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A B O U T T H E AU T H O R V

About the Author

Jay Newman is the R. Gordon Gould Professor of
Physics at Union College where he has taught for
30 years. While studying for his PhD in physics at
New York University, he developed a keen interest
in biophysics and did a three-year postdoctoral fel-
lowship in the Biophysics Department of Johns
Hopkins University. Since joining the faculty at
Union College, Professor Newman has taught and
developed more than 15 different courses, led student
terms abroad in science research in Italy, and also
spent a year at Stanford University. The experiences
abroad with students stemmed from his previous
stays as a Visiting Professor in Italy, once in Pavia
and six times in Palermo.

His research has been on the structure, dynamics and interactions of biomole-
cules using laser light scattering and other physical methods. He has 
60 publications, many co-authored with some of the 30 plus undergraduate students
who have done research projects in his laboratory, and has received two grants from
the Research Corporation and five multiyear grants from the National Science
Foundation for both research and teaching.

About 15 years ago, he developed a special introductory physics course for life
science students at Union College, which was the basis for this text. The idea behind
the course and this book is to show the essential connections between physics and
modern life sciences. Motivating this new approach to an introductory course was
Professor Newman’s firm belief, developed over his early training and now rein-
forced by almost daily news reports, that modern biology and medicine are becom-
ing ever more quantitative and dependent on an understanding of physics
fundamentals, methodology, technology, and modes of thinking. Building this bridge
is the purpose and goal of Physics of the Life Sciences.



Preface

This textbook has its origins in a course that I began developing at Union College
in the mid-1980s to teach physics to life science students in a way that would inter-
est them and show the connections of fundamental physics to modern biology and
medicine. From my own research experiences and interests in biophysics, I know
that almost all areas of modern life sciences integrally involve physics in both
experimental techniques and in basic understanding of process or function.
However, I and many colleagues with whom I have spoken have been unhappy over
the years with published attempts to direct a textbook to this audience. Most such
texts are watered down engineering physics books with occasional added sections
on related biology topics that are easy to skip over or assign students to read on
their own.

As I set out to write this textbook, I had certain definite goals in mind. I wanted
to write a book that was truly directed at life science students, one that integrated
modern biology, biophysics, and medical techniques into the presentation of the mate-
rial. Believing in the less is more credo, I chose to omit certain standard topics that are
usually included in texts for this audience, while expanding on topics that have more
relevance to the life and biomedical sciences. From my experience teaching to these
students, I also wanted a book that would be shorter and could be fully covered in a
two-semester course. Although students at Union College and comparable institutions
taking this introductory course have all had some calculus, only algebra and trigonom-
etry are used in the main body of the text. At this level, I believe that calculus adds lit-
tle to the understanding of the material and can detract from focusing on the basic
physical ideas. However, I have sprinkled in optional boxed calculations that do use
some calculus where I felt they truly added to the discussion (averaging less than one
box per chapter). These “sidebars” can be omitted without any loss of continuity.

The order of topics for this text follows a more or less traditional sequence. An
exception to this is the presentation of one-dimensional mechanics through forces
and energy before introducing vectors and generalizing to motion in more than one
dimension. This allows students to focus on the physics concepts of kinematics,
forces, and energy without being distracted by the ideas of vector analysis.

Beyond the order of topics, the presentation of material is unique in that, wherever
possible, themes from biology or medicine are used to present the physics material. The
material speaks to life science students. Rather than optional sections at the end of occa-
sional chapters, life science themes are plentiful and integral to the text. The role of these
topics here is more fundamental, as can be gleaned from a list of some examples.

• The early introduction of diffusion as an example of motion (full section in
Chapter 2).

• The early introduction of motion in a viscous fluid as an example of one-dimensional
motion, development of Hooke’s law and elasticity with applications to biomaterials
and viscoelasticity, protein structure, and molecular dynamics calculations (all in
Chapter 3).

• Discussion of centrifugation in Chapter 5.
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• Examples of rotational motion kinematics of a bacteria and of a rotary motor pro-
tein, the atomic force microscope, rotational diffusion, and cell membrane
dynamics (all in Chapter 7).

• A chapter (9) on viscous fluids with discussions of blood, other complex fluids,
the human circulatory system, surface tension, and capillarity.

• A chapter (11) on sound with extensive discussions on the ear and on ultrasound.

• A chapter (13) with a molecular discussion of entropy, a section on Gibbs free
energy, a section on biological applications of statistical thermodynamics, and a
section on biological applications of nonlinear dynamics.

• Chapters (14–15) on electric forces, fields, and energy with sections on elec-
trophoresis, macromolecular charges in solution, modern electrophoresis meth-
ods, electrostatic applications to native and synthetic macromolecules, an
introduction to capacitors entirely through a discussion of cell membranes, and
sections on membrane channels and electric potential mapping of the human
body: heart, muscle, and brain.

• A chapter (16) on electric current and cell membranes covering circuits through
membrane models: included are sections on membrane electrical currents, an
overview of nerve structure and function including measurement techniques such
as patch-clamping, the electrical properties of neurons, and a second section on
membrane channels with a discussion of single-channel recording.

• Chapters on electromagnetic induction and waves (18–19) that include discus-
sion of MEG (magnetoencephalography) using SQUIDs, an entire section on
NMR, and sections on magnetic resonance imaging, laser tweezers, the quantum
theory of radiation concepts (revisited later), and the interaction of radiation with
matter, the last a primer on spectroscopy, including absorption spectroscopy,
scattering, and fluorescence.

• Four chapters (20–23) on optics include a section on optical fibers and their
applications in medicine, a section on the human eye, sections on the new light
microscopies (dark field, fluorescence, phase contrast, DIC, confocal and multi-
photon methods), discussion of polarization in biology, including birefringence
and dichroism techniques, and sections on the transmission electron microscope,
scanning EM and scanning transmission EM, and x-rays and computed tomog-
raphy (CT) methods.

• Three chapters (24–26) on modern physics (many of these ideas have been intro-
duced and used throughout the book) include discussions of the scanning tunnel-
ing microscope, a section on the laser and its applications in biology and medicine,
including holography. The chapter on nuclear physics and medical applications
(26) includes sections on dosimetry and biological effects of radiation, radioiso-
topes, and nuclear medicine, and the medical imaging methods SPECT (single
photon emission computer tomography) and PET (positron emission tomography).

As mentioned above, we’ve chosen to omit some standard topics that are either
not central to the life science themes or that students find very opaque. Omitted are
such topics as Kepler’s laws, heat engines, induction and LR/LRC circuits, AC cir-
cuits, special relativity kinematics, particle physics, and astrophysics; Gauss’s law and
Ampere’s law are presented in optional sections at the end of appropriate chapters.

Each chapter contains three types of learning aides for the student: open-ended
questions, multiple-choice questions, and quantitative problems. In about 60 of these
per chapter, we have tried to include a wide selection related to the life sciences.
Complete solutions to all of the multiple choice and other problems are available to
instructors. There are also a number of worked examples in the chapters, averaging
over six per chapter, and about 900 photos and line drawings to illustrate concepts in
the text, with many in full color.

Jay Newman
Schenectady, NY
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1.  SCIENCE, PHYSICS, AND BIOLOGY

If one examines the course catalog of a large, contemporary, university in the
United States for fields of instruction in science, one can find such titles as animal
science, astronomy, atmospheric science, biochemistry, biology, botany, chemistry,
computer science, geology, ecology, mathematical science, meteorology, physics,
psychology, toxicology, and zoology, to name but a few. Each of these is a field of
study in its own right consisting of many subtopics. On the other hand, a catalog
from a U.S. college that existed in the early 19th century probably would show at
most only two “sciences”: natural history (the progenitor of geology and biology) and
natural philosophy (physics and chemistry). Over the years, there has been an explo-
sion of speciation in science, resulting in what appears at first sight to be a techno-
logical Tower of Babel.

Although the factual content of the many branches of modern science may serve
to differentiate one from the other, all branches share certain common characteristics
and concepts. Most important, all of the sciences share a way of thinking. Science is
a search for truth predicated on the belief that there is an absolute physical reality;
things aren’t just figments of our imaginations. Science is based on observation.
Unlike the observations of creative art or religion, for example, which tend to be pri-
vate and highly personal, scientific observations are made, as best as can be done, in
a public way, that is, in a way that anyone, in principle, could repeat them.

Scientific truth is couched in models. A model is not the thing itself, but a repre-
sentation of the thing, much like a metaphor. A model is a guess about how the thing
works based on a set of empirical data. (If the dataset is very large and the model
appears to be especially useful, it is called a theory. In science, the colloquially pejo-
rative phrase, “That’s only a theory,” would never be used because in science a the-
ory is the best kind of guess one can have.) A model can be physical or pictorial or
verbal. Often in science, models are mathematical. Mathematics is an incredibly eco-
nomical way of expressing an idea. One equation can encapsulate tomes of empirical
data. Better yet, an equation can be used to predict outcomes of experiments per-
formed under conditions never seen before. In fact, prediction is the heart of science.
Science is a relentless series of predictions designed to identify the limitations of
previously established “truths.” By tearing down and supplanting prior knowledge,
science aspires to produce an ever-clearer picture of physical reality. In this sense,
science can be said to be an insatiable pursuit of provisional truth.

Physics is the most elemental of all the sciences. It attempts to explain the most
fundamental phenomena with the fewest assumptions and in the simplest terms. In 
a sense, physics strives to identify and attack the “easiest” of nature’s problems.
Despite its pursuit of the fundamental, however, physics has been extraordinarily suc-
cessful in understanding a vast array of practically important questions such as how
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to build a better steam engine, how to place a satellite in orbit, and how energy stored
in atomic nuclei can be used to light cities, to cite just a few examples. Indeed,
physics is the basis for a huge portion of the world’s economy.

The subfields of physics bear such names as classical mechanics, thermodynamics,
electricity and magnetism, optics, relativity, and quantum mechanics. Of these, classi-
cal mechanics is usually studied first because it deals with the ideas of mass, motion,
force, and energy, concepts that underlie not only the other areas of physics, but also
astronomy, biology, chemistry, and geology, as well as all of engineering.

Like physics, biology is a study of matter and energy. The systems of matter and
energy that are of biological interest, however, are vastly more complex than those that
are the focus of physics. Biology deals with living matter, collections of atoms and
molecules that manage to harness energy to perform such extraordinary tasks as loco-
motion, reproduction, and computation (“thinking”). On the most primitive, microscopic
level, the rules obeyed by living matter are just the fundamental laws of physics. These,
as far as we can tell, are immutable. They have persisted since the origin of the universe.
On a higher level of organization, however, at the level of cells and organisms, living
matter obeys rules that can change. Mutation and evolution are the cornerstones of bio-
logical diversity. How the immutable, microscopic rules of physics are knit together into
the macroscopic fabric of life, where matter is capable of adaptive and evolving behav-
ior, is one of the great unsolved mysteries of contemporary scientific inquiry.

Until the 1950s or so, relatively few direct connections between physics and biol-
ogy had been recognized. Up to that point, most research in biology had been
descriptive, a kind of cataloging of similarities and differences. Since then, strong
linkages between biology and physics have emerged. These connections have revo-
lutionized our understanding of how life works and led to profound improvements in
pharmaceuticals and clinical procedures. The impact of physics on modern biology
and medical science is due, in part, to the introduction of new technologies used to
study biological systems and, in part, to direct applications of physics to the detailed
understanding of macromolecular processes.

Examples of new technology based on physics and used in the study of biology
and medicine abound. A huge array of new microscopies (transmission electron,
scanning electron, fluorescence, interference, polarization, scanning tunneling,
atomic force) and spectroscopies (nuclear magnetic resonance (NMR), electron
spin resonance (ESR), x-ray, neutron, and many laser-based methods such as
Raman scattering) have been developed and are now routinely used to study macro-
molecular structure and functioning. New methods in electromagnetic sensing
(e.g., superconducting quantum interference devices (SQUIDS) for measuring
extremely small magnetic fields, such as those due to nerve activity, and single-
membrane channel recording of electrical activities), laser and electronic instru-
mentation to better image events both spatially and temporally (allowing studies of
extremely fast kinetics, down to 10�14 s, and submillimeter spatial resolutions
using ultrasound, x-rays, or magnetic resonance methods), and, of course, dramatic
improvements in computers, made possible by new physics, have all led to major
advances in our knowledge.

In conjunction with this technological progress, has come a marked increase in the
description of biological processes using fundamental physics. Detailed molecular
models of the structure and functioning of many significant biological processes are
now in hand. Most of this progress has been at the subcellular or single-cell level but
even areas of biology involving cell–cell interactions, functioning of entire organs,
developmental biology, physiology, and the ecology of plant and animal communities
are now being approached with physical models and fundamental physics approaches.
The rate at which new ideas in physics find application in biology is astonishing.
Recent developments in nonlinear dynamics in physics, for example, have already been
applied to a large variety of complex biological systems, especially in understanding
how electrical activity in the heart and brain changes from health to a state of disease.

To summarize, it is fair to say that no student of today’s life sciences will be ade-
quately educated without a firm understanding of the fundamental principles of physical



science. It is to that aspect of the life scientist’s education that the remainder of this book
is dedicated.

2.  PLAN OF THIS BOOK

Physics of the Life Sciences is designed to teach fundamental physics to students of
the life sciences. Our approach is to use modern biophysical themes as much as pos-
sible to introduce the physics and to illustrate the wide variety of applications of
physics in the life sciences. Indeed today’s doctors, scientists, nurses, and medical and
health technicians constantly use a vast array of modern technology in their work. 
A working knowledge of these devices and their basic functioning is a necessity.
Our scientific knowledge base also is growing at an ever-increasing pace. Science
is rapidly becoming interdisciplinary. Scientists from many different backgrounds,
including biology, chemistry, physics, medicine, and engineering, study a vast array of
diverse biological problems. What they all have in common is the use of physics and
modern technology in attempts to understand particular biological phenomena.
Understanding involves observing, quantifying, and developing a good model that has
some predictive ability. The better our understanding of a system or phenomenon, the
better is our model in making predictions about its behavior under a larger variety of
conditions. As already mentioned, the best models are called theories, the pinnacles of
our understanding.

This book is organized into three major parts. After an introduction and an
overview of some fundamental themes in this chapter, we begin the first portion of
this book, classical mechanics and thermodynamics, in Chapters 2–13. There we
learn how to apply a few basic laws of motion for particles to understand the much
more complex motion of real macroscopic objects and fluids. Many of the funda-
mental concepts we learn in the first few of those chapters are used throughout the
book in our studies of a variety of biological systems and many important tools
used in their study. The second major topic of study is electricity and magnetism
and their synthesis in electromagnetism, found in Chapters 14–18. Aside from
gravity, these are the sources of the interactions between all objects in our daily
experience as well as between biological macromolecules. We introduce much of
the physics through biophysical topics such as electrophoresis, biological mem-
branes and channels, nerve conduction, and magnetic resonance imaging (MRI).
After having introduced the general properties of waves in Chapter 10, and applied
those ideas to sound in Chapter 11, waves are a unifying theme of the third and last
major topic of this book. In Chapter 19 electromagnetic waves are discussed, which
leads into light waves in optics and matter waves in quantum physics (Chapters
20–23 and 24–25); we conclude, in Chapter 26, with topics on nuclear physics,
nuclear medicine, and imaging methods.

Throughout, we emphasize understanding the fundamental concepts of physics
and their importance in the study of biology. To help in this, major themes and con-
cepts are developed from specific examples and problems whenever possible. Using
descriptive English to explain physical concepts can sometimes lead to confusion
because many of the words used in physics have specific meanings that differ from
those used in ordinary speech. Mathematics is the natural language of physics, allow-
ing a huge body of knowledge to be expressed in compact equations. However, with-
out an understanding and appreciation of the meanings of the variables, or letters,
used in equations, readers often view them as simply a means to obtain a numerical
answer to a problem by inserting values for the other letters, rather than as summaries
of vast amounts of knowledge. Equations are de-emphasized in this text by keeping
the most important, numbered, equations to a minimum. In addition, each chapter has
a variety of nonmathematical questions at its end designed to make the reader think
about key ideas in the chapter.

On the other hand, without mathematics it would be much more difficult to pre-
sent a complete picture of our knowledge of science and to make predictions about
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the behavior of a system. As we show, Newton’s second law equation and Maxwell’s
four equations of electromagnetism together are equivalent to an enormous body of
knowledge. Without those equations, we could not easily express the same informa-
tion content in words, nor would we be able to approach the tremendous variety
of problems these equations can solve. Facility with algebra and trigonometry is
assumed here; an appendix is provided for readers to review some basics in algebra
and trigonometry as well as in scientific notation, and a few other issues. For those
readers who have had some elementary calculus, there are occasional boxed discus-
sions that use some calculus to either derive a particular result or enhance the pre-
sentation. This material is not integral to the text and can be skipped over. Each
chapter also has a variety of short-answer and open-ended problems to help in learn-
ing the material. These should be viewed as integral to the text and a fair number
should be attempted to probe understanding of the material and to develop problem-
solving skills that will be of benefit in all areas of a life-long education.

Problem solving involves some extremely useful skills, such as the ability to
extract information from a written paragraph, to find the key issue or unknown, to
develop solution strategies, and to be able to describe those methods and your solu-
tions to others. Just as critical reading skills will help throughout one’s life, problem-
solving skills are valuable tools to have in whatever one chooses to do later in life,
whether related to science or not.

A major goal of this text is for the reader to develop an appreciation of physics
as a discipline that has led to tremendous advances in our civilization. We now have
a basic, if incomplete, understanding of our world, ranging from the constituents of
atoms to biological cells to galaxies. Although our scientific knowledge has grown
explosively over the last 50 years, particularly in the life sciences, the general pub-
lic’s awareness and appreciation of science has declined. Physics of the Life Sciences

hopes to show many of the interrelationships among the sciences, particularly the
physical basis of our understanding of biology.

3.  TWO EXAMPLES OF BIOPHYSICAL SYSTEMS: THE SINGLE
CELL E. COLI BACTERIA AND THE HUMAN HEART

Biological systems are extremely complex, much more so than standard physical systems
traditionally studied by physicists. With the tremendous growth of technological methods
have come interdisciplinary laboratories and scientific collaborations with a focus on
particular biological systems and questions. A glance at a list of topics discussed at vari-
ous international scientific meetings with a biological focus will show the huge array of
systems that are currently studied, including macromolecules, subcellular components,

cells, organs, whole organisms, and even interactions between
organisms. In the course of this text we show how physics and
physical technologies have been applied to many of these. Here
we briefly discuss two particularly important systems, one a cell
and one an organ, to indicate the range of questions that have
been addressed by biophysicists and other scientists.

The bacterium, Escherichia coli (E. coli), is the most
studied and well-characterized single-cell organism known.
Discovered in 1885, these bacteria are several micrometers
long rod-shaped cells (Figure 1.1), a convenient size for
optical microscopy, and can be easily, cheaply, and rapidly
grown in large quantities. The fact that huge numbers of
these organisms can be rapidly grown has led to a number 
of significant biochemical discoveries including the genetic
code, glycolysis, and protein synthesis regulation, and has
made these organisms the powerhouse of genetic engineer-
ing. E. coli bacteria reappear in some of our later discussions
as a prototype cell in learning some areas of physics.
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FIGURE 1.1 E. coli bacteria as
seen using a scanning electron
microscope.



Although relatively simple in structure, E. coli is sufficiently complex that it
exhibits many of the common structures and properties of all cells. This fact
also explains its widespread study and one has only to open, at random, almost any
book on cell biology, biochemistry, genetics, immunology, or developmental biol-
ogy, to find extensive references to E. coli. The bacterium is surrounded by a
cell wall of several layers that shields it from its environment, the intestinal tract
of humans or the solutions in a scientist’s test tube. Prominent features of the bac-
teria are its nuclear region and its dozen or so long flagella, which it uses for
propulsion. The cytoplasm, or rich broth of biomolecules outside the nuclear
region, contains over one million protein molecules and roughly an equal number
of other macromolecules and complexes, close to one hundred million small
organic molecules including the building blocks of nucleic acids and proteins,
and a similar number of small ions all suspended or dissolved in water, which make
up roughly 70% of the bacteria’s volume (Figure 1.2). The nuclear region contains
the genetic code for the bacterium in the form of a single circular DNA molecule
of nearly five million nucleotides, or building blocks, folded up into a tight struc-
ture with small special-purpose proteins. If spread out into a circle the DNA would
have a diameter of about 2 mm, but in the nucleus it occupies about a 100-fold
smaller size. There are also much smaller circular pieces of extranuclear DNA
known as plasmids, which have become extremely important in genetic engineer-
ing. The slender flagella, about twice as long as the bacterium itself, extend
out from the cell wall into the surrounding fluid, at times in coordinated helical
shapes when propelling the bacteria and at other times in uncoordinated random
directions.

E. coli bacteria have been used to study nearly all aspects of cellular and subcel-
lular problems. These range from the structure and function of particular purified
macromolecular components such as DNA, RNAs of different types, large numbers
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FIGURE 1.2 Cartoon drawing of the
inside of an E. coli showing the
membrane and a flagellum (at the
top left, with the rotary motor protein
shown just beneath the membrane
at the base of the flagellum), proteins
(middle with other smaller mole-
cules), and DNA/histones (bottom).
The drawing is made to scale and
according to relative concentrations.



of different proteins, membranes and proteins bound to membranes, to more
complex whole-cell problems such as communication with the external envi-
ronment, the energy transduction mechanisms within the bacteria necessary to
sustain life, and the basis of the motility of the bacteria. Clearly the cytoplasm
is not just an unorganized soup of macromolecules, small organic molecules,
and ions, but it is a highly organized, compartmentalized, and dynamic
medium that controls the entire set of processes needed for life.

The presence of plasmid DNA in E. coli has led to its major role in genetic
engineering. Portions of DNA from other species which, for example, code for the
production of particular proteins, can be inserted, using particular enzymes, into
E. coli plasmid DNA. Many such copies of the plasmid DNA can be grown, as
bacteria reproduce every half hour under favorable conditions. Thus E. coli can

act as a DNA factory for the production of large quantities of any portion of DNA from
other organisms.

As an example of a more complex structure let’s briefly consider the human
heart and, specifically, the many aspects of its structure and function that involve a
knowledge of fundamental physics. The heart is a multicellular organ (Figure 1.3),
a structure that functions in a coherent manner to produce a cyclic process neces-
sary for life. Adult cardiac muscle cells are one of the few types of cells in humans
that are not replaced and do not divide. These permanent cells contract roughly
three billion times in a typical life, providing the force necessary to circulate blood
through the body.

How does the heart act as a pump? What are the electrical and chemical interac-
tions that control the heartbeat and keep the heart functioning in a coherent manner?
What is the ultimate mechanism by which cardiac muscle generates the contracting
force needed to pump blood to the lungs and to the body? What are the properties of
the blood and of the circulatory system external to the heart that have an impact on the
heart’s functioning? These are but some of the obvious questions that science has been
addressing for many years. We show later in this book that the details of the answers
are not completely known, but that all of these areas involve the application of a vari-
ety of physical principles. To study the flow of blood, we need an understanding of
fluid flow and especially that of a complex fluid, filled with cells so thickly that it
would otherwise behave as a solid if not for the elasticity of the cells. An understand-
ing of the basic force production in muscle involves an understanding of mechanics,
thermodynamics, and electrodynamics. Such phenomena as cell–cell interactions and
coordinated pacemaker action of cardiac muscle cells require an understanding of
electromagnetics as well as of nonlinear dynamics, a rapidly developing area of
physics. Various aspects of the heart are studied using modern physical technologies
including imaging and electrical recording methods in vivo, as well as other more
invasive methods in animal studies. In addition, we mention the technology of the

artificial heart and of heart transplants as medical areas that have associated
basic science research.

4.  THE ATOMIC NATURE OF MATTER

One of the most profound ideas of contemporary science is that all macro-
scopic bodies—by which we mean bodies that can be seen with visible
light—are composite. That is, they consist of smaller chunks of matter
called atoms, whose properties are much simpler than those of the bodies
in which they are found. Atoms cannot be seen with visible light, however,
they can be visualized indirectly (Figure 1.4) through various forms of
microscopy that don’t employ light. Atoms in turn, are made of even
simpler pieces of matter called electrons, protons, and neutrons, whose
existence is based on much less direct—although strongly convincing—
evidence. There is excellent reason to infer that protons and neutrons are
also composite, made of elementary bits of matter called quarks. And that
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FIGURE 1.3 Model of the human
heart.

FIGURE 1.4 Atomic force
microscopy image of individual
oxygen atoms arrayed on a crystal.



may not be the end of it; even quarks and electrons may be composite. One specula-
tion along these lines depicts the stuff of which they are made as extraordinarily tiny
vibrations in space and time. For our purposes, trying to understand the physics of
life, we need not worry about such esoteric ideas; we need to worry only about how
atoms and collections of atoms behave.

It is one of the most amazing facts of nature that essentially everything in the
world around us is made from fewer than 100 naturally occurring different kinds of
atoms. An atom has a central nucleus composed of protons and neutrons surrounded
by electrons. In atoms that are electrically neutral, the number of electrons equals the
number of protons. An element is some material that consists of atoms, all of which
contain the same number of protons. Thus, atoms with one proton are said to consti-
tute the element hydrogen, atoms with two protons constitute the element helium, and
so on. The Periodic Table of the Elements, first proposed in 1870 by Mendeleev, a
Russian chemist, is an organization of the known elements into groupings having
similar physical and chemical properties (Figure 1.5). Although atoms of a given ele-
ment all have the same number of protons in their nuclei, they may have different
numbers of neutrons. Two atoms with the same number of protons but different num-
ber of neutrons are said to be different isotopes of the same element. Different iso-
topes behave almost identically as far as chemical reactions are concerned, because
chemical reactions involve atomic electrons only, not the atomic nuclei.

Protons and neutrons both weigh about 2000 times more than electrons. So most of
the “stuff” of an atom resides in its nucleus. Nonetheless, atoms are mostly empty space.
The most common isotope of hydrogen consists of one proton and one electron. Suppose
we represent the proton in a hydrogen atom by the following dot: •. About how far away
from this dot would the electron be on average if this dot were the actual size of the pro-
ton? Where the period next to the dot is? Maybe a centimeter? 10 centimeters? A meter?
No. Actually, the electron would spend most of its time roughly 100 meters away (about
the length of a football field)! The average diameter of the electron orbit in hydrogen is
about 100,000 times the diameter of the proton. In atoms with more protons, the elec-
trons spend more time nearer the nuclei, but no matter how many protons and electrons
they contain, atoms are mostly empty. Despite that, it is very hard to squeeze the elec-
trons of an atom closer to their nucleus. It is also difficult to make the electrons of two
atoms interpenetrate. If that weren’t true, it would be impossible for objects to have
more-or-less permanent shapes and sizes.
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Period
Group

1

H
1.0094

3

Li
6.941

11

Na
22.990

4

Be
9.012

12

Mg
24.305

19

K
39.098

20

Ca
40.078

21

Sc
44.956

1.0094

22

Ti
47.867

23

V
50.942

24

Cr
51.996

25

Mn
54.938

26

Fe
55.847

27

Co
58.933

28

Ni
58.693

29

Cu
63.546

31

Ga
69.723

32

Ge
72.64

30

Zn
65.409

34

Se
78.96

33

As
74.922

35

Br
79.904

36

Kr
83.798

37

Rb
85.468

38

Sr
87.62

39

Y
88.906

40

Zr
91.224

41

Nb
92.906

42

Mo
95.94

43

Tc
(98)

44

Ru
101.07

45

Rh
102.91

46

Pd
106.42

47

Ag
107.87

49

In
114.82

50

Sn
118.71

48

Cd
112.41

52

Te
127.60

51

Sb
121.76

53

I
126.90

54

Xe
131.29

58

Ce
140.12

59

Pr
140.91

60

Nd
144.24

61

Pm
(145)

62

Sm
150.36

63

Eu
151.96

64

Gd
157.25

66

Dy
162.50

67

Ho
164.93

65

Tb
158.93

69

Tm
168.93

68

Er
167.26

70

Yb
173.04

71

Lu
174.97

90

Th
232.04

91

Pa
231.04

92

U
238.03

93

Np
237.05

94

Pu
(244)

95

Am
(243)

96

Cm
(247)

98

Cf
(251)

99

Es
(252)

97

Bk
(247)

101

Md
(258)

100

Fm
(257)

102

No
(259)

103

Lr
(260)

55

Cs
132.91

56

Ba
137.33

57

La *
138.91

72

Hf
178.49

73

Ta
180.95

74

W
183.84

75

Re
186.21

76

Os
190.23

77

Ir
192.22

78

Pt
195.08

79

Au
196.97

81

Tl
204.38

82

Pb
207.2

80

Hg
200.59

84

Po
(209)

83

Bi
208.98

85

At
(210)

86

Rn
(222)

13

Al
26.982

14

Si
28.086

16

S
32.065

15

P
30.974

17

Cl
35.453

18

Ar
39.948

5

B
10.811

1.0094

6

C
12.011

8

O
15.999

7

N
14.007

9

F
18.998

10

Ne
20.179

2

He
4.0026

87

Fr
(223)

88

Ra
(226)

89

Ac +
(227)

104

Rf
(261)

105

Db
(262)

106

Sg
(266)

107

Bh
(264)

108

Hs
(269)

109

Mt
(268)

110

Ds
(271)

111

Rg
(272)

113

Uut
(284)

114

Uuq
(289)

112

Uub
(285)

115

Uup
(288)

116

Uuh
(292)

1

2

3

4

5

6

7

1

2

3 4 5 6 7 8 9 10 11 12

13 14 15 16 17

18

*Lanthanide Series

+Actinide Series

Gas Liquid Solid SyntheticElement Symbol Color FIGURE 1.5 Periodic Table of the
Elements. See Appendix II for ele-
ment names and discovery year.



The number of atoms in a macroscopic object may well exceed 1020. The inter-
actions of these vast swarms of atoms lead to qualitatively different states of matter.
In all materials at all temperatures, the constituent atoms are in ceaseless disorga-
nized motion. In solids, the microscopic agitation of atoms is sufficiently confined
that the atoms typically do not exchange places. As a consequence, solids have an
essentially permanent shape. In fluids (i.e., gases and liquids), however, atoms can
pass by each other. This swapping of atomic positions produces the macroscopic phe-
nomenon of flow and the microscopic phenomenon of diffusion or atomic mixing
(which we study in Chapter 2). Fluids flow around inside closed containers and adopt
shapes defined by the containers. Fluids don’t have a permanent shape. Solids are
characterized by the regular and enduring arrangement of their atoms, whereas fluids
are characterized by atomic chaos.

Biological materials typically share features of both the solid and fluid states. For
example, biological membranes that surround cells or subcellular components are
basically two-dimensional highly ordered structures that also have a large degree of
mobility within them (Figure 1.6). Their constituent phospholipid molecules tend to
be aligned parallel to each other, but can move about within the plane of the mem-
brane quite rapidly by diffusion. Such highly ordered, but yet fluid structures are
termed liquid crystals. A second significant example is the gel-like nature of cellular
cytoplasm (Figure 1.7). Gels have some of the properties of solids, including a rigid-
ity, but can be greatly deformed as well. Cytoplasm is a complex material consisting
of thousands of different macromolecules, including proteins, nucleic acids, phos-
pholipids, polysaccharides, as well as smaller organic molecules and salts. Under the
control of several different types of filamentous proteins that supply an internal struc-
tural rigidity, the cytoplasm can be changed back and forth between conditions that
are more fluidlike and more solidlike.

5.  MASS, DENSITY, AND THE SIZE OF ATOMS: EXERCISES
IN ESTIMATION AND UNITS

Mass is a fundamental property of matter, about which we have more to say in
Chapter 2. For now, it is sufficient to think of mass as a measure of the substance of a
body. Mass can be measured by an ordinary bathroom or grocery market scale, if the
body whose mass is being measured is of moderate size, and by more sophisticated
scales if the body is either too large or too small. Again, we discuss how scales work
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FIGURE 1.7 Fluorescent microscopy image of the cytoplasm
of a cell showing actin filament gel-like structure.

FIGURE 1.6 Molecular model of a membrane
showing disorder.
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Table 1.1 The Units of Measure Upon Which the International 
System of Units (SI) Is Based

Fundamental Quantity SI Unit Abbreviation

Mass kilogram kg

Length meter m

Time second s

Electrical Current ampere A

Temperature kelvin K

Number of Atoms mole mol

Light Intensity candela cd

Table 1.2 Commonly Used Prefixes for Power of Ten Multiples
or Fractions of Base Units

Power of Ten Mutiple Prefix Abbreviation

10�15 femto- f

10�12 pico- p

10�9 nano- n

10�6 micro- �

10�3 milli- m

10�3 kilo- k

10�6 mega- M

10�9 giga- G

10�12 tera- T

Example 1.1 What is the mass of a typical atom of naturally occurring carbon?

Solution: The Periodic Table (see Figure 1.5) states that naturally occurring
carbon has an atomic mass number of just about 12 u/atom. The average mass
of an atom of carbon on Earth is therefore about (12 u/atom)(1.66 � 10�27

kg/u) � 1.99 � 10�26 kg/atom. In this calculation, note how the units of
the answer are manufactured from the units of the pieces. The units are
treated like algebraic quantities so that the “u’s” cancel in the product
(u/atom) � (kg/u) � (kg/atom)

in Chapter 2. The scientific community has agreed on certain standards
of measurement called “le Systéme International de Unités” or SI units of
measurement. The SI unit of mass is the kilogram (kg). Table 1.1 lists the
SI units for various quantities that are taken as fundamental. Table 1.2
lists commonly used prefixes designating fractions and multiples of the
unit measures. A kg is roughly the mass of a rock the size of a grapefruit.
A kg weighs about 2.2 pounds. It is possible to determine the masses of
individual atoms with a delicate scale called a “mass spectrometer.” (We
discuss mass spectrometers in Chapter 17.) Compared with a rock an
atom doesn’t have very much mass. A rule for assessing the approximate
mass of an atom is to look up the number of “atomic mass units per atom”
(designated u/atom) for the atom of interest in the Periodic Table, then
multiply by 1.66 � 10�27 kg/u. The number of atomic mass units per
atom is essentially the average number of protons plus neutrons in all iso-
topes of the element in question found on Earth.

ESTIMATES AND THE BIG PICTURE
In this book, we attempt to motivate and
illustrate important concepts with concrete
numerical examples. Detailed numerical cal-
culations undoubtedly are of use when
building a bridge or when evaluating how
much of each ingredient should go into an
explosive chemical reaction, however,
precise values are almost never necessary to
understand the essence of most physical sit-
uations. In fact, order of magnitude

estimates (estimates that round off values to
the nearest power of ten) are usually com-
pletely adequate to see why a piece of
physics is the way it is. For example,
suppose you would like to buy a new car
whose price is on the order of $104 and you
know your bank balance is on the order of
$102. Obviously, there is little point in cal-
culating whether the car’s price is $8,000 or
$12,000, or whether your balance is $80 or
$120. The big picture is that in no case will
you be able to pay cash for the car. In this
chapter we discuss many numerical exam-
ples of sizes of different quantities. In each,
please try to focus on the power of ten. The
order of magnitude is the big picture.



We wish to demonstrate how knowledge of macroscopic properties sometimes
can be converted into knowledge about atoms. Let’s start with the question, how
many atoms are contained in a 1 kg mass of known composition? Suppose, for exam-
ple, we are told that the mass is solid gold. The Periodic Table tells us that gold has
about 197 u/atom. So the mass in kg of a gold atom is 197 u/atom � 1.66 � 10�27

kg/u � 3.27 � 10�25 kg/atom. The 1 kg is some number of atoms times the mass per
atom, so if we divide the latter value into 1 kg we find that 1 kg of gold contains 1
kg/3.27 � 10�25 kg/atom ~3 � 1024 atoms. (The “~” means “approximately.”)
That’s a typical number for solids: 1 kg of a solid contains from about 1024 to about
1026 atoms.

A related question is, given the volume of a body whose mass is 1 kg, what material
is the body made from? Actually, in practice one frequently measures some characteristic
lengths associated with a body rather than its volume. So, to make progress on this
problem it is necessary to recall that the volume of a rectangular solid (one for which
each side is a rectangle) is the product of a length times a width times a height. When
the solid is a cylinder with a circular cross-section, its volume is �R2 times height,
where R is the radius of the circular cross-section. And, when the solid is a sphere, its
volume is 4�R3/3, where R is the radius of the sphere. (For other cases, the formulae
are more complicated. We won’t worry about such cases.) The SI unit of length is the
meter (m). (A meter is a little longer than a yard.) Thus, a volume has SI units of
meters cubed, m3.

For concreteness, suppose we want to know of what a typical physics lab 1 kg mass
is made. The one shown in Figure 1.8 is a cylinder with a round base 0.046 m in diam-
eter and 0.075 m tall (ignore the hook). As the base is a circle, its volume can be calcu-
lated by the rule V � �R2 � height. Remember, R is the radius of the circle so it is
diameter/2. The area of the base of this mass is 1.66 � 10�3 m2 and its volume is 1.25
� 10�4 m3 (125 cc, or cm3, if you are used to volume in cubic centimeters: 1 cc � 10�6

m3, or 0.125 L if you prefer liters: 1 L � 10�3 m3). (Please check the 1.25 � 10�4 m3

result yourself.)
The next step in this little detective story is to determine the average density of

the mass. The average density (�ave) of a body is defined as the mass (M) of the body
divided by its volume (V): �ave � M/V. The average density of our lab mass is there-
fore (1 kg)/(1.25 � 10�4 m3) � 8 � 103 kg/m3. This is also a typical result. The
densities of most solids are a few thousand kg/m3. The last part in our sleuthing
requires consulting what is already known about solid densities, as in Table 1.3.
Inspection of such a table indicates that the density of iron (7900 kg/m3) is quite
close to 8000 kg/m3. Of course, our lab mass could be made of a mixture of atoms
(such as brass or stainless steel, e.g.) or have unseen holes inside, but if we are told
it is an elemental solid (one kind of atom) with no internal cavities, then it’s proba-
bly iron.
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FIGURE 1.8 A laboratory standard
mass.

Table 1.3 Mass Densities of Selected Materials

Material Mass Density (kg/m3)

Elemental Solids

Aluminum 2700

Carbon (graphite) 2250

Copper 8960

Gold 19,300

Iron 7880

Lead 11,340

Lithium 534

Silicon 2420

Uranium 18,700

(Continued)



A macroscopic measurement of density of a solid body allows us to answer the
question: how far apart are atoms in the body? If we divide the density of a solid body
(mass per unit volume) by the mass per atom we get atoms per unit volume. If we take
the reciprocal of that, we get volume per atom. Now, if we pretend that each atom is
a little cube of side L, the volume per atom is L3. Thus, L is the cube root of the vol-
ume per atom; it is also the average distance between adjacent atoms. See Figure 1.9.
For iron we have 7900 kg/m3/(55.8 u/atom � 1.66 � 10�27 kg/u) � 8.53 � 1028

atoms/m3. The volume per atom in solid iron is then (8.53 � 1028 atoms/m3)�1 �
1.16 � 10�29 m3/atom, and the cube root of that, 2.26 � 10�10 m, is the average
atomic spacing. The distance 10�10 m recurs frequently when considering atoms. You
will sometimes find 1 � 10�10 m referred to as 1 ångstom � 1 Å, although in keeping
with the SI conventions it is more fashionable these days to use the nanometer: 1 �
10�9 m � 1 nm. Thus, 2.26 � 10�10 m is either 2.26 Å or 0.226 nm.

The average distance between atoms in any elemental solid is roughly the same
as for iron. Some other values are: lithium � 0.20 nm, carbon (graphite) � 0.21 nm,
aluminum � 0.26 nm, copper � 0.23 nm, gold � 0.26 nm, and uranium � 0.28 nm.
Now here is another very familiar result: it is exceedingly difficult to increase the
density of a solid by squeezing it. In other words, in a solid, the atoms are crammed
together about as closely as possible. This fact and the fact that the average spacing
of atoms is about 0.2–0.3 nm for all elemental solids tells us the very interesting and
surprising result that all atoms are about the same size, despite the fact that their
atomic masses vary by a factor of over 200!

Now, you might be tempted to conclude that because liquids flow and
have no permanent shape that the spacing of atoms in liquids would be a
lot larger than in a solid. Let’s see. A familiar elemental liquid is mercury.
Its density is about 13,500 kg/m3 and its u/atom is about 201. From these
values it is straightforward to calculate that the average atomic spacing in
liquid mercury is about 0.29 nm, not very different from the solids listed
above. How about in water? Water is a molecular liquid. The u/molecule
for water is about 18 (2 for the two hydrogen atoms and 16 for the oxygen
atom). Because there are three atoms per molecule, the average mass per
atom is 6 u. The density of water is about 1000 kg/m3. Consequently, the
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FIGURE 1.9 A crystal with atoms
arranged in a cubic array with
spacing L. Each atom can be
imagined to lie in a little cube with
volume L3.

Table 1.3 (Continued)

Alloys, Molecular and Composite Solids

Brass 8400–8700

Steel 7800–7900

Ice (at 0°C) 917

Glass 2400–2800

Hardwoods 500–700

Soft tissue organs 1030–1060

Bone 1900

Liquids

Water (at 4°C) 1000

Blood (at 37°C) 1060

Mercury (at 0°C) 13,600

Gases

Air 1.29

Carbon dioxide 1.98

Helium 0.18

Hydrogen 0.09

Nitrogen 1.25

Oxygen 1.43



average atomic spacing in water is about 0.22 nm, again, more or less the same value
as in solids. The remarkably different physical properties of solids and liquids arise
from only very small differences in how their atoms are spaced.

What can we say about atomic spacing in gases? The most familiar gas is air, a
mixture of primarily nitrogen and oxygen molecules. Let’s say that the average u/mol-
ecule for air is about 29. Because nitrogen and oxygen molecules contain two atoms,
the average u/atom for air is about 14.5. The density of air at room temperature and at
sea level atmospheric pressure is 1.29 kg/m3, a value that is something like 1000 times
less than water. The average atomic spacing in air is about 2.7 nm, that is, about 10
times greater than in a solid or liquid. If we squeeze a quantity of air down to 1/1000
of its normal volume, it becomes a liquid; the densities of liquid oxygen and liquid
nitrogen are almost exactly 1000 times that of air.

Because biological materials have properties midway between the solid and
liquid states the spacing of atoms in them is about 0.2–0.3 nm. We can use this idea
to assess how many atoms one might find in a typical biological cell. Cells have
somewhat different sizes, but a typical cell is roughly about 20 � 10�6 m � 20
micrometers � 20 �m on a side. That is, a cell has a volume roughly about 8 �
10�15 m3 (obtained by cubing 20 �m). If a typical atom spacing is 0.25 nm,
the volume occupied by an atom is about (0.25 nm)3 � 1.5 � 10�29 m3/atom.
Consequently, the number of atoms per cell is about (8 � 10�15 m3/cell)/(1.5
� 10�29 m3/atom) � 5 � 1014 atoms/cell.

A cell has lots of stuff in it. All cells contain DNA, for example. Drawings of
pieces of DNA in textbooks show it as a long, double helix structure. But, just how
long is it? DNA consists of multiple subunits called base pairs (“C–G” and “A–T”).
The number of atoms per pair is 27. Typical animal cells have about 5 � 109 pairs
in their DNA. That corresponds to about 1.4 � 1011 atoms. Suppose that all of the
atoms in the DNA molecule were strung end to end in a linear chain. The chain
would be about (1.4 � 1011 atoms) � (2.5 � 10�10 m/atom) � 35 m long! Of
course, clumping atoms into base pairs of about 30 atoms each saves space. Even so,
if the pairs were strung out in a linear chain, the DNA would still be about 1 m long.
Obviously, DNA in a cell can’t be a linear chain because it would burst through the
cell membrane. It must be stored in a tight coil when “not in use” and only small
portions must be pulled apart when transcription or replication occur. Similar
conclusions can be made about other important ingredients of a cell, such as large
proteins, for example.
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CHAPTER SUMMARY
Each chapter has a short summary of the major concepts
in the chapter. Please note that reading these summaries
cannot replace a careful reading of the entire chapter.

Science progresses by developing models, the best
of which are called theories. Physics, the most funda-
mental of the sciences, has had an increasing impact
and relevance in biology as new technologies and basic
understanding has developed.

As examples of physics’ recent impact on biology,
some aspects of bacteria, and of the human heart are
discussed in Section 3.

All matter is composite, composed fundamentally
of atoms, made of electrons, protons, and neutrons. We
can distinguish three different states of matter: solid,
liquid, and gas; but there are some common materials
in biology that fall between these, such as gels or liq-
uid crystals.

The SI unit for mass is the kilogram (kg), and
another useful unit is the atomic mass unit (u) where 1 u
� 1.66 � 10�27 kg. (Mass) density, �, is defined as the
average mass per unit volume. Using a value for the den-
sity and for the atomic weight, the typical atomic spac-
ing (comparable to atomic size) is a few nm (10�9 m).
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QUESTIONS
1. Discuss the difference between the density of a

material and its volume. Which is an “intrinsic”
property of the material not depending on the
amount and which is an “extrinsic” property? Can
you think of other examples of intrinsic properties
of a material?

2. Why don’t the elements in the periodic table have
masses that are exactly integral multiples of 1 u? Think
about the effect of different isotopes (elements with dif-
ferent numbers of neutrons) and their natural abundance.

MULTIPLE CHOICE QUESTIONS
1. Suppose the density of a solid is D and its average

atomic mass is M. Which of the following repre-
sents the average spacing between atoms in the
solid? (a) D/M, (b) M/D, (c) (D/M)1/3, (d) (M/D)1/3.

2. The atoms in a solid or liquid are said to be about the
same size as the atomic spacing in the solid or liquid
because (a) solids and liquids are difficult to com-
press, (b) atoms become much larger when they are in
the gas phase, (c) atoms are in electronically excited
states in the gas phase, or (d) the electrons of atoms
in solids and liquids are all confined inside the
respective nuclei.

3. A large protein consists of a strand of about 10,000
atoms coiled up into a ball. If the strand were pulled
out into a line about how long (order of magnitude)
would the strand be? (a) 104 m, (b) 1 m, (c) 10�2 m,
(d) 10�6 m.

4. The number of gold (197 u/atom) atoms in a gold ring
in the shape of a donut with a diameter of 2.0 cm and a
radius of the cross-section of 2.0 mm is (estimate order
of magnitude) (a) 1020, (b) 1022, (c) 1024, (d) 1026.

5. The interatomic spacing in solids and liquids is about
(a) 0.2 Å, (b) 0.2 nm, (c) 0.2 pm, (d) 0.2 �m.

PROBLEMS
1. From the Periodic Table of the Elements (Figure 1.5)

calculate the mass (in kg) of an atom of naturally
occurring helium, oxygen, nitrogen, and phosphorus.

2. Calculate the mass (in kg) of a molecule of carbon
dioxide, a molecule of water, and a molecule of the
amino acid alanine (C3NO2H7).

3. What is the average distance between silicon atoms in
solid silicon?

4. What is the average intermolecular spacing of 
the sodium ions in a 1 M solution of NaCl? (A 1 M
solution has 1 mole of NaCl molecules, or 6.02 �
1023 of them, per liter of solution.)

5. Express the density of gold in units of �g/�m3 and in
units of pg/nm3.

6. In a cube of bacterial cytoplasm 100 nm on a side
there are roughly 450 proteins. What is the average
distance between these proteins?

7. The DNA in the E. coli bacteria forms a circle of about
1⁄2 mm diameter if stretched out. Roughly what is the
mass of the DNA molecule? Assume the following
data for the double-stranded DNA: average molecular
weight of a nucleotide � 325 u; distance between
pairs of bases along the DNA backbone circle � 0.34
nm. If this represents about 1% of the mass of the bac-
teria, what is its total mass?

8. The entire E. coli chromosome is replicated in 
30 min. For this to occur, the double-stranded DNA
must be partially unwound all along its length.
Assuming the roughly 400,000 turns of the DNA dou-
ble-helix unwinds starting at one end and going uni-
formly to the other end, what is the linear speed of the
unwinding site along the DNA? Recall that each turn
of the DNA helix corresponds to 10 base pairs, or to
a distance of 10 � 0.34 nm. What is the unwinding
rate in turns per minute (or revolutions per minute)?
This is comparable to a high-speed centrifuge.
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Living cells exchange energy and matter with their surroundings. They reproduce.
Often they move about. To understand such basic aspects of life, it is essential
to understand how motion is related to force and how force is related to energy.
Explaining these relations for an object moving in one dimension is the goal of this
and the next two chapters.

Before beginning to read and master the formal discussion of motion that follows
in this chapter, however, it is very useful to remind ourselves what it feels like to
move at constant velocity and to accelerate. Recall how it feels to ride in a car along
a straight flat highway that has recently been resurfaced. If the car’s speedometer is
fixed at a constant reading you can close your eyes and not know you are moving at
all, no matter how fast the speedometer says you are moving. Of course, roads aren’t
straight and flat for very long stretches. You feel clues that you are moving from the
little bumps and turns the car makes. Riding in an elevator is probably a better exam-
ple. Once the elevator gets going, only the flashing floor numbers give any hint that
anything is happening, no matter how fast the elevator is traveling or whether you are
going up or down. In both car and elevator examples, when you feel as if you are at
rest you are moving in a straight line at a constant rate. This kind of motion is called
constant velocity. Constant velocity feels exactly like standing still.

When the car turns or goes over a bump or speeds up or slows down, or when the
elevator starts or stops, you definitely feel it. All such instances involve change in
velocity. Change in velocity is called acceleration and acceleration can be felt. If a trin-
ket dangles by a thread from the car’s rear view mirror you can see it deflect from hang-
ing vertically at the same instant you feel acceleration. If by some bizarre chance, you
are standing on a scale as the elevator starts or stops, the scale’s reading will change
when you feel the acceleration.

Why you feel acceleration but not constant velocity, why acceleration causes the
trinket to deflect and the scale reading to change, all require an explanation. That
explanation is contained in Newton’s laws of motion, discussed in this chapter. In
order to understand the content of Newton’s laws, we have to be able to describe
motion with quantitative precision. The major goal of this chapter is to demonstrate
how a body’s interactions with its surroundings can explain changes in its motion. We
use the term force to denote a quantitative measure of interaction. The theme of this
chapter, then, is that force explains (causes) acceleration. As discussed previously, any
macroscopic body is a collection of smaller, more fundamental pieces. A complete
understanding of the changes in motion of a macroscopic body requires keeping track
of the forces experienced by every subpiece of the body due to every other subpiece
(these are called internal forces) and due to every other additional body (external
forces). In this chapter, all bodies are treated as particles and all changes in motion
arise from external interactions. This simplistic view allows us to develop powerful
tools that can subsequently be applied to more general and more realistic behaviors.
The chapter ends with a short discussion of diffusion, the random thermal motion of

2Newton’s Laws of Motion 
for a Particle Moving 

in One Dimension
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small particles, to contrast this type of motion with that described in the rest of the
chapter. Diffusion is an extremely important process in biology, playing a major role
in our existence through, for example, gas, nutrient, and waste exchange in the blood.

1.  POSITION, VELOCITY, AND ACCELERATION 
IN ONE DIMENSION

Until we get to Chapter 23, we are interested primarily in phenomena associated with
objects that can be seen (perhaps with the aid of a microscope or telescope) with ordi-
nary light. That doesn’t narrow our interests very much. On the small end, we can
certainly see inside living cells; on the large end we can see clusters of galaxies. All
objects that can be seen with light are composite, that is, composed of smaller pieces
of matter. Organisms, for example, are composed of cells; cells are composed of mol-
ecules; molecules are composed of atoms; atoms are composed of nuclei and elec-
trons. As we show in Chapter 6, we can assign to any object a unique point called the
object’s center of mass. The motion of any object can then be thought of as consist-
ing of two parts: motion of the center of mass and motion about the center of mass.
For now, just think of the center of mass as the body’s “center.”

If a body moves so that all of its composite pieces do exactly what the center of mass
does—for example, when the center of mass of the body moves 1 m north each compos-
ite piece also moves 1 m north—the body is said to undergo a rigid translation (see
Figure 2.1). An object undergoing a rigid translation can be treated as a point particle, a
mass without spatial size. Its shape and extent in space are irrelevant.

To start, imagine some object of interest moving along a straight line. The object
can be microscopic (such as a protein molecule or a bacterium) or macroscopic (such
as a car or even you, yourself). Motion along a line is called one-dimensional because
only one coordinate, x, say, is needed to describe it. Here, then, x designates the loca-
tion of the center of mass of a car measured from an arbitrary origin. There are two
directions to go along the coordinate axis from its origin. We distinguish between
them by saying one is the “positive” direction, the other the “negative.” Thus, x is a
signed number having units of length.

Whether it is the motion of our car or the motion of a molecule, in practice we
measure one position at one time, then another position at another time, and so on,
over and over. That is, in any experiment the data we collect are a sample of the
motion acquired at discrete instants. This is true irrespective of what apparatus or
technique we employ. For example, we (or a policeman) might use radar or sonar
to identify where our car is at various moments. Such devices send out a signal
and receive its echo, then another signal and its echo, on and on. Between signals
we know nothing; there are gaps in the data. The same is true if we videotape a
moving object. Video is really a succession of still frames (in the United States,
one every thirteenth of a second). We can get detailed information about the object
every frame, but nothing in between. The results, consequently, comprise a table
of positions (measured with finite precision and limited accuracy) recorded at
discrete sampling times. In other words, our experiment yields a finite set of posi-
tion values {x(t1), x(t2), x(t3), . . .} where x(t1) is the position measured at time t1,
x(t2) is the position at time t2, and so on. Although we believe that our car or a bac-

terium moves continuously in time (i.e., the closer t1 and t2 are to
each other, the closer x(t1) and x(t2) are to each other), the best
we can do, even if (as is frequently the case) we are aided by a
high-speed computer with lots of memory, is obtain a broken and
punctuated approximation to its theoretical, continuously flow-
ing motion.

In this book we use the International Standard (SI) units in
which lengths are measured in meters (m), although often we refer
to small fractions of meters (e.g., cm, mm, �m, and so on) or large
multiples of meters (in particular, km); see Table 2.1.

FIGURE 2.1 An object undergoing
rigid translation. All parts do what
the center of mass (�) does.



A table of numbers is not usually a very useful way to characterize motion. Table 2.2
provides an example. In this table, we see the results of three different observers record-
ing the motion of the same remote control toy model car (Figure 2.2), using the same
coordinate system and the same starting time (i.e., the instant they all call t � 0 s), but
with three different sampling rates (one every 2 s coded in blue, one every 1 s in green,
and one every 0.5 s in red, respectively). (The second, incidentally, is the SI unit of time,
often abbreviated as just s.) There is typically too much to keep track of in a table; it’s
hard, with tabular information, to see a “big picture.”
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Table 2.1 Commonly Used Units of Distance

Name Abbreviation Multiple of a Meter Roughly Comparable to

Meter m 1 Length of your arm

Centimeter cm 10�2 Length of a (new) pencil eraser

Millimeter mm 10�3 Width of a pencil point

Micrometer �m 10�6 Length of a cell

Nanometer nm 10�9 Diameter of a small molecule

Kilometer km 10�3 Half a mile 

Table 2.2 Table of Observations on the Position of a Remote Control Toy Car 
as a Function of Time

Observer #1 Observer #2 Observer #3

Time (s) Position (m) Time (s) Position (m) Time (s) Position (m)

0 0.890 0 0.890 0 0.890

0.5 0.663

1 0.567 1 0.567

1.5 0.968

2 0.909 2 0.909 2 0.909

2.5 0.633

3 0.535 3 0.535

3.5 1.008

4 0.700 4 0.700 4 0.700 

More useful than a table is to make a plot of the data, plotting position x(t) versus
time t with t (the independent variable) plotted on the horizontal axis and x(t) (the
dependent variable) plotted on the vertical axis, as in Figure 2.3
using the same color codes for the different observers.

In the figure, we have attempted to fill in missing
information by interpolating between data points (in this case, by
simply “connecting the dots” with straight lines). Interpolation
of Observer #1’s data (in blue) gives a very crude picture of the
car’s motion over the interval 0 s to 4 s. Observer #2’s data (in
green) provides more detail and #3’s (in red) even more. By
interpolating, we are creating a model of the car’s motion that
will allow us to say something about where the car was at times
not observed.

The word “model” is used a lot in physics. A model is a rep-
resentation or an approximation of a thing, not the thing itself.
Some models are better than others: for example, the blue
model of the car’s motion shown in Figure 2.3 is not as infor-
mative or accurate as the red model. The former model has less
of a “database” to support it than does the latter. The blue model

FIGURE 2.2 A remote controlled
car whose motion we study.



can be thought of as “provisional,” a kind of first approxima-
tion. As we acquire more and more data that model is replaced
by more and more sophisticated approximations.

We can imagine that if the observed sampling rate is
increased so that data are taken more and more frequently, the
resulting plots would more and more define a smoothly continu-
ous curve of some sort. In fact, if we are lucky we might even be
able to fit an analytic expression to the data, producing an equa-
tion model for the car’s instantaneous position, x(t), that is, an
explicit relationship between position and time that would allow
us to determine the car’s position at any instant (not just at the

times of measurement). Such analytic models are especially useful because they allow us
to make predictions about events not yet witnessed.

Given a position record such as that shown in Table 2.2, or, equivalently, in
Figure 2.3, we can define a number of useful quantitative tools. First, we have the
notion of distance traveled in some time interval. The total distance traveled in any
interval of time is the sum of the distances traveled during each subinterval of the
motion. Furthermore, each contribution is positive, irrespective of in which direction
the motion takes place. Formally, distance equals the absolute value of change in
position. Thus, according to Observer #1 in Table 2.2, the total distance covered by
the car in 4 s is 0.228 m, that is, from a position of �0.890 m out to �0.909 m (a dis-
tance of 0.019 m), then back to �0.700 m (an additional distance of 0.209 m).
According to #2, the total distance the car travels is 1.204 m, and according to #3 the
total distance is 1.938 m. Make sure you understand why.

The average speed over a certain time interval is the total distance traveled in that
interval divided by the elapsed time. So for the three observers of Table 2.2, #1 assigns
to the car’s motion an average speed of 0.228 m/s � 0.057 m/s, #2, 0.301 m/s, and #3,
0.485 m/s. (Note that in calculations units are treated as algebraic quantities.)

Next, we introduce the notion of the displacement, �x, in a time interval ti to tf
(“i” implies “initial”, the beginning of the interval, and “f ” “final”, the end of the
interval). (Here, and more generally, the Greek letter � [capital “delta”] denotes a dif-
ference between two values.) Displacement is the directed distance

�x � x(tf) � x(ti).

Displacement can be positive, negative, or zero (as opposed to distance, which
is never negative), with the sign indicating the net direction of the associated
motion. Thus, in the example of Table 2.2, all three observers agree that the
displacement of the car, �x, for ti � 0 s to tf � 2 s is �0.019 m (displacement
in the � direction during this interval), for ti � 2 s to tf � 4 s is �0.209 m
(displacement in the � direction during this interval), and for the entire interval
from ti � 0 s to tf � 4 s is �0.190 m.

The average velocity of our car is defined for a specific interval of time,
�t � tf � ti, as

(2.1)

Notice that this expression is different from the average speed, because it is not
the distance traveled but the displacement that is in the numerator. Unlike the aver-
age speed, which is always positive, the average velocity can be positive, negative, or
zero depending on whether �x is positive (moving to the right), negative (moving to
the left), or zero (either there was no motion or the object has returned to its starting
point). Again, all three observers in Table 2.2 agree that the car’s average velocity is
�0.010 m/s from ti � 0 s to tf � 2 s, �0.105 m/s from ti � 2 s to tf � 4 s, and
�0.048 m/s from ti � 0 s to tf � 4 s. (Contrast these results with their conclusions
about average speeds over the same interval.)

vq �
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¢t
.
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FIGURE 2.3 The position data of
Table 2.2 plotted for each observer.



Average velocity is a statement about the tendency for an object to move over a
finite time interval. In between the starting time and the ending time, the object can
do lots of interesting things that are not accounted for by the average velocity. Of
course, as we increase our sampling rate and make our time interval smaller and
smaller, less and less departure from the average motion will occur in an interval of
time. This leads us to a still different (more refined) concept, namely, that of instan-

taneous velocity. Imagine starting at some generic time ti � t with our car at x(t) and
going to x(t � �t) at tf � t � �t, some time later. The instantaneous velocity of the
car at time t, v(t), is defined as

(2.2)

The symbol “lim�t→0” is read, “in the limit as �t approaches 0.” Operationally, it
means “make the sampling rate so fast that the average motion and the exact motion
in the time interval �t are indistinguishable.” You can think of this as the velocity
reported by a car’s speedometer.

As we said before, we believe that our car moves continuously in time.
Continuous, here, means that we can make a plot of position versus time without
ever lifting our pencil off our paper. There are no holes or jumps in such a plot. In
other words, we don’t believe that our car (no matter how spiffy) is ever at x(t) one
instant then at a very different x(t � �t) an extremely short time later. Thus, despite
the fact that we are making �t exceedingly small in the denominator of Equation
(2.2)—and therefore seemingly threatening to make �x/�t exceedingly large—�x in
the numerator is also getting smaller and smaller, and the ratio of the two remains
nice and finite.

Moreover, we also tacitly believe that the car’s motion is smoothly continuous.
“Smooth” means that there are no instantaneous “jerks.” If the car has a nice, finite
velocity v(t) at time t, its velocity v(t � �t) is not much different a short time �t later.
As we argue in just a bit, smoothly continuous means a plot with neither holes nor
sharp points (cusps).

Well, the formal definition of a velocity at an instant may be clear, but how do
we actually use the definition? How, for example, do we assign a number to it? The
answers to these questions depend on what information you have at the start. First,
suppose another observer has taken a great deal more of the car’s position data and
fit a smooth curve to the data points. This smooth curve is presented to you as an
accurate model of the car’s motion at any time. Such a plot is shown in Figure 2.4a.

Let’s try to determine, from the curve given to us, the car’s instantaneous
velocity at t � 1 s. The position at 1 s is �0.567 m. We take a second time,
t � �t � 4 s, say, and the corresponding position (read from Figure 2.3 or 2.4a or
looked up in Table 2.2) is �0.700 m. We conclude that the average velocity over
that interval is

Note that this average velocity is the same as the slope of
the line connecting the points (1 s, �0.567 m) and (4 s,
�0.700 m) on the graph in Figure 2.4a (because slope is
calculated by dividing rise [or fall] in the vertical direction
by the corresponding run in the horizontal direction, and, in
this case, that is �x/�t).

Now, let’s take t � �t to be 3 s. Given that x(3 s) is
�0.535 m, we calculate the average velocity in this interval
to be �0.017 m/s. Then, take t � �t � 2 s. The average
velocity from 1 s to 2 s is �0.342 m/s. Every interval we’ve

vq �
[�0.700 m] � [�0.567 m]

4 s � 1 s
� �0.044 m/s.

v � lim
¢t:0

¢x

¢t
.
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picked so far has yielded quite a different average velocity.
None of these can be said to be the instantaneous velocity at
t � 1 s, because the �ts aren’t very small in any of these exam-
ples. Now switch your attention to Figure 2.4b. Here the piece
of the plot between t � 0.75 s and t � 1.25 s is magnified. If we
take t � �t � 1.25 s, we obtain for an average velocity about

Finally, we take t � �t � 1.13. The average velocity in this
interval is �0.82. These last values are beginning to get closer.
We’re beginning to hone in on the desired velocity.

We see that the bold line connecting the point (1 s,
�0.567 m) to the point (1.13 s, �0.67 m) is difficult to distin-

guish from the curve passing through (1 s, �0.567 m). If we magnify a piece of a
smooth curve enough at any of its points, the curve looks progressively like a little
straight line segment at that point. That line segment is called the tangent line to the
curve at the point. So, in other words, the smaller and smaller we choose �t, the closer
and closer the line connecting (1 s, �0.567 m) to (1 s ��t, x(1 s � �t)) is to being the
tangent line to the position versus time curve at the point of interest (i.e., [1 s, �0.567
m]). And, the instantaneous velocity is the slope of the tangent line at that point (about
�0.66 m/s for our example).

Given a smoothly continuous position versus time graph (such as Figure 2.4a) we
can make a graph of how velocity varies with time by estimating the slope of the tan-
gent line to the curve at successive times and plotting the resulting values. We do this
at some selected times and then connect our best estimates in order to obtain a smooth
curve for a velocity versus time graph. In principle, one can imagine an automatic cal-
culator that could move along the curve in Figure 2.4a continuously finding the tangent,
computing its slope, and then plotting these values as we have done in Figure 2.5.

In Figure 2.5, several tangent lines to the position versus time curve (the lighter
curve) are displayed. All have zero slope and the velocity graph at those correspond-
ing times shows zero velocity. The associated instants in time correspond to “turning
points,” instants where the car changes direction. Between turning points the car
moves continuously in one direction. Thus, from instant a to instant b the car moves
toward the origin, and from instant b to instant c, the car moves away from the ori-
gin. While moving away from the origin (to more positive x-coordinates), the car’s
velocity is positive (the slope of the tangent line to the position versus time curve at
any instant in this interval is positive) and while moving toward the origin (to less

positive x-coordinates), the car’s velocity is negative. Note that at
the moments the car changes direction, its velocity is instanta-
neously equal to zero; that is, the car is instantaneously at rest.

If we had an equation for the curve in Figure 2.4a, that is, an
explicit relation between x and t, we could utilize Equation (2.2) to
determine an equation for how velocity varies in time. The transla-
tion of x(t) into v(t) is the heart of what we call calculus. These
days, computers can do this translation for us.

You can see that the velocity of our car portrayed in Figure 2.5
varies in time, much as position does. Because velocity is rate of
change of position, it is also useful to define rate of change of
velocity. Indeed, as we show in Chapter 3, rate of change of veloc-
ity is the centerpiece of Newton’s laws of dynamics.

The average acceleration is defined, in a similar way to the
average velocity, as

(2.3)aq �
¢v

¢t
,

[�0.79 m]� [�0.567 m]

1.25 s�1 s
� �0.89 m/s.
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where �v � v(tf) � v(ti). Note that the average acceleration
reflects the change of the velocity with time and that in order to
calculate the average acceleration from this definition, you must
first have a graph of (or equations for) the velocity versus time and
then obtain the ratio in Equation (2.3) for the time interval of inter-
est. The average acceleration can be positive, negative, or zero
depending on whether v is increasing (�v is positive), decreasing
(�v is negative), or is the same at the two ends of the time interval
of interest (regardless of what occurred during the interval of time).
Acceleration is change in velocity per unit time, so its units are
velocity units divided by time units: (m/s)/s � m/s2, for the car
example given above.

We define, analogous to instantaneous velocity, the instanta-

neous acceleration (or simply the acceleration) as

(2.4)

Just as velocity at any instant (for motion in one dimension) is the slope of the tan-
gent line to the position versus time curve at that instant, the acceleration at any
instant (for motion in one dimension) is the slope of the tangent line to the velocity
versus time curve. Thus, if we are given a plot of v versus t, we can approximate a
versus t by sketching tangent lines at a number of instants, estimating the respective
slopes, plotting those values, then interpolating. Starting with the velocity plot in
Figure 2.5, we can then generate an acceleration plot, as in Figure 2.6. We identify
several instants at which the acceleration vanishes by noting where the velocity ver-
sus time curve has tangent lines with zero slope. Note that the acceleration is not zero
when the velocity is zero nor is the velocity zero when the acceleration is zero. The
two quantities measure different things and it is important to keep them straight.

Previously, we said that the motion of our car (or any other object) should result
in a position versus time graph that is both continuous and smooth, that is, with no
holes (discontinuities) or sharp points (kinks). No holes ensures that the position
doesn’t abruptly change from instant to instant. No kinks ensures that the velocity
doesn’t abruptly change from instant to instant. The analysis of motion could con-
tinue with additional quantities, such as the time-rate-of-change of acceleration, and
the time-rate-of-change of that, and so on. Remarkably, such additional quantities are
unnecessary for a complete understanding of how objects move about. Newton’s laws
of motion, the subject of the next section, tell us that acceleration is the most com-
plicated piece of motion analysis apparatus we need.

2.  NEWTON’S FIRST LAW OF MOTION

The gist of the preceding section is that there is an intimate mathematical connection
among position, velocity, and acceleration. In essence, if we know an object’s position
over time we can infer what its acceleration must have been; inversely, given its accel-
eration we can make inferences about its position. Although they are intertwined, math-
ematics and physics are not the same thing. In this section, we begin to probe the
physical rules that underlie the mathematics of motion. Constant velocity can’t be felt,
but acceleration can be. What you feel when you accelerate is physics. Acceleration is
the key that unlocks the secrets of much of the physical universe. Constant velocity

doesn’t require an explanation, but acceleration does.
Perhaps you are puzzled by the last sentence. Everyday experience tells us that to

start a body moving we have to give it a push. When we stop pushing, the body comes
to rest. In our everyday experience, rest is the natural state of things. In our everyday

a � lim
¢t:0

¢v

¢t
.
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experience, it is velocity that requires a cause. It took many centuries of human intel-
lectual development before we (that is to say, Galileo, in the seventeenth century) rec-
ognized that our common experience is dominated by two phenomena that acting
together obscure from us the truth about motion. One of these, gravity, makes things fall
down. The other, friction, makes them stop.

It’s a pity that Galileo didn’t have an “air table” to play with. If he had, he
wouldn’t have had to work so hard to uncover the truth about motion. An air table has
many holes in its top, through which jets of air can be squirted. Maybe you’ve seen an
air table at a game arcade (or, perhaps in an introductory physics laboratory). Often
hockeylike games are played on them using pucks that are levitated by the squirting
air. When the air is turned off and the puck is pushed, it quickly comes to rest. Gravity
makes the puck fall to the table and friction makes it stop. When the table is level and
the air is on, the puck hovers in one place. The jets of air effectively cancel gravity out
and render friction negligible. On a properly leveled air table once a puck is pushed it
travels off at constant speed in a straight line, until it hits a sidewall. Between the ini-
tial push and when it hits the wall, no additional push is required to keep the puck
going. The natural state of a body’s motion is constant velocity (zero velocity, i.e., rest,
is a special case). No external influence is required to keep the puck moving, however,
an influence from outside is certainly required to change its velocity.

Isaac Newton, in his Principia Mathematica (1687), greatly extended Galileo’s
insight that change in motion requires cause. The first of Newton’s laws is a kind of
statement of faith. It says that

22 N E W T O N ’ S L AW S O F M O T I O N

It is possible to find laboratories (“frames of reference”) in which a body’s accel-

eration is solely attributable to interactions between that body and other bodies.

In the laboratories of Newton’s first law a body never accelerates spontaneously;
every acceleration is caused by an interaction. That a body does not spontaneously
accelerate is attributed to a property of all material objects called inertia. The frames
of reference of Newton’s first law are said to be inertial frames.

It is usually desirable to observe and describe motion in inertial laboratories,
because in them every acceleration is caused by identifiable pushes and pulls and, as
we show, the associated quantitative analysis is straightforward. Spontaneous accel-
erations observed in noninertial frames necessitate inventing fictitious causes for
their explanation. For example, suppose you jump off the roof of a building (we are
not recommending you do this!). You will notice that in the frame of reference you
carry with you all objects—such as the building, people standing on the sidewalk
below, and the Earth itself—accelerate towards the sky with exactly the same accel-
eration. There is no identifiable interaction that causes all of these simultaneous
spontaneous accelerations. To explain them requires assigning a fictitious cause.
You’re carrying a poor frame of reference for doing physics, a fact that will be
painfully apparent when the upward accelerating ground reaches you. People stand-
ing on the sidewalk will offer a simpler picture of what is occurring. They will say
that it is you who is accelerating, and that there is an easily identifiable cause: the pull
of gravity of the Earth. This situation is general: any frame of reference in which
accelerations occur without cause must itself be accelerating.

There is another, perhaps more common, way to state Newton’s first law, given
our understanding of an inertial reference frame.

In inertial reference frames, objects traveling at constant velocity will maintain

that velocity unless acted upon by an outside force; as a special case, objects

at rest will remain at rest unless an outside force acts.



It’s not hard for us to accept that an object at rest will remain at rest, but it is very
hard to accept the fact that an object will move at constant velocity unless an outside
force, one originating from another object, acts. Friction is so common in our expe-
rience that we often don’t realize it is almost always present and acting to slow
objects down.

Noninertial frames of reference abound. For example, while driving your car you
rapidly accelerate from rest at a stoplight. A box of cookies on the seat next to you
spontaneously slides toward the back of the seat and at the same time the trinket
hanging from your rear view mirror also spontaneously accelerates to the rear. No
object can be found that causes these accelerations. By speeding up, your car
becomes an accelerated reference frame. Similarly, if you spin around on a lab stool
you will observe all objects in your vicinity orbit around you in circles. Because they
travel in circular paths in your reference frame, we show later that they must accel-
erate. But, again, no object can be identified as the cause of these accelerations.
A spinning frame is noninertial.

The latter example draws attention to the following cautionary tale. As the day
passes on Earth we see remarkable events in the sky. The sun rises and sets, seem-
ingly orbiting the Earth in a circular path. Then the moon, the stars, and even the most
distant galaxies do the same thing. All traveling in circles about the Earth, all, from
our vantage point, therefore accelerating. To explain how all of these accelerated
motions occur requires a very complicated picture of how the Earth could possibly
cause them. A much simpler explanation is that the Earth is spinning: we, on the
Earth, live in a noninertial frame of reference. Does that mean we have to leave the
Earth in order to observe the validity of Newton’s law(s)? That depends on what you
want to measure. If you are doing an experiment that is completed in a few minutes
and/or is confined to a small region of the Earth, the acceleration of your laboratory
is probably ignorable. On the other hand, if you are interested in the motion of large
volumes of air moving for hours above the Earth, for example, your acceleration will
make what you see more difficult to explain. (The apparent circulation of winds
around high and low pressure cells results from the acceleration of the Earth relative
to the air. There is no body that can be identified as causing those circulations.)

3.  FORCE IN ONE DIMENSION

The acceleration of any body is caused by interactions with other bodies. Dynamics
is an exact mathematical formulation of the connection between acceleration and
“interaction.” How is the qualitative notion of “interaction” made mathematically
precise? An interaction is a push or a pull. An interaction has a magnitude, or size,
and a direction. In one dimension, say along the x-axis, there are only two choices for
direction: along the positive x-axis direction or along the negative direction (right or
left along the axis). We call such objects, with both a magnitude and a direction, vec-

tor quantities; a vector quantity in one dimension is simply a signed number mea-
sured in appropriate units. Examples of vector quantities from the first section of this
chapter include position, displacement, velocity, and acceleration. Each of these has
both a magnitude and a direction associated with it. On the other hand, quantities
such as distance traveled or average speed do not have a direction and are called
scalar quantities. We indicate vector quantities by placing an arrow over their sym-
bol, for example, the acceleration vector . The simplest assumption we can make is
that a physical interaction also can be represented mathematically by a vector quan-
tity. We call such vectors forces and our first goal is to provide an operationally
meaningful definition for force.

The definition of force we seek relies on a sequence of reasonable assumptions
and their logical consequences. First, from our study of kinematics earlier in this
chapter, we recall that acceleration, like force, also has a magnitude and a direction
and is thus a vector quantity. Everyday experience suggests that when we push an

aB

F O R C E I N O N E D I M E N S I O N 23



initially resting object in a given direction the object accelerates in that direction. So,
we reasonably assume that when a body experiences a single interaction, the vector
force (the cause) and the vector acceleration (the result) are parallel and that one is,
at most, just a scalar multiple of the other.

Next, suppose a body experiences more than one interaction at any instant.
Interactions are represented by force vectors, therefore we assume that the vector
sum of the individual forces is equivalent to a single force that would yield the same
acceleration. The vector sum in one dimension is simply obtained by adding the
signed numbers representing the individual vectors. For example, given two accel-
eration vectors with magnitudes of 3 and 4 m/s2, both pointing along the positive x-
axis, the vector sum is 7 m/s2 also along the positive x-axis, whereas if the second
vector points along the negative x-axis, the vector sum of the two is (3 � 4) � �1
m/s2, where the negative sign indicates that the direction is along the negative x-axis.
Clearly it only makes sense to add two vectors that represent the same physical
quantity, for example, accelerations. (Just as you shouldn’t add “apples and
oranges” because the result mixes the two kinds of fruit together and has no imme-
diate interpretation, adding a force to a velocity doesn’t make physical sense either.)
Vector addition in one dimension can be generalized to add any number of vectors
using simple arithmetic (Just adding positive and negative numbers). If the vectors
we are adding are force vectors acting on an object, the vector sum represents the
net force on the object. In particular, if a body is at rest or traveling with a constant
velocity (i.e., not accelerating) the vector sum of all forces acting on the body must
be zero, assuming we are in an inertial reference frame. We can exploit this quite
reasonable assumption to develop a method for measuring force.

We know that all objects near the Earth fall if they are not supported. The cause
of this downward acceleration is a field force. We say that the Earth is responsible for
this force because it exerts a “gravitational pull” on all bodies in its vicinity. It is tra-
ditional to call the force of gravity of the Earth on any object the object’s weight. We
often measure weights by using a spring scale, such as the familiar hanging scales in
a grocery store. When we place some tomatoes on a grocery scale, the tomatoes cause
a spring to stretch and a needle to deflect. The deflection of the needle is taken to be
a measure of the “weight” of the tomatoes. This happens primarily because the Earth
somehow pulls the tomatoes down toward it and the scale somehow gets in the way
and keeps the tomatoes from falling. The word more commonly used by physicists
for a pull (or a push) is force. The force the Earth exerts on the tomatoes is called
gravity. There’s a wondrous thing about gravity: gravitational pulls exist even though
the bodies involved don’t touch. The Earth reaches out across empty space and pulls
on the tomatoes. (Of course, the space between the Earth and the tomatoes isn’t really
empty: it’s filled with air. But, we can get rid of the air, in a vacuum chamber, for
example, and when we do we find that the pull of gravity is almost exactly the same.)
Forces that exist across empty space are said to be field forces. In the field force pic-
ture, the Earth is viewed as creating a “gravitational force field” in the space around
it. When the tomatoes are placed in the Earth’s field they respond by falling toward
the Earth. The scale, on the other hand, is doing something more directly to the toma-
toes. It appears to stretch only when it is in direct contact with the tomatoes. The

force the scale exerts on the tomatoes is an example of what is called a con-

tact force. When the tomatoes hang from the scale without moving, the
force down on them by the Earth is said to equal the force up on them by
the scale.

This works because of a very useful property of springs. Suspend a
simple spring from a fixed support. Attach an object to the free end of the
spring and gradually lower the object until it can be let go and remain at
rest. In this state of persistent rest, the object is not accelerating so the
spring must be exerting an upward (contact) force on the object, balancing
out the Earth’s downward pull (field) on it. We note that the spring is
stretched. The amount by which the spring has been stretched can be used
to measure the force it is exerting. (See Figure 2.7.)
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Suppose we have another object that is identical to the one that is already hang-
ing from the spring. (We can check whether the weights of the two objects are iden-
tical by suspending them individually from the spring and noting that the stretch is
the same in both cases.) Attach the second object to the end of the spring along with
the first. We assume that these two bodies together are equivalent to a third body
whose weight is twice that of the individuals. As long as the two hanging bodies are
not too heavy (so that their combined weight does not permanently deform the
spring) the new stretch is observed to be twice that when the spring is supporting just
one of the bodies. In other words, the amount of stretch is directly proportional to the
weight the spring supports, or, equivalently, the amount of stretch of a spring is a
direct measure of how much force the spring exerts. Similarly, if we have two iden-
tical springs (two springs that stretch exactly the same amount when the same mass
is suspended from each) and we hang a single weight by both springs as in Figure
2.8, we find that they each stretch by half the distance they would stretch if they each
supported the full hanging weight. This should make sense because each spring is
supporting half the weight with an equal upward force.

In principle, we can imagine measuring any force on any object by replacing the
force we are interested in by an appropriately calibrated, stretched spring (big stiff
ones for large forces, and tiny flexible ones for small forces), keeping all other forces
as before, and generating the same acceleration as when the replaced force is present.
Because a spring exerts a force along its length, the direction of the spring corre-
sponds to the direction of the replaced force and the stretch of the spring determines
the force’s magnitude.

4.  MASS AND NEWTON’S LAW OF GRAVITY

The Earth isn’t the only object that creates gravity. Every mass creates a gravitational
pull on every other mass. You actually pull the tomatoes you weigh in the grocery
toward you a little (and they pull you, too). It’s just that the Earth’s pull is so much
greater than yours, you don’t realize you’re doing it. Mass plays two roles in pro-
ducing a gravitational force. First, one mass creates a gravitational field in the space
around it. Then, a second mass placed in the field of the first experiences a force due
to the first’s field. The two masses reciprocate in their pulls. The second makes a field
of its own and the first, being in the field of the second, feels a force due to it. We say
that a gravitational field has a direction—it points toward the mass making it—and a
size, or magnitude. Let’s call the magnitude of the gravitational field made by a mass
M, gM. The magnitude of the force this field produces when a mass m is placed in it
is defined to be . Like mass and length, force has its own SI unit, the
newton (N). (You don’t find the newton in Table 1.1 because force is not defined as
a fundamental quantity. It is expressible in terms of mass, length, and time, as we
show in the next section. Because it is expressible in terms of fundamental units it is
called a derived unit.) Gravitational field is gravitational force divided by mass, so
the units of gravitational field are newtons per kilogram, N/kg.

We say that a body’s weight (near the Earth) is the gravitational force the Earth
exerts on that body. Thus, a mass m weighs

(2.5)

SI units of mass (the kg), distance (the m), time (the s), and force (the N) were his-
torically developed to be independent of the Earth’s gravitational pull. Thus, a
mass of 1 kg does not weigh 1 N, for example. Rather, under the SI conventions,
we find that a mass of 1 kg near the Earth actually weighs about 9.8 N.
Consequently, we say that the gravitational field of the Earth is about 9.8 N/kg
near the Earth’s surface.

Why is the condition “near the Earth’s surface” important? Well, it turns out that the
strength of a mass’s gravitational field gets weaker the farther away one is from the mass.

Wmass m � FEarth on m � mgEarth

Fof M on m � mgM
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Very careful measurements in the laboratory show that if the centers of two uniform (i.e.,
no holes or irregularities), spherical masses, M and m, are separated by a distance r, then
M pulls m with a gravitational force whose magnitude is given by (see Figure 2.9)

(2.6)

The quantity G is independent of which masses are interacting and any other physi-
cal condition. It is a so-called “universal constant” and in SI units its value is close
to 6.67 � 10�11 N-m2/kg2. Equation (2.6) is known as Newton’s law of universal

gravitation. If we divide both sides of Equation (2.6) by m we get the gravitational
field produced by M at a distance r from its center:

(2.7)

Although Equations (2.6) and (2.7) are rigorously correct for uniform spherical
masses, they can be applied to arbitrary shaped masses to obtain approximate values
for gravitational forces and fields.

gM � G 
M

r 2

FM on m � G 
Mm

r 2
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FIGURE 2.9 Two masses attracting
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Example 2.1 What is the order of magnitude of the mass of the Earth?

Solution: The Earth is approximately a sphere with radius RE � 6.38 � 106 m
(about 4000 mi) ~ 107 m. At the Earth’s surface the r in Equation (2.7) is r ~ 107

m and we know that gEarth ~ 10 N/kg at the surface. So, solving Equation (2.7)
for M, we find MEarth ~ (10 N/kg)(107 m)2/(10�10 N-m2/kg2) ~ 1025 kg. (Make
sure you see how the units work out. A careful calculation yields 5.98 � 1024 kg.)
In other words, by making a laboratory measurement of G (and a measurement
of RE) it is possible to “weigh the Earth.”

Example 2.2 What is the gravitational field of a typical person 1 m from 
the person?

Solution: The point of this example is to obtain an approximate value we can com-
pare with the Earth’s field. Thus, we treat the person as if she were a sphere of
radius less than 1 m and take some typical value for mass, such as ~ 102 kg
(remember, 1 kg weighs 2.2 pounds). One meter from the center of a 102 kg sphere
the gravitational field due to that mass is ~(10�10 N-m2/kg2)(102 kg)/(1 m)2 ~
10�8 N/kg. Compared with the Earth’s field this is a tiny value. No wonder a
person weighing tomatoes doesn’t affect the tomatoes very much.

Example 2.3 What is an accurate value of the Earth’s gravitational field at an
altitude of 300 km (about the altitude of the Space Shuttle when it is in orbit)?

Solution: Here we want to do a formal calculation to compare with 9.8 N/kg. Recall
that in Equation (2.6) or (2.7) r is the distance from the center of the sphere causing
the field. An “altitude” is a distance above the surface of the Earth, so that r

equals REarth � 300 km. Now, a km is 1000 m, so 300 km � 3 � 105 m � 0.3 �
106 m and, therefore, r � 6.38 � 106 m � 0.3 � 106 m � 6.68 � 106 m. Putting
this value into Equation (2.7) along with MEarth � 5.98 � 1024 kg results in a



Thus far in this section we have been discussing the gravitational attraction of
masses. Historically, in such discussions mass was referred to as gravitational mass,
a property that produces gravitational fields leading to gravitational forces. We now
turn to a seemingly different property of mass, inertia.

