get around the
loop is (a) the starting potential energy must equal
that at the top of the loop, (b) the kinetic energy at the
top of the loop is just equal to zero, (c) the normal
force at the top is just equal to zero, (d) the kinetic
energy at the top is just equal to the weight of the cart,
(e) none of the above.

A block of mass m slides down an inclined plane
(angle of inclination 6) a distance d along the plane.
If the block slides down at constant velocity, the work
done by friction is given by (a) mg sin 6 d, (b) mgd,
(c) —mgd, (d) —mg sin 6 d, (e) cannot be determined
from what is given.

A block is given a push up an inclined plane. During its
round-trip motion the frictional force is (a) always
directed upward, (b) always directed downward, (c)
directed upward till it reaches its maximum height and
then directed downward, (d) directed downward until it
reaches its maximum height and then directed upward.
Macroscopic friction is caused by microscopic forces
between atoms arising primarily from their (a) gravi-
tational, (b) electrical, (c) strong nuclear, (d) weak
nuclear interactions.

While trying to slide a heavy piano along a rough floor,
just before there is any motion (a) the friction force is
equal to N, (b) the friction force is less than N, (c)
the friction force is a maximum, (d) the friction force
is less than u N, where N is the normal force.

A block of mass m slides down a distance d along an
inclined plane with inclination angle 6 from rest,
starting at height A, with y its vertical coordinate and
v its velocity. If the coefficient of kinetic friction is
M. when the block is at height y the work—energy the-
orem is of the form (a) 1/2 mv? + mg(y — h) = pmg
cos O.d, (b) 1/2 mv* + mg(y — h) = —pymg cos 0d,
(¢) 172 mv* + mgy = pymg cos 6 d, (d) 1/2 mv* +
mg(h —y) = —wmg cos 6 d.

As two identical very smooth plane metal surfaces are
polished more and more and then put into tight micro-
scopic contact (a) the friction force is increased,
(b) the normal force is reduced, (c) the friction force
is unchanged, (d) the friction force is reduced.
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30. A small mass, attached to a thread, orbits in a circle
around a fixed point O on a horizontal frictionless
surface. When viewed from above, as shown to the
right, the mass orbits in a clockwise sense. At point A,
the thread suddenly breaks. Which of the paths dis-
played is the one that the mass most likely travels
along after the break?

31. A skier of mass M skis along an irregularly shaped,
rough slope from point A to point B. The total distance
along the slope from A to B is D and the magnitude of
the vertical drop from A to B is H. The skier’s kinetic
energies at A and B are equal. The work done by friction
during this trip (a) must be exactly —MgH, (b) must be
exactly +MgH, (c) must be exactly —MgD, (d) cannot
be calculated because the shape of the slope and the
coefficient of kinetic friction are not given.

32. A bug is on the rim of a spinning CD that is rotating
counterclockwise viewed from above. The radius of
the CD is A and the time it takes for one complete rev-
olution is 7. There is a fixed (x-, y-) coordinate system
(doesn’t rotate with the CD) with its origin at the cen-
ter of the CD. At ¢t = 0 the bug’s position in this coor-
dinate system is (A, 0). At ¢ = T/4, the x-component
of the bug’s velocity is (a) —2@A/T, (b) 4m2A/T?,
(c) mA/(2T), (d) zero.

Questions 33 and 34 refer to: A particle executes uniform
circular motion around a circle of radius equal to 1 m with
a speed of 2 m/s.

33. The period of the motion is (a) 27, (b) 2, (¢) m, (d) 1 s.

34. The acceleration of the particle is (a) zero, (b) 2 m/s,
pointing toward the center of the circle, (c) constant,
with a magnitude of 4 m/s?, (d) 4 m/s, pointing
toward the center of the circle.

35. As a car exits from a highway slowing down as it
goes clockwise on a circular exit ramp, the net accel-
eration on the car is directed (a) towards the rear of
the car, (b) towards the center of the circular exit

MoTiON, FORCES, AND ENERGY IN MORE THAN ONE DIMENSION



36.

37.

38.

39.

40.

ramp, (c) at some angle between the rear of the car
and the center of the circular ramp, (d) at some angle
between the center of the circular ramp and the for-
ward direction.

A satellite revolves around the Earth in a circular
orbit at a constant speed. Which one of the following
statements is true? (a) Its acceleration is zero because
its speed is constant. (b) Its acceleration is zero
because its velocity is constant. (c) Its acceleration
and its velocity are both not constant. (d) Its velocity
is not constant but its acceleration is a nonzero
constant.

The Space Shuttle orbits the Earth in a circular orbit
at an altitude of 300 km. The Shuttle’s mass is 10° kg.
The period of the orbit is about 5000 s. The radius of
the Earth is 6.4 X 103 km and its mass is 6 X 10%* kg.
The acceleration of the Shuttle is (a) zero because its
speed is constant, (b) about 0.01 m/s?, (c) about
10 m/s2, (d) about 8 X 103 m/s2.

The forces responsible for pelleting a protein in an
ultracentrifuge are (a) its weight and buoyant force,
(b) its buoyant and frictional forces, (c) its weight
and frictional force, (d) its weight and centrifugal
force.

A centrifuge tube is completely filled with water and
has a very small bubble (initially stuck) at the bottom
of the tube. As the tube is spun in the centrifuge, the
bubble will (a) stay at the bottom, (b) steadily rise in
the tube at a constant speed, (c) rapidly accelerate to
the top of the tube, (d) it’s impossible to say given the
large variety of factors involved.

As a centrifuge rotor accelerates from rest to its final
speed, a protein accelerating in a centrifuge tube
inside the rotor has an acceleration (a) radially out-
ward, (b) radially inward, (c) tangentially in the direc-
tion of the velocity, (d) at some intermediate angle
between the inward radial direction and the tangent
direction of part (c), (e) none of the above.

PROBLEMS

1.

A chessboard consists of 64 squares. Shown numbered
are the successive positions of a rook (“castle”) for one
particular game. Two possible labeling schemes for the
squares are shown in (b) and (c); each using ordered
integer pairs. Using each of the labeling schemes, list
the successive positions of the rook and from the posi-
tions determine the displacement vectors that indicate
the successive movements of the rook throughout the
game. Note that the displacement vector sets should be
the same for the two labeling schemes, although the
position labels differ between the two.

Comment on any physical meaning to the instantaneous
and average velocities of the chess piece.

QUESTIONS/PROBLEMS

b
7
6|4 5
1,3
3 1,2(2,2
1,1{2,1{3,1

-1,1{ 0,1 | 1,1
-2,0]-1,0] 0,0 | 1,0
-1,-1

2. A bug walks along a chessboard, following the bound-

aries of the squares. For each of the points P;, what is the
distance traveled from the starting corner, and what is the
displacement vector? Express your vector answers in
both Cartesian (x, y) and polar (7, 6) coordinates. Assume
the board squares measure 25 mm along an edge.

Py P

P,

(o) P1

. Refer to the simplified, albeit tortured, map showing

some of the major cities of New York State. The ques-
tions refer to the distance traveled and displacement
for various trips among the cities shown. Assume
travel between consecutive cities “as the crow flies.”
(a) Calculate and compare the net displacements for
the following pairs of trips.
BGM to WTR via BUF versus ALB to PLT
via WTR
KGN to SYR versus NYC to BGM
WTR to ROC versus WTR to PLT
(b) What is the distance traveled and the net displace-
ment for each of these trips:
BGM to JMS to BUF to ROC to WTR to SYR
ALB to SYR to BGM to KGN to BGM
(c) Name two different trips that have the same
displacement.
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PLT

WTR
75
60
BUF 60 ROC 60 [SYR 100 ALB
75 75 75
120 100 KGN
JMS BGM
75
NYC

4. Suppose that a swimmer can maintain a stroke that

gives her a 3 mph speed in a pool. If she sets out
straight across a river that flows with a 1 mph
current, she will be carried downstream with the
current at the same time as her stroke carries her
across. For a river 176 yards (1/10 mile) wide,
figure out how far downstream she will end up,
assuming that throughout her river crossing she
maintains the same stroke that moves her along at
3 mph in the pool. How can our swimmer get
directly across the river? (See the next problem
as well.)

. Fisherman Joe has a boat with a motor that has two

speeds: on and off. When the motor is on, the boat

will do 2 mph in an otherwise quiet pond. On an

expedition, Joe finds himself at the shore of a river
with a 7 mph current.

(a) Why can’t Joe move directly across the river with
his boat?

(b) Suppose Joe turbocharges his motor so it will
move through still water at 12 mph. If he directs
the motor appropriately, he can now get directly
across the river. Where must he point the boat for
a direct traverse?

(c) How long will it take him to thus cross a quarter
mile wide section of the river?

. Professor Igor is attempting to breed a superrat. On
an endurance test, one of his prize specimens main-
tains an apparent stationary position at the middle of
a treadmill that is 1 m long and 30 cm wide, while
the track moves back at 2 m/sec. After several min-
utes, the rat quits, turns, and begins to crawl to the
side edge of the track. With what constant speed
must our exhausted hero travel if he is not to be car-
ried to the end of the track and dropped into the
reject bin?
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7. Consider these four vectors, represented by order
pairs:

A =(2,0);A,=(0,1); B, = (3,0); B, = (0, 4).

(a) Of these four vectors, which are perpendicular to
each other? Which are parallel?

(b) Calculate each of the following and represent the
results, to scale, on graph paper as well.

A +A, Bj+B, A|+B, A,+B, A|+4A,+ B, +B,.

Note: For problems using compass bearings, note that
degree headings are customarily measured clockwise
from North. E (east) is 90°, for example. Also, the direc-
tions NE, NW, SE, and SW are oriented exactly 45° from
the appropriate main bearings (N, S, E, and W).

8. Determine how far and in what direction a hiker ends

up after the following treks:

*2miN, then 1 mi E.

e 1 miE, then 2 mi N.

¢ 2 mi NE, then 1 mi E.

¢ 2 mi NE, then 1 mi W.

*2mi N, then 2 mi W, then 2 mi S. What about the
return trip (i.e., the same hike backwards)?

e4 mi S, then 3 mi E.

* 3 mi NW, then 3 mi NE.

9. The figure shows three points within a rectangular
coordinate grid. The coordinates of each point can
also be considered as a vector, representing the dis-
placement from the origin O to the respective point.
Thus, for example, the coordinates of A also repre-
sent the vector OA.

I
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11.

12.

13.

(a) Represent each of the point-vectors with ordered pairs.

(b) Find the distance between: points A and B; points
A and C; and points B and C.

(c) Determine the following vectors. OA + OB; OB
+ OC; OA + OB + OC; 20B, OA + 20B, 30B,
—OB.

(d) Determine the difference of vectors OA -OC
according to: OA —OC = OA + (—0OC); that is,
first determine —OC, given OC and perform the
indicated addition. Show the results of each of the
steps graphically.

Calculate each of the following operations on the

given vectors, here represented with ordered pairs.

Then show on graph paper the representations of the

given vectors and the vector result of the requested

operation, all to scale.

A=(2,3):B=(5,6),C=2,—1);D=(65,2.5);
E=(—4,-2).

(@) —A; (D) A+B; () A—B; (d) A+ C; (e) A+D;

() D—B; (9) C+E; (h) C—E; (i) —C—E.

A popular exercise in orienteering is to be given a

compass heading and a distance to be hiked, at the

successful completion of which is another set of

instructions containing yet another heading and dis-

tance, and so on. At the end of it all, the hiker has

hopefully arrived safe and sound back at camp.
Construct a map, to scale, that shows the path of

travel for a hiker who successfully completes the fol-

lowing course.

100 yd, N

150 yd, E

60 yd, NW

A mountain climb begins at 550 m above sea level

and finishes atop a 1050 m high peak. The average

incline is 75° above the horizontal. Give the horizon-

tal and vertical components of the hikers’ displace-

ments. What vector represents the sum of the

horizontal and vertical displacements?