As mentioned previously, the fact that bodies are reluctant to accelerate is said to
result from an intrinsic property of matter called inertia. A body’s inertia can be assigned
a numerical value, referred to as its mass. It is a remarkable law of nature that if two bod-
ies experience the same net force (which we can check with calibrated springs) the ratio
of the magnitudes of the resulting accelerations, a1/a2, has the same numerical value
irrespective of what forces are acting, how the bodies were initially moving, or any other
external aspect of the measurement (such as the time of day, the temperature, where the
experiment is performed, and so on). With the same net force acting on each body, this
ratio depends only on which two bodies’ accelerations are being compared. The ratio
must be directly related to an intrinsic property of the bodies. Furthermore, there is a
kind of reciprocity between “heaviness” and acceleration: if body 1 feels heavier than
body 2 (so that intuitively it would seem to have more mass) the ratio a1/a2 is less than 1,
and vice versa. We define the ratio of the mass of body 2 to that of body 1 to be the
numerical value of a1/a2 determined by exposing both to the same net force; that is,

. (2.8)

More massive objects will experience smaller accelerations for the same force, with
the accelerations inversely related to the respective masses. The unit for mass is the
kilogram (kg, defined below). When used with the meter and second, the kilogram
defines the SI (Système International) units (formerly known as the mks system of
units). We can define the mass (m2, say) of an object through this equation by using a
standard of mass as another object (m1 � 1 kg) and by measuring the accelerations of
the two objects under the action of the same force (m2 would then be just a1/a2 in kg).

m2

m1
K

a1

a2
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gravitational field equal to 8.9 N/kg. In other words, where the Shuttle orbits, the
Earth’s gravitational pull is only about 9% less than at the Earth’s surface. A Shuttle
astronaut who weighs 150 pounds on Earth weighs about 137 pounds in orbit. The
pull of Earth’s gravity is what keeps weather and communications satellites and
even the moon orbiting the Earth. The Earth’s gravitational pull doesn’t suddenly
stop at the top of the atmosphere; it extends, in principle, “to infinity,” getting
weaker as r gets bigger as 1/r2.

The last statement may run counter to what you’ve heard or read about astro-
nauts in orbit. In orbit, things are said to be “weightless.” You’ve surely seen video
of astronauts floating about aboard the Shuttle. If a 150 pound astronaut tried to step
on a scale while in orbit, he wouldn’t succeed in getting a reading, because the scale
would float away. The resolution to the seeming contradiction that an astronaut can
be apparently “weightless” and yet weigh 137 pounds requires knowing something
about Newton’s laws of motion, a topic we are just beginning to explore.

Example 2.4 A body with mass equal to 1 kg is pulled across a leveled air table
by a spring with constant stretch of 1 cm. The resulting acceleration of the 1 kg
mass is observed to be 0.30 m/s2. A second body of unknown mass is pulled by
the same spring with the same constant stretch. The observed acceleration of the
second mass is 0.45 m/s2. What is the mass of the second body?

(Continued)



The procedure outlined above could be used, in principle, to measure the mass of
any object. Of course, this is not done in practice because interactions (such as colli-
sions) have the nasty potential for altering our standard and because the force that
would impart a nice acceleration to an electron would imperceptibly perturb the
motion of a kilogram. In practice, a wide range of secondary mass standards has to
be used to measure unknown masses.

The standard kilogram (kg) is a platinum–iridium alloy cylinder kept at the
International Bureau of Weights and Measures. Incidentally, standards for the meter
and second are defined more reproducibly: the second is defined as the time
needed for 9,192,631,770 vibrations of a cesium atom (a so-called atomic clock) and
the meter is defined as the distance traveled by light in a vacuum in a time of
1/299,792,458 s (Figure 2.10). This, in fact, defines the speed of light in vacuum to
be exactly c � 299,792,458 m/s. In other words, the speed of light was so well deter-
mined that in 1983 the meter was redefined so as to fix the speed of light.

Although fractions and multiples of kilograms suffice for quantifying mass in
many situations, in the microworld of atoms and molecules another mass unit is more
useful: the atomic mass unit (u) is defined to be exactly 1/12 of the mass of a neutral
“carbon twelve” atom (an atom with 6 protons, 6 neutrons, and 6 electrons, often des-
ignated by the symbol 12C). The atomic mass unit is preferred over kilograms when
dealing with molecules because 1 u � 1.66 � 10�27 kg, and the latter is a very small
and ungainly number with which to deal. The term dalton (D) is sometimes used to
denote the same mass unit.

To recap this section on mass, we have discussed mass from two seemingly different
approaches: gravitational mass, through Newton’s law of gravity, which produces
gravitational fields and forces on other masses, and inertial mass, defined through
the acceleration produced by forces acting on the mass. Gravitational mass is a “static”
mass with no motion required, gravitational fields and forces depending only on gravi-
tational masses and distances. Inertial mass, on the other hand, is a “dynamic” mass,
defined in terms of the acceleration response of the inertial mass to a given force of any
kind. It is not necessarily apparent that these two concepts should lead to the exact same

number for the mass of an object, but we have used the same sym-
bol m for each because it has been shown that these masses have
the same value to within better than 1 part in 1012. This equiva-
lence of inertial and gravitational mass has been a subject of
discussion and experiment since Galileo and is still under active
research.

5.  NEWTON’S SECOND LAW OF MOTION 
IN ONE DIMENSION

Newton’s first law tells us that in an inertial frame of reference
a body accelerates only when it experiences a net force due to
all other bodies. Equipped with the definitions of force and
mass given above, the idea embodied in Newton’s first law—
that acceleration has a cause—can be made more precise. Thus,
Newton’s second law of motion says that
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Solution: We assume that under the conditions cited, both bodies experience the
same overall force due to the spring. Because the second body has a higher
acceleration, we expect it has a mass less than 1 kg. We let m1 � 1 kg and m2 be
the unknown mass. Then using Equation (2.8) we have

m2 � (0.30 m/s2 / 0.45 m/s2) (1 kg)
� 0.67 kg.

#

FIGURE 2.10 An atomic clock at
NIST (National Institute of Standards
and Technology) with an accuracy of
about 1 s in 20 million years.



Embedded in Newton’s second law are several important notions. (1) The law
says that when the acceleration of a body arises from forces, the acceleration is
caused by agents outside the body. A body cannot accelerate itself. Acceleration
requires external force. (2) When there is a net (unbalanced) force on a body, the
acceleration is in the same direction as the net force. The constant of proportionality
that converts force into acceleration is the reciprocal of the body’s mass. For a given
force, the larger the mass, the smaller the acceleration, and vice versa. (3) Finally, as
stated here, Newton’s second law is applicable to a body in rigid translation, a body
whose extent in space is ignorable, a point particle. For bodies that are tumbling or
flexing or breaking into pieces the law of motion stated above has to be clarified and
supplemented in ways we examine later.

Note that according to Equation (2.9), force has the units of mass times acceler-
ation. Thus, in SI units one unit of force is equal to 1 kg-m/s2. Because of the central
role that force plays in describing nature, force units are given their own name.
Honoring the founder of dynamics, 1 kg-m/s2 is defined as 1 newton (1 N). (For
calibration, a quarter pound hamburger with its bun, but minus the tomato and pickle,
weighs about 1 N.)

Mass should be carefully distinguished from weight. Mass is an intrinsic prop-

erty of an object whereas weight is the magnitude of the force of the gravitational pull

of the Earth. If a body is in free fall, Equation (2.9) says

, (2.10)

where g is the magnitude of the acceleration due to gravity (9.8 m/s2 near the Earth’s
surface). The force Fgravity is due to the pull of the Earth on the body whose mass is m.
The magnitude, mg, of the gravitational force is also called the body’s weight. A 1 kg
mass thus weighs 9.8 N, because, for such a body, Fgravity � 1 kg � 9.8 m/s2. Note that
weight exists whether or not the object is actually accelerating downward with accel-
eration g. A 1 kg body resting on a table near the surface of the Earth still weighs 9.8 N;
the downward pull of the Earth on it must be canceled by an upward force of 9.8 N
exerted by the table to keep it at rest. The weight of an object will vary depending on
its location. For example, an object on the moon’s surface weighs only about 1/6
what it does on Earth. This difference is due to the difference in the gravitational pull
of the moon and has to do both with the moon’s mass and radius compared to those
of the Earth.

Equation (2.9) can be used to extract acceleration information from known forces
or force information from known acceleration. For example, if all the forces acting
on a particle of a given mass are known at every instant, the acceleration of that
particle for every instant can be determined from the forces. Then, by measuring the
particle’s position and velocity at any one time, this dynamically inferred accelera-
tion can be used (along with the methods we study in the next chapter) to predict the
entire future motion of the particle, as well as deduce its entire past motion.
Alternatively, if a complete record of a particle’s motion is available, the particle’s
acceleration for every instant can be calculated from kinematics and forces required
to produce that motion can then be determined.

a � g �
Fgravity

m
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In an inertial frame of reference, the acceleration of a body of mass m,

undergoing rigid translation, is given by

, (2.9)

where is the net external force acting on the body (i.e., the sum of all

forces due to all bodies other than the mass m that push and pull on m).

B

Fnet on m

Ba �
F
B

net on m
m
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FIGURE 2.11 An electron, initially located 
at the origin experiences a constant force F.

Example 2.5 Television pictures are created by the collisions of a narrow beam of
rapidly moving electrons with phosphor molecules on the screen of the picture tube.
Suppose an electron (mass � 9.1 � 10�31 kg) in a TV is released from rest. After
release it experiences a constant electrical force of 0.001 pN (where 1 pN � 1
piconewton � 10�12 N). What is the electron’s acceleration under this force?

Solution: We choose a coordinate system with the x-axis lined up along the direc-
tion of the constant force and with the origin where the electron is released (see
Figure 2.11). The magnitude of the acceleration is found from Newton’s second law

ax � Fx /m � 0.001 � 10�12 N/ 9.1 � 10�31 kg � 1.1 � 1015 m/s2.

Because the force is constant throughout this region of space, the acceleration
remains constant there as well, always pointing along the x-axis. Note that
gravity pulls the electron toward the Earth with an acceleration equal to about
10 m/s2. The electrical force on the electron in this picture tube is about 1014

times larger than gravity! TV designers don’t have to worry about gravity
making their pictures sag.

Newton’s second law has a wonderful range of validity and usefulness. It can be
used to aim electrons to make a better TV picture. It can tell us how macromolecules
vibrate and tumble in a cell when DNA is undergoing replication. It allows us to design
more effective brakes to make cars safer. With it we can calculate the trajectories of plan-
ets and rocket-launched satellites to explore the bodies of our solar system. (A powerful
example of such calculations is the collision of the comet Shoemaker–Levy 9 with the
planet Jupiter in which the collision time was predicted with tremendous accuracy
(Figure 2.12).) Newton’s second law is arguably one of the central ideas of all of physics.
You certainly could do less important things than practice the mantra, “Acceleration is
net force over mass; acceleration is net force over mass, . . . .”

6.  NEWTON’S THIRD LAW

According to Newton’s second law, acceleration requires force from outside. Swimming
fish, flying birds, and human bicyclists all accelerate because something pushes on them,
according to the second law. At first, that may sound preposterous. For example, think
of what it feels like to increase your speed while running. You feel strain in the muscles
of your legs. Or, accelerate your car to pass on a highway. You have to push down the
gas pedal. Obviously, in both cases something internal is causing the acceleration.

Well, that’s not exactly correct. Suppose you are asked to exert the same strain in your
legs but instead of running on a dry track you are placed on a beach with loosely packed,



dry sand. The same effort doesn’t result in nearly the same accel-
eration. If you are placed instead on an ice rink, the same effort
produces even less of an outcome. Finally, if you were put in a
space suit and placed in the vacuum of space outside the Space
Shuttle, moving your legs with the same strain as before would
produce no acceleration at all. Clearly, moving your legs is
important in producing acceleration, but what you are standing
on is also important. You have to be able to push against some-
thing. That is equally true for fish and birds and accelerating cars.

The reconciliation of examples of apparent self-propulsion
with Newton’s second law, which says that self-propulsion is
impossible, requires another law of motion:
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Example 2.6 Newton’s third law can be a source of confusion to someone who
is thinking about such things for the first time. Here’s an example. A young
woman kicks a soccer ball 30 m downfield. But how? (Caution: The reasoning
that follows contains an error! Can you spot it?) That is, Newton’s third law says
that the force of her foot on the ball is exactly countered by a reaction force
exerted by the ball on her foot. The two are equal in magnitude and oppositely
directed. The sum of two equal and opposite forces is zero, so according to
Newton’s second law, if there is no net force, no acceleration is possible. But, of
course the ball does go downfield, so what goes on?

Solution: The wording of this problem illustrates a common pitfall in applying
Newton’s laws of motion. You have to be careful about identifying what is the
body of interest and what are its surroundings. If we are interested in the flight of
the soccer ball, then we have to keep track of the forces on the ball, and only those
forces. If we are interested in the motion of the woman’s foot, then we have to
keep track of the forces on her foot. The foot exerts force on the ball and the ball
accelerates as a result. The ball exerts a force on the foot and the foot accelerates
(slows down) as a result. The two forces are equal and oppositely directed,
however, they act on different bodies and each produces its own acceleration. The
two don’t act together on any one body and the fact that they add up to zero is
irrelevant for understanding what happens to the ball.

This law, Newton’s third law of motion, is sometimes referred to
as the law of action–reaction: every “action” generates an equal
and opposite “reaction.” Thus, the feet of a runner do not acceler-
ate the runner. Rather, the feet exert a force on the track, and it is
the reaction force of the track back on the feet that accelerates the
runner. When you run on a track a given effort leads to a certain
push on the Earth; the Earth pushes back on you and that push results in your acceleration.
When you run in loose sand, or on ice, you can’t exert the same force on the Earth as you
can by pushing on a dry track; the weaker push by you on the Earth is reciprocated with a
weaker push back, and, therefore, less acceleration. In space, running doesn’t result in an
acceleration because there is nothing to push against and therefore nothing to push on you.

A B

C D

FIGURE 2.12 Time series showing
the collision of a comet with Jupiter
in July 1994 as detected by the
Galileo satellite probe; the comet,
made from over 20 fragments, had
been tracked for a year and the
location and time of the impact, the
first-ever observed collision of two
solar system objects, had been
calculated very precisely.

When one body exerts a force on a second body, the

second exerts a force in the opposite direction and

of equal magnitude on the first; that is,

B

F2 on 1 � �
B

F1 on 2



You may be tempted, in thinking about this example, to say something like,
“Well, the ball goes downfield because the woman is more powerful or more massive
than the ball.” Resist that temptation if you feel it creeping up on you. Keep in mind
that a not very powerful nor massive 50 kg woman can easily accelerate a 1000 kg
car (in neutral, with its brakes off, on a horizontal surface) by pushing it.
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Example 2.7 Two ice skaters, a 90 kg father and his 40 kg daughter standing face
to face and holding hands, push off from each other with a constant force of 20 N
(Figure 2.13). Find their accelerations during the time they are pushing each other.

Daughter

Father

Force of daughter on father Force of father on daughter

FIGURE 2.13 Two ice skaters pushing off from each other.

Solution: Each skater exerts a 20 N force on the other. Assuming there are no
other horizontal forces acting, the man’s acceleration will be aman � 20 N/90 kg
� 0.22 m/s2 to the left, whereas the girl’s acceleration will be agirl � 20 N/40 kg
� 0.5 m/s2 to the right. These accelerations occur only during the time when the
skaters are pushing against each other. Note that no matter which person (or
both) actually takes the active role in doing the pushing, the force on each per-
son has the same magnitude.

Example 2.8 A book lies at rest on a horizontal table. Identify all forces acting
on the book and for each identify the appropriate reaction force.

Solution: The forces labeled “1” and “3” in Figure 2.14 are forces on the
book. Forces “2” and “4” are exerted by the book in reaction to “1” and “3”.
Force “1” is the book’s weight. It is due to the Earth’s gravitational field. If
the Earth pulls on the book, Newton’s third law says that the book must pull
back on the Earth with a force of equal magnitude. The reaction force to “1”
is a gravitational pull exerted by the book on the Earth, and is labeled “2” in
the figure. Its magnitude is the same as the book’s weight. The force “3” is an
upward force exerted by the table on the book because of contact between the
table and the book. We know there is such a force because we know the book
lies at rest, so the net force on it must be zero. When the force exerted on the
book by the table is added to the force exerted on the book by the Earth, the
two cancel. Clearly, the upward force of the table on the book must also have
the same magnitude as the book’s weight. The reaction force to “3” is a con-
tact force, “4,” exerted by the book on the table. It points down and it, too, has
the same magnitude as the book’s weight but it is not the book’s weight. If
suddenly a hole bigger than the book opened in the table below it, both “3”
and “4” would suddenly disappear, but the book’s weight “1” and the reaction
force “2” would still exist.

So, if the force “2” is due to a gravitational pull of the book how come the
Earth doesn’t accelerate toward the book with an acceleration g? Newton’s
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third law says that action–reaction forces are equal, not the accelerations they
produce! To find out about those, use Newton’s second law: the magnitude of the
Earth’s acceleration is the magnitude of the force on it divided by the Earth’s
mass. In other words,

(remember, the magnitude of the force exerted by the book is equal to the book’s
weight) and because the ratio of the mass of the book to the mass of the Earth is
on the order of 10�25 the book’s pull on the Earth produces a negligible accel-
eration. Of course, if the book had a lot more mass—like that of another
planet—and was as close to the Earth as the book (fortunately, the pull of gravity
also depends on distance) then the acceleration of the Earth would not be negli-
gible. But, that’s another story.

aEarth �
Fbook on Earth

MEarth
�

mbook g

MEarth
� £ mbook

MEarth
≥g

7.  DIFFUSION

An E. coli bacterium typically swims in a straight line for some distance, during which
time its flagella undergo a coordinated helical motion driven by a rotary molecular
motor located in the membrane at the flagella attachment sites (we study this molec-
ular motor further in Section 3 in Chapter 7; see also Figure 1.2 for a cartoon sketch).
In response to external stimuli of, for example, nutrient or oxygen level, the molecu-
lar motor may reverse and cause the flagella to become uncoordinated, resulting in a
characteristic “twiddling” motion in which the bacterium randomly gyrates about,
before finally taking off in a straight-line trajectory in some other direction. E. coli

have been shown to respond to variations in environmental factors, being attracted to
higher levels of nutrients and oxygen and repelled by poisons; this response is known
as chemotaxis. If the E. coli are either killed or have their flagella removed they are
no longer motile but they still move due to a phenomenon known as Brownian motion,
named after Robert Brown who in 1827 noticed the random thermal motions of

book

table

Earth

3

1

4

2

FIGURE 2.14 Forces involved with a book on a table.
Forces 1 and 3 act on the book, whereas 3 and 4, and 
1 and 2 represent action–reaction pairs (see discussion
of Example 2.8).



suspended pollen grains under a microscope. Rapid and numerous collisions
of solvent molecules with the E. coli produce random erratic motions. The
Brownian motions of such “killed” E. coli, as well as the random motions of

the solvent molecules themselves, are examples of a general process known as diffu-

sion, which is the term for such thermally driven motions at the molecular level.
Although diffusion appears, at first glance, to be random and incapable of result-

ing in useful or interesting results, diffusive phenomena abound in the biological and
physical world. In biology, diffusion is the process that controls both the exchange of
oxygen in the hemoglobin of our red blood cells and the elimination of wastes in our
kidneys. Whenever molecules move from one place to another without the expense of
energy specifically earmarked for that motion, it is by diffusion; for example, diffusion
controls the passive transport of molecules across a membrane and stored chemical
energy is required for the process known as active transport.

Often when there are concentration differences across macroscopic distances
diffusion will play a role in reducing those differences. In these cases, even though the
motion of each individual molecule may be random in direction, the collective motion
that affects the local concentration of molecules can be directed. For example, in the
case of one-dimensional diffusion, suppose there is a sharp spatial boundary in the
concentration of some molecules as shown in Figure 2.15. Then even though any
particular molecule is equally likely to move left or right, as time evolves, the varia-
tion tends to disappear because, on average, there are more molecules in the higher
concentration region moving into the lower concentration region. Examples of just this
type of diffusion are the oxygen and waste transport in the blood and kidneys
cited above. In general when there are initial concentration variations and no active,
energy-consuming processes occurring, diffusion tends to result in a uniform final
state. We show the connection of this randomization process to the science of
thermodynamics in Chapter 13.

The mathematics of diffusion in one dimension can be described by a related
problem known as the random walk. Suppose that one starts at the origin and takes
equal length steps in either the positive or negative x-direction with equal proba-
bility (this is also known as the drunkard’s walk problem). Without regard for the
details of the mathematics, it is clear that the average position of the person after
many steps is still at the origin since positive or negative steps are equally likely
and the average is simply computed by adding up the (plus and minus) displace-
ments. On the other hand, it should also be clear that as time goes on, it will
become more and more possible that the person will be found farther away from
the origin. We can characterize this motion by calculating the average of the
squares of the displacements, because these will all be positive quantities and can-
not average away to zero. A calculation shows that this mean square displacement,
�(� x)2	, is given by

�(� x)2	 � Nd2,

where N is the number of steps, d is the step size, and the brackets � 	
indicate taking the average value (Figure 2.16).

The one-dimensional diffusion of a “killed” E. coli can be solved
using mathematics similar to the random walk problem, but clearly the
step size and number of steps do not directly apply. The analogous equa-
tion for the mean square displacement of a diffusing bacterium is given by

�(� x)2	 � 2 Dt,

where t is the elapsed time and D is a constant known as the diffusion
coefficient, which is a property of the size and shape of the bacterium
as well as of the viscosity (a measure of “stickiness”) and temperature
of the liquid medium in which the bacterium is found. It turns out that
as this result is generalized to two (or three) spatial dimensions of
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FIGURE 2.15 Diffusion will tend to
equalize the numbers of molecules
in the left and right sides of the
initially sharp boundary.

x

time

step size = d

FIGURE 2.16 One-dimensional ran-
dom walk with equal step size and
time interval.



motion, the mean square displacement has an additional 2 Dt (or 4 Dt), so that in
three dimensions

�(� r)2	 � 6 Dt. (2.11)

The square root of the mean square displacement (known as the root mean square or
rms displacement) is thus proportional to , a result that is very different from the linear
t-dependence for a particle moving with constant velocity. Although diffusing particles
may move rapidly over short times, because of their constant random changes in direction,
the overall average displacements change much more slowly with time. The characteristic

signature of displacements in diffusion appears often in our discussions of many phys-
ical as well as biophysical phenomena. For example, we show that electrical and thermal
conductivities are closely related to the diffusion of loosely bound electrons in a metal.

1 t

1 t
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Example 2.9 The diffusion coefficient for sucrose in blood at 37°C is 9.6 �
10�11 m2/s. (a) Find the average (root mean square) distance that a typical
sucrose molecule moves (in three dimensions) in 1 h. (b) Now find how long it
takes for a typical sucrose molecule to diffuse from the center to the outer edge
of a blood capillary of diameter 8 �m.

Solution:

(a) Simple substitution finds the rms distance to be equal to

(b) This is a problem in two dimensions (in a cross-sectional plane of the capil-
lary), so that from the above discussion, the relationship between the mean
square distance and the time is �(�r)2	 � 4 Dt. Substituting �r � 4 �m �
4 � 10–6 m, we find that

Note that this answer for the time scales as the square of the capillary radius and
so increases by a factor of 4 for a capillary of twice the radius. This example
demonstrates why capillaries need to be so small in order to carry out efficient
exchange of food and wastes between the blood and surrounding tissue.

t �
6 (¢r)2 7

4 D
�

(4 � 10�6 m)2

4 # 9.6 � 10�11 m2/s
� 0.04 s.

36Dt �36 # 9.6 � 10�11 m2/s # 3600 s � 1.4�10�3 m.

(Continued)

where the average values over a time interval
�t are equal to these expressions without taking the
limit.

The gravitational force between any two masses is
given by Newton’s universal law of gravity,

. (2.6)FM on m � G 
Mm

r2

CHAPTER SUMMARY
In one dimension, starting with the concept of
displacement �x, velocity and acceleration are defined as

(2.2)

(2.4)a � lim
¢t:0

¢v

¢t
,

v � lim
¢t:0

¢x

¢t
 and
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QUESTIONS
1. As a car moves steadily down a road, we can deduce

the motion of the car by following the motion of only
one piece, for example, the corner of a fender or the
license plate. However, the motion of the piece only
conveys complete information about the rigid struc-
ture of the car. Describe the motion through space
of each of the following as a car moves forward:
a tire air valve, the tip of a working windshield
wiper, the top of an engine piston, and the label on a
fan belt.

2. As a person runs, describe the motion through space
of a wrist, a kneecap, and an elbow.

3. In the figure the position of an object is shown as a
function of time. Indicate whether the velocity and
acceleration in each labeled interval are positive,
zero, or negative.

5. Is the average velocity during an interval of time
always equal to the sum of the initial and final veloc-
ities of the time interval divided by two? If not, give
an example showing why not.

6. When an object free falls, does it travel equal
distances in equal time intervals? Does its velocity
increase by equal amounts in equal time intervals?

7. In each of the following situations, first identify all
the forces acting on the object and then, for each
force, identify the reaction force and its source:
(a) A bird flying through the air
(b) A horse pulling a cart
(c) A person riding in an elevator that is accelerating

upwards
(d) A hot air balloon hovering in place
(e) A ladder leaning against a wall.

8. A VW bug has a terrible head-on collision
with an 18-wheeler truck. Which vehicle experi-
ences the greatest force on impact? The greatest
acceleration?

9. Tell whether the following pairs of forces are
action–reaction pairs, and include a statement about
your reasoning.

For a mass near the Earth’s surface, this force is equal
to its weight,

, (2.5)

with gEarth � 9.8 m/s2.
Newton’s second law states that

(2.9)Ba �
F
B

net on m
m

Wmass m � FEarth on m � mgEarth

and in the absence of a net force, the acceleration must
be equal to zero, a statement equivalent to Newton’s first
law. The third law is a statement that all forces arise from
interactions between pairs of objects; the two forces
(action and reaction) each act on one of the objects and
are equal in magnitude, but opposite in direction.

Unlike directed motion, diffusion is a random
thermal process in which the average displacement is
zero, however, the mean squared displacement is
given by

�(�r)2	 � 6 Dt. (2.11)

4. In the figure the velocity of four different objects is
shown as functions of time. Indicate whether the
velocity and acceleration for each labeled object are
positive, zero, or negative.
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(a) The weight of a fish and the buoyant force hold-
ing it up

(b) The centripetal force on a protein molecule in a
centrifuge and the force the protein exerts on the
solvent surrounding it

(c) The weight of a free-fall skydiver and his fric-
tional drag after reaching a terminal velocity

(d) The thrust on a jellyfish and the force the jellyfish
exerts on the jet of water it expels

(e) The frictional force that allows you to walk and
the force you exert horizontally on the Earth

10. Describe some situations in which forces act on
an object but there is no motion. How can this
occur?

11. What is the difference between mass and weight?
12. Which of the following situations involve field forces

and which contact forces: a tug-of-war, moving
paper clips around with a horseshoe magnet, riding a
Ferris wheel, getting a shock when you reach for a
door knob, a ball falling through the air, a train
rolling on tracks, a levitated train traveling at over
340 min/h.

13. Two equal masses attract each other with a gravita-
tional force of 18 pN. If their separation is tripled
what will the gravitational force between them be?

14. A mass produces a gravitational field g at a point. If
the mass is doubled and moved twice as far
away from the point, what will the new gravitational
field be?

15. Discuss how you think scientists were able to deter-
mine the mass of the sun.

16. Explain why even though an astronaut in orbit around
the Earth is weightless, she must exert a force in order
to propel herself across the spaceship.

17. A person riding on the “whip” at an amusement park
watches an ice skater coast by. The ice skater
believes that she is coasting in a straight line at a
constant speed. How does the person on the “whip”
describe her motion? This same person believes that
Newton’s first law is violated for the ice skater. Why
is he wrong?

18. Muscle basically consists of interdigitating thick
and thin filaments that interact via cross-bridges (the
“heads” of myosin molecules). Because the force a
myosin head exerts on an actin thin filament is equal
and opposite to the force the actin exerts back on the
myosin head and thereby the thick filament, how can
the muscle generate any force?

19. The detailed structure of a muscle fiber includes a
series of Z-lines with actin thin filaments of opposite
polarity on either side and with thick filaments not
attached to the Z-lines as shown. The cross-bridge
interactions tend to shorten the distance between
neighboring Z-lines when a muscle contracts, but
should not a given Z-line feel symmetric forces from
the equivalent thin filament interaction on either side,
and hence not feel a net force?

20. In each of the following cases, identify the interaction
pairs of forces and draw a free-body diagram of the
object in italics: (a) a book resting on a table; (b) a
book resting on a table with a paperweight on top of
the book; (c) a cart being pulled by a horse along a
level road; (d) a heavy picture being pushed horizon-
tally against the wall to hold it in place.

21. What causes diffusion? If a container is kept perfectly
still, without any vibrations on it whatever (e.g., covered,
in a draft-free room, atop a granite block mounted on
shock absorbers) will diffusion occur within it?

22. Why doesn’t a drop of dye, when added to water, sim-
ply grow outward uniformly from the position at
which it is first placed? (Or does it?) If you carefully
put one drop of cream atop a mug of coffee, what
happens to it? Is there any way to keep the added drop
from diffusing?

MULTIPLE CHOICE QUESTIONS
1. The x-position of a particle is sampled every 0.5 s, as

in the following table.

time

x-
co

m
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en
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v
el

o
ci

ty

best fit line

0

Time (s) x-Position (m)

0.0 �3.0

0.5 �2.2

1.0 �3.0

1.5 �1.0

2.0 �0.5 

Which one of the following must be true? (a) The 
x-component of the average velocity in the interval
0.0 s to 1.0 s is 0.0 m/s. (b) The average speed in the
interval 0.0 s to 1.0 s is 0.0 m/s. (c) The x-component of
the instantaneous velocity at 1.0 s is �3.0 m/s. (d) The
x-component of the instantaneous velocity throughout
the interval 1.0 s to 2.0 s is always negative.

2. The x-component of a particle’s velocity is sampled
every 0.5 s. The data are fit with a straight line as
shown in the figure to the right. Assuming the fit is a
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good approximation to the motion, which of the fol-
lowing best represents the x-component of the net
force on the particle as a function of time?

the ball is in free-fall. The acceleration of the ball
(a) points up at A, is 0 at B, and points down at C;
(b) points up during each portion of the flight; (c) is
zero during each portion of the flight; (d) points down
during each portion of the flight.

8. An object is thrown straight up. At the top of its path
(a) the velocity is zero and the acceleration is zero,
(b) the velocity is zero and the acceleration is equal to
the weight, (c) the velocity is down and the accelera-
tion is equal to g, (d) the velocity is zero and the
acceleration is equal to g.

9. Newton’s law of gravitation says that the magnitude of
the gravitational force of a body of mass M on a body of
mass m is GMm/r2. The fundamental dimensions
of Newton’s Gravitational Force are (a) [M][L][T]�2,
(b) [M]2[L]�2, (c) [M][L][T]�1, (d) [M][L]2[T]�2.
(Here [M] represents mass, [L] length, and [T] time.)

10. Given that the Earth is about 1.5 � 1011 m from the sun
and takes a year (about 3.1 � 107 s) to make one revolu-
tion around the sun, the Earth’s orbital speed around the
sun is (a) 4.8 � 103 m/s, (b) 2.3 � 1015 m/s, (c) 3.0 �
104 m/s, (d) 7.3 � 1014 m/s.

11. Agnes is in an elevator. Andy, sitting on the ground,
observes Agnes to be traveling upward with a con-
stant speed of 5 m/s. At one instant Agnes drops a pen
from rest. Immediately after, the acceleration of the
pen according to Agnes is (a) 10 m/s2, down, (b) 0,
(c) 15 m/s2, down, (d) 5 m/s2, up.

12. As in the previous question, Agnes is in an elevator that
Andy (attached to the ground) sees traveling upward.
This time Andy sees the elevator’s speed increasing
by 5 m/s every second. Agnes stands on a scale in the
elevator and sees the reading to be 750 N. After the
elevator comes to a complete stop, Agnes is still on
the scale. The reading now is (a) 250 N, (b) 500 N,
(c) 750 N, (d) 1000 N.

13. As I apply the brakes in my car, books on the passen-
ger seat suddenly fly forward. That is most likely
because (a) the car is not an inertial reference frame,
(b) the seat supplies a forward push to make the
books accelerate, (c) there is a strong gravitational
field generated by the brakes, (d) there is a strong
magnetic field generated by the brakes.

14. A particle of mass m1 collides with a particle of mass
m2. All other interactions are negligible. The ratio of
the acceleration of mass m1 to the acceleration of mass
m2 at any instant during the collision (a) is small at
first, then reaches a maximum value, then goes back to
a small value, (b) depends on whether m1 and m2 stick
together in the collision, (c) depends on how fast each
of the particles is initially moving, (d) is always the
constant value m2/m1.

15. A 10 kg and a 4 kg mass are acted on by the same mag-
nitude net force (which remains constant) for the same
period of time. Both masses are at rest before the force
is applied. After this time, the 10 kg mass moves with
a speed v1 and the 4 kg mass moves with a speed v2.

(a)

time
0

(b) 

time
0

3. A 9.8 N force causes a 1 kg mass to have an acceler-
ation of 9.8 m/s2. This situation is most closely
related to Newton’s (a) first law of motion, (b) second
law of motion, (c) third law of motion, (d) law of uni-
versal gravitation.

4. A woman weighing 500 N stands in an elevator that
is traveling upward. At a given instant the speed of
the elevator, as well as that of the woman, is 10 m/s
and both are decreasing at the rate of 2 m/s2. At that
instant, the floor of the elevator exerts a force on the
woman that is (a) about 400 N, pointing up, (b) 500
N, pointing up, (c) 500 N, pointing down, (d) about
600 N, pointing up.

5. A soccer ball approaches a soccer player with a speed
of 10 m/s. The player heads the ball with the net
result that the ball travels off in the opposite direction
with a speed of 15 m/s. The player stays more or less
in place. During the time the player’s head is contact
with the ball the head exerts an average force of mag-
nitude 100 N. Which one of the following is true con-
cerning the magnitude of the average force the ball
exerts on the player’s head during that time? (a) It
must be about zero because the head doesn’t move
much. (b) It’s hard to say from the information given,
but it certainly must be less than 100 N or else the ball
wouldn’t reverse direction. (c) Nothing can be said
about the magnitude of the force because neither
the mass of the ball nor the time of contact is given.
(d) It’s 100 N.

6. A bicyclist rides for 20 s along a straight line that cor-
responds to the �x-axis covering a distance of 400 m.
She then turns her bike around; that takes another
20 s. Finally, she rides back to where she started (400
m in the �x-direction) for 40 s. The average velocity
for this trip is (a) 0, (b) �3, (c) �10, (d) �15 m/s.

7. A ball is thrown directly upward. After leaving the
hand the ball is observed to be at a height A and ris-
ing. A little while later, the ball is at height B and is
instantaneously at rest. Later still the ball is observed
to be height C and falling. All during the flight

(c)

time
0

 zero force

(d)

time
0
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Which of the following is true? (a) v1 is equal to v2,
(b) the ratio v1/v2 is equal to 5/2, (c) the ratio v1/v2 is
equal to 2/5, (d) the ratio v1/v2 is equal to (2/5)2.

16. Can an object’s velocity change direction when its
acceleration is constant? (a) No, this is not possible
because it is always speeding up. (b) No, this is not
possible because it is always speeding up or always
slowing down, but it can never turn around. (c) Yes,
this is possible, and a rock thrown straight up is an
example. (d) Yes, this is possible, and a car that starts
from rest, speeds up, slows to a stop, and then backs
up is an example.

17. Can an object have increasing speed while its accel-
eration is decreasing? (a) No, this is impossible
because of the way in which acceleration is defined.
(b) No, because if acceleration is decreasing the
object will be slowing down. (c) Yes, and an example
would be an object falling in the absence of air fric-
tion. (d) Yes, and an example would be an object
released from rest in the presence of air friction.

Questions 18–21 concern interpreting the two graphs
below.
18. In which interval of the x versus t graph (A, B, or C)

is the acceleration negative?
19. In which interval of the x versus t graph (A, B, or C)

is the velocity constant?
20. In which interval of the v versus t graph (A, B, C,

or D) is the acceleration constant but nonzero?
21. In which interval of the v versus t graph (A, B, C,

or D) is the acceleration only positive?

(in Newtons) by (a) (6, 0, 16), (b) (�6, 0, 16), (c) (3/2,
0, �4), (d) (6, 0, �16), (e) (3/2, 0, �16).

23. If the object described by the above graph starts
at the origin at t � 0, where will it be at t � 4 s?
(a) x � 11 m, (b) x � 13 m, (c) x � 8 m, (d) x � 4 m,
(e) x � 22 m.

24. A person is holding up a picture by pushing it hori-
zontally against a vertical wall. The reaction force to
the weight of the picture is (a) the normal force on the
picture, (b) the pull upwards on the Earth equal to
the weight, (c) the frictional force on the picture at the
wall equal to the weight, (d) the frictional force on
the wall by the picture, (e) the normal force on the
wall by the picture.

25. Which of the following represents the correct free-
body diagram for a helium (floats in air) balloon held
by a string that is tied to a seat inside the passenger
compartment of a train traveling to the right at a
constant 60 mph?

Questions 22 and 23 refer to the following diagram.

t (s)

v (m/s)

0

2

4

1

3

0 2 4 6

A B C 

a. b. c. d. e.

26. A cart is being pulled along a horizontal road at
constant velocity by a horse. What is the reaction
force to the horse pulling on the cart? (a) the normal
force of the ground on the cart, (b) the weight of the
cart, (c) the friction force on the cart equal to the
pull of the horse, (d) the equal backwards pull on
the horse.

27. An object is thrown straight up. At the top of its path the
net force acting on it is (a) greater than its weight,
(b) greater than zero but less than the weight, (c) instan-
taneously equal to zero, (d) equal to its weight.

28. A trained seal at the circus sits on a chair and balances
a physics book on its nose. On top of the book sits a
basketball. Which of the objects exerts a force on the
basketball? (a) the book only; (b) both the seal and the
book; (c) the seal, the book, and the chair; (d) none of
the above.

29. A large truck runs into a small car and pushes it 20 m
before stopping. During the collision (a) the truck
exerts a larger force on the car than the car exerts on
the truck; (b) the truck exerts a smaller force on the
car than the car exerts on the truck; (c) the truck and
car exert equal forces on each other; (d) the car does-
n’t actually exert a force on the truck; the truck just
keeps going.

30. A car weighing 10,000 N initially traveling at 30 m/s
crashes into a 100 N garbage can, initially at rest,
sending it flying. During the time the car is in con-
tact with the can it exerts a force of 3000 N on the
can. During the time of contact the can exerts (a) a
force of 3000 N on the car, (b) a force considerably

22. If the above graph is for a 4 kg object, the forces acting
during each of these three intervals (A, B, C) are given
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less than 3000 N on the car, (c) a force consider-
ably greater than 3000 N on the car, (d) no force on
the car.

31. As a protein diffuses in a thin long tube (effectively
1-dimensional motion) starting from x � 0, its aver-
age position �x	 and its mean square position
�x2	 change with time t according to (a) �x	 �
�x2	 � 0, (b) �x	 � 0; �x2	
t2, (c) �x	
t;
�x2	
t2, (d) �x	
t; �x2	
t, (e) �x	 � 0;
�x2	
t.

32. At a turning point in the motion of an object: (a) the
velocity can be positive or negative but the accelera-
tion must be instantaneously zero, (b) the velocity
must be instantaneously zero, but the acceleration
can be positive or negative, (c) both the velocity and
acceleration must be instantaneously zero, (d) the
velocity and acceleration must have opposite signs
(i.e., one positive and the other negative), (e) none of
the above is true.

PROBLEMS
1. Shown is a plot of velocity versus time for an object

originally at rest at the origin. Develop the corre-
sponding plot for acceleration.

(c) Note that the given data are from the functional
expression x(t) � t3/4 � 3t2 � 9t � 1. Deduce
that the data describe the motion of an object that
moves forward, stops and backs up, stops again,
and moves forward with increasing speed.

(d) Do you see how use of 4 s time intervals misses
the details of motion that is more fully described
by the use of shorter time intervals? Where is the
slope of the x(t) curve positive? Where negative?
Where zero? What is the physical meaning of the
sign of the slope of the x(t) curve? If the slope of
the x(t) curve changes sign, what does that say
about the velocity and the acceleration of the
object?

3. Shown is a plot of acceleration versus time for an
object. Assuming that its initial position and initial
velocity are both zero in magnitude, for how long
after t � 12 s, must the acceleration of �3 m/s2 per-
sist, in order that the object be brought to rest?

v

(m/s)

t (s)
5 10 150

0

3

6

2. (a) Using the data given, plot position versus time for
t � 0, 4, and 8 s. Calculate the velocity for each
interval [0,4] and [4,8] and determine that the
average acceleration between these two time
intervals is zero.

T, seconds 0 1 2 3 4 5 6 7 8 

x, meters 1 7.25 9 7.75 5 2.25 1 2.75 9 

(b) Now plot all nine data points. Calculate velocity
again, this time for all eight time intervals from
[0,1] through [7,8]. Calculate the average acceler-
ations for the time intervals [0,2], [2,4], [4,6],
[6,8] starting with the velocities just previously
calculated.

a (m/s2)

time (s)

0

5

10

5 10 15

velocity
(m/s)

time (s)

5

10

5 15 2010

4. Shown is a plot of velocity versus time for a particle
starting at the origin. Sketch a plot of the acceleration
corresponding to the time interval for which velocity
is shown.



Q U E S T I O N S /P R O B L E M S 41

5. A microbiologist observes the motion of a microor-
ganism within a slide sample. Photographic records are
snapped at 5 s intervals and the successive positions of
the organism are shown. Calculate the average veloci-
ties and accelerations corresponding to the appropriate
5 s intervals, assuming the grid line spacing is 25 �m,
for each of the three sets of records. Such quantitative

investigations of biological motion can reveal impor-
tant information about the organism. We show later
that the measurement of acceleration can indicate how
much force certain organs of locomotion are capable of
generating. If the organism moves by expelling fluid,
we may be able to determine the amount of fluid
ejected per unit time and its expulsion velocity.

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

678910

6. A 1400 kg car accelerates uniformly from rest to 60
mph in 6 s. Find the net force needed to produce this
motion.

7. A car accelerates from rest uniformly to 30 mph in 5 s,
travels at a constant 30 mph for 0.3 mi, and then decel-
erates to rest in 6 s.
(a) What is the average velocity for each interval and

for the entire trip?
(b) What is the displacement for each interval and for

the total trip?
(c) What is the average acceleration for the entire

trip?
8. A 0.1 kg mass stretches a linear spring by 10 cm. If

three identical masses are hung together from two
such identical springs (as in Figure 2.8), by how
much will each spring stretch?

9. A Boeing 737 jet plane lands with a speed of 60 m/s
(about 135 mi/h) and can decelerate at a maximum
rate of 5 m/s2 as it comes to rest.
(a) What is the minimum time needed before the

plane will come to rest?
(b) Could this plane land on a runway that is 2800

feet long?
10. A person throws a set of keys upward to his friend in

a window 9.2 m above him. The keys are caught 3.0
s later by the friend’s outstretched hand.
(a) With what initial velocity were the keys

thrown?
(b) What was the velocity of the keys just before they

were caught?
11. Suppose that a 1 kg block attached to a light rope

free-falls (with acceleration g) from rest for 5 s before
someone grabs the rope.
(a) What velocity will the block have when the rope

is grabbed?

(b) In order to stop the block after an additional 5 s,
what must be the constant acceleration of the
block?

(c) With what force must the rope be pulled upward to
stop the block in those 5 s?

12. What is the acceleration of a 5 kg package being low-
ered to the ground by a light rope in which there is a
tension of 25 N?

13. A truck moves through a school zone at a constant
rate of 15 m/s. A police car sees the speeding truck
and starts from rest just as the truck passes it. The
police car accelerates at 2 m/s2 until it reaches a max-
imum velocity of 20 m/s. Where do the police and the
truck meet and how long does it take?

14. A person of mass 60 kg stands on top of a table
located 1/2 m above the floor and then walks off the
edge of the table.
(a) Draw a free-body diagram of this situation.
(b) During the time the person is falling to the floor,

what is the upwards acceleration of the Earth as
seen by the person?

(c) As seen by the person, through what distance does
the Earth move up towards her in this time?

15. The planet Pluto travels once around the sun every
248 years at a mean distance from the sun of
5890 � 106 km. Find its orbital speed around the
sun (in m/s).

16. What is the gravitational field on the surface of the
moon? Take the mass of the moon as 7.4 � 1022 kg
and its radius as 1.74 � 106 m and calculate g as a
fraction of that on the Earth’s surface.

17. What is the gravitational force of the sun on
Pluto with a mass of 1.5 � 1022 kg (less than
the moon) and a mean distance from the sun of
5890 � 106 km?



18. Suppose your normal weight is 1200 N standing on
a bathroom scale. If you stand on that same scale
in an elevator in a skyscraper that is accelerating
upwards at 1 m/s2, what will the scale read?

19. An eagle soaring overhead has a weight of 120 N. If
the area of each wing is 1.7 m2, find the force per
unit area required to support the eagle while it soars.

20. The electron in a hydrogen atom is attracted to the
proton in the nucleus with an electrical force of 8.2 �
10�8 N. What is the acceleration (magnitude and
direction) of the electron? (According to classical
physics this acceleration keeps the electron orbiting
the nucleus.)

21. Two astronauts are out for a space walk near their
shuttle. They have masses of 120 kg and 140 kg suited
up in their space suits and are attached to the shuttle
by umbilical cords. With both initially at rest with
respect to the shuttle, if the 140 kg astronaut pushes
the other one with a 20 N force for 1 s,
(a) What is the acceleration of the 120 kg astronaut

during this 1 s?
(b) What is the acceleration of the 140 kg astronaut

during the same 1 s?
(c) What velocity will each have after the 1 s interval

with respect to the shuttle?
(d) If the umbilical is 10 m long, how long will it be

before they each feel another force from the tug of
the umbilical?

22. A heavy 40 kg crate sits on a shelf and is connected
by a taut rope to the ceiling. If it is pushed off the
shelf so that it is suspended freely find
(a) The net force on the crate.
(b) The tension force in the rope supporting the crate.
(c) If the rope is cut, what is now the net force on the

crate?
23. Two heavy crates (of 10 kg and 20 kg mass) sit touch-

ing on a smooth surface of ice as shown. If a 20 N
force pushes on the 10 kg crate as shown:
(a) What is the acceleration of both blocks?
(b) What is the net force on the 20 kg block?
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24. A 0.01 g water strider, an insect that can “walk on
water,” propels itself with its six legs to travel along at
0.5 m/s.
(a) What vertical force must the surface tension of

water provide to each foot?
(b) If the insect is able to travel at constant velocity by

overcoming a total resistive force from the water
of 10�6 N, find the horizontal force from the
water on each leg as the bug “walks.”

25. A single nonmotile cell is confined to a thin capillary
tube so that it essentially undergoes one-dimensional
diffusion with a diffusion coefficient of 10�9 cm2/s.
Find (a) the time it takes for the cell to diffuse a dis-
tance of 1 cm (express your answer in hours), and (b)
the rms distance the cell will travel in 1 s (expressed in
�m). Why don’t your answers to (a) and (b) scale lin-
early so that 3600 s/h multiplied by the answer to (b)
would give a 1 cm distance?

26. As cells crawl along a surface in tissue culture their
cytoplasm is observed to undergo “retrograde” flow
in the direction opposite to the motion of the lead-
ing edge of the cell. When this motion is studied by
imaging the cell in a microscope and making a
movie of the motion, a feature in the cytoplasm is
observed to travel a distance of 1.1 �m in 25 s.
What is the speed of this retrograde flow?

(c) What force does the 20 kg block exert on the
10 kg block?

(d) What is the origin of the force in part c?
(e) Repeat the problem if the two blocks are physically

interchanged (in parts (b) and (c) interchange the
two masses as well) and the same force pushes the
20 kg block.
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Newton’s laws of motion are a very powerful tool that allows the study of a vast array
of problems dealing with the motion of all the objects of our daily lives. Valid over
an enormous range of distances, speeds, and masses, Newton’s laws only lose their
predictive power in the microworld or when objects travel at extremely high speeds,
much higher than we are capable of propelling ordinary objects (except in particle
accelerators). In this chapter we continue our study of one-dimensional motion in
three “case studies” of interesting example applications. The goal here is to see the
power of Newton’s laws as well as to learn some interesting ideas about various types
of motion along a single direction. We gain some valuable insights and tools so that
when we generalize to study the motion of objects in the real three-dimensional
world we are well prepared for that undertaking. The case studies in this chapter
include motion when the net force is constant (we study the local gravitational force
near the Earth), one-dimensional motion of an object in a fluid (where we show that
there are frictional forces that vary with time), and the oscillatory motion of an object
attached to a spring. After learning something about springs, we next consider the
deformation of an elastic solid and the phenomenon of viscoelasticity. This is a topic
of special interest in the study of structural biomolecules such as bone and blood ves-
sels. We conclude the chapter with a discussion of the structure and dynamics of
macromolecules, specifically illustrating how to apply Newton’s second law to the
difficult problem of determining the molecular motions (here in one dimension) of
the constituent atoms of a protein.

1.  THE CONSTANT FORCE

Very frequently in dealing with mechanics problems, we know the forces acting on an
object and want to predict its future motion, or perhaps even learn of its past motion.
For example, the gravitational forces acting on the planets can be calculated extremely
accurately from information on their positions relative to the sun, and these forces
then, using Newton’s second law, predict their accelerations. Knowing the position
and velocity of a planet at some time, together with its acceleration, allows scientists
to calculate the trajectories of the planets extremely accurately into the distant future.
In principle, from knowledge of the acting net force, Newton’s second law provides
the acceleration of an object as a function of time; from that one can extract informa-
tion about velocity, and then from that, position. The general case of this kind of
problem requires sophisticated mathematical tools (called solutions to “differential
equations”). But, there is one special case—in which the net force on an object is a
constant, producing a constant acceleration for extended periods—that can be treated
easily and whose solution shows us how the more general case works. As we have
seen, the gravitational force on a mass m is given by F � mg, where g is the constant

3Applications of Newton’s Laws
of Motion in One Dimension
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free-fall acceleration due to gravity. The situation
is shown in Figure 3.1 (left), where the acceleration
is some unchanging value, g � 9.8 m/s2.

Because acceleration at any instant is the slope of
the tangent line to the velocity versus time graph at
that instant, a constant acceleration means that the
tangent line to the velocity curve has the same slope
all along the curve. The only way that can be true is
if the velocity versus time curve is itself a straight line
with slope equal to the constant a. Knowing a doesn’t
tell us everything about the velocity v, however, only
that in any time interval �t the velocity changes by

the amount �v � a�t. On the other hand, if the value of the velocity is known at a par-
ticular moment, then the velocity is determined at every instant for which a remains the
acceleration. In Figure 3.1(center), the velocity is specified as being v0 at t � 0, for exam-
ple. When that is the case, velocity depends on time in the following explicit way.

�v � v(t) � v0 � a�t � a.(t � 0) � at,

so that

(3.1)

The latter relation says that once a and v0 are specified, just plug into Equation (3.1) a
value of time and the velocity at that time is automatically determined.

There’s another way of understanding how to go from acceleration to velocity. In the
last chapter we said that there is a graphical interpretation of acceleration: at any instant,
it is the slope of the tangent line to the velocity versus time graph. There is another graph-
ical interpretation when we go the other way, from acceleration to velocity. Note that by
drawing vertical lines from the times at the ends of the time interval �t, we construct a
rectangle on the acceleration versus time graph (Figure 3.1-left), the base of which is �t

and the height of which is a. Because �v � a�t, we can interpret �v as the area under the
acceleration versus time graph in the associated interval �t. Now, in general, even when
acceleration is not constant, we know that . So, extrapolating from the constant
acceleration case, we assign the average acceleration a graphical interpretation:

We make use of this idea in just a moment.
Having determined velocity as a function of time, we can determine position, x, at

any time for the special case of constant acceleration as well. First, note that velocity at a
given instant is the slope of the tangent line to the position versus time graph at that
instant. Velocity is constantly changing, therefore the slope of the x versus t tangent line
is also constantly changing. Thus, position versus time has a curved graph (as in 
Figure 3.1-right). What is its shape? Well, first we know that . Arguing by
analogy with the acceleration–velocity situation, we state that the average velocity in an
interval �t is the area under the velocity versus time graph divided by �t. Let’s say that ti
is the first instant of �t and tf is the last, and that v(ti) � vi and v(tf) � vf. The shape under
the velocity versus time graph defined by vertical lines drawn from the ends of �t is a
trapezoid, in particular, a right triangle sitting on top of a rectangle. See Figure 3.2.

The area of the rectangle is vi�t and the area of the triangle is (vf � vi)�t/2 (one
half base times height), so adding the two together gives the area under the graph as
(vi � vf)�t/2. (Remember, this is only true for the special case of constant accelera-
tion.) As a result, we conclude that when acceleration is constant

vq �
1

2
 (vi � vf).

¢x � v¢t

a �
(the area under the acceleration versus time graph in the interval ¢t)

¢t
.

¢v � a¢t

v(t) � v0 � at.

Acceleration Velocity Position

a

Δv

vo xo

0 Δt 0 Δt 0
TimeTimeTime

FIGURE 3.1 Time-dependence of
variables for constant acceleration.

Velocity 

vf

vi

0 ti

vo

tf Time

FIGURE 3.2 Finding the average
velocity during an interval of time.



Now, suppose that ti � 0 and tf � t (a general value of time after
t � 0); then

Combining this with the definition of average velocity as

and writing x(0) as xo, we find

After substituting from Equation (3.1) for v(t), we have

(3.2)

(The curve of x versus t is consequently a parabola when acceleration is
constant.) Equations (3.1) and (3.2) represent useful relations for the
velocity and position as functions of time, respectively, of an object
undergoing motion with a constant acceleration. With a bit of algebra
one can solve for t in Equation (3.1) and substitute into Equation (3.2)
in order to eliminate time and have a third (although not independent)
relation between the other variables,

(3.3)

where x and v are evaluated at the same time. Table 3.1 summarizes
these three relations, which have been derived exclusively from defin-
itions in the special case of constant acceleration. We show later that
constant acceleration arises from a situation in which the object expe-
riences a constant force, and although this is often not true, it repre-
sents the simplest case and can sometimes also be a useful
approximation to the motion. But, note that these three relations are
true in the general case of nonconstant acceleration, as long as we
replace a by wherever it appears. Of course, in the general case we have to be
able to calculate (the area under the acceleration versus time graph from 0 to t,
divided by t) to make these relations useful.

a

a

v2 � vo
2 � 2a(x � xo),

x(t) � xo � vo t �
1

2
 at2.

x(t) � xo �
vo � v(t)

2
t.

vq �
¢x

¢t
�

x(t) � x(0)

t

qv �
vo � v(t)

2
.
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It is very straightforward and elegant to
derive Equations (3.1) and (3.2) directly from
the definitions of acceleration and velocity
using calculus. The definitions of velocity
and acceleration, rewritten using derivative
notation, are

v � dx/dt

and

a � dv/dt.

Starting from the definition of a, after mul-
tiplying by dt and integrating both sides of
the equation, we can write 

Integrating leads to Equation (3.1) because
the acceleration is assumed constant and
can be factored out from the integral. (If,
in fact, the acceleration is not constant but
is a known function of time then this inte-
gral expression can be solved for more
complex cases of nonconstant accelera-
tion.) Then, inserting the definition of v
into Equation (3.1), multiplying again by
dt and integrating, we have 

that integrates to give Equation (3.2),
because both vo and a are assumed con-
stant. By the same algebraic elimination of
t as in the text we arrive at the third relation,
Equation (3.3).

L
x

x
0

dx' � L
t

0
v0dt' � L

t

0
at'dt'

L
v

vo

dv' � L
t

0
adt'.

Table 3.1 One-Dimensional Kinematic Relations 
for Constant Acceleration Motion

Equation Variables

1. v(t) � v0 � at v, a, t

2. x(t) � x0 � v0t � at2 x, a, t

3. v2 � v0
2 � 2 a (x � x0) v, a, x

1
2
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Example 3.1 An E. coli bacterium travels a total distance of 100 �m along a
straight line from one position of rest to another. For a brief time during this
trip it accelerates from rest at a constant acceleration to a speed of 20 �m/s and
for another brief time near the end, it decelerates (with the same magnitude of
acceleration, but oppositely directed) coming to rest after the total distance
traveled. If the total time for the trip is 5.4 s, find the time during which the
bacterium accelerates, the time during which it decelerates, its acceleration,
and the fraction of the distance traveled at constant velocity.

Solution: Here is an example of a problem in which acceleration is not constant
throughout. On the other hand, the total trip can be divided up into three differ-
ent phases, where in each acceleration is constant: (1) an acceleration from rest
(v0 � 0, acceleration � �a), (2) a constant velocity portion (velocity � a con-
stant, acceleration � 0), and (3) a deceleration to rest (velocity � the same
constant as in the previous phase, acceleration � �a). We can separately write
expressions for the distances traveled in each portion and add them up to total
the 100 �m distance. Writing the distances and respective times as d1, t1, d2, t2,
and d3, t3, we have (using Equation (3.2) of Table 3.1)

where v is the constant velocity of the middle portion of the trip and a is the
magnitude of the constant acceleration and deceleration. Before adding these,
we note that the times t1 and t3 are equal because we can write, according to
Equation (3.1) in Table 3.1, expressions for the velocity in the first and third
intervals

v � 0 � at1 and 0 � v � (�a)t3.

Then, using the fact that t3 � t1 and ttot � t2 � 2t1, we have

Because dtot, v, and ttot are given, we can solve this for t1 to find

To then find the acceleration, we can use the velocity expressions to write 
v � at1, for example, and find that

�m /s2.

Finally, because the time traveled at constant velocity is t2 � 5.4 � 2(0.4) �
4.6 s, the distance traveled at constant velocity is d2 � vt2 � 20 (4.6) � 92 �m,
representing 92% of the distance traveled in the interval.

a �
v

t1
�

20

0.4
� 50

t1 � t3 � ttot �
dtot

v
� 5.4 �

100

20
� 0.4 s.

dtot �
1

2
at1

2 � vt2 � vt1 �
1

2
at1

2 � vt2 � vt1 � v(ttot � t1).

d3 � vt3 �
1

2
 ( � a)t3

2 � vt3 �
1

2 at3
2 ,

d2 � vt2,

d1 �
1

2 at1
2,



3.1.1. FREE-FALL: AN EXAMPLE OF CONSTANT ACCELERATION

A common situation in which there is a constant acceleration is in “free-fall.” An object
released near the Earth’s surface falls under the influence of gravity at a constant accel-
eration equal to a � 9.8 m/s2, as long as air resistance is negligible. We represent the
magnitude of this free-fall acceleration by the symbol g. Actually, the acceleration any
body experiences due to gravity decreases with increasing height from the Earth’s sur-
face, but since it decreases only by about 1.5% at an altitude of 50 km (about 30 miles)
we can almost always treat it as a constant. We can analyze one-dimensional free-fall
situations without any new mathematical developments, because we already have all the
necessary relations among position, velocity, acceleration, and time for one-dimensional
motion in Table 3.1. It is usual in free-fall problems to take a coordinate system in which
x is horizontal and y is vertical (with “up” being the positive direction). In the next two
examples we treat vertical motion only. For these examples, translate the quantities in
Table 3.1 by replacing x by y, and a by �g.
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Example 3.2 A tennis ball is thrown upwards with an initial speed of 12 m/s.
Find how high it will rise and how long it will take to return to its starting height.

Solution: The tennis ball rises until its velocity is momentarily zero. As it rises it
is uniformly slowed by the downward pull of gravity that acts continuously. Even
at the moment its velocity has become zero, the ball still has the same constant
downward acceleration. After coming to momentary rest, the ball continues to
accelerate downward, its speed continuously increasing.

Knowing that the highest point is characterized by a zero velocity for an
instant, we can find the maximum height the tennis ball reaches directly by using
Equation (3.3) in Table 3.1. That’s because we know initial and final velocities
and the acceleration; only the displacement is unknown. We don’t, for this part of
the problem, have to deal with time. We write Equation (3.3) in the form

where v0 is the given initial velocity and H is the maximum height. We find

or H � 7.3 m.

The second part of the problem requires time information. One way of finding
it is to write the equation for the displacement of the ball and set it equal to zero

.

In using this and any of the kinematic equations, we must be careful about
signs: the upward initial velocity is positive and downward acceleration is
negative. To solve for the desired quantity tround trip requires solving a quadratic
equation, although in this case a simple one. Whenever one solves a quadratic rela-
tion there are always two solutions. Which is the appropriate one for the problem
at hand requires some additional physical reasoning. For this example, we find that
either tround trip � 0 (one time at which the ball is indeed at y � yo), or

Of course, the 0 s solution is physically trivial, and not the one of interest here.

tround trip �
2v0

g
�

2 # 12 m /s

9.8 m/s2
� 2.4 s.

y � yo �  v0t round trip �
1

2
 (�g)t2round trip �  0

0 �  (12 m/s)2 � 2 # (9.8 m/s2 )H,

vtop
2 � v0

2 � 2(� g)(ytop � yo ) � v0
2 � 2gH,

(Continued)
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An alternative solution, incidentally, involves finding the separate times
for the ball to go up and down. The first time can be found from v � v0 � gt,
with v � 0 at the top. We have

which we note is half of our previous answer. This result demonstrates that the
time for the ball to go up is equal to the time for it to return down, a result that
we might have assumed true from the symmetry of the motion.

tup �
v0

g
,

Example 3.3 A ball is dropped from a height of 20 m to the ground below. A
second ball is thrown downward with a speed of 10 m/s after waiting some time
�t after releasing the first ball from rest. To have both balls hit the ground at the
same time, how long should time �t be?

Solution: We take the same coordinate conventions as in the previous example: up
is positive, down is negative. Also, we take y � 0 to be on the ground. (We could
have set y � 0 anywhere, such as at the launch point of both balls, for example. It
doesn’t matter where you choose your coordinate origin, but once having done so,
you have to remember to systematically keep it there in all your calculations.) The
first ball is dropped from rest (so its initial velocity is zero) and travels downward
with an acceleration �g. After time t1 it is at position y1 given by

The �20 m in this equation represents y1 at t1 � 0. With y1 � 0 m (i.e., just
about to hit the ground), we find that

Again, because we are solving a quadratic equation to find t1, there are two
times when the ball could be at y � 0 and be traveling under free-fall conditions:
in this case, �2.0 s. The negative solution corresponds to a time 2.0 s before
when it is at �20 m with a velocity of zero. That is, if we launched the ball from
y � 0 with the correct upward velocity, in 2.0 s it would be at �20 m up and just
ready to fall back down. Because we want the time elapsed after the ball is
already at �20 m, we choose the positive solution.

For the first �t seconds of the first ball’s flight, the second ball is at y2 �
�20 m. Then, abruptly, it is thrown downward and, once in free-fall, falls
according to the equation

where �10 m/s is the downward initial velocity of the ball. In this equation, t2
is the time for the second ball to fall from �20 m to a position y2; t2 is zero when
t1 is �t, and, in general, t2 � t1 � �t. We want the second ball to be at y � 0 at
the same instant the first ball is there. Substituting for y2 (� 0) and g, we obtain
the quadratic equation

y2 � (�20 m) � (�10 m/s)t2 �
1

2
 (�g)t2

2,

t1 �A 2 # 20 m

9.8 m/s2
� 2.0 s.

y1 � (� 20 m) �
1

2
 (�g)t1

2.



2.  MOTION IN A VISCOUS FLUID

Up until now we have assumed that all motion has occurred in the absence of any
frictional forces to slow objects down. In this section we relax that assumption to
include frictional forces in the important case of motion in a fluid, being either a liq-
uid or a gas. We show that in some cases our assumption has been realistic, whereas
in other cases it has been a poor one. The nature of the frictional drag forces on
macroscopic and microscopic objects leads to very different kinds of motion, consid-
ered below in separate discussions.

2.1. FORCES ON A MACROSCOPIC OBJECT IN A FLUID

Macroscopic objects immersed in a fluid (liquid or gas) experience two forces in addi-
tion to their weight (microscopic objects are discussed later in this section). There is a
buoyant force that always acts vertically upward and a drag (or frictional ) force directed
opposite to the velocity of the object (Figure 3.3). If the object is sinking in the fluid then
the frictional force also points upward, but if the object is rising, the frictional force will
then be downward. For now, we treat the buoyant force FB as a small constant correc-
tion, returning to a more detailed consideration in a discussion of fluids in Chapter 8.
In the rest of this section we investigate the drag force and its effect on motion.

An object moving in a fluid is surrounded by a thin layer of fluid, known as a
boundary layer, that moves along with it. If immersed in the fluid, as the object
moves, it must push fluid away and around itself to move forward and this motion
causes the fluid in the immediate vicinity of the object to flow. We can distinguish
two limiting types of flow based on the fluid properties, namely the fluid density �
and viscosity (or “stickiness”) 	, as well as the size L and speed v of the object. The
quantity that determines the flow behavior of an object in a fluid is the Reynolds
number , given by the dimensionless ratio

(3.4)t �
Lrv

h
.

t
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Writing this in the standard form, ax2 � bx � c � 0, that is,

we find two possible solutions (see the appendix on solving quadratic equations):

(Trace through the units of the numbers in the latter expression—i.e., what are
the units of the “10,” the “20,” and the “4.9”—to assure yourself that the final
answer really does have units of s.) As in the first ball case, there are two pos-
sible times for the second ball to be at y � 0: one is positive, the time elapsed
from its release; the other is negative, a time before the moment declared to be
t2 � 0 in this problem. Clearly, we want the positive solution. The time that the
second ball takes to reach the ground is 1.2 s. Therefore the person needs to
wait a time �t � (2.0 s � 1.2 s) � 0.8 s after dropping the first ball before
throwing the second one.

t2 �
�10 ; 1(10)2 � 4 # 4.9 # (�20)

2 # 4.9
� 1.2 s or �3.3 s.

4.9t2
2 � 10t2 � 20 � 0,

0 � 20 � 10t2 � 4.9t2
2.

Fw

FB Ff

FIGURE 3.3 Forces on a 
macroscopic object submerged
and falling in a fluid.



Representative values for are given in Table 3.2. Note that the fluid properties
in the Reynolds number are both intrinsic properties of the fluid. Two volumes of a
given fluid will always have the same density (introduced briefly in Section 5 of
Chapter 1) and viscosity, regardless of their size or shape, as long as they are at iden-
tical environmental conditions (such as temperature and pressure). Density is dis-
cussed further in Section 8.1. In general, fluids that pour very slowly such as
molasses, maple syrup, and the like are very viscous (have large viscosities) whereas
fluids such as water or alcohols, or especially gases such as air, have low viscosities.
We also study fluid viscosity further in Chapter 9.

t
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Table 3.2 Typical Reynolds Numbers for Some Moving
Objects in a Fluid

Situation Reynolds Number

Person swimming 1,000,000

Large flying bird 100,000

Flying mosquito 100

Swimming bacteria 0.0001

For values much larger than 1, the fluid flow near the object is turbulent

(chaotic, swirling flow), as seen, for example, in fast flowing water near a waterfall
(Figure 3.4). Such fluid flow around an object leads to a “wake” (much like that pro-
duced by a motor boat speeding across a lake) and results in frictional forces reap-
plied to the object by the fluid that tend to slow the object. In this case the magnitude
of such a frictional, or drag, force is often proportional to the square of the object’s
speed and can be written as

(3.5)

where C is a drag coefficient with a value typically near 1.0 (but which may vary with
velocity, something that we ignore), � is the fluid density, and A is the effective cross-
sectional area perpendicular to the velocity v.

Ff �
1

2
 CrAv2, (t 77 1)

t

FIGURE 3.4 Fast flowing turbulent
water in the Andes.



If the object is not spherical, then different orientations can present different effec-
tive areas A leading to different frictional forces; for example, a thin rod oriented with
its axis along the flow velocity presents the minimum effective area, and so the mini-
mum drag force occurs leading to the rod’s most rapid flow. This can be demonstrated
by dropping two similar large flat rocks into a lake or pool of water. If the speeds of the
two rocks are compared when dropping one held vertically on edge and the other held
flattened side horizontally, the rock dropped on edge will fall at a much faster rate, due
to the decreased drag. The notion of an effective area is used by skiers, bikers, and sky-
divers, for example, to minimize frictional drag. In each case, the person can reduce the
drag force of the air that is slowing them down by huddling over and wearing tight-fit-
ting clothing so as to minimize their effective cross-sectional area (Figure 3.5).

The drag force is also proportional to the fluid density. Comparing water and air,
the two most common fluids in biology, the drag force for the same object at a given
velocity is over 800 times more in water than in air. Streamlined shapes of fish and
aquatic animals developed in order to reduce drag forces involved in swimming to min-
imize the expenditure of energy required for locomotion. Similarly, the aerodynamic
design of birds and other flying animals reduces drag in air. Frictional forces in air are
only apparent at high speeds because of the relatively low density compared to liquids.

The other limiting type of fluid flow, when is much smaller than 1, is called
laminar flow and is an orderly smooth flow around an object, such as seen in the
streamlined nonturbulent flow of water over a rock in a stream or the smooth flow
around a kayak (Figure 3.6). In this case the magnitude of the drag is linearly propor-
tional to the relative speed of the object and fluid v; thus

(3.6)Ff � f v    (t 66 1)

t

M O T I O N I N A V I S C O U S F L U I D 51

FIGURE 3.5 A crouching skier
minimizes drag forces.

FIGURE 3.6 Two kayakers. Which
water flow is near-laminar, and
which turbulent?



where f is a coefficient of friction that depends on the size
and shape of the object and the viscosity of the fluid. If the
object is spherical, then the coefficient of friction is given
by Stokes’ law as

(3.7)

where r is the radius of the object and 	 is the fluid
viscosity.

Looking back to Equation (3.5), we see that when
the density of the fluid is important, but the vis-

cosity of the fluid does not enter. In this regime, objects
are able to coast along at relatively large velocities after
having accelerated to the point where the driving force is
balanced by the drag force. In strong contrast, in the

regime of , viscous forces dominate and objects move very slowly and are not
able to “drift” for appreciable distances at all; as soon as an external or propulsion
force stops, motion ceases abruptly. To give some idea of when these limits occur, for
spherical objects with a density close to that of water, like most biological objects,
the radius must be smaller than about 40 �m in air, or about 150 �m in water, for the
frictional drag to be described by Equation (3.7) when the object is falling under its
own weight.

Let’s return to our macroscopic object in a fluid that we started to consider
in this section under the influence of gravity, buoyancy, and frictional forces.
Adding these three forces acting on the object and writing Newton’s second law,
we find that

(3.8)

If we imagine releasing the immersed object from rest, it will ini-
tially fall (assuming the buoyant force is less than the weight; other-
wise it will rise just as a bubble rises to the surface). However, because
the frictional force grows as the velocity increases, eventually the
net force on the object will become zero and the particle will have
zero acceleration. In this case we can set a � 0 in Equation (3.8)
and solve for the constant velocity at which the object will continue to
fall, known as the terminal velocity, vterm (see Figure 3.7). Depending
upon the value of the Reynolds number, and thus whether the flow is
turbulent or laminar, we will find two different relations for the termi-
nal velocity.

Usually for free-fall objects in air (but not for microscopic objects,
which do not fall rapidly, nor for highly streamlined objects), the flow will
be turbulent, the Reynolds number large, and the terminal velocity given
by substituting Equation (3.5) into Equation (3.8) with a � 0 to find

(3.9)

On the other hand, for objects that are streamlined so turbulence is min-
imized or when the Reynolds number is small, the flow is laminar, the fric-
tional force is linear in the velocity, and the terminal velocity will be given
by substituting Equation (3.6) into Equation (3.8) and setting a � 0 to find

(3.10)vterm �
mg � FB

f
.

vterm �A2(mg � FB)

CrA
.

mg � FB � Ff � ma.

t 66 1

t 77 1

f � 6phr,
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How does an object approach its terminal
velocity in the case of a linear frictional
force?

From Equation (3.8) with Ff given by
Equation (3.6), we have

mg � FB � fv � ma � m dv/dt.

The solution to this equation is given by

v(t) � vterm(1 � e�(f/m)t)
� vterm(1 � e�t/
),

with vterm given by Equation (3.10) and 

 � m/f. This can be checked by direct
substitution. (Try it!) The result shows that
the terminal velocity is approached expo-
nentially, so that when t � 
, v(t � 
) �
vterm(1 � e�1) � vterm(0.63), and when
t � 2
, v(t � 2
) � vterm(1 � e�2) �
vterm(0.86) , and so on.

The time 
 is called the time constant
and is the time to reach 63% of the terminal
velocity from rest. In the case of our E. coli

bacterium the time constant is a very short
time of about 1 �s.

FIGURE 3.7 Skydivers reach a
terminal velocity in free-fall.



Examples of terminal velocities of various objects are given in Table 3.3.
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Table 3.3 Terminal Velocities of Various Objects Falling Under Gravity
in Different Fluids

Situation Terminal Velocity (m/s)

Sky diver 100 (225 mph)

Person sinking in water 1

Pollen (~0.04 mm diameter) in air 0.05

Algae spores (same diameter as pollen) in water 0.00005

2.2. FORCES ON A MICROSCOPIC OBJECT IN A FLUID

Microscopic objects behave quite differently in fluids. Constant collisions of fluid mol-
ecules with a microscopic object buffet the object about in a random path, overcoming
its weight so that it does not settle under gravity but remains suspended in the fluid. This
type of random diffusive motion is known as Brownian motion. In this case the particle
weight and buoyant forces are unimportant and the motion is entirely governed by col-
lision forces that result in diffusion, discussed in Chapter 2.

A particularly interesting case of microscopic objects’ motion in a fluid is the motil-
ity of organisms: self-propulsion using some mechanism to generate thrust. Thrust is a
propulsive force that can be produced by somehow pushing back on the surrounding
fluid to generate, by Newton’s third law, a forward-directed force. It can be generated
by squirting fluid backwards as done by clams and jellyfish, for example, or by pushing
backwards on the fluid using tentacles, fins, or arms and legs in the case of our swim-
ming (we consider this further in Chapter 6).

Consider the motion of a swimming microorganism such as an E. coli bacterium.
When the bacterial flagella that are used to generate thrust stop rotating, the viscous
forces are so great that motion ceases nearly instantaneously (within a millionth of a
second). The bacterium swims by using a set of coordinated rotating flagella to propel
itself at speeds of tens of micrometers per second. As long as the flagella rotate in a
co-ordinated manner, the dominant forces are simply thrust and frictional forces that
balance rapidly to result in constant velocity motion. The typical bacterial motion con-
sists of linear propulsion at a terminal velocity for some distance followed by periods of
“twiddling,” or uncoordinated rotation of flagella when the rotary motors powering the
flagella reverse for short times. In a uniform environment, the bacterium takes off in a
random direction again when its flagella come together to produce a coordinated thrust.
Investigators have shown that bacteria can sense variations in chemicals (nutrients, oxy-
gen, poisons) and that this results in longer straight line swimming toward or away from
chemicals in a process known as chemotaxis. The origin of the chemical detection
scheme used by bacteria remains unclear.

3.  HOOKE’S LAW AND OSCILLATIONS

In this section we study the properties of springs and the motion of a mass attached to
a spring. This may seem to be a very specific application of the physics we have learned
and you may wonder why it is worthy of an entirely separate section. Linear springs,
those exerting a force linearly proportional to the extent of their stretch from equilib-
rium, can be used to model the interactions between atoms and molecules fairly well
near their equilibrium positions. In other words, under some circumstances we can pic-
ture the atoms in molecules as being held together by springs rather than by complex
electromagnetic forces. The properties of springs and the motion they produce is there-
fore of importance not only in problems dealing directly with springs, but also in the



much larger context of all types of linear forces. This notion is used repeatedly in this
book in modeling many different phenomena.

Let’s do an experiment with a spring. We support the spring from above and
stretch it by hanging different masses on the bottom end, as shown in Figure 3.8.
Recording the position of a mark on the bottom of the spring for each hanging mass,
we obtain the data shown in the first two columns of Table 3.4. The third column is
then obtained by calculating the differences in position of the spring mark with and
without the hanging weight to obtain the displacement from the starting position with
no hanging weight.

54 A P P L I C AT I O N S O F N E W T O N ’ S L AW S O F M O T I O N

Table 3.4 Data for Hanging Mass on a Spring

Hanging Mass (g) Position (cm) Displacement (cm)

0 22.5 0

20 24.6 2.1

50 27.9 5.4

100 33.2 10.7

200 42.4 19.9

500 73.6 51.1
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FIGURE 3.8 Hanging mass on
spring and plotted results.

The displacement versus hanging mass data are plotted in Figure 3.8 and are
seen to be linear. In each case, the hanging weight is in equilibrium, supported by
an equal upward force due to the spring. From our data we could conclude that
(at least over a limited range of stretch of the spring) the force that the spring exerts
on the hanging mass is proportional to its displacement x from its unstretched equi-
librium length, or

(3.11)

where the constant of proportionality k is called the spring constant. The negative
sign indicates that the spring force is a restoring force; if the spring is stretched, the
spring force tends to pull it back to a shorter length, whereas if compressed to a
shorter length, the spring force tends to restore it to its longer equilibrium length.
Equation (3.11) is known as Hooke’s law and correctly describes the spring force for
small displacements. Using it we can determine the spring constant of our spring
from a calculation of the slope of the line in Figure 3.8. We first find directly from
the graph that �x/�m � 0.1 cm/g � 1.0 m/kg. From this we can then calculate that
k � �F/�x � �mg/�x � g/(�x/�m) � 10 N/m, using a value of g � 10 m/s2. With
any constant external force Fext, continuously applied to maintain a stretched (as in
our hanging weight experiment) or compressed length for the spring, the spring
responds with an equal but opposite force according to Equation (3.11) (Figure 3.9).
In general, gravity need not play any role as the following discussion shows.

Let’s now take the same spring from our static equilibrium experiment with a
hanging weight and clamp it in a horizontal orientation between a fixed wall and a
mass m � 1 kg lying on a horizontal frictionless surface (an air track, e.g.) as shown

F = -kx,

Fext

x

FIGURE 3.9 An external force
stretches a linear spring by distance
x while the spring pulls back in the
opposite direction with a force of
equal magnitude, F � kx � Fext.



in Figure 3.10. If we pull the mass to the right, stretching the spring 10 cm, and
then release it from rest, we can record its position as it moves under the influ-
ence of the spring force (note that you don’t need tremendous skill to record
these data; there are automatic recording schemes that can do these rapid mea-
surements for you). Figure 3.11 shows a plot of these data. By inspection the
position versus time graph looks like a cosine function, with repeated oscillatory
motion of the mass on the spring. Let’s now investigate this situation further to
try to explain the observed motion.

If we consider the forces acting on our oscillating mass we first see that the vertical
forces are the weight and the normal force, equal and opposite resulting in no net verti-
cal force and therefore no vertical acceleration or velocity; the mass stays in contact with
the surface. This discussion anticipates our generalization to two-dimensional situations
later in Chapter 5, but it’s clear that the motion here is only horizontal. The only
horizontal force is that due to the spring and so, according to Newton’s second law, we
set that force equal to the product of the mass and the horizontal acceleration a.
Unlike our previous Newton’s law problems, the applied net force is now a function of
position

(3.12)

so that the acceleration of the mass is proportional to its distance from the equilib-
rium, unstretched, position of the spring, taken as x � 0. The acceleration is not a
constant, but varies with the displacement from equilibrium!

When we release the mass from rest at x � A � 10 cm, the initial acceleration of
the mass is given, from Equation (3.12), by a � �(k/m)A � �(10 N/m/1 kg)(0.1 m) �
�1.0 m/s2, where the negative sign indicates that the acceleration is in a direction
opposite to the displacement and hence will tend to restore the mass to x � 0. The
mass gains an increasing velocity back toward x � 0, all the while decreasing its accel-
eration as it approaches x � 0. At x � 0 the mass momentarily has no acceleration, but
it has gained a velocity along the negative x-axis and so continues past x � 0. Once x
is negative, the spring has been compressed and responds with a force directed back
toward the origin, along the positive x-axis. This net force results in an acceleration
also directed along the positive x-axis (in agreement with Equation (3.12) with neg-
ative x values so that a � 0), that acts to decrease the speed of the mass. Because
the motion is symmetric about the origin, the velocity of the mass as it passes the
origin turns out to be just enough to have the mass, as it slows down, reach the posi-
tion x � �10 cm. At this point the mass momentarily stops, but is acted on by a
maximal positive acceleration equal to �(kA/m) � 1.0 m/s2. The next phase of the
motion, from x � �10 cm to x � �10 cm is the mirror image of the above descrip-
tion. The motion continues, with the mass oscillating back and forth between the
limits of x � � A � �10 cm, where A is known as the amplitude, or maximum
distance from the origin.

Fnet � � kx � ma,
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FIGURE 3.11 Data for the position
of the mass attached to a horizontal
spring versus time.
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FIGURE 3.10 A block attached to
a spring sliding on a frictionless
surface.



We have qualitatively explained the oscillatory motion we observed, but can we
provide a quantitative explanation as well? Using a computer, we can curve fit the
data in Figure 3.11 to a cosine function,

(3.13)

where A, known as the amplitude, is the maximum value that x reaches and T, known
as the period, is the repeat time of the oscillating cosine function. Reading these val-
ues directly off the graph shows that A � 10 cm and T � 2 s for these data, so that
the mass on the spring has a position that oscillates around the origin according to
x � 10 cos(�t), with t measured in seconds and x in cm.

The motion of the mass on a spring is an example of a more general type of cyclic

or periodic motion that repeats itself with a regular time interval. Spring motion is
also known as an oscillatory motion because it is a back-and-forth periodic motion
like that of a pendulum, as contrasted with, for example, the periodic motion of the
Earth around the sun each year. The oscillatory motion of a mass on a spring repre-
sented by Equation (3.13) is known as simple harmonic motion. The term harmonic
comes from the mathematical definition of the sine and cosine as harmonic functions.
It is an ideal limit, because it represents oscillatory motion that persists forever with
the same amplitude. In Chapter 10, we return to this problem and give more realistic
models to describe oscillatory motion. In the rest of this section we pursue the ideal
motion of a mass on a horizontal spring and see what more we can learn about
simple harmonic motion.

Remembering back to the beginning of the last chapter, we can use those tech-
niques to analyze Figure 3.11 for the velocity of the mass oscillating on the horizon-
tal spring. Recall that we need to compute the slope of the smooth curve extrapolated
through the datapoints as a function of time in order to plot the velocity of the mass
as a function of time. This can be done using the help of a computer to find the results
shown in Figure 3.12. We noted above that the position versus time data looked like
a cosine curve; these new results look similar in that they oscillate with the same
period of T � 2 s but they are both shifted over in time and have a larger amplitude.
After a bit of thought we can recognize the shape of the curve to be the negative of a
sine curve, or a sine curve that has been shifted over by half of its period, and can be
represented as

x � A cosa 2pt

T
b ,
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Example 3.4 A horizontal linear spring with a spring constant of 10 N/m is
stretched a distance of 10 cm and a 2 kg block resting on a frictionless sur-
face is attached. When the block is released, find its acceleration. What is its
acceleration after moving 10 cm? After moving 20 cm?

Solution: The horizontal force on the block when released is entirely due to the
spring and is given by Hooke’s law as F � (10 N/m)(0.1 m) � 1 N, so that the
initial acceleration is then a � F/m � 0.5 m/s2. After traveling 10 cm, the block
is at the equilibrium position of the spring and will momentarily feel no force
because the spring is unstretched. Therefore the acceleration is also zero at that
instant, even though the block is sliding with some velocity. In fact the block has
reached its maximum velocity at that point because in the next instant the spring
becomes compressed and begins to push back on the block and to decelerate it.
After traveling another 10 cm, for a total of 20 cm along the surface, the spring
is fully compressed, and by symmetry the block will have been slowed to have
zero velocity at that instant. Although the velocity is momentarily zero, the
spring force is maximal and equal to 1 N in the opposite direction to the initial
force, producing a maximal acceleration of 0.5 m/s2 in that same direction.



(3.14)

where vmax is the amplitude of the curve or, with T � 2 s, as v � vmaxsin(� t). A more
complete analysis (see the box on the next page) shows the connection between the
amplitudes of the position and velocity graphs

(3.15)

or in this case vmax � �A � (3.14)(10 cm)/s � 31.4 cm/s, in agreement with the
plotted values.

To generate a plot of the acceleration of the mass as a function of time we repeat
our computer slope calculation, this time plotting the slope of the velocity versus
time graph to obtain Figure 3.13. Note that the plot is the negative of a cosine graph,
the period is the same 2 s, and that the amplitude is even larger. We can write the
functional form of the graph as

(3.16)

and in this case with T � 2 s, a � �amaxcos(�t). The analysis in the box below using
calculus shows that

(3.17)amax � a 2p

T
b

2
 A � vmaxa

2p

T
b ,

a � �amaxcosa 2pt

T
b ,

vmax � a 2p

T
bA,

v � � vmaxsina 2pt

T
b ,
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or in this case with T � 2 s, amax � � 2A � (3.14)2(10 cm)/s2 � 98.6 cm/s2, in agree-
ment with the graph. Note the important result from substituting Equation (3.17) into
Equation (3.16) that

(3.18)

so that the acceleration and position of the mass are proportional, in agreement with
Equation (3.12) which states that a � �(k/m)x.

From our set of three graphs for the position, velocity, and acceleration of the
mass undergoing simple harmonic motion we see that the velocity and acceleration
changes are out of phase with the position. In particular, the velocity varies as sin
2�t /T rather than cos 2�t /T. This is expected because, for example, when the par-
ticle is at its amplitude at t � 0, T/2, T, . . . , with its largest acceleration in the
opposite direction due to the maximal restoring force, the velocity vanishes instan-

taneously. Similarly, while at the equilibrium position where the force
and acceleration vanish instantaneously, the particle has its maximum
velocity in either direction.