1050 m __ __—finish

et

550 m start

A ball is thrown horizontally from the roof of a 25 m

tall building with a speed of 20 m/s.

(a) With what velocity will it land (magnitude and
direction, please)?

(b) How long will it be in the air?

QUESTIONS/PROBLEMS

14.

15.

16.

17.

18.

(c) How far from the building’s ground floor will it
land?

(d) What is its acceleration just before it hits the ground?
Three identical balls are thrown off a building, all
with the same initial velocity. One of the balls is
thrown horizontally, the second ball is thrown at some
angle above the horizontal, and the third is thrown at
some angle below the horizontal. Rank the speeds of
the balls as they reach the ground.

A Northrop B-2 Stealth bomber is flying horizontally

over level ground, with a speed of 300 m/s at an alti-

tude of 10.6 km (35,000 feet).

(a) Neglecting air resistance, how far will a bomb
travel horizontally between its release and its
impact on the ground?

(b) If the bomber flies straight ahead at the constant
speed above, where will the bomber be when the
bomb hits the ground?

A cartoon coyote sets out to capture the elusive road-

runner by wearing a pair of Acme jet-powered roller

skates, which provide a constant horizontal accelera-

tion of 10 m/s2. The coyote starts off at rest 100 m

from the edge of a cliff at the instant the roadrunner

zips past him in the direction of the cliff.

(a) If the roadrunner moves with constant speed, what
is the minimum speed the roadrunner must have in
order to reach the cliff before the coyote?

(b) At the edge of the cliff the roadrunner escapes by
making a sudden turn, and the coyote continues
straight off the cliff. If the cliff is 200 m above the
ground, where does the coyote land, assuming
that his skates remain horizontal and continue to
work while in flight?

(c) What are the components of the coyote’s impact
velocity?

A cartoon coyote chasing an animated roadrunner
fails to make it around a tight corner, and runs
directly off the edge of a 100 m cliff at a horizontal
speed of 20 m/s. How far from the base of the cliff
does he land, and how much time does the road run-
ner spend in flight?

A game of Battleship™ . An enemy ship is on the left

side of a mountain located in the middle of the ocean

and this ship has the ability to maneuver within 1 mi

(1600 m) of the 800 m tall mountain. A gun located

on the deck of the enemy ship can fire projectiles with

an initial speed of 650 mph (=289 m/s) at angles
between 0° (horizontally from the ship) and 90°

(directly overhead of the ship.) You are stationed on a

ship on the right side of the mountain and you can

maneuver your ship from the shoreline located 500 m

from the middle of the mountain to any larger distance.

At what distance(s) from the rightmost shoreline can

you maneuver your ship so that you will not be hit by

the enemies’ projectiles?
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20.

21.

22,

23.

24,

25.

26.

217.

A cartoon coyote comes up with a brilliant scheme to
get lunch for himself by dropping a 500 kg boulder
on a passing animated roadrunner. Unfortunately,
when he cuts the rope holding the boulder in place,
the rope becomes tangled around his ankle, and drags
him off the edge of the cliff. If the coyote’s mass is

30 kg and his frantic clawing at the ground produces

a force of 120 N resisting being dragged off of the

cliff, what is his acceleration toward the cliff?

Two balls are thrown off the roof of a 25 m tall building.

One is dropped from rest and then 1 s later the second is

thrown outward with a velocity with horizontal and

downward components of 10 and 15 m/s, respectively.

(a) Which ball hits the ground first?

(b) With what velocity does each ball hit the ground?

(c) Which ball travels the greater displacement?

A lacrosse goalie clears the ball by throwing it down-

field at a speed of 10 m/s at a 35° angle above the

ground.

(a) How long will it be in the air? (Assume the ball
leaves the goalie’s stick at ground level.)

(b) How far will it go before hitting the ground,
assuming no one is there to catch it?

(c) At what point will it have its minimum speed?

(d) With what velocity (magnitude and direction) will
it hit the ground?

(e) If someone catches the ball on its way down at a
height of 1.0 m, with what velocity will the ball
hit the net of the lacrosse stick?

A 30 kg penguin slides down the side of a glacier that

has a constant slope of 50°. What is the acceleration

of the penguin and what is the normal force it feels?

The largest rope lariat ever spun used a 100 foot long

rope with a loop of 95 feet spun in a circle. What is

the centripetal acceleration of a point on the rope
spun at 60 rpm?

The fastest a manmade device ever spun is

4500 miles per hour achieved by a 6 inch fiber rod

spun about one end in a vacuum. What is the cen-

tripetal acceleration of a point on the rim of this rod

in terms of g’s?

A 20 cm radius wheel is turning at the rate of 5 rpm

(revolutions per minute). Find (a) the speed of a point

on the rim, (b) the centripetal acceleration of a point

on the rim, and (c) the time for one revolution.

A block sitting on smooth ice is tied to a 1 m cord and

spun in a horizontal circle at constant speed. If the

block is revolving at 15 revolutions in 1 min and
the cord is cut, find the magnitude and direction of
the block’s velocity just then.

A 100 kg sled is slid across a smooth ice field by a group

of four dogs tied to the sled pulling with a 350 N force

along a rope at an angle of 20° above the horizontal.

(a) If the sled travels at a constant speed, find the drag
force on the sled.

(b) Find the work done by the dogs after pulling the
sled for 1 km.
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28. The Pumpkin on the Nott: The Nott Memorial is a

16-sided Victorian building and national historic
landmark located in Schenectady, NY. The Nott
Memorial is topped with an approximately hemi-
spherical dome 89 feet in diameter. Suppose that the
dome is frictionless when wet. Somehow an individ-
ual has balanced a pumpkin at the top of the dome at
an angle of 6; = 0° with the vertical. Suppose that on
a rainy night, a gust of wind starts the pumpkin
sliding from rest. It loses contact with the dome when
the line from the center of the hemispherical dome to
the pumpkin makes a certain angle with respect to the
vertical. At what angle does this happen?

29. Raiders of the Last Exam: In order to prevent cheat-

ing, a diabolical physics professor has booby-trapped
her office where the exam answers are kept. A 1000
kg mass is suspended by a 4 m rope from the ceiling,
and pulled to one side of the room where a second
rope holds it. The rope holding the mass makes a
60° angle with respect to the horizontal. When a stu-
dent attempts to open the file cabinet containing the
answers, the weight will be released to swing back
and forth in front of the cabinet, crushing anyone
foolish enough to stand in front of it.

(a) What is the tension in the two ropes before the trap
is sprung?

(b) What is the maximum velocity of the swinging
mass?

(c) The student is quicker than expected, and jumps
back before the mass hits. If the student ducks
back in to grab the answers just after the mass
passes, how much time does she have to get them
before the mass returns?

30. In the movie Volcano, solid chunks of rock, called

lava bombs were ejected from the growing volcano.

Consider a volcano, shown below, with a lava bomb

being ejected.

(a) What would the magnitude of the initial velocity,
at the top of the volcano, have to be in order for a
lava bomb to land at the base of the volcano?

(b) What would be the time of flight of this projectile
from the top of the volcano to its base?
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(c) What is the final velocity of the lava bomb just
before it hits the ground at the base?

(d) What is the acceleration of the lava bomb just
before it hits the ground at the base?

Suppose that a Lockheed C-5A Galaxy (the largest
aircraft in the world with some specifications shown
below) sits on a runway at an airport waiting for take-
off clearance. When given clearance, the pilots apply
full power to the plane’s engines and accelerate down
the runway.

> a
Vi tang

(a) If the plane takes off when its velocity reaches
195 mi/hr and not before, what is the acceleration
of the plane in order to take off at the indicated
speed if the plane has to be airborne in 9800 feet?
(Hint: 1600 m = 1.0 mi and 1 hr = 3600 s.)

(b) How long does it take before this plane becomes
airborne (takes off)?

(c) What force (magnitude and direction) would be
required to support a C5-A fully loaded with fuel
horizontally in flight?

Two blocks, with masses M| and M,, are connected

by a light horizontal cord and pulled by a second cord

with a force F at an angle 6 with respect to the hori-
zontal so that the blocks slide along a horizontal sur-
face at a constant speed.

(a) Draw a carefully labeled free-body diagram for
each block showing all forces.

(b) From your labeled diagram in part (a), write equa-
tions describing the motion.

(© If M; = 1.0kg, M, = 2.0kg, and the applied force
is 10N at an angle of 30°, find the coefficient of
kinetic friction between the blocks and the hori-

zontal surface.

M, M,

QUESTIONS/PROBLEMS

33.

34.

35.

36.

Two blocks are connected by a light cord. One block,
of mass 4 kg, sits on a horizontal table with static and
kinetic coefficients of friction of 0.6 and 0.4, respec-
tively, whereas the other block, of 2 kg mass, hangs
over a frictionless light pulley as in the figure. The
blocks are released from rest.
(a) Draw a carefully labeled free-body diagram for
both blocks and, by using Newton’s laws, show
that they do not move.

(b) If the two blocks are exchanged, so that the 4 kg is
now the hanging block and the 2 kg sits on the
table, find their acceleration now.

(c) In words state why the tension in the cord is equal
to the weight of the hanging block in part (a) but
not in part (b)

(d) What is the minimum mass that one needs to add
to the 2 kg block in part (b) for it to remain at rest
when released?

A 75 kg crate is being pulled up a 5 m long (friction-

less) ramp inclined at a 30° angle from the horizontal

by a force of 500 N at an angle of 15° above the ramp.

(a) What is the acceleration of the crate?

(b) What will be its velocity at the top of the ramp if
it starts from rest?

(c) How much work is done to get the crate up the
ramp by pulling the rope?

(d) How much work is done by gravity over the 5 m
ramp?

(e) Using the work—energy theorem redo part (b).

Suppose the toy car in the frictionless loop-the-loop

example of 6.13 starts from a height of 1.2 m and the

loop itself has a height of 0.25 m.

(a) Find the speed of the car at the top of the loop.

(b) How fast will it be going at the bottom of the loop
on the way up? On the way down?

(c) Find the minimum height that the car must start
from to just get over the top of the loop. (Hint: The
speed at the top cannot be zero or the car, travel-
ing in a circle, would not reach there. The mini-
mum speed required at the top is such as to have a
centripetal acceleration at the top just equal to g as
the car leaves the track at the top.)

In a loop-the-loop roller coaster (see Figure 5.16) if a

car of 500 kg mass starts essentially at rest from the

top of a 15 m tall hill find

(a) Its speed when traveling vertically on the 7 m
diameter frictionless loop
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(b) Its velocity when leaving the loop at ground level

(c) The net force on the car when at the position in
part (a)

A roller coaster car, with a mass of 500 kg, crests a

20 m high hill while moving at a speed of 10 m/s. It

then rolls down the other side, all the way to ground

level, before climbing a second hill.

(a) What is the speed of the car when it is 10 m up the
second hill?

(b) What is the maximum possible height of the sec-
ond hill?

(c) If the car is subject to a frictional force that causes
it to lose 8000 J of energy, what is the maximum
height of the second hill?

A block of mass 12 kg slides from rest down a fric-

tionless 35° incline and is stopped by a strong spring

with stiffness constant k = 3.00 X 10* N/m. The block
slides 3.0 m from the point of release to a point where
it comes to rest against the spring. When the block
comes to rest, how far has the spring been compressed?

Two blocks are connected by a light string with one

block of 5kg mass sitting on a frictionless 30°

inclined plane and the second block of 8 kg mass
hangs from the string which runs over a frictionless
light pulley as shown.

(a) Find the acceleration of the block on the plane.

(b) Find its velocity after traveling 2 m along the
plane from rest. Do this two ways: using your
answer to part (a) and using energy principles.

In the previous problem if the block on the incline is

5 kg as before,

(a) Find the hanging mass needed so that the 5 kg
mass is in equilibrium.

(b) Find the hanging mass needed so that the 5 kg
mass slides down the 2 m distance along the
plane in 2 s.

In a pinball game with marbles, a 10 N/m spring is

compressed 3.0 cm releasing a 50 g marble from rest.

If the marble needs to travel 60 cm up a 3° incline

before entering the scoring zone of the game table,

will it make it? If not, how much must the spring be
compressed so that it will?

A crate is pushed along the ground at constant veloc-

ity for a distance of 5 m. If the friction force is 5 N,

how much net work is done on the crate? How much

work is done by the friction force? By the external
pushing force? By gravity?
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A 2 kg box is pushed 3 m up a 30° incline at constant
velocity by a 20 N force directed along the surface of the
incline with a coefficient of kinetic friction of 0.6. What
net work is done on the box? How much work is done by
the pushing force? By gravity? By the friction force? By
the normal force? Check that your answers are consistent.

A 110 kg upright piano is being pulled by a light rope

angled at a 20° angle below the horizontal. If the ten-

sion in the rope is 30 N and the coefficient of kinetic
friction is 0.3 find:

(a) The normal force on the piano.

(b) The friction force.

(c) The acceleration of the piano.

(d) Why is this a poor method to move a heavy piano?

A 20 kg wheelbarrow held at a 30° angle is being

pushed along the ground by a force F at a constant

velocity. If the coefficient of kinetic friction is 0.4 find:

(a) The net force acting on the wheelbarrow.

(b) An expression for the normal force in terms of f.

(¢) A numerical value for F.

(d) Why is the normal force greater than the weight of
the wheelbarrow?

(e) Would it be easier to pull the wheelbarrow at the
same angle at constant velocity?

Two heavy crates sit on the floor, the 3 kg one on top

of the 10 kg one.

(a) What is the normal force from the floor on the
10 kg block?

(b) What is the normal force acting on the top crate?

(c) If the bottom crate is pushed horizontally with a
10 N force along the smooth floor and the coeffi-
cients of static and kinetic friction between the
crates are 0.6 and 0.4, what is the acceleration of
the bottom crate and the top crate?

(d) Find the maximum horizontal force that can be
applied to the bottom crate without the top crate slip-
ping. (Hint: First find the maximum static friction
force and the resulting acceleration of the top crate.)

A 0.1 kg block is given an initial velocity of 5 m/s up

an inclined plane at a 30° angle, travels up the plane,

and then returns back to the bottom. The coefficient
of friction between the block and plane is 0.4. Find

(a) The work done by gravity for the entire trip

(b) The work done by the friction force for the entire trip

(c) The net change in kinetic energy of the block

A small mass m slides down a frictionless ramp from

rest as shown in the figure below and then enters a

region where the coefficient of friction is 0.5. Where

does the mass stop? Find an expression for x in terms
of the given parameters.
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Two blocks are connected by a light cord. One block,
of 4 kg mass, sits on a horizontal plane with static and
kinetic coefficients of friction of 0.6 and 0.4, and the
other block, of 2 kg mass, hangs over a frictionless
light pulley as in Figure 5.20. If the blocks are
released from rest:

(a) Show that the blocks do not move.

(b) What minimum additional force would be
needed to pull down on the 2 kg block to produce
motion?

(c) If the two blocks are exchanged, find their accel-
eration now.

(d) What is the minimum mass that one needs to add
to the 2 kg block in part (c) for it to remain at rest
when released?

A 2.5 kg block sits on an inclined plane with a 30°

inclination. A light cord attached to the block passes

up over a light frictionless pulley at the top of the
plane and is tied to a second 2.5 kg mass freely hang-
ing vertically. The coefficients of static and kinetic
friction between the block and the plane are 0.5 and

0.3. When released from rest find:

(a) The acceleration of the blocks.

(b) The tension in the string.

(c) Explain why the tension supporting the hanging
block is not equal to its weight.

(d) Find the time for the block on the inclined plane
to travel 0.5 m up the plane.

(e) Find the minimum angle of inclination at which
the block on the plane will remain at rest.

The eruption of the Mt. St. Helens volcano on
May 18, 1980 triggered a huge avalanche of snow
down its slopes, estimated at 96 billion cubic feet.
The maximum speed of the avalanche was clocked
at 250 mph. Estimate the average force (in N)
exerted on the land at the base of the mountain
assuming that all the snow was traveling at this
speed and stopped in 5 s. Take the density of snow
to be half that of water.
Two blocks sit on an inclined plane with a 30°
inclination angle. If the blocks are connected by a
light rope with the 5 kg block above and the 3 kg
block below, find the acceleration of the blocks if the
coefficients of sliding and static friction are 0.3 and
0.5, respectively. Does the order of the blocks matter?
In the previous problem find the maximum angle at
which the blocks do not slide down the plane. Does
the order of the blocks matter now?
Two identical springs with k = 5 N/m, are separated
by 2 m, with a small coefficient of kinetic friction u,
= (.02 acting on the horizontal surface between them.
If a 0.1 kg block starts out being released from one of
the springs after compressing it by 0.2 m, find the final
position of the block, tracing its trajectory. (For
simplicity, assume that you can ignore friction for the
portion of the motion when the blocks are in contact
with the springs.)

QUESTIONS/PROBLEMS
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Two blocks are attached by a light cord with each
block sitting on a different inclined plane as shown.

If the angles of inclination are 30° and 60°, the
respective masses are 10 kg and 6 kg, and the coeffi-
cients of sliding and static friction are 0.3 and 0.5, do
the masses move, and if so in which direction and
with what acceleration?
A roller coaster rises and falls on a semicircular por-
tion of track that has a radius of curvature of 20 m.
How fast can the roller coaster travel so that a 60 kg
man will not leave his seat at the top? (Hint: Find the
threshold condition—what changes—when the man
is just about to leave his seat.)
In a circus performance, a stuntman is riding a bicy-
cle in a loop-the-loop. Assuming that the loop is a cir-
cle of radius R = 2.7 m, what is the least speed that
the performer can have at the top of the loop in order
to remain in contact with the track? Does your result
depend on the mass of the performer?
The so-called ROTOR is an amusement park thrill
ride. Riders enter the ride, which is a large hollow
cylinder that is rotated rapidly around its central axis,
and stand against a wall. As the ride starts, the riders,
wall, and floor move in unison. At a predetermined
speed, the floor falls away but the riders remain
pinned to the wall. If the coefficient of static friction
between the riders clothing and the wall is 0.40, and
the radius of the ride is R = 3.0 m, what is the mini-
mum speed needed so that the riders do not fall when
the floor drops? What is the magnitude of the
centripetal force on the rider if the rider has a mass
of 60 kg?
The moon travels around the Earth in a nearly circu-
lar orbit of radius 3.84 X 108 m with a period of
27.3 days.
(a) What is the speed of the moon in orbit relative to
the Earth?
(b) What is the centripetal acceleration of the moon
based on its orbital period?
An exit ramp off a highway has a radius of curvature
of 150 m and is banked at a 4° angle. For what speed
is the ramp designed?
A circular gear of 5 cm radius starts from rest and
accelerates to 60 rpm in 10 s.
(a) What is the (assumed constant) tangential acceler-
ation of a point on the rim of the gear?
(b) What is the centripetal acceleration after 5s?
After 10 s?
A yo-yo is spun in a vertical circle (“around the world”)
of radius 40 cm. Find the difference in the string tension

137



63.

64.

65.

66.

at the top and bottom in terms of the weight of the
yo-yo. (Ignore the spinning of the yo-yo around its own
axis.) (Hint: No work is done on the yo-yo as it circles
(why?), so conservation of energy can be applied.)
In an amusement park ride, people stand against the
outer wall of a large spinning drum and after the drum
rotates beyond a certain speed, the floor falls away,
leaving the people suspended against the wall. If the
radius of the ride is 12 m, and the coefficients of sta-
tic and kinetic friction are 0.4 and 0.2, how fast must
the drum spin so that no one will fall. Find both the
velocity of the people and the rpm of the drum.

A heavy 20 kg crate is pushed with a force of S0 N

down a ramp making an angle of 30° with the hori-

zontal. The crate is pushed down the incline with the
force directed at an angle of 30° below the surface of
the ramp. The coefficient of kinetic friction is 0.3 and

the coefficient of static friction is 0.6.

(a) Draw a free-body diagram for the crate, carefully
labeling each force with an appropriate symbol
and clearly showing the direction of each force.
(Read the problem carefully.)

(b) Write down—but do not solve—the equations
from Newton’s second law for motion along and
perpendicular to the ramp

(c) Now solve your equations from part (b) to find the
acceleration of the crate.

(d) If you stop pushing, does the crate slide down the
plane? (Show your work in answering this.) If so,
find the acceleration.

A block of mass M is attached to a light cord and spun

clockwise in a vertical circle at constant speed. At

the top of the circle the tension in the cord is equal to
three times the weight of the block.

(a) Draw a free-body diagram for the block at the top
of the circle

(b) If the radius of the circle is 0.75 m and the mass
of the block is 2 kg, find the speed of the block

(c) If the cord were to break when the block is at a
point along a horizontal diameter while moving
upward, describe in words the trajectory of the
block and calculate the maximum height the
block will reach.

A 50,000 N truck exits a highway at 50 mph onto a

2.5° banked exit ramp which makes a semicircle of

250 m radius, slowing at constant deceleration to

20 mph by the end of the ramp.

(a) What is the tangential acceleration of the truck on
the ramp?

(b) What is the net acceleration at the beginning and
end of the ramp?

(c) What is the required frictional force on each of the
truck’s eight tires to keep it traveling on the road
at the beginning and end of the ramp?
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A Ferris wheel of 15 m radius rotates at 2 rpm. Find
the normal force from the seat on a 50 kg boy when
he just passes a point at the height of the wheel axis
on the way up.
How long will it take for a 5 S protein to completely
spin to the bottom of a 5 cm centrifuge tube filled
with solution when spun at 500,000 gs? Express your
answer in hours.
Find the centripetal force acting on a 42 kDalton
(1 Dalton = 1 g/mole) protein molecule spinning at
50,000 rpm and located a distance of 8 cm from the
axis of rotation. If the protein has a net radial force
directed inward, toward the axis of rotation, why does
it slowly migrate outward toward the bottom of the
centrifuge tube? Explain this as carefully as you can.
Calculate the sedimentation coefficient in water for
(a) A spherical cell of 3 wm radius.
(b) A spherical (or globular) macromolecule of 3 nm
radius. Assume that the density of each is 1.05 g/cm?.
(c) Calculate the number of g’s required in a cen-
trifuge if the cells are to be sedimented through
2 cm in 5 min.
(d) Similarly, calculate the number of g’s required to
sediment the macromolecule at a rate of 1 mm/h.
An amusement park thrill ride consists of a cart with
some riders (of total mass 500 kg) that is set in motion
by a large spring with spring constant 800 N/m. The
cart travels along the flat horizontal section of track
that is located 15 m above the ground and then down
the ramp toward the loop-the-loop which has an
unknown diameter. The entire track is frictionless.

k =800 N/m

500 kg

(a) If the spring is initially compressed by 3 m, what
is the speed of the cart as it leaves the spring?

(b) What is the speed of the cart at the bottom of the
ramp before the loop-the-loop?

(c) If the speed of the cart at the top of the loop-
the-loop is 8.55 m/s, what is the diameter of the loop?

(d) How much work was done by gravity on the cart
as it traveled from the bottom of the loop-the-loop
to the top?

(e) Suppose that the horizontal section of the track at
the top were not frictionless, but that a frictional
force was present, with a coefficient of kinetic
friction of 0.20. What would the speed of the cart
be as it left the spring?

MoTiON, FORCES, AND ENERGY IN MORE THAN ONE DIMENSION



Momentum

In this chapter we begin our study of more realistic systems in which the objects are no
longer point particles but have extension in space. Up until now we’ve generally limited
ourselves to the dynamics of point masses, first in one dimension and then generalized to
two and three dimensions. Indeed, not all of the problems we studied were limited to point
masses, but the object’s size and shape were not relevant in the problem and so were not
considered. For such objects we’ve learned how to describe and predict translational
motion using Newton’s laws, some of the complications due to frictional forces, and the
important concept of energy. In general we can divide the motion of real extended bodies
into two parts: translational motion, described by following a particular average coordi-
nate of the object, known as its center of mass as it moves about, and all other motions
with respect to this point. This chapter focuses on translational motion of systems, or col-
lections of objects, and the following chapter deals with rotational motion.