At this point in our discussion of simple harmonic motion we can
answer the important question: what determines the period of oscillation
of a mass on a spring? If we compare Equations (3.12) and (3.18), we can
write that

(3.19)

Equating the coefficients of x in this expression we can solve for the
period to find

(3.20)

We see that the period of oscillation is proportional to the square
root of the oscillating mass and inversely proportional to the square root
of the spring constant. The larger the mass is, the larger the period, and
the stiffer the spring is, the shorter the period. These observations should
make intuitive sense. What is not so intuitive is that the period is inde-
pendent of the amplitude of the oscillation. No matter what amplitude
we give to the mass on the spring when we start the motion, the period
will be the same. This is true as long as Hooke’s law is obeyed, the so-
called “linear response” of the spring. For large amplitudes, nonlinear
forces will act and the period will no longer be independent of the
amplitude.

We can check the prediction for the period based on Equation
(3.20), by comparing its calculated value with the value read off the
plot of about 2 s. From our experimentally determined spring constant
of 10 N/m measured using hanging weights and with a value of 1 kg
for the mass used in the oscillation experiment, we find a predicted
value of

in good agreement with the experimental period.
A useful parameter to introduce here is the frequency f, or number

of oscillations per second (measured in hertz, Hz, or oscillations/s),

T � 2pAm

k
� 2pA 1

10
� 1.99 s,

T � 2pAm

k
.

a � �
k

m
 x � �a2p

T
b

2
 x.

a � � a 2p

T
b

2
 A cosa2pt

T
b � �a 2p

T
b

2
 x
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We can solve for the displacement of the
mass on a spring directly from Newton’s
second law, Equation (3.12), by using the
definition of a

, or

This is an example of a differential equa-
tion for x(t), an equation with derivatives
and functions of x, which is to be solved for
x(t). This equation of motion for the mass
on a spring states that the second derivative
of x is proportional to �x. Trying a solution
of the form

and substituting this into the above equa-
tion and differentiating twice, we find that

In order for this equation to hold we must
have

We can also find an expression for the
velocity of the mass, Equations (3.14) and
(3.15), or (3.23), by differentiating the
equation for x,

v � dx/dt � �A
 sin(
 t).

v2 � k/m or v�A k

m
.

(�v2 A)cos(v t) �
k

m
Acos(v t) � 0.

x � A cos(vt),

d2 x

dt2
�

k

m
x � 0.

ma � m d2 x/dt2 � �kx



which is simply related to the period because one oscillation occurs in a time T, so
that

(3.21)

The larger the frequency of oscillation is, meaning the greater the number of
oscillations per second, the shorter the period. Another parameter worth introducing
is the angular frequency (or angular velocity) 
, measured in rad/s, and related to the
frequency and period through

(3.22)

The angular frequency is introduced here more for convenience because the
factor (2�/T) appears in many of the above equations. Rewriting some of the above
equations in terms of the angular frequency we have the following collection:

(3.23)x � A cos(vt) ; v � �Av sin(vt) ; a � �v2 x  ; v�A k

m

v = 2pf =
2p

T
.

f �
1

T
�

1

2pA k

m
.
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Example 3.5 A 0.1 kg mass is attached to a linear vertical spring and set into
oscillation. If 0.25 s is the shortest time for the mass to travel from its highest to
its lowest point, find the period, the frequency, and the angular frequency of the
simple harmonic motion.

Solution: The trajectory from highest to lowest point is half of a full cycle of the
motion so that the period would be 0.5 s. The frequency is then equal to 2 Hz,
because two full cycles occur in 1 s. The angular frequency is equal to 
 � 2� f �
4� rad/s or 12.6 rad/s.

Example 3.6 A 0.5 kg mass is hung from a spring, stretching it a distance of
0.1 m. If the mass is then pulled down a further distance of 5 cm and released,
find (a) the period of the oscillations, (b) the maximum height the mass reaches
from its release point, (c) the maximum acceleration the mass experiences, and
(d) the maximum velocity of the block.

Solution: (a) According to Equation (3.20), the period of the motion depends
only on m and k. From knowing that the 0.5 kg mass initially stretches the
spring by 0.1 m, we can compute the spring constant to be k � F/x � (0.5 kg)
(9.8 m/s2)/0.1 m � 49 N/m. On substitution into Equation (3.20), we find that

(b) The mass oscillates with an amplitude of 5 cm around the equilibrium
position (the initial suspension height). Therefore, the mass rises at most 10 cm
above its starting point where it again reaches its amplitude but above the
equilibrium position. (c) As the mass oscillates, its acceleration is given by Fx �
max � �kx. At first glance you might wonder why we have seemingly neglected
the weight of the hanging mass. This was intentional because in stretching the

T � 2pA0.5

49
� 0.63 s.

(Continued)



4.  FORCES ON SOLIDS AND THEIR ELASTIC RESPONSE;
BIOMATERIALS AND VISCOELASTICITY

4.1.  ELASTIC RESPONSE OF SOLIDS

Just how strong is the force that holds ordinary objects together? To get a rough idea we
can perform a pulling experiment. For example, let’s attach a weight to the end of a cop-
per wire hanging vertically that is 1 m long and has a cross-sectional area of 10�6 m2. If
we add 5 kg to the end of the wire, it will stretch by about 5 � 10�4 m (i.e., by about
0.5 mm). If we add 10 kg (i.e., double the added force), the stretch is about 10�3 m
(double the stretch). A shorter wire of the same cross-sectional area doesn’t stretch as
much. A 0.1 m long wire (one tenth as long as the original) that has 10 kg added only
stretches by about 10�4 m (one tenth as much as the original). A thicker 1 m long wire
also doesn’t stretch as much as the original. A wire that has a cross-sectional area of
10�5 m2 (ten times the cross-sectional area of the original) and 10 kg added stretches by
about 10�4 m (one tenth as much as the original). These results can be summarized (see
Figure 3.14) by saying that the amount a copper wire stretches when a force is applied
to its ends is: (1) proportional to the applied force, (2) proportional to the original length,
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spring 0.1 m when first connected, the spring supports the weight, allowing the
mass to stay suspended at equilibrium. When the spring is further stretched, it
supplies the additional force �kx, where x is the displacement from the equilib-
rium point. The maximum acceleration thus occurs when x is at its minimum
value of �5 cm, measured from the equilibrium position, or at the starting posi-
tion. This acceleration is given by ax � �kx/m � �(49 N/m)(�0.05 m)/0.5 kg �
4.9 m/s2. At the topmost point of its oscillation 10 cm above the starting point, the
mass has this same value of acceleration but directed downward. (d) According to
Equation (3.23), the maximum velocity is given by 
A, because the sine has a
maximum value of 1. To find 
, we note from Equation (3.22) that

Then the maximum velocity of the mass is given by 
A � (10 rad/s)(0.05 m) �
0.5 m/s.

v�
2p

T
�

2p

0.63 s
� 10 rad/s.

Example 3.7 The two hydrogen atoms in the hydrogen molecule H2 oscillate
about the center of mass of the molecule with a natural vibrational frequency of
1.25 � 1014 Hz. What is the spring constant of the effective spring equivalent to
the bonding forces in the molecule? You will need to know that the effective mass
of H2 for motion about the center of mass is 1/2 the mass of a hydrogen atom.

Solution: We know that the angular frequency of oscillation is related to the
spring constant and the mass through Equation (3.23). Using a hydrogen mass
of 1 u �1.67 � 10�27 kg, we can solve for k in Equation (3.23) to find

This is a typical value for the effective spring constant of a single covalent
bond. Weaker ionic bonds, such as in NaCl, have smaller spring constants of
about 100 N/m, and double or triple bonds have stiffer spring constants, with
values up to several thousand N/m.

k � v2 m � 12pf 22 m � 4p2 f 2 m � 520 N/m.



and (3) inversely proportional to the cross-sectional area. Interestingly, if we remove
the added weight, the wire returns to its original length. Such a stretch with a return
to the original form is called an elastic deformation. Of course, all of these observa-
tions are invalid if too much weight is added. If too much weight is added, the wire
can permanently stretch (plastic deformation) or even break.

The rule for elastic deformation that we have written in words can be written in
equation form:

(3.24)

where F is the applied force, A is the cross-sectional area, L is the original length, and �L

is the stretch. The constant of proportionality is called Young’s modulus. It is a number
with units N/m2 that measures the strength of a material. Materials with larger Ys are more
difficult to pull apart than materials with smaller Ys. The left-hand side of the equation,
F/A, is called the applied stress (in this case tensile stress) measured in N/m2, or pascal
(1 Pa � 1 N/m2), whereas the ratio �L /L is the resulting (dimensionless) strain produced.

F

A
� Y

¢L

L
,
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FIGURE 3.14 Results from elastic
deformation of a wire. Left three:
Wire of length L stretches a distance
�L with force F and 2�L with 2F.
Thicker wire with 2A cross-sectional
area is only stretched �L/2 by force
F. Right two: Wire of length L/2 and
area A is only stretched by �L/2 by
force F.

Example 3.8 Given the data in the preceding paragraph, estimate Young’s modulus
for copper.

Solution: When 10 kg is added to the 1 m wire of cross-sectional area 10�6 m2

it stretches by about 10�3 m. The weight of a mass of 10 kg is (10 kg) � g ~
(10 kg) � (10 N/kg), about 100 N. Thus, 100 N/10�6 m2 ~ Y (10�3 m)/(1 m).
Solving for Y, Y ~ 1011 N/m2.

The elasticity of solids is due to the fundamental atomic nature of materials.
Individual atoms and molecules in a solid are bound to each other by electromagnetic
forces that, to a reasonable approximation, can be treated as a set of stiff connecting
springs. For small deformations this is a very good model of a solid and we can imag-
ine that the shape changes in a solid are due to small compressions or expansions
of the set of springs keeping the solid intact. This model of a solid held together by
effective springs can give rise to the entire set of properties of the solid, including its
thermal and electrical properties, although we do not study these here, as well as its
structural properties discussed below.

When a solid, which is not free to translate or rotate, is subject to external forces it will
deform. If the solid were perfectly rigid, there would be no response, or deformation, what-
soever. All real solids, however, are deformable, and it is this phenomenon that we wish to
study. In biology there are a number of structural solids whose properties are fundamental
to the life processes of the organism. These include bone; soft tissue such as cartilage, skin,
and blood vessels; shells; wood; and many others, including artificial medical implants.

Imagine putting the femur bone (the long bone of the thigh) under tension by exert-
ing forces on either end along the long axis of the bone and away from the bone’s cen-
ter (Figure 3.15). If we were to gradually increase the magnitude of the tensile force,
just as we described above for the copper wire, and measure the length of the bone as
a function of the applied force we would be able to plot the graph shown in Figure 3.16.
For relatively small applied forces, the bone stretches by small proportional amounts in
the linear portion of the graph; of course, for a bone the applied forces needed to pro-
duce a significant length change are very large as we quantitatively work out shortly. If
the applied force is removed, the femur returns to its original length because it is elas-

tic, just like a spring. As the applied forces get somewhat larger, the bone response is
no longer linear, but even beyond this linear limit on removal of the force the bone still
returns to its original length. In this range of forces, the effective springs defining the

FIGURE 3.15 The femur under
tension.



internal structure of the bone become nonlinear but we are still in the
elastic regime. As the applied force is further increased the femur will
break, or fracture, at a certain value, known as its ultimate strength. In
the adult human femur this happens when stretched by about 3%. For
other materials, such as metals, glasses, and some polymers, beyond a
certain applied force, the elastic limit is reached and the material enters
a plastic regime in which it is permanently deformed even when the
forces are removed. For bone, the plastic regime does not exist but
every solid material will have a qualitatively similar force–elongation
curve with linear and nonlinear regimes, an elastic limit, and ultimate
strength, if not plastic and viscoelastic (see below) regimes.

The linear elastic regime is described by Equation (3.24). The same
expression also applies to the case when the applied forces tend to com-
press the bone, as, for example, when standing upright, although the
Young’s modulus for compression is roughly 1/3 that of the modulus for
tension. This difference is due to the anisotropic nature of bone and leads

to greater strain for the same stress on compression over that on tension. In addition the
ultimate strength of bone is over 25% greater for compression than for tension. If we
rewrite Equation (3.24) in the form

and note that the restoring force the solid exerts is Frestore � �F, then we see that
solids also obey Hooke’s law with an effective spring constant

(3.25)k �
YA

L0
.

F �
YA

L0
¢L,
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FIGURE 3.16 The upper curve is
the typical response of bone and
the lower curve shows the plastic
behavior of some other materials.

Example 3.9 Estimate Young’s modulus for compression of bone from the fol-
lowing data. The femur of an 85 kg person has an effective cross-sectional area
of about 6 cm2 and a length of about 0.5 m. When the person lifts a 100 kg mass,
careful measurements show that the femur compresses by about 0.04 mm. Also,
if the ultimate compressive strength of the femur is 1.7 � 108 Pa, find the max-
imum weight that the femur can support.

Solution: The 100 kg mass is assumed to be carried equally by both legs, so that
the load on each leg is a force of (50 kg) (9.8) � 490 N. The added stress is then
found to be F/A � 8.2 � 105 Pa, which results in a strain of (0.04 mm)/(0.5 m) �
8 � 10–5. Young’s modulus is then found as the ratio of the stress to strain, or Y �
(8.2 � 105)/(8 � 10–5) � 1010 Pa.

From the ultimate compressive strength, we find that the maximum weight that
the femur can support is F � (ultimate strength)(area) � (1.7 � 108) (6 � 10�4) �
105 N. This enormous weight implies that normally the femur will not fracture
under compressive forces. We show below, however, that it is much more common
for large bones to fracture under bending or twisting.

An implicit assumption here is that the solid is uniform and isotropic throughout
(Y does not depend on direction). Although not considered here, in cases where the
material is anisotropic (some crystals, e.g.), Young’s modulus may differ in each of
three orthogonal directions, x, y, and z, and there will be three different expressions
for Equation (3.24) along the x-, y-, and z-axes with three different normal stresses,
strains, and Young’s moduli.

If the applied force is not normal to the surface, but parallel to the surface
(Figure 3.17), the type of stress applied is called a shear stress. In this case the

F

Strain angle

x

y
z

FIGURE 3.17 A solid undergoing
shear deformation due to the
shearing force F.



response of the material is a shear strain deformation in which the solid dis-
torts to different extents along the direction parallel to the surface. In the lin-
ear case, this distortion results in a constant strain angle as shown in the figure.
Again the stress and strain are proportional with, in this case, the proportional-
ity constant known as the shear modulus. Once again, we remark that if the
material is anisotropic there will be various shear stresses, strains, and moduli.
In this case there are six possible shear stresses, because for a force applied
along the x- (or y- or z-) axis, there are two possible independent planes of ori-
entation, the xy or xz (or four others) (see Figure 3.17 where the shear stress
is along the x-axis and the strain angle is shown for shear of the xy planes).
Corresponding to these six shear stresses there are six shear strains and six
shear moduli.

These six shear strains and the three normal strains mentioned above for ten-
sile stresses together form a 9-component, 3 � 3 array, called the strain tensor. The
mathematics of tensor analysis allow one to write relations between the stress and
strain tensors that describe all of the elastic moduli and to set up any problem in
the linear deformation of solids, most of which then need to be solved numerically
by a computer. This type of analysis is used, for example, by mechanical and civil
engineers in construction projects using steel or concrete beams or by bioengineers
designing artificial limbs.

A related type of stress–strain relation is for torsion, or twist around some axis
of rotation. This is a particularly prevalent type of stress for bone and most leg frac-
tures are torsional fractures. For example, skiers are particularly susceptible to this
type of fracture because bone is weak under torsion and, as we show in Chapter 7,
long skis make it easy to twist the leg bones.

One last type of stress–strain relation should be mentioned here. When an
object is immersed in a fluid, the fluid exerts a force normal to the surface of the
object everywhere (Figure 3.18). This force per unit area is called the pressure. We
consider pressure in much more detail in Chapter 8. In this case the analogous
quantity to the strain is a small fractional change in the volume of the object and
the proportionality constant between the pressure and the strain is known as the
bulk modulus.

4.2. BIOMATERIAL STRENGTH

In the world of biomaterials, there are certain motifs that
recur both in structural proteins and, on a larger scale, in
bone, tissue, and muscle. On a microscopic scale, most pro-
teins involved in providing structural strength are organized
into filaments. Notable examples include actin and myosin
(the major muscle proteins), collagen (a major component of
bone and connective tissue), tubulin (the major protein in
microtubules which provide a cellular framework), and the
keratins (a class of proteins found mostly in vertebrate horn,
hoof, hair, and skin). Within this motif there are variations,
but a key point is the elastic nature of the structures formed.

Collagen is the most abundant protein in mammals and
is fundamentally a stiff triple helix that associates into bun-
dles. In connective tissue these collagen fibers are cross-
linked together in a network by a protein called elastin.
Elastin is perhaps the most elastic of known proteins and is
responsible for the high elasticity of skin and blood vessels.
In tendon, collagen bundles associate in a repetitive pattern
of filamentous structures, as shown in Figure 3.19, in associ-
ation with water, polysaccharides, and other proteins. In
bone, a very dense and specialized form of connective tissue,
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FIGURE 3.18 An object immersed
in a fluid has a pressure (force/area)
acting on it from the fluid normal to
every surface.

FIGURE 3.19 Image of collagen
fibers.



solid deposits of minerals are present in addition. Collagen filaments are very effec-
tive at resisting tensile stresses, and the mineral deposits in bone resist compressive
stresses. The composite material bone has tensile and compressive moduli nearly
equal to that of aluminum.

Actin is a small (~5 nm) globular protein that self-associates to form long fila-
ments, known as F-actin, in the cytoplasm of cells and with other associated proteins
in the form of thin filaments in muscle. In cells, the process of actin self-association,
or polymerization, has been shown to provide sufficient force to change the shape
of cells and actin is known to be intimately involved in generating force for cellular
locomotion. Myosin, which has a rodlike “tail” end and two globular “heads,” forms
the thick filaments of muscle by the ordered aggregation of the tail portions of the
myosin together with other proteins. In muscle, these two filamentous structures, the
thin and thick filaments, interdigitate in a regular hexagonal array in a muscle fibril
(Figure 3.20). These two sets of independent filaments interact with each other via
the “cross-bridges,” or heads of myosin. In a complex chain of chemical and struc-
tural events that is only partly understood in detail, the myosin heads attach to spe-
cific sites on the actin molecules and, using the energy released by the hydrolysis of
ATP, undergo a structural change that forces the thin and thick filaments to slide rel-
ative to one another, thus shortening the muscle fibril. In a muscle, these myofibrils,
each about 1 �m diameter, are themselves organized in a series of regular arrays. All
muscles generate tension forces by shortening their overall length. Our bodies use
sets of pairwise antagonistic muscles to allow us to move our limbs about our joints

in various directions. The composite structure of muscle and tendon or
bone is a second motif in structural proteins: the overall structure con-
sists of subunits that are in turn made up of many similarly organized
smaller subunits.

4.3. VISCOELASTICITY

Most biomaterials do not obey a linear relationship between applied
stress and strain nor can they be analyzed solely in terms of their elas-
ticity. Biomaterials also have a viscous component to their response to
an external stress, a phenomenon known as viscoelasticity. What are
the characteristics of viscoelasticity? If a constant stress is applied to
a viscoelastic material for a fixed time interval, the characteristic
strain response is shown in Figure 3.21. This phenomenon is called
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FIGURE 3.20 Arrays of muscle filaments in a muscle fiber bundle or fibril: (left)
microscope image of longitudinal array showing thick and thin filaments overlapping 
in lower right portion of photo; (center) schematic for the interpretation of the left
image. Thick filaments show up darker in the microscope image; (right) cross-sectional
view through a muscle fiber bundle showing the thick and thin filaments in a 
hexagonal array.
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FIGURE 3.21 The phenomenon
of creep.



creep, the slow progressive deformation under constant stress. A related property,
known as stress relaxation, is illustrated in Figure 3.22 where the material is held
at constant strain, clamping its length, and the stress is found to relax over time.

If a material is subjected to a cycle of applied stress and removal of the applied
stress, the stress–strain relationship for viscoelastic materials is not reversible, as
shown in Figure 3.23 for ligament/tendon, and the material exhibits hysteresis, or
irreversible behavior. This irreversibility means that the stress–strain path on elonga-
tion is different from the path on relaxation back to the original unstressed position.
Viscoelasticity should be distinguished from plasticity, mentioned earlier in connec-
tion with nonreversible deformations at high stress, in that viscoelastic materials
return to their original shape after applied stresses are removed, but only after some
time has elapsed. Nearly all biomaterials exhibit some degree of creep, stress relax-
ation, and hysteresis, but to different extents and with different characteristic times
involved.

In order to characterize viscoelastic materials, two types of mechanical experi-
ments can be done. In one case transient constant stresses or strains are applied and the
response of the material is investigated. Usually either creep or stress relaxation is stud-
ied in this method. In the other case cyclic, or dynamic, stresses or strains are applied
and the time-dependent response of the material is investigated as a function of the fre-
quency of deformation. By examining the frequency dependence of both the elastic and
viscous moduli, separately, as functions of frequency, this method often can lead to
models for the molecular origin of the viscoelastic behavior. We mention here that other
nonmechanical types of characterization, such as ultrasonic and spectroscopic methods,
can be used to study the elastic properties of materials as well. Also, in recent years a
new type of microscopy (atomic force microscopy; see Chapter 7) has been used to
measure variations in the elastic modulus of bone with a spatial resolution of about
50 nm and has shown a strong correlation between the elastic and structural properties
of bone. In addition to characterizing natural biomaterials, viscoelastic measurements
are also performed on various implant and prosthesis materials.

Models of viscoelastic behavior usually use various com-
binations of simple elastic springs and simple viscous dash-
pots (Figure 3.24), representing the ideal viscous behavior of
a simple fluid in which the stress is proportional not to the
strain, but to the time rate of change of the strain as we show
when we discuss viscous fluids in Chapter 9. A dashpot is a
mechanical element, pictured as a piston, with a frictional
force between the piston and outer walls of the cylinder that
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FIGURE 3.22 Stress relaxation.
There is no connection here to yoga.

FIGURE 3.23 Hysteresis shown for the deformation of liga-
ment/tendon where the graphs for application and removal
of stress do not superimpose. Also, with repeated stress,
the hysteresis curve also shifts to larger strains. Both of
these are viscoelastic phenomena.

spring:  F = –kx

elastic solid: stress = (elastic modulus) (strain)

dashpot:  F = –fv

viscous fluid: stress = (viscosity) (strain rate)

FIGURE 3.24 Linear springs and
dashpots and their analogy with
elastic solids and viscous fluids.



depends on the velocity of the piston. These elements (ideal springs and dashpots)
can be connected in various ways (series, parallel, or combinations: Figure 3.25) in
order to model different types of viscoelastic behavior. When connected in series
(the Maxwell model) the spring, under an applied stress, will deform instantly
whereas the dashpot will deform continuously while the stress is applied. This
model is often used to describe viscoelastic fluids because those materials will flow
while the stress is applied. When connected in parallel (the Kelvin–Voigt model)
the spring will limit the deformation of the dashpot under the applied stress, and
this model is often used to describe viscoelastic solids, those materials that are more
solidlike in their behavior. In some respects this type of analysis is very similar to
electrical circuit analysis with various electrical elements connected together, a
topic that we discuss in more detail later on.

5.  STRUCTURE AND MOLECULAR 
DYNAMICS OF PROTEINS

Biomolecules are biologically significant molecules that are usually quite large and
are therefore also termed macromolecules. They have an enormously complex and
rich variety of structures but are made from simpler structural building blocks. For
example, proteins are all made from the 20 or so different amino acids, each of which
is a relatively small well-defined structure. Human cells manufacture on the order of
60,000 different proteins with the structure of each uniquely related to its function.
Most proteins, for example, have a very simple primary structure, simply a single lin-
ear string of amino acids forming the backbone of the protein. The sequence of amino
acids along the backbone is unique for each different protein and sometimes a single
amino acid substitution, through an error in protein manufacture by the cell or
through genetic engineering, can result in a defective protein that leads to a specific
disease. A prime example of this is sickle-cell anemia, a crippling disease that causes
red blood cells to deform and clog capillaries and which is caused by a single incor-
rect amino acid in the hemoglobin molecule.

The primary structure of a protein contains all the information necessary for the
protein to spontaneously fold and attain a unique overall conformation, or three-
dimensional structure. Scientists have discovered this by unfolding proteins through
gentle heating until they have lost all ordered structure and then cooling the proteins
to watch them spontaneous refold to form the completely native and functional structure.
Different categories of structural motifs have been discovered as more and more proteins
have had their detailed structures determined. There are various types of helical structures
in which the amino acids are arranged through ordered repeating hydrogen bonds to form
helices of different detailed structures. The �-helix (Figure 3.26, left) is a common exam-
ple, although there are many other types of known helices naturally occurring in proteins.

Another structural motif is the �-pleated sheet structure (Figure 3.26, right) in
which portions of the backbone, either contiguous or separated, associate side to side
to form a structural sheet. These locally organized regions of a protein make up what
is termed the secondary structure of the protein. Some proteins consist entirely of a
single motif; for example, there is a class of elongated proteins called the fibrous pro-
teins that are helical in structure and include the important structural macromolecules
of actin, myosin, collagen, and the keratins. Others are termed globular and can have
regions with different structural motifs (Figure 3.27 left), but yet with a unique over-
all three-dimensional structure, held together by a variety of weaker bonds and
known as the tertiary structure.

Still other proteins are composites, consisting of several independent protein
subunits that are then more loosely associated together as, for example, in hemo-
globin (Figure 3.27, right) with four such structural domains and an iron atom
bound at the juncture of the subunits. The structural relationship between the sub-
units of such composites is known as the quaternary structure. Thus, we see that
the overall structure of a protein involves strong co-valent bonding along the
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FIGURE 3.25 Two simple arrange-
ments of linear springs and dashpots
used to model the viscoelastic 
properties of materials.

Maxwell model-in series

Kelvin-Voigt model -in parallel



backbone, weaker local bonding determining the local conformation, and perhaps
weaker still bonding between more distant portions of the backbone to provide the
overall stability of the protein.

Recently there has been rapid growth in our understanding of not only the structural
motifs available to macromolecules (proteins in particular) but also of the design algo-
rithms or strategies nature uses to produce these motifs. This knowledge has led to major
advances in the protein folding problem: how a linear macromolecule rapidly undergoes
a structural transition to find its native three-dimensional conformation out of the huge
number of total possible conformations. There have been some successful projects to
design from scratch new small proteins—proteins that do not exist in nature—with well-
defined characteristics. This will clearly be an exciting area of future research.

Until now in our discussion we have stressed the structure of macromolecules and
the figures that have been used to illustrate the ideas have, by necessity, been static struc-
tures. This limitation of the printed page and of molecular model representations has
hampered much thinking in biophysical research. Only in recent years has the impor-
tance of the dynamics of macromolecules been completely acknowledged by scientists.

Atoms and small molecules constantly undergo very rapid and random thermal
motions. The extent of these motions depends on the local environment and the interac-
tions with neighboring atoms and molecules. Even in the solid state, atoms and small
molecules execute small vibrational motions about their equilibrium locations. Larger
macromolecules or even microscopic objects also undergo random thermal motions,
known as Brownian motion or diffusion (refer to Section 7 of Chapter 2). Not only does
the entire macromolecule move about due to the solvent collisions, but there are typically
also small structural changes rapidly occurring; there are internal motions of different
portions of the macromolecule with respect to each other, larger motions of those portions
of the macromolecule less tightly bound. Therefore all of the static molecular model rep-
resentations of structures represent time-average structures. One must keep the notion of
dynamical motions clearly in mind because many important functions of proteins involve
not only a structural role but a time-dependent dynamical role as well. In some cases the
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FIGURE 3.26 (left) �-Helix and
(right) �-sheet, with ribbons 
showing folding.

FIGURE 3.27 Computer models of
(left) a generic globular protein with
helical, �-sheet (arrows), and ran-
dom coil (thin line) components,
and (right) hemoglobin with its four
identical subunits specifically
arranged.



binding of a small molecule or ion to a macromolecule may cause a large conformational
change to occur. Even in these cases it must be kept clearly in mind that the initial and
final conformations are not frozen structures.

Molecular dynamics treats each atom in a molecule as a point particle with forces
acting on it both from external sources and from other atoms within the molecule.
These calculations were not possible until the advent of computers to not only perform
the huge number of repetitive calculations, but also to keep track of all the position and
interaction variables. Early studies focused on simple liquids in the 1960s, followed by
studies of more complex liquids in the 1970s. (Water is a prime example of a complex
liquid because it forms a variety of structures from H-bonding.) Dynamical simulations
of biological molecules began in the late 1970s with studies on small proteins.

Those first studies started a revolution in our thinking about the structural dynamics
of macromolecules. Previously, biological macromolecules were often pictured as rigid
structures, in part because our main source of information on their structure came from
high-resolution x-ray diffraction studies that gave ball and stick models based on the aver-
age positions of the atoms in the macromolecule. These static pictures of biomolecules set
the image of structural models. Computer simulations now show a remarkable degree of
motion in macromolecules, with portions of the structure having rapid, large amplitude
motion, particularly for surface, but also internal, regions. Indeed movies of the motions of
macromolecules have been made illustrating the extent of typical movement. Simulations
have become a major tool in the study of proteins and have been used to help narrow down
(or “refine”) the possible detailed structures determined by other physical methods.

The basis for molecular dynamics calculations is the solution of the equations of
motion for each atom in the protein. One begins at some arbitrary moment of time
with a set of coordinates for each atom based on information from other techniques,
most notably x-ray diffraction (see Chapter 23) and nuclear magnetic resonance
(NMR; see Chapter 18). Some assumptions are made about the interactions between
the atoms so that a set of forces, Fij, can be computed, where Fij is the force on the ith
atom due to the jth atom. Then we can write a set of Newton’s second law equations,
one for each atom, of the form (here we illustrate the method in one dimension; it is
relatively easy to generalize this to two or three dimensions as we show in Chapter 5)

(3.26)

where the left-hand side of the equation is for the ith particle and the summation
notation � is used to indicate a sum over all the other atoms labeled j (excluding the
term i � j) to give the net force on the ith atom. With a given set of forces between
the atoms, once the accelerations are determined, they are used to solve for the veloc-
ities and positions of all the atoms at the next instant (after some very short time).
Then a new set of forces is calculated based on the new positions of the atoms and
new accelerations are used to compute the new velocities and positions. This process
is repeated countless times to generate a movie of the structure of the macromolecule
as a function of time. We show an example of how this is done just below, but the
time steps used must be very short indeed and so the number of calculations required
is enormous. As a rough rule of thumb, each picosecond (10�12 s) of simulation time
requires about 1 h of supercomputing time, although this is constantly decreasing as
computers are improved.

One method for performing the calculations is to divide time into steps, �t, of
very short duration (~10�15 s) and to write difference equations using time as a
discrete variable rather than a continuous variable. To do this we can use a modified
form of Equation (3.2), the one-dimensional kinematic equation for the position as a
function of time for constant acceleration, and write the following difference
equations as approximations in one dimension.

(3.27a)xi (t � ¢t) � xi (t) � vi (t)¢t � ai (t)
¢t2

2

mi ai � g
j

Fij,
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and

(3.27b)

Note carefully the signs in Equation (3.27b). If we add these two equations together,
eliminating the velocity term, and substitute for ai(t) using Equation (3.26) we have

(3.28)

Equation (3.28) allows us to solve for the position of the ith atom at some later
time if we know its position at the present and one preceding step in time as well as
the current forces acting on it. In a similar way, if the velocities of the atoms as a
function of time are of interest, we can subtract Equation (3.27b) from (3.27a) to find
an expression for the velocity of the ith atom,

(3.29)

These algorithms can be used to follow the positions and velocities of each atom
at successive times, remembering that the forces Fij, assumed to be constant during
the time interval �t, are re-evaluated after each interval of time because they are
dependent on the positions of the atoms that evolve as the calculation is performed
(Figure 3.28). To initiate a calculation one needs a set of initial coordinates, usually
obtained from other independent information on the structure of the protein or sys-
tem, as well as either a second set of initial coordinates at a slightly different time or
equivalently a set of initial velocities for each atom. Often calculations are initiated
using zero for the initial velocities in the so-called zero-temperature limit, and the
system is allowed to evolve for some time, reaching an “equilibrium distribution” of
velocities. The following very simple example illustrates the major features of a mol-
ecular dynamics calculation in one dimension.

vi (t) �
xi (t �¢t) � xi (t �¢t)

2¢t
.

xi (t �¢t) � 2xi (t) � xi (t �¢t) �

g
j

Fij (t)

mi

¢t2.

xi (t � ¢t) � xi (t) � vi (t)¢t � ai (t)
¢t2

2
.
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Example 3.10 Suppose that there are three atoms of mass m along the x-axis
located at x � 0, 1, and 2 at time 0 and that were at x � 0.01, 1.01, and 1.99
at a time t � –0.01, with x and t measured in nm and ps, respectively (see
Figure 3.29). Using time steps of 0.01 ps, calculate the positions of each
particle for the first three steps of motion assuming the following forces are
acting.

Solution: Setting up the equations to iteratively (repeated calculations, updated
each time) solve for the positions of the three atoms, we have

x3 (t �¢t) � 2x3 (t) � x3 (t �¢t) �
F1 on 3 (t) � F2 on 3 (t)

m
(¢t)2,

x2 (t �¢t) � 2 x2 (t)� x2 (t �¢t) �
F1 on 2 (t) � F3 on 2 (t)

m
(¢t)2,

x1 (t �¢t) � 2x1 (t) � x1 (t � ¢t) �
F2 on 1 (t) � F3 on 1 (t)

m
(¢t)2,

F2 on 1 �
100m

x1, 2
2

 ; F3 on 2 � �
100m

x2, 3
2

 ; F3 on1 �
400m

x1, 3
2

.

(Continued)
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Of course the crux of any molecular dynamics calculation is to correctly
account for all of the forces between atoms, including forces between covalently
bonded atoms, longer-range forces between nonbonded atoms, and even forces at
the surfaces of the protein between solvent molecules and surface atoms. It has
been a triumph of molecular dynamics that such calculations have yielded an
understanding of the motions of biomolecules on a subnanosecond (�10�9 s) time
scale. Limitations of computing power have restricted longer time dynamics to
approximations of specific interesting portions of a molecule where some active
mechanism is known to occur, such as a molecular hinge or a local conformational
change on binding a small molecule. Large-scale slow structural changes still await
future studies for further understanding from molecular dynamics simulations.

where we need to be careful about the
signs; for example, F2 on 1 � �F1 on 2
according to Newton’s third law. The
table below shows the needed calculations
for each iteration. Starting with values for
xi for t � �0.01 and 0 ps, we first calcu-
late Fij at time 0 and use these forces in
the three equations above to get xi values
at t � 0.01 ps. Then these new position
values are used to calculate the Fij at t �
0.01 ps and the process is continued,
remembering each time to increment the
time by �t. (Why is 0.01 ps a short
enough time interval in this example?)

Time (in ps) �0.01 0 0.01 0.02 0.03 0.04 0.05

x1 (in nm) 0.01 0.0 0.01 0.04 0.09 0.17 0.29

x2 (in nm) 1.01 1.0 0.97 0.92 0.85 0.76 0.64

x3 (in nm) 1.99 2.0 2.01 2.02 2.03 2.04 2.04

F2 on 1/m � — 100 109 129 173 287 —

�F1 on 2/m —

F3 on 1/m � — 100 100 102 106 114 —

�F1 on 3/m

F3 on 2/m � — �100 �93 �83 �72 �61 —

�F2 on 3/m

From the table it is clear that particle 1 feels a positive force from both
other particles and is accelerating toward the right whereas particle 2 feels a
force toward the left from both other par-
ticles and is accelerating toward the left.
Particle 3 is initially fairly stable in its
position, roughly balanced in the short
term by oppositely directed forces from
the other two particles. Clearly, if nothing
else, this example illustrates the need
for a high-speed computer to follow the
motion over longer times even in one
dimension with few particles.

FIGURE 3.28 A four-atom molecule
shown at two times separated by
one step in a molecular dynamics
calculation. The “primed” numbers
show the change in position after
time �t, and the lines show the
changes in separation distances
from atom 1, reflecting changes in
interaction forces between atoms.
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FIGURE 3.29 Three atoms of mass
m for a simple molecular dynamics
calculation.
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(3.23)

and will oscillate with a period T, given by

. (3.20)

When a solid undergoes a stress (F/A), its linear
response is a proportional stress (�L /L) according to

(3.24)

where Y is the elastic or Young’s modulus. Depending
on the relative orientation of the applied forces and the
surfaces of the solid, the applied stress can produce a
stretch, compression, shear, twist, or pressure.

Molecular dynamics is the simulation of molecular
motions by the solution of Newton’s second law in an
iterative stepwise calculation in which the time steps
are very short and the forces on and positions of all the
atoms in the molecule need to be recalculated at every
time step of the calculation.

F

A
� Y

¢L

Lo

,

T = 2pAm

k

a � � v2 x ; v�A k

m

x � Acos(vt) ; v � � Av sin(vt) ;

QUESTIONS
1. A ball is thrown straight up in the air. What is its

velocity at its highest point? What is its acceleration
at that point?

2. If a ball is thrown upward with a speed of 6 m/s, what
is its velocity when it returns to that height? What is
its acceleration at that time?

3. If gravity always acts downward, why does it take the
same time for a ball to travel upward as it does for it
to return to the same height?

4. If the velocity of a particle is a constant, what does
the graph of displacement versus time look like?

5. If the acceleration of a particle increases linearly
from zero at time zero to a at time t, what is the aver-
age acceleration in that interval?

6. Give some examples of laminar flow of a fluid? What
are some examples of turbulent flow?

7. How will the Reynolds number defined in Equation
(3.4) change under the following conditions?
(a) With increasing flow for a given object in a fluid
(b) For larger objects in the same fluid and at the

same flow velocity

(c) A given object flowing at the same velocity in a
variety of fluids with increasing viscosity (usually
as the viscosity increases, e.g., by adding a viscous
liquid to water in increasing amounts, the density
will increase as well but by a much smaller factor).

8. Why is the terminal velocity at large Reynolds num-
ber independent of viscosity whereas the value at
small Reynolds number is independent of the den-
sity? Explain in terms of the relative importance of
these two parameters.

9. Why does it take some time for a skydiver to reach a
terminal velocity after jumping from a plane?

10. Can you think of an example in which the buoyant
force on an object is greater than its weight? Will
there be a terminal velocity in that case and, if so,
describe it.

11. Explain in words why the force of gravity can be
ignored in writing the net force on a mass attached to
a vertical spring when measuring displacements from
the equilibrium position.

12. A mass oscillates on a vertical spring around its
equilibrium position with an amplitude A. Where is

CHAPTER SUMMARY
Three important examples of one-dimensional motion
are discussed in this chapter. The first case is constant
acceleration (most notably, free-fall) for which a set of
three equations is developed in Table 3.1:

v(t) � v0 � at,

v2 � v0
2 � 2 a (x �x0).

When an object moves through a fluid and a (non-
negligible) frictional force is present, the object will
reach a terminal velocity when the increasing frictional
force (proportional to v2 in Equation (3.5) when the
Reynolds number is much greater than 1, or to v in
Equation (3.6) when is much smaller than 1) causes
the net force on the object to vanish.

Linear springs obey Hooke’s Law,

(3.11)

where k is called the spring constant. A mass oscillat-
ing on a linear spring will have a position, a velocity,
and an acceleration given by

F = -kx,

t
t

x(t) � x0 � v0 t �
1

2
at2,



72 A P P L I C AT I O N S O F N E W T O N ’ S L AW S O F M O T I O N

the speed of the mass greatest? Least? Where is the
magnitude of the acceleration of the mass greatest?
Least?

13. If a mass hanging from a spring has a period of oscil-
lation of 2 s, what will the period be when a second
identical spring is also attached to support half the
weight?

14. Suppose two identical masses are each suspended
from identical springs. If the first is pulled down a
distance D and the second is pulled down a distance
2D, which will complete one oscillation faster?
Which will have the greatest maximum speed?

15. A mass oscillates on a vertical spring around its equi-
librium position with a period T and an amplitude A.
If a second identical mass is added to the first and the
amplitude is doubled, what is the new period of
oscillation?

16. A mass on a spring oscillates according to the equa-
tion x(t) � 0.035 cos(0.6 t) (in SI units). What are the
period, frequency, angular frequency, and amplitude
of the motion?

17. A science museum director wishes to set up 4 spring-
mass systems to oscillate with periods that are ratios
of each other. Suppose that she wants four oscillators
with periods in the ratio 1:2:4:8. She can only find
two different types of springs with spring constants
that differ by a factor of 4 (k and 4k) and has only
seven masses, one of mass m and six of mass 4m. Can
she do it, and if so, how?

18. Using values that are representative of typical prod-
ucts, compute the spring constant for a suspension
spring of an automobile, of a dump truck, and of a
grocery scale.

19. Based on the typical values for Y and do in solids,
what is a typical force acting between atoms in a
solid?

20. Springs supply a force that is described by Hooke’s
law. Because of this a simple, but useful, model to
describe the forces between atoms is to imagine that
they are connected by microscopic springs. Discuss
this picture based on your general knowledge of how
a spring pushes or pulls.

21. You have a choice in using steel rods for reinforcing
a supporting beam to minimize any compression. One
option is to use a rod of length L and radius r and the
other is to use two rods of length L and radius 0.6 r.
Which option will work better?

22. Which column can support a greater weight for a
given compression: one with a cross-sectional radius
of 5 cm and a length of 50 cm or one of the same
material but with a 7.5 cm radius and a 100 cm
length?

23. State clearly the difference among the linear limit, the
elastic limit, and the ultimate strength of a material.

24. What is the difference between stress and strain?
Which one causes the other? Give some examples of
stresses and strains.

25. A shock absorber of an automobile functions as a
dashpot. Is such a dashpot connected in parallel or in
series with the suspension spring? Explain how the
car behavior supports your answer.

26. Carefully explain in your own words what it means to
solve molecular dynamics problems iteratively.

27. In a molecular dynamics calculation for a protein of
40,000 molecular weight, with a mass composition of
50% carbon, 7% hydrogen, 23% oxygen, 16% nitro-
gen, and 1% sulfur, and using time steps of 0.1 ps,
calculate the total number of iterative calculations
needed to follow the dynamics for 10 ns. In the calcu-
lation, an average of 10 water molecules per amino
acid (with an average of 140 for the molecular weight
of an amino acid in the protein) are considered to
interact with the protein and each water molecule is
treated as a single source of interactions. (Hint: You
will need to compute the total number of atoms in the
protein and the number of solvent molecules to
include in the calculations.)

MULTIPLE CHOICE QUESTIONS
Questions 1–3 refer to a ball dropped from rest and falling
vertically under the influence of gravity.

1. The ratio of the distance it falls in a 1 s interval after
4 s to the distance it falls in the next 1 s interval after
5 s is (a) 9/11, (b) 36/25, (c) 25/16, (d) 36/16.

2. The ratio of the ball’s velocity at 5 s to that at 4 s after

being released is (a) 25/16, (b) 5/4, (c) , (d) 1.

3. The ratio of the ball’s acceleration at 5 s to that 

at 4 s after being released is (a) 5/4, (b) 1, (c) , 

(d) 25/16.

4. Which of the following is not true of an object in one-
dimensional free-fall? (a) the velocity is always zero
its highest point, (b) the velocity and acceleration are
oppositely directed while moving upwards, (c) the
acceleration is not zero at its highest point, (d) the aver-
age speed and average velocity are always the same
because the motion is one-dimensional.

5. A ball is thrown vertically downward. Taking g �
10 m/s2, if in the first second it travels a distance of
7 m, at the end of 2 s it will have traveled a total dis-
tance of (a) 14 m, (b) 20 m, (c) 24 m, (d) 32 m.

6. A constant horizontal force is exerted on a cart that is
initially at rest on a frictionless horizontal track. The
force acts for a time t during which the cart moves a
distance d. If the force is halved and applied to the
same cart for twice the time, the cart will move a dis-
tance (a) d, (b) 2d, (c) 4d, (d) d/2.

7. The frictional force on a small steel ball falling
through water is due to (a) buoyancy, (b) viscosity,
(c) turbulent flow, (d) thrust.

A5

4

A5

4
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8. For an object immersed in a fluid, the larger the
Reynolds number is the (a) larger the viscosity of the
fluid, (b) smaller the density of the fluid, (c) slower
the object will fall, (d) none of the above.

9. Laminar flow is characterized by (a) wakes, (b) vortices,
(c) streamlines, (d) chaotic flow.

10. For objects with a density near that of water to have a
frictional force proportional to both their velocity and
to their radius while falling in water, they must have a
radius (a) above 1 mm, (b) below 150 �m, (c) between
150 �m and 1 mm, (d) it is not possible.

11. A mass hangs from an ideal spring. When the mass is set
into oscillation with an amplitude of 1 cm its frequency
is 10 Hz. When the amplitude is increased to 2 cm the
new frequency will be (a) 5 Hz, (b) 7 Hz, (c) 10 Hz,
(d) 20 Hz.

12. A 50 g mass attached to a spring oscillates vertically
with a period of 0.80 s. If the spring and mass are
placed on a horizontal surface with negligible friction
and the mass is set into motion with the same ampli-
tude as in the vertical case it will (a) oscillate about
an equilibrium point that is the same distance from
the fixed end of the spring and with the same period,
(b) oscillate about an equilibrium point that is closer
to the fixed end of the spring and with the same
period, (c) oscillate about an equilibrium point that is
the same distance from the fixed end of the spring and
with a longer period, (d) oscillate about an equilib-
rium point that is closer to the fixed end of the spring
and with a longer period.

13. A 50 g mass attached to a long spring is lifted 1.5 cm
and dropped from rest. The resulting frequency is
measured to be 1.25 Hz. The 50 g mass is then lifted
3.0 cm and dropped from rest. The resulting fre-
quency is measured to be (a) 0.63, (b) 0.88, (c) 1.25,
(d) 2.50 Hz.

14. A 0.5 kg mass oscillates about the equilibrium posi-
tion on a vertical spring with spring constant 10 N/m.
Where is its equilibrium position measured from the
unstretched spring position (without the hanging
mass)? (a) 0.05 m, (b) 0, (c) 0.49 m, (d) 5 m, (e) none
of these.

15. A 10 N mass stretches a vertical spring by 10 cm.
When set into oscillation, the time for the mass to
travel from its highest to its lowest position is equal
to (take g � 10 m/s2): (a) 0.31 s, (b) 0.63 s, (c) 0.99 s,
(d) 1.99 s, (e) none of these.

16. The frequency of harmonic motion of a 1 kg mass
attached to a simple spring is 1 Hz. The spring constant
(a) is 1 N, (b) is 2� kg/m, (c) is 4� 2 N/m, (d) cannot
be determined from the information given.

17. Sedimentation of spheres of the same material but
different radii in a liquid at low is a phenomenon
where larger spheres beat smaller ones to the bottom
of a container. This effect is due to the fact that (a) the
larger spheres have smaller buoyant forces on them,
(b) the pressure difference between the top and

bottom of a larger sphere is greater than the pressure
difference between the top and bottom of a smaller
sphere, (c) larger spheres always beat smaller spheres
because their gravitational acceleration is larger, (d) the
terminal velocity of a sphere is proportional to its radius
squared.

18. As a skydiver jumps out of an airplane, her
(a) Vertical velocity decreases and vertical acceleration

increases.
(b) Vertical velocity decreases and vertical accelera-

tion decreases.
(c) Vertical velocity increases and vertical acceleration

increases.
(d) Vertical velocity increases and vertical acceleration

decreases.
(e) Vertical velocity increases and vertical acceleration

remains constant.
19. Two cylindrical artificial bones are made of the same

material and length, one with twice the radius as the
other. When the two have the same tension force
applied, the larger bone stretches by what factor
compared to the smaller bone? (a) 2, (b) 0.25, (c) 0.5,
(d) 4, (e) 1.

20. Given two rods made of the same material, one with
twice the radius of the other and also with twice the
length, if the same weight is suspended from each of
the rods when held vertically, the longer rod will
stretch (a) the same as, (b) twice, (c) half, (d) four
times as much as the shorter rod.

PROBLEMS
1. A rural bus travels a straight line route of 20 km total

distance. It makes a total of 5 stops along the route,
each for exactly 2 min. If its average velocity in each
driving interval is 45 km/h,
(a) What is the total time for the round-trip route?
(b) What is the average velocity for the one-way trip?

2. A ball is dropped from the Sears tower in Chicago
with a height of 1454 ft (443 m). At what speed
(in m/s and in mph) will it hit the ground, neglecting
air resistance?

3. A truck travels on a straight road at 20 km/h for
60 km. It then continues in the same direction for
another 50 km at 40 km/h. What is the average veloc-
ity of the truck during this 110 km trip?

4. The driver of a blue car, moving at a speed of 80 km/h,
suddenly realizes that she is about to rear-end a red
car, moving at a speed of 60 km/h. To avoid a colli-
sion, what is the maximum speed the blue car can have
just as it reaches the red car?

5. A jumbo jet must reach a speed of 290 km/h on the
runway for takeoff. What is the least constant acceler-
ation needed for takeoff from a runway that is 3.30 km
long?

6. In a car accident, a car initially traveling at 30 min/h
(13.4 m/s) hits a tree and comes to rest in a distance
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of 3 m. What was the deceleration of the car? How
many gs is this?

7. The fastest sustained runner is the pronghorn
antelope, capable of running at 55 min/h for 1/2 mile.
How long does it take this antelope to run the
1/2 mile?

8. To bring your truck to rest, you first require a certain
reaction time to begin braking; then the truck slows
under the constant braking deceleration. Suppose that
the total distance covered by your truck during these
two phases is 39.7 m when the truck’s initial velocity
is 16.7 m/s, and 17 m when the truck’s initial velocity
is 10 m/s. What are your reaction time and deceleration
of the truck?

9. At the instant a traffic light turns green, a car starts
with a constant acceleration of 1.3 m/s2. At the same
instant a truck, traveling with a constant speed of
7.0 m/s, overtakes and passes the car.
(a) How far beyond the traffic signal will the car over-

take the truck?
(b) What will the velocity of the car be at that instant?

10. Dropped from rest at the top of a 30 m tall building, a
ball passes a window that is 1 m tall and has its lower
ledge at a height of 8 m from the ground.
(a) How long will the ball take to pass by the

window?
(b) What will be its speed when it reaches the bottom

ledge of the window?
11. A 0.2 kg ball is thrown vertically downward at 

8 m/s from the top of a 10 m tall cliff. (Neglect air
resistance.)
(a) Find the velocity with which the ball hits the

ground.
(b) How long does the ball take to hit the ground from

the instant it is thrown?
(c) If the ball rebounds upward with a velocity of 10 m/s

find the maximum height it will reach.
12. A ball is dropped from the top of a 45 m tall building.

A second ball is thrown down after a 1 s pause. With
what minimum initial speed should it be thrown to
reach the ground first?

13. A rock is dropped from a cliff 60 m high (neglect air
friction).
(a) How long does it take for the rock to hit the

ground?
(b) Find the velocity and acceleration of the rock just

before hitting the ground.
14. A ball, dropped from a cliff over the ocean, hits the

water in 4.0 s.
(a) How high is the cliff?
(b) If a second ball is thrown from the same cliff and

hits the water in 5.0 s, what was its initial velocity
(magnitude and direction, please)?

15. An automobile driver traveling at 60 mph approaches
a town that has a posted limit of 30 mph. Our driver
dutifully applies the brakes, exactly 100 yards before
the town limit, imparting a deceleration of �5 mph/s.

Nonetheless, a police officer stops him. Our driver
admits that he might have been going a bit fast out-
side of town but insists that he was always going at or
below the town’s speed limit while within its boundary.
Is his claim correct?

16. A person throws a ball straight upward with an initial
velocity of 15 m/s while standing on the edge of a
cliff that is 100 m high. The ball rises to some height
and then falls back down in such a way that it lands at
the base of the cliff.
(a) Determine the time it takes for the ball to reach its

maximum height and the maximum height above
the cliff.

(b) How long does it take to reach the base of the
cliff, and what is its velocity just before it strikes
the ground?

17. A cartoon coyote comes up with a brilliant scheme to
get lunch for himself by dropping a 500 kg boulder
on a passing animated roadrunner. Unfortunately,
when he cuts the rope holding the boulder in place,
the rope becomes tangled around his ankle, and drags
him toward the edge of the cliff. If the coyote’s mass
is 30 kg and his frantic clawing at the ground pro-
duces a force of 120 N resisting being dragged off the
cliff, what is his acceleration toward the cliff?

18. In a device known as an Atwood machine, two
masses (m1 and m2) are connected by a massless rope
over a frictionless pulley.
(a) What is the acceleration of each mass if m1 � 10

kg and m2 � 20 kg?
(b) What is the tension in the cord?

19. A 5 kg block sits at rest on a frictionless horizontal
surface.
(a) If a constant 15 N force pushes the block to the

right, find the speed of the block after the force
has been applied for 5 s.

(b) Suppose that in part (a) there is a constant frictional
drag force of 5 N acting on the block when pushed
by the same 15 N force. Draw a carefully labeled
free-body diagram of the block, and find the accel-
eration of the block (magnitude and direction,
please).

(c) Suppose a second block of mass 2 kg is placed on
top of the 5 kg block in part (b) which is still
being pushed by the 15 N force to the right and
has the 5 N frictional drag force acting on it.
Reconsider part (b) and find the net horizontal
force (magnitude and direction, please) that must
act on the 2 kg block in order for it to stay at rest
on top of the 5 kg block. What is the origin of this
force? (Hint: First consider the two blocks as one
to find their acceleration.)

20. A microorganism is within a water droplet atop a
microscope slide that measures 24 � 76 mm. The
organism is swimming at 0.5 mm/s at precisely the
middle of the slide and parallel to the slide’s long
axis, that is, parallel to its length. At that moment,
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someone picks up one end of the slide and the tilt
induces the water droplet to begin to move in the
same direction in which the organism is swimming. If
the water droplet picks up speed at 1 mm/s2, how long
is it until the organism goes over the edge of the
slide?

21. A certain car ad once boasted of zero to 60 mph in 6 s,
and 60 to zero in 3 s. What distances would be covered
by this car during the respective positive and negative
accelerations? Assume constant acceleration values
for each case.

22. A zoo animal paces back and forth across the front of
its cage a span of 8 m. A zoo attendant counts 1 min
for a dozen round trips of the animal. Assuming that
the creature spends as much time speeding up as
slowing down and never travels at constant speed
(i.e., it speeds up to the middle of the cage, where-
upon it begins to slow down), how fast is the animal
moving right at the middle of the cage? Assume, of
course, that both accelerations are constant.

23. Fleas are notorious jumpers, reaching heights of
nearly 20 cm, roughly 130 times their own height.
Assuming that the flea acquires its initial velocity in
leaving the ground over a distance of half its height,
find the average acceleration the flea must have to
reach a height of 20 cm. Express your answer as a
multiple of g.

24. Common terns hover in a stationary position over the
ocean watching for a tasty fish. When they see one,
they immediately stop their wings and simply free-
fall into the ocean to catch the fish. Calculate how
long a fish near the surface has to move away after the
instant a tern sees it from a height of 3 m above the
surface.

25. Repeat Problem 2 above, but now include air resis-
tance. Assume a ball of 3 cm radius with an average
density of 4400 kg/m3, a density of air of 1.3 kg/m3,
and a value of C � 1.

26. Estimate the terminal velocity of a skydiver with a
closed parachute. Take values from the previous
problem and assume the diver has a mass of 75 kg
and an effective cross-sectional area of 0.4 m2. If the
terminal speed with an open parachute is 18 km/h,
find the effective area of the parachute. The buoyant
force is negligible.

27. Block #1 is attached to a horizontal spring and slides
on a frictionless horizontal surface. Block #2 has the
same mass as #1 and also sits on the same friction-
less surface. It is attached to a spring with three
times the stiffness of the other one. If both blocks
have the same amplitude of motion find the ratio of
the following quantities (#2/#1): the periods of the
motion, the angular frequencies, the maximum
velocities, the maximum accelerations, and the max-
imum displacements.

28. Attached to a spring on a frictionless table top, a 1 kg
mass is observed to undergo horizontal simple

harmonic motion with a period of 2.5 s after stretch-
ing the spring. The spring is then held vertically and
a 0.2 kg mass is attached and gently lowered to its
equilibrium position.
(a) Find the distance the spring is stretched.
(b) If the spring is then stretched an additional 5 cm

and released, find the period of the subsequent
motion.

(c) What is the maximum acceleration of the 0.2 kg
mass?

(d) What is its maximum velocity?
29. A 0.8 kg mass attached to a vertical spring under-

goes simple harmonic motion with a frequency of
0.5 Hz.
(a) What is the period of the motion and the spring

constant?
(b) If the amplitude of oscillation is 10 cm and the

mass starts at its lowest point at time zero, write
the equation describing the displacement of the
mass as a function of time and find the position of
the mass at 1, 2, 1.5 s, and at 1.25 s.

(c) Write the equation for the speed of the mass as a
function of time and find its speed at the times
given in part (b)? (Be careful to check that you
have the correct starting speed at time 0.)

30. Find the natural frequency of vibration of the salt
molecule NaCl given its effective mass of 13.9 atomic
mass units and a spring constant of 100 N/m.

31. In the dangerous sport of bungee-jumping, a thrill-
seeker jumps from a great height with an elastic cord
attached to the jumper’s ankles. Consider a 70 kg
jumper leaping from a bridge 226 m high. Suppose
further, that instead of using a specifically designed
cord, the jumper uses a 9.00 mm diameter nylon
mountain climber’s rope with an effective force con-
stant k � 4900 N/m.
(a) What is the length of rope needed to stop the

jumper 10 m above the ground?
(b) What is the maximum force that the rope will

exert on the daredevil?
(c) Expressing this maximum force in terms of the

weight of the jumper, did the jumper make a wise
choice to use the mountain climber’s rope?

32. A 70 kg daredevil stretches a steel cable between two
poles 20 m apart. He then walks along the cable, loses
his balance, and falls where he luckily lands in a
safety net, which acts like a spring with spring con-
stant k � 1750 N/m. If his speed when he strikes the
net is 10 m/s, what is the amplitude of the oscillation
as he bounces up and down?

33. A 2 kg mass attached to a vertically held spring is
observed to oscillate with a period of 1.5 s.
(a) Find the spring constant.
(b) If the amplitude of the oscillation is 10 cm, find

the magnitude of the maximum acceleration of the
mass and state where in the oscillation of the mass
this maximum acceleration occurs.
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(c) If the hanging mass is doubled and the amplitude
is halved, find the magnitude of the maximum
velocity of the new mass on the same spring and
state where in the oscillation of the mass this max-
imum velocity occurs.

34. A 0.5 kg mass is attached to a spring with a spring
constant of 8.0 N/m and vibrates with an amplitude of
10 cm.
(a) What are the maximum values for the magnitudes

of the speed and of the acceleration?
(b) What are the speed and the acceleration when the

mass is 6 cm from the equilibrium position?
(c) What is the time it takes the mass to move from

x � 0 to 8 cm?
(d) What is the period of the motion?
(e) What are the displacement, velocity, and acceler-

ation as functions of time?
35. In an experiment to investigate Hooke’s law with springs,

weights are hung on a spring; the spring stretches to dif-
ferent lengths as shown in the table below.
(a) Make a graph of the applied force versus the

stretch of the spring and if the data are linear
obtain the slope of the best fit line. What does this
slope represent?

(b) If the spring is stretched 102 cm, what force does
the spring exert on the suspended weight?

38. A 75 kg person falls from the second floor of a build-
ing and lands directly on one knee with his body
otherwise vertical.
(a) If the fall is from a height of 10 m, find the veloc-

ity on impact with the ground.
(b) If it takes 5 ms for the person to come to rest, find

the average force acting during the collision.
(c) Using the data of Example 3.9, will the femur break?

39. Bone has a larger Young’s modulus for stretch (1.6 �
1010 N/m2) than for compression (0.94 � 1010

N/m2). By how much is each femur, or thigh bone, of
the legs compressed when a weightlifter lifts 2200 N?
Take the dimensions of the femur to be 0.6 m long
and have an average radius of 0.01 m.

40. A medieval knight is “racked,” stretching his body
with a force of 1200 N. Using the data in the previous
problem, by how much will the knight’s femur bones
be stretched?

41. Four concrete columns, each 50 cm in diameter and
3 m tall, support a total weight of 5 � 104 N. Find the
distance that each column has been compressed by
the weight of the load. (Use an elastic modulus of
20 � 109 N/m2 for concrete). Find the effective spring
constant for a column and then find the period of
small amplitude oscillations assuming an effective
spring constant equal to the sum of the values for the
four columns, and neglecting the weight of the
columns. We show later that such natural oscillations
at the corresponding frequency make such structures
susceptible to absorbing energy from external sources
(such as wind, earthquakes, etc.) leading to larger
amplitude vibrations and possible damage.

42. Steel pillars support a pier extending out into the
ocean from the beach. If the pillars are solid 10 � 10 cm
steel (Young’s modulus � 2.0 � 1011 N/m2) and are
4 m long, find the distance each is compressed if each
pillar supports a weight of 2000 N.

43. A guitar is being restrung with a string having a diam-
eter of 1.4 mm and a length of 0.82 m when no tension
is applied. If the string has a Young’s modulus of
1.4 � 1011 N/m2 and is tightened by wrapping it three
times around a peg with a 2.5 mm diameter, find the
tension in the string.

44. Fill in the steps to derive Equations (3.27), (3.28), and
(3.29) in Section 5 of the chapter.

F (N) 2 4 6 8 10 12 14 16 18

x (mm) 15 32 49 64 79 98 112 126 149

36. A rod-shaped bacterium (with an equivalent spherical
radius of 0.5 �m) rotates its flagella at 100 revolu-
tions per second to propel itself at a uniform velocity
of 100 �m/s. Calculate the thrust (propulsive force)
generated by the flagella, assuming the only other
force is a frictional one given by Stokes’ law. Note that
this speed is extremely fast, namely about 50 body
lengths per second. Show that the equivalent speed for
a human would be about 200 mph. Take 	 � 10�3 in
SI units, the value for water.

37. A 10 g inflated balloon falls at a constant velocity.
What is the buoyant force acting on the balloon? (The
frictional force can be neglected here.)
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In this chapter we introduce work, kinetic energy, the energy associated with motion,
and provide a general framework for appreciating the concept of energy and its useful-
ness in all areas of science. We present these ideas for one-dimensional motion, the
theme of the previous two chapters, leaving the generalization to more than one dimen-
sion for the next chapter. A major goal of this chapter is to appreciate the extremely
important and general conservation of energy principle. It is used again and again in
future discussions of various other forms of energy, including electrical, magnetic, and
eventually their synthesis in electromagnetic energy, as well as various types of chem-
ical and nuclear energy. In addition, later we study the science of thermodynamics deal-
ing with energy and its flow in bulk matter. The conservation of energy principle is
perhaps the most important and fundamental principle of all science.

Our discussion of forces and the laws of motion thus far is entirely sufficient to be
able to describe the motion of most inanimate objects: planets, moons, and satellites, or
projectiles, and sliding and rolling objects (with some additional ideas needed here). In
fact with some added mathematics, only the generalization of these laws to three
dimensions and a knowledge of forces is needed, no matter how complex and interest-
ing the motion may be. A simple example illustrates, however, that for living organisms
force alone will not provide a sufficient framework to understand their behavior. When
you lift a heavy weight and hold it in the air you get tired even though you are not doing
any work (we show that doing work, as defined in physics, requires a displacement).
This simple observation implies that another concept, the source of forces, is needed to
understand living organisms as well as some dynamic inanimate systems. Your muscles
require energy to function and provide a force. We need to develop an appreciation of
energy as the source of force and here we begin this development.

1.  WORK

When a constant net force F acts on an object of mass m originally at rest, the object
experiences an acceleration F/m, and its velocity increases. The longer the net force
acts, and correspondingly the greater the distance it acts over, the faster the object is
made to move. From our knowledge of Newton’s laws and kinematics, we can cal-
culate the velocity of the object as a function of time to be

(4.1)

or as a function of the distance the object travels x, we can calculate the velocity to be

(4.2)v �12ax �A2 

F

m
 x.

v �
F

m
 t,

4Work and Energy 
in One Dimension
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In this and the next section we learn a different way of describing what has occurred in
this example. In words, we say that the net force has done work on the object and in
doing so has increased the energy of motion, or kinetic energy, of the object. Let’s
first carefully define work and kinetic energy and then derive a theorem that is very
general indeed and is the motivation for this alternative description.

We develop the definition of work in this chapter with the case of one-
dimensional motion in which a constant force F acts on an object, originally at rest,
along the x-axis. The work done on an object by the constant force when the object
has undergone a displacement �x is defined to be

(constant force along x direction). (4.3)

Suppose our object is a sled being pulled by a rope along a horizontal surface. If the
rope is held horizontally then the work done by a tension force of T � 20 N along the
rope in pulling the sled a distance L � 5 m is given by Equation (4.3) as W � T L �
(20 N) (5 m) � 100 N-m. The SI unit for work is the N-m which is called the joule

(J; 1 N-m � 1 J).

WF � F¢x.

Example 4.1 A group of campers is having a tug of war in which five of them pull
on a heavy rope toward the left and five others pull toward the right. Suppose that
each camper on the left pulls toward the left with an average force of 220 N and
each of the campers on the right pulls with an average force of only 210 N.
During the time when the rope moves a distance of 3 m to the left, how much
work does each camper do and what is the net work done by all ten of them?

Solution: Each camper on the left does an amount of work equal to (220 N)
(3 m) � 660 J, whereas each camper on the right does an amount of work equal
to �(210 N)(3 m) � �630 J. Note that this work is negative because the
campers on the right, while pulling to the right, have displacements to the left.
The net amount of work done by all is then W � 5(660) � 5(630) � 150 J.
Clearly this could be found as well by computing the net force on the rope
(�50 N) and multiplying it by the displacement.

The above definition of work is in conflict with our colloquial usage of the word
work. If the campers on the right had pulled a bit harder in the example, the rope
might have not moved at all and no work would have been done, despite a great deal
of effort exerted by all. While a hiker carrying a heavy backpack is standing still she
does no work, although we would commonly say that she is doing work, using up
energy, and will get tired even standing in place. Indeed extra energy is being used
to support the weight of the backpack, but the only work done is internal work
within the muscles of the hiker. Without any displacement of the backpack or any

displacement of the tug-of-war rope, no work is done according to our def-
inition (Figure 4.1). This example shows that some care is needed in cal-
culating the work done by a force.

The above definition and discussion are fine as long as the forces act-
ing on the object are constant, but we have already seen two examples of
forces that are not constant and for which Equation (4.3) does not apply.
The frictional force in a fluid is dependent on the velocity and changes as
the object accelerates, whereas the spring force changes continually in
magnitude and periodically in direction as well. In order to modify
Equation (4.3) to be able to calculate the work done by a variable force,
we must use a “divide and conquer” strategy. From a graph of F versus x,
we divide the region of interest along the x-axis of width �x into small

F

mg

FIGURE 4.1 A hiker does no work
in supporting a backpack.



displacement intervals, each of width �x as shown in Figure 4.2. In
each of the intervals we replace the varying force with its average
value and calculate the work for that displacement interval using
Equation (4.3), so that the contribution to the work from that small dis-
placement interval �x is

(4.4)

As can be seen in Figure 4.2, �W represents the area contained in the rec-
tangle with height Fave and width �x; this area is also nearly equal to the
actual area under the curve representing F for that interval of �x and
becomes more closely equal to the actual area as the width of the interval �x

gets smaller and the number of such intervals grows. These contributions to
the work from a total displacement of �x add up to the total work given by

(force along x-direction), (4.5)

where the sums are over each of the intervals. Thus, the graphical inter-
pretation of the work done in a displacement �x is the area under the
curve representing F versus x and bounded by two vertical lines at the
beginning and end of the displacement interval.

In cases where the curve representing the force as a function of
distance is actually either a straight line or a simple curve, it may
be easy to calculate the area directly. For example, in the case of a spring
force, F � �kx, the graph is linear (Figure 4.3) and the area under the
line can be directly calculated as in the following example.

WF � g¢W � gFaveLdx,

¢W � Fave dx.
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FIGURE 4.2 Divide-and-conquer
strategy for calculating the work
done by a varying force.

As readers who have had some calculus
and have seen some integration should rec-
ognize, the discussion leading up to the gen-
eral definition of work in one dimension,
Equation (4.5), is a prelude to defining work
as an integral. All that is missing is taking
the usual limit as the size of the intervals �x

approach zero resulting in the following
integral for the work done by the force F

directed along the displacement,

The graphical interpretation of this integral
is, in fact, the area under the curve repre-
sented by the integrand F when plotted
against x between the limits of integration,
namely the displacement interval, as shown
in Figure 4.2. As an example application of
using this general definition for work, we
calculate the work done by the spring force
on an attached mass, F � �kx, as the spring
changes its position from x1 to x2. We find

as found in Example 4.2. With more com-
plicated forces, the method of Example 4.2
does not work and integration must be used.

� �
1

2
 k (x2

2 - x1
2 ),

Wspring � L
x2

x1

(� kx) dx

WF � LF dx.

Example 4.2 Using Figure 4.3, calculate the work done in stretch-
ing a spring from x1 to x2.

Solution: To stretch the spring we can use an external force equal and
opposite to the spring force, given itself by Hooke’s law as Fspring �
�kx. The work done by the external force will be positive because
the force and displacement are in the same direction, whereas the
work done by the spring will be equal in magnitude but negative. The
area between the diagonal line in Figure 4.3 representing Fext � kx

and the x-axis in the figure is equal to the work done by the external
force. We can calculate this simply by finding the area of the large tri-
angle with apex at the origin and base extending to x2 and subtract-
ing the area of the smaller triangle at the apex with base reaching x1.
The area of a triangle is given by 1/2 base � height, so we have only
to take half of the product of the base (x2 or x1) times the height (kx2
or kx1) to obtain a net work of

Note that the work done by the spring is just the negative of this

(4.6)Wspring � �
1

2
  k (x2

2 � x1
2 ).

Wext �
1

2
  k (x2

2 � x1
2 ).

(Continued)
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Example 4.3 What is the kinetic energy of a 1 ton car traveling at 75 miles/h?

Solution: A ton is a weight of 2000 pounds. One kilogram weighs 2.2 pounds so
1 ton equals 2000 pounds/2.2 pounds/kg � 910 kg. One mile is about 1600 m,
so 75 miles/h is about 1.2 � 105 m/h. One hour is 3600 s, so 75 miles/h � 1.2 �

2.  KINETIC ENERGY AND THE WORK–ENERGY THEOREM

At the beginning of the last section we used Newton’s laws and kinematics to ana-
lyze the motion of an object with a constant net force acting on it in order to find the
velocity of the object as both a function of time and of its position. In this section we
reconsider that problem using our knowledge of work. Recall that we were consider-
ing an object that experienced a constant net force, Fnet, acting along the x-axis. Let
the object of mass m have a velocity of v1 when it is located at position x1 and move,
under the influence of Fnet, to position x2, where it has a velocity v2. Then we have,
because the acceleration a � Fnet/m � constant, from one of the kinematic relations
valid for constant acceleration,

(4.7)

We can also calculate the work done by the constant net force to be

(4.8)

Substituting for Fnet(x2 � x1) from Equation (4.8) into Equation (4.7), and solving for
W, we have

(4.9)

The expression 1/2 mv2 is defined as the translational kinetic energy KE of the mass

(4.10)

Kinetic energy is also measured in joules, where 1 J equals 1 kg-m2/s2. You can
“feel” 1 J if you drop a 1 kg mass 10 cm onto your outstretched palm. The stinging
sensation that results is “equivalent to” about 1 J.

KE �
1

2
 mv2.

Wnet �
1

2
  mv2

2 �
1

2
 mv1

2.

Wnet � Fnet (x2 � x1).

v2
2 � v1

2 � 2a Fnet

m
 b (x2 � x1).

FIGURE 4.3 External force stretching 
a linear spring versus displacement.

x

F

x1 x2

Fext = kx



Finally, we can rewrite Equation (4.9) in terms of kinetic energy as

(4.11)

Equation (4.11) is known as the work–energy theorem. It states that the net work done
on an object is equal to the change in its kinetic energy. If the net work done on the
object is positive, its kinetic energy will increase, whereas if the net work done is
negative, the object’s kinetic energy will decrease.

What is the distinction between kinetic energy and work? Clearly, from Equation
(4.11), they are both measured in the same units, joules. Furthermore, these two quanti-
ties can exchange back and forth; work done on an object can change its kinetic energy
by either speeding it up or slowing it down, and the kinetic energy of an object can also
be used to do work on another object with which it interacts. In the next section we intro-
duce other forms of energy, associated with an object’s position due to interactions with
other objects, that can also be used to perform work and can also be changed by per-
forming work. Thus, we can think of energy, in general, as the ability to do work, the
energy itself being stored either in the motion or the external interactions of the object.

Wnet � KE2 � KE1 � ¢KE.
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105 m/h � 1/3600 h/s � 33 m/s. Then the kinetic energy of the car is (1/2)(910
kg)(33 m/s)2 � 5 � 105 J. If 1 J produces a sting, imagine the feeling you would
experience if 500,000 J were deposited on you.

Example 4.4 Using the work–KE theorem, estimate the height to which a person
can jump from rest. Make some reasonable assumptions as needed.

Solution: Once a person leaves the ground, he is completely governed by free-fall.
Therefore, the key to a good standing high jump is to attain the fastest initial vertical
velocity on leaving the ground. This initial velocity is governed by the acceleration
obtained as the legs are stretched and push against the ground (Figure 4.4). Putting
these ideas together, and assuming that a constant net upward force F is exerted on
the person during the contact portion of the jump (the force on the person from the
ground is actually mg � F; why?), we can write that

where y is the distance over which the force F acts (the distance from a crouched
to extended leg position), m is the mass of the person, and v0 is the initial velocity
on leaving the ground. Here we’ve assumed that the starting KE is zero when in a
crouched position and 1/2mv0

2 is the KE when just leaving the ground. If the
upward force from the ground varies, then think of F as its average value and

Fy �
1

2
 mv0

2,

FIGURE 4.4 Standing high jump showing the upward
acceleration phase.

(Continued)



3.  POTENTIAL ENERGY AND 
THE CONSERVATION OF ENERGY

Just as the energy associated with an object’s motion can be used to do work, so too
can the energy of interaction of an object with other objects by virtue of its location.
This type of energy is known as potential energy. There are many types of potential
energies, each due to a specific type of position-dependent interaction energy. In this
section we learn about gravitational potential energy, due to the gravitational inter-
action between an object and the Earth, and about elastic potential energy (potential
energy of a spring), due to the Hookean forces within an object that are ultimately
related to internal molecular interactions. In the course of this book we show other
forms of potential energy including thermal, electric, magnetic, chemical, and
nuclear. We show that, within an isolated system, although energy can be converted
from one of these forms to another, the total energy of the system remains constant.

Consider a crate of mass m resting on the edge of a table, a height h above the
floor. If the crate falls from the table, gravity will do work on the crate increasing its
kinetic energy. After falling to the floor, the work done by gravity will be

(falling through height h). (4.12)Wgrav � mgh.
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everything else follows correctly. The height h that a person can jump is then given
from the kinematic relation that v2 � v0

2 � 2gh (�0 at the highest point), so that

Substituting for v0 from the work–KE expression, we find that

The distance y can be estimated to be at most about 1/3 the height of a person
(from a deep crouching position to full extension). Therefore, the maximum
height a person can jump is limited by the force that he can exert. We can esti-
mate this to be about the weight of the person, so that , implying that a per-
son can raise his center of mass about 1/3 of his height. For a 6 foot tall person
with center of mass 3 feet above the ground, the center of mass can be raised to
about 5 feet. Based on this analysis by swinging arms and legs, this person is lim-
ited to a standing high jump of about 5 feet. Modern running high-jumpers can
achieve much higher jumps because they are both running and also able to arch
their bodies over the bar while their center of mass, a sort of average coordinate
that we study in Chapter 6, actually goes below the high bar (see Figure 4.5).

h L y

h �
Fy

mg
.

h �
v0

2

2g
.

FIGURE 4.5 In a good high jump, the person’s center of
mass actually goes under the bar.



Applying the work–KE theorem, we could calculate the kinetic energy of the crate
just before hitting the floor as KE � mgh. Of course in the next instant the crate hits
the floor and there are very strong upward forces that act to quickly stop the crate,
doing negative work on the crate so that its ultimate kinetic energy is zero.

To then lift the crate back up and place it on the table again requires positive work to
be done by an outside force. During the lifting of the crate, both gravity and the external
lifting force act. One way to lift the crate is to very slowly raise it at constant velocity with
an equal and opposite force to its weight (as allowed by Newton’s first law), starting and
stopping with just a slight extra appropriate nudge. In this case the work done by the out-
side force (Wext � mgh) and the work done by gravity (Wgrav � �mgh, negative because
of the opposite directions of the downward force of gravity and the upward displacement)
are just equal and opposite, so that the net work is zero. This makes sense because the
starting and ending kinetic energies are both zero, so that there is also no change in kinetic
energy. The work–KE theorem then says that the net work done must be zero.

In fact, regardless of the manner in which the outside force is applied and regardless
of the path of the crate in reaching the tabletop, the net amount of work done must be
zero because there is no change in kinetic energy. To lift the crate the outside force must
be at least equal to mg. If the outside force is greater than mg, there will be a net upward
force that will accelerate the crate upward. In order to have the crate end up at rest on
the table, the outside force must then be less than mg for some portion of the trip so that
during this time the net force is downward and the crate is slowed down. In any case,
because the kinetic energy change is zero, the net work done by the two applied forces
must add to zero and so the work done by the external force to lift the crate back up on
the table must always be Wext � �Wmg � mgh, the same as in Equation (4.12).
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Example 4.5 Suppose that a 3 kg package is lifted vertically from the ground
and tossed onto a counter 2 m off the ground (Figure 4.6). Imagine that for the
first meter a force equal to twice the weight of the package is exerted, and then
the person lets go of the package tossing it up to just reach the counter. Find
the work done on the package by the person and by gravity and find the
maximum speed of the package.

Solution: The work done by the person is simply the product of the force, 2 mg �
2(3)(9.8) N, and the distance of 1 m over which the force acts. We find that WF �
59 J. Similarly, the work done by the gravitational force is the product of mg and
the net displacement, 2 m, with a minus sign inserted because the weight and dis-
placement are oppositely directed. We have that Wgrav � �59 J. What is the sig-
nificance, if any, of that fact that these are equal in magnitude? If the same force
were to be exerted by the person over a shorter distance, doing less net work, the
package would not reach the counter height. On the other hand, if a larger upward

FIGURE 4.6 Lifting a heavy package to then toss it
up to a shelf.

(Continued)



We define the gravitational potential energy at height y, relative to some refer-
ence level (y � 0) to be

(4.13)

When an object changes its height from y1 to y2 in the presence of gravity, there is a cor-
responding change in PEgrav, where �PEgrav � PEgrav, final � PEgrav, initial � mg(y2 � y1),
equal in magnitude to the work done by gravity. As we have just seen, when (y2 � y1) � 0,
corresponding to an increase in height, the work done by gravity is negative whereas the
�PEgrav is positive; similarly when (y2 � y1) 	 0, corresponding to a decrease in height,
the work done by gravity is positive and the �PEgrav is negative. Thus we can write

(4.14)

which states that the work done by gravity is equal to the negative of the change in
gravitational potential energy.

If gravity is the only force acting, starting with the work–energy theorem,
Equation (4.11), we can substitute Equation (4.14) for the work to find

(4.15)

or, rearranging Equation (4.15), we find

(4.16)

Each side of this equation represents the total mechanical energy, E � KE � PEgrav,
of the object at a fixed position. The positions 1 and 2 are completely arbitrary, there-
fore we can conclude that 

(KE � PEgrav)1 � (KE � PEgrav)2.

¢KE � KE2 � KE1 � �¢PEgrav � �(PEgrav2
� PEgrav1

 ),

Wgrav � �¢PEgrav,

PEgrav � mgy.
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force were exerted, then the package would rise above the counter level and fall
back down, arriving on the counter with some net speed. Our particular conditions
have the package just reaching the counter. To find the maximum speed of the
package, we first note that this must occur just when the package is released
(why?). We can find this speed by using the work–KE theorem, noting that the net
work done in the first 1 m is WF � Wgrav � 59 � 59/2 � 30 J, because half the
work of gravity is done in that 1 m. Equating this work with the change in kinetic
energy from zero (the package is assumed to start at rest on the ground), we have

so that the maximum speed is

v �A2(30)

3
� 4.5 m/s.

Wnet � 30 J �
1

2
 mv2 �

1

2
 (3)v2,

Mechanical energy remains a constant of the motion,

(4.17)

This is the principle of conservation of mechanical energy. 

E � KE � PEgrav � constant.

As we have seen, the KE and PE individually are not conserved but may transform
from one to the other; however, the sum of the kinetic and gravitational potential
energies remains constant at the value of the total mechanical energy.



The choice of reference point for gravitational potential energy is totally arbitrary;
only differences in potential energy matter in Equation (4.16), as is readily seen in the
form of Equation (4.15). When the total mechanical energy is given, however, as in
Equation (4.17), its value implicitly depends on a reference position for potential energy.

In Example 4.2 we found that the work done by a spring, with a spring constant
k, in stretching from x1 to x2 is given by

(4.18)

In a similar manner to the gravitational case, we introduce the spring potential energy
function as the negative of the corresponding work,

(4.19)

If a mass m is attached to the end of the spring, then following a similar procedure as that
used to get Equation (4.16), we find that if the spring force is the only force acting (sup-
pose the spring and the motion of the mass are horizontal so that gravity can be ignored)

(4.20)

We see that in the work–energy theorem, the work done by each force that can be
associated with a potential energy can be replaced by the negative of its potential
energy change. Generalizing this result, we can write that the total mechanical
energy, defined as the sum of the kinetic and all potential energies (gravitational,
spring, and any others), will be a constant of the motion if all the forces acting can
be associated with a potential energy

(4.21)

Later in Chapter 15 we add electrical potential energy to our list and in Chapter 17
we add a magnetic energy term as well. We also show in Chapter 5 that the frictional
force cannot be associated with a potential energy and that when friction acts within
a system, there is always a loss of mechanical energy to thermal energy.

E � KE � PEgrav � PEspring � PEother � constant.

(KE � PEspring)1 � (KE � PEspring)2.

PEspring �
1

2
 kx2.

Wspring � �  

1

2
 k(x2

2 � x1
2).
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Example 4.6 A spring is held vertically and a 0.1 kg mass is placed on it, com-
pressing it by 4 cm. The mass is then pulled down a further 5 cm and released
giving it an initial velocity of 1 m/s downward. Find the maximum compression
of the spring relative to its unstretched length. What is the maximum velocity of
the mass and where does it occur? What is its maximum acceleration and where
does it happen?

Solution: Refer back to Example 3.6 for a somewhat simpler related problem solved
using force considerations only. We first find the spring constant by noting that the
0.1 kg mass compresses the spring by 0.04 m at which point it is in equilibrium with
its weight balanced by the upward spring force. This means that mg � kx0, so that

This initial compression of the spring balances the weight of the mass and for the
subsequent motion we can ignore the gravitational potential energy changes. Once

k �
mg

x0
�

0.1 � 9.8

0.04
� 25 N/m.

(Continued)
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the mass is pushed down an additional distance y0 and given an initial velocity v0,
we can write down the initial energy relative to the equilibrium position as

where y0 is the initial displacement from the equilibrium position, itself 4 cm
below the origin, as shown in Figure 4.7. Even though the height of the mass
changes as it moves, we still do not include the gravitational potential energy
because the weight of the mass has been removed from the problem by measur-
ing displacements from the equilibrium position (see just below).

Mechanical energy is conserved therefore the spring will have an equal energy
at all points in its motion, and in particular at its amplitude A, at which point its
kinetic energy will vanish. At that point we can write the total energy as

Solving for A, we find

The maximum compression of the spring is then the initial 4 cm and an addi-
tional 8 cm, for a total of 12 cm.

Alternatively, we could refer the potential energy to the point x � 0 in which
case we would write that the total energy is given by ,
including gravitational PE as well, and then set its initial value equal to its
value at the amplitude where there is no KE, but both forms of PE. This can be
solved for the amplitude as well, but the mathematics involves solving a qua-
dratic equation and is omitted here. The result in this case is found directly to
be 12 cm from the origin, in agreement with the calculation above. You should
verify this.

As the spring relaxes and the mass rises, its maximum speed will occur at the
equilibrium position where all of the spring’s potential energy is converted to
kinetic energy. We can find this speed by writing

so that using our amplitude, we find

Because the mass is not attached to the spring it will actually fly off the spring
on its way up as the spring decelerates; if it were attached to the spring it would
continue to oscillate. The maximum acceleration occurs at the initial amplitude
position where the spring force is greatest and has a magnitude, from
Hooke’s law, of

amax �
kA

m
� 20 m/s2.

vmax �A k

m
 A � 1.3 m/s.

E �
1

2
 mvmax

2 �
1

2
 kA2,

E � 1
2kx2 � mgx � 1

2mv2

A �Ay0
2 �

mv0
2

k
�A0.052 �

0.1 # 12

25 � 0.08 m.

E �
1

2
 kA2 �

1

2
 ky0

2 �
1

2
 mv0

2.

E �
1

2
 ky0

2 �
1

2
 mv0

2,

x = 0
xo

yo

FIGURE 4.7 Spring arrangement for
Example 4.6.