We begin this chapter by introducing the important concept of momentum. As
we’ve seen, all forces come in pairwise interactions. When studying the interactions
between different objects, it turns out that we can re-formulate Newton’s second law
in terms of momentum. If the system we are studying is “isolated”—meaning that it
does not interact with the outside world—then our reformulation is particularly sim-
ple and leads to a new fundamental law, the law of conservation of momentum. After
seeing this for a system of two particles, we next define and learn how to compute
the center of mass of a system, that special average point of a system at which all its
mass appears to be concentrated in order to explain the net translational motion of the
system. The last section of the chapter shows how to reformulate the dynamics of
translational motion of any system in terms of the center of mass momentum. Here
we also see the general formulation of conservation of momentum.

1. MOMENTUM

Thus far in our discussions of dynamics we have focused on forces as the origin of
motion according to Newton’s laws. There is a very useful alternative approach based
on momentum that we wish to develop in this chapter. Very often this alternative
approach is to be preferred because it does not hinge on the specific forces or interac-
tions between objects, which are usually unknown or only incompletely understood. In
this section, we first introduce momentum, the basic quantity used in this approach, for
a particle. Then we reformulate Newton’s second law using momentum and show how
this leads to the conservation of momentum principle for a collection of particles. Later
in this chapter we generalize this approach to arbitrary collections of extended objects.

An object of mass m traveling at velocity v has a linear momentum (or just
momentum) p, given by

p=mv. (6.1)
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© Springer Science+Business Media, LLC 2008

MOMENTUM

139



Newton’s second law for an object can be
written in terms of momentum as

F _9
net dt

Using the definition of p (Equation (6.1))
and the product rule for derivatives, we can
write this as

d(mv) dv  _dm

cL dr a U dr

F
1

In the case when the mass is not changing
the last term vanishes and using the defini-
tion of acceleration we get the usual form
of F’net = ma. In cases where the mass is
changing (e.g., a rocket ejecting substantial
amounts of fuel), the full expression is
needed and this form of Newton’s second

law is the correct expression.

Note that momentum is a vector quantity, defined as the product of the
mass, an intrinsic property of the object, and its velocity, a quantity depend-
ing on its motion. It has units of kg-m/s, which have no other special name.
Clearly, based on Newton’s first law, a particle with no net force on it will
maintain a constant momentum. When the particle feels a net force, due to
some interaction, its momentum will change with time. Also clearly, based
on Newton’s second law, the larger the interaction (force) acting on the par-
ticle, the greater will be the change in its momentum.

How does the momentum of a particle contrast with its velocity? First,
we note that both of these quantities are vectors, in fact with the same direc-
tion. If we compare two particles of different mass traveling at the same
velocity, the one with larger mass will also have proportionally larger
momentum. For example, a truck with four times the mass of a car, both
traveling at the same speed along a highway, has four times the momentum
of the car, in accord with our colloquial usage of the word momentum. On
the other hand, if the same truck is traveling at only 1/4 the velocity of the
car, then both vehicles have the same momentum.

How does the momentum of a particle contrast with its kinetic
energy? Now, note that these are very different quantities, with kinetic
energy a scalar and momentum a vector. A particle with a given mass will
have its momentum doubled if its velocity doubles, but will have its
kinetic energy quadrupled in that case. Kinetic energy is produced by
doing work on a particle, as we’ve seen in the work—kinetic energy theo-

rem. How is momentum produced? Well, clearly they are related, but the direct answer
is that momentum is produced by forces acting on the particle as we now show.

Newton’s second law for an object can be written in terms of its momentum by
noting that ma is defined as

We therefore find that

- o Amy . Ap
ma = lim = lim—.
Ar-0 At Ar-0 At
= ) Aﬁ
Free = im5r ©.2)

This is actually the form that Newton proposed for the second law and is more
general than the form F = ma, because it allows for cases in which the mass of an
object may change with time. Such a situation might arise when mass is either
being added or removed from the object over time (see the boxed discussion). For
example, a rocket burns fuel and decreases its mass by ejecting the waste gases or
the mass of a boat that is drifting by a pier may suddenly increase when you jump
into it. In both of these cases our original form of F' = ma does not apply because
the mass is changing.

Example 6.1 An E. coli bacterium of mass m = 6 X 10716 kg is initially swim-
ming at a constant velocity of 8 wm/s toward the east. One ms later it is found
to be swimming at 10 pwm/s toward the north. Find the change in the E. coli’s
momentum and the average external force acting on the bacteria during the 1 ms
time interval.
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Solution: It is very tempting to write that the change
in the bacterium’s momentum is the product of its
mass and the change in its speed (10 — 8) = 2 pwm/s.
This temptation must be strongly resisted because it
is the change in the velocity vector that is appropriate
and this is not a one-dimensional problem. Figure 6.1
shows a vector diagram for the initial and final
momenta and the change in momentum of the bac-
terium. From the figure it is clear that the change in
momentum is found from the hypotenuse of the trian-
gle formed so that

FIGURE 6.1 Vector sub-
traction for Example 6.1.

Ap=mV 2 +2 =6 X 10716V (8 X 10-6)2 + (10 X 10-6)2

ini
=77 X 10727 kg-m/s

The direction of this momentum change is given by

8
0 =tan" [ — | = 39°
an <10> 9

where the angle 6 is measured west of north as shown in the figure.
The average force acting over this interval of time is then given by
Equation (6.2) (without the limit) and is found to be

= Ap 7.7 X 10727
F=l=7=7.7XIO_Z4N
At 1073

in the same direction as the momentum change.

Example 6.2 The fastest passenger elevator in the world (in a 70-story building
in Yokohama, Japan) attains a maximum speed of 12.5 m/s (28 mph) taking pas-
sengers from the ground to the top floor in 40 s. Find the maximum change in
your momentum if you were to ride in this elevator. What is the net change in
your momentum for the entire trip?

Solution: The maximum change in your momentum would occur during the
acceleration or deceleration phase of the ride. Assuming your mass to be 80 kg,
during the acceleration phase your momentum would increase from zero to p =
(80 kg) (12.5 m/s) = 1000 kg m/s, so that your maximum change in momentum
would just be 1000 kg m/s. For the entire trip to the 70th floor your net change
in momentum is zero because both your starting and ending momentum are zero.

Suppose that two otherwise isolated point particles undergo a collision. We
would like to understand what occurs and be able to predict the outcome. When far
enough apart, the two particles move independently and do not interact. They will
each have some momentum and if they are to collide must be moving along a line
connecting them; let’s call this the x-axis and we see that this problem for two-point
particles is really one-dimensional. Momentum is a particularly useful concept in this
situation, as we show. Suppose that particle #1 has momentum p, and particle #2 has
momentum p,, both directed along the x-axis. For them to collide they must be mov-
ing toward each other, but they might both be moving in the same direction with one

MOMENTUM

141



FIGURE 6.2 Even two colliding
galaxies conserve momentum.
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particle “catching up” to the other, so let’s label the momenta as both positive for this
discussion.
If we write Equation (6.2) for each of the particles we have
- Ap - Ap
1 )
and F|  , = A

F2 onl At
where the only force on each particle is from the other one. These forces need not be
contact forces acting only during a (macroscopic) contact between the two particles,
but can also be long-range forces acting over long distances. Now, using Newton’s
third law, we know that these two forces are reaction-pair forces and are always equal
and opposite to each other. We can conclude then that because the vector sum of the
two forces always adds to zero, we must have at all times that

(6.3)

Ap, A1_52 ) -
A7 + Vil 0 or A7 =0 or A(p,+py =0. (6.4)

For this to be true it must be that the net momentum of the two particles remains
constant with time. We say that, in this situation, momentum is conserved. We have
specifically written these last few steps using vectors and in a general way to show
the power of the law of conservation of momentum, even though our current exam-
ple is one-dimensional. All we have used in this derivation are Newton’s laws (specif-
ically the second law written in terms of momentum and the third law) and the fact
that the particles were otherwise isolated, not interacting with any other objects.
Thus, we really have proven that any two isolated objects, not necessarily point par-
ticles, that collide will have a total momentum that remains constant (Figure 6.2).
Furthermore, even if there are external forces acting on the two particles, as long as
there are no external forces acting along the direction of their motion, momentum
will still be conserved. For example, momentum will be conserved for horizontal
(frictionless) motion of two colliding objects even though gravity may act vertically.
We show this in a couple of examples just below.

What does this tell us about the interactions between the two particles and the
outcome of the collision? The beauty of this formulation is that the outcome is inde-
pendent of the interactions; we do not need to know anything about the details of the
interaction in order to predict something about the outcome. All we need to know is
contained in Equations (6.3) and (6.4). During the collision the two objects will exert
equal and opposite forces on each other for some period of time. If the collision
involves short-range forces, so that the collision time At is short, then the product of
the (typically) large force on one particle from the other and the short collision time
is called the impulse,

Impulse = FAt = Ap = pgo — Pinitial- (6.5)
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The impulse represents the “net effect” of a collision between two objects. It
lumps together the acting force and its duration into a single parameter that is able to
predict the change in momentum of the particle due to the collision. Figure 6.3 shows
a plot of a typical interaction force on a particle as a function of time during a colli-
sion. The impulse represents the area under this curve, equal to the average force act- F
ing multiplied by the duration Ar.

Suppose, for example, the two objects are identical, with the same mass m, and
are traveling toward each other at the same speed v. Then, although each object has
momentum myv, the net momentum before the collision is, in fact, zero. Do you see
why? (Remember that momentum is a vector!) In this case, conservation of momentum FIGURE 6.3 Typical force acting on
predicts that the final momentum must be zero as well. There are two possible final sit- @ Particle during a collision. Usually

. . . . the force is large and short-lived.
uations for which the final moment}lm can be zero. In one case the two particles Stick 145 2rea under the curve equals the
together and come to rest, whereas in the other case they bounce off each other and 20 jmpuise, which is also equal to the
off in opposite directions with the same magnitude of momentum that they had, and product of the average force and
thus at the same speed. Although both of these situations conserve momentum, they the collision duration because the
differ in whether they conserve kinetic energy. The two particles that stick together and &€ under the rectangle equals that
come to rest clearly have lost their kinetic energy, giving it up to other forms of energy under the force curve.
such as sound and heat, because we know that ultimately energy must be conserved.

In more complex situations with two unequal mass objects traveling at different
speeds, the algebra becomes a bit more involved and the possible outcomes will
depend on whether kinetic energy is conserved. We do not dwell on these situations
in detail, but simply point out that conservation of momentum offers a major addi-
tional tool in their study. In the third section of this chapter we generalize our for-
mulation of conservation of momentum to more complex systems. A few examples
should help you to appreciate the power of this new conservation law.

At t
<>

Example 6.3 A 60 kg boy dives horizontally with a speed of 2 m/s from a 100 kg
rowboat at rest in a lake. Ignoring the frictional forces of the water, what is the
recoil velocity of the boat?

Solution: Since there are no external horizontal forces acting (we have ignored
the frictional resistance force of the water here), momentum is conserved as the
boy dives off the boat. Because the initial momentum of the (boy + boat) sys-
tem is zero, the total momentum immediately after the boy dives off the boat
must also be zero so that the boy and the boat must have equal, but oppositely
directed, momenta. Note that it is the momenta that must be equal and opposite,
not the velocities. In equation form

P =P, with P =0 and P =P +P
ini fin i fin b

ini oy boat
We therefore have that

0 = (60 kg) (2 m/s) + (100 kg) vy,

so that the boat’s recoil velocity is found to be 1.2 m/s in the direction opposite
to the boy’s velocity.

Example 6.4 Two ice skaters, both traveling at a speed of 5 m/s and heading
straight toward each other, collide and lock arms together. If their masses are 80 g
and 50 kg, find the velocity with which they move together after the collision.

(Continued)
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Solution: There are no horizontal external forces acting, so therefore momentum is
conserved and we know that the sum of the skaters’ two initial momenta is equal to
their combined final momentum. Initially their momentum is P . = (80 kg) (5 m/s)

— (50 kg) (5 m/s) = 150 kg-m/s in the direction the 80 kg skater is traveling. When
they lock together, their combined mass is 130 kg and we must have that

Prip = (130 kg) v 5, = Py = 150 kg-mis,

so that vy, = 1.2 m/s in the direction the heavier skater was traveling.

In Example 6.3 we ignored the fluid medium and its frictional force. The sur-
rounding fluid medium is often of primary importance. Let’s turn our attention to the
problem of animal locomotion and, in particular, the motion of sea creatures such as
the squid or jellyfish. These creatures, and indeed all animals that swim or fly
through a fluid medium, move by virtue of reaction forces provided by the surround-
ing fluid medium. The jellyfish propels itself by jet propulsion, ejecting a volume of
water in a jet that provides a thrust force in the opposite direction. Fish and birds gen-
erate thrust in a more continuous fashion by pushing back on the fluid medium with
fins or wings (Figure 6.4). In any case, we can analyze such locomotion in either of
two ways: a difficult method using the detailed reaction forces or much more easily
using momentum.

Let’s discuss the jet propulsion of a jellyfish in order to derive an expression for
the thrust propelling it. We can model the jellyfish as a balloon that fills with water
and then collapses driving water out in a jet (Figure 6.5). Let the initial mass of water
contained within the balloon be m, and suppose that the collapse results in a uniform
rate of decrease of the mass, Am/Az. Then the rate at which momentum is ejected
from the balloon will be

Ap _ Am
A At

where we assume a constant velocity for the jet of water expelled. By Newton’s sec-
ond law, the rate of momentum ejection provides a net force, known in this context
as the thrust. If we take the initial volume of the jellyfish to be that of a 0.1 m radius
sphere filled with water of density p = 1000 kg/m?, then my = (volume) (density) =
4/37r3p = 4.2 kg of water. If this water is ejected in 1 s through a 1 cm radius circular

FIGURE 6.4 Bird, rocket, or fish, propulsion is by thrust, a reaction force, that conserves
momentum.
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aperture, then we can first calculate the velocity of water flow.
This is found by assuming that the total volume of water flows
out in a cylindrical jet whose length is proportional to the

velocity; that is, pAL = m, where L = vt. Knowing the mass thrust
m, density, cross-sectional area A = (.01 m)?, and time
t = 1s, we can calculate the water velocity to be v = 13 m/s
first, and then
P Am
=—V
At
volume V

to find about 55 N of thrust is generated. This is actually a
greater force than the weight of the initial water contained in
the balloon. A similar analysis can explain the thrust of a
rocket or that of a bird, but a realistic analysis will be more
complex because of the nonconstant velocities involved in the
problem.

FIGURE 6.5 Model of a jellyfish as
a balloon.

2. CENTER OF MASS

The simplest systems are composed of a single point particle introduced in the pre-
vious chapters. Here we begin our systematic study of increasingly more complicated
systems of two particles, of many particles, or of a single extended object such as a
person. For any system there is a well-defined point, the center of mass, at which the
entire mass of the system can be considered to be concentrated in order to understand
its translational motion.

A rough analogy to finding the center of mass can be made to locating the pop-
ulation center of the United States. Rather than weighting locations by their mass,
they are weighted, in this case, by their local populations. This two-dimensional
problem on a map could be attacked in a number of approximate ways, one of which
we illustrate. Using census figures for the state populations and choosing some
appropriate location as the population center within each state (e.g., by specifying lat-
itude and longitude of its largest city) one could find the U.S. population center by
separately averaging the latitude and longitude of the states, weighting each by its
population. Thus California, Texas, and New York, together with more than one third
of the U.S. population, dominate in the calculations and we expect to find a popula-
tion center somewhere in the Midwest, even though the Midwest population is not
particularly large. This example illustrates the notion of weighting locations by a
local property or characteristic.

To introduce the definition of center of mass consider two particles of masses
m, and m, attached by a light (massless) rod of length L as shown in Figure 6.6. If
this system were tossed into the air it would translate and rotate about before land-
ing on the ground. One special point, the center of mass of the system, would travel
in the same trajectory as a single particle of mass (m; + m,) launched with the
same initial velocity (we show this in the next section). Qualitatively this point can
be imagined to be determined by finding the balance point along the rod. That is,
imagine moving your finger along the rod until you can balance the rod with its
masses on either end. That point is also the center of mass. For example, if m|; = m,
the center of mass would be located in the center of the rod at a distance of L/2
from either end. If m; > m,, then the balance point would be closer to m, but how
much closer? +—

Because the balance point in Figure 6.6 will be closer to the more massive parti- Q—Q
cle, we want to define the center of mass as an average position of the two particles, m, m,
with more massive particles counting more in the averaging process. We therefore  FIGURE 6.6 Two masses separated
define the center of mass along one dimension, x_, relative to an arbitrary origin, as by a light rod.
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L (%)x N (%)x 66)
cm ml + m2 1 ml + m2 25 .

where x; and x, are the x-coordinates of masses m and m,, respectively.

Example 6.5 Find the center of mass of the Earth-moon system given that
the mean radius of the Earth is 6.37 X 10° m, the mean radius of the moon is
1.74 X 10° m, the Earth-moon mean separation distance is 3.82 X 108 m, and
that the Earth is 81.5 times more massive than the moon.

Solution: The Earth-moon separation is so much larger than the radius of either;
therefore we can treat both bodies as point masses for the purposes of this cal-
culation. With an origin at the center of the Earth (see Figure 6.7), we can write

M, [ >

=

FIGURE 6.7 The Earth-moon system.

_M(0)+ ML) 1
T M, + M,

X M L=0.012L =463 X 10°m.

€

1+

=

Thus, the center of mass of the Earth-moon system actually lies within the
Earth.

We can generalize this definition in a straightforward way to systems of more
than two particles by simply adding terms for additional point masses in both the
numerator and denominator in Equation (6.6). However, with more than two parti-
cles, the system need not be one-dimensional if the masses are not co-linear. In this
case we can also define the y- (and z-, if needed) components of the center of mass

in a similar way and combine them by writing r, = (x_., Yo [Zop])- Using the

summation notation that 3, indicates to sum over all particles in the system, we can

write (with a similar equation for z_ )

Yem = E(Tj)xi and Ve, = E(Z")yi, (6.7)

where M is the total mass of the system. The subscript i denotes a particular numbered
particle and the summation sign indicates that i is to be varied from number 1 to the
total number of particles in the system while performing the additions indicated.

Example 6.6 Find the center of mass of a water molecule using the following
data (Figure 6.8): radius of O = 0.14 nm, radius of H = 0.12 nm, bond length of
O-H bond = 0.097 nm, and H-H angle subtended at O = 104.5°.
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FIGURE 6.8 Space-filling models of a water molecule with
two different coordinate system origins.

Solution: We solve this problem in two different ways using two different coor-
dinate origins to see that the answer is independent of the chosen origin.

(1): In the first solution we set the origin on the O center and use the axes
shown on the left. In this case the atoms have their centers located at: O (0,0);
H (—0.097 cos 52.3°, = 0.097 sin 52.3°) = (—0.059, = 0.077), where the O-H
bond is the center-to-center distance and we have found the x- and y-components
of the H centers. We solve for the x- and y-coordinates of the center of mass (tak-
ing the masses of O and H as 16 and 1) by writing

16(0) + 1(—0.059) + 1(—0.059)
Xem = = —0.0066 nm,
16 +1+1

and

16(0) + 1(0.077) + 1( — 0.077)
Yem = 18 =0

where the zero value for y_ should be expected from the fact that the two H
atoms are symmetrically situated above and below the x-axis.

(2): Using the coordinates shown on the right in the figure the atoms have
their centers located at: O (0.097 cos 52.3°, 0.097 sin 52.3°) = (0.059, 0.077),
H (0, 0) and H (0, 2+ 0.097 sin 52.3°) = (0, 0.15). Using the same basic rela-
tions we write

16(0.059) + 1(0) + 1(0
Ton = ( ) ©) ( )20.053 nm,
18

and

_ 16(0.077) + 1(0) + 1(0.15)

Yem T = 0.077 nm.

Although these two answers appear at first glance to be different, the shift
in origins must be accounted for in comparing them. The origin on the right is
located at the point (—0.059, —0.077) with respect to the origin on the left and
if we compare the actual spatial location of the center of mass in both parts (by,
e.g., adding the origin coordinates on the right with respect to those on the left

(Continued)
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to the answers in part 2), we find identical results, indicating a unique spatial
location for the center of mass.

A different approach to the problem might be to first recognize that by
symmetry the y_ = must lie along the x-axis using the left set of coordinates in
Figure 6.8 and then to set up the problem as a two-mass system with the total H
mass located at x = —0.059 nm and the O mass at the origin. Try it.

In the case of a solid extended object, if it is uniform throughout and has some
symmetry we can often determine its center of mass by inspection, based on the
notion of a balance point that was qualitatively introduced with Figure 6.6. For exam-
ple, a uniform solid rod will have its balance point, or center of mass, at its geomet-
ric center. Even if an object has multiple parts, each of which is uniform throughout
and has some symmetry, we can reduce the problem to finding the center of mass of
a collection of particles, one for each part of the object with the mass of each part
located at the center of mass of that part. This is illustrated in the following example.

Example 6.7 The solid objects shown in the three figures below are all made
from the same uniform material and have the same thickness. In part (c) there is
a small hole in the larger circular plate. Find the center of mass of each object
using the coordinate system shown. Take R = 0.1 m and L = 0.05 m.

2R y
R
3 @ * @
£ @ >
R oL L 2R
e -

X 3L

a

L X e

FIGURE 6.9 Uniform solid objects for Example 6.7.

Solution: Because all the objects are made of a uniform material and have the
same thickness, their masses are simply proportional to their areas. This is true
because the mass m is equal to the product of the density p of the material, its
thickness ¢, and its area A, or

m = ptA.

Because both the density and thickness are constants, m X A, and further-
more, because in Equation (6.6) only the ratio of masses appears, we do not need
to know the thickness or density of the materials as they cancel and do not
appear in the final result. In what follows we therefore set the proportionality
constant simply equal to 1 and numerically equate masses and areas.

We proceed by replacing each regular shape with a point mass having the
same total mass as that portion of the entire object and located at its center of
mass (these are found by inspection because the shapes are highly symmet-
ric). Each problem then reduces to a set of point masses, all located in the
same plane. In part (c) we use a trick: let the hole have a negative mass
according to its size and superimpose the larger solid circular plate with the
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smaller circular plate of “negative” mass, thus canceling the mass within the
hole region!

In (a) we have the following three objects: M = 4R? = 0.04 located at (R, 3R) =
(0.1,0.3); M = wR*> = 0.031 at (R, R) = (0.1, 0.1); and M = @wR*> = 0.031 at (3R,
3R) = (0.3, 0.3). We then find that

_4R2(R) + mR2(R + 3R)

— @G,
om 4R + 2R .
and
_ AR GR) TR RA3R) _
Yem AR2+ 27 R? <o

In (b) we have three point masses: M = 2L? = 0.005 at (L/2, L) = (0.025,
0.05); M = 4L? = 0.01 at (2L, 2.5L) = (0.1, 0.125); and M = 3L? = 0.0075 at
(2L, 4.5L) = (0.1, 0.225). The center of mass is given by

2U2(L2)+412 (2L)+312 (L)

Xem oL = 0.083 m,
and
2I2(L)+4L% (2.5L) +3L2(4.5L)
V.. = =0.14 m.
em 912

In (c), using the trick mentioned above, we have two point masses: M =
7(2R)? = 0.13 at (2R, 2R) = (0.2, 0.2); and M = —mw(R/2)?> = —0.0079 at (2R,
3R) = (0.2, 0.3). Using the same method we find

RZ
47TR2 (ZR) - T Z (2R)
= =0.2m,
Fom 3.757R?
as expected, and
R2
47R?2 (2R) — m — (3R)
= =0.19 m.
Yem 3.757R>

This last number seems reasonable because with a hole cut out we expect y_
to be somewhat less than 2R = 0.2 m.