Before we leave this section dealing with conservation of energy, let’s consider
two biological energy aspects: energy considerations from the perspective of the
Earth and from that of a single biological cell.

The ultimate energy source for life on Earth is the sun, delivering about 5 � 1024

J/year with about half of this getting absorbed by the surface of the Earth. Estimates
of the total fraction of this energy actually captured by photosynthetic plants, both
terrestrial and marine, are about 0.1%. Recent estimates of human energy consump-
tion give a rate of about 5 � 1020 J/year (with nearly 90% coming from fossil fuels),
which amounts to about 1/10 of the energy captured by plants on the Earth. Reserves
of fossil fuels on the Earth are estimated to be about 4 � 1023 J, with an additional
2.5 � 1024 J in radioactive nuclear fuels. Although human consumption appears to be
only a small fraction of the energy available, it is becoming increasingly clear that
the persistent use of fossil fuels is having an effect of the fraction of the solar energy
that is trapped within the Earth’s atmosphere, causing a global warming. We return
to a discussion of this “greenhouse effect” at the end of Chapter 13.

Energy considerations in biological cells are centered around the ATP (adenosine
triphosphate) molecule. ATP stores chemical energy from the oxidation of foodstuffs
(small sugar molecules) that themselves were ultimately produced using solar energy
whether they originated from plants or animals. This formation of ATP from ADP
(adenosine diphosphate) and inorganic phosphate occurs in a series of highly effi-
cient coupled reactions catalyzed by the enzyme ATP synthase (F1-ATPase), a very
interesting molecule further discussed in Section 3 of Chapter 7. The high-energy
phosphate bond, with an energy roughly twice that of a hydrogen bond, is the source
of most of the cellular energy, and therefore, of the energy used by the human body.
Each of us uses between about 50 and 75 kg of ATP each day, approximately the
weight of a person. When exercising strenuously, the rate of usage can approach
0.5 kg/min. Clearly our bodies do not contain that much ATP. It is constantly syn-
thesized with each F1-ATPase molecule capable of generating about 300 ATP mole-
cules per second. Each ATP molecule in the human body is recycled over 1000 times
per day in order to generate sufficient energy to sustain life.

4.  FORCES FROM ENERGY

At the beginning of this chapter we pointed out that many situations can be analyzed
using energy concepts as well as force concepts. Are there advantages of introducing
these new ideas on energy? There is a clear need for energy concepts to understand
the production of forces in living or inanimate dynamical systems that generate
mechanical energy from chemical or other energy forms. These notions are devel-
oped over the course of this book in various ways as we learn more physics. At this
point, we have seen how to generate a potential energy function from knowledge of
the forces acting on an object. The reverse is also true; it is also possible to find the
forces acting on an object from knowledge of the potential energy function. As we
have seen, energy is a scalar quantity, whereas force is a vector quantity, in general
having x-, y-, and z-components as we study in Chapter 5, and so it is often easier to
deal with energy first and then, if needed, to calculate the forces involved from the
potential energy function. In this section we learn how this can be done.

We have seen in Equation (4.14) that the work done by gravity can be expressed
as a change in a gravitational potential energy function. When forces other than grav-
ity are present, often other potential energy functions can be defined as functions of
displacement, similar to Equation (4.13), as, for example, we have seen for springs
with Equation (4.19). Forces for which this can be done are called conservative

forces and are characterized by the fact that the work they do when acting on an
object only depends on the displacement of the object and not on its actual path,
trajectory, or velocity. Generalizing Equation (4.14) to any conservative force

(4.22)W � Fx¢x � �¢PE,
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we see that the x-component of the force can be found from knowing how
the potential energy changes in the x-direction

(4.23)

Although this has been written for the case when the force is constant, it can also
be written for forces that vary from point to point. The conclusion is that the
potential energy function, which is just a scalar, contains all the information of
the force, itself a vector quantity. Although in the case of one-dimensional
motion, this does not seem to be a huge advantage, we show that the potential
energy function contains all the information needed to calculate the force in
three dimensions as well. For this reason alone, it should be clear that using
energy concepts will often make it simpler to understand the motion of objects.

From Equation (4.23), it is clear that if the PE is increasing as x increases,
the force in the x-direction will be negative, or tending to drive the system
toward lower potential energy. On the other hand if the PE is increasing as x

decreases, the force will be in the positive direction tending again to drive the system
toward lower potential energy. Similarly, if the PE decreases as x increases, the force will
be in the positive direction, whereas if the PE decreases in the negative direction, 
the force will now be in the negative direction. In all cases the force is such as to drive
the system toward lower potential energy. We show just below that at a minimum in the
potential energy versus x graph, where the slope is zero, there is no force acting in the x
direction, and such a point is an equilibrium point. This picture allows us to consider the
PE versus x graph as a sort of “slide” along which a particle always tends to move down-
hill in potential energy.

Not every force, however, can be found from a potential energy function. The
frictional force is a prime example of a nonconservative force because the work done
by this force depends on other factors than just the displacement of the object, such
as its velocity or its actual trajectory. In the development of conservation of mechan-
ical energy in the previous section, if there is a frictional force acting then the total
mechanical energy E will no longer be a constant. Starting from the work–KE theo-
rem, it is straightforward to show that the work done by the friction force is equal to
the change in mechanical energy of the system

(4.24)

where �PE represents the total change in potential energy from all conservative
forces. The lost mechanical energy shows up as other forms of energy, most notably
in the form of thermal energy in slightly warming the object and its environment.

Potential energy functions depend on the position of an object. A very useful way to
represent potential energies is through the use of graphs. Figure 4.8 shows two examples
of such graphs, one for the gravitational potential energy function and the other for the
spring potential energy function. In the case of gravity, the potential energy is linear in the

height, whereas for springs the potential energy function is qua-
dratic in the displacement of the mass from equilibrium. Given
an object with a certain total mechanical energy, in the absence
of nonconservative forces, the kinetic and potential energies
must add up to a constant total.

In the graphs of spring potential energy versus position in
Figure 4.9, a point where the constant total energy intersects the
potential energy function defines a point where the energy is
totally potential and, hence, a point at which there is no kinetic
energy. At such a turning point of the motion, the velocity is
zero and the object cannot be found beyond the turning point
where the total energy lies below the potential energy curve. If
there are two turning points then the region between them
defines a domain in which the particle is trapped and must

Wf � ¢E � ¢KE � ¢PE,

Fx � �
¢PE

¢x
.
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FIGURE 4.8 Potential energy 
functions for gravity and springs.

FIGURE 4.9 Potential energy 
function for a spring, showing the
turning points corresponding to the
amplitude of oscillation. At any
location between the turning points
the total energy is divided between
PE and KE as shown by the
vertical bars.



oscillate, constantly exchanging kinetic for potential energy and vice versa. If there
is only one turning point, then an object will continue its motion unbounded.

In Figure 4.9, the point x � 0 where the potential energy is zero represents
the position where the kinetic energy is a maximum because the total energy is
all kinetic energy at that point. From our discussion of springs you will remem-
ber that as a mass on a spring oscillates it has its maximum speed as it passes
through the equilibrium point. As the mass oscillates it constantly exchanges
kinetic energy for potential energy and back again.

Remembering Equation (4.23), the negative of the slope of a graph of PE

versus x will be the force on the object in the x-direction. Thus, the steeper the
graph, the stronger the force and a positive slope (the curve for x � 0 in Figure 4.9)
corresponds to a force in the negative direction, whereas a negative slope (the
curve for x 	 0 in the figure) indicates a positive force. These directions should make
sense to you based on the motion of a mass on the spring. Those points that have zero
slope are points where there is no force acting and are called points of equilibrium. We
can distinguish three types of equilibrium: stable, neutral, and unstable. These are dis-
tinguished by what happens if the object is slightly displaced from the equilibrium
position. For a point of stable equilibrium, there will be a restoring force tending to
maintain the equilibrium. These points are graphically represented by zero-slope
points in a potential valley or trough as in Figure 4.9. To either side of the equilibrium
point, the sign of the force determined from Equation (4.23) produces a restoring force
as shown in Figure 4.10A. Thus a mental picture of a small ball rolling on the poten-
tial energy curve will give a good idea of the nature of the forces. The steeper the walls
are, the stronger the restoring force. In the case of neutral equilibrium (Figure 4.10B),
there is no force over an interval so that a small displacement still results in no force
acting. When an object is in unstable equilibrium (Figure 4.10C), a small displace-
ment will result in a large force that tends to sweep the object farther away from the
equilibrium point. In this case the graphical picture is an equilibrium point at the top
of a hill so that the sign of the force is such as to produce an unstable equilibrium.
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FIGURE 4.10 A potential energy
function showing points of stable
(A), neutral (B), and unstable 
(C) equilibrium.

Example 4.7 Figure 4.11 shows several additional examples of one-dimensional
potential energy functions for a point mass. Examine these figures carefully and
for each indicate: (a) the turning points, if any, depending on the total energy of
the particle (E1 through E5); (b) the equilibrium points and their type; (c) the
motion expected for different total energies of the particle.

Solution: A: The particle, in this case, cannot have a total energy, E � KE �
PE, less than zero, because KE 
 0 always and the potential baseline every-
where is at PE � 0. If the particle has an energy less than the barrier height (0 	
E 	 E2), and is initially found close to the origin, then the particle will have
turning points at x � 0 and at the barrier and will be trapped, bouncing back and
forth between x � 0 and the barrier. The steep walls give a very large force

when the particle hits them, simply turning it around and trapping it. There are no
equilibrium points because the particle cannot be at rest (except for the uninter-
esting case when E � 0). If the particle is initially outside the barrier wall and
traveling toward x � 0, it will rebound off the barrier and travel forever out
toward larger x values unbounded, never returning. This model potential is useful
for representing a trapped particle in the simplest potential. For energies � E2,
the particle will not be bound, but will slow down when passing over the barrier,
because the KE will decrease when the PE � E2 at the barrier.

aF � �
¢PE

¢x
� �slopeb

(Continued)
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B: In this case the lowest energy possible for the particle is E1 and for particle
energies within the range E1 	 E 	 0, the particle will be trapped in the energy
“well” and bounce back and forth between two turning points defined by the par-
ticular energy of the particle. The collisions of the particle with the potential near
x � 0 will be harder (greater force) because the walls are steeper. There is a stable
equilibrium at the bottom of the well. If the particle has an energy E � 0, then it
will not be trapped and will, if headed toward x � 0, rebound from the potential
wall and travel off freely. This example is a common one for an electron in an atom
or an atom in a molecule, representing a single stable situation for negative energies
with positive energies indicating an ionized electron or dissociated molecule.

C: In this case the lowest energy possible is E3 and a particle with energy
between E3 	 E 	 E4 will clearly be trapped within the deeper well and have
two turning points and one stable equilibrium position at the bottom of the well.
If the particle energy exceeds E4, but is less than E5, the particle could be trapped
in either well depending on its initial location. In either case there are two turn-
ing points and stable equilibria at the well bottoms. With an energy greater than
E5, the particle is still trapped in the overall well but is now free to roam over a
larger range of x values. This example is quite a common one in chemistry and
might represent the potential seen by one molecule in its interactions with
another one. A molecule trapped in the higher-energy well might, with some
“help” from an enzyme, be able to overcome the energy barrier presented by the
middle hump (a point of unstable equilibrium) and then find the lower energy
minimum. In a different context, this potential might also be used to represent
the energies of different conformations of a macromolecule with two possible
stable states of different energies. Because of their common use in describing
atomic and molecular interactions, it is important to be comfortable with such
graphs and to know how to interpret their major features.

FIGURE 4.11 Three different potential energy
functions for a point mass: (A) is usually known
as a barrier potential, (B) is a typical interatomic
potential, and (C) illustrates a potential with two
minima.

There is a special reason for emphasizing springs and the potential energy they
store. It is shown in the box that near the minimum of any potential energy curve, the
potential energy can be well represented by a quadratic function of the displacement
from equilibrium, just the relation that holds for springs. Given this fact, we are jus-
tified in using the pictorial representation that an object trapped near a minimum in
a potential well is, in fact, attached to a linear spring (see Figure 4.12). This is an
often-used representation for the forces on atoms or molecules near their equilibrium

FIGURE 4.12 A general potential
energy function with a spring
potential approximation near the
equilibrium point.



positions. We return to this theme later in the book after we learn a bit
more in Chapter 10 about oscillations and the more realistic cases when
damping (or frictional) forces are present.

5.  POWER

Often when work is done on or by an object, the rate at which the work is
done, and the consequent rate at which energy is transferred, is of interest.
When a brick wall is built, the total work to lift and assemble all the bricks
can be calculated, but the rate at which the wall is built is also of separate
interest, particularly to the workers. When we expend energy doing work
with our muscles, there is a maximal rate at which we can do work based
on our bodies’ limited ability to generate tension, just as there is a maxi-
mum rate at which cars can accelerate. Similarly our hearts have a maxi-
mal rate at which they can do work pumping blood through our bodies.
Toasters and electric heaters give off heat, or thermal energy, at a rate that
we later see how to calculate. All of these rates are controlled by the appro-
priate variables of the particular problem.

The rate at which work is done is known as the power P where

(4.25)

If a constant force is acting then, using the definition of work in
Equation (4.3), we can write that power is given by

(4.26)

If the force and velocity are in the same direction, either both positive or
both negative, then the power is positive and, if there is only the one force
acting, the velocity will increase in magnitude as will the kinetic energy. If
the force is acting in the opposite direction to the velocity, then the power
is negative and the velocity will decrease in magnitude as will the kinetic
energy. Units for power are given by 1 J/s � 1 watt (W). The watt is famil-
iar from its use in electrical power, indicating the rate at which energy is
given off by light bulbs. Also, those of you who receive bills for electric
power might recognize the common unit of energy used as the kW-hr, a
product of a power measured in kW and a time measured in hours.

P � F
¢x

¢t
� Fv.

P �
¢W

¢t
.
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Any reasonably behaved mathematical
function U(x) can be written as a series,
expanded about some point x0,

If U(x) represents any potential energy
function and x0 is a position of a stable
energy minimum, then the slope dU/dx at
position x0 is equal to zero. Furthermore,
the value of U(x0) is arbitrary and can be
taken as zero. For small displacements
from equilibrium the remaining quadratic
term in the series dominates and if we let
the second derivative of U with respect to x
evaluated at x0, a constant, be renamed k,
we have

With (x � x0) being the displacement from
the equilibrium position, this is precisely
the expression for the potential energy of a
spring when stretched a distance (x � x0)
from its equilibrium length. Graphically
this implies that near the minimum of any
(mathematically well-behaved) potential
energy curve, we can approximate the curve
as a parabola as shown in Figure 4.12. Thus
for small displacements about the stable
equilibrium position, all objects feel a
springlike restoring force.

U(x) �
1

2
k (x � x0)2.

�
1

2
 
d2 U

dx2
`
x0

(x � x0)2 � ...

U(x) � U(x0) �
dU

dx
`
X0

(x � x0)

Example 4.8 Let’s try to calculate the wind power possible to tap using high-
efficiency windmills (Figure 4.13). Assume a wind speed of 10 m/s (about 20
mph) and a windmill with rotor blades of 45 m diameter.

Solution: To calculate the maximum power possible, we need to calculate the
kinetic energy of the wind intercepted by the rotor blades of the windmill. We take
the density of air from Table 1.3 as � � 1.29 kg/m3. Then the KE � 1/2 mv2 �
1/2 (�V)v2, where V is the volume of air. We can calculate the volume of air inter-
cepting the rotor blade cross-sectional area A per second by imagining a cylinder of
air with the diameter of the blades and a length given by (v)(1 s), the distance trav-
eled in 1 s. Then we can write that, first assuming all this energy is collected by the
windmill, P � �W/�t � �KE/�t � 1/2 �Av3. Substituting in numbers, we find
that P � 1/2 (1.29)(� 452/4)(10)3 � 1.0 � 106 W. Typical efficiencies of modern

(Continued)
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FIGURE 4.13 0.75 Megawatt generating windmills in
Minnesota.

CHAPTER SUMMARY
In one dimension, the work done by a constant force
acting along the same direction as the displacement is

(4.3)

The net work done on an object is equal to the change
in its kinetic energy, KE,

(4.11)

where

(4.10)

Work done by conservative forces on an object can be
related to a potential energy function PE through

(4.22)W � Fx¢x � � ¢PE,

KE �
1

2
mv2.

Wnet � KE2 � KE1 � ¢KE,

WF � F¢x.

(Continued)

windmills are greater than 40%. This means that roughly 40% of the wind energy
is converted into electrical energy. Note that the power has a large dependence of
wind velocity, proportional to v3, so that an increase in wind speed of 10% trans-
lates into an increase in power by a factor of (1.1)3 � 1.33, or a 33% increase. Good
location of windmills is therefore extremely important.
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QUESTIONS
1. Give some examples that contrast the “physics”

definition of work with the colloquial usage of
work. In particular, give some examples where no
work is done (according to our physics definition)
whereas in ordinary speech one would say that work
was done.

2. Can work be done on an object without moving it?
Give an example to illustrate your answer.

3. Conservation of energy would seem to imply that
holding a heavy weight at rest, doing no work,
should not require any energy. What is wrong with
this argument?

4. A heavy crate sitting on the ground is lifted verti-
cally onto a table, then pushed horizontally across
the table, and then lowered vertically to the ground.
Fill out the following table with your answers for
whether the work done by the external force and by
gravity are positive, negative, or zero for each part
of the motion.

so that, in turn, the force acting on the object can be
determined from that potential energy function from

(4.23)

Two examples are gravitational and spring potential
energy, given by

(4.13)

and

(4.19)

In the absence of any dissipative forces, such as
friction, the total mechanical energy E is conserved:

(4.21)

Power P is the time rate of change at which work is done,

(4.25)

and can also be written as

(4.26)P � F
¢x

¢t
� Fv.

P �
¢W

¢t
,

� constant.
E � KE � PEgrav � PEspring � PEother

PEspring �
1

2
kx2.

PEgrav � mgy.

Fx � �
¢PE

¢x
.

Portion of Motion Gravity External Force

Vertical lift

Horizontal slide

Vertical lowering 

5. In slowly compressing a vertical spring a distance d, a
mass placed on top of the spring will compress
the spring until it reaches equilibrium with mg bal-
anced by a spring force equal to kd, so that d � mg/k.
On the other hand, the initial potential energy of the

mass mgd is converted into spring potential energy
1/2kd2 when the mass is released from rest, so that
d � 2mg/k. What is wrong with the above reasoning
and which is the correct result? (Hint: Think of what
happens in actually doing each of the two different
experiments.)

6. In our discussions the location of the zero of
gravitational potential energy is arbitrary but the
zero of spring potential energy is not. Why is this
the case? When the location of zero gravitational
potential energy is shifted by a distance y0, the
gravitational potential energy at some location
changes by mgy0, an arbitrary constant. What would
happen if the location of zero spring potential
energy were shifted by a distance x0 from its proper
location?

7. Two springs with spring constants that differ by a
factor of two are stretched (a) by the same amount,
and (b) with the same force. Compare the force
exerted and stretch of the two springs for each
situation.

8. Describe, in words, the types of energy a mass on a
spring has at various points on its potential energy
curve shown in Figure 4.9.

9. Explain how the motion of a marble rolling in a bowl
is similar to the motion of a mass on a spring. Think
in terms of potential energy diagrams.

10. Check that the units on both sides of Equation (4.23),
relating energy to force, agree. Why is there a minus
sign in the equation?

11. Two students are solving a physics problem having to
do with finding the velocity of a ball when it reaches
the ground after being dropped out of a ten-story



94 W O R K A N D E N E R G Y I N O N E D I M E N S I O N

building. One chooses the zero of gravitational poten-
tial energy to be on the ground, and the other chooses
it to be at the tenth floor of the building. Can they both
get the same answer?

12. Two workmen are stacking heavy cinder blocks from
the ground to a raised pallet. If one of them stacks
100 of the blocks in 20 min and the other stacks 100
of them in 30 min, which one has done more work?
Which one has the greater power output?

13. Two joggers run up stairs, starting out together, but
one runs up 4 flights in 15 s and stops and the other
runs up 12 flights in a minute. Which has done more
work? Over the first 15 s, which has the greater power
output? Over the minute interval, which has the
greater average power?

14. Which laser emits the most energy: a continuous laser
with a power level of 10�2 W, or a pulsed laser emit-
ting a series of 10�12 s duration pulses every 10�2 s
with each pulse having a power of 107 W?

MULTIPLE CHOICE QUESTIONS
1. A 1 kg mass initially compresses a vertical spring by

0.1 m. The mass is not attached to the spring and,
after being released from rest, it leaves the spring
and eventually reaches a maximum height above its
starting point of 0.5 m. There is no friction during
this motion. The change in the mass’s mechanical
energy during this process (a) must be about �5 J,
(b) must be zero, (c) must be about �5 J, (d) cannot
be calculated because the spring constant is not
given.

2. The fundamental SI dimensions of work are
(a) MLT�1, (b) MLT�2, (c) ML2T�1, (d) ML2T�2.

3. A 75 kg hiker carries a 25 kg backpack up a mountain
trail with an average inclination angle of 5° over a
distance of 3 km. The total work done by the hiker is
about (a) 260 kJ, (b) 65 kJ, (c) 3000 kJ, (d) �260 kJ.

4. A lead ball weighing 10 N falls 0.8 m from rest into a
bucket of sand. The ball stops after making a crater
0.2 m deep. According to the work–energy theorem
the work done by the sand on the ball in bringing it to
rest is (a) �10 J, (b) �2 J, (c) 0 J, (d) �10 J.

5. A 5 kg block is accelerated from rest by a constant
force of 10 N over a distance of 1 m on a frictionless
horizontal surface. The block then slides at a constant
speed for 2 m before hitting a spring with a spring
constant of 10 N/m. The work done by the spring in
bringing the block to rest momentarily before return-
ing it in the reverse direction is (a) 10 J, (b) 20 J,
(c) �20 J, (d) �10 J.

6. A mass m is lowered gently onto a vertical spring of
length L with spring constant k until it just touches the
spring. Let y be the distance the spring is compressed and
v be the velocity of the mass. When the mass is released
from rest, the equation for conservation of energy is
(a) 1/2 mv2 � 1/2 ky2 � mgy � mgL, (b) 1/2 mv2 �

1/2 k(L � y)2 � mgy � mgL, (c) 1/2 mv2 � 1/2 ky2 �
mg(L � y) � mgL, (d) 1/2 mv2 � 1/2 ky2 � mgy � 0.

7. A mass M rests on top of a vertical spring with spring
constant k. If a second mass m is stuck to mass M,
the maximum distance the spring is further com-
pressed is given by (a) mg/k, (b) mg/2k, (c) 2mg/k,
(d) (m � M)g/k.

8. Two identical springs with 5 N/m spring constants are
both attached to the same 2 kg mass as shown. If the
mass is pulled down slightly and released, it will oscil-
late with a period of

(a) ,

(b) ,

(c) ,

(d) .

9. A mass weighing 10 N is initially held at rest on a
vertical spring that is compressed by 0.1 m. When
released, the mass accelerates upward, leaves the
spring and eventually reaches a height of 0.9 m
above its starting height. The work done by the
spring on the mass is (a) �10 J, (b) �1 J, (c) �9 J,
(d) �10 J.

10. In the absence of friction, when an object in neutral
equilibrium is given a small momentary push, it will
(a) return to its equilibrium position, (b) stop at a new
equilibrium location, (c) move at a constant velocity
until the potential changes, (d) depends on the object
and type of potential energy function.

11. A bricklayer is building a wall. If the 0.5 kg bricks are
all identical with a 0.1 m height and he builds a stack 10
blocks tall and 10 blocks wide in 1 h, his power output
is (a) 3.75 W, (b) 0.063 W, (c) 0.076 W, (d) 0.069 W.
(Take g � 10 m/s2.)

12. A girl pulling a sled exerts a 20 N force horizontally
for 10 s. How much power does she generate in watts
while moving the sled 20 m? (a) 10, (b) 20, (c) 30,
(d) 40.

13. A block slides a distance d down a frictionless inclined
plane, with inclination angle 
, changing its height by a
displacement H. The work done by gravity is equal to
(a) mgH sin 
, (b) mgH, (c) �mgH, (d) mgd (e) �mgd.

PROBLEMS
1. In mowing a lawn, a boy pushes a lawn mower a total

distance of 350 m over the grass with a force of 90 N
directed along the horizontal. How much work is
done by the boy? If this work were the only expendi-
ture of energy by the boy, how many such lawns

4pA2

5

2pA 2

2.5

2pA 2

10

2pA2

5



would he have to mow to use the energy of a 200 cal
candy bar? (use 1 calorie � 4200 J)

2. As a bacterium swims through water it propels itself
with its flagella so as to overcome the frictional drag
forces and move at, more or less, constant velocity of
100 �m/s for periods of time. If the frictional drag
force on a bacterium is 0.1 �N, how much work does
the bacterium do in 1 s of sustained velocity.

3. A 100 N crate sits on the ground and is attached to
one end of a rope passing over a frictionless light pul-
ley. If someone pulls down on the rope with a con-
stant force of 110 N lifting the crate a distance of 3 m,
find
(a) The work done by the person
(b) The work done by gravity
(c) The increase in potential energy of the crate
(d) The velocity of the crate after rising 3 m.

4. An elevator car weighing 8000 N in a tall office build-
ing is lifted by a steel cable attached to the elevator
motor. It travels from ground level to the 50th floor, a
distance of 200 m in 75 s. Ignore the brief time during
which the elevator accelerates or decelerates.
(a) How much work is done by the motor in lifting the

elevator?
(b) At what rate is this work done?
(c) Answer the previous parts for the downward non-

stop trip.
5. A ball is thrown downward from the roof of a 24 m

tall building with an initial speed of 5 m/s.
(a) Use energy principles to find the speed with

which the ball hits the ground.
(b) Find the time it took for the ball to reach the

ground.
(c) If the ball were thrown upwards from the roof

with the same speed repeat the calculations for
parts (a) and (b).

6. A boy throws a 0.1 kg ball from a height of 1.2 m to
land on the roof of a building 8 m high.
(a) What is the potential energy of the ball on the roof

relative to its starting point? Relative to the
ground?

(b) What is the minimum kinetic energy the ball had
to be given to reach the roof?

(c) If the ball falls off the roof, find its kinetic energy
just before hitting the ground.

7. Water leaves a garden hose held vertically with a veloc-
ity of 5 m/s. If the hose is held at a height of 2 m, find
the speed with which the water hits the ground.

8. How much mechanical work is done by a 2 cm 
long � 0.2 mm diameter muscle fiber that shortens
by 20% during a sustained contraction generating an
average stress of 38 � 104 N/m2?

9. A 65 kg rock climber scales a 200 m vertical wall in
10 min. Find the work done by gravity on the hiker.
If the hiker consumed oxygen at a rate of 2 L/min,
corresponding to an internal energy production of 
4 � 104 J/min, what fraction of the hiker’s energy
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was used to climb the wall? (This fraction is termed
the hiker’s efficiency.)

10. In throwing a 0.5 kg lacrosse ball from rest, the
lacrosse stick exerts an average force of 500 N along
a distance of 1.2 m before the ball leaves 
the net.
(a) How much work was done on the ball by the stick?
(b) With what velocity does the ball leave the lacrosse

stick?
11. A weight lifter “snatches” a 1200 N weight by exert-

ing a 1400 N average force for the first meter off the
ground, then relaxing his grip and “getting under” the
bar to catch it and give it a final upward push.
(a) How much work is done in the first 1 m of lifting

by the man? By gravity?
(b) What velocity will the weight attain after the one

meter lift?
(c) If the man essentially exerts no force starting at 1 m

height, how much farther will the bar rise and how
long will it take to rise to that height? During that
brief time he will finalize his position to “get
under” the bar and then push it to full arm extension.

(d) How much additional work must he do to raise
the weight to 2.4 m, the height of his full arm
extension?

12. A 5 N/m horizontal spring is compressed 0.1 m and a
0.1 kg mass is attached. The mass glides on a fric-
tionless horizontal surface. What is the maximum
speed of the mass as it oscillates?

13. A 2 kg block slides back and forth on a frictionless
horizontal surface bouncing between two identical
springs with k � 5 N/m. If the maximum compression
of a spring is 0.15 m, find the gliding velocity of the
block between collisions with the springs.

14. A 0.2 kg mass is dropped 0.5 m onto a vertical spring
with a 10 N/m spring constant and sticks to it.
(a) What speed does the mass have as it hits the

spring?
(b) Find the equilibrium position of the mass relative

to the original position of the top of the spring as
it oscillates.

(c) Find the maximum compression of the spring.
(d) What is the maximum speed of the mass as it

oscillates on the spring?
15. A 20 N/m vertical spring is stretched 5 cm when a

mass is attached. If the same mass is set into oscilla-
tion after stretching the spring an additional 
10 cm find
(a) The mass
(b) The maximum kinetic energy of the mass
(c) The maximum speed of the mass and where it

occurs relative to the original unstretched position
of the spring

16. The power stroke of the myosin protein on an actin
filament that generates tension in a muscle appears
to be a 10 nm displacement generated by about a 
1 pN force. Each power stroke is accompanied by the



(b) If he works for two hours and then takes a one hour
lunch followed by a two hour rest, and then returns to
finish the wall in two more hours, what is the average
power he uses to build the wall over his seven hour
day? Over his actual four hour construction time?

19. Two kids, Jimmy and Sally, ride on sleds on a frozen
pond at the same speed. When they are 30 m from a log
in the ice, Sally drags her foot to slow her sled down at
a constant deceleration while Jimmy continues at con-
stant velocity. Jimmy reaches the log in 5 s and Sally’s
sled comes to a stop right at the log in 10 s.
(a) What is the initial velocity of both sleds?
(b) What is the acceleration of Sally’s sled?
(c) If Sally plus sled have a combined mass of 

50 kg, what is the drag force that Sally’s foot applies?
(d) How much work was done by Sally’s foot in

bringing the sled to rest?
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splitting of one ATP molecule which releases about
4.9 � 10�20 J.
(a) How much work is done by one myosin in a single

power stroke?
(b) What is the efficiency of the process; that is, what

fraction of the ATP-generated energy does useful
work?

17. A powerful pulsed laser emits a series of brief ns
(10�9 s) pulses of light, one per ms (10�3 s). If each
pulse has a power of 1010 W, calculate the energy
per pulse and the average power of the laser over a
second.

18. A bricklayer is building a garden wall 1.0 m tall out
of bricks that are 10 cm tall, 30 cm long, and weigh
10 N each. If the wall is 3 m long
(a) How much work must be done to build the wall if

all the bricks start out at ground level?
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In the previous three chapters we have detailed the kinematics of one-dimensional
motion, forces producing the motion, their dynamical connections via Newton’s
laws, and the important concept of energy. Having built up an arsenal of tools for the
description and prediction of motion in one dimension, we need just one more added
tool in order to generalize to the study of kinematics and dynamics in two or three
dimensions. Although we obviously live in a three-dimensional world, it is very use-
ful to study two-dimensional motion, which can describe any motion confined to a
plane, for example, free-fall near the Earth’s surface—but now with horizontal
motion thrown in—or circular motion, or the local motions of a membrane protein
confined to a cell surface. We limit most of our discussion to two-dimensional
motion, but the extension to three dimensions is clear.

The missing mathematical tool that we need to complete this agenda is vector
algebra and is the opening subject of this chapter. With knowledge of vectors, the
goal of this chapter is to see how to generalize our fundamental results so far for one-
dimensional motion so that we can apply them to more realistic situations. Both kine-
matical and dynamical problems are studied as well as the generalizations of work
and energy to more than one dimension. Frictional forces are not only extremely
common, but often play either a crucial role or provide an ultimate limit to mechan-
ical motion, as we show. Both static and kinetic contact friction are discussed and
their role in some problems where one object slides over a surface is illustrated.
Circular motion is one type of regular motion in a plane and we examine the dynam-
ics of such motion with applications to the important experimental technique of cen-
trifugation. We return to circular motion as the theme of Chapter 7 on aspects of
rotational motion.

1.  VECTOR ALGEBRA

Vectors are mathematical representations for quantities that have not only a magni-
tude, or amount, but also have a direction. Quantities without directionality, such as
time, speed, mass, energy, and temperature, are called scalars. These are totally
defined by an amount, given by a number and units. Vector quantities, including posi-
tion, displacement, velocity, acceleration, and force also require some specification
of their direction. This can be done graphically by representing vector quantities as
arrows (the pointed ends known as “heads” and the other ends as “tails”) with their
lengths drawn to scale according to the amount of the quantity and pointing in the
proper orientation. Thus, for example, the length of a drawn displacement vector
might scale according to the rule 1 cm � 100 km, and the length of a drawn velocity
vector might follow 1 cm � 100 km/hr.

Vector analysis originates in how displacements behave. For specificity, suppose we
view a single E. coli bacterium under a microscope and record its two-dimensional

5Motion, Forces, and Energy
in More Than One Dimension
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position at various times. From these, we can construct a series of displacement vectors,
each of which starts at the initial position and ends at the final position for that time inter-
val (Figure 5.1). Each vector is labeled using a special symbol, for example, to indi-
cate that it is a vector. In this text we use an arrow over a letter to indicate that it is a
vector quantity. You should discipline yourself to do the same when solving problems.
Vectors, like scalars, can be added, subtracted, and multiplied, but precisely how these
operations are done is different from the way they work for scalars (ordinary numbers).
Failure to distinguish between scalars and vectors can lead to unnecessary calculational
problems. Our first task is to learn how to add and subtract vector quantities.

If the bacterium depicted in Figure 5.1 had been made to move along a straight
line, its sequence of displacement vectors for individual time intervals would all lie
along that line. “Adding” those displacements together would simply require adding
algebraic quantities (with plus and minus signs for positive or negative displacements
as we have been doing) in order to find the net displacement over the entire time
interval. In vector language, the individual displacements would be connected
together head to tail and the net displacement, known as the resultant or vector sum,
would be an arrow (of the correct length) with its tail at the tail of the very first dis-
placement and its head at the head of the very last.

In the two-dimensional case of Figure 5.1, the net displacement is arrived at in a
similar way: the head of each individual displacement vector is connected to the tail
of the next in the sequence and the resultant (i.e., net) displacement is a vector with
its tail at the tail of the first vector and its head at the head of the final vector.

Well, this head-to-tail construction for adding displacement vectors is fine for a
sequence of displacements, but how do we add two velocity or two force vectors
together, situations where sequence has no meaning? We need to generalize the
graphical construction rule to permit the addition of two vectors even if they aren’t
originally connected in the correct head-to-tail way. We do so by defining vector

equality. Two vectors are said to be equal if they have the same length and point in
the same direction. To check whether that is true, imagine translating one vector
rigidly (no rotating as you go, please) until its tail coincides with the tail of the other.
If the two heads also coincide, the two vectors are equal. This is shown in Figure 5.2.

With the notion of vector equality, any two vectors representing the same quan-
tity can be added. Recall that you cannot add a velocity vector to a force vector; they
are like apples and oranges. Translate one rigidly until its head is at the tail of the sec-
ond. The resultant is a vector of the same kind whose tail is at the tail of the first and
whose head is at the head of the second. Which is the first vector and which the sec-
ond? It doesn’t matter. The order of the vector addition does not affect the result, as
is illustrated in Figure 5.3.

A
:

,
i

fresultant

FIGURE 5.1 Series of equal time
displacement vectors for an E. coli
with the resultant displacement.

A B

FIGURE 5.2 When is rigidly
translated until its tail coincides
with the tail of the heads of the
two vectors coincide also: there-
fore A

:

� B
:

.

B
:

,

A
:

Example 5.1 Graphically add three vectors, all with tails at the origin of some
coordinate system but with heads at different points in the x–y plane:

has head at (3,0), has head at (2,4), and has head at (�4,2), where the
notation means (x, y) (see Figure 5.4).

Solution: Each vector is first graphed according to its (x, y) coordinates using a
given scale. Then vectors and are moved so that their tails sit at the head of
the previous vector.

We then can read the resultant from the graph by reading the (x, y) coor-
dinates of its head to be We can also measure the magni-
tude of the resultant directly by measuring its length and using the scale of
the diagram to find a magnitude of about 6.1. The direction of the resultant is
found using a protractor to be about 80° above the x-axis. Notice that the
x- and y-coordinates of the head of the resultant are equal to the sum of the

A
:

�B
:

�C
:

� (1, 6).

C
:

B
:

C
:

B
:

A
:
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For calculational purposes it is often very useful to refer vectors to some underlying
coordinate system. Figure 5.5 shows a vector with its tail attached to the origin of 
a Cartesian (i.e., x–y) coordinate system. The figure shows two other vectors and 
also with tails at the origin. The latter vectors are constructed as follows. From the 
head of draw a line parallel to the y-axis; where that line intersects the x-axis is the head
of  

:

Ax; draw a second line from the head of parallel to the x-axis; where that line inter-
sects the y-axis is the head of  

:

Ay. The vector  
:

Ax is called the “component vector of in
the x-direction” and  

:

Ay the “component vector of in the y-direction.” Now, by rigidly
translating either or it is easy to see that 

The promised calculational advantage to “decomposing” a vector into its coordi-
nate components requires one more idea: multiplying a vector by a scalar. When a vec-
tor is multiplied by a scalar the result is a new vector pointed parallel (or antiparallel)
to the first and with length equal to the first vector’s length times the magnitude of the
scalar. Figure 5.6 shows examples. The vector is twice as long as and points in
the same direction. The vector �0.5 is half as long as and points in the opposite
direction. (The reason multiplying a vector by a negative number produces a vector in
the opposite direction is this: we require that when we add and the result is a vec-
tor of zero length; the only way that can be is if when the tail of is attached to the
head of in the head-to-tail addition method, the head of is back at the tail of 
Then the resultant’s head and tail are at the same place and, as required, it has no length.
In other words, is the same size as but antiparallel to it.)

We write the two-dimensional vector as the ordered pair

where the (signed) numbers Ax and Ay are called the x- and y-components

of the vector A three-dimensional vector is written as an ordered triple.

A vector is not simply a number; that’s why we use the arrow symbol.
A vector is a set of numbers, from which its magnitude and direction infor-
mation can be extracted. Because the (x, y) components of a vector are per-
pendicular to each other, the magnitude of a vector (denoted by putting the
vector symbol inside a pair of vertical lines) can be obtained from them by
Pythagoras’ theorem; for example,

ƒA
:

ƒ �1Ax
2 � Ay

2.

A
:

.

A
:

� (Ax, Ay),

A
:

A
:

�A
:

A
:

.�A
:

A
:

,
�A

:

�A
:

A
:

A
:

A
:

A
:

2A
:

A
:

�A
:

x�A
:

y.A
:

yA
:

x

A
:

A
:

A
:

A
:

A
:

y,A
:

x

A
:

A

B

C

i

f

C

B
A

FIGURE 5.3 Graphical addition of
three vectors, showing that the
order of addition doesn’t matter.
Starting at point i, the sum

ends up at point f,
regardless of the order of addition.
A
:

� B
:

� C
:

separate x- and y-coordinates of the heads of the three vectors. We show why
this is so below.

A

B

C

x

y

resultant

B

C

FIGURE 5.4 Graphical addition of three
vectors.

A

Ay

y

x

Ax

FIGURE 5.5 The x- and
y-component vectors of
the vector A

:

.



The direction of a vector can be deduced by using a little trigonometry: let � be
the angle the vector makes with the x-axis; then

Because the cosine can have the same value for more than one angle you have to draw
a picture to get the orientation of the angle right (i.e., whether � is above the x-axis or
below it). The component notation makes vector addition much easier and more accu-
rate than drawing head-to-tail pictures. The rule is this: when two vectors given in
component notation are added, the x-component of the resultant is the sum of the 
x-components of the two vectors you started with and the y-component of the resul-
tant is the sum of the y-components (and, if necessary, the z-component is the sum of
the z-components). Note how this rule makes the calculation in Example 5.1 so much
easier.

cos (u)�
Ax

ƒA
:

ƒ
.

100 M O T I O N ,  F O R C E S ,  A N D E N E R G Y I N M O R E T H A N O N E D I M E N S I O N

A
2A

–0.5A

FIGURE 5.6 The result of multiply-
ing a vector by a scalar.

Example 5.2 Calculate analytically the resultant of the two vectors 
and 

Solution: This sum or ordered pair completely specifies the
resultant vector. If we wanted to express the resultant in terms of its magnitude
and direction we could do so by writing

The direction of the resultant (sketched in Figure 5.7) is found using

so that � � 50.2°, above the x-axis.

cos u�
Cx

ƒC
:

ƒ
� 5/7.8 � 0.641,

ƒC
:

ƒ �152 � 62 � 7.8.

C
:

� A
:

� B
:

� (5,6).

B
:

� (5, 0).
A
:

� (0, 6)

y

x

B

A

θ

FIGURE 5.7 Analytical vector addition.

Example 5.3 Given and express in terms of
(a) ordered pair notation, and (b) magnitude and direction.

Solution: (a) Adding separately the x- and y-components of the two vectors we
find that

C
:

� ([5 � 3], [2 � 5]) � (2, � 3).

C
:

�A
:

�B
:

B
:

� (-3, -5),A
:

� (5, 2)



This procedure can clearly be generalized to add together any number of vec-
tors that lie in the x–y plane. First find each of the vector’s components along the
x- and y-axes, separately add the x- and y-components algebraically, and then
finally combine the two remaining vectors using trigonometry. Table 5.1 summa-
rizes this procedure.

Table 5.1 Steps in Component Method of Vector Addition/Subtraction

1. Make a rough sketch of the vectors, if not given.

2. Find the x-, y- (and z-) components of each vector, if not given order pair notation.

3. Perform the algebraic �/�/or multiplication by a scalar separately to each component, finding
the x-, y- (and z-) components of the resultant.

4. If needed, combine the components of the resultant, using the Pythagorean theorem and
trigonometry, to find the magnitude and direction of the resultant.
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(b) We then find that the magnitude of is given by

and the direction, is given by

but, this time below the x-axis. (Draw a sketch to make sure you see why.)

cos�1 a 2

3.6
b � 56.3°

ƒC
:

ƒ �122 � ( � 32 ) �113 � 3.6

C
:

Example 5.4 Given the three vectors:

find
a) , b) , and c) 

Solution: For each part we add the appropriate components of each vector
separately to find:

a)

b)

c)

Can you draw the vectors involved in this example? Can you find their
magnitudes?

A
:

� 2B
:

� C
:

� ([2 � 2 # 5], [-3 � 4], [1 � 2 # 2 � 1]) � (-8, -7,4).

C
:

� A
:

� ([0 � 2], [4 � 3], [1 � 1]) � (-2,7,0).

A
:

� B
:

� ([2 � 5], -3, [1 � 2]) � (-3, -3, 3).

A
:

�2B
:

�C
:

.C
:

�A
:

A
:

�B
:

A
:

� (2, -3, 1), B
:

� (-5, 0, 2), and C
:

� (0, 4, 1),

2.  KINEMATICS

With these properties of vectors and methods for vector addition, we are now in a
position to generalize our discussion of kinematics to two- (or three-) dimensional
motion. Start by identifying a reference point and establish a Cartesian coordinate
system with its origin at this point. It doesn’t matter where the origin is or how the
axes are oriented, although some choices may make life simpler than others. We
come back to how to choose smart systems in a moment. The rigidly translating
object whose motion we wish to describe has a position vector with tail at the
origin and head at the point (x, y, z). Thus, we can write As ther

:

� (x, y, z).
r
:



object moves x, y, and z change in time. The velocity of the object is another vector:
:

v � (vx,vy,vz). The components of and the components of are related just as in the
one-dimensional case:

Similarly, the object may be accelerating. Acceleration is yet another vector:
:

a � (ax, ay, az). The components of acceleration and the components of velocity are
related analogously to the one-dimensional case:

When the object we are interested in is confined to move along a line, position, veloc-
ity, and acceleration are all along the same line. When the object is free to move in
space, position, velocity, and acceleration can all point in different directions. This
fact makes dealing with two- or three-dimensional motion more subtle. But, the pre-
ceding equations point out a very useful simplification: the x- (respectively, y-, z-)
component of velocity only changes due to the x- (respectively, y-, z-) component of
acceleration, and the x- (respectively, y-, z-) component of position only changes due
to the x- (respectively, y-, z-) component of velocity.

SPECIAL CASE I: CONSTANT FORCE—FREE-FALL—
PROJECTILE MOTION

In Chapter 3 we discussed the motion of an object in free-fall near the Earth where the
motion was purely vertical. Such motion results when the initial velocity of the object
has no horizontal component. Gravity is a purely vertical force resulting in a constant
vertical acceleration; as we just argued, a vertical acceleration can only produce changes
in the vertical component of velocity. So if there is no horizontal motion to start with,
gravity can’t produce any. But suppose the object is moving with some initial horizon-
tal component of velocity; what does gravity do then? It can only change the vertical
component of velocity, so the horizontal component remains unchanged during the
object’s flight. This result may surprise you: the horizontal and vertical components of
an object’s motion while it is in free-fall are completely independent of each other. Thus,
for example, if an object is dropped from rest at a certain height off the ground at the
same instant a second object is thrown from the same place with a large horizontally
directed velocity, the two will strike the ground at exactly the same time! Both of these
objects leave their starting point with zero vertical velocities. The time an object is
in free-fall depends only on the vertical distance it has to travel and its initial vertical
velocity, and because of how they start out (both start at the same point with no vertical
velocity), both of these objects travel the same vertical distance in the same time.

Because the acceleration due to gravity is vertical and because the horizontal
component of velocity in a free-fall situation cannot change, it is smart to orient our
coordinate system as follows: one axis vertical (that will cause the acceleration to
have a single component, along this vertical axis) and one axis in the direction of the
horizontal component of velocity (that will cause the velocity and position vectors to
have only two components, one vertical and one along this horizontal axis). It is usual
to call the horizontal axis x and the vertical axis y (with up as positive). The z-axis is
irrelevant; free-fall motion is at most two-dimensional.

In this coordinate system, the acceleration is the constant vector We
can use the results tabulated in Table 3.1 to fill in how the velocity and position vec-
tors vary in time, because ax � 0 and ay � �g, both constant. Just replace x by y for
the vertical component of motion. We find that under free-fall 
and r

:

� ([x0 � v0x t], [y0 � v0y t � 1
2gt2 ]).

v
:

� (v0x, [v0y � gt])

a
:

� (0, -g).

ax � lim
¢t:0

¢vx

¢t
,     ay � lim

¢t:0

¢vy

¢t
,     az � lim

¢t:0

¢vz

¢t
.

vx � lim
¢t:0

¢x

¢t
,     vy � lim

¢t:0

¢y

¢t
,     vz � lim

¢t:0

¢z

¢t
.

r
:

v
:
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Example 5.5 A cat running initially horizontally with a speed of 1.6 m/s runs
horizontally right off a table 0.80 m high. Find (a) how long the cat is in the air,
(b) how far it travels horizontally before it lands, and (c) its velocity just before
hitting the ground.

Solution: The cat’s motion is two-dimensional with the only acceleration due to
gravity once it leaves the table. We take our coordinate axes to point in the usual
way with the origin at the point the cat leaves the table. The vertical, or y, motion
can be described by

because the cat leaves from the origin and has no initial y-velocity. Substituting
y � �0.80 m we find the time the cat is in the air is

During this time the cat’s horizontal velocity remains constant (we neglect air
resistance), so that the cat has traveled a horizontal distance given by

x � v0x t � 1.6 m/s (0.4 s) � 0.64 m.

To find the velocity of the cat as it is about to land, we need first to find its
y-velocity just as it hits the ground, since we already know the x-velocity has
remained constant. We find that because the initial y-velocity is zero,

The cat’s velocity just before hitting the ground can then be expressed as either

or by

where the angle is measured below the horizontal.

v �11.62 � 3.92 � 4.2 m/s at u� cos�1a 1.6

4.2
b � 68°,

v
:

� (1.6, -3.9) (m/s)

vy � -gt � -9.8 m/s2 # 0.4 s � -3.9 m/s.

t �A�
2y

g
�A2 # 0.80 m

9.8 m/s2
 � 0.4 s.

y � 0 � 0 �
1

2
 gt2,

Example 5.6 A football is kicked with a speed of 40 m/s at an angle of 40° above
the ground. Find (a) its velocity after 1 s, (b) the maximum height it reaches and
its speed at that point, (c) the time for it to hit the ground.

Solution: We take the origin on the ground at the point the ball is kicked. (a) The
initial velocity of the football has both horizontal ((40 m/s)cos(40°) � 30.6 m/s)
and vertical ((40 m/s)sin(40°) � 25.7 m/s) components. Because there is only a

(Continued)



SPECIAL CASE II: UNIFORM CIRCULAR MOTION

The special case of circular motion deserves our consideration because of the many
important instances of such motion. Figure 5.8 shows a particle executing circular
motion. (It is useful to put a reference point at the center of the circle and reckon all posi-
tions relative to it.) Velocity is a vector and vectors have both magnitude and direction.
In circular motion the direction of the velocity vector (always tangent to the circle about
which the particle travels) is constantly changing. Thus, even if the magnitude of the
velocity remains constant (the case of so-called uniform circular motion), there must be

a nonzero acceleration, because acceleration is the time rate of change of velocity.
What is the nature of this acceleration? We consider here the case of uniform cir-

cular motion where the speed of the particle traversing the circle remains constant.
(See Figure 5.9, with the magnitudes

We examine the particle at two instants of time separated by the interval �t � t2 � t1.
In that time interval the particle has traveled a distance equal to v�t along the circle
and has traveled through an angle �.

ƒv
:

1 ƒ � ƒv
:

2 ƒ � v.)
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vertical acceleration, the horizontal component remains constant and the vertical
component is governed by

Therefore, after 1 s the y-component of velocity is  vy � 25.7 m/s �9.8 m/s2 (1 s) �
�15.9 m/s. We can then write the football’s velocity at 1 s as 

(b) What characterizes the position of maximum height is that the y-velocity 
is instantaneously zero. We can solve for this height most simply by using the
equation

(that’s Equation (3) of Table 3.1 with y substituted for x), then setting vy to be
zero and solving for the maximum height ymax,

An alternative method is to first find the time to reach this position (using 
vy � voy � gt � 0), and then substitute this time into the equation for y (just
below). Try it. At this position the football has only a horizontal velocity, the
same as its initial horizontal velocity of 30.6 m/s.

(c) To find the time the football was in the air, we can take the equation for y

and set y � 0 to solve for the times when the football is on the ground. As in our
previous free-fall examples, there are two times when the ball is at y � 0:

t � 0 (when it started out) and t �
2v0y

g
� 5.2 s.

y � v0y t �
1

2
 gt2,

ymax �
v0y

2

2g
� 33.7 m.

vy
2 � v0y

2 � 2gy,

v
:

� (30.6, 15.9) m/s.

vy � v0y � gt.

FIGURE 5.8 A particle, shown 
at two different times, traveling
in a circle.

v1

r

v2
θ



In the same time interval, the particle’s velocity vector, while maintaining
a constant length, has also rotated through the same angle �. (Do you see why?
Hint: the velocity vectors are rigidly attached at right angles to their respective
position vectors.). The triangle formed from :v1 and :v2 and their difference 
and the one formed from the two position vectors :r1 and :r2 and the corre-
sponding displacement  vector � :

r are similar, as seen in Figure 5.9. (Both are
isosceles and both have the same included angle �.) Because these triangles are
similar, we can write

or, since the magnitude of the velocity is v and the magnitude of the position vector
is r,

Now, divide both sides of the latter equation by �t and take the limit as �t goes
to zero. The left-hand side becomes the magnitude of the acceleration vector at any
instant. The quantity

on the right-hand side approaches the magnitude of the velocity vector at any instant;
that is, it approaches the value v. Figure 5.9 suggests that as � becomes smaller and
smaller (as �t approaches zero), the acceleration vector points more and more in
toward the center of the circle, perpendicular to the velocity vector, which is always
tangent to the circle. This acceleration is called centripetal (from a Greek word
meaning “center-seeking”) and we can express its magnitude as

(5.1)

Because the centripetal acceleration lies along the radius of the circle at any point
it is sometimes referred to as the radial acceleration. As the particle travels around
the circle at constant speed, it carries with it a velocity vector pointing tangent to the
circle and an acceleration vector pointing radially inward. The velocity vector always
has the same magnitude (in uniform circular motion) but its direction is constantly
changing; the same is true for the centripetal acceleration. Because the acceleration
direction is changing all the time, circular motion is not an example of constant accel-
eration, and the particle’s position at any instant cannot be obtained by using kine-
matic equations for constant acceleration such as those found in Table 3.1.

acent � lim¢t:0 
ƒ¢v
:

ƒ

¢t
�

v2

r
.

ƒ¢r
:

ƒ >¢t

ƒ¢v
:

ƒ �
v

r
ƒ¢r

:

ƒ .

ƒ¢v
:

ƒ

ƒv
:

1 ƒ
�

ƒ¢r
:

ƒ

ƒ r
:

1 ƒ
,

¢v
:
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FIGURE 5.9 Similar triangles
formed from position and velocity
vectors.

Example 5.7 A protein molecule is spinning in an ultracentrifuge at 80,000 rpm
at a fixed distance of 5 cm from the axis of rotation. Find the centripetal accel-
eration it experiences and express it in terms of a number of gs.

Solution: The protein travels in a circular trajectory of radius r � 0.05 m so that
its velocity is

v � 8 �  10 
4 

rev

min
# 1min

60 s
# 2pr

rev
� 420 m/s.

(Continued)



3.  DYNAMICS

With the aid of vector analysis it is straightforward to generalize Newton’s laws of
motion and the ideas of work and energy to more complex situations in two or three
dimensions. In this section we first show how vector equations make this generalization
formally transparent, and then develop some problem-solving strategies to help in apply-
ing these ideas to understand a large variety of problems involving the translational
motion of objects.

Newton’s first and third laws require no further modification in leaping from one
to two or three dimensions. The first law singles out a special single direction because

objects traveling at constant velocity do so along a fixed direction.
Similarly, the third law tells us that if an object exerts a force on a second
object, this second object reciprocates with an equal but opposite reaction
force acting back on the first object; these pairs of action–reaction forces
are necessarily co-linear and in that sense the third law is a one-dimen-
sional statement. We show below how the third law can be applied in
studying the motion of various objects in more than one dimension.

Newton’s second law, the key equation that relates the interactions
acting on a body to the consequent motion, is a vector equation stating that
the net vector force acting on an object divided by the mass of the object
(a scalar) is equal to the vector acceleration:

Back in Chapter 2 when we introduced Newton’s second law in one
dimension (see Equation (2.9)), we anticipated this section by writing it
in vector form even though vector algebra was not needed. Now that we
understand how to combine vectors, we can simply add all the external
forces acting on a body to obtain the vector resultant or net force.
According to Newton’s second law this net force divided by the mass of
the object is equal to the vector acceleration that the object experiences.
Let’s see how to apply these ideas to a first example.

F
:

net

m
 � a

:
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Then, from Equation (5.1), the centripetal acceleration of the protein is

This acceleration is times that of gravity, which we
call “360,000 gs.”

3.5 � 106/9.8�360,000

acent �
v2

r
� 3.5 � 106 m/s2.

PROBLEM-SOLVING STRATEGY

1. The first step is to make a rough sketch
of the problem, if there is not already
one supplied as part of the problem,
and to identify the object(s) whose
motion is to be studied, if that is not
clear.

2. The second step is to identify all the
forces acting on the object (and only
on that object) by constructing a care-
fully labeled external force diagram
(such a diagram is sometimes known
as a free-body diagram), a crucial step
in solving the problem.

3. From the external force diagram, with
a set of chosen coordinate axes, the
next step is to write down the equa-
tions of motion, the component
Newton’s second law equations, being
very careful to use appropriate label-
ing and to write down the x- and
y-components in separate equations.

4. Once the equations of motion are
obtained, solve for the unknowns of the
problem, by performing the required
algebra.

5. Whenever possible, check your results
in limiting cases or in simplified
circumstances.

Example 5.8 Let’s return to the father and daughter ice skaters of
Example 2.7. Suppose that the father skates backwards and holds his
daughter’s arms up at a 30° angle. Find the girl’s acceleration, ignor-
ing whatever friction there might be between her skates and the ice,
if the man pulls with a force of 30 N.
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Solution: We start with a diagram for the girl.

There are three forces acting on the girl. In addition to her weight (the force
of the gravitational pull of the Earth), there is the vertical force from the ice in
contact with her skates, and there is the pull of her father on her directed upward at
an angle of 30° with respect to the horizontal. To find the acceleration of the girl
requires adding all forces on her as vectors. Each of the forces shown above has a
vertical component and the man also exerts a force with a horizontal component. To
add the vectors we can first add the vector components separately in the vertical and
horizontal directions (with the proper signs included!).

We know that because the child glides in steady contact with the ice, she
experiences no acceleration in the vertical direction and so the net force on her
in the vertical direction must be zero. Adding together all components of force
in the vertical direction (we take up to be positive, down negative) leads to

This equation is not needed to solve for the acceleration of the child, which
is in the horizontal direction only, but it might be a useful part of a full analy-
sis of the problem. For example, we can solve for the upward force exerted on
the girl by the ice if we wanted to:

Clearly this force is reduced from the force the ice would have exerted in the
absence of the father’s upward pull FP, which would have exactly equaled the
child’s weight. The father, in this case, is helping the ice support the girl’s weight.
So here’s a question. Can the father actually lift the girl off the ice by applying a
sufficiently large force at the same 30° angle? (Answer: Yes, but only if

Do you see why? That would be a pretty strong father, because 784 N is 176
pounds!)

Back to the original question. In the horizontal direction there is only one
component of force on the girl, the horizontal component of her father’s pull:
FP cos 30. According to Newton’s second law, we have

so that after substituting numbers for FP and m, we find that a � 0.65 m/s2

pointing to the left.

a �
FP cos 30

m
,

Fp �
mg

sin 30
� 2mg � 784 N.

FN � mg � FP sin 30 � 40 kg # 9.8 m/s2 � 30 N # 0.5 � 377 N.

FN � FP sin 30 � Fw � 0.

FIGURE 5.10 Sketch for Example 5.8.
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Example 5.9 A piano of mass 100 kg slides down a smooth  (frictionless) ramp
5 m long inclined 15° with the horizontal. If the piano starts from rest, what is its
speed at the bottom of the ramp?

Solution: We start with a rough sketch of the situation and an external force diagram.

Only two forces act on the piano, gravity and the upward normal force
of the ramp. Because the piano stays on the ramp, there is no motion (in par-
ticular, no acceleration) perpendicular to the ramp and so the net force per-
pendicular to the ramp must be zero. Thus the normal force must exactly
cancel the component of the weight perpendicular to the ramp. The acute
angle between the normal and the weight is the same as the ramp’s angle of
inclination (you should prove this), therefore we can write that

where � is 15°. The remaining component of the weight is the only unbalanced
force and it produces a net acceleration down the ramp according to Newton’s
second law

Because Fw � mg, we have that the piano’s acceleration down the ramp is

The form of this result should make sense because if � � 0, there is no acceleration
and if � � 90°, we have free-fall. To find the velocity of the piano at the bottom of
the ramp, assuming it starts from rest, we use the one-dimensional kinematic equa-
tion relating velocity, acceleration, and distance (Table 3.1)  to find

so that the velocity after traveling 5 m down the ramp is 

� 5.0 m/s.12 # 2.54 # 5
v � 32ax �

v2 � 2ax,

a � g sin u� 9.8 sin 15 � 2.54 m/s2.

a �
Fnet

m
�

Fw sin u

m
.

FN � Fwcos u,

FIGURE 5.11 Sketch, external force diagram, and
net force acting.

Having completed our first multidimensional problem we note that there is a def-
inite strategy in solving problems of this type and an awareness of the steps involved
can be a great help in approaching new problems.

We conclude this section with three example problems (see box on page 106).
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Example 5.10 Two crates of 30 kg and 20 kg mass are connected by a light
(massless) rope while being pulled along a smooth (frictionless) floor by a hor-
izontal force of 40 N applied to the heavier crate. Find the acceleration of each
crate and the tension in the rope.

Solution: As usual, we begin by making a rough sketch and external force diagrams
for each separate component of the system that has mass. The rope, having negli-
gible mass, is not considered as an object, but simply as a means to transmit force.

The motion is one-dimensional and we really only need concern ourselves with
writing Newton’s second law for motion along the floor. We first note that 
FT and FT’ are, by Newton’s third law, equal in magnitude. Writing one equation
for each crate, we then have

where m1 � 20 kg and m2 � 30 kg, and we have explicitly used the fact that the
two crates move together with the same acceleration as long as the rope is taut.
Eliminating the tension force, we have that

Finally, the tension can be found by substituting into either of the Newton’s
second law expressions above to find

Note that the net force on each block is different, being (FP � FT � 40 � 16 �
24 N) on m2 and 16 N on m1. Treated as one composite object, the two crates
have a total external force equal to the 40 N applied force and a total mass of
50 kg. The ratio of the net force to the total mass also gives the solution to this
problem for the acceleration of either block.

FT � 20 kg # 0.8 m/s2 � 16 N.

a �
FP

m1�m2
�

40 N

50 kg
� 0.8 m/s2.

FP � FT � m2 a and FT � m1 a,

FIGURE 5.12 Sketch and external force diagram for Example 5.10.

Example 5.11 In a recently developed cell motility assay, a single myosin pro-
tein molecule can be seen to move along an actin protein filament stuck to the
bottom of a petri dish. Actin and myosin are the major constituents of muscle and
myosin can be pictured as a small molecular motor that uses chemical energy to
produce mechanical force and subsequent motion. The force generated by a sin-
gle myosin molecule has been measured to be about 5 pN (1 pN � 10�12 N).
Idealize the situation to consider only the myosin molecule and the actin fila-
ment, ignoring the bathing fluid, and analyze the motion using Newton’s laws.
(Actually, to visualize the myosin molecule in a microscope, a ~1 �m radius
plastic sphere is first chemically attached.)

(Continued)



110 M O T I O N ,  F O R C E S ,  A N D E N E R G Y I N M O R E T H A N O N E D I M E N S I O N

4.  WORK AND ENERGY

Work and energy are scalar quantities; therefore, at first glance, you might guess that
in the “generalization theme” of this chapter to motion in more than one dimension
these quantities are unaffected. This is not quite the case because, for example, as we
saw in our one-dimensional analysis back in the previous chapter, work involves the
product of a force and a displacement, both of which are vector quantities them-
selves. In this section we learn the general definition of work and kinetic energy. With
these definitions, the work–energy theorem and conservation of energy law we
learned in the previous chapter need no modifications but allow us to study a much
broader array of multidimensional problems.

Let’s return to the example at the beginning of the previous chapter of a sled of
mass m being pulled along an icy (frictionless) surface by a constant force acting
along a rope. If the rope is held at an angle � above the horizontal (Figure 5.14),
then the tension can be written as the vector sum of the horizontal x- and vertical
y-components. The y-component of the tension, being vertical, cannot contribute to
the motion along the x-direction. Its effect is to reduce the normal force of the

Solution: We first need to compute the masses involved. If we assume that the
density of the sphere is close to that of water (	 � 1000 kg/m3), we can 

calculate the mass of the sphere to be (myosin’s 

mass of 450 kD � [4.5 � 105][1.66 � 10�27] � 7.5 � 10�22 kg is negligible
compared to this). The actin filament is stuck to the petri dish and does not
move. Given the force exerted by the myosin molecule on the actin, an equal
and opposite force propels the (myosin � sphere) along the actin with an accel-
eration given by:

If myosin with its plastic sphere accelerated at the rate found, then in 1 ms
it should move a distance of about 0.5 mm (using ). Direct measure-
ments of the displacement show discrete steps of about 10 nm that occur in a
single clock cycle of ATP hydrolysis, roughly 1 ms. Clearly our idealized prob-
lem has omitted the interactions with the surrounding solvent. These forces
play a major role in determining the motion and account for the large
discrepancy in calculated displacement.

x �
1
2 at2

amyo �
F

m
�

5 *  10�12

4 *  10�15
� 1.3 *  103 m/s2.

m � ra4
3pr3b � 4 *  10�15 kg

FIGURE 5.13 Schematic of an actin
filament and myosin molecule with plastic
sphere attached. The drawing is not to
scale; the microsphere is actually relatively
much larger than the myosin whose head
rotates to generate a force allowing it to
move along the actin filament.

θ

F

FIGURE 5.14 A sled being pulled
along the ice by a force F. Only the
component of F along the ground
does any work as the sled moves
along.



ground on the sled. Therefore, we need to modify our definition of the work done
by a constant force, W � F�x, in this more general case where the force is not
necessarily along the direction of motion, because only the x-component of the ten-
sion will produce an acceleration along the x-direction. A more general definition
of work, valid for all constant forces regardless of their direction, is

(constant force), (5.2)

or, in terms of the angle � between the applied force and the displacement,

(constant force). (5.3)

Generalizing this to the case when a variable force acts on an object we can write
that the work is given by

(general definition), (5.4)

where we have inserted cos � into Equation (4.5). If several forces act on an object
we simply add up the individual (scalar) contributions to the work, keeping track of
their sign.

We defined kinetic energy as KE � 1/2 mv2 for motion along one dimension. In
more than one dimension there will be components of velocity along the different
coordinate axes directions and the kinetic energy remains as originally defined as
long as we remember that the square of the net velocity is given by v2 � vx

2 � vy
2

(�vz
2 ) in two (or three) dimensions. The potential energy expressions we introduced

in the previous chapter also are unaffected by the jump to higher dimensions because
gravity and spring forces are basically one-dimensional, involving only vertical dis-
tances or the stretched distance along the spring axis, respectively.

In Section 5 of the previous chapter we introduced power as the rate at which
work is done and derived an expression for it in the one-dimensional case, P � Fv.
Because both force and velocity are vectors in two and three dimensions, we need to
see how to generalize this expression for power as well. We saw in Equation (5.2) that
for a constant force, it is only the component of force along the displacement that
contributes to the work done by that force. Since the velocity is in the same direction
as the displacement (from its definition as)

the power generated by a force can be written as

P � Fv v, (5.5)

where it is only the component of the force along the velocity that does any work.
Given these modifications of the definitions of work and kinetic energy, the

work–energy theorem and conservation of energy stand as presented in the previous
chapter. This section concludes with two examples.

v
:

�
¢ r

:

¢t
,

WF � g¢W � g [F cos u]ave dx,

WF � F¢x cos u.

WF�Fx¢x,
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Example 5.12 Let’s reanalyze Example 5.9 using energy ideas. Recall that a
piano of 100 kg mass is sliding down a frictionless ramp 5 m long inclined at
an angle of 15° starting from rest and the problem is to find its speed at the
bottom.

(Continued)
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Solution: In the example we found the velocity using Newton’s laws and kine-
matics equations. Let’s solve this problem in two ways using energy ideas: first
using the work–energy theorem and second using conservation of energy. First,
only the component of the weight acting down the inclined plane contributes to the
work; this component is given by mg sin � (see Figure 5.15) and acts over a dis-
tance of h/sin �. Therefore, the work done by gravity is simply equal to the product

Setting this work equal to the change in kinetic energy (initially zero) we have that

mgh � 1/2 mv2,

so that we find the speed at the bottom to be

Second, using conservation of energy ideas, the piano starts from rest at height
h with a total initial energy given by

Ei � mgh,

and ends up at the bottom of the ramp with only kinetic energy, because h � 0
at the bottom. Therefore, because total energy is conserved, we can write an
identical equation as several lines ago, that mgh � 1/2 mv2, to find the same
numerical result for the speed as well.

Which method is easier? Since we know the form for the gravitational potential
energy (that it only depends on the height h) it was simpler to keep track of
the total constant energy. Note that if the piano were to fall vertically through
height h, the speed at the bottom would be the same (but of course the piano
would be so much the worse!). The work done by gravity is given by the product
of mg and h, and does not depend on the path taken by the object but simply on
its weight and overall height change. On the other hand, the ramp is useful to
steer the velocity of the piano.

v �12gh � 5.0 m/s.

W � mg sin u a h

sin u
b � mgh. 

FIGURE 5.15 A: A block sliding down an inclined plane;
and B: the same block falling vertically.

Example 5.13 In a loop-the-loop roller coaster ride (Figure 5.16) the car of mass
m starts from rest at point A at a height H. The loop-the-loop has a height of H/3.
Assuming no friction, find: (a) the speed of the roller coaster car at point B at
the top of the loop-the-loop and (b) the speed of the car at point C.

Solution: (a) The initial mechanical energy of the roller coaster at point A is
completely gravitational potential energy mgH relative to a zero of potential



5.  CONTACT FRICTIONAL FORCES

Up until now in our discussion of mechanics we have basically ignored one of the
most common forces of our everyday experience, friction. Only in our discussion of
the motion of an object in a fluid did we consider the resistive force of friction. In this
section we discuss the common frictional force acting between two solid objects in
contact with each other, as, for example, a book on a table surface. Only under certain
very unusual circumstances can these contact frictional forces be neglected, circum-
stances such as motion on a smooth ice surface or on a cushion of air. Usually contact
friction will be an important force and, in fact, friction is an essential force for most
types of motion. Without it we would not be able to walk, automobiles would not be
able to move, and even machinery would not be able to function (Figure 5.17).
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energy at the bottom. Because we are assuming that there is no friction, mechan-
ical energy is conserved and the mechanical energy at point B must also be equal
to mgH. But the energy at point B is actually partly gravitational potential and
partly kinetic so that we can write

where we have used the fact that the roller coaster is at a height of H/3 at B and
has a velocity vB. Solving this equation for the speed at B, we find that

(b) At point C, there is no potential energy, so that the full initial mechanical
energy is transformed into kinetic energy and we have

Solving this for vC, we have that

an expression that should look somewhat familiar to you. This result tells us that
the speed of the roller coaster at C is the same as it would be if the car just fell
vertically through height H. Of course, the track has provided a softer “landing”
for the car and steered it so it is traveling horizontally instead of falling, but the
speed of the car is given by the free-fall result.

vC �12 gH,

EA � mgh � EC �
1

2
 mvC

2 .

vB �A2(mgh � 1
3
 mgh)

m
�A4 gH

3
.

EA � mgH � EB � mg 
H

3
�

1

2
 mvB

2,

A

B

C

FIGURE 5.16 A loop-the-loop roller coaster,
showing the car at the start and upside down
near the top of the loop.



Imagine two solid objects sliding relative to each other, such as a block sliding
on a table surface. Friction is the contact force acting parallel to the surface of con-
tact (as contrasted with the normal force which is also a contact force but is directed
perpendicular to the contact surface). It is produced by electromagnetic interactions
between the molecules at the contacting surfaces of the two objects. On a micro-
scopic scale, these surfaces are rough and irregular (Figure 5.18). Molecules at
microscopic contact points bond together and as the block slides along the table these
bonds constantly are broken and reform, thus slowing the block. Such a frictional
force between moving objects is always in a direction to slow the motion and is called
sliding friction or kinetic friction. The frictional force on a block is directed opposite
to its velocity. It is found that although the frictional force depends on the nature of
the material surfaces, surprisingly, it does not depend on the contact area (to a good
approximation). The kinetic friction is proportional to the normal force FN, and can
be written as

Fkfr � �kFN, (5.6)

where �k is the coefficient of kinetic friction, which depends on the
two material surfaces. This is clearly not a vector equation because
Fkfr is parallel and FN is perpendicular to the surface. Often a point
of confusion for the student, this equation should make sense in
terms of magnitudes because the larger FN is, the more contact
between microscopically irregular surfaces and the greater the fric-
tional force. This equation is an empirical approximate one and the
coefficient of kinetic friction depends on the degree of smoothness
of the surfaces, as well as on whether they are wet or lubricated.
Clearly the relation is not a general law, but a useful approximate
relation that emphasizes the fact that only the normal force and the
nature of the materials are factors in determining the kinetic friction.
The area of contact does not enter the equation, so that in our exam-
ple of a block on a table, the block will experience the same fric-
tional force sliding on any of its surfaces, regardless of their size. We
are not able to calculate the kinetic friction from the fundamental
principles of electromagnetic interactions.
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FIGURE 5.17 Friction is essential
to lots of activities, human and
otherwise.

FIGURE 5.18 Microscopic
irregularities on a smooth copper
surface. The stripes are about
1.5 nm apart.

Example 5.14 Let’s again reconsider the problem of Example 5.9
in which a 100 kg piano slides down a ramp inclined at 15° with
the horizontal, but suppose now that we include friction. If the
coefficient of sliding friction is 0.2, find the acceleration of the
piano down the ramp and its velocity at the bottom after sliding 
5 m from rest.
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Solution: Using the external force diagram, we
can write Newton’s second law for the two
orthogonal directions, along the ramp and per-
pendicular to it. We have that

where a is the acceleration down the ramp and

In the second equation, the acceleration is zero because the piano only acceler-
ates along the ramp and not perpendicular to it. We also need the relation for the
kinetic friction force

Solving for FN from the second equation to find FN � mg cosu � 100 9.8
cos 15 � 950 N we then find that Ff � �k FN � 0.2 950 � 190 N.
Substitution into the first equation then allows us to solve for the acceleration

compared to the value of 2.54 m/s2 found in the absence of friction in Example
5.9. Using this value for the acceleration, we can find the velocity of the piano
after sliding 5 m to the bottom of the ramp:

compared to the value of 5 m/s found in the absence of friction.
We can also solve for the velocity of the piano at the bottom of the ramp

using work–energy ideas. The total initial mechanical energy of the piano is
entirely gravitational potential energy at the top of the ramp and is given by
Ei � mgh, where h � 5 sin 15 � 1.29 m. Similarly at the bottom of the ramp
the total final mechanical energy is kinetic energy given by Ef � 1/2 mv2. Now,
unlike the situation in the absence of friction for which mechanical energy is
conserved, in the presence of friction the initial mechanical energy is reduced
by the work of friction, which is negative, resulting in a decreased final
mechanical energy. The work done by friction is always negative because fric-
tional forces always act in a direction opposing the motion and therefore are
directed opposite to the displacement. The work of friction is found from
Wfr � �Ff x � ��kFN x � �0.2(950)(5) � �950 J. Our energy equation is
given by Wfr � Ef � Ei. This is the work–kinetic energy theorem, where each
mechanical energy term on the right is given by the sum of the kinetic and
potential energies at one time of the problem. In our case we have that �950 J �
1/2 mv2 � mgh, and substituting in for the mass and height of the ramp we can
solve for the final velocity of the piano at the bottom of the ramp, obtaining the
same value as above.

v �12ax �12 # 0.64 # 5 � 2.5 m/s

a � (mg sin u� Fkfr )/m � (100 # 9.8 # sin 15 � 190)/100 � 0.64 m/s2,

#
##

Fkfr�mk FN.

FN � Fw cos u� 0.

Fw sin u� Fkfr � ma,

FIGURE 5.19 External force
diagram for Example 5.14.



When two objects are in contact, but at rest with respect to each other, there are
also molecular bonds that form between contact points. Just sitting at rest does not
result in any net force along a direction parallel to the contact surface; if there were,
this force would spontaneously make the object accelerate. But if we try to push a
block with a force directed along the table surface, the molecular bonds supply a fric-
tional force in the opposite direction, opposing the impending motion. This type of
friction is called static friction and arises in response to an applied force that would
otherwise result in motion. As long as there is no motion, the static friction force is
always as large as it has to be to cause a net balance of all forces on the block.

Imagine applying a force to our block on the table, starting with a small force and
increasing its strength gradually. Until the molecular bonds are ruptured to allow motion,
the static friction is exactly equal and opposite to the applied force and there is no motion.
Once a threshold applied force is exceeded, the bonds then rupture and motion occurs. It
is found that this maximum static friction force depends solely on the nature of the two
surface materials and the normal force but not on the surface area, and is given by

Fsfr, max � �sFN, (5.7)

where �s is the coefficient of static friction. Although this equation looks very simi-
lar to Equation (5.6), you need to keep the differences clearly in mind. This equation
is for the maximum static friction force and holds only for impending motion. In gen-
eral, the static friction force will be less than, or at most equal to �sFN:

(5.8)

Note again that these equations are not vector equations, but simply relations between
magnitudes of forces, because the frictional forces are parallel to the contact surfaces,
whereas the normal forces are perpendicular to those same surfaces. It is almost
always the case that �s is greater than �k, a fact that agrees with our experience: it is
easier to keep a heavy crate moving than it is to start its motion. Table 5.2 gives some
values for coefficients of friction.

Fsfr … ms FN.
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Table 5.2 Static and Kinetic Coefficients of Friction*

Object and Surface �s �k

Steel on steel (dry) 0.7 0.6

Steel on ice 0.03 0.02

Metal on metal (lubricated) 0.15 0.07

Rubber on concrete (dry) 1.0 0.9

Human joints (lubricated 
with synovial fluid) 0.005 0.005

*Values are approximate and vary greatly with the surface
conditions.

Example 5.15 Two identical blocks of 20 kg mass are attached by a light cord
going over a frictionless pulley at the edge of a tabletop with one block on the
tabletop whereas the other is free to fall vertically as shown in Figure 5.20. The
coefficients of static and kinetic friction between the table and the one block are
0.6 and 0.4, respectively. Analyze the motion to decide if the blocks move and,
if so, find their acceleration to the left or right and the tension in the cord.

Solution: The external force diagrams for the two blocks are first drawn in
Figure 5.20, being careful to label them appropriately.
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From the diagram we can write down the set of Newton’s second law equations
governing the motion:

for the vertical forces on the block on the table because there is no vertical accel-
eration for block 1, and assuming for the moment that there is motion,

for the forces along the direction of motion for each block. Implicit in these last
two equations is the fact that if motion occurs, the block on the table will move
to the right, the rope will remain taut, and the tension force acting on each block
is the same. To see whether the block on the table in fact moves, we need to find
the maximum static friction force acting to the left and compare it to the net
force pulling the block to the right when there is no motion; this force is just
equal to the hanging weight m2g. That the tension force in the rope equals the
weight of the hanging block when no motion occurs follows from the last equa-
tion above with a � 0. Using the first equation for the normal force, we can find
that the maximum static friction force, given by �sFN, is equal to

Comparing this with the much larger value of m2g � 196 N implies that the block
must move to the right; the maximum static friction is not enough to cancel the
pull of the tension force to the right. Because the blocks do move, the appropri-
ate frictional force is due to sliding friction. Returning to our equations and elim-
inating the tension from the two F � ma equations (this can be done most easily
by separately adding the left- and right-hand sides of the equations), we have that

Substituting �kFN for the friction force, we find that

Finally, substituting m1g for the normal force, and solving for a, we find

m2g � mk FN1
� (m1 � m2 )a

m2g � Fkfr � (m1 � m2 )a.

Fsfr, max � msm1 g � 120 N.

T � Fkfr � m1a and Fw2
� T � m2a

FN�Fw1
�0

FIGURE 5.20 Sketch and external force diagrams for
Example 5.15.

(Continued)



We intuitively believe that as the two surfaces in contact with each other are
made smoother, the frictional force between them should decrease, and this is often
the case. However, as two surfaces are made ultrasmooth, so that, even on a micro-
scopic scale a substantial portion of the surfaces are in close contact, the frictional
forces dramatically increase. This is due to the large increase in molecular bonds, or
microwelds, that then form. At a microscopic level, computing the strength of the
forces between surfaces is a formidable problem.

6.  CIRCULAR MOTION DYNAMICS

Recall from earlier in this chapter that a particle traveling in a circle at constant speed
has an acceleration directed toward the center of the circle, known as the centripetal
acceleration. In order for a particle to travel in uniform circular motion a net force must
be applied to it in the direction of the centripetal acceleration. This force, known as the
centripetal force, might be supplied, for example, by a tension force due to a cord
attached to the particle that is being swung in a circular trajectory. In the case of a car
traveling along a circular exit ramp of a highway, the centripetal force is supplied by
friction between the tires and the road (Figure 5.21). The term centripetal force is used
for the net “center-directed” force, regardless of its origin, and is not a new type of
force. An object traveling in uniform circular motion satisfies Newton’s second law, but
with an acceleration that is specifically equal to the centripetal acceleration

(5.9)

In uniform circular motion the net force must point toward the center of the cir-
cle. The key to analyzing uniform circular motion is to draw a careful external force
diagram and to substitute the net inward radial force into Equation (5.9). Two exam-
ples should help to illustrate this method.

Fnet � macent �
mv2

r
.

118 M O T I O N ,  F O R C E S ,  A N D E N E R G Y I N M O R E T H A N O N E D I M E N S I O N

We can find the tension in the cord by substituting this result for a into either of
the F � ma equations that have the tension force in them, resulting in a value of
T � 140 N.

a �
m2 g � mkm1g

m1 � m2
� 2.9 m/s2.

F

FIGURE 5.21 A car going around
a turn has a centripetal force F
supplied by the tires.

Example 5.16 A Ferris wheel of radius 20 m is rotating at 1.5 revolutions per
minute. Find the forces exerted on an 80 kg man by his seat when he is at the top
or at the bottom of the wheel as it rotates.

Solution: When he is at the top or bottom of his motion, the only two forces that
act on the man are gravity and the upward push of the seat, as shown in the exter-
nal force diagrams in Figure 5.22.

According to Newton’s second law, at the top of the Ferris wheel we must have
that

Fw � FN � ma � m
v2

r
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where v and r are the velocity and radius of the circular Ferris wheel, and m
is the man’s mass. Because 1.5 rpm, for a 20 m radius wheel, gives a linear
velocity of

we can solve for the normal force to find

At the bottom of the Ferris wheel, the external force diagram looks the same, but
the normal force must be larger than the man’s weight, because it must produce
a net force in toward the center of the wheel. In this case, we write that

so that at the bottom, the normal force is given by

The seat in which the man sits must supply this variable force in order to keep
him orbiting in circular motion. At other points along the circular trajectory, the
seat must supply the necessary centripetal force at an appropriate angle to the
vertical. For example, at the two points along the axle height, the seat must
supply the entire horizontal centripetal force as well as a vertical force to bal-
ance the man’s weight as indicated in the sketch below.

FN � mag �
v2

r
b � 80 # a9.8 �

3.12

20
b � 822 N.

FN � Fw � m
v2

r
,

FN � mag �
v2

r
b � 80 # a9.8 �

3.12

20
b � 746 N.

v �
1.5 # 2pr

60 s
� 3.1 m/s

FW

FN

FN

FW

top bottom

FIGURE 5.22 Ferris wheel and external force
diagram of man at top and bottom points of the
circular path.

FN

FW
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Example 5.17 A car travels at constant speed around a circular highway exit
ramp with a 200 m radius banked at a 3° angle. The roadway is sloped (see
Figure 5.23a) so that when a car travels at a particular speed, the horizontal
component of the normal is sufficient to provide the needed centripetal accel-
eration without any friction. What is the speed for which the exit ramp is
designed?

Solution: The external force diagram for the car is complicated with five forces
acting on the car (Figure 5.23b). In addition to its weight and the normal force
there are frictional forces in two directions as well as a power driving force pro-
pelling the car forward. The forward propulsion force balances the rear frictional
force (Ff2) so that the car travels at a constant speed.

In terms of the centripetal force needed to keep the car in its circular path, only
the horizontal components of both the normal force and the sideways directed
frictional force contribute. The banked road is designed so that a car traveling at
the designated speed needs no sideways directed friction to travel the exit ramp.
At that speed (and only that speed) the frictional force Ff 1 can be set equal to
zero and we have that the horizontal component of the normal is equal to the
centripetal force

The normal force has a vertical component just equal to the weight of the car, or

Eliminating the normal force from these two equations, we find that

tan 3° �
v2

rg
,

FNcos 3° � mg.

FN sin 3° � m
v2

r
.

FN

FN

FW

FP Ff1

Ff1

Ff2

Ff2

FW

FP

FIGURE 5.23B External force diagram of a car on a banked
roadway.

r

FIGURE 5.23A Car on a banked
circular highway exit ramp of radius r.



There is often some confusion about whether an object traveling in a circle has a
force on it that is directed radially outward, often termed a “centrifugal force.” This
“force” seems to arise naturally from our experience. Clothes spinning in a clothes
dryer fly outward against the drum; we “feel” an outward force on us as we sit in a
car that makes a sharp inward turn; as we ride a roller coaster “around the world” we
feel squashed down in our seats. These “centrifugal forces” are not caused by a real
push or pull; they are not real forces. They are caused by trying to understand or by
experiencing nature from an accelerating, or noninertial, frame of reference.

In reality, when sitting in a moving car, we tend to keep going in a straight line
unless we are pulled to travel with the accelerating car as it makes a turn. An object
dropped out the car window as the car makes a sharp turn will not fly radially out-
ward as if it had a “centrifugal force” on it, but will move along a tangent to the ini-
tial path of the car, in accord with Newton’s first law. Once dropped out of the
window, there are no longer any horizontal forces acting and the object will maintain
a constant horizontal velocity, disregarding any air friction, while accelerating
(falling) vertically to the ground. Our bodies also follow Newton’s laws and need a
force to make them turn with the car. This force is supplied by a friction force
between the seat and our bodies to keep us moving with the car as it turns; we seem
to “feel” an outward directed force only because our body must supply the force
needed to keep our upper torso sitting upright as the seat pulls us along with the car
as it turns.