You should go through each answer, following all the steps, and see that the
center of mass position makes qualitative sense.

In the general case of nonuniform and/or nonsymmetric objects, the center of
mass can always be found experimentally by finding the balance point along three
mutually perpendicular axes, if possible, or by suspending the object separately from
three different points, drawing vertical lines from those points, and looking for the
intersection of the three lines (Figure 6.10). The reason why this latter method works
becomes clearer after we have discussed rotational motion, but the center of mass
must lie suspended vertically under the suspension point. Alternatively, one can use
more complex mathematics to calculate the center of mass position. We show a more
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FIGURE 6.11 (top) A good high
jumper has a center of mass that
actually goes under the bar in well-
defined two-dimensional free-fall
motion while his flexible body goes
over it. (bottom) An unmanned
Titan rocket explodes shortly after
takeoff in 1998. Despite fragment-
ing into many pieces the center of
mass continues in a well-defined
trajectory (see Example 6.8).

W d
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FIGURE 6.10 Node I, a part of the International Space Station, being readied (left) and
having its center of mass determined by suspending it from above.

direct experimental approach to finding the center of mass in the next section. There
we show that the center of mass translates about in space as if all external forces act
directly on the entire mass of the system located at its center of mass.

3. CENTER OF MASS MOTION: NEWTON’S SECOND LAW
AND CONSERVATION OF MOMENTUM

In the last section we learned how, in principle, to find the center of mass of any
object, and in practice, to find that point for a collection of particle masses or sym-
metric objects. Here we show that the translational motion of a
system of particles or an extended object is fully described by knowl-
edge of the center of mass motion. The main goals of this section are
to generalize Newton’s second law for a particle to a very similar
result for the center of mass of a system and to generalize the law of
conservation of momentum.

The derivation of the generalization of Newton’s second law to a
system of extended objects is straightforward using some calculus
(see box on the next page), but otherwise is cumbersome. The result-
ing Newton’s second law for a system is

Fnet,ext = EFext = Macm’ (6.8)
where the sum 3 is over all of the external forces acting on the sys-
tem, M is the total mass of the system (assumed constant; a system
that does not exchange mass with its surroundings is known as a
closed system), and Zicm is the acceleration of the center of mass. In
this expression the only forces that produce an acceleration of the cen-
ter of mass are forces exerted on the system by objects that are exter-
nal to the system, so-called external forces. All of the internal forces
between the particles of the system cancel pairwise because they are
equal and opposite according to Newton’s third law. This equation
also applies to extended objects because they can be considered to be
built up from particles. We conclude that the translational motion of a
system can be completely described by replacing the entire system by
a point mass with total mass M located at the system’s center of mass,

7..» With only external forces acting (Figure 6.11).
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As a byproduct of the derivation of Equation (6.8), we show (in
the box) that the total momentum of the system, the vector sum of the
individual particle momenta, is equal to the momentum of the center
of mass, or the product of the total mass M and the center of mass
velocity ch,

!

om = MV, = EPI., (6.9)
Thus an alternative way to write Equation (6.8), in terms of the cen-
ter of mass momentum, is

- AP
F = lim—. (6.10)
net, ext At-0 At

We see that the center of mass moves as if all the mass of the sys-
tem is located there and experiences the net external force on the entire
system. So, no matter whether the system is composed of a single
extended object (such as the high jumper of Figure 6.11) or many inde-
pendent parts (such as the exploded rocket in that figure), the center of
mass of the system moves in a well-defined trajectory based on the total
mass and the net external force on the system.

Written in this form we can deduce a very important consequence:

In the absence of a net external force on a system, the center of
mass momentum, or total momentum of the system, does not
change with time, and is said to be conserved.

This is a statement of the principle of conservation of momentum, a
very powerful and general result, which holds for all isolated systems,
those with no net external forces applied. It is a fundamental principle
that holds on every scale of distance: on the atomic or nuclear scale as
well as on the scale of the size of the universe. We saw a preliminary ver-
sion of this in the first section of this chapter for collisions between two
particles, but the principle is much more general than we saw there.

Conservation of momentum is the second of a handful of conserva-
tion laws that we study in this book. We have already learned the con-
servation of energy principle and seen its tremendous value as a tool in
understanding motion. Later on we demonstrate its value in all other
areas of physics that we study. Energy and momentum conservation are
two of the cornerstones of physics. Because the momentum of an iso-

A derivation of Equation (6.8): Starting
from a rewriting of Equation (6.6) for the
x-component of the center of mass

MX_ = ZmX,

we can differentiate both sides of the equa-
tion with respect to time to find

My, = Zmy,
or
P, = Z2p,

where ﬁcm and P ; are the momentum of the
center of mass and the individual particles.
Thus we see that the center of mass momen-
tum is equal to the total momentum of the
system of particles. If we further differenti-
ate this equation with respect to time we have

Ma,, = dP,,/[dt = Sdp /dt = SF,

et

where we have used Newton’s second law
for each particle, assumed that the total
mass of the system is constant, and F' e is
the net force on the ith particle. To com-
plete the derivation of Equation (6.8), we
note that the forces on particle i are of two
types: external, arising from objects outside
the system, and internal, arising from other
particles in the system. These latter internal
forces cancel pairwise in the summation
because a force on particle 2 from particle
3 is equal and opposite to the force on par-
ticle 3 from particle 2 and all possible pairs
of forces will be summed. The final result
is Equation (6.8). Newton’s law can be gen-
eralized still further to a system of extended
objects with no change to Equation (6.8).

lated system is constant, if we compute the total momentum at any time, its value at any
other time will be the same vector, namely the same value and in the same direction. Just
as with energy conservation, we can use our knowledge of the situation at one instant of
time to find the total momentum, which will remain constant as long as there are no
external forces acting. On the other hand, unlike energy conservation, momentum is a

vector and therefore a direction as well as a magnitude is fixed in time.
We note that the kinetic energy of a particle KE = jmy?

can in fact be rewritten in

terms of the particle’s momentum in place of its velocity. Using the definition of the
magnitude of the momentum p = mv, we have that KE = p*2m. You need to keep in
mind that although the kinetic energy, a scalar, can be written in terms of the square of
the particle’s momentum, the conservation laws of energy and of momentum are two
different laws that keep different quantities constant. For a closed system (one with no
exchange of mass with its surroundings) with no external forces acting, the total, or cen-
ter of mass, momentum will be conserved as will the total mechanical energy. However,
the kinetic energy of the system may change because it can be exchanged for potential
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energy within the system. In the first section of this chapter we saw a few examples
of the application of momentum conservation to the collision between two objects.
Two quite different examples should help to provide an appreciation for the power of
the conservation of momentum principle.

Example 6.8 A rocket of mass M explodes into three M
pieces at the top of its trajectory where it had been v
traveling horizontally at a speed v = 10 m/s at the v
moment of the explosion. If one fragment of mass V‘?’ =

: Y ——
0.25 M falls vertically at a speed of v, = 1.2 m/s, a V2
second fragment of mass 0.5 M continues in the orig- FIGURE 6.12 The rocket
inal direction, and the third fragment exits in the for-  before (top) and just after
ward direction at a 45° angle above the horizontal (see  (bottom) the explosion of
Figure 6.12), find the final velocities of the second and ~ EXample 6.8.
third fragments. Also compare the initial and final
kinetic energies to see how much was lost or gained.

Solution: Although the rocket is not an isolated system, the forces in the explo-
sion are assumed to be so much greater than the weight of the rocket that we can
neglect gravity at the moment of the explosion. This situation is very similar to
that of any collision in which two objects interact very strongly for a very short
time as, for example, when a tennis racket hits a ball. In all such cases we can
neglect gravity during the collision and treat the system as isolated. Therefore
the initial momentum of the rocket P, ; = Mv in the horizontal direction must be
conserved during the explosion and the sum of the momenta of the three frag-
ments must add up to exactly this same P, ; value. Using vector addition, we can
write that conservation of momentum in the horizontal direction implies

1 1 o
My = EMV2 + ZMV3 cos 45

where the velocities are labeled as in the figure. Note that the first fragment falls
vertically and does not contribute to this equation for the horizontal momenta.
Conservation of momentum in the vertical direction gives a second equation

1 o
OZZ VI—Z Vysin 45 -

Substituting that v, = 1.2 m/s, we find first, from the second equation above
after canceling the common factor M, that

1.2
V3 = 5 = 1.7 II]/S,
sin 45
and then, on substitution into the first equation above, that

10 = 0.5v, + 0.25+1.7cos 45°,

so that v, = 19 m/s.
The initial kinetic energy is KE; = %mv2 = 50 M, and the total final kinetic

energy is KE, = 5 (M/4)(1.2)> + 3 (M/2)(19)* + 5 (M/4)(1.7)> = 90.8 M, both
measured in J with M in kg. The kinetic energy has increased by over 80% with the
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excess coming from the chemical energy released in the explosion. Kinetic energy
alone is not conserved in this example, but momentum is. On the other hand, the
general principle of conservation of energy is obeyed with the total mechani-
cal, chemical, and other sources of energy remaining constant for the rocket.

In the above example we’ve seen how in an explosion we can use conservation
of momentum to learn about the motion of the final pieces. Similarly in a collision
between objects we can use conservation of momentum during the collision to
learn about the final motions of the objects after collision. For microscopic objects
that interact during a collision, of say atoms, the forces are all conservative and the
collisions, aside from conserving momentum, tend to be elastic, conserving energy
as well. In most cases of macroscopic objects colliding, the collisions tend to be
inelastic, so that energy is lost (or gained in the explosion of the last example) even
though momentum is conserved during the collision. The next two examples illus-
trate some of these possibilities.

Example 6.9 A hockey puck of 0.5 kg mass traveling at a speed of 5 m/s collides
with an identical stationary puck in a glancing (not head-on) collision. If the first
puck is deflected by 30° and travels with a final speed of 3 m/s, find the final
velocity of the puck that was hit if it moves off at a 45° angle as shown. Ignore
any friction between the ice and pucks.

Oo— o o

before O\
afte

T

Solution: Because there are no external horizontal forces acting, momentum is
conserved. With the initial direction of motion chosen as the x-axis, the initial
momentum is only

piy = mvy = (0.5)(5) = 2.5 kg ms.

After the collision, both pucks have x momentum (components of their
momentum vectors) that must add up to the initial momentum as

2.5 kg m/s = (0.5 kg)(3 cos 30 m/s) + (0.5 kg)( v cos 45),

where v is the final velocity of the second puck. Solving for v we find v = 3.4 m/s.
Notice that energy is not conserved in this collision because the initial KE =
1/2 (0.5)(5)> = 6.25 J, whereas the sum of the final KE = 1/2 (0.5)(3)> + 1/2
(0.5)(3.4)? = 5.1, amounting to a loss of about 18% of the initial KE.

Example 6.10 Suppose one proton moving with a speed v, collides with a sec-
ond proton initially at rest. If one of the protons emerges at a given angle ¢ from
the incident direction, find the speeds of both after the collision and the angle 6

(Continued)
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at which the second proton emerges from the colli-
sion. Work this out in general and then take v, = 10°
m/s and ¢ = 30°.

Solution: We are searching for three unknown quanti-
ties, and so require three independent equations. We
work this problem out without substituting in numbers so that we can learn about
the general case. These equations can be obtained from conservation of momen-
tum (two equations, one for the incident direction, say x and one for the direc-
tion perpendicular to that, say y) and conservation of energy.