If a particle is traveling in a circle but also changing its speed then, in addition
to a real centripetal acceleration, there will be an acceleration directed tangentially,
along the velocity vector. In this case of nonuniform circular motion, the two com-
ponents of acceleration, centripetal and tangential, vary as the particle moves along
the circle (Figure 5.24). The centripetal acceleration is always directed toward the
center of the circle and equal to v2/r, but now also varies in magnitude as 
v changes. A nonzero tangential acceleration as a result of a tangentially applied
force will result in a varying speed of the particle, and a consequently varying cen-
tripetal force.
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so that the speed for which the road was designed is given by

Cars going around the exit ramp at higher speeds (needing greater centripetal
acceleration) must have a frictional force whose inward horizontal component
also contributes to the centripetal force needed to keep the car in its circular path
or the car will veer outward. Similarly, cars traveling at a slower speed will need
a frictional force directed radially outward to reduce the total centripetal force to
the corresponding value of mv2/r or the car will veer radially inward off the cir-
cular roadbed.

v �1rg tan 3° � 10.1 m/s2 or 23 mph.

acent

acent

v1

v2

atang

atang

o

o

FIGURE 5.24 An object in nonuni-
form circular motion. As the speed
increases due to a tangential accel-
eration, so does the centripetal
acceleration.

Example 5.18 Consider a car exiting a highway on a circular 3° banked exit
ramp (Figure 5.25). If the car enters the ramp at 65 mph and slows to 35 mph at
the end of the quarter-circular 200 m radius ramp with a constant deceleration,
find the magnitude of the net acceleration of the car at the beginning and end of
the ramp.

(Continued)



7.  CENTRIFUGATION

Sedimentation refers to the process by which particles in a fluid settle to the bot-
tom under the influence of gravity. Microscopic particles or macromolecules that
normally remain in suspension due to thermal collisions with solvent molecules
can be made to sediment under the influence of additional external forces. A num-
ber of types of external forces have been used to speed up sedimentation, including
electrical and magnetic forces. Here we discuss the most common method used,
centrifugation, to artificially increase gravity in order to sediment suspended
objects.

Let us imagine a centrifuge tube, containing a solution of proteins, spinning
about a vertical axis in a centrifuge (Figure 5.26).

The path of a protein is basically circular as the centrifuge tube spins, with a
very small drift velocity vr outward (or radial) toward the bottom of the tube. The
protein does not fall vertically because of its microscopic size and the collisional
forces from the solvent that keep it suspended. If we analyze the horizontal forces
acting on the protein, treating it as a particle, there are two forces that provide the
net centripetal force required to produce circular motion. These are the buoyant
and frictional forces acting in response to the protein’s slow drift velocity. The
frictional force has a magnitude Ff � fv, taken from Equation (3.6), and acts in the
direction opposite to the drift velocity or toward the center of the (nearly) circular
trajectory. Arising from the increasing pressure in the solvent with increasing
depth in the tube, the buoyant force also points toward the center of the circle.
This pressure variation is due to the fluid deeper in the tube (closer to the tube bot-
tom) having to support the fluid farther out near the top of the tube and maintain
its circular motion. At any instant the fluid near the bottom of the tube, if not con-
strained by the tube would fly off tangentially. The tube bottom is being driven
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Solution: First, we find the constant tangential
acceleration of the car. Using the one-dimensional
kinematics equation when the acceleration is con-
stant, with x � 
r/2 corresponding to
one-quarter of a circle, and converting the velocities
to m/s (1 mph � 0.447 m/s), we have

where the negative sign indicates a deceleration. Although this tangential accel-
eration is constant on the ramp, the centripetal acceleration varies as the speed
varies, from

at 65 mph to acent � 1.2 m/s2 at 35 mph. Therefore, combining these two orthog-
onal accelerations using the Pythagorean theorem, we find the net acceleration

at each location: at the start and 1.5 m/s2 at 
the end of the ramp.

anet �1acent
2 � atang

2 � 4.3 m/s2

acent �
v2

r
� 4.2 m/s2

a �
v2 � v0

2

2x
� � 0.96 m/s2

v2 � v2
0 � 2axFIGURE 5.25 The

components of accelera-
tion of a decelerating car
traveling along a banked
roadway, with velocity
opposite in direction 
to atang, both oriented 
perpendicular to the page.

acent

atang

FIGURE 5.26 A side view of a
horizontal centrifuge tube showing
a sedimenting molecule with a net
inward force acting on it.



against the fluid to provide the centripetal force to steer it around in a
circle, just as in a clothes dryer the walls push the clothes radially
inward to keep them traveling around in a circular path within the
dryer. Fluid farther up the tube is given its centripetal force by the
fluid nearer the bottom of the tube. We show in Chapter 8 that this
pressure variation gives rise to a buoyant force.

Newton’s second law in the radial direction is then

(5.10)

where the buoyant force is, as we study in more detail in Chapter 8, equal
to the effective weight of the displaced fluid. In this case the weight of
the displaced fluid is not due to an acceleration g downward, but rather
to acent directed outward along the centrifuge tube, so that FB � m0acent,
with m0 equal to the mass of the displaced water. Remember that vr is
the speed of the protein as it moves radially outward along the length of
the tube. Substituting the expression for the buoyant force and solving
for the ratio of the protein sedimentation velocity to its acceleration,
known as the sedimentation coefficient s, we find

(5.11)

The sedimentation coefficient has units of seconds, from the ratio
of a velocity to an acceleration, but because typical values are on the
order of 10�13 s, we define the Svedberg (S), with 1 S � 10�13 s, and
use it as a fundamental unit for sedimentation coefficients. Table 5.3
lists some sedimentation coefficients of biological materials, together
with the times required to sediment them at various accelerations mea-
sured in multiples of g. Sedimentation coefficients are seen to depend
on the particle mass, frictional properties and also the fluid density
(through the term m0), and are often used to characterize macromole-
cules; indeed many are named simply by their sedimentation coeffi-
cients such as the 30 S and 50 S ribosomes.

Today’s ultracentrifuges routinely attain rotational speeds of over
75,000 rpm, representing accelerations of several million g’s. Spinning
solutions at these speeds allows the “pelleting” of even soluble proteins at the bottom
of the centrifuge tube after hours of spinning. Every laboratory that studies biomole-
cules or cells is equipped with centrifuges for the preparation, and often for the char-
acterization, of materials. Figure 5.27 shows a typical ultracentrifuge and a “rotor”
that is used to hold the sample tubes. The figure also shows the results of an accident
in which the extremely high energies involved in spinning the rotor at high speeds led
to the destruction of a centrifuge.

s �
vr

acent
�

(m � m0)

f
.

fvr � FB � macent,

TABLE 5.3 Typical Sedimentation Coefficients, Accelerations, and Corresponding
Approximate Times Needed to Spin Down a Sample in a Centrifuge Tube

Sample Sed. Coeff (S) No. gs to Pellet Time to Pellet

Whole cells 106 100 10 min

Cell nuclei 105 700 10 min

Mitochondria 104 7000 10 min

Ribosomes 30, 50 S 100,000 2 h

Soluble proteins 1 – 5 (globular) 500,000 hours

5 – 20 (elongated)
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How is the sedimentation coefficient deter-
mined experimentally?

From the definition of s we can write,

vr � dr/dt � s acent.

Now,

where v means the speed of the protein as it
orbits around its circular path (and not the
radial drift speed). We can write

where T is the time to complete one revolu-
tion. Thus, dr/r � s�2dt, where � � 2
/T,
which can be integrated from r0 (at time t0)
to r (at time t) to yield

ln[r(t)] � ln[r0(t0)] � �2s(t � t0).

This equation is the basis for determining
the sedimentation coefficient from a series
of measurements of the boundary between
the solution and the pure solvent, r(t), as it
moves down the centrifuge tube. A plot of
ln[r(t)] as a function of (t � t0) should be 
a straight line with a slope of �2s, and
because � is known s can be found.

v �
2pr

T
,

acent �
v2

r
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FIGURE 5.27 (upper) Modern ultracentrifuge; (middle) fixed angle rotor; (bottom) centrifuge
remains after accident in which a rotor exploded while spinning.

CHAPTER SUMMARY
This chapter generalizes our description and analysis of
motion to more than one spatial dimension. The kine-
matical equations of Table 3.1 are generalized in a
straightforward way using vector analysis, so that, for
example, for free-fall along the vertical y-direction:

where the parenthesis notation 
:

Ax�(Ax, Ay) indicates
the x- and y-components of the vector 

An object moving in a circle has a centripetal
acceleration given in magnitude by

(5.1)

and a centripetal force acting on it given, in
magnitude, by

(5.9)

Newton’s second law is generalized using vector
analysis and can be written in a transparent form

meaning that only the net force in a particu-
lar direction, say x, will act to produce an acceleration
along the x-direction.

The work done by a force pointing in any direction
on an object moving along the x-axis is defined by

(5.4)

where F cos � gives the component of the force along
the x-direction and the summation allows for a vari-
able force to be considered constant over short inter-
vals of distance �x (see the discussion of Equation
(4.5) as well).

Friction can be empirically described in the two
cases of sliding (kinetic) motion and of static impend-
ing motion by

(5.6)

(5.8)

It is particularly important to see the examples
worked out in this chapter and to practice doing prob-
lems in order to appreciate the awesome power of
Newton’s laws coupled with vector analysis.

Fsfr … msFN.

Fkfr � mkFN,

WF � g¢W � g [Fcos u]avedx,

F
:

net � ma
:,

Fnet � macent �
mv2

r
.

acent �
v2

r
,

A
:

.

and r: � ([x0 � v0x t], [y0 � v0y t �
1

2
 gt2 ]),

v
:

� (v0x, [v0y � gt]),

a
:

� (0, � g),



QUESTIONS
1. If we chose to orient our x- and y-axes at 45° to the

vertical rather than horizontal and vertical, write down
the corresponding equations of motion (analogous to
Table 3.1) along the x- and y-axes.

2. Name as many physical quantities as you can that you
believe to be vector in nature. Now name as many that
you believe to be scalar in nature. Compare your lists
with those of your classmates. Attempt to resolve any
differences by challenging each other’s reasoning and
supporting evidence. (Just in case you overlook them,
consider in your list: temperature, weight, volume of
an object, and density.)

3. A vector quantity has both magnitude and direction.
If the measurement of a particular physical property
requires the use of signed numbers (i.e., both positive
and negative numbers) is the property necessarily a
vector?

4. Describe a coordinate system useful for detailing the
position of an object within the field of view of a
microscope.

5. Is time a vector? If so, what is its direction? What
does time measure? Is there any meaning to “nega-
tive time”? Could you tell if something were moving
backwards in time? If all time everywhere slowed
down or speeded up, would there be any way to
detect it?

6. Can you add a vector and a scalar (in any way that is
useful or makes physical sense)? What about multi-
plying together a scalar and a vector? What about
multiplying two vectors together? What sort of possi-
ble complications or ambiguities might arise with
such operations?

7. Show how you can add three vectors together, all of
which have the same magnitude, and end up with a
zero result. Can this sort of “vector addition to zero”
work with any number of vectors?

8. What is the relationship between a vector and a coor-
dinate system? Between a vector and the number
line? What properties or values of a vector depend on
the coordinate system used to express it?

9. Give examples of two objects that have different
positions but undergo identical displacements.
(Hint: Think of a group of choreographed stage
dancers.)

10. Does a vector of zero magnitude have a direction?
11. Compare the driving patterns of a single typical day

for a local delivery truck, and a long-distance freight
truckdriver. Compare instantaneous velocity, average
velocity, presence or absence of acceleration (constant
velocity or not), net displacement, and distance logged
on the odometer.

12. Two marbles sitting on a tabletop are flicked off, one
just falling vertically and the other shot out horizon-
tally off the table. Which one hits the ground first?

13. The string on a yoyo breaks while doing an “around
the world” just as the yoyo is at the top of its orbit.
What happens?

14. If a protein in a centrifuge feels a centripetal force
directed in toward the axis of rotation, why does it
slowly migrate radially outward and not radially
inward?

15. Sketch (nonartistic) external force diagrams for each
of the following, showing all the forces acting on the
object.
(a) A high jumper clearing the highbar
(b) A canoe being paddled along
(c) A boy riding on an escalator
(d) A jet airplane cruising at a constant speed
(e) A lead weight sinking in the ocean

16. Two blocks, one sitting on a table and the other
heavier one hanging over its edge, are connected by
a light string as shown in the figure. Which force
makes the block on the table move, the tension in
the string or the weight of the hanging block? Are
these two forces equal?

17. Two blocks of equal mass sit on a tabletop and are
connected by a light string. A second string is pulled
with a force F as shown in the figure. If you draw an
external force diagram and do some thinking you
will see that the tension force that pulls the left
block is F/2. Why does the right block of equal mass
need a force F to pull it at the same acceleration?

18. Two blocks, each of mass m and connected by a light
string, hang over a frictionless pulley at rest as shown
in the figure. Why do the blocks remain at rest even
though there is a net downward force due to gravity
of 2 mg?

19. A man is mowing his lawn by pushing on the handle
of a push lawnmower (see the figure). Why is the
upward normal force on the mower from the ground
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not equal to the weight of the mower? To what is 
it equal?

20. Why is it usually easier to keep a heavy object mov-
ing than to start it moving from rest?

21. Is the work done by friction always negative? Give an
example to illustrate your answer.

22. It is an apparent paradox that making two surfaces
smoother and smoother will eventually increase the
frictional force between them. Why is this true?

23. Explain clearly in words why the work done by fric-
tion cannot be expressed as a difference in a potential
energy function, as can be done, for example, for the
work done by gravity.

24. A large cube of mass M is accelerated across a level
frictionless surface by a finger applying a constant
horizontal push A small cube of mass m is held in
place on the front face of the large cube by static fric-
tion, as shown in the figure.

A student is asked to draw external force (free body) dia-
grams for the two masses in this problem. Each force is
given a descriptive name and the object that causes each
force is identified. The student’s diagrams are shown
below. Please make whatever alterations are necessary
to make these diagrams correct. You may add or delete
forces, change the sizes of the forces shown (so that

accelerations are qualitatively correct), and change the
labels to more accurately identify what the force is and
from where it comes.

25. For the previous question, which of the following, if
any, are true? Circle the letter of any true statement.
(a) The surface over which the large cube slides exerts

a force on the large cube parallel to the surface
with magnitude equal to P.

(b) The surface over which the large cube slides exerts
a force on the large cube parallel to the surface
with magnitude equal to Mg.

(c) The surface over which the large cube slides exerts
an upward vertical force on the large cube with
magnitude equal to P.

(d) The surface over which the large cube slides exerts
an upward vertical force on the large cube with
magnitude equal to Mg.

(e) The surface over which the large cube slides exerts
an upward vertical force on the large cube with
magnitude equal to (M � m)g.

(f) The large cube exerts a force in the horizontal direc-
tion on the small cube with magnitude equal to P.

(g) The large cube exerts a force in the horizontal
direction on the small cube with magnitude less
than P.

(h) The large cube exerts a force in the horizontal direc-
tion on the small cube with magnitude greater than P.

(i) The large cube exerts a force in the horizontal
direction on the small cube with magnitude
equal to mg.

(j) The large cube exerts an upward vertical force on
the small cube with magnitude equal to P.

(k) The large cube exerts an upward vertical force on
the small cube with magnitude equal to mg.

26. Is it possible to have a heavy crate slide up an inclined
plane and have it come to rest at its highest point
without sliding back down? Why or why not? If pos-
sible, what conditions would have to be met for this
to happen?

27. Two blocks, each weighing 10 N and connected 
by massless strings, are pulled across a horizontal table
at constant speed, as shown in the figure. The force of
kinetic friction on each block is 5 N. Draw an external
force diagram for block A. In the diagram label each
force, identify what body causes it, and make sure the
forces have the correct relative magnitudes.

28. According to the definition of work, the work done by
an external force in moving a heavy crate along a hor-
izontal surface should be the same whether the force

P
:

.
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P M
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M

weight of M
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(due to surface)

push, P
(due to finger)

friction
(due to m)

m 

weight of m
(due to Earth)

push, P
(due to finger)

normal force
(due to surface)



is pulling upward at a 45° angle or pushing downward
at a 45° angle. In practice it is easier to pull the crate
than to push it at 45°. Why is this so?

29. A cart carries a parcel as shown in the figure to the right.
The parcel is not lashed down. The mass of the parcel is
M and the mass of the cart is 5 M. The cart is traveling
to the right and is slowing down. As the cart slows, the
parcel doesn’t slip over the surface of the cart. Draw
external force diagrams for the parcel and for the cart,
labeling each force and the body that is responsible
for the force. The relative sizes of the forces should
be qualitatively correct.

30. Two blocks are attached by a light string with one
resting on a rough table and the other hanging over
the edge via a frictionless pulley as shown in the fig-
ure for Question 16 above. If the blocks are initially
at rest, the tension force is equal to the hanging
weight. As the weight of the hanging block is
increased, eventually the blocks will move. At that
point is the tension in the string more, the same, or
less than the weight of the hanging block? If the
hanging weight were continuously increased, would
the tension force change gradually or abruptly when
the blocks move?

31. In the Ferris wheel example (Example 5.16), can the
normal force of the seat on the man ever be zero? If
so, find an equation for the required velocity of the
man for this to occur.

32. Why is a high-speed curved roadway banked? If a car
goes around such a curve with too rapid a velocity, in
which direction must a frictional force act on the tires
of the car to keep it on the road? If a car goes around
such a curve too slowly in which direction must the
frictional force act?

33. Why do you feel a “centrifugal force” directed radi-
ally outward when you ride in a car and make a
sharp inward turn? Is this a real force? What is the
origin of the centripetal force on the car? On you in
the car?

34. A girl does an around-the-world with a yo-yo. Which
of the following vectors for the yo-yo are along the
string direction: the velocity, the centripetal accelera-
tion, the displacement for a one-half revolution, and
the tangential acceleration?

35. For an object undergoing circular motion, assum-
ing all other variables to be constant, fill in the
blanks with “increases”, “decreases”, or “remains
the same”:
(a) As the object speeds up, the magnitude of the cen-

tripetal acceleration ______________.
(b) When the object has a constant negative tan-

gential acceleration, the centripetal acceleration
magnitude _____________.

(c) When the object has no tangential acceleration, the
centripetal acceleration magnitude ______________.

36. For an object in circular motion, state whether the fol-
lowing are true or false.
(a) The velocity is always perpendicular to the cen-

tripetal acceleration.
(b) With the circle center as origin, the displacement

is always perpendicular to the velocity.
(c) Because the velocity is not constant, there is

always a tangential acceleration.
(d) The net acceleration can never point outside the

circular orbit.
37. Small enough particles will not sediment in a glass

of water even if their density is greater than that of
water. Why don’t all particles that are denser than
water, regardless of size, sediment?

38. Which will sediment faster in a centrifuge: a 30 S
ribosome spinning at 105 g’s or a 50 S ribosome spin-
ning at 50,000 g’s?

39. A particle is traveling in uniform circular motion
about a circle of radius r with speed v. Write a vector
expression for its acceleration at any point in terms of
its angle from the x-axis, which goes through the cir-
cle center. Use ordered pair notation.

40. If, as a particle executes uniform circular motion in
the x–y plane, the particle also has a constant speed
along the z-axis, describe its trajectory in words and
write a vector equation for its position using order
triplet notation.

41. One variation of centrifugation uses a solvent mix-
ture (typically an aqueous sucrose solution of vary-
ing concentration) with an increasing density with
depth along the centrifuge tube. The sample to be
studied is layered on the top of the tube and the tube
is spun so that it lies horizontally (in a swinging
bucket rotor; see the figure). Known as density
gradient centrifugation, what do you expect to
happen if the density range includes the density of
the sample macromolecules? (Hint: Consider
Equation (5.10).)
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MULTIPLE CHOICE QUESTIONS
1. The figure shows a vector and two coordinate axes.

The components of the vector along these axes
are most likely

2. One force vector has components (5 N, �3 N) and
a second has components (�2 N, 2 N). These forces
produce a net force with scalar components
(a) (�10 N, �6 N), (b) (7 N, �5 N), (c) (�5 N, 7 N),
(d) (3 N, �1 N).

3. Vectors
:

A, 
:

B, and 
:

C are related to each other as shown.
The magnitude A � 3 and the magnitude B � 4. The
magnitude C must be between (a) 1 and 7, (b) 5 and
7, (c) �7 and 1, (d) 1 and 5.

4. The magnitude of the force vector with components
(5 N, �5 N) is (a) 0.0, (b) 5.0, (c) 7.1, (d) 25.0 N.

5. A force 
:

F1 has x-component �5 N, and y-component
�2 N. A second force 

:

F2 has x-component �3 N, and
y-component �3 N. The x- and y-components,
respectively, of 

:

F1�
:

F2 are (a) 8 N, 5 N, (b) 7 N, 
�6 N, (c) 3 N, �1 N, (d) 3.16 N, 18.4° below the
positive x-axis.

6. The velocity of a particle at one instant has an x-
component of �30 m/s and a y-component of �40 m/s.
Given that the instantaneous speed is the magnitude
of the instantaneous velocity, what is the particle’s

(-1)A
:

A
:

A

a

b

c

d

A

B

C

instantaneous speed? (a) 10 m/s, (b) 50 m/s, (c) 70 m/s,
(d) 2,500 m/s.

7. A girl is riding on the outer edge of a merry-
go-round with a streamer pulling a rubber ball 
attached by a string. If the string breaks, as seen by
someone on the ground the ball will (a) fall
vertically down, (b) fly radially outward from the
merry-go-round, falling vertically as it goes, (c) fall
vertically while traveling tangentially forward 
from the merry-go-round, (d) fall vertically while
traveling tangentially backward from the merry-
go-round.

8. A ball is attached to a string and spun in a circle in a
horizontal plane. The physical forces acting on the
ball include its (a) weight and the centrifugal force,
(b) weight and the tension force, (c) weight and the
centripetal force, (d) weight and the force of the hand
holding the string.

9. A 1000 kg block sits on a frictionless table, con-
nected by a massless rope over a frictionless pulley to
a 0.01 kg washer hanging off the edge of a table. The
magnitude of the acceleration of the washer will be
(a) 0 m/s2, (b) 0 m/s2 
 a 
 9.8 m/s2, (c) 9.8 m/s2,
(d) a � 9.8 m/s2.

10. In the previous question, the magnitude of the
acceleration of the block will be (a) 0 m/s2, 
(b) 0 m/s2 
 a 
 9.8 m/s2, (c) 9.8 m/s2, (d) a �
9.8 m/s2.

11. A wrench is dropped from rest from the top of the
mast of a sailboat traveling (forward) at 10 m/s in
still water. Ignoring air resistance and assuming the
mast is vertical, the wrench hits the deck (a) directly
next to the mast, (b) some distance away from the
mast to the rear of the boat, (c) some distance away
from the mast to the front of the boat, (d) in an
unpredictable place because there is insufficient
information.

12. A skier skis in a straight line down a hill gradually
picking up speed as he goes. Which of the following
could plausibly be an external force diagram for the
skier during this motion? Assume air resistance is
negligible.
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Questions 13 and 14 refer to a block pulled up an
inclined plane, with inclination angle �, by a constant
force F applied at an angle � measured from the inclined
plane.
13. The work done by the force F in sliding the block a dis-

tance d along the incline is (a) Fd sin �, (b) Fd cos �,
(c) Fd sin �, (d) Fd cos �.

14. The magnitude of the work done by gravity for the
same motion is given by (a) mgd sin �, (b) mgd sin �,
(c) mgd, (d) mgd cos �.

15. Suppose a ball is thrown with an initial velocity of 8 m/s
at a 60° angle above the horizontal and stays in the air
for 1.1 s. How far (in m) will it travel in the horizontal
direction? (a) 7.6, (b) 8.8, (c) 4.4, (d) 5.9, (e) 10.3.

16. A yo-yo with mass M is spun in a loop-the-loop of
radius R at a constant speed v. The tension in the string
is T. What is the centripetal force on the yo-yo when at
the bottom of its trajectory? (a) T � Mg, (b) Mg � T,
(c) Mg � T, (d) T � Mg � Mv2/R, (e) none of these.

17. Two identical blocks of mass m are tied together (by
a light cord) and pulled up a rough inclined plane at
constant speed by a pulling force F directed along the
incline and applied to the upper block. Which of the
following statements is true?
(a) The work done by F is zero because the blocks

move at constant speed.
(b) The total friction force must equal F because the

blocks move at constant speed.
(c) The tension in the cord is F because the two

blocks are identical.
(d) The work done by F is equal in magnitude to the

work done by gravity plus the work done by friction.
(e) None of the above is true.

18. For the previous problem, a free-body diagram of the
lower block would include all of the following forces
except
(a) mg down
(b) T up along the incline

(c) F up along the incline
(d) Friction down along the incline
(e) Normal force perpendicular up from the surface

19. Two identical blocks of mass m are tied together by 
a light cord. One sits on a horizontal frictionless
surface and the other one hangs over a frictionless
light pulley and is held in place. When released from
rest, the hanging block falls a distance d. Which of
the following is a true statement?
(a) The tension in the rope is equal to mg.
(b) The work done by gravity on the hanging mass is

equal to the gain in KE of the block on the fric-
tionless surface.

(c) The work done by the tension in the cord equals
the gain in KE of both blocks.

(d) The tension in the rope plus the normal force on
the block on the horizontal surface adds up to mg.

(e) The work done by gravity on the hanging block is
equal to the gain in KE of both blocks.

20. A ball attached to a string is spun around in a hori-
zontal circle. If the string is cut quickly at an instant
of time, the ball’s initial velocity points
(a) Radially outward because the ball felt a centrifugal

force
(b) Radially inward because the string exerted a

centripetal force
(c) Vertically downward because of its weight
(d) Tangentially because of Newton’s first law
(e) Somewhere between radially outward and tangen-

tially depending on its speed
21. In a frictionless roller coaster, if the car starts from rest

at a height equal to twice that of the loop-the-loop por-
tion, the speed at the top of the loop (point A) can be
found by (a) equating the initial potential energy to the
kinetic energy at point A, (b) by equating the initial
kinetic energy to the sum of the potential and kinetic
energy at point A, (c) by equating half the initial
potential energy to the kinetic energy at point A, 

weight weight weightweight

force of

contact of

hill on skis

force of

contact of

hill on skis

force of 

contact of 
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(d) by equating half the initial potential energy to the
sum of the potential and kinetic energies at point A.

22. The net work done by all the forces in sliding a crate
from rest up an inclined plane, coming to rest at the
top (a) is always zero because there is no change in
kinetic energy, (b) is nonzero and depends on the
height of the plane, (c) is nonzero but depends on 
the path up the incline as well as its height because
the work done by friction depends on the path, (d) is
nonzero but depends on the details of the force
applied by the person as well as the factors of part (c),
(e) none of the above.

23. In the loop-the-loop demonstration in which a small
cart rolls around the looped track, the condition that
needs to be satisfied for the cart to just get around the
loop is (a) the starting potential energy must equal
that at the top of the loop, (b) the kinetic energy at the
top of the loop is just equal to zero, (c) the normal
force at the top is just equal to zero, (d) the kinetic
energy at the top is just equal to the weight of the cart,
(e) none of the above.

24. A block of mass m slides down an inclined plane
(angle of inclination �) a distance d along the plane.
If the block slides down at constant velocity, the work
done by friction is given by (a) mg sin � d, (b) mgd,
(c) �mgd, (d) �mg sin � d, (e) cannot be determined
from what is given.

25. A block is given a push up an inclined plane. During its
round-trip motion the frictional force is (a) always
directed upward, (b) always directed downward, (c)
directed upward till it reaches its maximum height and
then directed downward, (d) directed downward until it
reaches its maximum height and then directed upward.

26. Macroscopic friction is caused by microscopic forces
between atoms arising primarily from their (a) gravi-
tational, (b) electrical, (c) strong nuclear, (d) weak
nuclear interactions.

27. While trying to slide a heavy piano along a rough floor,
just before there is any motion (a) the friction force is
equal to �kN, (b) the friction force is less than �kN, (c)
the friction force is a maximum, (d) the friction force
is less than �sN, where N is the normal force.

28. A block of mass m slides down a distance d along an
inclined plane with inclination angle � from rest,
starting at height h, with y its vertical coordinate and
v its velocity. If the coefficient of kinetic friction is
�k, when the block is at height y the work–energy the-
orem is of the form (a) 1/2 mv2 � mg(y � h) � �kmg

cos � d, (b) 1/2 mv2 � mg(y � h) � ��kmg cos � d,
(c) 1/2 mv2 � mgy � �kmg cos � d, (d) 1/2 mv2 �
mg(h � y) � ��kmg cos � d.

29. As two identical very smooth plane metal surfaces are
polished more and more and then put into tight micro-
scopic contact (a) the friction force is increased, 
(b) the normal force is reduced, (c) the friction force
is unchanged, (d) the friction force is reduced.

30. A small mass, attached to a thread, orbits in a circle
around a fixed point O on a horizontal frictionless
surface. When viewed from above, as shown to the
right, the mass orbits in a clockwise sense. At point A,
the thread suddenly breaks. Which of the paths dis-
played is the one that the mass most likely travels
along after the break?
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31. A skier of mass M skis along an irregularly shaped,
rough slope from point A to point B. The total distance
along the slope from A to B is D and the magnitude of
the vertical drop from A to B is H. The skier’s kinetic
energies at A and B are equal. The work done by friction
during this trip (a) must be exactly �MgH, (b) must be
exactly �MgH, (c) must be exactly �MgD, (d) cannot
be calculated because the shape of the slope and the
coefficient of kinetic friction are not given.

32. A bug is on the rim of a spinning CD that is rotating
counterclockwise viewed from above. The radius of
the CD is A and the time it takes for one complete rev-
olution is T. There is a fixed (x-, y-) coordinate system
(doesn’t rotate with the CD) with its origin at the cen-
ter of the CD. At t � 0 the bug’s position in this coor-
dinate system is (A, 0). At t � T/4, the x-component
of the bug’s velocity is (a) �2
A/T, (b) 4
2A/T2, 
(c) 
A/(2T), (d) zero.

Questions 33 and 34 refer to: A particle executes uniform
circular motion around a circle of radius equal to 1 m with
a speed of 2 m/s.
33. The period of the motion is (a) 2
, (b) 2, (c) 
, (d) 1 s.
34. The acceleration of the particle is (a) zero, (b) 2 m/s,

pointing toward the center of the circle, (c) constant,
with a magnitude of 4 m/s2, (d) 4 m/s2, pointing
toward the center of the circle.

35. As a car exits from a highway slowing down as it
goes clockwise on a circular exit ramp, the net accel-
eration on the car is directed (a) towards the rear of
the car, (b) towards the center of the circular exit



Q U E S T I O N S /P R O B L E M S 131

ramp, (c) at some angle between the rear of the car
and the center of the circular ramp, (d) at some angle
between the center of the circular ramp and the for-
ward direction.

36. A satellite revolves around the Earth in a circular
orbit at a constant speed. Which one of the following
statements is true? (a) Its acceleration is zero because
its speed is constant. (b) Its acceleration is zero
because its velocity is constant. (c) Its acceleration
and its velocity are both not constant. (d) Its velocity
is not constant but its acceleration is a nonzero
constant.

37. The Space Shuttle orbits the Earth in a circular orbit
at an altitude of 300 km. The Shuttle’s mass is 106 kg.
The period of the orbit is about 5000 s. The radius of
the Earth is 6.4 � 103 km and its mass is 6 � 1024 kg.
The acceleration of the Shuttle is (a) zero because its
speed is constant, (b) about 0.01 m/s2, (c) about
10 m/s2, (d) about 8 � 103 m/s2.

38. The forces responsible for pelleting a protein in an
ultracentrifuge are (a) its weight and buoyant force,
(b) its buoyant and frictional forces, (c) its weight
and frictional force, (d) its weight and centrifugal
force.

39. A centrifuge tube is completely filled with water and
has a very small bubble (initially stuck) at the bottom
of the tube. As the tube is spun in the centrifuge, the
bubble will (a) stay at the bottom, (b) steadily rise in
the tube at a constant speed, (c) rapidly accelerate to
the top of the tube, (d) it’s impossible to say given the
large variety of factors involved.

40. As a centrifuge rotor accelerates from rest to its final
speed, a protein accelerating in a centrifuge tube
inside the rotor has an acceleration (a) radially out-
ward, (b) radially inward, (c) tangentially in the direc-
tion of the velocity, (d) at some intermediate angle
between the inward radial direction and the tangent
direction of part (c), (e) none of the above.

PROBLEMS
1. A chessboard consists of 64 squares. Shown numbered

are the successive positions of a rook (“castle”) for one
particular game. Two possible labeling schemes for the
squares are shown in (b) and (c); each using ordered
integer pairs. Using each of the labeling schemes, list
the successive positions of the rook and from the posi-
tions determine the displacement vectors that indicate
the successive movements of the rook throughout the
game. Note that the displacement vector sets should be
the same for the two labeling schemes, although the
position labels differ between the two.

Comment on any physical meaning to the instantaneous
and average velocities of the chess piece.

2. A bug walks along a chessboard, following the bound-
aries of the squares. For each of the points Pi, what is the
distance traveled from the starting corner, and what is the
displacement vector? Express your vector answers in
both Cartesian (x, y) and polar (r, �) coordinates. Assume
the board squares measure 25 mm along an edge.

3. Refer to the simplified, albeit tortured, map showing
some of the major cities of New York State. The ques-
tions refer to the distance traveled and displacement
for various trips among the cities shown. Assume
travel between consecutive cities “as the crow flies.”
(a) Calculate and compare the net displacements for

the following pairs of trips.
BGM to WTR via BUF versus ALB to PLT 
via WTR
KGN to SYR versus NYC to BGM
WTR to ROC versus WTR to PLT

(b) What is the distance traveled and the net displace-
ment for each of these trips:
BGM to JMS to BUF to ROC to WTR to SYR
ALB to SYR to BGM to KGN to BGM

(c) Name two different trips that have the same
displacement.
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4. Suppose that a swimmer can maintain a stroke that
gives her a 3 mph speed in a pool. If she sets out
straight across a river that flows with a 1 mph
current, she will be carried downstream with the
current at the same time as her stroke carries her
across. For a river 176 yards (1/10 mile) wide, 
figure out how far downstream she will end up,
assuming that throughout her river crossing she
maintains the same stroke that moves her along at 
3 mph in the pool. How can our swimmer get
directly across the river? (See the next problem 
as well.)

5. Fisherman Joe has a boat with a motor that has two
speeds: on and off. When the motor is on, the boat
will do 2 mph in an otherwise quiet pond. On an
expedition, Joe finds himself at the shore of a river
with a 7 mph current.
(a) Why can’t Joe move directly across the river with

his boat?
(b) Suppose Joe turbocharges his motor so it will

move through still water at 12 mph. If he directs
the motor appropriately, he can now get directly
across the river. Where must he point the boat for
a direct traverse?

(c) How long will it take him to thus cross a quarter
mile wide section of the river?

6. Professor Igor is attempting to breed a superrat. On
an endurance test, one of his prize specimens main-
tains an apparent stationary position at the middle of
a treadmill that is 1 m long and 30 cm wide, while
the track moves back at 2 m/sec. After several min-
utes, the rat quits, turns, and begins to crawl to the
side edge of the track. With what constant speed
must our exhausted hero travel if he is not to be car-
ried to the end of the track and dropped into the
reject bin?

7. Consider these four vectors, represented by order
pairs:

; ; ; 

(a) Of these four vectors, which are perpendicular to
each other? Which are parallel?

(b) Calculate each of the following and represent the
results, to scale, on graph paper as well.

Note: For problems using compass bearings, note that
degree headings are customarily measured clockwise
from North. E (east) is 90°, for example. Also, the direc-
tions NE, NW, SE, and SW are oriented exactly 45° from
the appropriate main bearings (N, S, E, and W).
8. Determine how far and in what direction a hiker ends

up after the following treks:
• 2 mi N, then 1 mi E.
• 1 mi E, then 2 mi N.
• 2 mi NE, then 1 mi E.
• 2 mi NE, then 1 mi W.
• 2 mi N, then 2 mi W, then 2 mi S. What about the

return trip (i.e., the same hike backwards)?
• 4 mi S, then 3 mi E.
• 3 mi NW, then 3 mi NE.

9. The figure shows three points within a rectangular
coordinate grid. The coordinates of each point can
also be considered as a vector, representing the dis-
placement from the origin O to the respective point.
Thus, for example, the coordinates of A also repre-
sent the vector OA.

B
:

1 � B
:

2 A
:

1 � B
:

1   A
:

2 � B
:

2 A
:

1 � A
:

2 � B
:

1 � B
:

2.A
:

1 � A
:

2 

B
:

2 � (0, 4).B
:

1 � (3, 0)A
:

2 � (0, 1)A
:

1 � (2, 0)
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(a) Represent each of the point-vectors with ordered pairs.
(b) Find the distance between: points A and B; points

A and C; and points B and C.
(c) Determine the following vectors. OA � OB; OB

� OC; OA � OB � OC; 2OB, OA � 2OB, 3OB,
�OB.

(d) Determine the difference of vectors OA –OC
according to: OA �OC � OA � (�OC); that is,
first determine –OC, given OC and perform the
indicated addition. Show the results of each of the
steps graphically.

10. Calculate each of the following operations on the
given vectors, here represented with ordered pairs.
Then show on graph paper the representations of the
given vectors and the vector result of the requested
operation, all to scale.

; ; ; ;

(a) ; (b) ; (c) ; (d) ; (e) ; 
(f) ; (g) ; (h) ; (i)

11. A popular exercise in orienteering is to be given a
compass heading and a distance to be hiked, at the
successful completion of which is another set of
instructions containing yet another heading and dis-
tance, and so on. At the end of it all, the hiker has
hopefully arrived safe and sound back at camp.

Construct a map, to scale, that shows the path of
travel for a hiker who successfully completes the fol-
lowing course.
100 yd, N
150 yd, E
60 yd, NW

12. A mountain climb begins at 550 m above sea level
and finishes atop a 1050 m high peak. The average
incline is 75° above the horizontal. Give the horizon-
tal and vertical components of the hikers’ displace-
ments. What vector represents the sum of the
horizontal and vertical displacements?

13. A ball is thrown horizontally from the roof of a 25 m
tall building with a speed of 20 m/s.
(a) With what velocity will it land (magnitude and

direction, please)?
(b) How long will it be in the air?

(c) How far from the building’s ground floor will it
land?

(d) What is its acceleration just before it hits the ground?
14. Three identical balls are thrown off a building, all

with the same initial velocity. One of the balls is
thrown horizontally, the second ball is thrown at some
angle above the horizontal, and the third is thrown at
some angle below the horizontal. Rank the speeds of
the balls as they reach the ground.

15. A Northrop B-2 Stealth bomber is flying horizontally
over level ground, with a speed of 300 m/s at an alti-
tude of 10.6 km (35,000 feet).
(a) Neglecting air resistance, how far will a bomb

travel horizontally between its release and its
impact on the ground?

(b) If the bomber flies straight ahead at the constant
speed above, where will the bomber be when the
bomb hits the ground?

16. A cartoon coyote sets out to capture the elusive road-
runner by wearing a pair of Acme jet-powered roller
skates, which provide a constant horizontal accelera-
tion of 10 m/s2. The coyote starts off at rest 100 m
from the edge of a cliff at the instant the roadrunner
zips past him in the direction of the cliff.
(a) If the roadrunner moves with constant speed, what

is the minimum speed the roadrunner must have in
order to reach the cliff before the coyote?

(b) At the edge of the cliff the roadrunner escapes by
making a sudden turn, and the coyote continues
straight off the cliff. If the cliff is 200 m above the
ground, where does the coyote land, assuming
that his skates remain horizontal and continue to
work while in flight?

(c) What are the components of the coyote’s impact
velocity?

17. A cartoon coyote chasing an animated roadrunner
fails to make it around a tight corner, and runs
directly off the edge of a 100 m cliff at a horizontal
speed of 20 m/s. How far from the base of the cliff
does he land, and how much time does the road run-
ner spend in flight?

18. A game of Battleship™ . An enemy ship is on the left
side of a mountain located in the middle of the ocean
and this ship has the ability to maneuver within 1 mi
(1600 m) of the 800 m tall mountain. A gun located
on the deck of the enemy ship can fire projectiles with
an initial speed of 650 mph (�289 m/s) at angles
between 0° (horizontally from the ship) and 90°
(directly overhead of the ship.) You are stationed on a
ship on the right side of the mountain and you can
maneuver your ship from the shoreline located 500 m
from the middle of the mountain to any larger distance.
At what distance(s) from the rightmost shoreline can
you maneuver your ship so that you will not be hit by
the enemies’ projectiles?

�C
:

�E
:

.C
:

�E
:

C
:

�E
:

D
:

�B
:

A
:

�D
:

A
:

�C
:

A
:

�B
:

A
:

�B
:

�A
:

E
:

� (� 4, � 2).

D
:

� (6.5, 2.5)C
:

� (2, � 1)B
:

� (5, 6)A
:

� (2, 3)

1050 m

550 m start

finish



19. A cartoon coyote comes up with a brilliant scheme to
get lunch for himself by dropping a 500 kg boulder
on a passing animated roadrunner. Unfortunately,
when he cuts the rope holding the boulder in place,
the rope becomes tangled around his ankle, and drags
him off the edge of the cliff. If the coyote’s mass is
30 kg and his frantic clawing at the ground produces
a force of 120 N resisting being dragged off of the
cliff, what is his acceleration toward the cliff?

20. Two balls are thrown off the roof of a 25 m tall building.
One is dropped from rest and then 1 s later the second is
thrown outward with a velocity with horizontal and
downward components of 10 and 15 m/s, respectively.
(a) Which ball hits the ground first?
(b) With what velocity does each ball hit the ground?
(c) Which ball travels the greater displacement?

21. A lacrosse goalie clears the ball by throwing it down-
field at a speed of 10 m/s at a 35° angle above the
ground.
(a) How long will it be in the air? (Assume the ball

leaves the goalie’s stick at ground level.)
(b) How far will it go before hitting the ground,

assuming no one is there to catch it?
(c) At what point will it have its minimum speed?
(d) With what velocity (magnitude and direction) will

it hit the ground?
(e) If someone catches the ball on its way down at a

height of 1.0 m, with what velocity will the ball
hit the net of the lacrosse stick?

22. A 30 kg penguin slides down the side of a glacier that
has a constant slope of 50°. What is the acceleration
of the penguin and what is the normal force it feels?

23. The largest rope lariat ever spun used a 100 foot long
rope with a loop of 95 feet spun in a circle. What is
the centripetal acceleration of a point on the rope
spun at 60 rpm?

24. The fastest a manmade device ever spun is
4500 miles per hour achieved by a 6 inch fiber rod
spun about one end in a vacuum. What is the cen-
tripetal acceleration of a point on the rim of this rod
in terms of g’s?

25. A 20 cm radius wheel is turning at the rate of 5 rpm
(revolutions per minute). Find (a) the speed of a point
on the rim, (b) the centripetal acceleration of a point
on the rim, and (c) the time for one revolution.

26. A block sitting on smooth ice is tied to a 1 m cord and
spun in a horizontal circle at constant speed. If the
block is revolving at 15 revolutions in 1 min and
the cord is cut, find the magnitude and direction of
the block’s velocity just then.

27. A 100 kg sled is slid across a smooth ice field by a group
of four dogs tied to the sled pulling with a 350 N force
along a rope at an angle of 20° above the horizontal.
(a) If the sled travels at a constant speed, find the drag

force on the sled.
(b) Find the work done by the dogs after pulling the

sled for 1 km.

28. The Pumpkin on the Nott: The Nott Memorial is a 
16-sided Victorian building and national historic
landmark located in Schenectady, NY. The Nott
Memorial is topped with an approximately hemi-
spherical dome 89 feet in diameter. Suppose that the
dome is frictionless when wet. Somehow an individ-
ual has balanced a pumpkin at the top of the dome at
an angle of �i � 0° with the vertical. Suppose that on
a rainy night, a gust of wind starts the pumpkin
sliding from rest. It loses contact with the dome when
the line from the center of the hemispherical dome to
the pumpkin makes a certain angle with respect to the
vertical. At what angle does this happen?

29. Raiders of the Last Exam: In order to prevent cheat-
ing, a diabolical physics professor has booby-trapped
her office where the exam answers are kept. A 1000
kg mass is suspended by a 4 m rope from the ceiling,
and pulled to one side of the room where a second
rope holds it. The rope holding the mass makes a 
60° angle with respect to the horizontal. When a stu-
dent attempts to open the file cabinet containing the
answers, the weight will be released to swing back
and forth in front of the cabinet, crushing anyone
foolish enough to stand in front of it.

(a) What is the tension in the two ropes before the trap
is sprung?

(b) What is the maximum velocity of the swinging
mass?

(c) The student is quicker than expected, and jumps
back before the mass hits. If the student ducks
back in to grab the answers just after the mass
passes, how much time does she have to get them
before the mass returns?

30. In the movie Volcano, solid chunks of rock, called
lava bombs were ejected from the growing volcano.
Consider a volcano, shown below, with a lava bomb
being ejected.
(a) What would the magnitude of the initial velocity,

at the top of the volcano, have to be in order for a
lava bomb to land at the base of the volcano?

(b) What would be the time of flight of this projectile
from the top of the volcano to its base?
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(c) What is the final velocity of the lava bomb just
before it hits the ground at the base?

(d) What is the acceleration of the lava bomb just
before it hits the ground at the base?

31. Suppose that a Lockheed C-5A Galaxy (the largest
aircraft in the world with some specifications shown
below) sits on a runway at an airport waiting for take-
off clearance. When given clearance, the pilots apply
full power to the plane’s engines and accelerate down
the runway.

(a) If the plane takes off when its velocity reaches 
195 mi/hr and not before, what is the acceleration
of the plane in order to take off at the indicated
speed if the plane has to be airborne in 9800 feet?
(Hint: 1600 m � 1.0 mi and 1 hr � 3600 s.)

(b) How long does it take before this plane becomes
airborne (takes off)?

(c) What force (magnitude and direction) would be
required to support a C5-A fully loaded with fuel
horizontally in flight?

32. Two blocks, with masses M1 and M2, are connected
by a light horizontal cord and pulled by a second cord
with a force F at an angle � with respect to the hori-
zontal so that the blocks slide along a horizontal sur-
face at a constant speed.
(a) Draw a carefully labeled free-body diagram for

each block showing all forces.
(b) From your labeled diagram in part (a), write equa-

tions describing the motion.
(c) If M1 � 1.0 kg, M2 � 2.0 kg, and the applied force

is 10 N at an angle of 30°, find the coefficient of
kinetic friction between the blocks and the hori-
zontal surface.

30°

1.6 km 

2.4 km 

M1 M2

acent

acent

v1

v2

atang

atang

o

o

(b) If the two blocks are exchanged, so that the 4 kg is
now the hanging block and the 2 kg sits on the
table, find their acceleration now.

(c) In words state why the tension in the cord is equal
to the weight of the hanging block in part (a) but
not in part (b)

(d) What is the minimum mass that one needs to add
to the 2 kg block in part (b) for it to remain at rest
when released?

34. A 75 kg crate is being pulled up a 5 m long (friction-
less) ramp inclined at a 30° angle from the horizontal
by a force of 500 N at an angle of 15° above the ramp.
(a) What is the acceleration of the crate?
(b) What will be its velocity at the top of the ramp if

it starts from rest?
(c) How much work is done to get the crate up the

ramp by pulling the rope?
(d) How much work is done by gravity over the 5 m

ramp?
(e) Using the work–energy theorem redo part (b).

35. Suppose the toy car in the frictionless loop-the-loop
example of 6.13 starts from a height of 1.2 m and the
loop itself has a height of 0.25 m.
(a) Find the speed of the car at the top of the loop.
(b) How fast will it be going at the bottom of the loop

on the way up? On the way down?
(c) Find the minimum height that the car must start

from to just get over the top of the loop. (Hint: The
speed at the top cannot be zero or the car, travel-
ing in a circle, would not reach there. The mini-
mum speed required at the top is such as to have a
centripetal acceleration at the top just equal to g as
the car leaves the track at the top.)

36. In a loop-the-loop roller coaster (see Figure 5.16) if a
car of 500 kg mass starts essentially at rest from the
top of a 15 m tall hill find
(a) Its speed when traveling vertically on the 7 m

diameter frictionless loop

33. Two blocks are connected by a light cord. One block,
of mass 4 kg, sits on a horizontal table with static and
kinetic coefficients of friction of 0.6 and 0.4, respec-
tively, whereas the other block, of 2 kg mass, hangs
over a frictionless light pulley as in the figure. The
blocks are released from rest.
(a) Draw a carefully labeled free-body diagram for

both blocks and, by using Newton’s laws, show
that they do not move.



(b) Its velocity when leaving the loop at ground level
(c) The net force on the car when at the position in

part (a)
37. A roller coaster car, with a mass of 500 kg, crests a 

20 m high hill while moving at a speed of 10 m/s. It
then rolls down the other side, all the way to ground
level, before climbing a second hill.
(a) What is the speed of the car when it is 10 m up the

second hill?
(b) What is the maximum possible height of the sec-

ond hill?
(c) If the car is subject to a frictional force that causes

it to lose 8000 J of energy, what is the maximum
height of the second hill?

38. A block of mass 12 kg slides from rest down a fric-
tionless 35° incline and is stopped by a strong spring
with stiffness constant k � 3.00 � 104 N/m. The block
slides 3.0 m from the point of release to a point where
it comes to rest against the spring. When the block
comes to rest, how far has the spring been compressed?

39. Two blocks are connected by a light string with one
block of 5 kg mass sitting on a frictionless 30°
inclined plane and the second block of 8 kg mass
hangs from the string which runs over a frictionless
light pulley as shown.

(a) Find the acceleration of the block on the plane.
(b) Find its velocity after traveling 2 m along the

plane from rest. Do this two ways: using your
answer to part (a) and using energy principles.

40. In the previous problem if the block on the incline is
5 kg as before,
(a) Find the hanging mass needed so that the 5 kg

mass is in equilibrium.
(b) Find the hanging mass needed so that the 5 kg

mass slides down the 2 m distance along the
plane in 2 s.

41. In a pinball game with marbles, a 10 N/m spring is
compressed 3.0 cm releasing a 50 g marble from rest.
If the marble needs to travel 60 cm up a 3° incline
before entering the scoring zone of the game table,
will it make it? If not, how much must the spring be
compressed so that it will?

42. A crate is pushed along the ground at constant veloc-
ity for a distance of 5 m. If the friction force is 5 N,
how much net work is done on the crate? How much
work is done by the friction force? By the external
pushing force? By gravity?

43. A 2 kg box is pushed 3 m up a 30° incline at constant
velocity by a 20 N force directed along the surface of the
incline with a coefficient of kinetic friction of 0.6. What
net work is done on the box? How much work is done by
the pushing force? By gravity? By the friction force? By
the normal force? Check that your answers are consistent.

44. A 110 kg upright piano is being pulled by a light rope
angled at a 20° angle below the horizontal. If the ten-
sion in the rope is 30 N and the coefficient of kinetic
friction is 0.3 find:
(a) The normal force on the piano.
(b) The friction force.
(c) The acceleration of the piano.
(d) Why is this a poor method to move a heavy piano?

45. A 20 kg wheelbarrow held at a 30° angle is being
pushed along the ground by a force F at a constant
velocity. If the coefficient of kinetic friction is 0.4 find:
(a) The net force acting on the wheelbarrow.
(b) An expression for the normal force in terms of f.
(c) A numerical value for F.

(d) Why is the normal force greater than the weight of
the wheelbarrow?

(e) Would it be easier to pull the wheelbarrow at the
same angle at constant velocity?

46. Two heavy crates sit on the floor, the 3 kg one on top
of the 10 kg one.
(a) What is the normal force from the floor on the 

10 kg block?
(b) What is the normal force acting on the top crate?
(c) If the bottom crate is pushed horizontally with a 

10 N force along the smooth floor and the coeffi-
cients of static and kinetic friction between the
crates are 0.6 and 0.4, what is the acceleration of
the bottom crate and the top crate?

(d) Find the maximum horizontal force that can be
applied to the bottom crate without the top crate slip-
ping. (Hint: First find the maximum static friction
force and the resulting acceleration of the top crate.)

47. A 0.1 kg block is given an initial velocity of 5 m/s up
an inclined plane at a 30° angle, travels up the plane,
and then returns back to the bottom. The coefficient
of friction between the block and plane is 0.4. Find
(a) The work done by gravity for the entire trip
(b) The work done by the friction force for the entire trip
(c) The net change in kinetic energy of the block

48. A small mass m slides down a frictionless ramp from
rest as shown in the figure below and then enters a
region where the coefficient of friction is 0.5. Where
does the mass stop? Find an expression for x in terms
of the given parameters.
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49. Two blocks are connected by a light cord. One block,
of 4 kg mass, sits on a horizontal plane with static and
kinetic coefficients of friction of 0.6 and 0.4, and the
other block, of 2 kg mass, hangs over a frictionless
light pulley as in Figure 5.20. If the blocks are
released from rest:
(a) Show that the blocks do not move.
(b) What minimum additional force would be

needed to pull down on the 2 kg block to produce
motion?

(c) If the two blocks are exchanged, find their accel-
eration now.

(d) What is the minimum mass that one needs to add
to the 2 kg block in part (c) for it to remain at rest
when released?

50. A 2.5 kg block sits on an inclined plane with a 30°
inclination. A light cord attached to the block passes
up over a light frictionless pulley at the top of the
plane and is tied to a second 2.5 kg mass freely hang-
ing vertically. The coefficients of static and kinetic
friction between the block and the plane are 0.5 and
0.3. When released from rest find:
(a) The acceleration of the blocks.
(b) The tension in the string.
(c) Explain why the tension supporting the hanging

block is not equal to its weight.
(d) Find the time for the block on the inclined plane

to travel 0.5 m up the plane.
(e) Find the minimum angle of inclination at which

the block on the plane will remain at rest.
51. The eruption of the Mt. St. Helens volcano on

May 18, 1980 triggered a huge avalanche of snow
down its slopes, estimated at 96 billion cubic feet.
The maximum speed of the avalanche was clocked
at 250 mph. Estimate the average force (in N)
exerted on the land at the base of the mountain
assuming that all the snow was traveling at this
speed and stopped in 5 s. Take the density of snow
to be half that of water.

52. Two blocks sit on an inclined plane with a 30°
inclination angle. If the blocks are connected by a
light rope with the 5 kg block above and the 3 kg
block below, find the acceleration of the blocks if the
coefficients of sliding and static friction are 0.3 and
0.5, respectively. Does the order of the blocks matter?

53. In the previous problem find the maximum angle at
which the blocks do not slide down the plane. Does
the order of the blocks matter now?

54. Two identical springs with k � 5 N/m, are separated
by 2 m, with a small coefficient of kinetic friction �k
� 0.02 acting on the horizontal surface between them.
If a 0.1 kg block starts out being released from one of
the springs after compressing it by 0.2 m, find the final
position of the block, tracing its trajectory. (For
simplicity, assume that you can ignore friction for the
portion of the motion when the blocks are in contact
with the springs.)
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55. Two blocks are attached by a light cord with each
block sitting on a different inclined plane as shown.

If the angles of inclination are 30° and 60°, the
respective masses are 10 kg and 6 kg, and the coeffi-
cients of sliding and static friction are 0.3 and 0.5, do
the masses move, and if so in which direction and
with what acceleration?

56. A roller coaster rises and falls on a semicircular por-
tion of track that has a radius of curvature of 20 m.
How fast can the roller coaster travel so that a 60 kg
man will not leave his seat at the top? (Hint: Find the
threshold condition—what changes—when the man
is just about to leave his seat.)

57. In a circus performance, a stuntman is riding a bicy-
cle in a loop-the-loop. Assuming that the loop is a cir-
cle of radius R � 2.7 m, what is the least speed that
the performer can have at the top of the loop in order
to remain in contact with the track? Does your result
depend on the mass of the performer?

58. The so-called ROTOR is an amusement park thrill
ride. Riders enter the ride, which is a large hollow
cylinder that is rotated rapidly around its central axis,
and stand against a wall. As the ride starts, the riders,
wall, and floor move in unison. At a predetermined
speed, the floor falls away but the riders remain
pinned to the wall. If the coefficient of static friction
between the riders clothing and the wall is 0.40, and
the radius of the ride is R � 3.0 m, what is the mini-
mum speed needed so that the riders do not fall when
the floor drops? What is the magnitude of the
centripetal force on the rider if the rider has a mass
of 60 kg?

59. The moon travels around the Earth in a nearly circu-
lar orbit of radius 3.84 � 108 m with a period of
27.3 days.
(a) What is the speed of the moon in orbit relative to

the Earth?
(b) What is the centripetal acceleration of the moon

based on its orbital period?
60. An exit ramp off a highway has a radius of curvature

of 150 m and is banked at a 4° angle. For what speed
is the ramp designed?

61. A circular gear of 5 cm radius starts from rest and
accelerates to 60 rpm in 10 s.
(a) What is the (assumed constant) tangential acceler-

ation of a point on the rim of the gear?
(b) What is the centripetal acceleration after 5 s?

After 10 s?
62. A yo-yo is spun in a vertical circle (“around the world”)

of radius 40 cm. Find the difference in the string tension



at the top and bottom in terms of the weight of the 
yo-yo. (Ignore the spinning of the yo-yo around its own
axis.) (Hint: No work is done on the yo-yo as it circles
(why?), so conservation of energy can be applied.)

63. In an amusement park ride, people stand against the
outer wall of a large spinning drum and after the drum
rotates beyond a certain speed, the floor falls away,
leaving the people suspended against the wall. If the
radius of the ride is 12 m, and the coefficients of sta-
tic and kinetic friction are 0.4 and 0.2, how fast must
the drum spin so that no one will fall. Find both the
velocity of the people and the rpm of the drum.

64. A heavy 20 kg crate is pushed with a force of 50 N
down a ramp making an angle of 30° with the hori-
zontal. The crate is pushed down the incline with the
force directed at an angle of 30° below the surface of
the ramp. The coefficient of kinetic friction is 0.3 and
the coefficient of static friction is 0.6.
(a) Draw a free-body diagram for the crate, carefully

labeling each force with an appropriate symbol
and clearly showing the direction of each force.
(Read the problem carefully.)

(b) Write down—but do not solve—the equations
from Newton’s second law for motion along and
perpendicular to the ramp

(c) Now solve your equations from part (b) to find the
acceleration of the crate.

(d) If you stop pushing, does the crate slide down the
plane? (Show your work in answering this.) If so,
find the acceleration.

65. A block of mass M is attached to a light cord and spun
clockwise in a vertical circle at constant speed. At
the top of the circle the tension in the cord is equal to
three times the weight of the block.
(a) Draw a free-body diagram for the block at the top

of the circle
(b) If the radius of the circle is 0.75 m and the mass

of the block is 2 kg, find the speed of the block
(c) If the cord were to break when the block is at a

point along a horizontal diameter while moving
upward, describe in words the trajectory of the
block and calculate the maximum height the
block will reach.

66. A 50,000 N truck exits a highway at 50 mph onto a
2.5° banked exit ramp which makes a semicircle of
250 m radius, slowing at constant deceleration to 
20 mph by the end of the ramp.
(a) What is the tangential acceleration of the truck on

the ramp?
(b) What is the net acceleration at the beginning and

end of the ramp?
(c) What is the required frictional force on each of the

truck’s eight tires to keep it traveling on the road
at the beginning and end of the ramp?
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67. A Ferris wheel of 15 m radius rotates at 2 rpm. Find
the normal force from the seat on a 50 kg boy when
he just passes a point at the height of the wheel axis
on the way up.

68. How long will it take for a 5 S protein to completely
spin to the bottom of a 5 cm centrifuge tube filled
with solution when spun at 500,000 gs? Express your
answer in hours.

69. Find the centripetal force acting on a 42 kDalton 
(1 Dalton � 1 g/mole) protein molecule spinning at
50,000 rpm and located a distance of 8 cm from the
axis of rotation. If the protein has a net radial force
directed inward, toward the axis of rotation, why does
it slowly migrate outward toward the bottom of the
centrifuge tube? Explain this as carefully as you can.

70. Calculate the sedimentation coefficient in water for
(a) A spherical cell of 3 �m radius.
(b) A spherical (or globular) macromolecule of 3 nm

radius. Assume that the density of each is 1.05 g/cm3.
(c) Calculate the number of g’s required in a cen-

trifuge if the cells are to be sedimented through 
2 cm in 5 min.

(d) Similarly, calculate the number of g’s required to
sediment the macromolecule at a rate of 1 mm/h.

71. An amusement park thrill ride consists of a cart with
some riders (of total mass 500 kg) that is set in motion
by a large spring with spring constant 800 N/m. The
cart travels along the flat horizontal section of track
that is located 15 m above the ground and then down
the ramp toward the loop-the-loop which has an
unknown diameter. The entire track is frictionless.

(a) If the spring is initially compressed by 3 m, what
is the speed of the cart as it leaves the spring?

(b) What is the speed of the cart at the bottom of the
ramp before the loop-the-loop?

(c) If the speed of the cart at the top of the loop-
the-loop is 8.55 m/s, what is the diameter of the loop?

(d) How much work was done by gravity on the cart
as it traveled from the bottom of the loop-the-loop
to the top?

(e) Suppose that the horizontal section of the track at
the top were not frictionless, but that a frictional
force was present, with a coefficient of kinetic
friction of 0.20. What would the speed of the cart
be as it left the spring?
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In this chapter we begin our study of more realistic systems in which the objects are no
longer point particles but have extension in space. Up until now we’ve generally limited
ourselves to the dynamics of point masses, first in one dimension and then generalized to
two and three dimensions. Indeed, not all of the problems we studied were limited to point
masses, but the object’s size and shape were not relevant in the problem and so were not
considered. For such objects we’ve learned how to describe and predict translational
motion using Newton’s laws, some of the complications due to frictional forces, and the
important concept of energy. In general we can divide the motion of real extended bodies
into two parts: translational motion, described by following a particular average coordi-
nate of the object, known as its center of mass as it moves about, and all other motions
with respect to this point. This chapter focuses on translational motion of systems, or col-
lections of objects, and the following chapter deals with rotational motion.

We begin this chapter by introducing the important concept of momentum. As
we’ve seen, all forces come in pairwise interactions. When studying the interactions
between different objects, it turns out that we can re-formulate Newton’s second law
in terms of momentum. If the system we are studying is “isolated”—meaning that it
does not interact with the outside world—then our reformulation is particularly sim-
ple and leads to a new fundamental law, the law of conservation of momentum. After
seeing this for a system of two particles, we next define and learn how to compute
the center of mass of a system, that special average point of a system at which all its
mass appears to be concentrated in order to explain the net translational motion of the
system. The last section of the chapter shows how to reformulate the dynamics of
translational motion of any system in terms of the center of mass momentum. Here
we also see the general formulation of conservation of momentum.

1.  MOMENTUM

Thus far in our discussions of dynamics we have focused on forces as the origin of
motion according to Newton’s laws. There is a very useful alternative approach based
on momentum that we wish to develop in this chapter. Very often this alternative
approach is to be preferred because it does not hinge on the specific forces or interac-
tions between objects, which are usually unknown or only incompletely understood. In
this section, we first introduce momentum, the basic quantity used in this approach, for
a particle. Then we reformulate Newton’s second law using momentum and show how
this leads to the conservation of momentum principle for a collection of particles. Later
in this chapter we generalize this approach to arbitrary collections of extended objects.

An object of mass m traveling at velocity has a linear momentum (or just
momentum) , given by

(6.1)B

p � m
B

v.

B

p

B

v

6Momentum
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Note that momentum is a vector quantity, defined as the product of the
mass, an intrinsic property of the object, and its velocity, a quantity depend-
ing on its motion. It has units of kg-m/s, which have no other special name.
Clearly, based on Newton’s first law, a particle with no net force on it will
maintain a constant momentum. When the particle feels a net force, due to
some interaction, its momentum will change with time. Also clearly, based
on Newton’s second law, the larger the interaction (force) acting on the par-
ticle, the greater will be the change in its momentum.

How does the momentum of a particle contrast with its velocity? First,
we note that both of these quantities are vectors, in fact with the same direc-
tion. If we compare two particles of different mass traveling at the same
velocity, the one with larger mass will also have proportionally larger
momentum. For example, a truck with four times the mass of a car, both
traveling at the same speed along a highway, has four times the momentum
of the car, in accord with our colloquial usage of the word momentum. On
the other hand, if the same truck is traveling at only 1/4 the velocity of the
car, then both vehicles have the same momentum.

How does the momentum of a particle contrast with its kinetic
energy? Now, note that these are very different quantities, with kinetic
energy a scalar and momentum a vector. A particle with a given mass will
have its momentum doubled if its velocity doubles, but will have its
kinetic energy quadrupled in that case. Kinetic energy is produced by
doing work on a particle, as we’ve seen in the work–kinetic energy theo-

rem. How is momentum produced? Well, clearly they are related, but the direct answer
is that momentum is produced by forces acting on the particle as we now show.

Newton’s second law for an object can be written in terms of its momentum by
noting that is defined as

and because m is constant, we can further write that

We therefore find that

(6.2)

This is actually the form that Newton proposed for the second law and is more
general than the form , because it allows for cases in which the mass of an
object may change with time. Such a situation might arise when mass is either
being added or removed from the object over time (see the boxed discussion). For
example, a rocket burns fuel and decreases its mass by ejecting the waste gases or
the mass of a boat that is drifting by a pier may suddenly increase when you jump
into it. In both of these cases our original form of F � ma does not apply because
the mass is changing.
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Example 6.1 An E. coli bacterium of mass m � 6 � 10�16 kg is initially swim-
ming at a constant velocity of 8 �m/s toward the east. One ms later it is found
to be swimming at 10 �m/s toward the north. Find the change in the E. coli’s
momentum and the average external force acting on the bacteria during the 1 ms
time interval.

Newton’s second law for an object can be
written in terms of momentum as

. 

Using the definition of (Equation (6.1))
and the product rule for derivatives, we can
write this as

.

In the case when the mass is not changing
the last term vanishes and using the defini-
tion of acceleration we get the usual form
of . In cases where the mass is
changing (e.g., a rocket ejecting substantial
amounts of fuel), the full expression is
needed and this form of Newton’s second
law is the correct expression.
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Solution: It is very tempting to write that the change
in the bacterium’s momentum is the product of its
mass and the change in its speed (10 � 8) � 2 �m/s.
This temptation must be strongly resisted because it
is the change in the velocity vector that is appropriate
and this is not a one-dimensional problem. Figure 6.1
shows a vector diagram for the initial and final
momenta and the change in momentum of the bac-
terium. From the figure it is clear that the change in
momentum is found from the hypotenuse of the trian-
gle formed so that

The direction of this momentum change is given by

where the angle � is measured west of north as shown in the figure.
The average force acting over this interval of time is then given by

Equation (6.2) (without the limit) and is found to be

in the same direction as the momentum change.

B

F  �  
¢

B

p

¢t
 �  

7.7 �  10�27

10�3
 �  7.7 �  10�24 N

u� tan�1a 8

10
b � 39°,

� 7.7 �  10�27 kg # m/s

¢p � m1 vini
2 � vfin

2 � 6 �  10�16118 �  10�622 � 110 �  10�622

θ

mvfin − mvini

 mvini

mvfin 

FIGURE 6.1 Vector sub-
traction for Example 6.1.

Example 6.2 The fastest passenger elevator in the world (in a 70-story building
in Yokohama, Japan) attains a maximum speed of 12.5 m/s (28 mph) taking pas-
sengers from the ground to the top floor in 40 s. Find the maximum change in
your momentum if you were to ride in this elevator. What is the net change in
your momentum for the entire trip?

Solution: The maximum change in your momentum would occur during the
acceleration or deceleration phase of the ride. Assuming your mass to be 80 kg,
during the acceleration phase your momentum would increase from zero to p �
(80 kg) (12.5 m/s) � 1000 kg m/s, so that your maximum change in momentum
would just be 1000 kg m/s. For the entire trip to the 70th floor your net change
in momentum is zero because both your starting and ending momentum are zero.

Suppose that two otherwise isolated point particles undergo a collision. We
would like to understand what occurs and be able to predict the outcome. When far
enough apart, the two particles move independently and do not interact. They will
each have some momentum and if they are to collide must be moving along a line
connecting them; let’s call this the x-axis and we see that this problem for two-point
particles is really one-dimensional. Momentum is a particularly useful concept in this
situation, as we show. Suppose that particle #1 has momentum p1 and particle #2 has
momentum p2, both directed along the x-axis. For them to collide they must be mov-
ing toward each other, but they might both be moving in the same direction with one



particle “catching up” to the other, so let’s label the momenta as both positive for this
discussion.

If we write Equation (6.2) for each of the particles we have

(6.3)

where the only force on each particle is from the other one. These forces need not be
contact forces acting only during a (macroscopic) contact between the two particles,
but can also be long-range forces acting over long distances. Now, using Newton’s
third law, we know that these two forces are reaction-pair forces and are always equal
and opposite to each other. We can conclude then that because the vector sum of the
two forces always adds to zero, we must have at all times that

(6.4)

For this to be true it must be that the net momentum of the two particles remains

constant with time. We say that, in this situation, momentum is conserved. We have
specifically written these last few steps using vectors and in a general way to show
the power of the law of conservation of momentum, even though our current exam-
ple is one-dimensional. All we have used in this derivation are Newton’s laws (specif-
ically the second law written in terms of momentum and the third law) and the fact
that the particles were otherwise isolated, not interacting with any other objects.
Thus, we really have proven that any two isolated objects, not necessarily point par-
ticles, that collide will have a total momentum that remains constant (Figure 6.2).
Furthermore, even if there are external forces acting on the two particles, as long as
there are no external forces acting along the direction of their motion, momentum
will still be conserved. For example, momentum will be conserved for horizontal
(frictionless) motion of two colliding objects even though gravity may act vertically.
We show this in a couple of examples just below.

What does this tell us about the interactions between the two particles and the
outcome of the collision? The beauty of this formulation is that the outcome is inde-
pendent of the interactions; we do not need to know anything about the details of the
interaction in order to predict something about the outcome. All we need to know is
contained in Equations (6.3) and (6.4). During the collision the two objects will exert
equal and opposite forces on each other for some period of time. If the collision
involves short-range forces, so that the collision time �t is short, then the product of
the (typically) large force on one particle from the other and the short collision time
is called the impulse,

(6.5) Impulse � F¢t � ¢p � pfinal �  pinitial.
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FIGURE 6.2 Even two colliding
galaxies conserve momentum.



The impulse represents the “net effect” of a collision between two objects. It
lumps together the acting force and its duration into a single parameter that is able to
predict the change in momentum of the particle due to the collision. Figure 6.3 shows
a plot of a typical interaction force on a particle as a function of time during a colli-
sion. The impulse represents the area under this curve, equal to the average force act-
ing multiplied by the duration �t.

Suppose, for example, the two objects are identical, with the same mass m, and
are traveling toward each other at the same speed v. Then, although each object has
momentum mv, the net momentum before the collision is, in fact, zero. Do you see
why? (Remember that momentum is a vector!) In this case, conservation of momentum
predicts that the final momentum must be zero as well. There are two possible final sit-
uations for which the final momentum can be zero. In one case the two particles stick
together and come to rest, whereas in the other case they bounce off each other and go
off in opposite directions with the same magnitude of momentum that they had, and
thus at the same speed. Although both of these situations conserve momentum, they
differ in whether they conserve kinetic energy. The two particles that stick together and
come to rest clearly have lost their kinetic energy, giving it up to other forms of energy
such as sound and heat, because we know that ultimately energy must be conserved.

In more complex situations with two unequal mass objects traveling at different
speeds, the algebra becomes a bit more involved and the possible outcomes will
depend on whether kinetic energy is conserved. We do not dwell on these situations
in detail, but simply point out that conservation of momentum offers a major addi-
tional tool in their study. In the third section of this chapter we generalize our for-
mulation of conservation of momentum to more complex systems. A few examples
should help you to appreciate the power of this new conservation law.
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Example 6.3 A 60 kg boy dives horizontally with a speed of 2 m/s from a 100 kg
rowboat at rest in a lake. Ignoring the frictional forces of the water, what is the
recoil velocity of the boat?

Solution: Since there are no external horizontal forces acting (we have ignored
the frictional resistance force of the water here), momentum is conserved as the
boy dives off the boat. Because the initial momentum of the (boy � boat) sys-
tem is zero, the total momentum immediately after the boy dives off the boat
must also be zero so that the boy and the boat must have equal, but oppositely
directed, momenta. Note that it is the momenta that must be equal and opposite,
not the velocities. In equation form

We therefore have that

so that the boat’s recoil velocity is found to be 1.2 m/s in the direction opposite
to the boy’s velocity.

0 � (60 kg) (2 m/s) � (100 kg) vboat,
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FIGURE 6.3 Typical force acting on
a particle during a collision. Usually
the force is large and short-lived.
The area under the curve equals the
impulse, which is also equal to the
product of the average force and
the collision duration because the
area under the rectangle equals that
under the force curve.
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Example 6.4 Two ice skaters, both traveling at a speed of 5 m/s and heading
straight toward each other, collide and lock arms together. If their masses are 80 g
and 50 kg, find the velocity with which they move together after the collision.

(Continued)



In Example 6.3 we ignored the fluid medium and its frictional force. The sur-
rounding fluid medium is often of primary importance. Let’s turn our attention to the
problem of animal locomotion and, in particular, the motion of sea creatures such as
the squid or jellyfish. These creatures, and indeed all animals that swim or fly
through a fluid medium, move by virtue of reaction forces provided by the surround-
ing fluid medium. The jellyfish propels itself by jet propulsion, ejecting a volume of
water in a jet that provides a thrust force in the opposite direction. Fish and birds gen-
erate thrust in a more continuous fashion by pushing back on the fluid medium with
fins or wings (Figure 6.4). In any case, we can analyze such locomotion in either of
two ways: a difficult method using the detailed reaction forces or much more easily
using momentum.

Let’s discuss the jet propulsion of a jellyfish in order to derive an expression for
the thrust propelling it. We can model the jellyfish as a balloon that fills with water
and then collapses driving water out in a jet (Figure 6.5). Let the initial mass of water
contained within the balloon be m0 and suppose that the collapse results in a uniform
rate of decrease of the mass, �m/�t. Then the rate at which momentum is ejected
from the balloon will be

where we assume a constant velocity for the jet of water expelled. By Newton’s sec-
ond law, the rate of momentum ejection provides a net force, known in this context
as the thrust. If we take the initial volume of the jellyfish to be that of a 0.1 m radius
sphere filled with water of density 	 � 1000 kg/m3, then m0 � (volume) (density) �
4/3 of water. If this water is ejected in 1 s through a 1 cm radius circular pr3 r�  4.2 kg

¢p

¢t
�

¢m

¢t
 v,
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Solution: There are no horizontal external forces acting, so therefore momentum is
conserved and we know that the sum of the skaters’ two initial momenta is equal to
their combined final momentum. Initially their momentum is Pini � (80 kg) (5 m/s)
� (50 kg) (5 m/s) � 150 kg-m/s in the direction the 80 kg skater is traveling. When
they lock together, their combined mass is 130 kg and we must have that

so that vfin � 1.2 m/s in the direction the heavier skater was traveling.

Pfin � (130 kg) v fin � Pini � 150 kg-m/s,

FIGURE 6.4 Bird, rocket, or fish, propulsion is by thrust, a reaction force, that conserves
momentum.



aperture, then we can first calculate the velocity of water flow.
This is found by assuming that the total volume of water flows
out in a cylindrical jet whose length is proportional to the
velocity; that is, 	AL � m0, where L � vt. Knowing the mass
m0, density, cross-sectional area A � 
(.01 m)2, and time 
t � 1 s, we can calculate the water velocity to be v � 13 m/s
first, and then

to find about 55 N of thrust is generated. This is actually a
greater force than the weight of the initial water contained in
the balloon. A similar analysis can explain the thrust of a
rocket or that of a bird, but a realistic analysis will be more
complex because of the nonconstant velocities involved in the
problem.

2.  CENTER OF MASS

The simplest systems are composed of a single point particle introduced in the pre-
vious chapters. Here we begin our systematic study of increasingly more complicated
systems of two particles, of many particles, or of a single extended object such as a
person. For any system there is a well-defined point, the center of mass, at which the
entire mass of the system can be considered to be concentrated in order to understand
its translational motion.

A rough analogy to finding the center of mass can be made to locating the pop-
ulation center of the United States. Rather than weighting locations by their mass,
they are weighted, in this case, by their local populations. This two-dimensional
problem on a map could be attacked in a number of approximate ways, one of which
we illustrate. Using census figures for the state populations and choosing some
appropriate location as the population center within each state (e.g., by specifying lat-
itude and longitude of its largest city) one could find the U.S. population center by
separately averaging the latitude and longitude of the states, weighting each by its
population. Thus California, Texas, and New York, together with more than one third
of the U.S. population, dominate in the calculations and we expect to find a popula-
tion center somewhere in the Midwest, even though the Midwest population is not
particularly large. This example illustrates the notion of weighting locations by a
local property or characteristic.

To introduce the definition of center of mass consider two particles of masses
m1 and m2 attached by a light (massless) rod of length L as shown in Figure 6.6. If
this system were tossed into the air it would translate and rotate about before land-
ing on the ground. One special point, the center of mass of the system, would travel
in the same trajectory as a single particle of mass (m1 � m2) launched with the
same initial velocity (we show this in the next section). Qualitatively this point can
be imagined to be determined by finding the balance point along the rod. That is,
imagine moving your finger along the rod until you can balance the rod with its
masses on either end. That point is also the center of mass. For example, if m1 � m2
the center of mass would be located in the center of the rod at a distance of L/2
from either end. If m1 � m2, then the balance point would be closer to m1, but how
much closer?

Because the balance point in Figure 6.6 will be closer to the more massive parti-
cle, we want to define the center of mass as an average position of the two particles,
with more massive particles counting more in the averaging process. We therefore
define the center of mass along one dimension, xcm, relative to an arbitrary origin, as

F �
¢m

¢t
 v
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FIGURE 6.5 Model of a jellyfish as
a balloon.

FIGURE 6.6 Two masses separated
by a light rod.

L

m1 m2



We can generalize this definition in a straightforward way to systems of more
than two particles by simply adding terms for additional point masses in both the
numerator and denominator in Equation (6.6). However, with more than two parti-
cles, the system need not be one-dimensional if the masses are not co-linear. In this
case we can also define the y- (and z-, if needed) components of the center of mass
in a similar way and combine them by writing . Using the

summation notation that � indicates to sum over all particles in the system, we can
write (with a similar equation for zcm)

(6.7)

where M is the total mass of the system. The subscript i denotes a particular numbered
particle and the summation sign indicates that i is to be varied from number 1 to the
total number of particles in the system while performing the additions indicated.

xcm � a ami

M
bxi and ycm � a ami

M
byi,

B

rcm �  (xcm, ycm, [z cm])
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Example 6.5 Find the center of mass of the Earth–moon system given that
the mean radius of the Earth is 6.37 � 106 m, the mean radius of the moon is
1.74 � 106 m, the Earth–moon mean separation distance is 3.82 � 108 m, and
that the Earth is 81.5 times more massive than the moon.

Solution: The Earth–moon separation is so much larger than the radius of either;
therefore we can treat both bodies as point masses for the purposes of this cal-
culation. With an origin at the center of the Earth (see Figure 6.7), we can write

Thus, the center of mass of the Earth–moon system actually lies within the
Earth.

xcm �
Me102� Mm (L)

Me � Mm
�

1

1 �
Me

Mm

L � 0.012 L � 4.63 *   106 m.

(6.6)

where x1 and x2 are the x-coordinates of masses m1 and m2, respectively.

xcm � a m1

m1 � m2
bx1 � a m2

m1 � m2
b  x2,

L
Me

Mm

x

FIGURE 6.7 The Earth–moon system.

Example 6.6 Find the center of mass of a water molecule using the following
data (Figure 6.8): radius of O � 0.14 nm, radius of H � 0.12 nm, bond length of
O–H bond � 0.097 nm, and H–H angle subtended at O � 104.5°.
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Solution: We solve this problem in two different ways using two different coor-
dinate origins to see that the answer is independent of the chosen origin.

(1): In the first solution we set the origin on the O center and use the axes
shown on the left. In this case the atoms have their centers located at: O (0,0);
H (�0.097 cos 52.3°, 
 0.097 sin 52.3°) � (�0.059, 
 0.077), where the O–H
bond is the center-to-center distance and we have found the x- and y-components
of the H centers. We solve for the x- and y-coordinates of the center of mass (tak-
ing the masses of O and H as 16 and 1) by writing

and

where the zero value for ycm should be expected from the fact that the two H
atoms are symmetrically situated above and below the x-axis.

(2): Using the coordinates shown on the right in the figure the atoms have
their centers located at: O (0.097 cos 52.3°, 0.097 sin 52.3°) � (0.059, 0.077),
H (0, 0) and H (0, 2 0.097 sin 52.3°) � (0, 0.15). Using the same basic rela-
tions we write

and

Although these two answers appear at first glance to be different, the shift
in origins must be accounted for in comparing them. The origin on the right is
located at the point (�0.059, �0.077) with respect to the origin on the left and
if we compare the actual spatial location of the center of mass in both parts (by,
e.g., adding the origin coordinates on the right with respect to those on the left

ycm �
1610.0772� 1102� 110.152

18
� 0.077 nm.

xcm �
1610.0592� 1102� 1102

18
� 0.053 nm,

#

ycm �
16102� 110.0772� 11� 0.0772

18
� 0,

xcm �
16102� 11� 0.0592� 11�0.0592

16 � 1 � 1
� �0.0066 nm,

x

y

x

y

FIGURE 6.8 Space-filling models of a water molecule with
two different coordinate system origins.

(Continued)



In the case of a solid extended object, if it is uniform throughout and has some
symmetry we can often determine its center of mass by inspection, based on the
notion of a balance point that was qualitatively introduced with Figure 6.6. For exam-
ple, a uniform solid rod will have its balance point, or center of mass, at its geomet-
ric center. Even if an object has multiple parts, each of which is uniform throughout
and has some symmetry, we can reduce the problem to finding the center of mass of
a collection of particles, one for each part of the object with the mass of each part
located at the center of mass of that part. This is illustrated in the following example.
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to the answers in part 2), we find identical results, indicating a unique spatial
location for the center of mass.

A different approach to the problem might be to first recognize that by
symmetry the ycm must lie along the x-axis using the left set of coordinates in
Figure 6.8 and then to set up the problem as a two-mass system with the total H
mass located at x � �0.059 nm and the O mass at the origin. Try it.

Example 6.7 The solid objects shown in the three figures below are all made
from the same uniform material and have the same thickness. In part (c) there is
a small hole in the larger circular plate. Find the center of mass of each object
using the coordinate system shown. Take R � 0.1 m and L � 0.05 m.

Solution: Because all the objects are made of a uniform material and have the
same thickness, their masses are simply proportional to their areas. This is true
because the mass m is equal to the product of the density 	 of the material, its
thickness t, and its area A, or

Because both the density and thickness are constants, , and further-
more, because in Equation (6.6) only the ratio of masses appears, we do not need
to know the thickness or density of the materials as they cancel and do not
appear in the final result. In what follows we therefore set the proportionality
constant simply equal to 1 and numerically equate masses and areas.

We proceed by replacing each regular shape with a point mass having the
same total mass as that portion of the entire object and located at its center of
mass (these are found by inspection because the shapes are highly symmet-
ric). Each problem then reduces to a set of point masses, all located in the
same plane. In part (c) we use a trick: let the hole have a negative mass
according to its size and superimpose the larger solid circular plate with the

m r A

m � r t A.
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FIGURE 6.9 Uniform solid objects for Example 6.7.



In the general case of nonuniform and/or nonsymmetric objects, the center of
mass can always be found experimentally by finding the balance point along three
mutually perpendicular axes, if possible, or by suspending the object separately from
three different points, drawing vertical lines from those points, and looking for the
intersection of the three lines (Figure 6.10). The reason why this latter method works
becomes clearer after we have discussed rotational motion, but the center of mass
must lie suspended vertically under the suspension point. Alternatively, one can use
more complex mathematics to calculate the center of mass position. We show a more
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smaller circular plate of “negative” mass, thus canceling the mass within the
hole region!

In (a) we have the following three objects: M � 4R2 � 0.04 located at (R, 3R) �
(0.1, 0.3); M � 
R2 � 0.031 at (R, R) � (0.1, 0.1); and M � 
R2 � 0.031 at (3R,
3R) � (0.3, 0.3). We then find that

and

In (b) we have three point masses: M � 2L2 � 0.005 at (L/2, L) � (0.025,
0.05); M � 4L2 � 0.01 at (2L, 2.5L) � (0.1, 0.125); and M � 3L2 � 0.0075 at
(2L, 4.5L) � (0.1, 0.225). The center of mass is given by

and

In (c), using the trick mentioned above, we have two point masses: M �

(2R)2 � 0.13 at (2R, 2R) � (0.2, 0.2); and M � �
(R/2)2 � �0.0079 at (2R,
3R) � (0.2, 0.3). Using the same method we find

as expected, and

This last number seems reasonable because with a hole cut out we expect ycm
to be somewhat less than 2R � 0.2 m.

You should go through each answer, following all the steps, and see that the
center of mass position makes qualitative sense.

ycm �

4pR2 (2R) - p 
R2

4
 (3R)

3.75pR2
� 0.19 m.

xcm �

4pR2 (2R) - p 
R2

4
 (2R)

3.75pR2
� 0.2 m,

ycm �
2L2(L)�4L2 (2.5L)�3L2(4.5L)

9L2
� 0.14 m.

xcm �
2L2 (L/2)�4L2 (2L)�3L2 (2L)

9L2
� 0.083 m,

ycm �
4R2 (3R)�pR2 (R�3R)

4R2�2pR2
� 0.24 m.

xcm �
4R2 (R) � pR2 (R � 3R)

4R2 � 2pR2
� 0.16 m,



150 M O M E N T U M

FIGURE 6.10 Node I, a part of the International Space Station, being readied (left) and
having its center of mass determined by suspending it from above.

direct experimental approach to finding the center of mass in the next section. There
we show that the center of mass translates about in space as if all external forces act
directly on the entire mass of the system located at its center of mass.

3.  CENTER OF MASS MOTION: NEWTON’S SECOND LAW
AND CONSERVATION OF MOMENTUM

In the last section we learned how, in principle, to find the center of mass of any
object, and in practice, to find that point for a collection of particle masses or sym-

metric objects. Here we show that the translational motion of a
system of particles or an extended object is fully described by knowl-
edge of the center of mass motion. The main goals of this section are
to generalize Newton’s second law for a particle to a very similar
result for the center of mass of a system and to generalize the law of
conservation of momentum.

The derivation of the generalization of Newton’s second law to a
system of extended objects is straightforward using some calculus
(see box on the next page), but otherwise is cumbersome. The result-
ing Newton’s second law for a system is

(6.8)

where the sum � is over all of the external forces acting on the sys-
tem, M is the total mass of the system (assumed constant; a system
that does not exchange mass with its surroundings is known as a
closed system), and is the acceleration of the center of mass. In
this expression the only forces that produce an acceleration of the cen-
ter of mass are forces exerted on the system by objects that are exter-
nal to the system, so-called external forces. All of the internal forces

between the particles of the system cancel pairwise because they are
equal and opposite according to Newton’s third law. This equation
also applies to extended objects because they can be considered to be
built up from particles. We conclude that the translational motion of a
system can be completely described by replacing the entire system by
a point mass with total mass M located at the system’s center of mass,

, with only external forces acting (Figure 6.11).
B

rcm

B

acm

B

Fnet, ext � g B

Fext � M
B

acm,

FIGURE 6.11 (top) A good high
jumper has a center of mass that
actually goes under the bar in well-
defined two-dimensional free-fall
motion while his flexible body goes
over it. (bottom) An unmanned
Titan rocket explodes shortly after
takeoff in 1998. Despite fragment-
ing into many pieces the center of
mass continues in a well-defined
trajectory (see Example 6.8).
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As a byproduct of the derivation of Equation (6.8), we show (in
the box) that the total momentum of the system, the vector sum of the
individual particle momenta, is equal to the momentum of the center
of mass, or the product of the total mass M and the center of mass
velocity ,

(6.9)

Thus an alternative way to write Equation (6.8), in terms of the cen-
ter of mass momentum, is

(6.10)

We see that the center of mass moves as if all the mass of the sys-
tem is located there and experiences the net external force on the entire
system. So, no matter whether the system is composed of a single
extended object (such as the high jumper of Figure 6.11) or many inde-
pendent parts (such as the exploded rocket in that figure), the center of
mass of the system moves in a well-defined trajectory based on the total
mass and the net external force on the system.

Written in this form we can deduce a very important consequence:

B

F
net, ext � lim

¢t:0

¢
B

Pcm

¢t
.

B

Pcm � M
B

vcm � g B

p
i.

B

v
cm

In the absence of a net external force on a system, the center of

mass momentum, or total momentum of the system, does not

change with time, and is said to be conserved.

This is a statement of the principle of conservation of momentum, a
very powerful and general result, which holds for all isolated systems,
those with no net external forces applied. It is a fundamental principle
that holds on every scale of distance: on the atomic or nuclear scale as
well as on the scale of the size of the universe. We saw a preliminary ver-
sion of this in the first section of this chapter for collisions between two
particles, but the principle is much more general than we saw there.

Conservation of momentum is the second of a handful of conserva-
tion laws that we study in this book. We have already learned the con-
servation of energy principle and seen its tremendous value as a tool in
understanding motion. Later on we demonstrate its value in all other
areas of physics that we study. Energy and momentum conservation are
two of the cornerstones of physics. Because the momentum of an iso-
lated system is constant, if we compute the total momentum at any time, its value at any
other time will be the same vector, namely the same value and in the same direction. Just
as with energy conservation, we can use our knowledge of the situation at one instant of
time to find the total momentum, which will remain constant as long as there are no
external forces acting. On the other hand, unlike energy conservation, momentum is a
vector and therefore a direction as well as a magnitude is fixed in time.

We note that the kinetic energy of a particle can in fact be rewritten in
terms of the particle’s momentum in place of its velocity. Using the definition of the
magnitude of the momentum p � mv, we have that KE � p2/2m. You need to keep in
mind that although the kinetic energy, a scalar, can be written in terms of the square of
the particle’s momentum, the conservation laws of energy and of momentum are two
different laws that keep different quantities constant. For a closed system (one with no
exchange of mass with its surroundings) with no external forces acting, the total, or cen-
ter of mass, momentum will be conserved as will the total mechanical energy. However,
the kinetic energy of the system may change because it can be exchanged for potential

KE � 1
2mv2

A derivation of Equation (6.8): Starting
from a rewriting of Equation (6.6) for the
x-component of the center of mass

,

we can differentiate both sides of the equa-
tion with respect to time to find 

, 

or

,

where and are the momentum of the
center of mass and the individual particles.
Thus we see that the center of mass momen-
tum is equal to the total momentum of the
system of particles. If we further differenti-
ate this equation with respect to time we have

,

where we have used Newton’s second law
for each particle, assumed that the total
mass of the system is constant, and is 
the net force on the ith particle. To com-
plete the derivation of Equation (6.8), we
note that the forces on particle i are of two
types: external, arising from objects outside
the system, and internal, arising from other
particles in the system. These latter internal
forces cancel pairwise in the summation
because a force on particle 2 from particle
3 is equal and opposite to the force on par-
ticle 3 from particle 2 and all possible pairs
of forces will be summed. The final result
is Equation (6.8). Newton’s law can be gen-
eralized still further to a system of extended
objects with no change to Equation (6.8).
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energy within the system. In the first section of this chapter we saw a few examples
of the application of momentum conservation to the collision between two objects.
Two quite different examples should help to provide an appreciation for the power of
the conservation of momentum principle.
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Example 6.8 A rocket of mass M explodes into three
pieces at the top of its trajectory where it had been
traveling horizontally at a speed v � 10 m/s at the
moment of the explosion. If one fragment of mass
0.25 M falls vertically at a speed of v1 � 1.2 m/s, a
second fragment of mass 0.5 M continues in the orig-
inal direction, and the third fragment exits in the for-
ward direction at a 45° angle above the horizontal (see
Figure 6.12), find the final velocities of the second and
third fragments. Also compare the initial and final
kinetic energies to see how much was lost or gained.

Solution: Although the rocket is not an isolated system, the forces in the explo-
sion are assumed to be so much greater than the weight of the rocket that we can
neglect gravity at the moment of the explosion. This situation is very similar to
that of any collision in which two objects interact very strongly for a very short
time as, for example, when a tennis racket hits a ball. In all such cases we can
neglect gravity during the collision and treat the system as isolated. Therefore
the initial momentum of the rocket Pini � Mv in the horizontal direction must be
conserved during the explosion and the sum of the momenta of the three frag-
ments must add up to exactly this same Pini value. Using vector addition, we can
write that conservation of momentum in the horizontal direction implies

where the velocities are labeled as in the figure. Note that the first fragment falls
vertically and does not contribute to this equation for the horizontal momenta.
Conservation of momentum in the vertical direction gives a second equation

Substituting that v1 � 1.2 m/s, we find first, from the second equation above
after canceling the common factor M, that

and then, on substitution into the first equation above, that

so that v2 � 19 m/s.
The initial kinetic energy is , and the total final kinetic

energy is , both 

measured in J with M in kg. The kinetic energy has increased by over 80% with the

KEf �  12 (M/4)(1.2)2 �  12 (M/2)(19)2 �  12 (M/4)(1.7)2 �  90.8 M

KEi � 1
2mv2 � 50 M

10 � 0.5 v2 � 0.25 # 1.7cos 45°,

 v3 �
1.2

sin 45°
� 1.7 m/s,

0 �
1

4  Mv1 �
1

4
 Mv3 sin 45°.

Mv �
1

2 Mv2 �
1

4  Mv3 cos 45°,

v

M

v1 v2

v3

FIGURE 6.12 The rocket
before (top) and just after
(bottom) the explosion of
Example 6.8.
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Example 6.9 A hockey puck of 0.5 kg mass traveling at a speed of 5 m/s collides
with an identical stationary puck in a glancing (not head-on) collision. If the first
puck is deflected by 30° and travels with a final speed of 3 m/s, find the final
velocity of the puck that was hit if it moves off at a 45° angle as shown. Ignore
any friction between the ice and pucks.

Solution: Because there are no external horizontal forces acting, momentum is
conserved. With the initial direction of motion chosen as the x-axis, the initial
momentum is only

After the collision, both pucks have x momentum (components of their
momentum vectors) that must add up to the initial momentum as

where v is the final velocity of the second puck. Solving for v we find v � 3.4 m/s.
Notice that energy is not conserved in this collision because the initial KE �
1/2 (0.5)(5)2 � 6.25 J, whereas the sum of the final KE � 1/2 (0.5)(3)2 � 1/2
(0.5)(3.4)2 � 5.1, amounting to a loss of about 18% of the initial KE.

2.5 kg m/s � (0.5 kg)(3 cos 30 m/s) � (0.5 kg)( v cos 45),

p ix � m v 0 � (0.5)(5) � 2.5 kg m/s.

before
after 

Example 6.10 Suppose one proton moving with a speed v0 collides with a sec-
ond proton initially at rest. If one of the protons emerges at a given angle � from
the incident direction, find the speeds of both after the collision and the angle �

(Continued)

excess coming from the chemical energy released in the explosion. Kinetic energy
alone is not conserved in this example, but momentum is. On the other hand, the
general principle of conservation of energy is obeyed with the total mechani-
cal, chemical, and other sources of energy remaining constant for the rocket.

In the above example we’ve seen how in an explosion we can use conservation
of momentum to learn about the motion of the final pieces. Similarly in a collision
between objects we can use conservation of momentum during the collision to
learn about the final motions of the objects after collision. For microscopic objects
that interact during a collision, of say atoms, the forces are all conservative and the
collisions, aside from conserving momentum, tend to be elastic, conserving energy
as well. In most cases of macroscopic objects colliding, the collisions tend to be
inelastic, so that energy is lost (or gained in the explosion of the last example) even
though momentum is conserved during the collision. The next two examples illus-
trate some of these possibilities.
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at which the second proton emerges from the colli-
sion. Work this out in general and then take v0 � 106

m/s and � � 30°.

Solution: We are searching for three unknown quanti-
ties, and so require three independent equations. We
work this problem out without substituting in numbers so that we can learn about
the general case. These equations can be obtained from conservation of momen-
tum (two equations, one for the incident direction, say x and one for the direc-
tion perpendicular to that, say y) and conservation of energy.

Conservation of momentum in the x-direction gives

(1)

where m is the proton mass, and v1 and v2 are the protons’ final velocities.
Conservation of momentum in the y-direction gives

(2)

Energy conservation gives us the equation

(3)

We now have our three equations in three unknowns—this was the physics
part of the problem—and the remainder of the problem is to solve for them alge-
braically. This is a bit complicated, so follow closely. First we can cancel all 
the m’s in all three equations and if we then solve for v2cos � and v2sin � in
Equations (1) and (2) we have

and

(4)

We can then square each of these and add them together to find, using sin2 � �
cos2 � � 1, that

but from Equation (3), after canceling 1/2 m from each term, we have that

Expanding out the terms in parentheses and combining again we have

Simplifying this, we have

which has the solutions v1 � 0 or v1 � v0cos �. The solution v1 � 0 gives 
v2 � 
v0 indicating a head-on solution in which one proton stops and the
other goes on in the forward direction (we must reject the negative solution
for v2 as unphysical.) The other solution, from Equation (3), gives v2 �

 v0sin �. In that case to find �, after substitution for v1 in Equations (4) we
have that

2v1 (v1 � v0 cos f) � 0,

 v0
2 � 2 v1

2 �  v0
2 � 2 v0 v1 cos f.

 v0
2 �  v1

2 �  v2
2 �  v1

2 �  (v0 � v1 cos f)2 �  (v1 sin f)2.

 v2
2 �  (v0 � v1 cos f2) �  (v1 sin f)2,

 v2 sin u� v1 sin f.

 v2 cos u� v0 � v1 cos f,

1

2 mv0
2 �

1

2 mv1
2 �

1

2 mv2
2.

p0y � 0 � m v1 sin f � m v2 sin u.

p0x � mv0 � pfx � mv2 cos u� mv1 cos f,

x
θ

φ

vo

v2

v1

y



In this chapter we have learned how to describe the translational motion of a sys-
tem of extended objects using the center of mass and momentum conservation. In gen-
eral such systems will have two other types of motion: overall rotational motion and
internal motions. Internal motions include all relative motions of portions of the system
other than overall rotational tumbling, including shape changes as well as vibrational
motions. We come back to this topic much later in the book in discussions on the struc-
ture of matter. Rotational motion is taken up in detail in the next chapter.
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and

Dividing these equations we find that

Therefore, given an angle � for the first proton, the second emerges such that
� � � � 90°. In our case, if v0 � 106 and � � 30°, we find v1 � 8.7 � 105 m/s,
v2 � 5.0 � 105 m/s and � � 60°. You can check these by direct substitution into
Equations (1)–(3), after canceling m.

tan u� 1/tan f.

 v2 sin u� v0 sin f cos f.

 v2 cos u� v0 � v0 cos2 f� v0 (1 � cos2 f) � v0 sin2 f

(6.7)

Then for a system of such masses, Newton’s sec-
ond law can be shown to be

(6.8)

or written in term of momentum, as

(6.10)

In the case of an isolated system, with no external
forces acting, the center of mass momentum, equal to
the total momentum of the system, is conserved:

. This is a vector equation and, in 

general, stands for the three independent equations for
which each component (x, y, and z) of momentum
remains constant.

B

P
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CHAPTER SUMMARY
The momentum of a particle of mass m is defined as

(6.1)

Using this definition, we can write Newton’s sec-
ond law for the particle in terms of its momentum as

(6.2)

If two particles interact in the absence of any exter-
nal forces, then their total momentum is conserved,
meaning that it will remain a constant in time.

A useful concept in discussing collisions is the
impulse, defined by the product of the collision force
and its duration, and shown to equal the change in
momentum of the object:

(6.5)

For a collection of masses mi, each located at 
(xi, yi), with total mass M, we define the center of mass
to be located at the point

 Impulse � F¢t � ¢p � pfinal � pinitial.

B

Fnet � lim
¢t:0

¢
B

p

¢t
.

B

p � m
B
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QUESTIONS
1. What are the differences and similarities between

momentum and velocity? Between momentum and
kinetic energy?

2. Is it possible for the center of mass of a solid object
to lie physically outside the object? Give an example
or two to support your assertion.

3. For uniform (constant density) objects, is it true that
the center of mass must lie along a symmetry axis, if
there is one? Give some examples.

4. Explain, in your own words, why only external forces
result in a change in the center of mass momentum of a
system of interacting particles or an extended object.

5. Carefully define an isolated system. Give some exam-
ples and explain why it is that momentum is only con-
served for an isolated system.

6. Is a rocket traveling in outer space an example of an
isolated system? If so, how can the rocket change its
momentum if it is to be conserved?

7. Two identical twins of equal mass are ice skating toward
each other at the same speed. What happens when they
collide? What happened to their momentum?

8. In a collision of a tennis ball with a racket, why
should the tension in the strings of the racket be made
as large as possible?

9. When a collision between two objects occurs and
there is a net change in the momentum of one object
there are very large forces acting for a very short
time. The product of the average force on the object
during the collision and the duration of the collision
is called the impulse. If a tennis ball of mass m and
velocity v bounces off a wall and rebounds with the
same speed, what is the impulse on the ball? Why
does a new tennis ball bounce higher than an older
tennis ball when dropped from the same height?

MULTIPLE CHOICE QUESTIONS
1. A 3 kg mass has position coordinates (�2, 2 m) and a

1 kg mass has position coordinates (3, 0 m). The cen-
ter of mass of this system has coordinates (a) (1, 2 m),
(b) (�3, 6 m), (c) (�0.75, 1.5 m) (d) (0, 0 m).

2. A 2 kg mass is at x � 0 m, y � �2 m, and a 3 kg
mass is at x � 2 m, y � 0 m. The x- and y-
coordinates, respectively, of the center of mass of this
system are (a) �6/5 m, �4/5 m, (b) �2/5 m, �2/5 m, 
(c) 0, 0 m, (d) �2 m, �2 m.

3. A 5 kg bowling ball with a center of mass velocity of
4 m/s strikes the padded end of the bowling lane and
comes to rest in 0.01 s. The average force exerted on
the ball is (a) 400 N, (b) 2000 N, (c) zero, (d) 500 N.

Questions 4 and 5 refer to a car weighing 900 N that is
heading north at 14 m/s. It makes a sharp turn and heads
west at 18 m/s. During the turn, a good luck charm hang-
ing from the rear view mirror is angled from the vertical
for a total of 5 s.

4. The magnitude of the average force on the car during
this time is (a) 720 N, (b) 73 N, (c) 420 N, (d) 210 N.

5. The direction of the average force on the car during
this time is (a) 38° S of W, (b) 38° N of W, (c) 52° S
of W, (d) 52° N of W.

6. An 80 kg man and a 40 kg girl are skating on smooth
level ice. Initially, they are in contact and at rest. The
man pushes the girl away from him with a force of 30 N.
Immediately after they are no longer in contact the
girl’s speed is 2 m/s. At the same instant the man’s
speed (a) must be zero, (b) must be 2 m/s also,
(c) must be 1 m/s, (d) depends on how much force the
girl exerts on the man.

7. A 40 kg boy is standing on a 5 kg skateboard at rest.
If he jumps off with a horizontal velocity of 1 m/s,
neglecting friction the recoil velocity of the skate-
board is (a) 1 m/s, (b) 0.1 m/s, (c) 0.03 m/s, (d) 8 m/s.

8. A 50 kg astronaut in orbit can give a 10 kg wrench a
speed of 10 m/s by throwing it. The speed the astro-
naut will recoil with after doing so will be (a) 0 m/s,
(b) 2 m/s, (c) 10 m/s, (d) 50 m/s.

9. In a head-on collision between a seagull and a jet
airplane
(a) The momentum of the airplane is exactly

conserved.
(b) The total kinetic energy is exactly conserved.
(c) The magnitude of the change in momentum of the

seagull divided by the collision time equals the
magnitude of the average force on the jet.

(d) The total momentum is zero.
(e) None of the above is true.

10. A 0.1 kg meter stick has two masses attached: 0.3 kg
at 20 cm and a 0.4 kg at 100 cm. The center of mass
of the system lies at the following indicator on the
meter stick. (a) 57.5 cm, (b) 63.8 cm, (c) 65.7 cm, 
(d) 70 cm, (e) none of the above.

PROBLEMS
1. Find the center of mass of the following sets of point

masses.
(a) A 2 kg mass at x � 5 cm and a 5 kg mass at 

x � �2 cm
(b) A 1 kg mass at y � 0 and a 4 kg mass at y � 10 cm
(c) Three small objects each of the same mass m,

located at the following points (0,0), (0,10 cm), 
(10 cm, 0)

(d) Point mass m at (0,0), point mass 3m at (0, 5 cm),
point mass 5m at (5 cm, 0) and point mass m at 
(5, 5 cm)

2. Using Table 6.1, find the center of mass of
(a) A person standing upright with hands at sides
(b) An outstretched arm and an arm bent upward at

the elbow by a right angle
(c) A person bent over so that there is a right angle

between her straight legs and upper body/head
and between her upper body and straight arms
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3. From the text discussion, you know that the center of
mass can be found through “balancing methods”, that
is, suspending an object from a point. This procedure
indicates that for three equal masses situated at the
vertices of an equilateral triangle, the center of mass
will be at the intersection of the three angle bisectors
of the triangle. From elementary geometry theorems,
it is known that the three angle bisector segments
intersect at a point that is 2/3 of a segment length
away from its angle vertex. Calculate the center of
mass for the mass arrangement shown and compare
its position to the intersection of the angle bisectors.

Note that because the height of the triangle is a 3/2,
the method is a physical manifestation of the theorem
that the bisectors of angles of an equilateral triangle
intersect at the center of mass of the triangle (usually
called the “centroid” by mathematicians). This is true
whether the physical triangle is constructed of sides
only, of similar and uniform cross-section, or if the tri-
angle is a uniform plate.

sure you arrange the coordinate framework to take
advantage of any remaining symmetry. (Hint: Missing
masses can be represented as M � M � 0 mass, so that
the sum of a negative mass can be added to the situa-
tion with a full complement of masses at the vertices.)
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Table 6.1 Distances and Masses of Portions of the
Typical Human Body (Expressed as % of Total
Height and Mass)

Hinge Points Center of Mass 
(from floor) (from floor) Mass

Neck 91.2 Head 93.5 6.9

Shoulder 81.2 Trunk/neck 71.1 46.1

Elbow 67.2 Upper arms 76.0 6.6

Hip 52.1 Lower arms 55.3 4.2

Wrist 46.2 Hands 43.1 1.7

Knee 28.5 Upper legs 42.5 21.5

Ankle 4.0 Lower legs 18.2 9.6

Feet 1.8 3.4
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4. Calculate the center of mass for three equal masses
situated at the vertices of a 3-4-5 right triangle.

5. Calculate the center of mass for the arrangement of
three masses also situated at the vertices of a 3-4-5
right triangle, but where the masses are in the ratio
3:4:5, with the largest opposite the hypotenuse and
the smallest opposite the shortest side. Compare the
result with the previous problem.

6. By symmetry, the center of mass of a uniform regular
polygon is at its center. Similarly, this is true for an
arrangement of equal masses situated at the vertices of
such a polygon. Where is the center of mass for each
of the arrangements shown, where only a subset of the
vertices of the polygon is occupied by masses? Make

y

x

(0,3)

(0,0) (4,0)

8. Consider a uniform linear arrangement of ten masses,
that is, with equal spacing between, ranging from 1 to
10 kg, each 1 kg more than the previous. Where is the
center of mass of the assemblage?

9. Three uniform spheres of radii R, 2R, and 3R lie in con-
tact with each other from left to right in the order given
with their centers along the x-axis. Remembering that
the volume of a sphere is given by (4/3)
r3, find the
position of the center of mass of the three spheres as
measured from the left edge of the smallest sphere.

10. Find the center of mass of a screwdriver with the fol-
lowing characteristics: a wooden cylindrical handle
(density of wood � 0.5 � 103 kg/m3; cylinder length
and diameter � 10 and 2 cm) and a steel cylindrical rod
(density of steel � 7.8 � 103 kg/m3; 15 cm long and
0.5 cm in diameter, with an additional 3 cm flat uni-
formly tapered head with a triangular cross-section).

11. Three uniform rods (identical except for their lengths)
form the right triangle shown with coordinates measured
in meters.

7. Consider the three spherical masses shown. How far
to the right of m2 should m3 be so that the center of
mass of the entire arrangement is located exactly at
the position of m2?



(a) Replace each rod by an equivalent point mass at
its proper location, assuming a 1 m rod has a mass
of 1 kg. Show these in a figure.

(b) Solve for the x- and y-coordinates of the center of
mass using the given coordinate system.

12. A ball of 0.5 kg mass is dropped from rest at a
height of 1 m. What is its momentum as it hits the
ground?

13. A 0.1 kg ball bounces perpendicularly off a wall with
the same speed of 5 m/s that it hit the wall.
(a) What is the change in momentum of the ball when

it hits the wall?
(b) If the collision took 5 ms, what average force was

exerted on the ball?
(c) Did the wall change its momentum, and if so, why

doesn’t it move?
14. Tennis pros can often serve the ball at speeds in

excess of 125 mph. High-speed photography shows
that the racket and ball make contact for about 4 ms.
Find the average force that must be exerted on the ball
to serve it at 125 mph. Use a mass of 0.05 kg for the
tennis ball.

15. A rocket used for fireworks explodes just when it
reaches its highest point in a vertical trajectory. It
initially bursts into three fragments with masses of
m, 3m, and 4m, each of these to explode slightly
later. If the 4m fragment falls vertically with an
initial velocity of 8 m/s, and the 3m fragment is
ejected with a velocity of 10 m/s at an angle of 30°
above the horizontal, find the velocity of the third
fragment.

16. A 5 kg crate initially at rest is pushed along a fric-
tionless horizontal surface by a 10 N force directed at
an angle of 30° above the horizontal.
(a) Find the velocity of the crate after 5 s.
(b) If at this time (after the 5 s) the applied force is

removed and the crate travels up a 30° incline
with a coefficient of kinetic friction of 0.2, use the
work energy theorem to find how far along the
incline the crate travels before coming to rest.

(c) If the same process is repeated as in part (a) but
this time after removing the applied force at t � 5
s, the crate collides with a horizontal spring 2 s
later, compressing it a distance of 50 cm. Find the
spring constant.

(d) If the crate in part (c) travels back along the same
path after leaving the spring, and then collides and
sticks to a similar 2 kg crate at rest, find the final
velocity of the two crates after the collision.

17. A 10,000 kg railroad car traveling at a speed of 24
m/s strikes a 1200 kg automobile initially at rest on
the track. Assume that the auto sticks to the railroad
car after the collision.
(a) What is the speed of the auto–railroad car system

immediately after the collision?
(b) What is the percentage loss in kinetic energy of the

auto–railroad car system as a result of the collision?

After the collision the auto–railroad car system
slides along the track with a coefficient of kinetic
friction equal to 0.9.
(c) What is the frictional force?
(d) How much work will be done by the frictional

force during the time the system takes to come to
a halt?

18. A 200 kg roller coaster car falls on a circular portion
of a frictionless track starting from rest from a
height of 10 m, equal to the radius of the
track, before reaching a second hill of 8 m height
(point B).
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(a) What is the centripetal force (magnitude and
direction, please) on the car when it is at point A
at the bottom of the circular track. Use energy
ideas to get the velocity.

(b) Find the speed of the car at point B.
(c) If the car collides and locks together with a second

car of mass 300 kg at point C, find the final speed
of both cars.

19. A hockey puck traveling at 1.2 m/s collides with a
second stationary equal mass puck and, after the col-
lision, moves with a speed of 0.8 m/s deflected by
an angle of 30°. Find the velocity (magnitude and
direction) of the other puck after the collision. Also,
find the fraction of the initial energy lost in the
collision.

20. Alpha particles are routinely accelerated using a par-
ticle accelerator and are directed with the use of
magnets into targets composed of various elements. A
famous experiment called Rutherford’s experiment
has a beam of alpha particles incident on a target of
gold. An alpha particle (a helium nucleus) is acceler-
ated to a certain speed and makes an elastic head-on
collision with a stationary gold nucleus. What per-
centage of its original kinetic energy is transferred to
the gold nucleus?

21. A ballistic pendulum is used to study the principles of
momentum and energy. Suppose that a steel ball of
mass m � 50 g traveling with an initial velocity V

undergoes an inelastic collision with a stationary pen-
dulum arm of length Rcm � 30.5 cm of mass M �
250 g. After the collision the center of mass of the
ball and pendulum arm rises from its lowest point
thought a height �hcm, where it momentarily comes
to rest at an angle � � 27°.



(a) Write an equation that governs the momentum of
the ball and pendulum arm during the collision
and solve this for the initial velocity of the ball.

(b) After the collision, mechanical energy is conserved.
Write an equation that shows conservation of
mechanical energy immediately after the collision to
the point where the pendulum arm and ball come to
rest momentarily at the angle �. Solve this equation
for the velocity of the ball and pendulum arm after the
collision. Express your answer in terms of Rcm and �
and you may ignore any rotational motion of the arm.

(c) Using the equations that you have written in parts
(a) and (b) what is the expression for and the value
of the initial velocity of the ball?

(d) What fraction of the initial kinetic energy of the
ball has been lost in the collision?

22. An automobile has a mass of 2300 kg and a velocity of
16.0 m/s. It makes a rear-end collision with a stationary
car whose mass is 1800 kg. The cars lock bumpers and
skid off together with their wheels locked.
(a) What is the velocity of the center of mass of the

two-car system?
(b) What is the velocity of the two cars just after the

collision?
(c) What is the change in total kinetic energy during

the collision?
(d) What is the magnitude of the impulse experienced

by the 2300 kg car?
(e) If the duration of the collision is 0.100 s, what is

the magnitude of the average force experienced by
the 2300 kg car?

(f) What is the magnitude of the average force expe-
rienced by the 1800 kg car?

23. A 0.01 kg bullet traveling at 300 m/s ricochets off a
stationary steel block of 2 kg mass. The bullet is
deflected by 5° and travels at 250 m/s after the colli-
sion. Find the velocity (magnitude and direction) of
the block after the collision.

24. A 10 g projectile is fired at 500 m/s into a 1 kg block
sitting on a frictionless surface. The projectile lodges
in the center of the block, and both move off together.
(a) What is the final velocity of the block after the

collision?
(b) The block slides along the frictionless surface

some distance and then encounters a ramp, which
slopes up at an angle of 60°. What distance does
the block travel along the surface of the ramp
before coming to a stop?

(c) If the coefficient of friction between the block and
the ramp is �k � 0.2, how far does the block slide
up the ramp before stopping?
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25. A proton moving with an initial velocity vix in the 
x-direction, as shown in the figure, collides elastically
with another proton that is initially at rest. If the two
protons have equal speeds after the collision, what is
the speed of each proton after the collision in terms of
vix, and what are the directions of the velocity vector
after the collision?
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Once the translational motion of an object is accounted for, all the other motions of
the object can best be described in the stationary reference frame of the center of mass. A
reasonable image to keep in mind is to imagine following a seagull in a helicopter that
tracks its translational motion. If you took a video of the seagull you would see quite dif-
ferent motion than you would from the ground. The seagull would appear always ahead
of you but would rotate and change its “shape” as it flapped its wings (e.g., see the film
Winged Migration). You’ve probably seen such wildlife videos that can track animals and
“subtract” their translational motion leaving only the other collective motions about their
“centers”: lions seemingly running “in place” as the scenery flies by. In physics, we’ve
already shown how to account for the translational motion of the center of mass. Aside
from a possible constant velocity drift in the absence of any forces, motion of the center
of mass is caused by external forces acting on the object. We now turn to the other motions
about the center of mass as viewed from a reference frame fixed to the center of mass.

These collective motions are of two types: coherent and incoherent. Coherent

motions are those overall rotations or vibrations that occur within a solid in which the
constituent particles making up the object interact with each other in a coordinated
fashion. If the solid is rigid (with all the internal distances between constituent parts
fixed) the only collective motion will be an overall rotation about the center of mass.
For such a rigid body, a complete description of its motion includes the translational
motion of the center of mass and the rotational motion about the center of mass.
Because this nice separation of the problem can be made, we first present the descrip-
tion, or kinematics, of pure rotational motion of a rigid body about a fixed axis, the
axis of rotation. In this case all points of an object rotate in circles about some fixed
point on the axis of rotation. This type of motion occurs, for example, when a door is
opened, or for the wheels of a stationary bicycle, or when you lift an object by rotat-
ing your forearm about a stationary elbow. Even if the solid is not rigid, its collective
coherent motions can be described as a rigid body rotation (of the average-shaped
body) as well as other coherent internal motions that can change the object’s shape.

We next introduce the energy associated with rotational motion and the rotational
analog of mass, known as the moment of inertia. We show that well-placed and directed
forces can produce rotational motion and we introduce the notion of torque, the
rotational analog of a force. For pure rotational motion there is an equation that is the
rotational analog of Newton’s second law that can describe the dynamics of motion.
Continuing with rotational analog quantities we introduce angular momentum, the rota-
tional analog of (linear or translational) momentum and learn a new fundamental
conservation law of angular momentum. Key in following the presentation of our under-
standing of rotational motion is to keep in mind the strong analogy with what we have
already learned. A preview glance at Table 7.2 below shows that the important new
concepts in this chapter all have direct analogs with equations we have already studied.

One of the new and revolutionary types of microscopy, atomic force microscopy,
is discussed as an application of the material in this chapter. The technique allows

7Rotational Motion



extremely high resolution maps of the microscopic surface topography, or structure,
of materials and has been used extensively to study biological molecules and cells.

After briefly considering the effects of diffusion on the rotational motion of
macromolecules, the chapter concludes with a study of the special case of objects in
static equilibrium. This is an important simplification of Newton’s laws and provides
a powerful method of analyzing equilibrium situations.

The other category of collective motions is known as incoherent. These are ran-
dom motions of the atoms of the material, about the equilibrium positions in a solid
or with no fixed average position in a fluid. Constituent fluid particles move about
much more independently, in the ideal case not interacting with their neighbors at all.
In Chapters 8 and 9 we discuss the flow of ideal fluids as well as some of the com-
plications that occur in complex fluids in which there are strong interactions between
constituents. Later in Chapters 12 and 13, we study the subject of thermodynamics
concerned with describing the fundamental thermal properties of macroscopic sys-
tems. We show that collective incoherent internal motions of an object give rise to an
internal energy that is responsible for its temperature.

1.  ROTATIONAL KINEMATICS

A rigid body—one with a fixed shape—has motions that are limited to pure translation
and pure rotation about its center of mass. Combinations of these can give rise to
motions that appear more complex, such as rolling, but which can be simplified to pure
rotations in a reference frame fixed to the center of mass. Since we’ve already learned
how to handle translational motion in the previous chapter, here we first take up the
problem of pure rotational motion about a fixed axis of rotation, leaving their synthe-
sis leading to general rigid body motions for a discussion later in the chapter.

Consider the motion of a point particle on the circumference of a circle, as shown
in Figure 7.1. In order to describe its position and motion we could use its x- and y-
coordinates or, better, its r and � polar coordinates. These latter coordinates are pre-
ferred because r is constant if the particle remains on the circle and so in polar
coordinates there is really only one variable �, whereas both x and y change as the par-
ticle moves on the circle. To describe the motion of the particle on the circle we could
use its x- and y-components of velocity, both of which would continuously change, or,
even better, we could use the �-component of velocity known as the angular velocity �,
whose average value is defined as

(7.1)

In this expression, the particle has moved between two angular positions in a time �t,
where the angular displacement �� must be measured in radian units and not in degrees.

The fundamental unit of angular measure is the radian, because it is defined as the
ratio of the arc length s to the radius r as � � s/r, and is a pure number with no units.

This definition of an angle in radians leads to the fact that there are 2� radians
in one revolution around a circle, given the circumference of s � 2�r. In one
complete revolution there are also 360° and thus the radian is equal to 360°/2�
or about 57.3°. The unit for � is, according to Equation (7.1), the radian per
second (rad/s); despite the fact that the radian unit is a pure number and we
could write the units for angular velocity as 1/s, it is useful to retain the term
“rad” in the numerator. (Note: Most pocket calculators can do calculations
using either radians or degrees and because rad must be used here, some care
must be taken when first using a new calculator.)

If our particle travels in a circle at a constant speed, executing uniform cir-
cular motion, then the instantaneous value of � is constant and equal to the aver-
age value. Notice that because � is an angular variable there are really only two
possible directions of travel: clockwise or counterclockwise around the circle.
Just as the sign (� or �) for a linear quantity depends on the coordinate system,

v�
¢u

¢t
.
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FIGURE 7.1 A particle executing
circular motion.



we are free here to label the sign of the angular velocity in an arbitrary way, as long as
we are self-consistent within the context of any particular discussion.

In the more general case, when the particle does not travel at a constant speed, the
angular velocity will vary and we need to introduce the concept of the instantaneous
angular velocity, defined in a similar way to v, as

(7.2)

The distance traveled by the particle along the circumference �s is proportional
to the angular displacement �� from the relation s � r�, therefore we have that
�s/�t � r ��/�t so that

(7.3)

where r is the radius of the circle. We also need to introduce the concept of an angular
acceleration 	 in order to account for a changing � in analogy with our introduction
of a linear acceleration a to describe changes with time in the linear velocity v. We
define the average and instantaneous angular acceleration in direct analogy with their
linear counterparts as

(7.4)

Again, because Equation (7.3) implies the change in the magnitude of the linear
velocity is proportional to the change in the angular velocity, we have a relationship
between the linear and angular accelerations,

(7.5)

The linear acceleration in Equation (7.5) is called the tangential acceleration and
is directed parallel (or antiparallel) to the tangential velocity. It is the tangential accel-
eration that is responsible for changing the speed of the particle executing circular
motion. Don’t confuse the tangential acceleration with the centripetal acceleration,

discussed earlier in connection with circular motion in Chapter 5. Even in the case of uni-
form circular motion, where the speed and � are constant and so atang � 0, there is a
nonzero radially directed centripetal acceleration required to steer the object around the
circle. If atang is not equal to zero the particle’s speed will change as it travels in circular
motion and it will have both tangential and radial components of acceleration.

It is useful to rewrite the expression for the centripetal acceleration in another
equivalent form. For extended objects such as a wheel, the velocity of different
parts of the wheel will be different, depending on their distance from the axis of
rotation (Figure 7.2). For this reason it is more useful to rewrite the expression for
the centripetal acceleration in terms of � using Equation (7.3)

(7.6)

Having introduced the angular variables, �, �, and 	, needed to describe
rotational motion, we are now in a position to derive a set of equations among
these variables in the case of constant angular acceleration as we did in
Chapter 3 when the linear acceleration was constant (see Table 3.1). Because
we have the proportionality of s and �, v and �, as well as a and 	, we can
proceed by simply dividing each of the linear variables in the kinematic rela-
tions of Table 3.1 by the radius of the circle r to arrive at a set of kinematic
equations for the angular variables:

(7.7)v(t) � vo�at;

acent �
 v2

r
� v2 r.

acent �
 v2

r
,

a tang � ra.

a�
¢v

¢t
;  a� lim

¢t:0

¢v

¢t
.

 v � rv,

v� lim
¢t:0

 
¢u

¢t
.
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FIGURE 7.2 A rotating wheel with its
increasing velocity with increasing
distance from the axis of rotation.
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(7.8)

(7.9)

These three equations serve as a basis for describing pure rotational motion with
constant angular acceleration just as their linear counterparts were used in Chapter 3.

v 2 � vo
2 �2a (u�uo).

u(t) � uo � vo t �
1

2
at2;
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Example 7.1 A stationary exercise bicycle wheel starts from rest and accelerates
at a rate of 2 rad/s2 for 5 s, after which the speed is maintained for 60 s. Find the
angular speed during the 60 s interval and the total number of revolutions the
wheel turns in the first 65 s.

Solution: Using Equation (7.7) we find that the angular speed is given by

In the first 5 s, the wheel rotates through

and in the next 60 s the wheel rotates through an additional

because there is no acceleration during this interval of time. The 625 rad total
corresponds to

The key to solving this problem was to divide the total time interval into two
portions, only one of which had an acceleration.

u�
625 rad

2p rad / rev
� 99.5 rev.

u� vo t � 10 # 60 � 600 rad,

u�
1

2
 at2 �

1

2
# 2 # 52 � 25 rad,

v� 0 � at � 2 # 5 � 10 rad / s.

Example 7.2 Helical bacterial flagella drive E. coli at constant speed when they
rotate around counterclockwise (CCW, as viewed from behind the bacterium) at a
uniform angular velocity, appearing much like a corkscrew (Figure 7.3). From
time to time the flagella motor reverses to clockwise (CW) rotations, causing the
flagella to disorganize themselves and the bacterium to tumble, before switching

FIGURE 7.3 (left) Coordinated flagella lead to swimming;
(right) disordered flagella lead to “twiddling”.



2.  ROTATIONAL ENERGY

Now that we have a set of rotational variables to describe the kinematics of rota-
tional motion, we take up the description of rotational dynamics of a rigid body. We
begin our study of rotational dynamics in this section with a discussion of the
rotational kinetic energy for an object with a fixed axis of rotation. Recall
that in this case all parts of the object rotate about this axis in circular motion.
To begin, consider a single particle when it is moving in a circle (Figure 7.4).
Using our expression for kinetic energy, , and the fact that the
velocity can  be written in terms of the angular velocity and the radius of the
circle, v � �r, we can write that . Defining

(7.10)

where I is called the moment of inertia (for reasons that will become clear),
we can write the kinetic energy of our particle as

(7.11)KE �
1

2
Iv2.

I � mr2,     (for a single particle),

KE � 1/2m (vr)2

KE � 1/2mv2
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again to CCW rotation so the bacterium swims off in a different direction. Suppose
that the flagella “motor” rotates with a frequency of 4 Hz (4 rotations per second)
when in either the CCW or CW state. If the flagellum spends 98% of its time in
the CCW state and takes 5 ms to reverse its rotation (with the CCW to CW transi-
tion occurring on average every 5 s), find the average angular acceleration during
a CCW to CW transition and the net angular rotation in a 10 s interval.

Solution: We are given that in a 5 ms interval, the flagellum reverses its rota-
tion from an angular velocity of �o � �2�(4) rad/s to � � 2� (4) rad/s.
Therefore using the equation �(t) � �o � 	t, we find that the average angular
acceleration is

In an average 10 s interval, because the flagellum spends 98% of its time in
the CCW state, it will spend only 0.2 s in the CW state, or 0.1 s in each of two
CW intervals since the transitions occur every 5 s on average. For the 98% of
the time in a CCW state, the flagella rotate at 8� rad/s producing a net rotation
of � � �t � 8�(9.8) � 246 rad. During each of the other 0.1 s, there will be an
acceleration to the CW state during 5 ms, a stay of 90 ms in that state, and an
acceleration back to the CCW state for 5 ms (for a total of 100 ms � 0.1 s). We
need to compute the net rotation during this time and multiply by 2 for the two such
0.1 s intervals. But by symmetry, the two 5 ms intervals will produce exactly oppo-
site net rotations, canceling their contributions, and leaving only the � � �t �
�8�(.09) � �2.3 rad contribution for each of the two intervals. Adding up the
angular contributions, we have

Such studies on bacteria flagella have led to an increased understanding of
the detailed energy sources and molecular interactions necessary for motility.

unet � 246 �2(2.3) � 241 rad �
241

2p
 rev. � 38.4  rev.

a�
v � vo

t
�

2p(4 � ( - 4))

5 
 10�3
� 1.0 
 104 rad / s2.

v = rω

ω

r

FIGURE 7.4 A particle traveling 
in a circle.



Note that this equation has a form similar to that of translational kinetic energy if
we make a correspondence between the angular velocity � and the linear velocity v and
between the moment of inertia I and the mass m. We call the type of KE in Equation
(7.11) rotational kinetic energy and discuss it further below after generalizing to the
rotational motion of an extended rigid object. Note that if the particle travels in a uni-
form circular motion, its rotational kinetic energy is a constant, but if there is a tan-
gential force acting on it as well as a centripetal force, then there will be a tangential
acceleration and the angular velocity will change as will the rotational kinetic energy.
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Example 7.3 A 25 kg girl riding on the outer edge of a large merry-go-round
with a 10 m diameter has a (rotational) kinetic energy of 20 J. Find the girl’s
moment of inertia relative to the axis of rotation and find the number of revolu-
tions the merry-go-round makes per minute.

Solution: The girl’s moment of inertia, calculated as if she were a point mass, is
given as

To proceed we first calculate the angular velocity of the girl (and merry-
go-round) using the expression for the rotational kinetic energy, Equation
(7.11), so that

We find that � � 0.25 rad/s so that in 60 s the girl has gone around an angle
� � �t of 15 rad, corresponding to 15 rad/2� � 2.7 rev.

v�A2(KE)

I
.

I � mr2 � 25 (5)2 � 625 kg-m2.

FIGURE 7.5 Physics on a merry-go-round.



Although this example does not deal with a point mass, we simplified our analy-
sis to that case. Next, we want to generalize our discussion to extended rigid bod-
ies. As a simple model, consider a rigid collection of point masses mi attached
together by “massless” rods with a fixed axis of rotation. If the assembly rotates
about this axis, each will circle about a common central axis at some radius ri. Using
the summation convention, we can write the total kinetic energy of the collection as
the sum of the kinetic energies of all the particles

(7.12)

and, because vi � ri�, we have that

(7.13)

where the summation is only over the different masses at their corre-
sponding perpendicular distances from the axis of rotation, because the
angular velocity of all the particles is the same. We define the summation
to be the moment of inertia of the assembly of masses about the axis
of rotation

(7.14)

so that the total kinetic energy may still be written in the simple form of
Equation (7.11).

To analyze the more realistic model of a rotating extended rigid
body, rather than a collection of particles, we can follow a procedure
where we divide the object up into small elements of mass mi, each at
corresponding distances ri from the axis of rotation (Figure 7.6). We
can first ask how it is that a single force, applied to the rigid body at
a localized point, can make the entire body rotate. When the external
force is applied, internal forces that keep the object rigid do the
appropriate amount of work on each localized mass element to main-
tain the shape of the body as it rotates. These internal forces are actu-
ally transmitted by electromagnetic interactions but for our purposes
can be imagined to be transmitted via very stiff springs between mol-
ecules, the ultimate mass elements. At this point one can imagine how
the spring properties can affect the overall rigidity of the solid and
give rise to changes in the shape of an object when external forces act
on it. When the applied forces become larger, our rigid body will
eventually become deformed. We have already briefly studied the
deformation of solids in Chapter 3, where we introduced the Young’s
modulus as well as the shear and bulk modulus to describe different
deformations.

The division of a solid body, rotating about a fixed axis, into small
mass elements allows a similar argument as in the case of discrete point
masses and leads to an identical expression for the kinetic energy in
Equation (7.11). The moments of inertia of various rigid objects with
some symmetry are shown in Table 7.1. (See the boxed discussion for a
calculation of one case.) Note that in every case the moment of inertia is
equal to the product of the total mass and the square of the pertinent
dimension apart from a numerical factor that depends on the geometry
as well as the axis of rotation.

I � a (mi ri
2),

KE �
1

2a (m
i
 r

i
2)v2,

KE �aKEi �
1

2ami vi
2,
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ω

FIGURE 7.6 A rigid body with
discrete mass elements undergoing
an overall rotation.

For a continuous rigid body the definition
of the moment of inertia given in Equation
(7.14) needs to be rewritten as 

,

where r is the perpendicular distance of the
differential element of mass from the axis
of rotation. If the object has a constant mass
density � then this can be rewritten as 

,

where dV is the volume element containing
mass dm. As an example we calculate the
moment of inertia of a right circular cylinder
of radius R and length L about its axis (see
Figure 7.7). We divide the cylinder into vol-
ume elements that are cylindrical shells of
radius r, length L, and thickness dr. All of the
mass in this shell has the same r and therefore
the same I. The volume of the shell is dV �
2�rLdr, so that the integral becomes 

.

This expression integrates to yield I �
2��R4L/4, and can be rewritten in terms of
the total mass of the cylinder, M � ��R2L, as
I � 1⁄2 MR2, giving the expression in the table.

I � rL
R

0

2prL # r2dr � 2prLL
R

0

r3 dr

I � rLr2dV

I �Lr2dm

L

R

r

FIGURE 7.7 Construction used to calculate
the moment of inertia of a rod.
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Example 7.4 Calculate the moment of inertia of the gadget shown in Figure 7.8.
The small masses are attached by a light rigid rod and pivot about the left end of
the rod. Use a value of m � 1.5 kg and d � 0.2 m. If the assembly were to pivot
about its midpoint, find the moment of inertia about this axis as well.

Solution: Using Equation (7.14), we simply add up the individual contributions
to the moment of inertia. With the pivot point at the left end, we find

and with the pivot point at the middle of the assembly, we find

I � mad

2
b

2
� 2ma d

2
b

2
� 3m(2.5d)2 � 19.5md2 � 1.2 kg # m2.

I � m(2d)2 � 2m(3d)2 � 3m(5d)2 � 97md2 � 5.8 kg # m2,

SOLID CYLINDER about symmetry axis

I = MR21
2

I = MR22
5

I = MR22
3

I = ML21
3

R

I = MR21
2

L

SOLID CYLINDER  about central diameter

HOOP about symmetry axis

I = MR2

R

HOOP about any diameter

R

SPHERE about any diameter

R

SPHERICAL SHELL about any diameter

R

LONG ROD about perpendicular axis at
center

L

LONG ROD about perpendicular axis at end

L

R

L

I = MR2 + 1
4

1
12

ML2

I =
1
12

ML2

Table 7.1 Moments of Inertia of Various Symmetrical Objects

m 2m 3m

d2d 2d

FIGURE 7.8 Gadget of Example 7.4 with
three point masses attached by “massless”
rods.



Now that we have introduced moment of inertia and rotational kinetic
energy for an extended object that is rotating about a fixed axis of rota-
tion, we are in a position to generalize these ideas to the case of rolling
motion. A wheel or other symmetric object that rolls can be shown to
have a total kinetic energy that consists of two parts: the translational
kinetic energy of the center of mass plus the pure rotational kinetic
energy of the object about a fixed horizontal axis through its center of
mass (see Figure 7.10). When all the forces acting on a system of rigid
bodies are conservative so that the work done by those forces can be
expressed as a potential energy difference, we can write the conservation
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It should make intuitive sense, after a moment’s thought that I should be
smaller in the second case, because the masses are traveling in smaller radii
circles. From Equation (7.11), for the same angular velocity in both situations,
we expect there to be less kinetic energy in the second case, in agreement with
the smaller I.

Example 7.5 Find the moment of inertia of the object shown in Figure 7.9 when
pivoted about its symmetry axis. The cylinder has a mass M, radius r, and length
L, whereas the hoop has a mass M/10 and radius 3r. Use M � 0.1 kg, r � 5 cm,
and L � 25 cm.

Solution: The moment of inertia of the hoop is simply the product of its mass
and the square of its radius since all its mass lies at the same radius. The moment
of inertia of the cylinder cannot be found so simply because its mass is distrib-
uted over varying distances from the axis of rotation. Using Table 7.1 we look
up its moment of inertia and then write the total moment of inertia as the sum of
the hoop’s and the cylinder’s as

Note that the length L of the cylinder is not in the answer, only its total mass
and radius.

I �
1

2
 Mr2 �

M

10
 (3r)2 � 1.4Mr2 � 3.5 
 10�4 kg # m2.

FIGURE 7.9 A solid cylinder and a hoop
connected by light rods both rotating
about their common symmetry axis.

v

ω

FIGURE 7.10 A cylinder rolling
down an inclined plane has a total
kinetic energy equal to the sum of
its center of mass translational KE
and its rotational KE about the 
center of mass axis.



of energy equation for the system, composed of translating, rotating, or rolling sym-
metric rigid bodies, as
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Example 7.6 An empty bucket of 1 kg mass, attached by a light cord over the
pulley for a water well, is released from rest at the top of the well. If the pulley
assembly is a 15 cm uniform cylinder of 10 kg mass free to rotate without any
friction, find the speed of the bucket as it hits the water 12 m below.

Solution: The initial energy of the bucket–pulley system can be taken as pure
gravitational potential energy, measured with respect to a zero level at the water
surface. When the bucket just reaches the water the final energy is the sum 
of kinetic energy of the bucket (translational KE) and pulley (rotational KE). With
no frictional forces present, the initial and final energies are equal and we can write

where m is the mass of the bucket, v its velocity as it hits the water, � the angu-
lar velocity of the pulley as the bucket hits the water, and I the moment of inertia
of the pulley, given by , where M is the pulley mass and r is its radius.

The bucket’s velocity and the pulley’s angular velocity are related by v � � r

because the cord is wrapped around the pulley at radius r and does not slip, so
that we can rewrite our energy equation as

Solving for the bucket’s velocity

Substitution of numbers results in

Note that this result is independent of the radius of the pulley. If the pulley
were massless, then we would find that

 v �A2mgh

m
�12gh � 15.3 m /s,

 v �A 2 # 9.8 # 12

1 � 0.5 # 10
� 6.3 m /s.

 v �A 2mgh

1m � 1
2 M2

.

mgh �
1

2
 mv2 �

1

2
 (

1

2
 Mr2)v2 �

1

2
 (m �

1

2
 M) v2.

I �
1
2 Mr2

mgh �
1

2
 mv2 �

1

2
 Iv2,

(7.15)

(Conservation of Mechanical Energy)

The sum is the constant total mechanical energy of the system with the

first two terms representing the total translational kinetic energy of the center

of mass of all objects in the system and the pure rotational motion about the

center of mass of each rotating object.

1

2
 mv2 �

1

2
 Iv2 � PE � E � constant.

If there are also nonconservative forces present, such as friction, then the right-hand
side of Equation (7.15) will no longer be a constant but will decrease with time
because of the work of friction, just as in the translational motion situations we stud-
ied in Chapter 5. A few examples help us to see how to apply conservation of energy
principles in order to study problems with rotational motion.
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considerably faster. Because energy is conserved in both cases, why does the
bucket have a much larger KE with a massless pulley and where does the miss-
ing energy go in the original problem? The smaller translational KE of the
bucket is due to the relatively large rotational KE of the pulley just before the
bucket hits the water.

Example 7.7 Suppose that a hoop and a cylinder, with the same radius and mass,
both roll down an inclined plane, with an inclination angle �, from rest at a
height H without slipping. With what velocity does each arrive at the bottom and
which will arrive first?

Solution: We can use the conservation of energy principle to solve this problem.
The initial energy of each object is the same gravitational potential energy Ei �
mgH. After rolling down the incline, the final energy of each is purely kinetic,
equal to the sum of the center of mass translational KE and the rotational

, where I is the moment of inertia of each object about
an axis through its center. Because there is no slipping, there is no loss of energy
due to friction and the total energy of each object is conserved. We then can
write that Ei � Ef or

Since there is no slipping, we can also relate the center of mass velocity v to
the angular velocity of each object through the same relation v � r�, where r is the
radius of the hoop or cylinder. Then, on substituting for � (� v/r), we have that

 v2 �
2mgH

(m � I / r2)
.

mgH �
1

2
 mv2 �

1

2
 Iv2.

KE, Ef � 1/2 mv2 � 1/2 Iv2

FIGURE 7.11 A bucket suspended from a pulley and
falling into a well.

(Continued)



3.  TORQUE AND ROTATIONAL DYNAMICS 
OF A RIGID BODY

We turn now to the mechanism by which rotational motion is produced. In order to
have an object translate from rest, we require a net force to act. But a force, no mat-
ter how large, is not necessarily able to make an object at rest rotate. Consider the
example shown in Figure 7.12a in which a door is to be opened. Pushing on the
hinged side of the door with F1, no matter how hard, will not open the door; simi-
larly, pushing on the edge of the opened door toward the hinges with F2 will also not
result in any rotation of the door. Thus, it is clear that a force will not produce rota-
tional motion unless it is well-placed and well-directed.

To clarify what is meant by well-placed and well-directed, consider the same door
with force F3 applied, also shown in a top view in Figure 7.12b. The force acts in the
horizontal plane at an angle � with respect to the horizontal position vector from the
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Looking up in Table 7.1 that Ihoop � mr2 (it’s easy to see why this is so,
because all the mass of the hoop lies the same distance r from its center) and

we have that

,

Note carefully that the final velocities do not depend on the radius of the
object, the mass, or on the inclination angle. From our expressions it is clear that
the cylinder arrives at the bottom of the incline with a faster speed. Also, rota-
tional kinematics tells us that �t � ��/�average and because they both start from
rest and accelerate uniformly, �average � �final/2, so that the object with the
greatest final angular velocity will reach the bottom fastest. With equal radii, the
cylinder clearly wins the race. Without rotational motion, both of these objects
would take the same time to slide down the incline, arriving with the same speed.
The rotational motion takes up some of the translational kinetic energy into rota-
tional kinetic energy about the center of mass. The object with the greater
moment of inertia gains the greater rotational kinetic energy and therefore loses
the most translational energy and loses the race as well!

  vcylinder �A 2mgH

(m � m�2)
�A4gh

3

  vhoop �A 2mgH

(m � m)
�1gH

I cylinder � 1/2 mr 2,

F1

F3

F2

F1

F3

F2

A B

θ

FIGURE 7.12 (A) Door, hinged at
the left, pushed more or less effec-
tively in different directions and at
various locations. (B) A top view of
the door.



axis of rotation to the point of application. If we imagine taking the components of
this force along and perpendicular to the position vector, it is clear that only the per-
pendicular component will result in rotation of the door. The component parallel to
the position vector, the so-called radial component, itself will not result in rotation of
the door no matter how large it is. Furthermore, if the same force is exerted on the
door at a closer distance to the hinge, it is less effective in rotating the door. In the
limit of applying the force directly on the hinge, no rotation at all will occur no mat-
ter in what direction the force is aimed.

Having shown the need for care in defining the quantity that “drives” objects to
rotate, let’s first look at the work–energy theorem in the case of rotational motion.
From Chapter 4 we know that the net work done by external forces on an object is
equal to the change in its kinetic energy. If the object is confined to rotate about a
fixed axis of rotation, any change in its kinetic energy must be in its rotational kinetic
energy and, in that case, we can write

(7.16)

where I is the total moment of inertia of the object with respect to the axis of rota-
tion. Imagine a short interval of time �t, during which a net force does an amount of
work �W to produce a change in angular velocity from � to � � ��. In this case we
can write the work–energy theorem as

(7.17)

Expanding the term in brackets, we can rewrite this as

Because we are interested in taking the limit as the time interval approaches zero,
in which case so does ��, we neglect the second term on the right (which will be
much smaller than the first) and rewrite our expression as

Writing ��t � �� and ��/�t � 	, which are correct in the limit as �t approaches
zero, we have

(7.18)

Now for our case of pure rotational motion we know that all points of the object
rotate in circles. From the general definition of work, �W � (Fnet,ext)x�x, a net exter-
nal force acting on a particle that is traveling in a circle will do an amount of work
given by

where F› is the component of the net applied force that acts along the tangential 
displacement direction and �x � s � r�� is the distance over which the force acts
(see Figure 7.13). If we define the rotational analog of the force, known as the torque,
or as the moment of the force, to be

(7.19)

we obtain the analog expression for the work done for pure rotational motion

(7.20)¢W � tnet, ext ¢u.

t� F
�

r,

¢W � F
�

r¢u,

¢Wnet, ext � Ia ¢u.

¢Wnet, ext � Iv 
¢v

¢t
 ¢t.

¢Wnet, ext � Iv ¢v�
1

2
I1¢v22.

¢Wnet, ext �
1

2
 I1v� ¢v22 �

1

2
 Iv2.

Wnet, ext � ¢KErot � ¢
1

2
Iv2,
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r

F⊥

F
m

∆θ

FIGURE 7.13 Torque on a particle
in circular motion.



The units for torque are N-m, the same units as those for work or energy. This
follows directly from Equation (7.19), or from Equation (7.20) since �� is dimen-
sionless, but because torque and energy are different concepts, we never write a
torque in units of joules, but always use N-m. Before discussing torques in more
detail, let’s first introduce the rotational analogue equation to Newton’s second law.

On comparing Equations (7.18) and (7.20), we see that

(7.21)

which is the rotational analog of Newton’s second law. Note that �, I, and 	 are the
rotational analogs of F, m, and a, respectively. The moment of inertia, and not the
mass, enters into the rotational version of Newton’s second law, therefore not only
the mass of the system, but also its distribution from the axis of rotation is important
in determining the response of the system to an applied torque.

With these results in hand let’s first examine Newton’s second law, in both rota-
tional and translational forms, for the simplest case of the rotational motion of a
single particle of mass m. Suppose the particle is located a distance r from the axis
of rotation, attached to the center of the circle by a light rod, and is set in rotational
motion by a force F acting as shown in Figure 7.13. In that case I � mr2 and we have
from Equation (7.21) that

From Equation (7.19), the torque on the mass is given by

so that the torque depends on three factors: the magnitude of the applied force, where
it is applied, and its orientation with respect to r, a line perpendicular from the axis
of rotation to the point of application of the force. Only the perpendicular component
of F contributes to the torque’s ability to make the particle rotate around the circle
and we have

The outward radial component of the force must be more than balanced by 
a large inward radial force supplied by the light rod that is required to keep 
the mass traveling in a circle. The net inward radial force is then the centripetal
force.

An alternate description of the rotational motion can be given by analyzing the
tangential forces and accelerations. The tangential component of the force produces
a tangential acceleration. Newton’s second law in the tangential direction lets us
write that

in agreement with the previous equation. Although tangential forces and accelera-
tions can be used in the simplest rotational problems, the first approach uses the
natural variables to describe rotational motion, angular acceleration and torque. With
more than a single particle in the system, if the distances from the axis of rotation are
different for the particles, in general it will be much more difficult to analyze the
problem in terms of linear variables and much easier in terms of rotational variables.
This is also true for extended real objects that are not treated as particles. Two exam-
ple problems illustrating the application of the rotational form of Newton’s second
law help to make this discussion more concrete.

F
�

� ma tang � mar,

rF
�

� mr2a.

t� rF
� ,

t� mr2a.

tnet,ext � Ia,
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Example 7.8 Let’s reconsider the problem of opening a door as discussed at the
beginning of this section. Suppose the door is uniform and has a mass m � 10 kg,
a height h � 2.5 m, and a width w � 1 m. The moment of inertia of a uniform
rectangular slab (with dimensions w 
 h) about a vertical axis of rotation along
one of the edges is given by , independent of h (those of you who
know some calculus might try to derive this following the method used in 
the boxed calculation in Section 1). Suppose that the door is pushed with a
steady horizontal force F � 5 N acting at the edge of the door and directed at a
constant 30° angle from the normal to the door as it is opened (The force
changes direction as the door is opened to keep the angle with respect to the door
constant at 30° as shown in Figure 7.14). Find the angular acceleration of the
door and the time for it to swing fully open, rotating a total of 90°.

Solution: A steady torque acts to push the door, thereby producing a constant
angular acceleration. The torque is given by

where the perpendicular component of F is obtained from the figure and the distance
r equals w in this case. The constant angular acceleration of the door is given by

Using this acceleration, we can find the time for the door to swing by 90°
(� �/2 rad) angle to be

u� 1
2a t

2 or t �A2u
a

�A2 # 13.14/22
1.3

� 1.6 s.

a�
t

I
�

4.3
1
31102(1)2

� 1.3 rad /s2.

t� F
�

r � Fcos 30 w � 5 cos 30 � 4.3 N # m,

I �
1
3 mw2

w

h

F30

FIGURE 7.14 How long does it take to
open a door?

Example 7.9 An ultracentrifuge is spinning at a speed of 80,000 rpm. The rotor
that spins with the sample can be roughly approximated as a uniform cylinder of
10 cm radius and 8 kg mass, spinning about its symmetry axis (so that, from
Table 7.1, ). In order to stop the rotor in under 30 s from when the I �

1
2 mr2

(Continued)



Figure 7.15 shows that the expression for the torque can be written in two
equivalent ways:

(7.22)

or, by regrouping terms,

(7.23)

We see that the torque can be calculated by either taking the product of r, the
distance from the axis of rotation to the point of application of the force, and the
component of the force perpendicular to r, or by taking the product of F and the com-
ponent of r perpendicular to F, known as the moment (or lever) arm. The moment
arm is the perpendicular distance from the axis of rotation to the line of action of the
force (the line along which the force is applied). Two additional examples clarify the
calculation of torques and their use in rotational motion problems.

t� (r sin u)F � r
� F.

t� rF
�

� r(F sin u),
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motor is turned off, find the minimum braking torque that must be applied. If no
braking torque is applied, the rotor will stop in 30 min. Find the frictional torque
that is present under normal spinning conditions.

Solution: We first need to find the minimum angular acceleration needed to stop
the rotor in under 30 s. Using

we find that to stop the rotor requires an angular acceleration of

Because �o is given as 80,000 rpm, we first must convert it to rad/s, �o �
(80,000)2�/60 � 8.38 
 103 rad/s, where the factor 2� converts revolutions to
radians and the factor 60 converts from minutes to seconds. Then we find that
with t � 30 s,

The braking torque must have a magnitude of at least

In the absence of a braking torque, we recalculate the angular acceleration
using t � 30 min to find an acceleration 60 times smaller, 	 � �4.7 rad/s2, so
that the normal frictional torque has a magnitude 60 times smaller as well, or 
� � 0.19 N-m.

t� Ia�
1
2 mr2a�

1
2 810.12212792� 11.2 N # m.

a�- 

vo

t
�

8.38 
  103

30
� -279 rad /s2.

a� �
vo

t
.

v� v0 �at,

F

line of action

m

F

r

r

θ

FIGURE 7.15 Equivalent definitions
of torque: .t � r F

�
� r

�
F

Example 7.10 Calculate the forces that the biceps muscle and the upper arm
bone (humerus) exert on a person’s forearm when supporting a weight as shown
in Figure 7.16 without any movement. The forces acting on the forearm include
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its weight mg, the weight of the object held in the hand Mg, the pull of the biceps
muscle Fbiceps, and the humerus connection at the elbow socket, Fhum. Take the
weight to be 20 N, the length L of the (uniform) forearm as 40 cm, its mass as
2 kg, with the biceps connecting d � 4 cm from the elbow pivot point, and
assume that the arm is held at 40° with respect to the vertical.

Solution: To calculate the two unknown forces, we must realize that the net
force and net torque on the forearm must both be zero because the weight is held
at rest. This example anticipates the subject of statics, which we take up in
Section 7 below. If we add up the net force and set it equal to zero and set the
net torque equal to zero as well, we will obtain two independent equations that
will allow us to solve for the two unknown forces. Only three of the four forces
produce a torque about the elbow because the force from the humerus acts at the
elbow joint and has zero lever arm. The torque equation is

The lever arm distances were obtained from the distances along the forearm
from the elbow pivot point by taking the horizontal components, those perpen-
dicular to the vertical forces. We can then solve for the biceps force directly;
canceling the common term sin 40,

The force from the humerus can be obtained by summing the forces on the
forearm to zero

to find that Fhum � 260 N. Note that to lift a relatively small 20 N weight
requires very large forces on the bones and muscles of the body. 

Mg � mg � Fhum � Fbiceps � 0,

Fbiceps � aMg �
mg

2
bL/d �

(20 � 2 # 9.8/2)0.4

0.04
� 300 N.

tnet � Mg1L sin 402� mgaL

2
 sin 40b � Fbiceps1d sin 402� 0. 

Mg mg

Fbiceps

Fhum
40°

FIGURE 7.16 A person’s arm supporting a weight
and the force diagram for Example 7.10.

Example 7.11 Find the net torque about both the left end (A) and the center
(B) of the uniform rod shown in Figure 7.17 with the set of external forces
shown. Use the following values F1 � 30 N, F2 � 20 N, Mg � 20 N, F3 �
10 N, F4 � 15 N, a rod length L � 40 cm, with F2 acting at L/3 from the
right end.

(Continued)
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Solution: We first note that both F3 and F4 do not produce a torque about the left
end (A) of the rod. Adding the torques from the other three forces about the left
end, we find a net torque

In this expression we took torques tending to rotate the rod clockwise about
the left end as positive and used the perpendicular components of the forces in
the expressions for the torques. Substituting in the numbers, we find

where the negative sign indicates that the net torque would produce a counter-
clockwise rotation about the left end.

Repeating this procedure taking torques about the center (B), note that F4
and Mg do not produce any torque and we have

Substituting in numbers, we find

Why do we get these two different results when taking torques about two dif-
ferent points with the same set of forces acting? First, note that calculating torques
explicitly depends on the reference point. In fact, because the net torque is not
equal to zero, the rod is not in equilibrium. So although the torque calculations are
both correct, let’s discuss which one we would use to describe the motion of the
rod. The actual motion of the rod can be separated into a translation of the center
of mass due to the nonzero net force (you should check that there is both an
upward and leftward net force) and a rotation about the center of mass. If we were
to move with the center of mass then we would see a pure rotation of the rod about
its center and then the net torque about the center would be equal to the moment
of inertia of the rod about its center times its angular acceleration. We could then
find this angular acceleration and combine it with the translational acceleration of
the center of mass to describe the overall motion of the rod.

tnet, B � 10(0.2) � 20(cos 45)
0.4

6
� 30(sin 30)

0.4

2
� � 1.9 N # m.

tnet, B � F3 
L

2
� F2cos 45 

L

6
� F1sin 30 

L

2
.

tnet, A � 20(0.4/2) � 20(cos 45)(2/3)(0.4) � 30(sin 30)(0.4) � � 5.8 N # m,

tnet, A � Mg 
L

2
� F2 cos 45 

2L

3
� F1 sin 30 L.

30

45
F1

F2

Mg

F3

F4 A B

FIGURE 7.17 A set of forces acting on 
a uniform rod.

As an example of rotational motion in an important biological macromolecule, let’s
discuss some of what is known about the world’s smallest rotary motor, an enzymatic pro-
tein, F1-ATPase, which helps in the efficient production of ATP in cells. Discovered in
1956, this protein is found in virtually identical form in species ranging from bacteria to
mammalian cells. Figure 7.18 shows both a schematic drawing and a ribbon model of the
protein structure. The central 
 subunit acts as a shaft able to rotate within the array of
alternating 	 and � subunits arranged in a circle. This protein is a reversible rotary motor.
Normally, when driven to rotate at very high rotational speed of several thousand



revolutions per minute by energy from a proton (or hydrogen ion) membrane pump, it acts
as an enzyme helping to generate huge amounts of ATP daily. When the protein is supplied
with ATP, it can run in reverse, causing the 
 subunit shaft to rotate just like a motor.

Recently biophysicists were able to attach a rodlike molecule to the 
 subunit, and
measure the torque generated by the rotary motor in turning this attached rod. The
measurement was done using laser tweezers, discussed in Chapter 19. In fact, they
were able to lower the ATP concentration sufficiently so that individual step rotations
of 120° of the shaft were observed. The individual torque measured for each step
rotation was 44 pN-nm, where the incredibly small units used are those appropriate
for the small force and step size involved. These researchers then calculated the work
done by this rotary motor in each step rotation. Using Equation (7.20) and a step
rotation angle of �� � 120° � (2�/3), they found that �W � (2�/3)(44 pN-nm) �
92 pN-nm � 92 
 10�21 J. This value is very close to the energy liberated by one
ATP molecule when it is hydrolyzed to ADP. Thus, this smallest of all rotary motors
is nearly 100% efficient in converting energy into rotational work. It remains to be
seen to what future applications our knowledge of this protein will lead.

4.  ANGULAR MOMENTUM

In our discussion of momentum in Chapter 6 we were able to rewrite Newton’s second
law for a system, , in terms of its total, or center of mass, momentum so
that the net external force was equal to the rate of change of the total linear momentum

(7.24)

Recall also that in the absence of a net external force, this equation leads to the
powerful conservation of momentum principle. In this section we analyze rotational
motion in an analogous manner and introduce the important new quantity angular
momentum and the principle of conservation of angular momentum, our third funda-
mental conservation principle. (Energy, linear momentum, . . . are you counting?
There are not many more in this book.)

If you had to guess how angular momentum L should be defined, based on the
rotational analog quantities to those defining the linear momentum, it is hoped that
you would come up with the expression

(7.25)

Because linear momentum is defined as pS � mv
Sand the rotational analogs to m and v are

I and �, respectively, this would be the natural candidate. Of course, such an intuitive
guess needs to be corroborated, but this is a correct expression. You may have noticed that

L � Iv.

F
:

net, ext � lim 
¢t:0

 
¢P 

:

total

¢t
.

F
:

net, ext � ma
:

cm
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γ

FIGURE 7.18 (left) Schematic of
F1-ATPase, the world’s smallest
rotary motor with three pairs of
alternating 	 and � subunits and
the 
 subunit shaft (right) molecular
model with the 
 subunit shaft in
light blue (scale bar � 2 nm).



in our analogy, Equation (7.25) has omitted vector signs on L and �, where they might be
expected. This is intentional on our part. It turns out that the vector nature of the rotational
variables is subtle and is not needed in our basic discussions of rotational motion.

In the case of a particle of mass m constrained to rotate in a circular orbit, from
the expression for its moment of inertia about the axis of rotation I � mr2 we can
write an alternative expression for the angular momentum of such a particle as

(7.26)

For a system of particles or an extended body rotating about a fixed axis of rota-
tion, an argument similar to the one given for the moment of inertia shows that the
total angular momentum can also be written as

(7.27)

where the sum is over the mass elements of the system and ri and are the distances
(measured from the axis of rotation) and components of momenta perpendicular to ri
(or tangential to the circular trajectories for pure rotational motion).

Now that we have defined angular momentum, we turn to the rotational equation
corresponding to Equation (7.24). By analogy we should guess that this is

(7.28)

where again we omit vector signs. This can most easily be seen by noting that the
time rate of change of L in Equation (7.28) can be written as

using the definition of angular acceleration. Substituting for I	 from Equation (7.21)
then yields Equation (7.28). We reach an important conclusion from this equation. 

lim
¢t:0

 
¢L

¢t
� lim

¢t:0
 I 

¢v

¢t
� Ia,

tnet, ext � lim
¢t:0

 
¢Ltotal

¢t
,

pi,�

Ltotal � a ri pi,�,

L � mr2v� rm(rv) � r(mv) � rp.
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Example 7.12 An ice skater begins a spin by rotating at an angular velocity of 
2 rad/s with both arms and one leg outstretched as in Figure 7.19. At that time
her moment of inertia is 0.5 kg-m2. She then brings her arms up over her head
and her legs together, reducing her moment of inertia by 0.2 kg-m2. At what
angular velocity will she then spin?

Solution: Because there are no acting external torques (any friction is ignored
here), angular momentum is conserved and we can write that

Iini vini � Ifinvfin.

In the absence of a net external torque on a system, its total angular momentum

remains constant. This is a statement of the principle of conservation 

of angular momentum.

Along with conservation of energy and of (linear) momentum, it is one of the funda-
mental conservation laws in nature. For an extended body undergoing pure rotational
motion conservation of angular momentum has the simple form

(7.29)

where the constant is the value of Ltotal at any instant of time. The following example
illustrates the application of conservation of angular momentum.

Iv� constant,  (isolated system),



A N G U L A R M O M E N T U M 181

In this case the skater’s moment of inertia has decreased and so her angular
velocity will increase.

We find

so that her angular velocity becomes 3.3 rad/s. The same principle controls the
rotational motion of a ballerina or a diver as they change their moment of iner-
tia by controlling their body configuration.

0.5122� 0.3vfin,

FIGURE 7.19 An ice skater uses angular
momentum conservation.

We summarize the rotational motion equations of this chapter in Table 7.2, indi-
cating the corresponding equations for translational motion. In the last examples of
this section we integrate the concepts presented so far in solving two more complex
rotational motion problems.

Table 7.2 Kinematic and Dynamic Equations for Rotational and Translational Motion

Applicability Rotational Translational 
Relations Between 
Variables

	(a) � constant � � �o � 	t v � vo � at s � r�

	(a) � constant v2 � vo
2 + 2a (u - uo) v2 � vo

2 � 2a(x � xo) v � �r

	(a) � constant u � uo + vo t + 1
2 at2 x � xo �  vot � 1

2 at2 atang � r	

General KE � 1
2 Iv

2 KE � 1
2mv2 I � g  miri

2

General
�net,ext � I	 Fnet,ext � ma

t� rF
�

� r
�

F

General tnet,ext �
¢L total

¢t Fnet,ext �
¢Ptotal

¢t
L � Iv � rp

�

General �net,ext � 0 ⇒ Ltotal � constant Fnet,ext � 0 ⇒ Ptotal � constant
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Example 7.13 A hoop of mass 2 kg and radius 0.5 m has two spokes the
length of a diameter, each of mass 0.1 kg. The hoop is made to rotate from
rest by a light cord attached to a 0.02 m diameter shaft which is threaded over
a frictionless pulley, and attached to a 10 kg weight (as shown in Figure 7.20).
Find the angular velocity of the hoop after the 10 kg weight has fallen a dis-
tance of 1 m.

Solution: The tension in the cord supplies a torque to rotate the hoop–spoke
assembly at an increasing velocity. We solve this problem in two ways: using
torques and angular accelerations and using energy concepts.

Using the first method, we first find the torque acting on the hoop and the
moment of inertia of the rotating assembly so that we can substitute them into
Newton’s second law for rotations in order to find the angular acceleration. 
We have

where T is the tension in the rope and r is the shaft radius. The cord tension is
the only force that produces a torque on the hoop. The total moment of inertia is
that of the hoop (MR2, with M and R the mass and radius of the hoop) and that
of the two spokes (see Table 7.1 for I for a rod rotating about an axis through its
midpoint)

where m is the mass of each spoke of length 2R. To proceed, we first need to find
the tension T which is not equal to the hanging weight. An independent equation
for T can be obtained from the equation of motion for the hanging mass m�

where m�g � T is the net force on the hanging mass and a is its linear accelera-
tion. Solving for T, multiplying by r to find the torque, and inserting this into
Newton’s second law for rotations along with the expressions for I and 	 we have

Here we have substituted 	 � a/r because the cord unwinds with a linear
acceleration proportional to the angular acceleration of the shaft. We can solve
this expression for the acceleration to find

t� m¿1g � a2r � aMR2 �
2

3
 mR2b a a

r
b .

m¿g � T � m¿a,

I � MR2 � 2a 1

12
 m (2R)2b ,

t� Tr,

FIGURE 7.20 A hoop being turned by a
cord tied to a hanging weight.
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Now that we have a value for a we can solve for the angular velocity of the
hoop. After the hanging weight has fallen 1 m, its velocity (and that of a point
on the shaft) will be given from

as

so that the angular velocity of the hoop–spoke assembly will be

where we divide by the radius of the shaft because v is the velocity of a point on
the shaft. 

An alternate solution, in this case much more elegant and straightforward,
uses energy conservation. We simply write expressions for the initial and final
total energies:

where h is the 1 m height and the initial energy is all gravitational potential
energy of the hanging mass, and

where the final energy is all kinetic, rotational, and translational. Equating these
energy expressions because there is no loss of energy due to friction, inserting
the above expression for I, and substituting v � r� for the velocity of the hang-
ing weight, we have

Solving this for �, we find

Notice the beautiful simplicity of the conservation of energy approach!

v�

Q
2m¿gh

cMR2 �
2

3
 mR2 � m¿r2 d

� 19 rad/s.

m¿gh �
1

2
 aMR2 � 2 

1

12
 m12R22bv2 �

1

2
 m¿(rv)2.

Efin �
1

2
  Iv 2 �

1

2
  m¿v2,

Eini � m¿gh,

v�
 v
r

� 19 rad /s,

 v �12ax � 0.19 m/s,

 v2 � 2ax,

a �
m¿gr2

MR2 �
2

3
 mR2 � m¿r2

� 0 .019 m/s 2.

Example 7.14 A 5 m radius merry-go-round with nearly frictionless bearings
and a moment of inertia of 2,500 kg-m2 is turning at 2 rpm when the motor is
turned off. If there were 10 children of 30 kg average mass initially out at the
edge of the carousel and they all move into the center and huddle 1 m from the 

(Continued)
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axis of rotation, find the angular velocity of the carousel. If then the brakes are
applied, find the torque required to stop the carousel in 10 s.

Solution: Before the brakes are applied there are no external torques acting on
the carousel (friction is absent in the bearings) so that we know angular momen-
tum is conserved. Using this guiding principle, we can first write expressions for
the initial and final angular momentum and then equate them to solve for the
final rotational velocity. We have

where Iini � Icarousel � Ichildren � 2500 � 10(30)(5)2 � 104 kg-m2, treating the
children as point masses located at the edge of the carousel, and �ini � 2 rpm �
2(2�)/60 � 0.2 rad/s. Similarly the final angular momentum is given by an iden-
tical expression with Ifin � 2500 � 10(30)(1)2 � 2800 kg-m2. Using conserva-
tion of angular momentum, we then can write

so that the final angular velocity is � � 0.71 rad/s. Now, when the brakes are
applied, the frictional torque will produce an angular deceleration given by

But the angular acceleration required to stop the carousel in 10 s can be
computed from kinematics to be

Substituting this value into the previous equation and solving for the fric-
tional torque gives

t� Ia� 28001� 0.0712� � 200 N # m.

a�
¢v

¢t
�

� 0.71

10
� � 0.071 rad / s2.

a�
t

I
.

Lini � 10410.22� Lfin � 28001vfin2,

Lini � Iini vini,

FIGURE 7.21 Angular momentum conservation on a physics
carousel.



5.  ATOMIC FORCE MICROSCOPY

As an application of the material of this chapter, we consider the functioning of
the atomic force microscope (AFM), invented in 1986 by Gerd Binnig, who also
invented the scanning tunneling microscope (see Chapter 24) and shared the Nobel
Prize in 1986 for its discovery. The AFM provides images of the surface topogra-
phy of samples with atomic resolution (see Figure 7.22). It is basically a very sim-
ple instrument that uses a fine tip attached to a cantilever (a device having a
“beam” extending beyond its support, like a diving board; see Figure 7.23) and is
raster-scanned (in a particular x � y pattern) across, while in contact with, the sur-
face to be studied. As the tip encounters small surface height changes, the can-
tilever is deflected proportionately due to the torque acting on it, and the height
information can be recorded as a function of the x � y position of the tip. This
information can later be displayed in a topographical map of the surface with
atomic resolution. This simple and amazing technique works because the effective
springs acting between molecules on the surface are stiffer than the effective can-
tilever spring as we discuss below.

In one method to provide extremely sensitive information about the position of
the cantilever, a laser beam is reflected from the cantilever surface onto a position-
sensitive optical detector. The detector has several segments and the relative intensi-
ties recorded on the different portions of its surface allow a very sensitive measure of
the laser beam deflection. By using a relatively long distance between the cantilever
and the detector, a small angular deflection of the laser beam will result in a relatively
large linear displacement (Figure 7.24). This scheme is called an optical lever
arrangement and can be used to measure deflections corresponding to height changes
of 0.01 nm (about 10% of the size of a hydrogen atom!).

How is a macroscopic tip able to measure the surface height with subatomic res-
olution? The essential conditions are to have an effective spring constant for the can-
tilever that is much smaller than the effective spring constant that holds the surface
atoms together and to have the tip apply a very small (10�7 to 10�11 N) force on the
surface so that the effective contact area is extremely small. In that way the cantilever
will not distort the surface of the material, but will itself bend under the contact
torque from an area of atomic dimensions on the material surface. Effective inter-
atomic spring constants are on the order of 10 N/m, whereas the effective spring con-
stant of a small piece of household aluminum foil can be made to be at least ten times
smaller. Cantilevers used in AFM are usually microfabricated silicon made with inte-
grated tips or with glued diamond tips with effective spring constants of 0.1–1.0 N/m.

The most common mode for imaging biological samples is the constant force
mode. In this scheme a feedback mechanism varies the sample height so that the
contact forces (or torques, because the lever arm distance is constant) can be kept
small and constant. In this case, the small variations in sample height are tracked to
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FIGURE 7.22 Atomic resolution of
a mica surface by AFM.

FIGURE 7.23 The cantilever: the heart of
the atomic force microscope.

FIGURE 7.24 An optical lever arrangement to measure
small displacements of the cantilevered tip.



produce an image of the sample topography. Direct monitoring of cantilever deflec-
tion without feedback varying of the sample-to-cantilever height is usually not used
since the larger forces occurring with large cantilever deflections can damage the
surface. Biological samples are supported on a substrate, such as glass for thicker
samples or cleaved mica that is flat to atomic dimensions, for thinner specimens.
Figure 7.25 shows extremely high resolution images of several biological samples.
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FIGURE 7.25 AFM images of (left)
plasmid DNA, (center) an E. coli
membrane protein crystal, (right)
purple membrane (bacterial 
light-sensitive proteins containing
an analog of rhodopsin) with 
high-resolution inset.

Example 7.15 A microfabricated integrated tip and cantilever for an AFM has
an effective spring constant of 0.1 N/m. An optical deflection scheme is used to
measure the deflection of the tip at the end of a 100 �m cantilever. A laser beam
is reflected from the top surface of the tip and detected by a sensor 2 m away
from the tip. Using the relation s � r�, a small angular deflection of the tip
results in a relatively large deflection of the laser beam due to the large lever
arm distance r. If the detector senses a 0.1 mm beam displacement from the
“neutral,” noncontact position, calculate the applied contact force the tip exerts
on the sample surface.

Solution: A 0.1 mm beam displacement with a 2 m lever arm implies an angu-
lar rotation of the tip corresponding to

The corresponding displacement of the tip, which has only a 100 �m lever arm
is s � r� � 100 
 10�6 5 
 10�5 � 5 
 10�9 m � 5 nm. Using the force con-
stant of the assembly, assuming Hooke’s law applies, the applied force acting on
the sample is F � kx � 0.1 5 
 10�9 � 5 
 10�10 N � 500 pN. To appreciate
how small this force is, note that it is only about 100 times the force generated
by a single myosin molecule interacting with an actin filament. 

#

#

u�
s

r
�

0.0001

2
� 5 
 10�5 rad.

A wide variety of different biological samples have been studied using AFM.
Included in these are nucleic acids, under physiological conditions so that dynamic
processes of DNA–protein interactions can be studied as they occur (in so-called
“real-time,”), biological membranes, in which individual lipids can be distinguished,
cell surfaces, arrays and crystals of proteins, and even isolated proteins. Great care
must be exercised to rule out artifacts in the images due to tip structure effects,
scan speed artifacts, lateral forces on the tip due to frictional drag as the tip is
scanned, and other problems, but the quality and the reliability of the images are
steadily improving.



6.  ROTATIONAL DIFFUSION; CELL 
MEMBRANE DYNAMICS

In our discussion of diffusion in Chapter 2 we learned that the translational random
motion of macromolecules and microscopic objects is due to constant thermal col-
lisions with the background fluid. Under the influence of numerous collisions with
the fluid, there also will be rotational motion about the center of mass occurring
due to random (in both direction and magnitude) torques acting on the molecule
(see Figure 7.26). Just as in the case of translational motion, where there is a fric-
tional force acting that is proportional to the velocity (see Equation (3.6)), there
will be a frictional torque acting that, to a good approximation, is proportional to
the angular velocity of the molecule

(7.30)

Even if the molecule is spherical in shape, it may be asymmetric in other ways
such as its electrical or optical properties, and these properties may allow one to dis-
tinguish different orientations. For an isolated spherical molecule of radius r, Perrin
showed that the rotational frictional coefficient, which is the proportionality constant
fR between the frictional torque and the angular velocity, is

(7.31)

where � is the fluid viscosity or “stickiness” that we study in detail in Chapter 9. In
general, the rotational frictional coefficients for a few other simple shapes, such as
ellipsoids or rods, have been calculated and the common result is a third-order depen-
dence on the largest spatial dimension. This large dependence on size can be used to
determine molecular dimensions very precisely (see the example below).