Conservation of momentum in the x-direction gives

Doy = MVy = Py, = MV, cos 6 + mv, cos ¢, (1)

where m is the proton mass, and v, and v, are the protons’ final velocities.
Conservation of momentum in the y-direction gives

Poy = 0 = mv,sin ¢ — mv,sin 6. 2)

Energy conservation gives us the equation

1 1
Emv% = Emv% aF Emv%. 3)

We now have our three equations in three unknowns—this was the physics
part of the problem—and the remainder of the problem is to solve for them alge-
braically. This is a bit complicated, so follow closely. First we can cancel all
the m’s in all three equations and if we then solve for v,cos 6 and v,sin 6 in
Equations (1) and (2) we have

Vv, €08 6 = vy — v, cos ¢,
and
V,sin 0 = v, sin ¢. “4)

We can then square each of these and add them together to find, using sin? 6 +
cosZ @ = 1, that

vi= (vy— v cos ¢?) + (v,sin )%,
but from Equation (3), after canceling 1/2 m from each term, we have that
vi=vi+ vi= vi+ (vy— v cos $)? + (v;sin)>
Expanding out the terms in parentheses and combining again we have
vi=2v2+ v3—2v,v, cos .
Simplifying this, we have
2v; (v; —vgcos @) =0,

which has the solutions v, = 0 or v; = v cos ¢. The solution v, = 0 gives
v, = *v, indicating a head-on solution in which one proton stops and the
other goes on in the forward direction (we must reject the negative solution
for v, as unphysical.) The other solution, from Equation (3), gives v, =
= vysin ¢. In that case to find ¢, after substitution for v, in Equations (4) we
have that
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v, €08 0 = vy — vycos? d = v, (1 — cos? ) = v, sin® ¢
and
Vv, sin 6 = v, sin ¢ cos ¢.

Dividing these equations we find that

tan 0 = 1/tan ¢.

Therefore, given an angle 6 for the first proton, the second emerges such that
6 + ¢ = 90°. In our case, if v, = 10% and ¢ = 30°, we find v, = 8.7 X 10° m/s,
vy =5.0X 10°> m/s and 6 = 60°. You can check these by direct substitution into
Equations (1)—(3), after canceling m.

In this chapter we have learned how to describe the translational motion of a sys-
tem of extended objects using the center of mass and momentum conservation. In gen-
eral such systems will have two other types of motion: overall rotational motion and
internal motions. Internal motions include all relative motions of portions of the system
other than overall rotational tumbling, including shape changes as well as vibrational
motions. We come back to this topic much later in the book in discussions on the struc-
ture of matter. Rotational motion is taken up in detail in the next chapter.

CHAPTER SUMMARY - -
The momentum of a particle of mass m is defined as X = E<Ml> x, and y, = E<A/[l>yi' (6.7)

P =my. 6.1)
Then for a system of such masses, Newton’s sec-

) ) o ) ond law can be shown to be
Using this definition, we can write Newton’s sec-

ond law for the particle in terms of its momentum as

—

Fnet, ext = EFext = Macm’ (68)
= _Ap
Fog = E{%E (6.2) or written in term of momentum, as
If two particles interact in the absence of any exter- F — 1im APey (6.10)
nal forces, then their total momentum is conserved, net.ext — Arg Ap ’

meaning that it will remain a constant in time.

A useful concept in discussing collisions is the
impulse, defined by the product of the collision force
and its duration, and shown to equal the change in
momentum of the object:

In the case of an isolated system, with no external
forces acting, the center of mass momentum, equal to
the total momentum of the system, is conserved:

Ptotal = constant. This is a vector equation and, in

general, stands for the three independent equations for
Impulse = FAt = Ap = pgo 1 = Pinitiar- (6-5) which each component (x, y, and z) of momentum
remains constant.

For a collection of masses m; each located at
(x;, y;), with total mass M, we define the center of mass
to be located at the point
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QUESTIONS

1.

What are the differences and similarities between
momentum and velocity? Between momentum and
kinetic energy?

Is it possible for the center of mass of a solid object
to lie physically outside the object? Give an example
or two to support your assertion.

For uniform (constant density) objects, is it true that
the center of mass must lie along a symmetry axis, if
there is one? Give some examples.

Explain, in your own words, why only external forces
result in a change in the center of mass momentum of a
system of interacting particles or an extended object.
Carefully define an isolated system. Give some exam-
ples and explain why it is that momentum is only con-
served for an isolated system.

Is a rocket traveling in outer space an example of an
isolated system? If so, how can the rocket change its
momentum if it is to be conserved?

Two identical twins of equal mass are ice skating toward
each other at the same speed. What happens when they
collide? What happened to their momentum?

In a collision of a tennis ball with a racket, why
should the tension in the strings of the racket be made
as large as possible?

When a collision between two objects occurs and
there is a net change in the momentum of one object
there are very large forces acting for a very short
time. The product of the average force on the object
during the collision and the duration of the collision
is called the impulse. If a tennis ball of mass m and
velocity v bounces off a wall and rebounds with the
same speed, what is the impulse on the ball? Why
does a new tennis ball bounce higher than an older
tennis ball when dropped from the same height?

MULTIPLE CHOICE QUESTIONS

1.

A 3 kg mass has position coordinates (—2, 2 m) and a
1 kg mass has position coordinates (3, 0 m). The cen-
ter of mass of this system has coordinates (a) (1, 2 m),
() (=3, 6 m), (c) (—0.75, 1.5 m) (d) (0, O m).

A 2kg mass is at x=0m, y = +2m, and a 3 kg
mass is at x =2m, y=0m. The x- and y-
coordinates, respectively, of the center of mass of this
system are (a) +6/5 m, +4/5 m, (b) +2/5 m, +2/5 m,
(¢)0,0m, (d) +2 m, +2 m.

A 5 kg bowling ball with a center of mass velocity of
4 m/s strikes the padded end of the bowling lane and
comes to rest in 0.01 s. The average force exerted on
the ball is (a) 400 N, (b) 2000 N, (¢) zero, (d) 500 N.

Questions 4 and 5 refer to a car weighing 900 N that is
heading north at 14 m/s. It makes a sharp turn and heads
west at 18 m/s. During the turn, a good luck charm hang-
ing from the rear view mirror is angled from the vertical
for a total of 5 s.
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10.

The magnitude of the average force on the car during

this time is (a) 720 N, (b) 73 N, (c) 420 N, (d) 210 N.

The direction of the average force on the car during

this time is (a) 38° S of W, (b) 38° N of W, (c) 52° S

of W, (d) 52° N of W.

An 80 kg man and a 40 kg girl are skating on smooth

level ice. Initially, they are in contact and at rest. The

man pushes the girl away from him with a force of 30 N.

Immediately after they are no longer in contact the

girl’s speed is 2 m/s. At the same instant the man’s

speed (a) must be zero, (b) must be 2 m/s also,

(c) must be 1 m/s, (d) depends on how much force the

girl exerts on the man.

A 40 kg boy is standing on a 5 kg skateboard at rest.

If he jumps off with a horizontal velocity of 1 m/s,

neglecting friction the recoil velocity of the skate-

board is (a) 1 m/s, (b) 0.1 m/s, (c) 0.03 m/s, (d) 8 m/s.

A 50 kg astronaut in orbit can give a 10 kg wrench a

speed of 10 m/s by throwing it. The speed the astro-

naut will recoil with after doing so will be (a) 0 m/s,

(b) 2 m/s, (c) 10 m/s, (d) 50 m/s.

In a head-on collision between a seagull and a jet

airplane

(a) The momentum of the airplane is exactly
conserved.

(b) The total kinetic energy is exactly conserved.

(c) The magnitude of the change in momentum of the
seagull divided by the collision time equals the
magnitude of the average force on the jet.

(d) The total momentum is zero.

(e) None of the above is true.

A 0.1 kg meter stick has two masses attached: 0.3 kg

at 20 cm and a 0.4 kg at 100 cm. The center of mass

of the system lies at the following indicator on the
meter stick. (a) 57.5 cm, (b) 63.8 cm, (c) 65.7 cm,

(d) 70 cm, (e) none of the above.

PROBLEMS

1.

2.

Find the center of mass of the following sets of point

masses.

(@) A 2kg mass at x =5cm and a 5 kg mass at
x=—2cm

(b) Alkgmassaty =0and a4 kg massaty = 10 cm

(c) Three small objects each of the same mass m,
located at the following points (0,0), (0,10 cm),
(10 cm, 0)

(d) Point mass m at (0,0), point mass 3m at (0, 5 cm),
point mass 5m at (5 cm, 0) and point mass m at
(5, 5cm)

Using Table 6.1, find the center of mass of

(a) A person standing upright with hands at sides

(b) An outstretched arm and an arm bent upward at
the elbow by a right angle

(c) A person bent over so that there is a right angle
between her straight legs and upper body/head
and between her upper body and straight arms
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Table 6.1 Distances and Masses of Portions of the
Typical Human Body (Expressed as % of Total
Height and Mass)

Hinge Points Center of Mass

(from floor) (from floor) Mass
Neck 91.2 Head 93.5 6.9
Shoulder 81.2 Trunk/neck 71.1 46.1
Elbow 67.2 Upper arms 76.0 6.6
Hip 52.1 Lower arms 55.3 4.2
Wrist 46.2 Hands 43.1 1.7
Knee 28.5 Upper legs 42.5 21.5
Ankle 4.0 Lower legs 18.2 9.6
Feet 1.8 34

3. From the text discussion, you know that the center of

mass can be found through “balancing methods”, that
is, suspending an object from a point. This procedure
indicates that for three equal masses situated at the
vertices of an equilateral triangle, the center of mass
will be at the intersection of the three angle bisectors
of the triangle. From elementary geometry theorems,
it is known that the three angle bisector segments
intersect at a point that is 2/3 of a segment length
away from its angle vertex. Calculate the center of
mass for the mass arrangement shown and compare
its position to the intersection of the angle bisectors.

Note that because the height of the triangle is a 3/2,
the method is a physical manifestation of the theorem
that the bisectors of angles of an equilateral triangle
intersect at the center of mass of the triangle (usually
called the “centroid” by mathematicians). This is true
whether the physical triangle is constructed of sides
only, of similar and uniform cross-section, or if the tri-
angle is a uniform plate.

. Calculate the center of mass for three equal masses
situated at the vertices of a 3-4-5 right triangle.

. Calculate the center of mass for the arrangement of
three masses also situated at the vertices of a 3-4-5
right triangle, but where the masses are in the ratio
3:4:5, with the largest opposite the hypotenuse and
the smallest opposite the shortest side. Compare the
result with the previous problem.

. By symmetry, the center of mass of a uniform regular
polygon is at its center. Similarly, this is true for an
arrangement of equal masses situated at the vertices of
such a polygon. Where is the center of mass for each
of the arrangements shown, where only a subset of the
vertices of the polygon is occupied by masses? Make

QUESTIONS/PROBLEMS

sure you arrange the coordinate framework to take
advantage of any remaining symmetry. (Hint: Missing
masses can be represented as M — M = 0 mass, so that
the sum of a negative mass can be added to the situa-
tion with a full complement of masses at the vertices.)

L
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. Consider the three spherical masses shown. How far

b

.

to the right of m, should m; be so that the center of
mass of the entire arrangement is located exactly at
the position of m,?

my m, ms

Consider a uniform linear arrangement of ten masses,
that is, with equal spacing between, ranging from 1 to
10 kg, each 1 kg more than the previous. Where is the
center of mass of the assemblage?

Three uniform spheres of radii R, 2R, and 3R lie in con-
tact with each other from left to right in the order given
with their centers along the x-axis. Remembering that
the volume of a sphere is given by (4/3)m, find the
position of the center of mass of the three spheres as
measured from the left edge of the smallest sphere.
Find the center of mass of a screwdriver with the fol-
lowing characteristics: a wooden cylindrical handle
(density of wood = 0.5 X 103 kg/m?; cylinder length
and diameter = 10 and 2 cm) and a steel cylindrical rod
(density of steel = 7.8 X 10° kg/m3; 15 cm long and
0.5 cm in diameter, with an additional 3 cm flat uni-
formly tapered head with a triangular cross-section).
Three uniform rods (identical except for their lengths)
form the right triangle shown with coordinates measured
in meters.

y
0,3)
(0,0) 4,00 x
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12.