Rotational diffusion of an object can be characterized by the time it takes for
the object to “randomize” its orientation or lose its “memory” of its initial orienta-
tion. This time is known as the rotational relaxation time tR, and clearly is related
to the rotational frictional coefficient, where the greater the friction, the slower the
tumbling of the object and the longer its rotational relaxation time will be.
Characteristic rotational relaxation times for small molecules are very fast, from ps
to ns (10�12 � 10�9 s), whereas larger macromolecules may have time constants of
10�3 s or longer. The rotational diffusion coefficient DR has units of 1/s and is
related to the rotational relaxation time (DR � 1/2tR). We can relate DR to the rota-
tional frictional coefficient through the general relation

(7.32)

where kB is the Boltzmann constant and T is the absolute temperature. We show later
in Chapter 12 that kBT represents an average thermal energy from the collisions of all
the solvent molecules. We see that the higher the temperature is, the larger DR and
the shorter tR; the greater the rotational friction is, the smaller DR and the longer tR.
These should make intuitive sense to you.

DR �
kB T

fR
,

fR � 8phr3,

tf �� fRv.
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FIGURE 7.26 Cartoon of a 
macromolecule undergoing 
rotational diffusion due to random
collisions with solvent molecules.

Example 7.16 A spherical virus, with electrical properties that allow one to dis-
tinguish its orientation, is in a water solution at 20°C (293 K). By studying the
time-dependence of its interaction with light, the rotational diffusion time is
measured to be 0.2 ms. Calculate the effective radius of the virus. Use a value of
0.001 (SI units) for the viscosity of water.

(Continued)



One interesting area of biophysical research that involves rotational diffusion is
the study of cellular membrane dynamics. Membranes are made up of a variety of
lipid molecules that have electrically charged head groups and linear hydrocarbon tail
portions (Figure 7.27) and serve as a boundary for cells and other organelles. The
charged head group is highly attracted to polar water molecules (hydrophilic) whereas

the tail groups are repelled by water molecules (hydrophobic).
Biological membranes are bilayers, composed of two layers of
lipid molecules arranged with the hydrophobic tails inside the
membrane and with the hydrophilic head groups on the outer
surface in contact with the water-based fluid inside and outside
the cell (Figure 7.28). Synthetic bilayers can be made from
purified lipid molecules, but natural biological membranes
contain large numbers of proteins in addition to other smaller
molecules. Membrane proteins are classified according to their
association as either integral or peripheral. Integral proteins are
those that are tightly bound to the membrane, some of them
even spanning across the full width of the membrane. These
latter proteins are important in allowing small molecules and
proteins to cross the membrane barrier through channels, or
molecule-specific pores. (We study the electrical properties of
membranes in Chapters 15 and 16.) Peripheral proteins are
more loosely bound to one of the surfaces of the membrane and
can be dissociated by changes in pH or ionic concentrations.

In the 1970s it was first discovered that the individual lipid
molecules in a membrane, as well as the embedded proteins, are
quite fluid, diffusing about on the two-dimensional surface of
the membrane at rates of several micrometers per second. Up
until that time membranes were viewed as static structures but
measurements in the 1970s showed that lipids actually can not
only diffuse about in their own monolayer (two-dimensional
translational diffusion) but even, in rare events, “translocate”
from one monolayer to the other (by “flipping” in a rotational
diffusion “event”). A model of biological membranes known as
the fluid-mosaic model was developed to describe this dynamic
structure and modified versions of it are still useful today.
Proteins in the membrane are confined (to various degrees) in
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Solution: From our discussion we know that the rotational time constant is
related to the rotational diffusion coefficient by

and is further related to the sphere radius using Equations (7.31) and (7.32).
Substituting for these, we find that

Solving for the sphere radius r, we have

r � a kB TtR

4ph
b

1/3
� a 1.38 
 10�23 # 293 # 2 
 10�4

4p # 0.001
b

1/3
� 85 nm.

tR �
8phr3

2kB T
.

tR �
1

2DR

FIGURE 7.27 A lipid, the structural
unit of biological membranes, with
polar head and nonpolar tail.

FIGURE 7.28 Two cartoons of 
a cell membrane showing the
phospholipid bilayer and a 
typical collection of associated
(geometric or vegetable) 
proteins.
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different domains or regions of the membrane. Many proteins and other macromole-
cules bind to specific cellular receptor proteins on the membrane. Often these will first
bind to the membrane surface through nonspecific binding and then diffuse on the two-
dimensional membrane surface until a specific receptor is found. Two-dimensional dif-
fusion greatly speeds the binding kinetics over three-dimensional diffusion and is
responsible for faster molecular recognition rates.

7.  STATIC EQUILIBRIUM

An object that has both a constant linear momentum and a constant angular momen-
tum is said to be in equilibrium

This definition clearly includes the special cases when and L � 0 the
object is at rest. According to Newton’s second law, at equilibrium we must therefore
have that

p
:

� 0

p
:

� constant  as well as L � constant at equilibrium.

(7.33)

In addition to a third similar equation if the problem involves three dimensions,
Fz, net � 0, the rotational form of Newton’s second law leads to another condition that
follows from the constancy of the angular momentum (see Equation (7.28)), namely

(7.34)

where all of the torques are computed using the same arbitrary axis of rotation. If both 
and L are zero, then the object is in static equilibrium, whereas if and L are nonzero con-
stants, it is in dynamic equilibrium. An example of dynamic equilibrium might be the
(dynamic) balancing of an automobile wheel and tire so that it turns at constant angular
velocity without any wobble (due to torques) acting. Simple static balancing of the wheel
and tire at rest does not always reveal whether a wheel will wobble when rotating.

In this section we focus on the conditions for static equilibrium and some exam-
ple applications. Our world is full of examples of objects in static equilibrium. All
manmade fixed structures on Earth, including buildings, bridges, tunnels, and so on,
are in static equilibrium. Gravity plays a key role in most statics problems. Although
gravity acts on all portions of an extended object, for purposes of calculating the
torque due to gravity acting on such an object we can consider the weight to act at a
single point, known as the center of gravity. For us the center of gravity is identical
to the center of mass, a distinction only occurring when the object is large enough
that the value of g varies over the dimensions of the object. You might want to refer
back to the discussion on center of mass in Chapter 6 to review its calculation.

In the rest of this section we consider three static equilibrium situations and see
how to analyze the forces acting in each situation. The procedures used in these prob-
lems are similar in each case.

p
:

p
:

tnet � 0,

Fy, net � 0.

Fx, net � 0.

Example 7.17 A two-section ladder leans against a wall at a 70° angle from the
ground and a man slowly climbs up the ladder as shown in Figure 7.29. Each of
the sections of the ladder is 6 m long with the bottom section weighing 60 N and
the top section weighing 40 N. With the ladder opened so that it is 8 m in total 

(Continued)
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length, find all the forces acting on the ladder when the 70 kg man has
climbed halfway up. Assume that there is no friction between the ladder and
wall and that the coefficient of static friction between the ladder and ground
is 0.65.

Solution: From a sketch of the situation, we construct an external force diagram
showing all the forces on the ladder, the object of interest. There are five forces
acting as shown in Figure 7.29: two normal forces, one friction force, and the
weights of the man and ladder. Next we need to determine where the forces act,
if not already clear. Aside from the forces acting at the top and bottom of the
ladder, we are told that the man stands at its midpoint. We need to find the cen-
ter of mass of the ladder which is made from two uniform 6 m sections that
overlap by 4 m. The sketch (Figure 7.30) shows the needed information to cal-
culate the center of mass of the ladder. We find its position, measured from the
bottom of the ladder to be

(Alternatively we could have treated the two ladder sections separately and
used separate weights for each ladder section acting at their respective centers.)
Now we are in a position to calculate the three unknown forces on the ladder, N1,
N2, and f, when the man is at its midpoint.

Balancing vertical and horizontal forces, we can write

and N1 � f.

From the first of these we can find N2 � 790
N, but another equation is needed to proceed fur-
ther. An independent equation can be obtained by
summing the torques about any point and setting
them equal to zero. To simplify this equation, we
choose the bottom of the ladder as this point.
Doing so eliminates f and N2 from the torque equa-
tion because these forces have zero
lever arm. We can write

N2 � (M � m)g,

xcm �
40(5) � 60(3)

100
� 3.8 m.

f

N2

N1

Mg

mg
θ

FIGURE 7.29 Ladder leaning against a wall and the
external force diagram.

40 N

60 N

3 m

5 m

8 m

2 m

FIGURE 7.30 Ladder
dimensions.



The steps used in the last example are appropriate for analyzing all static equi-
librium problems and are summarized in Table 7.3. As you read the following two
additional examples, note that they are approached using the outline in the Table.
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where L is the length of the ladder and the appropriate sin or cos factors are
introduced to find the lever arms of the three forces. Solving this for N1, we have

Note that the friction force is equal in magnitude to this same 140 N value,
far less than its maximum value of �sN2 � 510 N.

N1 �

amgxcm � Mg 
L

2
b  cos u

L sin u
�
1100 # 3.8 � 70 # 9.8 # 42 cos 70

8sin 70
� 140 N.

N11L sin u2 � MgaL

2
 cos ub � mg1xcmcos u2� 0,

Table 7.3 Method to Solve Static Equilibrium Problems in Mechanics

Step Procedure

1. Draw an external force diagram roughly to scale and carefully label all of the forces on the
object of interest and distances.

2. Determine which are the known and unknown quantities.

3. Write the appropriate equations using , one for each relevant spatial dimension in
the problem.

F
:

net � 0

4. Write the appropriate equations using �net � 0 about a convenient axis of rotation until 
sufficient independent equations are obtained to solve for the unknown quantities.

5. Solve the set of algebraic equations for the unknowns.

Example 7.18 Consider the situation when a person is exercising with a dumb-
bell held in one arm outstretched horizontally as shown in Figure 7.31. The forces
involved are the weights of the arm and dumbbell, the pull of the deltoid muscle
FM at an angle of 20° from the humerus bone acting at point A, and the force of
the shoulder joint FJ acting at the axis of the shoulder joint, point O. If the arm is
treated as uniform and weighs 50 N and the dumbbell weighs 75 N, find the force
exerted by both the muscle and joint to
hold the dumbbell in position. Take point
A to be 1⁄4  of the distance from the shoulder
joint to the dumbbell.

Solution: On first glance it might be sur-
prising that the shoulder joint exerts a
downward force. To see why this must be
the case, we can imagine taking torques
about the center of mass where the arm
weight acts. Then both the dumbbell and
the muscle force will act to produce a
clockwise rotation about the center

20  
FM

mg Mg
FJ

A
O

θ

FIGURE 7.31 An outstretched arm
supporting a dumbbell (above) with
equivalent forces drawn for analysis
(below).

(Continued)
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of mass and the shoulder joint must supply a torque tending to produce a coun-
terclockwise rotation, hence a downward force. There are three unknown quan-
tities in this problem: FM, FJ, and �. We can obtain two equations by writing

and

To proceed further we can write an additional equation, taking torques about
point O,

This last equation can be directly solved for FM to find

Substituting this back into the force balance equations, we can write

and

Solving first for �, we find, by dividing one equation by the other,

,

and then by substituting into either force balance equation,

Note the relatively large forces needed to support a modest weight. These
large forces make muscles and joints very susceptible to injury.

FJ � 1100 N.

tan u� 0.25 or u� 14°

FJ cos u� FM cos 20 � 1100 N.

FJ sin u� FM sin 20 - mg - Mg � 280 N

FM � 1mg / 2 � Mg2a 4

sin 20
b � 1200 N.

a to � mg1L / 22� MgL � FM 1L / 42 sin 20 � 0.

aFvert � FM  sin 20 � FJ  sin u � mg � Mg � 0.

aFhoriz � FJ  cos u �  FM  cos 20 � 0

Example 7.19 Suppose that a 50 N uniform crate at rest is pushed with a hori-
zontal force of 30 N applied at the top of the crate with dimensions as shown in
Figure 7.32. If the coefficient of static friction is 0.7, will the crate slide along
the surface or pivot at point O? If it will pivot, find the minimum applied force
that will make the crate pivot about O.

Solution: For the crate to slide, the external force F must be greater than the
maximum static friction force given by �sN. The normal force is equal to the
weight, although if the crate is about to pivot, the normal force will act at point
O and not through the center of mass. In either case, we find the friction force to
equal 35 N, more than the external force F, and so the crate will not slide. For
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the crate to pivot about point O, the torque
produced by F must overcome that of the
weight of the crate (note again that when
the crate is about to pivot, the normal force
must act at point O and therefore produce
no torque; similarly the friction force pro-
duces no torque). We can therefore write

But this will be a positive quantity so
that the crate will, in fact pivot about point
O. We find the minimum force needed to
pivot about O by noting that in that case
�net � 0, so that F � Mg/2 � 25 N.

tnet � FL � Mg1L/22.

L

L

O

F

N

f

Mg

•

FIGURE 7.32 A heavy crate about
to pivot (?) or slide (?) along a
rough surface with external force
diagram below.

CHAPTER SUMMARY
Table 7.2 provides a useful summary table of rotational
kinematical and dynamical equations and a comparison
with corresponding linear equations.

The rotational kinematical equations analogous to
those studied for linear motion (with �, �, and 	 equal-
ing the rotational angle, velocity, and acceleration,
respectively) are

(7.7)

(7.8)

(7.9)

Rotational kinetic energy is defined as

(7.11)

where the moment of inertia, I, is given by

(7.14)

When the forces acting on an object are conserva-
tive, so that the work they do can be expressed in terms
of a PE, conservation of energy can be expressed as

I � a (mi ri
2).

KE �
1

2
 Iv2,

v2 � vo
2 + 2a (u - uo).

u(t) � uo � vo t �
1

2
  at2;

v(t) � vo �at;

(Continued)

(7.15)

The torque produced by a force F acting on an
object can be calculated in either of two equivalent ways:

(7.22)

or

(7.23)

When a net external torque produces a rotation of an object
about a fixed axis, the amount of work done is given by

(7.20)

The angular momentum of a system can be written
as either

(7.25/7.27)

Newton’s second law has a rotational form which
can be written in two forms, analogous to F � ma and
to F � dp/dt:

(7.21)tnet, ext � Ia,

L � Itotal 
v or L � a ri pi,�.

¢W � tnet, ext ¢u.

t� ( r sin u)F � r
�

F. 

t� rF
�

� r(F sin u),

1

2
 mv2 �

1

2
 Iv2 � PE � E � constant.



QUESTIONS
1. Describe the possible overall motions of a slinky

thrown into the air. How does the motion depend on
the initial conditions as it is released?

2. Compare angular velocity as measured in units of
rad/s and rev/min (rpm).

3. A piece of gum is stuck to the tire of a bicycle. As a
girl starts to ride the bike from rest, does the gum
have an angular velocity? A tangential velocity? An
angular acceleration? A tangential acceleration?
Answer these four questions again when the girl
now coasts along at a constant translational velocity.

4. Explain why as a potter’s wheel spins, the clay pot
being made tends to expand radially outward.

5. If an object has a constant angular velocity, does it
undergo any acceleration?

6. Picture two horses, side by side, on a merry-go-
round. Which has the greater angular velocity? The
greater linear velocity?

7. What is the difference between average angular accel-
eration and instantaneous angular acceleration? Can
you give an example where they are not equal?

8. Explain why rotational velocity rather than linear
velocity is the natural variable to use when describing
pure rotational motion. Illustrate your argument with
an example.

9. In the following examples state which of the two
objects has the larger moment of inertia (or are they
the same), measured about their symmetry axis:
(a) Two balls of equal mass and radius: one solid and

one hollow

(b) Two solid cylinders with the same mass and
radius: one twice as long as the other

(c) A solid cylinder of mass M and radius 2R, or one
of mass 2M and radius R

10. Explain in words. The expression for the moment of
inertia I of a long rod (see Table 7.1) depends on the
axis about which the rotation occurs. Why is the
numerical value of I for any such rod four times
greater for rotation about the end as compared with
the middle?

11. Discuss the definitions of “line of action” and “lever
arm” in Figure 7.15. For a given force and pivot point,
how should the force be oriented to maximize the
torque applied to an object?

12. Discuss the equivalence of the two expressions 
for the torque , carefully defining the
terms.

13. In the following diagram state whether each force
would produce a clockwise or counterclockwise
rotation about each of the three labeled pivot
points.

t� F
�

r � r
�

F
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or

(7.28)

From the previous equation, we see that if there is
no net external torque acting on a system then the total
angular momentum of the system is conserved
(remains a constant in time).

Atomic force microscopy is an imaging technique
that uses a cantilevered microfabricated tip that is
scanned over a surface to produce an atomic image of
the surface. The contact torque bends the cantilever and
a feedback system moves the sample height in order to
maintain a constant deflection as the cantilever is
scanned over the surface.

Diffusion of asymmetric molecules results in not
only translational diffusion of the center of mass, but
also rotational diffusion about the center of mass. The

tnet, ext � lim
¢t:0

¢Ltotal

¢t
.

rotational diffusion coefficient DR, similar to the
translational diffusion coefficient discussed in
Chapter 2, describes the time it takes for a molecule to
rotate, or tumble, in solution. The corresponding rota-
tional times can be very fast (ps to ns) for small mol-
ecules and much slower (~ms) for larger
macromolecules.

In the special case when there is no motion of a
system, said to be in static equilibrium, then the net
force and torque on the system must both equal zero:

(7.33) Fy, net � 0,

 Fx, net � 0,

and also

(7.34)tnet � 0.

A

B

C

F1

F2

F3



14. A ball rolls from rest down a steep incline, up a
smaller hill and collides with and compresses a spring
located at the hilltop as shown. Describe the different
types of energy associated with the ball at each
labeled point.
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(b) Imagine the lever represents your forearm in a
horizontal position with a handheld weight W and
elbow at P. Does your biceps function as if it
works at P1 or at P2? Discuss the relative merits of
arm design and function in light of your answer.

23. A centrifuge is a laboratory appliance useful for sep-
arating dissolved solid particles from liquid. When a
sample is placed within a chamber, a dummy sample
of approximately equal mass should always be placed
into the chamber diametrically opposite. Explain the
reason for this procedure.

MULTIPLE CHOICE QUESTIONS
Questions 1–3 refer to a CD, with its information stored
starting at an inner radius of 2.2 cm and out to an outer
radius of 5.7 cm, that spins at 5500 rpm.
1. What is the fastest velocity at which information 

can be read? (a) 1970 m/s, (b) 33 m/s, (c) 256 m/s, 
(d) 3300 m/s.

2. If it takes 4 s to get up to speed from rest, what is the
angular acceleration of the CD? (a) 1400 rad/s2, 
(b) 23 rad/s2, (c) 144 rad/s2, (d) 8600 rad/s2.

3. In getting up to speed from rest (see previous
question), the CD makes (a) 730, (b) 1750, (c) 1150,
(d) 180 revolutions.

4. The moment of inertia of a 20 cm uniform rod of 
2.4 kg mass rotating perpendicular to its long axis about
the rod center is (a) 0.008 kg-m2, (b) 0.032 kg-m2, 
(c) 80 kg-m2, (d) 4.0 kg-m2.

A

B

C D

15. Define angular momentum in words giving an exam-
ple to illustrate your definition.

16. Discuss the differences and similarities of the conser-
vation of momentum and the conservation of angular
momentum. Can you find examples where one and
not the other quantity is conserved?

17. In the game “crack the whip”, a number of partici-
pants join hands and run along the ground (or skate
along the ice). Usually this human chain begins to
“whip,” with the trailing end of the line beginning to
fishtail. Those at the end are soon flung free. Explain
the mechanics of motion considering angular and
linear speed.

18. Consider an individual riding in an automobile while
using a lap belt but no shoulder harness. Suppose the car
is brought to stop in a frontal collision. Describe the sub-
sequent motion of the body and the potential for bodily
injury in terms of inertia and angular momentum.

19. If one attempts to carry and transport an object such as
a ladder, a large storm window, or a sheet of plywood,
one finds that it is relatively easy to do so if the load is
lifted at the proper point. Attempting to lift and carry
at other points is difficult if not impossible. Discuss
this matter considering torque and center of gravity.

20. Why should a house painter, when shifting a raised
ladder sideways, attempt to keep the ladder as close to
vertical as possible?

21. Applying what you know about the nature of inter-
atomic forces, explain why any force F, however
small, applied to the end of a cantilevered bar as
shown, must result in some amount of sag to the bar.

F
O

A

B C 

D

P P1 P2

W
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22. Consider the lever with fulcrum P and weight W as
shown. The lever arm is pinned at P but is free to pivot.
(a) If you had to hold this lever arm horizontal by

exerting an upward pull to counteract the down-
ward force of the weight W, which would be eas-
ier, a pull at P1 or at P2?

5. In the above diagram, which of the equal magnitude
forces produces the largest torque about point O?
(a) A
(b) B
(c) C
(d) D

6. As a particle traveling in a circle speeds up at a
constant rate, its net acceleration (a) increases and
points more and more toward the tangential direction,
(b) increases and points more and more toward the
inward radial direction, (c) increases and points more



and more toward the outward radial direction, 
(d) decreases and points more and more toward the
inward radial direction, (e) none of the above.

7. The net torque exerted by the forces shown about
point O is
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(c) The hoop because it has the smaller mass and will
therefore have less rotational and more transla-
tional speed compared to the cylinder

(d) The hoop because it has the larger moment of
inertia and for the same torque will have the larger
angular acceleration

13. Consider two equal mass cylinders rolling with the
same translational velocity. The first cylinder (radius R)
is hollow and has a moment of inertia about its rota-
tional axis of MR2, and the second cylinder (radius r) 
is solid and has a moment of inertia about its axis of 
0.5 Mr2. What is the ratio of the hollow cylinder’s angu-
lar momentum to that of the solid cylinder? (a) r2/2R2,
(b) 2R2/r2, (c) r/2R, (d) 2R/r.

O

F

F’

R1

R2

R3

A

60°

y

x

r

F

5 N 

2.0 m 

4 N 

1.0 m 
30°

6 N 

1.0 m 

0.2 m 

(a) 15 N-m, (b) 18 N-m, (c) 6 N-m, (d) 14 N-m, (e) none
of the above.

8. A 5 N force acts alone to slow down a 2 m radius uni-
form rotating circular platform. The force acts at the
edge of the platform and is directed at 30° to the out-
ward radial direction. The applied torque is equal to
(a) 8.7 Nm, (b) 5 Nm, (c) 0, (d) 10 Nm.

9. If the platform in the last question has a mass of 
20 kg, the angular deceleration of the platform is 
(a) 0.25 rad/s2, (b) 0, (c) 0.125 rad/s2, (d) 0.5 rad/s2.

10. From the diagram, the magnitude of the torque of force
F about point A, the lower left corner, is given by
(a) Fr

(b) Fx

(c) Fy

(d) Fr sin 60
(e) None of these

11. A particle is speeding up while traveling clockwise in
a vertical circle. When it is at the 3 o’clock position,
its net acceleration might point (a) toward 9 o’clock,
(b) vertically downward, (c) toward noon, (d) toward
6 o’clock, (e) none of these are possible correct
choices.

12. Which of the following uses correct logic? A cylinder
of mass 2M and radius R has a race down an incline
with a hoop of mass M and radius R. The winner is
(a) The cylinder, because it has the larger mass and

therefore will accelerate faster
(b) The cylinder, because its mass is distributed

throughout its volume and not all concentrated at
the radius so it will travel faster even though it has
twice the mass

14. A force F acts on a circular disk as shown. F� is the
tangential component of the force at the point of appli-
cation. The torque that the force F produces about
point O is given by (a) F� R2, (b) FR3, (c) FR1, (d) FR2.

15. An Atwood machine is a real pulley mounted on a real
shaft used to help lift a heavy weight by attaching it to
another weight by a rope strung over the pulley. Once
the weights leave the ground (a) the sum of the kinetic
and gravitational potential energies of the two weights
is constant, (b) the sum of the kinetic and gravitational
potential energies of the two weights increases with
time, (c) the sum of the kinetic and gravitational
potential energies of the two weights and the rota-
tional kinetic energy of the pulley decreases with time,
(d) the sum of the kinetic and gravitational potential
energies of the two weights and the rotational kinetic
energy of the pulley is constant.

16. Two point masses, each 5 kg, lie at either end of a light
rod of length 2 m. What is the moment of inertia of the
system about the left end of the rod (in kg-m2)? (a) 10,
(b) 5, (c) 40, (d) 20, (e) none of the above.

17. A cylinder with 2 kg mass and 0.01 kgm2 moment of
inertia (I � 1⁄2 MR2 for a cylinder) is rolling down an
inclined plane with 30° inclination. At a point where its
center of mass velocity is 1.0 m/s and its height from
the ground is 0.1 m, what is its total mechanical energy
(with respect to the ground)? (a) 1.5 J, (b) 1.96 J, 
(c) 2.96 J, (d) 3.46 J, (e) none of the above.

18. A 3 kg point mass is at the end of a light 2 m rod hang-
ing vertically and hinged at the other end. If a 
5 N force is exerted at the midpoint of the rod at a 
45° angle below the horizontal, the initial angular accel-
eration of the mass is (a) 0.83 rad/s2, (b) 0.42 rad/s2, 
(c) 0.29 rad/s2, (d) 0.59 rad/s2.



19. What physics principle does a high diver use in
executing a dive? (a) Conservation of momentum, 
(b) conservation of angular momentum, (c) conservation
of moment of inertia, (d) conservation of torque.

20. An isolated horizontal circular platform is spinning on
a frictionless axle with a person standing at its edge. If
the person walks halfway in toward the center of the
platform, the principle that allows you to find the new
angular velocity is (a) conservation of energy, (b) con-
servation of momentum, (c) conservation of angular
momentum, (d) conservation of torque.

21. An ice skater is spinning with her hands overhead and
legs straight, with a moment of inertia of 0.3 kg-m2,
so that she has a 2 s rotational period. She extends 
her arms sideways, increasing her moment of inertia
to 0.4 kg-m2. Her final rotational period is (a) 2.7 s,
(b) 1.5 s, (c) 2.3 s, (d) 1.7 s.

22. A spinning ice skater pulls in her outstretched arms.
What happens to her angular momentum about the
axis of rotation? It (a) does not change, (b) increases,
(c) decreases, (d) changes but it is impossible to tell
which way.

23. Answer each of these by choosing Yes or No.
(a) If the net force on a rigid body is zero, can it have

an angular acceleration? Yes or No
(b) If the net torque on a rigid body is zero, can it

have a linear acceleration? Yes or No
(c) Is angular momentum necessarily conserved in

part (a)? Yes or No
(d) Is angular momentum necessarily conserved in

part b)? Yes or No
24. Effective interatomic spring constants are on the order

of (a) 0.1 N/m, (b) 10 N/m, (c) 103 N/m, (d) 105 N/m.
25. A uniform ladder is leaning against a rough vertical

wall. The ladder makes an angle � with the horizontal
ground. Which of the following statements is false?
(a) The weight of the ladder equals the normal force at
the ground; (b) the normal force at the wall equals the
frictional force at the ground; (c) the torque produced
about the contact point with the wall by the weight, by
the frictional force and by the normal force at the
ground must all add to zero; (d) the weight of the lad-
der can be considered to act at the center of the ladder.

26. A ladder is leaning against a wall with a man stand-
ing at its midpoint. Which of the following is a false
statement? (a) The net vertical force on the ladder is
zero; (b) the net horizontal force on the ladder is zero;
(c) the net torque about the bottom of the ladder is
zero; (d) the net torque about the top of the ladder is
zero; (e) none of the above is false.

27. In an Atwood machine (two unequal masses hung
over a real pulley), the tension in the string attached
to both masses is not the same because (a) the two
masses are not the same, (b) the pulley has a nonzero
moment of inertia, (c) there is friction in the pulley’s
bearings, (d) the acceleration of the two masses is dif-
ferent, (e) none of the above.
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28. A uniform plank is used as a seesaw, but the fulcrum
is not placed at the center, but at a point 1/3 of the
length from one end. If the plank has a mass M, what
mass must be placed at the end of the shorter side in
order to keep it balanced? (a) M, (b) 2M, (c) M/2, 
(d) M/3.

29. A 10 kg child and a 20 kg child sit balanced on the
ends of a teeter-totter. The teeter-totter is a uniform
plank of mass 5 kg which is placed on a fulcrum.
Suppose now that each child moves halfway in toward
the fulcrum. Will the teeter-totter remain in balance?
(a) No, the end with the heavier child will go down.
(b) No, the end with the lighter child will go down. 
(c) Yes, the teeter-totter will remain in balance. (d) It
is not possible to tell from the information given.

30. Suppose you wish to tip a large packing crate so that
you can put a hand truck under it. Assume the crate
does not slide along the floor and that it tips about point
P. Should you push or pull on the crate (or does it mat-
ter?) And where should you apply your force in order to
use the smallest force to tip the crate? (a) Push on point
X in the direction A. (b) Push on point X in the direc-
tion B. (c) Pull up on point X in the direction C. (d) Pull
on Point Y in the direction E. (e) More than one of these
choices will work equally well.

A

B

C

D

E

X Y

P

.

.
.

PROBLEMS
1. In 1986 the Voyager plane was the first to circumnav-

igate the Earth without refueling, taking just over 
9 days to travel 24,987 miles around the Earth over
both poles. Find its average speed and average
angular velocity.

2. (a) How long does a centrifuge take to get up to a
rotational speed of 80,000 rpm from rest with an
acceleration of 40 rad/s2?

(b) When shut down after spinning at that speed for 
2 h, the rotor slows at a rate of 4 rad/s2 without the
brakes being applied. How long does it take to
come to a stop after the two hour spin?

(c) Find the total number of revolutions the rotor has
spun during the entire centrifugation run.

3. If the rotor of the previous problem is modeled as a
uniform cylinder of 20 kg mass and 25 cm diameter,
find its kinetic energy when spinning at its top speed.

4. A motor rotor turns at 1800 rpm. What are the angu-
lar and linear velocities of a point on the motor wind-
ing 20 cm away from the rotor axis?



5. A certain car tire is guaranteed to give 40,000 miles
(64,400 km) of use.
(a) If the tire radius is 25 cm, how many revolutions

does this amount of use correspond to?
(b) What is the angular speed for the tires (radius 25

cm) of a car traveling at 100 km/hr?
6. The world’s largest clock face has a radius of 15.4 m.

If that is the length of the minute hand find the linear
speed of the tip of the minute hand.

7. What is the linear speed of the minute hand of a wrist-
watch if a 1 cm length is assumed?

8. A maple seed wing pair falling to the ground whirls
around at 3 revolutions per second.
(a) If the overall length of the wing pair is 6 cm, what

is the horizontal linear speed of the wing tip?
(b) Assume that because of air resistance, the wing

pair falls at a constant speed of 80 cm/s. What is
the total linear speed of a wing tip during fall?

9. A large tree is blown to and fro in a strong wind. The
tree swings through an arc of 12° taking one second
to swing from one way to the other. If a bird’s nest is
24 m above the ground in the tree’s branches, what is
the average speed of the nest with respect to the
ground as it moves back and forth with the tree?

10. Because of the rotation of the Earth, a person standing
at the equator is moving through space at considerable
speed with respect to another who stands at either pole.
Compute this speed, considering the Earth as a sphere.

11. A compressor motor for a cooling system, responding
to a thermostatic control, turns on and is brought up
to its operating speed of 1200 rpm is 1.4 s.
(a) What is the angular acceleration of the motor shaft?
(b) If the motor assembly of the previous part has a

mass of 9 kg and is modeled as a solid cylinder of
radius 20 cm, what is the angular momentum of
the motor at operating speed?

12. A dormant bacterium responds to stimulus and begins
to move, via rotary motion of its flagellum.
(a) If it takes 2.5 ms to attain the normal rotational

speed of 4 Hz, what is the angular acceleration of
its flagellum?

(b) Suppose in response to an environmental stimulus,
the rate of rotation of a bacterium flagellum
decreases from 4 Hz to 3 Hz. The change is
observed to occur slowly, over a 15 s interval. What
is the angular acceleration of the flagellum?

13. A recording tape is wound up onto a take-up spool. In
order to achieve sound fidelity during playback, the
tape movement must be such that its linear speed is con-
stant throughout time. From start to finish, the spool
radius ranges from 1 cm to 0.5 cm. If the linear speed of
the tape is 5 cm/s, what are the rotational speeds of the
take-up spool at the beginning and at the end of play?

14. A clock escapement wheel oscillates back and forth
with each swing in a single direction amounting to
1/8 turn and taking 1/2 s. What is the average angular
speed of the wheel during each swing?
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15. A 50 cm outer diameter tire on a bicycle has a 0.05 kg
piece of chewing gum stuck to its edge.
(a) If the bike starts from rest and attains a linear

speed of 6 m/s in 30 s by a uniform acceleration,
what is the angular acceleration of the gum?

(b) How many revolutions did the wheel make in that
time?

(c) What were the tangential and radial components
of the gum’s acceleration at the end of the 30 s?

(d) How large must the force from the tire on the gum
have been for it to remain stuck on the tire during
the entire acceleration?

16. A honeybee flaps its wings about 200 times per sec-
ond. Assume a wing is 0.7 cm in length and swings
through an arc of 100°. What is the average speed of
a wing tip during flight of the bee?

17. Find the net torque on the object shown about the
pivot point O. (Hint: Look at the two components of
the 6N force separately.)

0.1 m
8 N

2 N

4 N

6 N

0.1 m

0.2 m

0.05 m 30°

O.

18. A space station consisting of a ring with radius R � 20 m
and mass M � 100,000 kg is spun around its center at a
rate of � � 0.7 s�1 in order to produce artificial gravity.
The moment of inertia is I � MR2 for a ring.
(a) What is the centripetal acceleration of a point on

the outside of the ring?
(b) What is the linear velocity of a point on the out-

side of the ring?
(c) What is the kinetic energy associated with the

rotation?
A spherical asteroid of mass 50,000 kg and radius 
15 m collides with the station at a speed of v �
10 m/s and lodges in the center of the ring.

(d) What is the linear velocity of the combined station
and asteroid after the collision?

(e) What is the rotational velocity of the combined
station and asteroid after the collision, assuming
that the asteroid was not initially rotating?

19. As a publicity stunt, a toy company constructs the
world’s largest yo-yo, consisting of a sphere 4 m in
diameter with a mass of 1000 kg, with a steel cable
wrapped around the middle of the sphere. They
demonstrate it by dropping it off the George
Washington Bridge, in New York City, using a crane
to hold the free end of the cable. The yo-yo rolls
down the cable without slipping.
(a) When the yo-yo has fallen a distance of 10 m, how

many radians has the sphere turned through?



(b) What is the angular velocity of the spinning
sphere when it has fallen a distance of 10 m?

(c) What is the linear velocity of the center of the sphere?
20. A cylinder of moment of inertia I1 rotates about a

vertical frictionless axle with angular velocity �i. A
second cylinder that has moment of inertia I2 and ini-
tially not rotating is dropped onto the first cylinder.
Because friction exists between the two surfaces of
the cylinders, they eventually reach the same final
angular speed, �f.
(a) What is the expression for the magnitude of �f?
(b) Show that the kinetic energy of the system decreases

in this interaction and calculate the ratio of the final
rotational energy to the initial rotational energy.

(c) Why does the kinetic energy of the system decrease?
21. The Pumpkin on the Nott revisited! Suppose that the

Nott Memorial is topped with an approximately
hemispherical dome of radius R � 89 feet. Somehow
an individual has balanced a spherical pumpkin at the
top of the dome at an angle of �i � 0° with the verti-
cal. Suppose that a gust of wind starts the pumpkin
rolling from rest. It loses contact with the dome when
the line from the center of the hemispherical dome to
the pumpkin makes a certain angle with respect to the
vertical. At what angle does this happen? Compare
your results with those of Chapter 5, problem 28.

22. During most of its lifetime a star maintains an equi-
librium size in which the inward force of gravity on
each atom is balanced by an outward pressure force
due to the heat of nuclear reactions in its core. After
all of the hydrogen “fuel” is consumed by nuclear
fusion, the pressure force drops and the star under-
goes a gravitational collapse until it becomes a neu-
tron star. In a neutron star, the electrons and protons
are squeezed together by gravity until they fuse into
neutrons. Neutron stars spin very rapidly and emit
intense radio pulses, one pulse per rotation.
(a) Our sun has a mass M � 2 
 1030 kg and radius 

R � 3.5 
 108 m and rotates once every 27 days.
What is the initial magnitude of the angular veloc-
ity of the Sun?

(b) Suppose that the sun after undergoing gravitational
collapse, forms a pulsar that is observed to emit
radio pulses every 0.1 s. What is the magnitude of
the angular velocity of the pulsar? (The sun would
not actually form a neutron star as it is well below
the minimum mass limit of 4 solar masses.)

(c) If the sun does not lose any mass in the collapse,
what is the radius of the neutron star after the col-
lapse? (Hint: Consider the sun before and after the
collapse to be a solid sphere with moment of iner-
tia .)

(d) Is there a change in kinetic energy of the collapsing
sun? If your answer is yes, how much work did grav-
ity do in collapsing the sun and why is work done
collapsing the sun? If your answer is no, then explain
why gravity does no work in collapsing the sun.

Istar � 2
5 MR2
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23. A rotating space ship has a mass of 1,000,000 kg, most
of it due to a large cylindrical tank of water (radius 10 m)
on the central axis of the ship (with outer hull radius 
20 m). While making its way to Alpha Centauri, the ship
spins about this axis to generate the illusion of gravity.
(a) Initially the rotation rate is set so that the cen-

tripetal acceleration of a person just inside the
outer hull is equal to the normal acceleration of
gravity on the surface of the Earth. What is the lin-
ear speed of a point just inside the outer hull?

(b) What is the angular velocity of a point just inside
the outer hull?

(c) What is the angular momentum of the ship (For
this part, ignore the mass of the ship outside the
water tanks.)

(d) A year or so into the trip they realize that the rota-
tion is making the pilots seasick. Not wanting to
waste fuel using rockets to slow the rotation, they
decide to use angular momentum to their advan-
tage, and instead pump the water out of the central
tanks into a thin shell around the outer hull. What
is the new angular velocity after this operation?
(Again, consider only the mass of the water.)

(e) What is the acceleration of a person just inside the
outer hull after the operation in part (d)?

24. A 200 kg playground merry-go-round with a 2 m radius
is subject to a frictional torque of 40 Nm.
(a) If the merry-go-round goes round with a linear

velocity of 6 m/s on the outside edge, what is its
angular velocity?

(b) What force must be applied by one of the child’s
parents pushing on the outside edge to keep the
merry-go-round moving at a constant angular
velocity? (Note for this system.)

(c) When the parent gets tired and lets go, how long
does the merry-go-round take to stop?

(d) At a point when the merry-go-round has lost half
of its initial angular velocity, how much energy
has been lost to frictional heating of the system?

25. A student sits on a freely rotating stool holding two
weights, each of which has a mass of 3.00 kg. When
his arms are extended horizontally, the weights are
1.00 m from the axis of rotation and he rotates with an
angular speed of 0.750 rad/s. The moment of inertia of
the student plus stool is 3.00 kgm2 and is assumed to
be constant. The student pulls the weights inward hor-
izontally to a position 0.300 m from the rotation axis.
(a) Find the new angular speed of the student.
(b) Find the kinetic energy of the rotating system

before and after he pulls the weights inward.
26. A uniform cylinder of 0.5 kg mass and 5 cm radius lies

on an inclined plane with a 30° angle of inclination.

I �1/2  MR2

F



(a) Draw a carefully labeled free-body diagram for the
cylinder when at rest at its initial height of 1.5 m and
calculate the external force F that must be applied to
the cylinder as shown to keep it from rolling.

(b) If this external force is now removed, use conser-
vation of energy principles to find the speed of the
cylinder’s center at the bottom of the incline.

(c) What is the cylinder’s angular momentum at the
instant that it reaches the bottom of the incline?

27. A physics professor lecturing about rotational motion
uses as a prop a weighted bicycle wheel with a radius of
0.2 m and a mass of 5 kg, concentrated at the rim (i.e.,
ignore the hub and spokes when considering its motion).
(a) If the wheel is set to spinning at 150 revolutions

per minute, what is the angular velocity of the wheel?
(b) If it takes 5.0 s to get the wheel up to speed, what

torque was applied? What force does this require
the professor to exert on the rim?

(c) Having stayed out late the night before, the pro-
fessor drops the wheel on the floor. Assuming the
wheel continues spinning at the same 150 rpm, how
long does it take to roll into the wall, 10 m away?

(d) What is the kinetic energy of the rolling wheel?
28. A thin hoop with 2 kg mass and 1.5 m radius rolls

down a 5 m long 30° inclined plane from rest.
(a) Find the center of mass velocity of the hoop at the

bottom of the incline.
(b) Find the acceleration of the center of mass down

the incline.
(c) How long does it take to get to the bottom?

29. A centrifuge rotor, initially at rest, has a constant
applied torque of 500 Nm causing it to speed up.
Approximate the rotor as a uniform cylinder of 20 cm
radius and 15 kg mass.
(a) If the friction force is negligible, find the angular

acceleration of the rotor.
(b) How long does it take the rotor to reach 80,000 rpm?
(c) Suppose the applied torque is removed immedi-

ately upon getting up to speed and a small 30 Nm
braking torque slows the rotor. How long does it
take to stop?

(d) Find the total number of revolutions recorded on
the centrifuge meter for this centrifuge run.

30. A custodian raising a bucket of coins from the bottom
of a wishing well turns the handle attached to a spool
of rope at a constant rate of 20 revolutions per minute.
(a) What is the angular velocity of the spool in rad/s?
(b) If the spool has a radius of 0.10 m, how much time

is required to raise the bucket by 10 m?
(c) If the weight of the bucket exerts a torque of �2 Nm

on the spool, what force must the custodian apply
to the end of the 30 cm handle to keep the spool
turning at a constant angular velocity?

(d) If the bucket is raised to the top, emptied, and
allowed to drop back into the well, what is the
angular velocity of the spool after the bucket has
fallen 10 m, if the mass of the bucket is 10 kg and
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the cylindrical spool has a mass of 20 kg?
(Assume frictionless bearings in the spool.)

31. What must the mass of m3 be in order to balance out
the individuals of masses m1 and m2 situated on the
seesaw as shown (Take mseesaw � 76 kg, m1 � 18 kg,
m2 � 16 kg, x1 � 1.2 m, x2 � 1.4 m, x3 � 1.4 m)?

m2 m1 m3

x2

x1 x3

2 m

0.6 m

m2 m1

x2

x1 x3

30°

32. Suppose in the previous problem m3 balances the see-
saw by pulling now on the end 1.5 m from the ful-
crum at an angle of 30° from the horizontal as shown.
What force is necessary for balance?

33. A housepainter who weighs 750 N stands 0.6 m from
one end of a 2.0 m long plank that is supported 
at each end by ladder anchors. If the plank weighs
100 N, what force is exerted upon each anchor?

34. A car (14,500 N) travels across a simple truss bridge
(230,000 N; 16 m long), that is supported by pylons
at each end.
(a) What are the maximum and minimum forces

exerted on each pylon due to the crossing?
(b) Suppose, all the while, a road crew (total weight

22,000 N) is situated 4 m from one end. What
now are the maximum and minimum forces exerted
on each pylon due to the crossing?

4 m

16 m



35. A carpenter places a 2 kg, 4 m long plank atop a work-
bench surface, with one end of the board overhanging
the benchtop by 1⁄4 of its length. A curious 8 kg cat then
leaps up to the bench and begins to creep out along the
overhang. How far can it go before the board tips,
sending both cat and board to the floor?
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38. A specification chart notes that a certain machine bolt
should be tightened to 85 N-m of torque. Because of
interference with other adjacent machine parts, the
mechanic can only grasp a wrench at the handle mid-
dle, and can pull along the direction shown, at an
angle of 60° from the handle’s long axis. If the
wrench is 30 cm long, how much force must be
applied in order to attain the specified torque?

36. A 50 kg sign boom PQ is held horizontal by a wire cable
that runs from Q to an anchor point on a building wall,
R. The boom is free to pivot in the vertical plane about
the hinge at P. If a sign suspended from the boom weighs
340 N, what is the tension in the cable necessary to hold
the boom horizontal?

R

P Q

60°

JOE'S EATS

37. Lifting an object from a forward-leaning position.
Consider the biomechanical stress that is sustained
within the backbone and muscles of an individual who
attempts to lift a weight from a stance in which the
body leans forward. A represents the hinge point
between back and hips. B represents a point in the lum-
bar region of the back. C is the hinge point between
upper back and arms (with the shoulder bones inter-
vening). Assume the individual pulls directly upward,
from D to C. �1 indicates the amount of forward tilt of
the spinal axis. Except for this tilt, an otherwise
straight spine is assumed. �2 is the angle between the
spinal axis and the line along which a set of lower back
muscles exert tension. If the mass to be lifted is 2.5 kg,
determine the magnitude of F, the amount of tension
supplied by the lumbar muscles. Determine the com-
pressive force on the lower spinal vertebrae, between A
and B. Take , and �2 � 8°.AB �

1
4 AC, u1 � 45°

F

A

B

D

C

m, mass

θ2

θ1

39. A small 5 kg lead ball is on the end of a 0.5 m light
rod that is hinged at one end so it is free to pivot and
is held on the other end so that it is horizontal. When
let go from rest find the
(a) Initial torque on the rod about the hinge
(b) Initial angular acceleration of the rod
(c) Angular velocity of the ball at its lowest point
(d) Angular momentum of the ball at its lowest point

40. An old-fashioned child’s toy top is set spinning by
first winding string around it, and then tossing the top
forward toward a smooth surface and then immedi-
ately pulling back sharply on the string. Suppose the
string pull exists for 0.8 s during which time the top
is set spinning at 15 turns per second. Treat the top as
a solid sphere of radius 2 cm and of mass 100 gm.
What is the pulling force that must be applied to the
string to attain the motion described?

41. A uniform board, hinged at one end, is just barely sup-
ported in a horizontal position by an 8 N force applied
at the other end and acting at a 30° angle with the
horizontal.
(a) What is the weight of the board?
(b) What is the minimum force acting at the far end of

the board that can keep it in a horizontal position?



42. A water wheel with an 8 foot radius collects water
spilling from a millrace. The resulting weight imbal-
ance produces a torque which turns the wheel.
Suppose that only the five labeled buckets hold appre-
ciable amounts of water, as follows: A1 � A2 � 0.5
cubic ft; B1 � B2 � 1 cubic ft; C � 1.5 cubic ft.
(a) What is the resulting torque on the wheel due to

the water?
(b) If a capstan reel of radius 6� is also mounted along

the wheel axle, what is the maximum weight that
can be raised by a rope wound round the reel?
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A1

B1

C

B2

A2

43. A marching baton, twirled and tossed aloft, rotates
end over end about its center of mass. Suppose its
shaft is 45 cm long and has mass of 400 gm, and its
rubber end caps are 40 gm each. Consider the shaft as
a uniform rod and the endcaps as point masses situ-
ated at either end. If such baton rotates 3 times per
second, what is its angular momentum?

44. A competitive diver executes a forward flip from a 
3 m board. Suppose upon leaving the board the
diver’s body is assumed to be fully extended and is
tilting forward at 0.5 turn per second. At the peak of
the jump the diver tucks, bringing knees to chest and
folding arms around knees. The maximum height
reached by the diver is 1 m above the board.
Representing the diver’s body as a cylinder and
assuming that tuck position reduces to one-half the
overall length of the cylinder/body, show that it is
possible for the diver to complete more than one
complete somersault before falling to the water
surface.

45. A 20 m long uniform beam weighing 600 N is
supported on two 3 m long concrete columns A and B
each having a cross-sectional diameter of 10 cm as
shown.

(a) Find the maximum weight a person can have and still
walk to the extreme end D without tipping the beam.

(b) Find the forces that the columns A and B exert on
the beam when the same person is standing at a
point 2 m to the right of B.

46. A crate with rectangular faces (height h, depth d,
width w) having roughly the outline of an upright
refrigerator is slid sideways across the floor as indi-
cated. Suppose that the leading edge of the crate
strikes an irregularity in the floor and begins to tip.
Determine an algebraic expression for the maximum
angle through which the crate can tip about its bottom
forward corner edge and still fall back to the upright
position. Assume the crate and its contents uniformly
occupy its volume.

A B
D

12 m3 m

h

w

d

floor bump

47. A light 4 m long rod is hinged (frictionless) at one
end, has two weights attached (one of 2 kg fastened at
its center and one of 4 kg fastened at its other end),
and is held in place at a 30° angle by a horizontal
cable fixed at 3⁄4 of the way along the rod from the
hinge as shown.

(a) Find the tension in the cable
(b) If the cable is cut, find the initial angular acceler-

ation of the rod.
48. Four children situate themselves on a playground

whirly-go-round, a large metal platter that can rotate
about a central vertical axis. The whirly-go-round
platter has a mass of 90 kg and a radius of 1 m. Each
child has a mass of 20 kg and sits 75 cm away from
the center (25 cm in from the outer edge). After 15 s
of sequential tugs at the attached metal bars, an adult
sets the whirly-go-round spinning at 1 turn per second.
(a) What is the average force supplied by the adult?
(b) With the whirly-go-round now spinning at 1 turn

per second, if the children allow themselves each
to now move out to the edge of the whirly-go-
round, what will be its new rotational speed?



49. A certain church bell weighs 800 lb (3600 N). In
order for the clapper to contact the bell, the bell must
be tilted 24°. Suppose the bell is mounted at M upon
an axis 15 cm above the bell center of mass C. The
winding wheel (diameter 1 m) for the bellpull has its
center at the mounting axis of the bell. What force
must be applied to the bellpull in order to impart tilt
sufficient to ring the bell?
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Pm1

m2

L

r

45°

60°

R

Q

C

(a) What is the angular momentum of the mass about C?
(b) Suppose an identical mass m2 travels, also at a

constant 2 m/s, along the straight line l which is
1.5 m from C. Calculate the angular momentum
of the mass when it is at point P, the point of inter-
section of the circular path and the line.

(c) Calculate the angular momentum of the mass m2
about C when m2 is at point Q.

(d) Calculate the angular momentum of the mass m2
about C when m2 is at point R.

Your findings should help you to see that the magni-
tude of angular momentum calculated for any mass
depends, as does torque, on the point about which the
value is calculated. Furthermore, different masses,
with apparently different motions, can have the same
angular momentum about a given point.

51. A 5.0 m long ladder with mass 100 kg is laid against
a frictionless wall at an angle � with respect to the
floor as shown below. Suppose that the coefficient of
static friction between the floor and ladder is 0.09 and
that a painter of mass 60 kg has climbed up the ladder
and has made it to a point 70% of the length of the
ladder when the ladder begins to slip.
(a) In your own words, write a brief description of the

problem stating the main physical principle(s)
behind the problem.

(b) Draw a carefully labeled free-body diagram show-
ing all of the forces that act on the ladder.

(c) From your free-body diagram, determine expressions
for the normal forces due to the wall and the floor.

(d) Write an expression for the sum of the torques
about the origin O (shown above) in terms of the
angle � and then evaluate your expression using the
information given. (Hints: You will need the fact
that sin(90 � �) � cos � and for counter-clockwise
rotations choose � for the direction of the torque.)

24°

M

C

15 cm

bellrope

winding
wheel

50. A mass m1 of 400 gm travels a circular path around a
center C at a radius r � 1.5 m at a constant speed of
2 m per second.

floor 

person

O
wall

θ
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The biological world could not exist apart from fluids. Water is the primary constituent
of our bodies and of all animals and plants and it is difficult to imagine life without water.
All life on Earth is also bathed in fluids, namely air or water, and the exchange of gases
(oxygen and carbon dioxide) is required for all life as well. In this and the next chapter
we study fluid mechanics, composed of the subjects of hydrostatics and hydrodynamics.
These are generalizations of the statics and dynamics we have already studied and we use
many of the fundamental principles and methods that have been developed. The major
difference here is that we treat the fluid as a smooth continuous medium that continually
exerts forces on immersed objects over their entire contact surface.

First pressure is introduced and we examine fluid flow of simple ideal fluids, those
having no frictional losses of mechanical energy, showing how to apply the conserva-
tion laws we have learned to fluid motion. We show the power of these conservation
laws in the context of a variety of different problems dealing with fluid dynamics. Then
we study hydrostatics as a special case of hydrodynamics, considering the properties of
a fluid in equilibrium and its effects on an immersed object. The chapter ends with a
discussion of how pressure can be measured.

In the next chapter we study some more complex phenomena in fluids. These
include a study of viscous fluids such as blood, in which there are frictional losses and
complex behavior (we also discuss the human circulatory system from the perspective
of fluid mechanics), as well as surface tension and capillarity of fluids.

1.  INTRODUCTION

A fluid is a gas or liquid that, unlike a solid, flows to assume the shape of the con-
tainer in which it is placed. This occurs because a fluid responds to a shear stress, or
a force per unit area directed along the face of a cube of fluid, by flowing, rather than
by an elastic displacement as in a solid. A drop of water on a kitchen counter flows
when a towel is drawn over the surface whereas a pencil eraser bends when it is
rubbed along the surface of a paper and then returns to its original shape. The mole-
cules in a fluid are randomly located whereas those in a solid have some higher
degree of order; intermolecular forces in a fluid are both somewhat smaller and are
of a shorter range than in a solid, so that no elasticity exists in an (ideal) fluid. Gases,
under so-called ideal gas conditions, have molecules that move completely indepen-
dently of each other, without any intermolecular forces. Spreading out to fill any
volume in which it is placed, a gas can have its average number of molecules occu-
pying a unit volume change dramatically. Gases are therefore said to be compress-
ible and their mass density (or just density) �, defined as

(8.1)r�
m

V
,

8Ideal Fluids
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is quite variable. On the other hand, liquids are characterized by their incompressibil-
ity and their density is a constant independent of the container size or shape or, to a
good approximation, of the external forces acting on the liquid. What does determine
the density of a liquid is the size of the molecular constituents and the intermolecular
forces between them. Table 8.1 gives the densities of some materials.

Table 8.1 Densities of Some Substances.1

Substance Density(103 kg/m3)

Water 0.998

Water, 4°C 1.000

Mercury 13.6

Sea water 1.025

Ice 0.917

Ethyl alcohol 0.791

Whole blood 1.06

Blood plasma 1.03

Bone 1.9

Air 0.0013

Water vapor, 100°C 0.006

1At 20°C and atmospheric pressure unless noted.

Example 8.1 A cylindrical thin-walled plastic tube is filled with an unknown
liquid. The tube has a 2.00 cm radius and is 20.0 cm long. When empty the tube
weighs 0.200 N and when filled with the liquid it weighs 2.15 N. Calculate the
density of the liquid. What might it be? The ratio of the liquid density to that of
water at 4°C (1.0 � 103 kg/m3) is known as the specific gravity of the liquid.
Calculate the specific gravity of this liquid.

Solution: The volume of liquid the tube holds is given by

Subtracting the weight of the empty tube, the liquid has a weight of 1.95 N, or a
mass of

We then find the liquid’s density to be

One liquid whose density is within 1% of this number is ethyl alcohol, therefore a
likely candidate based simply on its density. The specific gravity measured by this
procedure for this liquid is then 0.797, a dimensionless number. Note that although
the cylinder volume and the mass of the liquid are specific to this particular problem,
the density of this liquid and its specific gravity are properties of the substance and
do not vary with the size of the cylinder. In other words, given a volume V, the mass
of the contained liquid is determined by m � � V, where the density is a constant.

r�
m

V
�

0.200

2.51 � 10�4
� 0.797 � 103 kg/m3.

m �
Fw

g
�

1.95

9.8
� 0.200 kg.

V � pr2 L � p10.022210.22� 2.51 � 10�4 m3.
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There are many materials that are not easily categorized into solid, liquid, or gas.
Gels (cross-linked networks of polymer molecules) and colloids (suspensions of
macromolecules or microscopic particles) are materials, many of which are impor-
tant biomaterials, that can exhibit both liquidlike and solidlike properties depending
on the conditions. Many gels, such as agarose, a polysaccharide, when dissolved in
water at elevated temperatures behave as a liquid, but when cooled “gel” to form a
material that has the elastic properties of a solid. A number of biologically interest-
ing filamentous macromolecules can form liquid crystals, having some long-range
order but behaving in other ways as does a liquid. Biological membranes are, in many
respects, two-dimensional liquid crystals with aligned, but fluid, lipid molecules in a
bilayer, as was discussed in the previous chapter.

Let’s begin our discussion of fluids by considering an ideal fluid, one that is
incompressible and has no viscous (frictional) resistance to flow. We treat our ideal
fluid as a continuous medium without regard for its molecular composition and inter-
molecular forces. In the next chapter we consider the nonideal effects of viscosity.

2.  PRESSURE

When a fluid is at rest it is said to be in hydrostatic equilibrium and there will be no
net force on any portion of the fluid. Just as in particle mechanics, we know that this
must be true because a net force on any portion of the fluid would result in motion,
and we have assumed the fluid to be at rest. Although macroscopically the fluid is at
rest, and the net force on every portion of the fluid is therefore zero, we know that the
atoms or molecules of the fluid do move about. This thermal motion, or diffusion, is
ever-present. We have discussed it briefly at the end of Chapter 2 and reconsider it
when we study thermodynamics. To allow for this, in our continuous picture of a fluid
we allow for local microscopic flows of fluid even under hydrostatic equilibrium.

If we imagine a square surface with unit area at some arbitrary location within
the fluid (see Figure 8.1), then in the absence of any external forces such as gravity,
there will be the same average momentum due to molecular motions crossing this
surface per unit time in either direction, regardless of the position or orientation of
the square. Any imbalance in the momentum flow, with its associated net force,
would produce flow in our ideal fluid, which is assumed to be in hydrostatic equilib-
rium. The fluid on one side of this unit square thus exerts a force on the other side,
which in turn exerts an equal and opposite force back. Now, imagine a cube of fluid
with unit area sides (Figure 8.1). This fluid experiences forces from the external fluid
on all six faces, canceling pairwise so that it experiences no net force.

We define the pressure within a fluid as the magnitude of the normal force per
unit surface area due to the fluid on one side of the surface,

(8.2)

Our discussion above indicates that in the absence of external forces, the pressure will
be a constant throughout the fluid. The definition of pressure resembles a stress in a
solid, namely a force per unit area, except that stressing a
solid might well depend on the orientation of the solid if it
is anisotropic. Note that pressure is defined to be a scalar
quantity, and thus is independent of the orientation of the
area. The metric unit for pressure is 1 N/m2 which is given
the name 1 pascal (Pa).

If a fluid is confined in a closed container and an exter-
nal force is applied to a region of the surface bounding the
fluid, there is an external pressure being applied. The exter-
nal pressure applied does not remain localized near the sur-
face where the pressure is applied, but the external pressure

P �
F

A
.
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r

p
r

F
F

F

F

F

   F 

FIGURE 8.1 (left) A region of a fluid
(darker colored) with an imaginary
unit area surface. The net
momentum crossing this surface
must total zero when at hydrostatic
equilibrium. (right) A cubical volume
of a fluid (darker colored) with
equal normal forces F acting on the
six faces, resulting in a net zero
force on the fluid in this cube from
the surrounding fluid because the
forces cancel pairwise.

p
B



on a confined fluid increases the pressure uniformly
throughout the fluid by the same amount. This is known as
Pascal’s principle. Pressurized fluids occur in the human
body in many forms: the vitreous humor of the eye (glau-
coma being a disease with elevated eye pressure leading to
damage of the optic nerve), the pressurized fluid in the
cochlea of the ear, and blood under pressure in the cham-
bers of the heart are all examples.

Hydraulic devices make use of Pascal’s principle to
amplify forces. As a first example of such a device consider

the schematic diagram of a hydraulic lift shown in Figure 8.2. A smaller force Fin act-
ing over a smaller area Ain determines the applied pressure P � Fin/Ain. The output end
of the lift has a much larger area, Aout, and because the pressure within the fluid is
essentially constant (exactly so if the heights are the same, as we show in Section 5),
the output force Fout is determined from P � Fin/Ain � Fout/Aout, so that the output
force is amplified to be

(8.3)

where the ratio Aout/Ain is the amplification, also known as the mechanical advantage.
Hydraulic brakes in motor vehicles are based on this same idea.

A similar hydraulic effect is used to amplify sound in the middle ear. Consider
the architecture of the middle ear shown in Figure 8.3. Bounded on the outer side by
the tympanic membrane (ear drum) and on the inner side by the oval window, the
middle ear is a small air-filled chamber, with a volume of about 2 cm3, containing
three small bones: the malleus (or hammer), the incus (or anvil), and the stapes (or
stirrup). These are suspended by a set of ligaments and muscles so that the malleus
is in close proximity to the tympanic membrane, and the “footplate” of the stapes is
in the oval window. When the tympanic membrane vibrates in response to sound, the
mechanical vibrations are transmitted to the inner ear through vibrations along the
middle ear bones to the stapes. There is about a factor of 20 reduction in the effec-
tive area of the footplate of the stapes from that of the malleus. Because the mechan-
ical force is constant through the bones (actually the force is also amplified roughly
a factor of two due to some “lever action”), the pressure at the oval window is greatly
amplified, due to its much smaller area. This hydraulic effect leads to amplification
of sound waves entering the fluid-containing cochlea (inner ear) at the oval window.
We discuss the overall functioning of the ear in more detail in Chapter 11.

Let’s return to our discussion of a fluid at rest in a container and consider the sit-
uation when our imaginary unit area coincides with a portion of the container wall
(Figure 8.4). Because this area now lies on the boundary, local random flow of fluid
toward this area (and the resulting momentum flow) must be turned around via col-
lisions with the wall to have a net zero macroscopic momentum flow in the fluid.

Because in this case there is no fluid beyond the wall boundary to
transport momentum back across our unit area, the wall must sup-
ply the reaction forces needed to “bounce” fluid back across the
unit area so as to maintain the fluid macroscopically at rest. These
forces are due to intermolecular interactions within the wall that
supply, by collisions with the fluid molecules, the return flow of
momentum needed to maintain hydrostatic equilibrium. The forces
exerted by the wall must be perpendicular, or normal, to the wall and
make up an external pressure supplied by the wall. If the wall were
to exert forces parallel to its surface, these would generate fluid flow
contrary to our assumption that the fluid is macroscopically at rest,
and so the wall forces must be normal forces. We conclude (using
Newton’s third law) that fluids at rest exert only normal forces on
boundary surfaces.

Fout �
Aout

Ain
 Fin,
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Fin

Fout

FIGURE 8.2 (left) Schematic of a
hydraulic lift. The output force is
larger than the input force by the
ratio (Aout/Ain ), where the A’s are
the cross-sectional areas. (right)
Mobile hydraulic lift for jacking up
heavy equipment.
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FIGURE 8.3 The middle ear.



3.  DYNAMICS OF NONVISCOUS FLUIDS: TYPES OF FLOW

In this section we begin a description and analysis of fluid motion, the subject of
fluid dynamics. Remember that we are treating a fluid as a continuous medium so
that we characterize fluid motion not by the velocities of the individual fluid mol-
ecules, but by a mapping of fluid (vector) velocities as a function of both space and
time throughout the volume of fluid. You can imagine a movie in which velocity
vectors are drawn at a representative set of points in the fluid and you watch them
change with time. We can distinguish two fundamentally different types of
fluid motion, steady flow, or time-independent flow, and unsteady flow, or time-
dependent flow. In steady flow the velocity mapping (Figure 8.5a) never changes
and the flow pattern remains unchanged with time; in place of a
movie, a picture will now do to map the flow pattern. Steady flow
can also be visualized by drawing contour lines, known as stream-

lines, showing the trajectories of volume elements of the fluid
(Figure 8.5b). Streamlines are drawn so that at any point the tan-
gent to a streamline is the direction of the fluid velocity at that
point (Figure 8.6). In addition, the magnitude of the velocity is
indicated by the density of lines drawn; lines spaced more closely
together indicate more rapid motion. Experimentally one can con-
struct streamlines using dyes or “tracer particles” added to flow-
ing fluids in order to analyze the fluid motion around an object. In
this section, after briefly discussing unsteady flow, we limit our
discussion to steady flow ideal fluids. The effects of viscosity are
introduced in the next chapter.

In order to illustrate the various types of more complex fluid
flow, let us imagine an experiment in which we confine a fluid
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Example 8.2 (a) A cylindrical tube filled with blood is held vertically. The tube
has a radius and length of 1 cm and 10 cm, respectively. Calculate the pressure
at the bottom of the tube. (b) Calculate the pressure exerted on the ground by a
100 kg man standing squarely on his feet, each sole having an area of 200 cm2.

Solution: (a) The pressure at the bottom of the tube is equal to the weight of the
blood divided by the cross-sectional area of the cylinder. (Here we are neglecting
atmospheric pressure, the pressure due to the column of air above the tube; see
Section 5.) Using the density of blood from Table 8.1, we find

so that the pressure is independent of the radius of the cylinder, and is equal to

We later show that the result here that P � �gh is generally true for a fluid in hydro-
static equilibrium. It actually represents the pressure increase at a distance h below
the top surface. (b) Using the same principle, the pressure at the ground is given by

where the factor of 2 is due to the weight being equally supported by both feet
and the factor 10�4 converts units from cm2 to m2.

P �
mg

Atotal
�

100 # 9.8

2 # 200 # 10�4
� 2.5 �  10 4 Pa,

P � 1.06 �  103 # 9.8 # 0.1 � 1040 Pa.

P �
mg

A
�
r1pr2 h2g
pr2

� rgh,

Pin Pout

FIGURE 8.4 The container wall
supplies a normal force on the fluid
at rest within it.

a) 

b)

FIGURE 8.5 Steady fluid flow
mapped using either velocity vectors
(a) or streamlines (b).



between two concentric cylinders, with the outer one fixed and the inner one
made to rotate at a variable rate that can be precisely controlled. Such a geometry
is known as couette flow and is shown in Figure 8.7. At low rotational velocity of
the inner cylinder, the flow will be steady with circular streamlines around the
cylinder. This is one example of laminar flow, in which the fluid moves smoothly
as if it were layered with the layers sliding smoothly over one another. Smoothly
flowing streams or aerodynamic flow of air over and around a car are examples of
laminar flow. Filtered air flow in hospital operating rooms is often designed to cir-
culate under laminar flow to better filter all the air in the room. In couette flow
because the outer cylinder does not rotate and the inner cylinder rotates at some
constant angular velocity, the layers of fluid that slide over each other are cylindri-
cal shells (Figure 8.7) with the outermost one stationary and the innermost one
rotating most rapidly together with the inner cylinder.

If we imagine increasing the rotational velocity of the inner cylinder, eventually
the fluid undergoes turbulent flow that is not only unsteady, but is also chaotic or
unpredictable. Turbulence is familiar to you in the fast flow of water at rapids in a
river or the flow of the air in a windstorm (Figure 8.8). In turbulent flow the velocity
at any point changes chaotically in magnitude and direction.

Turbulence occurs in blood flow within our circulatory system and is quite
important, for example, in the proper functioning of our heart valves. These
are passive devices that open and close in response to the flow of blood and
not from external muscle forces controlling them. As blood flows through a
heart valve into one of the chambers of the heart, the turbulent back flow acts
to shut the valve. Without the turbulent flow, heart valves would not close properly.
As a second example of turbulence in blood flow, we note that a bleeding cut
forms a clot much more rapidly if the flow of blood is turbulent, from a jagged
wound, rather than laminar, from a thin smooth cut, such as a paper cut. This

is true because the turbulent flow helps to shear
blood platelets releasing the proteins necessary for clot
formation.

As the fluid flow in the couette experiment changes
from laminar to turbulent, there are a number of other
types of unsteady flow that occur. Unlike turbulence,
these flow patterns, although time-dependent, are peri-
odic or quasi (nearly) periodic and are predictable despite
being complex. Included in these flow patterns are vor-
tices (rotational flow of the type seen as water drains in a
bathtub) as well as amalgams of vortices and waves. The
transition from steady to turbulent flow has been studied
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FIGURE 8.6 Lava flow from a
Hawaiian volcano showing
streamline flow.

FIGURE 8.7 (left) The couette
geometry. (right) Top view of 
laminar flow of fluid showing 
an annular layer flowing smoothly.



for a large number of fluid systems in recent years and has led to a deeper under-
standing of the nature of turbulence. There are also a number of other types of sys-
tems, including chemical, electrical, magnetic, and quantum, as well as simply
mathematical, that have analogous behavior in a transition from deterministic to
chaotic behavior.

4.  CONSERVATION LAWS OF FLUID DYNAMICS

In our discussion of particle and rigid body mechanics we saw the importance of con-
servation laws. There are two conservation laws that we apply to the steady flow of
ideal fluids in the absence of vortices, conservation of mass and conservation of
energy, both of which give important results. Conservation of momentum can also be
applied to fluid motion but it is beyond the scope of this book.

Figure 8.9 shows a fluid flowing in a cylindrical tube with a changing cross-
sectional area. We are interested to learn how the speed of the fluid depends on the
tube dimensions. For an ideal fluid, the velocity is constant over the cross-sectional
area. We show later that a real viscous fluid has a velocity profile that varies over the
cross-sectional area because of the drag forces slowing the fluid flow; in that case we
can use the average velocity over the cross-sectional area in the following discussion
and the result is still correct.

If the fluid of density � has a velocity v1 in the portion of the tube with a con-
stant cross-sectional area A1, then in a time �t, the mass of fluid that passes a given
point in this section of the tube (see Figure 8.9) is given by

(8.4)

The product A1v1�t represents the cylindrical volume of fluid that will flow past the
given point in a time �t, and Q � A1v1 is then the volume flow rate, or volume per
second flowing past this point. Because mass is conserved, the fluid is incompress-
ible, and no fluid escapes through the walls of the pipe, if we examine the fluid flow
in the narrow region of the pipe, we must find the same mass of fluid flowing past
a given point in this section of the tube in the same time �t. Given that the
fluid is incompressible, so that � is a constant, we find that

(8.5)A1v1 � A2v2.

¢m � rA1v1¢t.
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FIGURE 8.8 Steady to turbulent
flow. Photo taken at the top of
Horseshoe Falls near Niagara Falls.

A1

v1

A2

v2

FIGURE 8.9 Fluid flow in a cylinder
of varying cross-section.



Equation (8.5) can be written as Q � Av � constant, and is known as the continuity

equation. It tells us that when the cross-sectional area of a tube decreases, the veloc-
ity of flow must increase in an inversely proportional manner: v � (constant)/A. At
first glance this may seem contrary to your intuition. Imagine a partially blocked
water hose. You might think that the fluid would slow down where there is such a
blockage. On the other hand most of us have had the experience of squirting water
out of a hose, or sink or bathtub faucet, and realized that if the outlet area is decreased
by blocking it with your hand, the flow of water can be speeded up. The variation of
speed with cross-sectional area is a direct consequence of the principle of conserva-
tion of mass. The continuity equation compares fluid velocities in different regions
of the flow, but what can we say about the actual fluid speed in a tube? To find out
requires a bit more discussion and application of the conservation of energy princi-
ple, but first consider the following example.
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Example 8.3 Water exits from a bathtub faucet with a speed v0 
(see Figure 8.10).

Find an expression for the diameter of the flowing water stream as it falls, assum-
ing laminar flow.

Solution: The stream of water narrows as its speed increases
according to the continuity equation (Equation (8.5)), just as if
it were confined to a tube. We can calculate the speed of the
water after it falls a distance d because this is essentially a
free-fall problem. Using standard kinematics, we have

so that the velocity after falling a distance d will be

. From Equation (8.5), the continuity

equation, the cross-sectional area, A � �r 2, will get narrower
as the velocity increases according to

where r0 is the initial radius and r is the radius of the stream
of water after it falls a distance d below the faucet. Solving
for 2r, we find

For a given initial velocity of water, the stream narrows very slowly with
distance d due to the 1⁄4 power dependence. However, for small initial velocities
the stream of water narrows appreciably over small distances d. For example,
water slowly coming from a faucet at 10 cm/s shrinks to half its original diame-
ter after falling only a few mm, but water pouring out at 5 m/s will travel almost
20 m before shrinking to half its diameter. Try this out at your sink at home!

2r � 2r0Av0

v
� 2r0A v01v2

0 � 2gd
� 2r0Q

1

A1 �
2gd

v0
2

� 2r0£1 �
2gd

v0
2 ≥

�1/4

A � pr2 � A0

v0

v  � pr2
0 

v0

v

 v �1 v0
2 � 2gd

 v2 � v0
2 � 2gd,

FIGURE 8.10
A stream of
water from a
faucet. Why
does it get
narrower?

Let’s now examine the conservation of energy principle for an ideal fluid flowing
in the absence of vortices. Figure 8.11 shows an idealized blood vessel with an ideal
fluid flowing through it (the fluid properties of blood are detailed later in this chapter;
for now we take blood to be an ideal fluid). Consider the colored fluid to be our sys-
tem, originally bounded between the dotted blue lines in the top view. The two views



shown in the figure are taken a time �t apart during the flow so that the colored fluid
in the top view has moved, resulting in a boxed region in
the bottom view moving beyond the original dotted line boundary, a boxed volume
equal in volume to that in the top view. Of course there is fluid throughout 
the blood vessel, but we focus on the (red � blue) system fluid in what follows. In the
transition between the two views the center of mass of the colored fluid of our system
has moved, in general changing both its velocity as well as its height. We know that
the total energy of the fluid in our system consists of kinetic and gravitational poten-
tial energy. The surrounding fluid, we show, does work on our system and we want to
use the work–energy theorem to equate the total changes in kinetic and gravitational
potential energy of the ideal fluid in our system from before to after this time differ-
ence �t with the external work done on our system (Wexternal � �KE � �PEgrav).

Equal small volumes of fluid at two different locations along the blood vessel with
different cross-sectional areas A1 and A2, will have different velocities because we have
already shown that the volume flow rate Q � Av is equal to a constant based on con-
servation of mass. Therefore as the fluid flows through the blood vessel, in a time �t

such that the volume of our system in the boxed region in the upper view (at a narrow
location and thus a relatively fast velocity) moves to the right, and the equal boxed vol-
ume of the lower view (at a wider location and thus a slower velocity) fills with system
fluid, the kinetic energy of the center of mass of the fluid in our system will decrease
(in general, it may increase or decrease depending on the change in cross-sectional
area). To find this change in system KE we need only consider the change in KE of the
fluid in the two boxed regions. We can write this change in kinetic energy as

(8.6)

where �Q�t is the (same) mass of fluid in either boxed region in Figure 8.11.
According to the work–energy theorem, this change in kinetic energy is equal to

the net work done on the fluid. There are two types of forces that contribute to this
work: the gravitational force (if there is a change in height) and the pressure forces
in the fluid. Work done by gravity is equal to the negative of the gravitational poten-
tial energy change, which is equal to

(8.7)

where again only the boxed volumes contribute to a change in the gravitational
potential energy.

Work done by the pressure forces in the fluid can be found from the following
argument. First, because the walls of the blood vessel only exert normal forces on our

¢PEgrav � (rQ¢t)g(y2 � y1),

¢KE �
1

2
 r (v 2

 2 � v 1
 2)Q¢t,

C O N S E RVAT I O N L AW S O F F L U I D DY N A M I C S 213

 A1
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F2 = P2A2

F2 = P2A2
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FIGURE 8.11 A blood vessel with
changing diameter shown at two
different times. During the time
interval between these two views
our system has flowed, resulting in
the boxed volume in the upper
view (blue) to empty (or rather fill
with nonsystem fluid) and the
boxed region below (also blue) with
the same volume to fill with system
fluid.



ideal fluid and the fluid flows along the walls, there is no work done by the pressure
supplied by the vessel walls. The fluid column to the left exerts a pressure on our sys-
tem by supplying a force F1 � P1A1 toward the right. Similarly the fluid to the right
of our system exerts a pressure to the left resulting in a force toward the left F2 � P2A2
that must be less than that acting toward the right in order for the fluid to flow toward
the right. Each of these forces does work on the system fluid. Note that we chose the
shape of the blood vessel to have uniform horizontal sections at either end to make this
portion of the calculation easier, although the derivation is correct for all geometries.
At the left end, positive work is done on the fluid in the amount

(8.8)

where v1�t is the distance �x1 over which the force acts in a time �t. Using A1v1 � Q

and similarly calculating the (negative) work done on the fluid by the pressure force on
the right, we find the net work done by the fluid pressure to be

(8.9)

Combining Equations (8.6), (8.7), and (8.9) to write the change in mechanical energy
(kinetic � gravitational potential) as equal to the net work done by the external pressure
forces, we find

After dividing by Q�t and rearranging,

c1
2
r1v2

2 � v1
22� r g(y2 � y1) dQ¢t � (P1 � P2)Q¢t.

Wnet � (P1 � P2)Q¢t.

W1 � F1¢x1 � P1 A1(v1¢t),
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We have an expression for the conservation of energy for an ideal fluid

(8.10)

known as Bernoulli’s equation.

P1 � 1
2 rv1

2 � rgy1 � P2 � 1
2 rv2

2 � rgy2,

Note that because the two positions were chosen arbitrarily, we can con-
clude that at any point in the fluid at any time the quantity

(8.11)

Bernoulli’s equation states that the sum of the fluid pressure and the
mechanical energy density (the kinetic energy per unit volume plus the gravi-
tational potential energy per unit volume, remembering that � is the mass per
unit volume) in the fluid remains a constant of motion for the fluid, both as a
function of time and position. We mention that for flow of blood in a real blood
vessel, there are two major problems with this analysis, both of which are
addressed in the next chapter. Blood is far from an ideal fluid, being viscous
and quite complex in its properties. In addition, blood flow in the major arter-
ies is not laminar but turbulent, and so requires a more complicated analysis
for a complete understanding. Let’s now examine a number of consequences
of this restatement of the principle of conservation of energy for an ideal fluid.

First let’s examine Bernoulli’s equation for the case when y � constant,
so that we can ignore gravity and have

(8.12)P �
1

2
rv2 � constant  (constant height).

P �
1

2
rv2 � rgy � constant.

FIGURE 8.12 A 3-D magnetic
resonance angiogram of a blood
vessel with an aneurysm, the bulge
near the center of the photo.



As an example application, consider the flow of an ideal fluid in a blood vessel that
has an aneurysm, a weakened wall that has swollen as shown in Figure 8.12. If the
cross-sectional area is greater at the aneurysm, the velocity of the fluid will be
slower due to conservation of mass in the continuity equation. If the radius of
the aneurysm is a factor of N greater than that of the blood vessel, the area will be
greater by a factor of N2 and from the continuity equation the velocity will
be smaller by that same factor. Thus, in order for Bernoulli’s equation (in the form
of Equation (8.12)) to hold true, the pressure at the site of an aneurysm 
must be substantially increased. Such high pressure near a weakened portion of a
blood vessel is extremely dangerous, especially because the vessel wall is already
weakened.

Another important example is that of an artery with a partial blockage due, for
example, to the buildup of plaque deposits, mainly composed of cholesterol
(Figure 8.13). This disease is known as atherosclerosis. In a similar calculation to
that just done for an aneurysm using the continuity equation, if the inside diame-
ter of the artery is decreased by a factor N, the velocity of the blood in that region
will increase by a factor of N2. In this case the local pressure will drop substan-
tially and, with a sizeable deposit of plaque, may drop to the point where the exter-
nal pressure is enough to collapse the artery, cutting off the flow
of blood. When this occurs in the coronary artery which supplies
blood to the muscles of the heart, angina and eventual heart attack
occur; if it occurs in the arteries leading to or in the brain, TIA, or
transient ischemic attack, and eventual stroke occur.

The principle governed by Equation (8.12) is also the basis for a
number of flowmeter devices, used to measure fluid velocities and flow
rates. An example is the Venturi meter shown in Figure 8.14. A fluid is
being forced through the horizontal tube shown with varying cross-sec-
tional area, which is known as a Venturi tube. According to the continu-
ity equation the fluid velocity will vary inversely with the area. Using
the assembly of vertical tubes with colored fluid, we can measure the
local pressure differences (based on the colored fluid height differences
as we show in the next section), and together with Equations (8.5) and
(8.12), these can be used to determine the fluid velocity in the Venturi
tube if the relative cross-sectional areas are known. Variations of this
scheme can be used to measure flow of gases and liquids confined in
tubes or even flowing around obstacles in the bulk. Blood velocities in
arteries have also been measured using this method.
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FIGURE 8.13 Atherosclerosis in a
small artery.

FIGURE 8.14 Venturi tube (top
horizontal portion) and simple
pressure meter (tubes with colored
liquid) to measure fluid velocities in
tubes of different cross-sectional
areas through which fluid flows. Do
you see why the fluid is higher in
the center section?



Another type of application of Bernoulli’s equation occurs when the pressures at
the two points of interest are equal. In this case Equation (8.11) reduces to

(8.13)

One example application is the calculation of the efflux velocity from a water storage
tank, as shown in Figure 8.15. We assume that the volume of the tank is very large
so that the height difference between the water surface and the water tap y2 � y1 does
not change appreciably (at least over short times) and the velocity of the water at its
surface within the tank is negligible. Because the pressure at the top of the water tank
and at the water tap are both equal to atmospheric pressure,

(8.14)

where v is the efflux velocity of the water. Solving for v, we find that

(8.15)

a result known as Torricelli’s theorem. This expression should be reminiscent
of our studies of the free-fall of an object through a height (y2 � y1); the
water has the same speed as it would have if it underwent free-fall vertically
through the same height difference. Many residential homes receive water
from storage tanks using a gravity delivery system. In very tall apartment
buildings or skyscrapers, water must be pumped to holding tanks using pos-
itive pressure from below. (In Example 8.10 we show that sucking the water
upward with negative pressure from above will not work!)

 v �12g(y2 � y1),

1

2
 rv2 � rgy1 � rgy2,

1

2
 rv2 � rgh � constant  (constant pressure).
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Example 8.4 Suppose that a catheter is inserted into the aorta, the largest artery of
the body, to measure the local blood pressure and velocity (found to be 1.4 � 104

Pa and 0.4 m/s) as well as to view the interior of the artery. If the inside diameter
of the aorta is found to be 2 cm and a region of the aorta is found with a deposit
due to atherosclerosis where the effective diameter is reduced by 30%, find the
blood velocity through the constricted region and the blood pressure change in that
region. For this problem assume that blood is an ideal fluid and take its density
from Table 8.1.

Solution: The unknown velocity can be determined from the continuity
equation to be

where the diameters d are given in the ratio of 1:0.7. The blood velocity in the
constricted region is then found to be v2 � 0.4(1.0/0.7)2 � 0.82 m/s. Knowing
the velocities and the density of blood, we can use Equation (8.12) to find the
pressure difference at the constricted region. We find

so that the local pressure in this region is reduced by only about 2%. We show
in the next chapter that when viscosity effects are included the pressure reduc-
tion is much greater.

P1 � P2 � 1
2 r 1v 2

 2 � v 1
 22� 0.5 (1060) 10.822 � 0.422� 270 Pa,

v 2 � v1

A1

A2
� v1

d1
2

d2
2

,

FIGURE 8.15 Calculation of the
efflux velocity from a large water
tank.



5.  HYDROSTATICS: EFFECTS OF GRAVITY

In Section 2 we argued that in the absence of external forces, the pressure within a fluid
is uniform, having the same value throughout. In this section we consider the effects of
gravity on the pressure within a fluid and on the effective weight of a submerged object
within the fluid.

Consider a small element of volume within a fluid in hydrostatic equilibrium
as shown in Figure 8.16. From our general result (Bernouilli’s equation, Equation
(8.10)), we can find a condition that must hold under hydrostatic equilibrium simply by
setting the fluid velocities equal to zero,

(8.16)

It is instructive to derive this same result directly from first principles. According
to Newton’s laws for an object in equilibrium, the net force on this fluid element must
be zero. If we consider the vertical forces acting on this volume, there are three such
forces to include: the weight of the volume element and the downward and upward
pressure forces from the surrounding fluid at the top and bottom of the volume ele-
ment, respectively. If we call the pressure at the top surface P1 and the pressure at the
bottom surface P2, and the volume element has a height h and a cross-sectional area
A, then the balance of vertical forces implies that

(8.17)

where (Ah) is the volume of the element and �(Ah)g is its weight. Dividing through
by the arbitrary cross-sectional area A, we find that the pressure in the fluid varies
with the height h according to

(8.18)

Note that this result agrees with Bernouilli’s equation when the fluid velocities are set
equal to zero (Equation (8.16)), where h � y1 � y2. The individual pressures P1 and P2
in this expression are called absolute (hydrostatic) pressures. Equation (8.18)
relates the absolute pressure at two different points to each other and shows that in

P2 � P1 � r
 
gh.

P2 A � P1 A�r(Ah)g,

P1 � rgy1 � P2 � r
 
gy2.
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Example 8.5 An opened bottle of saline solution used as an intravenous drip has
a fine capillary tube of 1 mm diameter attached. If the bottle is placed 1 m above
the open end of the capillary tube, what will the flow rate from the tube be before
it is attached to a hypodermic needle and inserted into a person’s vein? Treat the
solution as an ideal fluid.

Solution: As we have seen the efflux velocity of the saline solution is given by
Torricelli’s theorem to be

Then the flow rate Q, given by Q � Av, is

Because of the narrow tube diameter, this result is about a factor of 10 larger than
the correct answer when we have accounted for the viscosity of water. We learn
about viscosity in the next chapter. You should realize that this is not the method
currently used to deliver saline to a patient. A sealed bag of saline is connected via
a peristaltic pump to a hypodermic needle. The pump ensures a constant delivery
rate of fluid and the sealed bag ensures sterility.