13.

14.

15.

16.

17.

(a) Replace each rod by an equivalent point mass at
its proper location, assuming a 1 m rod has a mass
of 1 kg. Show these in a figure.

(b) Solve for the x- and y-coordinates of the center of
mass using the given coordinate system.

A ball of 0.5 kg mass is dropped from rest at a

height of 1 m. What is its momentum as it hits the

ground?

A 0.1 kg ball bounces perpendicularly off a wall with

the same speed of 5 m/s that it hit the wall.

(a) What is the change in momentum of the ball when
it hits the wall?

(b) If the collision took 5 ms, what average force was
exerted on the ball?

(c) Did the wall change its momentum, and if so, why
doesn’t it move?

Tennis pros can often serve the ball at speeds in
excess of 125 mph. High-speed photography shows
that the racket and ball make contact for about 4 ms.
Find the average force that must be exerted on the ball
to serve it at 125 mph. Use a mass of 0.05 kg for the
tennis ball.
A rocket used for fireworks explodes just when it
reaches its highest point in a vertical trajectory. It
initially bursts into three fragments with masses of
m, 3m, and 4m, each of these to explode slightly
later. If the 4m fragment falls vertically with an
initial velocity of 8 m/s, and the 3m fragment is
ejected with a velocity of 10 m/s at an angle of 30°
above the horizontal, find the velocity of the third
fragment.

A 5 kg crate initially at rest is pushed along a fric-

tionless horizontal surface by a 10 N force directed at

an angle of 30° above the horizontal.

(a) Find the velocity of the crate after 5 s.

(b) If at this time (after the 5 s) the applied force is
removed and the crate travels up a 30° incline
with a coefficient of kinetic friction of 0.2, use the
work energy theorem to find how far along the
incline the crate travels before coming to rest.

(c) If the same process is repeated as in part (a) but
this time after removing the applied force atr = 5
s, the crate collides with a horizontal spring 2 s
later, compressing it a distance of 50 cm. Find the
spring constant.

(d) If the crate in part (c) travels back along the same
path after leaving the spring, and then collides and
sticks to a similar 2 kg crate at rest, find the final
velocity of the two crates after the collision.

A 10,000 kg railroad car traveling at a speed of 24

m/s strikes a 1200 kg automobile initially at rest on

the track. Assume that the auto sticks to the railroad

car after the collision.

(a) What is the speed of the auto-railroad car system
immediately after the collision?

(b) What is the percentage loss in kinetic energy of the
auto-railroad car system as a result of the collision?
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18.

19.

20.

21.

After the collision the auto-railroad car system
slides along the track with a coefficient of kinetic
friction equal to 0.9.

(c) What is the frictional force?
(d) How much work will be done by the frictional
force during the time the system takes to come to

a halt?

A 200 kg roller coaster car falls on a circular portion
of a frictionless track starting from rest from a
height of 10 m, equal to the radius of the
track, before reaching a second hill of 8 m height
(point B).

A C

(a) What is the centripetal force (magnitude and
direction, please) on the car when it is at point A
at the bottom of the circular track. Use energy
ideas to get the velocity.

(b) Find the speed of the car at point B.

(c) If the car collides and locks together with a second
car of mass 300 kg at point C, find the final speed
of both cars.

A hockey puck traveling at 1.2 m/s collides with a
second stationary equal mass puck and, after the col-
lision, moves with a speed of 0.8 m/s deflected by
an angle of 30°. Find the velocity (magnitude and
direction) of the other puck after the collision. Also,
find the fraction of the initial energy lost in the
collision.
Alpha particles are routinely accelerated using a par-
ticle accelerator and are directed with the use of
magnets into targets composed of various elements. A
famous experiment called Rutherford’s experiment
has a beam of alpha particles incident on a target of
gold. An alpha particle (a helium nucleus) is acceler-
ated to a certain speed and makes an elastic head-on
collision with a stationary gold nucleus. What per-
centage of its original kinetic energy is transferred to
the gold nucleus?

A ballistic pendulum is used to study the principles of

momentum and energy. Suppose that a steel ball of

mass m = 50 g traveling with an initial velocity V

undergoes an inelastic collision with a stationary pen-

dulum arm of length R = 30.5cm of mass M =

250 g. After the collision the center of mass of the

ball and pendulum arm rises from its lowest point

thought a height Aa_, where it momentarily comes
to rest at an angle 6 = 27°.

MOMENTUM



(a) Write an equation that governs the momentum of
the ball and pendulum arm during the collision
and solve this for the initial velocity of the ball.

(b) After the collision, mechanical energy is conserved.
Write an equation that shows conservation of
mechanical energy immediately after the collision to
the point where the pendulum arm and ball come to
rest momentarily at the angle 6. Solve this equation
for the velocity of the ball and pendulum arm after the
collision. Express your answer in terms of R and 6
and you may ignore any rotational motion of the arm.

(c) Using the equations that you have written in parts
(a) and (b) what is the expression for and the value
of the initial velocity of the ball?

(d) What fraction of the initial kinetic energy of the
ball has been lost in the collision?

22. An automobile has a mass of 2300 kg and a velocity of

16.0 m/s. It makes a rear-end collision with a stationary
car whose mass is 1800 kg. The cars lock bumpers and
skid off together with their wheels locked.

(a) What is the velocity of the center of mass of the
two-car system?

(b) What is the velocity of the two cars just after the
collision?

(c) What is the change in total kinetic energy during
the collision?

(d) What is the magnitude of the impulse experienced
by the 2300 kg car?

(e) If the duration of the collision is 0.100 s, what is
the magnitude of the average force experienced by
the 2300 kg car?

(f) What is the magnitude of the average force expe-
rienced by the 1800 kg car?

QUESTIONS/PROBLEMS

23.

24.

25.

A 0.01 kg bullet traveling at 300 m/s ricochets off a
stationary steel block of 2 kg mass. The bullet is
deflected by 5° and travels at 250 m/s after the colli-
sion. Find the velocity (magnitude and direction) of
the block after the collision.

A 10 g projectile is fired at 500 m/s into a 1 kg block

sitting on a frictionless surface. The projectile lodges

in the center of the block, and both move off together.

(a) What is the final velocity of the block after the
collision?

(b) The block slides along the frictionless surface
some distance and then encounters a ramp, which
slopes up at an angle of 60°. What distance does
the block travel along the surface of the ramp
before coming to a stop?

(c) If the coefficient of friction between the block and
the ramp is w, = 0.2, how far does the block slide
up the ramp before stopping?

A proton moving with an initial velocity v, in the
x-direction, as shown in the figure, collides elastically
with another proton that is initially at rest. If the two
protons have equal speeds after the collision, what is
the speed of each proton after the collision in terms of
V- and what are the directions of the velocity vector
after the collision?

159



Rotational Motion

Once the translational motion of an object is accounted for, all the other motions of
the object can best be described in the stationary reference frame of the center of mass. A
reasonable image to keep in mind is to imagine following a seagull in a helicopter that
tracks its translational motion. If you took a video of the seagull you would see quite dif-
ferent motion than you would from the ground. The seagull would appear always ahead
of you but would rotate and change its “shape” as it flapped its wings (e.g., see the film
Winged Migration). You’ve probably seen such wildlife videos that can track animals and
“subtract” their translational motion leaving only the other collective motions about their
“centers”: lions seemingly running “in place” as the scenery flies by. In physics, we’ve
already shown how to account for the translational motion of the center of mass. Aside
from a possible constant velocity drift in the absence of any forces, motion of the center
of mass is caused by external forces acting on the object. We now turn to the other motions
about the center of mass as viewed from a reference frame fixed to the center of mass.
These collective motions are of two types: coherent and incoherent. Coherent
motions are those overall rotations or vibrations that occur within a solid in which the
constituent particles making up the object interact with each other in a coordinated
fashion. If the solid is rigid (with all the internal distances between constituent parts
fixed) the only collective motion will be an overall rotation about the center of mass.
For such a rigid body, a complete description of its motion includes the translational
motion of the center of mass and the rotational motion about the center of mass.
Because this nice separation of the problem can be made, we first present the descrip-
tion, or kinematics, of pure rotational motion of a rigid body about a fixed axis, the
axis of rotation. In this case all points of an object rotate in circles about some fixed
point on the axis of rotation. This type of motion occurs, for example, when a door is
opened, or for the wheels of a stationary bicycle, or when you lift an object by rotat-
ing your forearm about a stationary elbow. Even if the solid is not rigid, its collective
coherent motions can be described as a rigid body rotation (of the average-shaped
body) as well as other coherent internal motions that can change the object’s shape.
We next introduce the energy associated with rotational motion and the rotational
analog of mass, known as the moment of inertia. We show that well-placed and directed
forces can produce rotational motion and we introduce the notion of forque, the
rotational analog of a force. For pure rotational motion there is an equation that is the
rotational analog of Newton’s second law that can describe the dynamics of motion.
Continuing with rotational analog quantities we introduce angular momentum, the rota-
tional analog of (linear or translational) momentum and learn a new fundamental
conservation law of angular momentum. Key in following the presentation of our under-
standing of rotational motion is to keep in mind the strong analogy with what we have
already learned. A preview glance at Table 7.2 below shows that the important new
concepts in this chapter all have direct analogs with equations we have already studied.
One of the new and revolutionary types of microscopy, atomic force microscopy,
is discussed as an application of the material in this chapter. The technique allows
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FIGURE 7.1 A particle executing
circular motion.

extremely high resolution maps of the microscopic surface topography, or structure,
of materials and has been used extensively to study biological molecules and cells.

After briefly considering the effects of diffusion on the rotational motion of
macromolecules, the chapter concludes with a study of the special case of objects in
static equilibrium. This is an important simplification of Newton’s laws and provides
a powerful method of analyzing equilibrium situations.

The other category of collective motions is known as incoherent. These are ran-
dom motions of the atoms of the material, about the equilibrium positions in a solid
or with no fixed average position in a fluid. Constituent fluid particles move about
much more independently, in the ideal case not interacting with their neighbors at all.
In Chapters 8 and 9 we discuss the flow of ideal fluids as well as some of the com-
plications that occur in complex fluids in which there are strong interactions between
constituents. Later in Chapters 12 and 13, we study the subject of thermodynamics
concerned with describing the fundamental thermal properties of macroscopic sys-
tems. We show that collective incoherent internal motions of an object give rise to an
internal energy that is responsible for its temperature.

1. ROTATIONAL KINEMATICS

A rigid body—one with a fixed shape—has motions that are limited to pure translation

and pure rotation about its center of mass. Combinations of these can give rise to

motions that appear more complex, such as rolling, but which can be simplified to pure

rotations in a reference frame fixed to the center of mass. Since we’ve already learned

how to handle translational motion in the previous chapter, here we first take up the

problem of pure rotational motion about a fixed axis of rotation, leaving their synthe-
sis leading to general rigid body motions for a discussion later in the chapter.

Consider the motion of a point particle on the circumference of a circle, as shown

in Figure 7.1. In order to describe its position and motion we could use its x- and y-

coordinates or, better, its r and 6 polar coordinates. These latter coordinates are pre-

ferred because r is constant if the particle remains on the circle and so in polar

coordinates there is really only one variable 6, whereas both x and y change as the par-

ticle moves on the circle. To describe the motion of the particle on the circle we could

use its x- and y-components of velocity, both of which would continuously change, or,

even better, we could use the 8-component of velocity known as the angular velocity w,

whose average value is defined as
o (7.1)
At ‘

In this expression, the particle has moved between two angular positions in a time At,

where the angular displacement A# must be measured in radian units and not in degrees.

The fundamental unit of angular measure is the radian, because it is defin