Q � pr2 v � p10.000522 4.4 � 3.5 �  10�6 m3/s � 3.5 cm3/s.

 v �12g1¢y2�12 # 9.8 # 1 � 4.4 m/s.

F1

F2Fw

FIGURE 8.16 Forces acting on a
small volume of fluid, with P1 � F1/A
and P2 � F2/A.
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hydrostatics the pressure difference, �P � P2 � P1, depends only on the fluid density
and the height difference between the two points. In our derivation of Equation (8.18),
we have assumed that the density does not vary with height. This is a good assumption
for incompressibile (or nearly so) liquids, but a poorer one for gases. One conclusion
from this result is that the pressure in a fluid is uniform within a horizontal plane,
regardless of the shape of the container, varying only with height. The height difference
is sometimes referred to as the pressure head.

Let’s return to Equation (8.18) and choose one of the positions (#1) to be the sur-
face of the fluid that is open to the atmosphere at sea level (Figure 8.17). In this case,
the pressure P1 is known as atmospheric pressure, Patm, and represents the pressure
due to the weight of the entire column of air in the atmosphere above a unit area on
the surface. That this is so follows from considering the point at the surface of the fluid
near sea level and a point vertically above it outside the Earth’s atmosphere, where the
absolute pressure is essentially 0, that of the vacuum. Applying Equation (8.18) to
these two points results in a pressure difference just equal to the weight of a column
of air in the Earth’s atmosphere with a unit cross-sectional area. The average atmos-
pheric pressure at sea level is equal to 1.01 � 105 Pa and is defined as 1 atmosphere
(1 atm). This converts to about 14.7 pounds per square inch. This means that the
average weight of air contained in a rectangular solid with a 1 m2, or with a 1 in2,
cross-sectional area and a height equal to the height of the Earth’s atmosphere, some
400 km, is just about 105 N, or 14.7 lb, respectively.

As we noted above, Equation (8.18) does not determine the absolute pressure at
some height h, but the absolute pressure relative to that at another height. If we use
atmospheric pressure as the reference point, the hydrostatic pressure in Equation (8.18),
is given with respect to atmospheric pressure as

(8.19)

P is the absolute pressure and �gh is called the gauge pressure, the difference in pres-
sure from atmospheric pressure. In the next section we discuss the measurement of
pressure, showing that most pressure measurements are referenced to atmospheric
pressure and are therefore gauge pressures.

P � Patm � rgh;

FIGURE 8.17 Fluids rise to the
same height regardless of the
shape of the container.

Example 8.6 A swimming pool has a sloped bottom starting at 1 m depth and
dropping linearly to a 5 m depth at the middle where it levels off for the rest
of the pool. Find the pressure on a small, 2 cm diameter, balloon when held at
the bottom of either end of the pool. Also find the net compressive force on the
balloon at each location due to the water.

Solution: The absolute pressure on the balloon at either location is given by
Equation (8.19). We find that

so that the pressures are 1.1 � 105 and 1.5 � 105 Pa at 1 m or 5 m depth, respec-
tively. The forces on the balloon are of three types, as we show below. Aside
from the actual (negligible) weight of the balloon there is a buoyant force, dis-
cussed just below, and a compressive force due to the pressure of the water.

P � Patm � rgh � 105 � 103 # 9.8 # h,
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Because the balloon is small, the pressure on it can be taken as a constant. The
compressive force is given by F � PA, where A is the total surface area of the
balloon, so that

and the compressive forces are 138 N and 188 N at the two respective loca-
tions. These compressive forces tend to shrink the volume of the balloon (see
Figure 3.17). Of course these compressive forces, when added as vectors give
a net force of zero because of the symmetry. Therefore the balloon will not
experience a translation or rotation due to pressure, but will have a compressive
force acting on its volume. We also know that the buoyant force will provide a
net upward force on the balloon, as we show after this next example.

F�P4pr2,

Example 8.7 Your blood pressure varies not only periodically in time with
your heartbeat, as we discuss in the next chapter, but also spatially at differ-
ent heights in the body. This variation is due to differences in the weight of
the effective column of blood in your blood vessels as a function of height in
the body. Assuming that the average blood pressure at the heart is 13.2 kPa
(corresponding to the average of a high and low pressure of 120/80, as it is com-
monly referred to, or 100 mm Hg; see the next section for a discussion of these
units), find the blood pressure at foot level (1.3 m below the heart) and at head
level (0.5 m above the heart). If a person experiences an upward acceleration as,
for example, in an airplane during take-off or even in a rapid elevator in a tall
building, the increased pressure can drain the blood from the person’s head.
What is the minimum acceleration needed for this to occur (take the head to be
25 cm in height)?

Solution: At the level of the feet, the blood pressure is increased over that at the
heart by the amount

so that the blood pressure there is 26.7 kPa (twice that at the heart, or roughly
200 mm Hg, by simple proportion). Similarly the blood pressure in the head is,
using the same expression, reduced by

to a value of 8.0 kPa (or 61 mm Hg). Do you see why blood pressure is measured
with a cuff placed on your arm near your heart?

If the person is accelerating upward with acceleration a near the Earth’s
surface, then the effective value for g in the expression for �P would be
replaced by (a � g). This is so because the effective weight of the fluid
becomes �(g � a)V, where V is the volume, in the derivation of Equation
(8.17). Normally the blood pumped by the heart could rise to a maximum
height determined by inserting the value for the blood pressure at the heart level
into the equation

P � rgh,

¢P � 1060 # 9.8 # 0.5 � 5.2 kPa

¢P � rgh � 1060 # 9.8 # 1.3 � 13.5 kPa,

(Continued)



5.1. ARCHIMEDES’ PRINCIPLE

In the development of Equation (8.18), we showed that at hydrostatic equilibrium the
weight of the volume element of fluid is precisely balanced by the net upward force
due to fluid pressure. Although in our derivation we used a volume element of uniform
cross-section, the weight of any volume element, regardless of shape, will be sup-
ported by the net fluid pressure force, as long as the fluid is in hydrostatic equilibrium.
Now, suppose that we want to find the force acting on an object of mass m submerged
in our fluid. In addition to the downward pull of gravity that supplies a force equal to
mg, there will also be an upward buoyant force due to the pressure of the fluid.

We can determine the strength of this buoyant force on our object by doing the
following “thought experiment.” Suppose that in the pure fluid we draw an imagi-
nary closed surface that forms the exact boundary of the material object, having the
same volume V as the object (Figure 8.18 left). The buoyant force on this imaginary
object will be exactly equal to the weight of fluid contained within our imaginary
closed surface. Why? Because the fluid is in hydrostatic equilibrium just sitting
there. Remember that this net upward buoyant force arises from the pressure of the
surrounding fluid. Now if we imagine draining the fluid from within this imaginary
boundary and inserting the object in the identical location, the surrounding fluid will
not “know” the difference and the buoyant force on the material object will be the
same as it was on the original fluid. We conclude that the buoyant force on an object
is equal to the weight of the fluid displaced by the object. This is a statement of
Archimedes’ principle.

The buoyant force may or may not result in the material object floating in equi-
librium with no net force acting (neutral buoyancy). If the material object has a den-
sity just equal to that of the fluid, then the buoyant force will just support it, as it
does in the case of the pure fluid in the same imaginary boundary. If the object has
a greater density than the fluid it is immersed in, the weight mg will be greater than
the buoyant force and the object will sink, whereas if the density is less than that of

the fluid (e.g., a balloon under water or an ice cube in water), the buoy-
ant force will be greater than mg and the object will rise to the surface. In
the latter case, the object will float partially submerged in the fluid so that
the displaced fluid volume is smaller than the volume of the object itself,
and the buoyant force will be correspondingly smaller, just equal to the
object’s weight.

An object of weight mg immersed in a fluid will have an effective
weight that is reduced by the buoyant force. The effective weight is pre-
cisely the weight that would be measured for the submerged object by,
for example, a spring scale (Figure 8.19). Even objects in air can have
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to find a height of 1.27 m above the heart. Assuming the pressure supplied by
the heart remains constant, this implies that on accelerating upward the blood
would only rise to a height given by

Solving for a and setting h	 � 0.25 m, we require an upward acceleration of

At accelerations near or above this value, without blood reaching the brain, the
person will black out.

a � ga h � h¿

h¿
b � ga1.27 � 0.25

0.25
b � 4.1 � g.

h
œ

� h a g

a � g
b

Fbuoyant Fbuoyant

FIGURE 8.18 “Thought experiment”
to derive Archimedes’ principle.
Object on the right versus same
shape region of pure fluid on the left.



effective weights that are substantially less than their actual weight of mg, as is the
case for a balloon, for example. The effective weights of animals are only slightly
affected by air but are substantially reduced in water. For instance, a man weighing
800 N (about 180 lbs) in air will weigh about 55 N in water, or only 7% of his
weight in air (see Example 8.8). Furthermore, because the density of animals is so
close to that of water, small variations in the average density of an animal, obtained
by varying the volume of air in the lungs or in an air-filled sac (the swim bladder
in fish), can determine whether the animal will float or sink in water. Most land ani-
mals, quite independently of the animal’s size, can float in water only when their
lungs are inflated with air. This is true because, surprisingly, the lungs occupy
about the same fraction (6%) of the total volume of most land animals. Fish can
adjust the volume of air in their swim bladder to maintain neutral buoyancy by the
exchange of dissolved blood gases.
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FIGURE 8.19 The effective weight
of an object immersed in a fluid is
reduced by the buoyant force.

Example 8.8 An 800 N man displaces a volume of 0.076 m3 when submerged in
a swimming pool. Calculate his effective weight when submerged in the pool.
Repeat the calculation when he is in the ocean. Most land animals can float in
water if they keep their lungs fully inflated, but sink if they exhale. Using the
above data, find the % increase in body volume when the lungs are fully inflated,
if you assume that with the lungs fully inflated the body is just neutrally buoyant
in fresh water.

Solution: When in water, the man’s weight and buoyant force add (as vectors)
to yield his effective weight. The buoyant force on him is given by the weight of
the displaced water or by the density of water times his volume times g. We can
then write that

so that in fresh water we have

and in sea water we have

Note that the slight (2.5%) increase in the density of sea water has reduced the
man’s effective weight by about 33%.

For the next part of the problem, we are told to assume that with inflated
lungs the body is neutrally buoyant in fresh water. This implies that the
increased volume must produce an additional 55 N of buoyant force. Setting
�wgV � 55 N, the extra volume of the inflated lungs corresponds to 0.0056 m3.
This is about 7% of the volume of the body, a typical value for the lung 
volume.

FW, eff � 800 � 1025 # 9.8 # 0.076 � 37 N.

FW, eff � 800 � 1000 # 9.8 # 0.076 � 55 N,

FW, eff � mg � r w gV,

One further application of these ideas is the determination of average human body
density in order to estimate body fat content. A simple method of estimating body fat
is to simply take a person’s height and weight and calculate a body mass index (BMI)
given by mass (in kg)/height2 (in m2). There is a normal range of BMI, as well as a
threshold for obesity (BMI � 30), where the numbers were originally meant to simply
classify people.

A more accurate method of determining body fat content is to realize that fat has
a lower density (900 kg/m3) than water, whereas bone and muscle have a somewhat



higher density than water (so that fat-free mass has an average density of 1100 kg/m3).
If a person submerges herself in water and exhales to remove air from her lungs, then
she will float if her average density is that of water and sink if it is greater. A simple
formula can be used, based on the average bone and muscle content, to compute the
amount of fat content. If a person were to float after exhaling all air, the fat content
would be over 40%, indicating extreme obesity, so most people will sink in water
with no air in their lungs. Measurements of displaced water (or in newer techniques,
small changes in air pressure in a sealed chamber) can be used to determine body fat
content to an accuracy of about 1%.
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Example 8.9 The tallest iceberg ever measured was 168 m above sea level.
Assuming it was in the shape of a large cylinder, find its depth below the surface.
(Ignore the variation in the density of water or ice with depth or temperature.)

Solution: The iceberg must float with a volume below the surface such that the
weight of the displaced water equals a buoyant force that just balances the
weight of the entire iceberg. If h is the height of the cylindrical iceberg below
the surface then we must have

where A is the cross-sectional area of the cylinder (this cancels and does not affect
the result) and the densities of sea water and ice can be obtained from Table 8.1.
We find, canceling the common factor Ag that

so that h � 1430 m, or 0.9 mi.

1.025 h � 0.9171h�1682,

Fbuoyant � rw Ahg � Fweight � rice A(h�168)g,

6.  THE MEASUREMENT OF PRESSURE

Suppose that a long tube closed at one end is filled with a liquid and quickly inverted
into an open bowl containing the same liquid, as shown in Figure 8.20. If the tube is
sufficiently long, the fluid column will drain into the dish until the column of liquid
has a characteristic height. The height of the column is determined by the balance of
the pressure due to the atmosphere, Patm, acting on the liquid in the open bowl and the
pressure at the base of the column of liquid due to its weight �gh. In the following
example we calculate the height of a column of water and a column of mercury for
this situation. It should become clear why such a device for measuring atmospheric
pressure, known as a barometer, uses a column of mercury.

FIGURE 8.20 A simple barometer.

Example 8.10 Calculate the height of a column of water or mercury when a long
tube closed at the bottom is filled and then inverted into an open container with
the same liquid (see Figure 8.20). Based on this result, what is the maximum the-
oretical length of a functioning straw for sucking water up; that is, above what
height would it be impossible to suck water up in such a straw.

Solution: The water in the tube will fall until the atmospheric pressure on the
open container of water is sufficient to support the remaining column of water.
Because the tube is closed there is no additional pressure on the top of the



The same principle used in a barometer to measure atmospheric pressure can be
applied to measure the pressure at some location in any fluid. Figure 8.21 shows an
open-tube manometer. The height difference in the fluid column is determined by the
excess pressure (over atmospheric) at the closed end in contact with the fluid so that

(8.20)

This follows because pressure is only a function of height. The pressure at the lower
level of the fluid column is equal to both the absolute unknown pressure P, and to the

Pgauge � P � Patm � rgh.
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column of water (the space above the column is evacuated) so that the downward
atmospheric pressure on the open container of fluid, by Pascal’s principle, is the
same as the pressure at the base of the tube:

Solving for the height of the water column we find

An enormous column of water would be required!
If the calculation is repeated using a column of mercury with a density 13.6

times greater, we find a height of 0.76 m. Mercury, because of its high density
and correspondingly small value of h, is often used in devices to measure pres-
sure. In fact, a unit of pressure known as the torr is often used where 1 torr �
1 mm Hg. Atmospheric pressure is then often quoted as 1 atmosphere (atm) �
760 torr, as we have just calculated.

If we imagine a long empty straw immersed in water, then no matter how
hard we suck on the straw—even connecting it up to a vacuum pump—the water
will never rise more than 10.2 m. This can be seen by the fact that in our closed
inverted tube, in the ideal case there is a perfect vacuum above the water. The
only way to have water rise higher than this height (33.5 ft) is to push it higher
by exerting a greater pressure on the column of water from below rather than by
trying to lower the pressure from above.

h �
1.01 � 105

0.998 � 103 # 9.8
� 10.2 m.

Patm � rgh.

FIGURE 8.21 Measuring the pressure within a fluid using a manometer. The photo on the
right shows a manometer used to measure the pressure difference in an exhaust system for
radon within a basement.



sum of atmospheric pressure at the open end of the manometer
plus the pressure due to the excess fluid column on the open side
of the tube.

A device known as a sphygmomanometer, which uses a
mercury manometer in combination with a cuff, is used to mea-
sure cardiac blood pressure (Figure 8.22). The cuff is wrapped
around the upper arm, at the same height as the heart so that the
pressure measured will be that at the aortic valve (output) of the
heart. If the cuff were used on the leg of a standing person, for
example, there would be a significant �gh correction (where � is
that of blood), as we have already seen in Example 8.7. The cuff
is inflated with sufficient air to stop blood flow in the brachial
artery and, while listening with a stethoscope just below the
cuff, air is slowly let out of the cuff. When the pressure, mon-
itored on the mercury manometer, is just below the systolic
(or maximal) pressure, blood will periodically enter the

brachial artery at the high-pressure portions of the cardiac cycle. The blood flow
can be heard through the stethoscope due to the turbulent flow that produces an
audible tapping noise, known as the Korotkoff sounds. As the air is further let out
of the cuff, the blood flow increases but is still absent during the diastolic (mini-
mal) pressure portion of the cycle, so that one hears blood flow still only during a
portion of each cycle. Once the cuff pressure is reduced below the diastolic pres-
sure, blood flow becomes continuous, although progressively less noisy as the tur-
bulence decreases. Typical values for the systolic and diastolic gauge pressures are
120 mm and 80 mm of Hg, cited as a blood pressure of 120/80. Significantly higher
blood pressures are indicative of a cardiovascular disease known as hypertension
(high blood pressure), which can often be controlled using medication.

There are other pressure gauges that combine the principles of the pressure of
fluid columns with mechanical devices in order to rotate needles or compress springs
in proportion to the applied pressure (as in the tire gauges shown in Figure 8.23).
Another type of pressure sensor uses a diaphragm, or membrane, such as that in a
loudspeaker. The pressure applied distorts the diaphragm and an electrical signal
is produced that is related to the applied pressure. There are also devices that use
a piezoelectric crystal, a crystal which when compressed by small displacements
due to pressure produces an electrical response that can be directly measured. We
see these devices again in the next chapter when we discuss the generation and
detection of ultrasound. Such devices represent one type of a class of devices
known as transducers, devices that take energy in one form and transform it to
another form. In the case of piezoelectric crystals the two forms of energy are
mechanical and electrical.
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FIGURE 8.22 Sphygmomanometer
being used to measure blood
pressure

FIGURE 8.23 Tire gauge and high pressure gas gauge used to measure (gauge) pressure.
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CHAPTER SUMMARY
Pressure within a fluid is equal to the magnitude of the
normal force per unit area

(8.2)

If a fluid is confined to some container, Pascal’s princi-
ple states that the external pressure on the fluid increases
the pressure uniformly throughout the fluid by the same
amount. This leads to the hydraulic effect where the out-
put force can be amplified according to

(8.3)

where the ratio of cross-sectional areas results in the
amplification.

A fluid flowing at a rate Q (volume per unit time)
and with a velocity v through a tube or channel with a
cross-sectional area A that changes will obey the conti-
nuity equation,

(8.5)

Conservation of energy in fluid dynamics (in the
absence of appreciable viscosity, said to be an ideal
fluid) takes the form of Bernoulli’s equation

(8.11)P �
1

2
 rv2 � rgy � constant,

Q � A1v1 � A2v2.

Fout �
Aout

Ain
Fin,

P�
F

A
.

where � is the fluid density and y is its height. The text
considers three special cases of this general equation:

(8.12)

when there is no change in fluid height;

(8.13)

when there is a constant pressure in the fluid. As a special
example of this the efflux velocity from a large container
of an ideal fluid is given by Torricelli’s theorem:

(8.15)

and

(8.18)

when the fluid is in static equilibrium (v � 0). In this
latter case, usually the reference pressure is atmos-
pheric and the static pressure reduces to atmospheric
pressure plus the gauge pressure (�gh)

(8.19)

Archimedes’ principle states that the buoyant force
on an object is equal to the weight of the fluid displaced
by the object.

P � Patm�rgh.

P2 � P1 � rgh,  (statics),

 v �12g(y2 � y1),

1

2
 rv2 � rgh � constant (constant pressure)

P �
1

2
 rv2 � constant  (constant height)

QUESTIONS
1. If two identical solid pieces of steel are glued together

does the single piece formed have a different density
than either piece? A different mass than the total of
the two pieces? A different volume than the total
of the two pieces?

2. Consider the previous question for the situation when
you mix together one volume of water and 0.1 times
that volume of salt. How does the final density com-
pare with that of the starting materials? How does the
final mass compare? The final volume? (You need to
inject some independent thought here.)

3. The density of seashells is the same as that of aluminum.
Does this mean that the molecules have the same mass?

4. Explain why when siphoning gas out of a car’s fuel
tank with a length of tubing, the tubing needs to be
“primed,” or completely filled, beforehand.

5. Why does water boil at a lower temperature than
100°C when at high altitudes? Give a molecular basis
for this phenomenon.

6. Explain why the pressure at the bottom of the three
water-filled vases shown is the same even though the
weight of water in each is different.

7. When a plane is rapidly descending to land, your ears
will “pop” due to the rapid pressure change, and your
hearing will then become clearer. What is this due to
and explain why swallowing often helps to relieve this.
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8. When a rapid high-rise elevator accelerates upward,
some people feel a bit light-headed. What causes this?

9. Distinguish between steady and unsteady flow and
between laminar and turbulent flow. In which cate-
gories are vortices, or swirling flow like that down a
swiftly draining bathtub?

10. Why does the flow of water in a stream or river increase
at a narrowing or obstacle due to rocks?

11. If you hold two pieces of paper vertically next to your
mouth and you blow out between them, what will
happen to the papers? Why? Try it!

12. If a styrofoam cup is filled with water and a pencil used
to puncture a hole in the bottom, water leaks out, but
stops while the cup is in the air if it is dropped. Why?

13. Why is it easier to float in fresh water with your lungs
full of air than when empty? Why is it easier to float
in the Great Salt Lake than in a freshwater lake?

14. Are you more or less buoyant in a hot mineral springs
than in the cold ocean, assuming the same salt content?

15. A full cup of lemonade has ice cubes floating in it.
Why doesn’t the cup overflow when the ice melts?

16. Discuss the role of Bernouilli’s equation (in the form of
Equation (8.12)) in providing fresh air within animal
burrows with several connecting holes to the surface.
Consider how different wind velocities over the differ-
ent holes provide a driving force for air exchange.

17. Why would a blood pressure reading measured on
your thigh be in error? Would the pressure measured
be too high or too low? What would happen if you
were lying down while your blood pressure was
measured on your thigh?

MULTIPLE CHOICE QUESTIONS
1. You are originally 1m beneath the surface of a pool. If

you dive to 2 m beneath the surface, what happens to
the absolute pressure on you?
(a) It quadruples.
(b) It less than doubles.
(c) It doubles.
(d) It more than doubles.

2. Which of the following is a false statement about an
aneurysm (weakening of an artery wall)?
(a) The flow rate through the artery at A is the same

as that at B.
(b) The velocity at B is less than that at A.
(c) The pressure at B is less than that at A.
(d) The density at B is the same as that at A.

4. A pail, held in the air, is initially completely filled with
water. Ten cm down from its top, the pail has a hole of
diameter less than 1 cm that is sealed by a piece of tape.
When the tape is removed the speed of the jet of water
that immediately spurts out (a) is about 1.4 m/s, (b) is
about 4.5 m/s, (c) zero because air pushes into the pail
at the hole, (d) depends on the value of the diameter of
the hole and the diameter of the pail.

Questions 5 and 6 refer to: A boat floating in a lake con-
tains a block of volume V0. The density of the block is
5000 kg/m3.

5. The volume of water displaced by the boat to keep it
afloat includes what amount that is associated with
the block? (a) 5V0, (b) V0, (c) V0/5, (d) none, because
the block isn’t in the water.

6. If the block is thrown overboard, the volume of the
water displaced associated with the block is (a) 5V0,
(b) 4V0, (c) V0, (d) V0/5.

7. Two hoses, one of 20 mm diameter, the other of 15 mm
diameter, are connected one after the other to a faucet.
At the open end of the hose, the flow rate of water is
10 L/min. Through which hose does the water flow
faster? (a) the 15 mm hose, (b) the 20 mm hose, (c) the
water velocity is the same in both cases, (d) the answer
depends on which of the two hoses comes first in the
flow (i.e., which is attached to the faucet).

8. The apparent weight of an immersed body has the same
magnitude as (a) the weight of the body, (b) the differ-
ence between the weights of the body and the displaced
fluid, (c) the weight of the fluid displaced by the body,
(d) the average pressure of the fluid times the surface
area of the body, (e) none of the above.

9. A piece of wood is floating in a bathtub. A second
piece of wood sits on top of the first piece and never
touches the water. If the top piece is taken off and
placed in the water, what happens to the water level
in the tub? (a) It goes up, (b) it goes down, (c) it
does not change, (d) cannot be determined from the
information given.

10. If you dangle two pieces of paper vertically a few
inches apart and blow air between them (a) the papers
will move apart because the air pressure exerts an out-
ward force, (b) the papers will move together because
the increased velocity reduces the pressure between
the papers, (c) the papers will remain vertical, (d) the
papers will move apart because the air friction causes
an increased pressure.

11. It is conventional to give blood pressure as a gauge
pressure measured in mm Hg. If a person’s diastolic
pressure is 76 mm Hg and atmospheric pressure is 
760 mm Hg the absolute diastolic pressure is (a) 10%
of atmospheric pressure, (b) 90% of atmospheric pres-
sure, (c) the same as atmospheric pressure, (d) 110%
of atmospheric pressure.

12. In a swimming pool the gauge pressure on a person’s
head is P0 and the buoyant force on the person is F0

3. A plastic bag full of empty, unsquashed aluminum soda
cans has a volume of 1 m3. The density of aluminum is
2700 kg/m3 and the density of air is about 1 kg/m3. The
mass of the bag is 0.05 kg. The mass of the bag and its
contents is (a) 2700 kg, (b) between 2700 kg and
2701.05 kg, (c) exactly 2701.05 kg, (d) a few kg.

A B 
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when the person’s head is submerged to a depth D.
When the person’s head is submerged to a depth 2D

(and his orientation is the same) the pressure on his
head and the buoyant force he experiences are about
(a) P0 and F0, (b) P0 and 2F0, (c) 2P0 and F0, (d) 2P0
and 2F0, respectively.

13. A large truck passes close to your car traveling in the
opposite direction at a fairly high speed. After the front
of the truck passes by, you feel your car pulled toward
the truck. This is most likely due to (a) the air moving
over your car faster on the side closer to the truck than
on the side farther from the truck, (b) the air moving
over your car slower on the side closer to the truck than
on the side farther from the truck, (c) Archimedes’
principle, (d) Pascal’s law.

14. The fundamental dimensions of pressure are (a)
MLT�2, (b) ML�3, (c) MLT�1, (d) M L�1 T�2.

15. A sphere of volume 1 m3 and a rectangular solid whose
dimensions are (i.e., also with vol-
ume 1 m3) are immersed to a depth of about 2 m in
water. The rectangular solid is oriented so that its 2 � 2
side is horizontal. Which of the following is true? (a)
The buoyant force on the sphere is greater than that
on the rectangular solid. (b) The buoyant force on the
sphere is less than that on the rectangular solid. (c) The
buoyant force on the sphere equals that on the rectan-
gular solid. (d) The buoyant forces on each object
depend on the materials from which they are made.

16. Which of the following is a direct result of the equa-
tion of continuity? (a) The pressure one meter below
the surface of water is about 10% greater than atmos-
pheric pressure. (b) The pressure on the inlet side of
a horizontal pipe through which water is flowing at a
constant speed equals the pressure on the outlet side.
(c) When the open end of a long evacuated tube is
inserted into a pool of water, water rises to about
10 m in the tube. (d) Placing your thumb partially
over the opening of a hose causes the velocity of the
water leaving the hose to increase.

17. When blood flows through into an aneurysm (a) the
velocity slows and the pressure increases, (b) the
velocity slows and the pressure decreases, (c) the veloc-
ity increases and the pressure increases, (d) the velocity
increases and the pressure decreases.

18. Which of the following best describes how a plane’s
wing generates lift? (a) The wing is thick so the air
pressure on the top is less than the air pressure on the
bottom by an amount equal to �airgh (h is the thick-
ness). (b) The wing is curved; to assure continuity of
flow, air has to pass over the top faster than over the
bottom, and a higher pressure on the bottom than the
top results. (c) The curvature of the wing forces air to
be more densely packed on its bottom than on its top
and a higher pressure on the bottom than on the top
results. (d) As the plane flies through the air the wing
vibrates vertically causing momentum to be departed
to the air, in the same manner that birds fly.

2 m�2 m�1/4 m

19. A passenger in the back seat of a moving car is smok-
ing. The driver opens a front window slightly and the
smoke is drawn out of the car through it. This is due
primarily to (a) Bernoulli’s equation, (b) Archimedes’
principle, (c) Pascal’s principle, (d) the equation of
continuity.

20. A hot-air balloon rises to a maximum height and then
stays there. A rock falls to the bottom of a lake, inde-
pendent of how deep it is. The difference between
these two effects is most directly related to (a) terminal
velocity in air is smaller than in water, (b) pressure in
air is greater than in water, (c) air is compressible but
water isn’t, (d) the balloon cools as it rises but the
rock’s temperature doesn’t change.

21. A 1 m by 1 m square plate lies on the ground exposed
to the air. An identical plate lies inside an evacuated
chamber with sand piled on top of it. What mass of
sand is required to make the downward force on both
plates equal? About (a) 10,000 kg, (b) 100 kg, (c) 1 kg,
(d) 0.01 kg.

22. Which one of the following is Bernoulli’s equation
not involved in explaining? (a) Why a roof can blow
off a house in a hurricane, (b) the buoyant force on a
floating iceberg, (c) dynamic lift on airplane wings,
(d) how fast water sprays out from a hole in a water
tank, (e) it can explain all of these.

PROBLEMS
1. What is the radius of a 0.1 m long 0.2 kg mass alu-

minum cylinder of density 2700 kg/m3?
2. A 5 m diameter circular in-ground swimming pool

has a 20 cm thick layer of ice over 150 cm deep water
at 4°C. Find the total mass of the ice and water.

3. The least dense solid is an aerogel of silica, first pro-
duced in 1990. If a cubic slab 10 cm on a side weighs
0.05 N, find its density.

4. Given the mean radius of the Earth, 6.38 � 106 m, and
the fact that the Earth’s mean density is about 5.5 times
that of water, find the mass of the Earth.

5. Find the pressure exerted on the ground by a 2600 lb
(1180 kg) car with each tire having a surface area of
36 in2 (232 cm2) in contact with the ground. Assume the
weight of the car is uniformly distributed to the four tires.

6. If a scuba diver 10 m below the water surface were to
hold his breath and rise to the surface, what would be
the pressure change in the lungs? Assuming the ideal
gas law, P 
 1/V, by what factor would the air in the
lungs expand? Divers learn to exhale continuously on
ascent because of this effect.

7. The lungs can exert a negative pressure, with respect
to atmospheric pressure, of up to 1.3 kPa. To what
height can you suck water through a straw?

8. What is the pressure difference, in Pa and in mm Hg,
between sea level and Breckinridge, CO at an altitude
of 9600 ft (2926 m)?
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9. The deepest part of any ocean is thought to be in the
Mariana Trench in the Pacific and is about 35,800 ft
below the surface. What is the hydrostatic pressure at
this depth?

10. Find the upward acceleration of your body at which the
heart would no longer be able to pump blood to your
head. Use an average blood pressure of 100 mm Hg
and take the vertical distance from your heart to the
bottom of your head to be 0.3 m. (Hint: First convert
the blood pressure to mm blood.)

11. A pressure differential of about 120 mm Hg across the
eardrum can cause it to rupture. To what depth can a
diver go before this occurs? One solution is for a diver
to equalize the pressure by raising the pressure in the
mouth (and Eustachian tubes) by holding the nose and
“blowing” out; this also works well to equalize the
pressure when landing in an airplane.

12. A wooden wine barrel is filled with water and a very
long narrow tube connected to its lid. If the tube
is gradually filled with water, the barrel pressure
increases. If the maximum force the lid on the barrel
can sustain is 14,000 N, find the height of the column
of water needed to burst the barrel. Take the barrel lid
to have a 40 cm radius and the tube to have a 2.5 mm
radius. Calculate the weight of the water in the tube
and compare it to the force exerted on the barrel lid.

13. Water flows through a horizontal Venturi tube with a
section with a large inner radius of 2.5 cm and a sec-
tion with a smaller inner radius of 1 cm that is 4 cm
long. If the flow rate into the larger diameter section
of the tube is 30 cm3/s, find the following (neglecting
the viscosity of water).
(a) The water speed in both the larger and smaller

cross-sections of the tube.
(b) The water pressure difference between the two

sections of the tube.
(c) What is the buoyant force on a spherical bubble of

0.1 mm radius trapped within the tube?
14. Water is being pumped through a horizontal pipe of

1 cm inner diameter by a gauge pressure equal to one
tenth of atmospheric pressure so that the flow rate is
equal to 1000 cm3/min.
(a) Find the velocity of the water (neglecting viscosity).
(b) In a region where dirt has accumulated and the inner

diameter is reduced by half, find the internal gauge
pressure in the water.

15. A gardener is watering his garden from a hose. With the
water pressure full blast holding the hose horizontally
he can just reach a distance of 12 m, but needs to water
an area up to 18 m away. By what fraction must he
reduce the cross-sectional area of the hose, still keeping
the hose horizontal, to be able to water this area?

16. The Buckingham Fountain in Chicago is famous for its
water displays. Suppose that you are watching the water
from the fountain and notice that a strean of water is
being shot upward. You also notice that the stream has a

slight inclination to one side so that the descending water
does not interfere with the ascending water. The upward
velocity at the base of the column of water is 15 m/s.
(a) How high will the water rise?
(b) The diameter of the column of water is 7.0 cm at the

base. What is the diameter at the height of 10 m?
17. What is the average speed of blood in the aorta? The vol-

ume flow rate of blood is known to be about 5 L/min;
take the aorta diameter to be 1.8 cm.

18. The cross-sectional area of the aorta A0 (the major
blood vessel emerging from the heart) of a normal rest-
ing person is 3 cm2, and the speed v0 of the blood
through it is 30 cm/s. A typical capillary (with diameter
approximately 6 �m) has a flow speed v of 0.05 cm/s.
How many capillaries does such a person have?

19. Suppose that the aorta has a radius of about 1.25 cm
and that the typical blood velocity is around 30 cm/s
and that it has an average density of 1050 kg/m3.
(a) What is the average blood velocity in the major

arteries if the total cross-sectional area of the major
arteries is 20 cm2?

(b) What is the total flow rate?
(c) If the blood in the circulatory system goes through

the capillaries, what is the total cross-sectional area
of the capillaries if the average velocity of the
blood in the capillaries is 0.03 cm/s?

(d) If a typical capillary has a cross-sectional area of 3
� 10�11 m2, about how many capillaries are there
in the human body?

(e) What is the kinetic energy per unit volume for blood
in the aorta, the major arteries, and the capillaries?

(f) If a capillary has an average length of 0.75 mm
what is the average time that a red blood cell
remains in a capillary?

20. The human heart is a mechanical pump. The aorta is a
large artery that carries oxygenated blood away from
the heart to various organs in the body. For an individ-
ual at rest, the blood in the aorta (of radius 1.25 cm)
flows at a rate of 5 � 10�3 m3/min.

blockage 

blockage 

From Heart To Body 

P1 P2

(a) What is the velocity, in meters per second, of the
blood in the aorta?

(b) Suppose that the blood flows continuously
throughout the body (and not in spurts as it really
does); what is the kinetic energy of the blood, per
unit volume of blood, in the aorta? (Hint: The
density of blood is 1050 kg/m3.)

(c) Every time that the heart beats, it does work mov-
ing the blood into the aorta and then into the body.
Suppose that the heart does work at a rate of 0.5 W.
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What is the change in pressure across the aorta?
(Hint: The power is the work done moving the
blood per unit time.)

(d) Suppose that the difference in pressure in part
(c) were due to an aortic blockage as shown
above. What is the velocity of the blood through
the blockage if the person were lying horizon-
tally? This is a medical condition known as ather-
osclerosis.

21. In the Old West, a cowgirl fires a bullet into an open
water tank creating a hole at a distance of 5 m below
the water surface (which is open to the air). What is
the speed of the water emerging from the hole?

22. A bottle of saline solution (with a specific gravity of
1.02) is attached to a 1.2 m long piece of tubing with
a 1.0 cm inner diameter. If the tubing is held vertically,
filled with saline, and clamped at the bottom, what is
the gauge pressure at the bottom of the tube and what
would be the initial efflux velocity of the saline if the
clamp were released? (Take the height of the saline
solution in the bottle to be 10 cm.)

23. The diameter of a capillary, as small as 10 �m, is very
much smaller than that of the aorta. A naïve applica-
tion of the continuity equation would lead to the con-
clusion that the blood velocity in a capillary is very
much faster than in the aorta, but this is not true.
Actually, the blood from the aorta branches out to a
vast network of arteries and eventually capillaries with
a total effective cross-sectional area of about 1000
times that of the aorta. Using this information and the
numbers problem 17, find the velocity of blood in a
capillary.

24. Similar to the last problem, calculate the velocity of
air in the alveolar ducts of the lungs, assuming a tube-
like diameter of 0.4 mm, knowing that the trachea has
a diameter of 18 mm, the total effective cross-sec-
tional area of the alveolar ducts is 5880 cm2 and
assuming an average flow rate of 500 cm3 per 2.5 s.
What is the air velocity in the trachea?

25. A spherical balloon filled with air to a diameter of 20
cm is submerged in water. Find the force needed to
hold it under the water.

26. Spinal fluid pressure can be measured using a spinal
tap in which a needle is inserted in the patient’s lower
back with the patient sitting upright on an examination
table. The pressure due to the weight of the spinal
fluid (given that its density is 1050 kg/m3) in the
spinal column increases the pressure.
(a) What is the pressure measured if the pressure

around the brain is 10 mm Hg and the tap is at a
point 75 cm lower than the brain?

(b) What is the pressure measured if the person is
lying down?

27. The U.S. Navy has the largest warships in the world,
aircraft carriers of the Nimitz class (an example of
which would be the USS Ronald Reagan). Suppose

that fifty 25 t airplanes (~22,500 kg) take off from the
flight deck and the ship bobs up to float 22 cm higher
in the water, in a region where g � 9.78 m/s2. What is
the horizontal area enclosed by the waterline of the
ship? Compare this to the deck of an aircraft which
has an area 20,000 m2.

28. A 175 lb (779 N) man is submerged in water and after
exhaling is found to have an apparent weight of 11.5
lb (51.2 N). Find his density and specific gravity.

29. Tom Sawyer and Huckleberry Finn want to build a raft
to float down the Mississippi. Knowing their com-
bined weight is 250 lbs (1110 N), what is the mini-
mum number of logs required? Each log is 3 m long
with a 0.1 m radius and a density of 750 kg/m3.

30. A 4 m � 4 m � 0.3 m solid wood raft is floating in a
fresh water lake.
(a) If the density of the wood is 600 kg/m3 find the

fraction of the raft above the water.
(b) How many 150 lb (670 N people) can the raft sup-

port just staying above the surface?
31. Using conservation of energy ideas contained in

Bernouilli’s equation, find the total electric power that
could be generated if all the energy of the water going
over Niagara Falls (750,000 gallons per second or
2835 m3/s) were to be used to generate electricity.
Take the water at the crest of the falls to have a veloc-
ity of 40 mph and fall an average height of 30 m.

32. Suppose that a 20 m/s wind blows over the roof of
your house. Take the density of air to be 1.3 kg/m3.
(a) Find the reduction in pressure, below atmospheric

pressure in the absence of any wind, above the roof.
(b) If the roof has a surface area of 300 m2, find the

net force on the roof.
33. An airplane with a mass of 10,000 kg accelerates

down a runway as it takes off. If the wings are
designed to produce a faster air speed above than
below the wing by 25% find the minimum speed the
plane must travel on a windless day in order to take

Niagara Falls
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off. Assume the area of each wing is 70 m2 and the
density of air is 1.3 kg/m3.

34. A Boeing 777 has a mass of 2.43 � 105 kg and each
wing has an area of 189 m2. During level flight, the
pressure on the lower wing surface is 700 � 104 Pa.
(a) What is the pressure on one of the upper wing

surfaces?

(b) What is the upward acceleration of the aircraft if
the pressure on the lower surface were to increase
to 702 � 104 Pa? (This increase in pressure is due
to the aircraft increasing its forward velocity and
assumes that Pupper remains constant.)
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In the previous chapter on fluids, we introduced the basic ideas of pressure, fluid flow,
the application of conservation of mass and of energy in the form of the continuity equa-
tion and of Bernoulli’s equation, respectively, as well as hydrostatics. Throughout those
discussions we restricted ourselves to ideal fluids, those that do not exhibit any frictional
properties. Often these can be neglected and the results of the previous chapter applied
without any modifications whatsoever. Clearly mass is conserved even in the presence
of viscous frictional forces and so the continuity equation is a very general result.

Real fluids, however, do not conserve mechanical energy, but over time will lose
some of this well-ordered energy to heat through frictional losses. In this chapter we
consider such behavior, known as viscosity, first in the case of simple fluids such as
water. We study the effects of viscosity on the motion of simple fluids and on the
motion of suspended bodies, such as macromolecules, in these fluids, with special
attention to flow in a cylinder, the most important geometry of flow in biology. The
complex nature of blood as a fluid is studied next leading into a description and
physics perspective of the human circulatory system. We conclude the chapter with a
discussion of surface tension and capillarity, two important surface phenomena in
fluids. In Chapter 13 we return to the general notion of the loss of well-ordered
energy to heat in the context of thermodynamics.

1.  VISCOSITY OF SIMPLE FLUIDS

Real fluids are viscous, having internal attractive forces between the molecules so that
any relative motion of molecules results in frictional, or drag, forces. The work done
by these drag forces, in turn, results in a loss of mechanical energy due to slight heat-
ing. We can think of viscosity as a measure of the resistance of a liquid to flowing, so
that liquids such as paint or maple syrup have much higher viscosities than water. A
quantitative definition of viscosity can be introduced using the example of laminar
flow of a liquid between two parallel plates (Figure 9.1), the lower one fixed and the
upper one pulled by an external force to move with a constant velocity v parallel to the
surface of the plate. Clearly in the absence of drag forces the constant external force
would lead to uniform acceleration of the top plate, but due to the drag forces the top
plate quickly reaches a steady-state constant velocity. Because the liquid is viscous, it
tends to stick to the surfaces of the plates, forming a boundary layer. Therefore the liq-
uid layer at the fixed plate is at rest, whereas the liquid layer at the top plate moves
with velocity v. For laminar flow, the velocity of the liquid varies linearly in the trans-
verse direction (y-direction in Figure 9.1) from 0 to v over the separation distance
between the plates of area A. Planar layers of fluid slide over one another.

Viscosity can be defined through the relation between the shear stress, or force
per unit area F/A, needed to keep the upper plate moving with a constant velocity

9Viscous Fluids



and the rate of variation of the velocity between the plates, �v/�y (known
as the rate of strain),

(9.1)

where � is the viscosity of the liquid. Contrast this with the stress–strain
relation discussed in Chapter 3 for solids where the strain �x/�y appeared
on the right-hand side and not the rate of strain, appropriate here for fluids.
Strain and rate of strain are connected in the usual way because the time rate
of change of strain is given by (�x/�y)/�t � (�x/�t)/�y � �v/�y. The SI
unit for viscosity is the Pa-s, but another commonly used unit is the poise
(P; 1 P � 10 Pa-s). Table 9.1 lists viscosities of water and blood. Equation
(9.1) can be taken as the definition of viscosity, originally due to Sir Isaac

Newton. Fluids that obey this relation are said to be Newtonian fluids. The proportion-
ality of the shear stress and rate of strain usually holds only at lower strain rates. Water
and salt solutions are Newtonian, whereas blood, whose behavior does not follow
Equation (9.1), is said to be a non-Newtonian fluid and is discussed in the next section.
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FIGURE 9.1 A fluid sandwiched
between two plates with the bot-
tom plate fixed and the top plate
moving at a constant velocity v.

Table 9.1 Viscosities of Water and Blood

Fluid Temperature Viscosity (10�3 Pa-s)

Water 0 1.8

20 1.0

37 0.7

Whole blooda 37 4.0

Blood plasma 37 1.5

a Varies greatly with hematocrit, or red blood cell content.

Example 9.1 A sheet of plywood is covered with a 1 mm thick layer of tile adhesive
and a square piece of ceramic tile measuring 30 cm on a side is placed on it. If a force
of 10 N is applied parallel to the surface, find the velocity with which the tile slides.
Assume laminar Newtonian flow and use a viscosity of 50 Pa-s for the adhesive.

Solution: We first calculate the stress as F/A � 10/(.3)2 � 110 N/m2. Dividing
this stress by the adhesive viscosity, the rate of strain is found to be 2.2 s�1, so
that the velocity of the tile is given as

 v �
¢v

¢y
y � (2.2 s�1)(1 mm) � 2.2 mm/s.

When a solid is put under shear stress, with an external force applied in a partic-
ular direction, it deforms and, for small stresses F/A, the strain, or response of the
solid, is proportional to the stress. Once the stress is removed, the solid returns to its
original shape (unless it has some plasticity, in which case it may flow). In a
Newtonian liquid, however, a constant applied shear stress results in a constant rate

of strain (Equation (9.1)) rather than constant strain. The larger the rate of strain,
meaning the more abruptly the velocity changes with transverse distance, the greater
the viscous force, and in turn, the greater the applied shear stress needed to keep the
top plate moving at the same constant velocity. At higher shear stress there are devi-
ations from this relation, and at still higher stress, turbulence will occur.

The capillary tube is a very common geometry for fluid flow in biology. It is
relevant for blood flow, for example, as well as for viscometry, the methodology of

FIGURE 9.2 Laminar capillary flow
showing a concentric layer of fluid
that flows at the same velocity
along the length of the tube.



viscosity measurement. When a liquid flows through a tube
without obstacles, the flow at low velocities is laminar with lay-
ers of liquid in concentric cylinders (Figure 9.2). The outermost
layer is the boundary layer that remains at rest and the fastest
flowing liquid lies at the center of the tube. The actual velocity
profile across the tube is parabolic as indicated in Figure 9.3.
The velocity varies across the capillary tube; thus in order to
find the volume flow rate, Q (� vA when the velocity was
assumed uniform in the absence of viscosity), an average must
be calculated across the cross-sectional area. This was first done in 1835 by
Poiseuille, a French physician interested in blood flow (the viscosity unit poise is
taken from his name), who found

(9.2)

where P/L is the applied pressure per unit length of the tube and r is the tube radius.
Equation (9.2) is known as Poiseuille’s law.

If we rewrite this equation in the form

(9.3)

where we write �P as the pressure difference across the tube of length L, then we
can interpret the equation as follows. For a given �P across the tube, the resulting
flow Q depends on the resistive term in parentheses. The larger this term, the
slower the flow rate is for a given applied pressure. With a constant resistive term
(fixed tube length, radius, and fluid viscosity), the greater the pressure difference
acting on the liquid, the greater is the expected flow rate. A longer tube or larger
viscosity provides a greater resistance to flow as might be intuitively expected. The
very strong dependence of the resistive term on tube radius r�4 is surprising and
extremely significant in controlling the flow rate of a liquid in a capillary tube. The
resistance to fluid flow increases dramatically as the tube radius gets smaller. This
can lead to important effects in the flow of blood in arteries because a partially
clogged artery will require a much higher pressure differential to supply the same
fluid flow rate.

¢P � a 8hL

pr4
bQ,

Q �
pPr4

8hL
,
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FIGURE 9.3 The velocity profile
across a capillary tube of radius ro.

Example 9.2 In giving a transfusion, blood drips from a sealed storage bag with
a 1 m pressure head through capillary tubing of 2 mm inside diameter, passing
through a hypodermic needle that is 4 cm long and has an inside diameter of 
0.5 mm. If the blood pressure within the vein into which the blood is being trans-
fused is at a gauge pressure of 18 torr, find how long it will take to give the
patient 1 L of blood. How long will it take if the inside diameter of the needle is
only 0.4 mm?

Solution: Since the flow rate depends so strongly on the radius of the capillary,
the most resistance to flow will occur within the hypodermic needle and rela-
tively little within the delivery tubing. We can therefore apply Equation (9.2)
using the radius and length of the needle, ignoring the dimensions of the tubing.
For the net driving pressure across the column of blood up to the vein we use a
value of P � (�gh � 18 torr) � (�gh � 2400 N/m2), where the density of blood

(Continued)
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is found in Table 9.1 and we have used the conversion from Patm � 105 N/m2 �
760 torr. We find a flow rate of

With this flow rate, each cm3 of blood will take 13 s to flow into the vein,
so that it will take a total time of 3.6 h for a liter of blood to be transfused. If the
r value is 0.2 mm then the flow rate will decrease by the factor (2/2.5)4 � 0.41
and so it will take 3.6/0.41 � 8.8 h. We see that a decrease in the radius by a fac-
tor of only 0.8 increases the time required by almost 2.5 times, pointing out the
very strong dependence on r.

� 7.7�10�8 m3/s � 0.077 cm3/s.

Q �
pPr4

8hL
�
p[(1.06 � 103)(9.8)(1) � 2400](0.00025)4

8(4 � 10�3)(0.04)

Capillary viscometers make use of Poiseuille’s law to measure the relative vis-
cosity of liquids or solutions. They consist of a fine capillary tube in which a liquid
is placed and measurements made of the time for a fixed volume of liquid to flow
through the tube (Figure 9.4). Because the pressure P is equal to �gh, where h is the
height of liquid in the tube, we find from Equation (9.2) that for a given capillary tube
Q � �/�, where the other parameters are independent of the liquid properties. Q is a
flow rate and therefore Q � 1/t, where t is the time for a fixed fluid volume to flow
through the capillary, so we have that

From measurements of the efflux times of the same volume of
an unknown fluid and a standard fluid, we can take the ratio to
write that

(9.4)

If the densities and standard viscosity are known, the viscos-
ity of the unknown liquid can be determined from simple timing
measurements. Results from such measurements can give
accurate viscosity values for pure liquids or for solvents (typically
solutions of small dissolved ions).

Thus far we have considered the flow of pure viscous fluids
at low stress. At higher stress turbulence occurs and the flow
profile in a capillary is much different than for laminar flow
(Figure 9.5). In such turbulent flow there is a much greater effec-
tive internal friction due to vortices, and also the strain rate �v/�r

near the walls is much greater (note the more rapid velocity
change near the boundary layer on the tube wall in Figure 9.5).

What happens when a flowing viscous fluid meets an obsta-
cle, perhaps a biological macromolecule? We have already
briefly considered this question in our discussion of motion in a
fluid in Chapter 3, Section 2. There we introduced the dimen-
sionless Reynolds number , defined as

(9.5)t �
Lrv
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FIGURE 9.4 Capillary viscometer
used to measure solvent viscosity
by a timing measurement.



where L is the characteristic size of the object. Imagine a sphere of radius
r held fixed within a flowing fluid. Under laminar flow conditions, with 
on the order of 1 or less, the fluid will flow around the sphere in a sym-
metric pattern as shown in Figure 9.6 (top). There is a frictional force that
acts on the sphere given by Stokes’ law,

(9.6)

The frictional force in this case varies linearly with both the fluid
velocity and viscosity as well as with the size of the sphere. As the fluid velocity is
increased, the flow pattern will become more complex and asymmetric, and the fric-
tional force will become dependent on the square of the fluid velocity, as already dis-
cussed (see Equation (3.5)). The fluid velocity downstream from the sphere is
decreased as the Reynolds number is increased, and at a certain point the flow
becomes unsteady with “eddies,” or vortices, forming in the downstream region
known as the wake of the object (Figure 9.6, middle); at even higher Reynolds num-
bers the flow becomes fully turbulent (Figure 9.6, bottom). By careful design of the
shape of an object, the frictional forces can be reduced. Engineered streamlined
designs have led to improved aerodynamic performance of cars and airplanes. In the
world of animals, evolutionary design has also resulted in streamlined shapes partic-
ularly for many aquatic or flying animals.

The problem of determining the viscosity of a suspension of objects is a very
complex one. When more than one object is present in a fluid, the wake produced by
one object can interact with the other objects through what are termed hydrodynamic

interactions. In 1906, Einstein solved the problem of determining the viscosity of a
suspension of identical spherical particles �s and found

(9.7)

where �o is the solvent viscosity and 	 is the (dimensionless) volume fraction
occupied by the spheres. Note that this result does not depend explicitly on the
particle radius. The larger the sphere is, the smaller the number of them required to
occupy the same volume fraction and hence have the same solution viscosity.
For particles of other shapes the factor 2.5 is replaced by a shape-dependent numer-
ical factor.

hs � ho (1 
 2.5£),

Ff � -6phrv.

t
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FIGURE 9.5 Velocity profiles for
laminar and turbulent capillary flow.
Note that the profile of the fluid in
the tube is not shown here, but
rather how the velocity varies
across the capillary.

Example 9.3 Find the viscosity of a 100 �M aqueous solution of a small spher-
ical protein with radius 5 nm and molecular weight 40,000 at 20°C. This might
be a solution of globular actin protein.

Solution: To proceed from Equation (9.7), we need to calculate the volume
fraction occupied by the protein. Each protein molecule occupies a volume of 
4–
3

� r3 � 5.2 � 10�25 m3 and each protein molecule has a mass of 40,000/NA,
where NA is Avogadro’s number, or a mass of 6.6 � 10�20 g � 6.6 � 10�23 kg. A
100 �M solution has a density of 40,000 g/mol � 10�4 mol/L � 4 g/1000 cm3 �
4 � 10�3 kg/10�3 m3 � 4 kg/m3, using 1 cm3 � 10�6 m3. We can then compute
that in every unit volume (1 m3) there are 4/(6.6 � 10�23) � 6.1 � 1022 mole-
cules occupying a volume of (6.1 � 2022)(5.2 � 10�25) � 0.03 m3. Thus the
volume fraction is 0.03 and the viscosity is then found to be (using �o � 10�3

Pa-s for water) � � [1 
 (2.5)(0.03)] � 10�3 Pa-s � 1.075 � 10�3 Pa-s, a 7.5%
increase over pure water.



Viscosities of suspensions or solutions of macromolecules can be
measured using capillary viscometers, just as for pure fluids, if the par-
ticles or macromolecules are small, so that they are not oriented by the
flow in a capillary, and if a sufficient volume of material is available
(typically 0.1 L). Other designs for viscometers have been developed to
use smaller volumes and to extrapolate to zero shear rate in order to
avoid orienting asymmetric particles.

When a DNA molecule is stretched by hydrodynamic forces during
flow, it responds somewhat like a stretched rubber band, storing energy
like a spring that can be recovered when the flow stops. Elastic proper-
ties of DNA and many other biomolecules seem to be very important in
their functioning. Solutions of DNA and other fiberlike molecules
(filamentous proteins and other elongated (bio)polymers) exhibit vis-

coelasticity, having both a measurable viscosity, or energy loss mecha-
nism, as well as elastic storage of energy. One method by which such
solutions can be studied involves more sophisticated viscometers, called
rheometers (after rheology, the study of viscoelasticity), in which both
the elasticity and viscosity are simultaneously measured to give infor-
mation about the structure and functioning of these macromolecules.

2.  BLOOD AND OTHER COMPLEX FLUIDS

The term “complex fluid” is usually used for a non-Newtonian fluid, meaning that the
shear stress and rate of strain are not simply proportional as they are in Equation (9.1).
Most biological fluids are complex, including blood. Even simple suspensions of asym-
metric macromolecules are non-Newtonian due to orientation effects at higher strain rates:
large transverse variations in velocity create torques on such molecules tending to align
them in the flowing fluid, just as a stick aligns itself with the flow in a fast-moving stream.
Other complex biological “fluids” include cellular cytoplasm, which has viscoelastic
properties, and biological membranes, having two-dimensional fluidlike properties briefly
discussed in Section 6 of Chapter 7. In this section we consider the composition and prop-
erties of blood as perhaps the most interesting example of a complex fluid.

Human blood makes up about 1/13 of the total body
mass and amounts to 5–6 L in the average adult male.
When blood is centrifuged it separates into two portions.
Plasma is the fluid component of blood and is composed
by weight of about 92% water, 7% protein, and small
amounts of organic and inorganic molecules as well as
dissolved gases. It behaves as a Newtonian viscous fluid
with a viscosity about 20% higher than that of water. The
second phase that spins down in a centrifuge consists of
cells, primarily red blood cells that make up over 50% of
the volume of blood. Red cells, or erythrocytes, contain
hemoglobin and carry oxygen throughout the body.
There are also much smaller numbers of white blood
cells and platelets in blood. The white cells, or leuko-
cytes, come in five varieties and are capable of amoeboid
motion and one variety, the neutrophils, can migrate out
of small blood vessels and play a role in fighting infec-
tions by engulfing bacteria throughout the body in a
process called phagocytosis. Platelets are small cells that
are involved in blood clotting. All of these cells have
finite life spans ranging from one or two days to several
months and are replenished by the bone marrow.

Figure 9.7 (top) shows data for the viscosity of
whole blood at three different hematocrits (the percent
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FIGURE 9.6 Flow patterns around
a sphere at increasing Reynolds
numbers.
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FIGURE 9.7 (top) The relation
between viscosity and shear rate
for whole blood (with the hemat-
ocrit shown) and blood plasma;
(bottom) the viscosity of whole
blood versus hematocrit.



of blood volume occupied by cells) as a function of the shear rate. The non-
Newtonian feature is the variation of viscosity by large factors (note the log scales)
with shear rate for blood with cells present. Blood plasma is a Newtonian fluid
because its viscosity is independent of shear rate (lower curve). The red blood cells
normally constitute about 50% of the blood volume, therefore it is clear that the non-
Newtonian rheological properties of blood are primarily due to the red cells. In the
bottom half of Figure 9.7 the low-shear viscosity of whole blood is shown as a func-
tion of the hematocrit. The strong dependence on the red cell content is also indica-
tive of the large impact of the red cells on the rheological properties of blood. Red
blood cells are disks that are biconcave (thinner in the middle than at the edges), are
about 8 �m in diameter and have a tendency to stack together like coins, into aggre-
gates called rouleaux (Figure 9.8). The extent of aggregation is strongly dependent
on the shear rate; the aggregates will break up as the shear rate is increased, qualita-
tively explaining the decrease in viscosity at increasing shear rates shown in the top
of Figure 9.7.

Blood is remarkably fluid. A 50% (by volume) suspension of small rigid
spheres will be a solid, unable to flow at all, whereas blood is extremely fluid even
at elevated hematocrits (Figure 9.9). This fluidity is due to the special properties of
the red blood cells, particularly their membrane elastic properties and shape, which
permit tremendous deformation of the red cells to allow flow. In many small blood
vessels, the capillary diameters are on the order of the red cell diameter or even
smaller and without great flexibility of the red cells, flow would be blocked.
Diseased red cells, such as deformed cells in sickle cell anemia that lose their elas-
tic properties, will clog small blood vessels. In the next
section we take up the human circulatory system,
including the heart, and expand on the flow properties
of blood.

3.  THE HUMAN CIRCULATORY SYSTEM

In Western culture, the concept of blood circulation was
established surprisingly late, in the 1600s, by William
Harvey. The human circulatory system consists of a
pump (the heart) and a complex branched distribution of
“smart” delivery tubes that carry oxygen and nutrients
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FIGURE 9.8 Red blood cells (left: showing biconcave shape and right: red cells
aggregating to form stacked cells, or rouleaux).
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FIGURE 9.9 Viscosity, relative to
water, for human blood (lower
curve) and a suspension of rigid
plastic spheres (upper curve) as a
function of the volume fraction
occupied by particles. At volume
fractions of about 50% or higher a
suspension of plastic spheres
behaves as a solid.



to, and remove waste products from, the body. Each side of the heart receives blood
at low pressure and pumps this blood out at high pressure. In schematic form, shown
in Figure 9.10a, oxygenated blood is pumped out of the left ventricle of the heart,
through the aortic valve and the aorta to a branched network of arteries, smaller arte-
rioles, and finally to the capillary beds throughout the body in which the exchange of
gases and dissolved molecules with the body tissue occurs. Blood is collected
from the capillary beds by the venules, which feed into the veins, all of which merge
with either the superior (from above the heart) or inferior vena cava (from below the
heart) or the coronary sinus (from the blood supply for the heart muscle itself) to
return the blood to the right atrium. Thus the left ventricle and the right atrium of the
heart together form the outlet and inlet of a pump that supplies nearly the entire body
with blood.

A second parallel pump in the heart sends blood that has arrived from the right
atrium through the tricuspid valve to the right ventricle, through the pulmonary arter-
ies to the lungs where an exchange of gases occurs. The reoxygenated blood returns
to the left atrium through the pulmonary veins where it enters the left ventricle
through the bicuspid (mitral) valve to complete its cycle of flow. Thus, the right ven-
tricle and left atrium are the outlet and inlet for a second pump of the heart. In the
healthy mammalian heart the chambers of the left side of the heart are completely
separated from those of the right after birth, and there is no mixing of oxygenated and
deoxygenated blood in the heart. Despite this separation, the two sides are part of a
single anatomical organ, and the heartbeat is coordinated by a single clump of cells,
the pacemaker region. A schematic of the heart is shown in Figure 9.10b. In the rest
of this section we consider several aspects of the circulatory system that relate to our
previous discussions in this chapter. We return later (Chapter 15) to consider the elec-
trical aspects of the heart, including the electrocardiogram (EKG).

The heart, about the size of an adult fist, pumps about 80 cm3 of blood in each
of the 70 beats/minute in a typical resting adult, so that about 5.5 L of blood are
pumped throughout the body each minute. Because the total volume of blood in an
adult is 5–6 L, we conclude that it takes just about a minute for blood to make a com-
plete loop through the circulatory system. The total volume of blood is actually in
dynamic equilibrium because fluids leave the blood vessels to exchange with tissue

and to be filtered in the kidneys (discussed in Chapter 12). Figure 9.11
shows some events during a single cardiac cycle, divided into the sys-
tole, or contraction, phase and the diastole, or relaxation, phase. Note
that the left and right ventricles contract together, as do the atriums.
During systole, the ventricular pressure rises rapidly, after closure of the
tricuspid or mitral valve, as the blood volume in the ventricle increases.
When the aortic valve opens, the aortic pressure rises from its resting
value of about 80 mm Hg to about 120 mm Hg. It is this pressure that
is measured with a sphygmomanometer.

Figure 9.11 also shows the times at which valves open and close and
those at which the heart sounds are most clear. The pulmonary artery
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FIGURE 9.10 (a) Schematic diagram
of the heart and the flow of blood.
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and blue deoxygenated in this
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pressure rises during the contraction of the right ventricle, but to a lesser extent than
in the aorta; the peak pressure in the aorta is about six times that of the pulmonary
artery. The greater pressure generated by the left ventricle is a result of thicker layers
of muscle surrounding it compared to the right ventricle. Pressures in the atria are
close to zero and only fluctuate a little during the cardiac cycle.

As an example of applying some of the fluid dynamics we have learned, we can
make an estimate of the power developed by the heart in pumping blood, where
power here is the time rate of transfer of energy to the blood. The heart supplies
both the pressure and kinetic energy of the blood as it leaves the heart and enters
the aorta. If we multiply Bernoulli’s equation for constant height (see Equation
(8.12)) by the volume flow rate Q, we obtain an expression for the power supplied
by the heart as

where Pave is the mean blood pressure in the aorta, � is the density of blood, and v is
the average blood velocity in the aorta. If we take the mean aortic pressure to be
100 mm Hg when a person is at rest, then the PQ contribution of the left ventricle in one
heartbeat is simply the product of the mean pressure and the volume change, 80 cm3,
resulting in a value of (100 mm Hg) � (1.01 � 105 Pa/760 mm Hg) � (80 � 10�6 m3) �
1.06 J/heartbeat. Assuming 70 heartbeats per minute (or 1.2 beats/s) this translates into
an average power of about 1.3 W. Because the pressure in the right ventricle is about 1/6
that of the left ventricle and the volume flow rate is the same, the PQ power contribu-
tion of the right ventricle is an additional 0.2 W. The kinetic energy term contributes a
small additional amount of about 0.3 W when a person is at rest, so that the total power
supplied by the heart is about 1.8 W. To find this kinetic energy contribution we use the
fact that Q � Av, or v � Q/A, so that the kinetic energy term is 
proportional to Q3.

When someone engages in very strenuous exercise, the flow rate of blood can
reach 35 L/min (nearly 7 times the resting rate). In this case, assuming the mean
pressure does not change significantly, the PQ power increases by a factor of 7 to about
10 W, and the kinetic energy power delivered to the blood rises dramatically to (0.3 W)
(73) � 100 W, because of its third-order dependence on Q. Where does this power go?
Just ask someone doing exercise and they will tell you how hot they get and the amount
of sweating they do in an attempt to cool off.

The key to the heart’s success in maintaining pressure differentials in order to
drive blood throughout the body is the four heart valves. Heart valves are crucial for
the proper functioning of the heart and a number of heart diseases are traceable to
defective valves. Perhaps surprisingly, the heart valves (and those of the veins men-
tioned below) are not controlled actively, but open and close passively in response to
hydrodynamic forces. Consider the mitral valve, located between the left atrium and
ventricle, shown schematically in Figure 9.12. In the diastole, when the pressure in
the atrium exceeds that in the ventricle, the two thin membranes of the valve are
pushed open and blood enters the ventricle. As the blood pours into the ventricle it
strikes the ventricular walls and the flow breaks up into eddies, or vortices, that pro-
vide a back-pressure on the valve membranes, forcing them closed when the ventric-
ular pressure exceeds the atrial pressure. A set of small muscles prevents the
membranes from opening to allow backflow into the atrium; when properly func-
tioning, the mitral valves prevent any blood from re-entering the atrium. Some types
of heart murmurs are due to malfunctioning heart valves that allow backflow, pro-
ducing characteristic sounds. Heart valves used in an artificial heart also make use of
the same principles to provide passive control, rather than direct active control of the
opening and closing of valves.

The cyclic variation in the aortic (and pulmonary arterial) pressure is the
driving force producing blood flow throughout the body (and the lungs). We have
seen from the continuity equation that the flow velocity in a tube is inversely

1/2rv2Q � 1/2r(Q3/A2),

Power � Pave Q 

1

2
rv2Q,
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proportional to the cross-sectional area, in order to conserve mass. In the circula-
tory system, one large artery (typical inside diameter 1 cm) divides into many
arterioles (typical diameter 5 �m), each of which divides into many capillaries
(typical diameters 0.6 �m). The capillaries have the smallest diameter therefore
we might expect blood to flow fastest in these vessels. Although the capillaries do
have the smallest cross-section, the total cross-sectional area of the estimated five
billion capillaries is about five times that of the arterioles. Blood velocity in a cap-
illary is therefore slower than in any other blood vessel, only about 0.07 cm/s.
Capillary diameters are comparable to the dimensions of a red blood cell and so the
flow of blood through capillaries, known as bolus flow, is quite special. As shown
in Figure 9.13, to promote the flow of the red cells and the exchange of gases and
chemicals across the vessel walls, the elastic red cells trap blood plasma between
themselves that flows in eddies.

In some regions, blood flow from the arterioles can bypass the capillaries and
flow directly into venules through an arteriovenous (AV) shunt. These shunts are
able to regulate the flow of blood in order to control, for example, the extent of
body cooling through blood flow in the skin. During exercise, as metabolism is
increased, or when the external temperature is high, excess heat must be removed
by evaporation and the capillaries near the skin surface are dilated by decreasing
the AV shunt flow. Similarly in cold weather, the AV shunt is opened to decrease
blood flow near the skin surface in order to reduce heat loss from the body. 
Another control mechanism outside the heart is vasoconstriction, a reflex process
of reducing the diameters of blood vessels to increase flow rates in the case of
blood loss or shock.

Blood flow in the larger arteries is known as pulsatile flow. As the ventricles
pump blood into the major arteries, the blood cannot flow into the capillaries fast
enough and so the arteries swell in diameter because the walls are elastic. As the
pressure in the artery drops during diastole, the energy stored in the elastic vessel
walls tends to smooth out pressure variations and this becomes more and more the

case farther downstream from the aorta. This same elastic
expansion of blood vessels can be felt as the pulse measured at
one’s wrist. By the time the blood leaves the capillary bed, the
pressure in the veins is quite low. To help the return flow, larger
veins, particularly in the limbs, have one-way valves along
them. Excess fluid pressure in the feet, due to the extra pressure
head, can sometimes result in fluid buildup and swelling
(edema), especially without movement of the feet in order to
promote blood flow in the venules and veins.
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FIGURE 9.13 Bolus flow of red
blood cells moving to the left in a
capillary, showing the eddy flow
between cells.

FIGURE 9.12 (left two panels) 
The closure of the mitral valve by
the backflow of blood in the left
ventricle. (right panel) Schematic 
of the heart valves.



4.  SURFACE TENSION AND CAPILLARITY

The surface of a fluid represents a boundary that exhibits many special properties wor-
thy of our attention. A thin layer of surface fluid in contact with air feels an excess
attractive intermolecular force over the local interactions within the bulk fluid. The net
force pulling the surface layer into the bulk fluid gives rise to a slightly greater den-
sity near the surface. Molecules that move into the surface layer have a higher energy
than those in the bulk because there are fewer bonds to neighboring molecules and
therefore work must have been done on them to move them to the surface. The mea-
sure of this extra energy is the surface energy per unit area 
, given in J/m2, which
depends on the particular fluids involved at the boundary (e.g., water and air). For pure
water in air the surface energy density is unusually high, 
 � 0.073 J/m2.

Associated with the increase in energy in the surface layer of fluid is a surface
tension. Consider the device shown in Figure 9.14 on which a liquid film, such as a
soap film, is formed in air. In order to increase the surface area by sliding the cross-
bar a distance �x, increasing the surface area by (w�x), a force F is needed. The work
done by this force will equal the extra surface energy, therefore we find

(9.8)

where the factor 2 enters because there are two surfaces of the fluid exposed to air.
From this we find another expression for 
,

(9.9)

so that 
, already seen to be the surface energy density, is also a force per unit length,
with units of N/m, and is also known as the surface tension. A force per unit length
is appropriate for a fluid, rather than a force per unit area, or stress, used for a solid,
because the fluid surface layer is imagined to be infinitesimally thin. The surface of
the liquid is sometimes said to behave like a skin or rubber sheet. This is because the
surface can support small insects such as water striders skimming the surface of a
pond (see Figure 9.15 and Problem 19). However, unlike a rubber sheet, when a fluid

g �
F

2w
,

F¢x � 2g (w¢x),
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FIGURE 9.14 A film of liquid is
stretched by moving the crossbar a
distance �x. We use this to calcu-
late the surface tension.

Δx

w
F

FIGURE 9.15 A water strider glides over the water using surface tension to support itself. On
the right, a dye was added to float on the water surface and when illuminated from below
reveals the hydrodynamics of the strider’s motion. Note that the strider is light-seeking.



surface is extended, additional molecules are added to the surface from the bulk fluid,
and so the analogy is of limited use.

If a drop of liquid is formed in air, as from a dripping faucet, the intermolecular
interactions will tend to minimize the surface energy by minimizing the surface area.
Because a sphere has the minimum surface area for a given volume, in the absence
of other forces liquid drops are spherical. For small drops the surface tension is much
larger than gravitational forces and the drops are indeed spherical. Under “weight-
less” conditions, such as in a space shuttle flight, even large liquid drops are observed
to be spherical. In the presence of gravity larger drops tend to get elongated vertically.
We use this liquid drop idea to model the nuclei of atoms in Chapter 26 to understand
the process of nuclear fission.

An important related example is the formation of micelles or vesicles of lipids
in water. Recall that lipids have hydrocarbon tails that are hydrophobic and polar
head groups. When mixed in water at low concentrations, lipids tend to form
micelles, or spherical balls with the polar groups facing water on the outside
and the hydrocarbon tails buried inside (Figure 9.16). At higher lipid concentra-
tions, the lipids form vesicles or spherical lipid bilayers with water both inside and
outside, as shown in the center figure. These are similar to cell membranes,
although cell membranes also have many associated proteins bound to the lipids.
Surface tension is an important factor in the overall structure of both vesicles and
micelles.

In our bodies, the largest surface area in contact with air is the internal surface
of the lungs. The total surface area in the lungs of an adult is tremendous, roughly
100 m2, or the size of a large room. This large surface area is possible because of
a branched network of small sacs or alveoli. Figure 9.17 shows an idealized sec-
tion of an alveolus taken to be spherical. The air pressure inside, Pi, is normally
greater than the pressure in the pleural cavity outside, Po, and this net pressure dif-
ference is balanced by the surface tension in the wall of the alveolus which we
treat as an idealized elastic membrane, like a small balloon. We can relate the sur-
face tension in the alveolus to the pressure difference by imagining that we divide
the alveolus into two hemispheres and balance the forces acting on each separate
hemisphere (see Figure 9.17). The net tension force pulling to the left on the right
hemisphere in the figure along the circular edge of the alveolus membrane is
2�r
. This force must be balanced by the net pressure force directed toward the
right, which can be shown to equal the pressure difference Pi � Po multiplied by
the projected area �r2 (see boxed calculation). The balance of forces 2�r
 �
(Pi � Po)�r2 then implies

(9.10)

which is known as Laplace’s law for a spherical membrane. This relation also holds
for a spherical drop of liquid.

Pi � Po � ¢P � 2 
g

r
,
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FIGURE 9.16 Micelle (left), vesicle (center), and planar bilayer (right) all composed of
lipids.

FIGURE 9.17 Right hemisphere is
in equilibrium under the tension
forces from the left hemisphere and
the pressure difference (radial
forces) resulting in a net pressure
force along the x-axis.
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In the lungs, both the radius of the alveoli and the pressure differ-
ence vary during breathing, in part due to motion of the diaphragm (with
an area of 0.05 m2). If an alveolus were to collapse to a diameter of
about 0.2 mm, from Laplace’s law using 
 for a water/air interface, the
pressure difference would predict that a force (�PAdiaphragm �
(2 0.073/0.1 � 10�3) 0.05) of about 70 N would be required to
breathe. This is more than the weight of a newborn and is an impossibly
large force for the diaphragm to exert. To solve this problem we have a
surfactant, a lipid–protein complex, present in the lungs. The addition of
small quantities of impurities can dramatically reduce the surface ten-
sion at a surface. In this case surfactants reduce the surface tension by
about a factor of 15, thus greatly reducing the needed force. Premature
infants with hyaline membrane disease do not manufacture this surfac-
tant and are prone to developing collapsed lungs. One treatment of this
disease involves spraying a surfactant into the lungs to temporarily sup-
port breathing.

Suppose that a drop of liquid is placed on a plane substrate surface.
Molecules on the surface of the drop have two competing forces, those
of cohesion tending to keep the drop spherical, and those of adhesion to
the substrate surface that will tend to spread the liquid on the substrate.
The nature of the two materials involved will determine the contact

angle , shown in Figure 9.18. Liquids with contact angles between 0
and 90° are said to wet the substrate surface. Pure water wets ultraclean
glass at � L 0 so that the drop spreads freely on the glass, whereas on
typical glass � L 30°. For angles larger than 90°, for example, mercury
on glass where the mercury beads up, the liquid does not wet the sub-
strate at all. Wetting characteristics are important in our lives; we use
water repellents so that water beads up and will not wet surfaces, and we add wetting
agents, generally molecules with hydrophobic and hydrophilic portions, to promote
better contact of a liquid with a solid surface.

In biology, a most important consequence of wetting is capillary action, the rise
of liquids that wet the surface of a capillary. Figure 9.19 shows a glass capillary
immersed in a container of water, in which the water rises and has its characteristic
meniscus and a similar tube immersed in a container of mercury showing the situa-
tion for a nonwetting liquid. We can calculate the height rise h of the water in the cap-
illary with radius r, by considering the surface tension that supports the weight of the
water column. Because the water wets the glass at a contact angle of �, the vertical
component of the surface tension is (see Figure 9.19 right)

(9.11)

where the factor 2�r is the contact perimeter and cos � accounts for the vertical
component.

With the weight of the water column given by ��r2hg, equating these two forces
yields a column height of

(9.12)

Equation (9.12) predicts that the smaller the radius of the tube, the higher
the column of fluid can rise by capillary action. It also predicts the behavior
of mercury in a glass capillary because cos � is negative and not only will the
meniscus be inverted, but surprisingly, the column of mercury will fall below
its level in the large container, as shown in the figure.

Clearly water transport in plants and trees (sap is mostly water) is an
important application of capillary action, although in this case the upper end of

h �
2g cos u

r gr
.

F � 2prg cos u,

u

##
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To find the net force on the right hemi-
sphere due to the pressure difference �P in
Figure 9.17, we need to add up the contri-
butions from the normal force at each por-
tion of the hemisphere. By symmetry, it
should be clear that the direction of the net
force will be to the right because for every
area �A in the right hemisphere with nor-
mal force vertical component Fy or Fz,
there will be a symmetrically located area
with a component of �Fy or �Fz. Using
spherical coordinates, the x-component of
force due to the pressure at �A is Fx �
P cos � �A, where �A can be written as 
(r sin � d�)(r d�). Integrating to find the
total force in the x-direction gives 

which was used to find Equation (9.10).
Note that r2 is the projected area along
the x-axis.

p

� ¢Ppr2,

Fx � ¢Pr 2 L
p

0
df L

p

0
sin u cos u du

FIGURE 9.18 The definition of the
contact angle for a drop on a sur-
face; the top drop wets the surface
and the bottom drop beads up on
the surface, not wetting it.
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the vascular system is not open to the atmosphere. Typical pore radii
in the xylem of trees is 20 �m, so that the maximum height rise of
water in such a capillary should be about 75 cm, using a contact angle
of 0°, based on Equation (9.12). But how does water rise higher in
trees, some of which are over 100 m tall? In the leaves of trees the
interstitial pathways for water flow are believed to be on the order of
5 nm. As long as water is able to reach the leaves, it will be supported

by the capillary action in the leaves, because with 5 nm pores Equation (9.12) yields
a height of nearly 3 km, much taller than any tree. It is believed that as a tree grows,
as long as the column of water is maintained, the capillary action in the leaves is suf-
ficient to support the column of water. The flow of water is then regulated mainly by
evaporation from the leaves, known as transpiration, effectively producing a “negative
pressure” that pulls water up from the soil. We know that even a vacuum cannot pull
water up to a height greater than 30 m; hence the term negative pressure, which is able
to pull water to greater heights based on capillary action. If a tree has a portion of its
xylem damaged so that the water column is interrupted, then beyond a height of 75 cm
there is no mechanism to restore the flow of water.
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FIGURE 9.19 (left) Capillaries
immersed in water showing the
meniscus and the fact that water
rises higher in a narrower tube;
(center) capillary immersed in mer-
cury showing the inverted menis-
cus and the lower level in the
capillary than in the surrounding
container; (right) detail showing
surface tension force calculated in
Equation (9.11).

CHAPTER SUMMARY
Viscosity � can be defined for a Newtonian fluid as the
proportionality constant between the stress (F/A) and
the rate of strain (�v/�y) (where the geometry is that of
Figure 9.1):

(9.1)

For a Newtonian fluid flowing in a cylindrical tube,
the flow rate Q is given by Poiseuille’s law,

(9.2)

where P is the pressure difference across the tube, and
r and L are the tube radius and length, respectively.

The viscosity of a suspension of spherical particles
�s, increases from the solvent viscosity, �o, as the vol-
ume fraction 	 increases according to

(9.7)

Blood is a complex fluid that exhibits non-
Newtonian flow and has rheological properties that are
very dependent on the hematocrit, the percent of blood
volume occupied by cells (mostly red cells). The

hs � ho (1 
 2.5£).

Q �
pPr4

8hL
,

F

A
� h

¢v

¢y
,

human circulatory system basically functions as two
coupled pumps that send blood to the lungs for -
oxygenation and release of carbon dioxide, and to the
capillary beds for distribution of oxygen and nutrients
and collection of cellular waste products.

The surface tension 
 at the boundary surface between
two fluids (a liquid and air, e.g.) is given by the excess sur-
face energy per unit surface area, or equivalently by the
force per unit length (in the geometry of Figure 9.14),

(9.9)

The pressure difference across a spherical membrane
or drop of fluid of radius r is given by Laplace’s law,

(9.10)

Capillary action causes a column of fluid of den-
sity � to rise a distance h

(9.12)

where 
 and � are the surface tension and contact angle
that the fluid wets the capillary surface.

h �
2g cos  u

rgr
,

Pi � Po � ¢P � 2
g

r
.

g �
F

2w
.



QUESTIONS
1. Give some examples of fluids with appreciable viscos-

ity and try to put them in order of increasing viscosity.
2. Give an argument as to why the viscosity of normal

fluids should generally decrease with increasing
temperature.

3. Give some examples of laminar and turbulent flow of
fluids.

4. Assuming Poiseuille’s law applies, what would be the
change in volume flow rate through a tube when the
radius is halved? When the length is quadrupled?
When the viscosity of the liquid is doubled? When
the pressure head is doubled?

5. Explain how a simple timing measurement can deter-
mine the viscosity of a liquid in a capillary viscome-
ter. What complications can you imagine would arise
in the measurement of the viscosity of suspension of
long polymers in a high-shear capillary tube?

6. Check that the Reynolds number is dimensionless.
7. Cigarette smokers generally have higher hematocrits

than nonsmokers. This is probably due to the decreased
oxygen efficiency of the red blood cells from the
inhaled carbon monoxide in cigarette smoke (about
250 cm3 per pack). What is the effect of the higher
hematocrit on the velocity of blood flow?

8. Explain why an aneurysm in an artery leads to a
locally elevated blood pressure.

9. How can a plaque deposit on an artery or arteriole
wall lead to a decreased local blood pressure and the
collapse of that vessel?

10. Hold your hands at your sides and observe a swollen
vein in your arm or hand. Then raise your arm over
your head. The vein will “disappear” as it shrinks in
diameter. Why?

11. Describe, in words, the path of blood flow throughout
the human circulatory system.

12. What is the difference between pulsatile and bolus
flow of blood?

13. Why are artificial heart valves designed to be pas-
sively rather than actively controlled?

14. Insects that walk on water secrete antiwetting liquids
that coat their legs. How does this help them?

15. Why don’t the lungs consist of two large sacs rather
than huge numbers of small alveoli? Examine
Laplace’s law for the answer.

16. Discuss how the competition between cohesion and
adhesion determines the wetting of a material by a
liquid. Adhesive tape (including Post-it type paper)
uses this idea as well as large numbers of tiny bubbles
that create vacuum suction attachments.

17. Explain the function of surfactants in our lungs.
18. What factors control how high a fluid will rise in a

narrow capillary tube? Which ones depend on the
fluid, the tube material, or the geometry alone?
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19. Describe in words the source of the “negative pres-
sure” that allows water to rise so high in plants and
trees.

MULTIPLE CHOICE QUESTIONS
1. The SI units for viscosity are (a) kg/(m-s), (b) kg-m2/s,

(c) kg-m/s, (d) kg-s/m.
2. Which has the greatest effect on the flow of fluid

through a pipe? That is, if you made a 10% change in
each of the quantities below, which would cause the
greatest change in the flow rate? (a) the fluid viscos-
ity, (b) the pressure difference, (c) the radius of the
pipe, (d) the length of the pipe.

3. In the flow of water through a capillary tube, if the diam-
eter of the tube is tripled with no other changes, the flow
rate will (a) increase by a factor of 9, (b) increase by a
factor of 27, (c) increase by a factor of 16, (d) increase
by a factor of 81.

4. Which of the following is a false statement about the
flow of a liquid in a thin vertical tube?
(a) The velocity is fastest at the center of the tube, (b) if
the tube radius is doubled the flow rate will increase by
a factor of 16, (c) the ratio of the flow times for two
liquids depends only on the ratio of their viscosities, 
(d) the presence of suspended particles in the liquid
decreases the flow rate.

5. For a given solution of particles in a solvent, the
characteristic velocity at which there is a transition
from laminar to turbulent flow is (a) proportional to
the size of the particles, (b) is proportional to the
density of the fluid, (c) is proportional to the viscos-
ity of the fluid, (d) is independent of the size of the
particles.

6. The flow of blood through a capillary requires a
higher pressure where the blood enters the capillary
than where it leaves. That is most directly related to
(a) F/A � ��v/�y, (b) �P � �g�y, (c) �(P 
 �gy 

�v2/2) � 0, (d) �(�Av) � 0.

7. An object is dropped from rest at t � 0 into a viscous
fluid. Which of the following best describes the
object’s speed as a function of time?

v

(c)

v

t t

tt

(a)

v

(d)

v

(b)



8. The incremental viscosity of a dilute solution of iden-
tical particles over that of the solvent depends on all
but which of the following? (a) Particle size, (b) par-
ticle concentration, (c) particle shape, (d) the solvent
viscosity.

9. Heart valves close in response to (a) sets of muscles,
(b) hydrodynamic forces, (c) vasoconstriction, 
(d) surface tension.

10. Blood is called a complex fluid because (a) it has
many different components, (b) it has a high viscos-
ity, (c) its viscosity depends on shear rate, (d) blood
plasma is a Newtonian fluid.

11. The fundamental reason that red blood cells can flow
through small diameter capillaries at high concentra-
tions whereas plastic spheres of the same size form a
stiff “solid” is (a) the unique disk shape of the red
blood cell, (b) the bolus flow of the red cells, (c) the
flexibility of the red cell, (d) the vasoconstriction of
the capillaries.

12. Heart sounds heard in a stethoscope are due to (a) tur-
bulent flow between heart chambers, (b) pulsatile
flow in the aorta, (c) laminar flow through the heart
chambers, (d) the AV shunt.

13. The shape of a droplet of liquid on a surface is due to
a combination of (a) pressure and cohesion, (b) adhe-
sion and cohesion, (c) capillary action and adhesion,
(d) capillary action and pressure.

14. In an open tube, water can only be suctioned to rise
about 10 m. In a 20 mm radius tube water will only rise
about 75 cm by capillary action. How can water rise to
the top of trees, sometimes over 100 m tall? (a) By
cohesive forces, (b) by adhesive forces, (c) by Laplace’s
law, (d) by transpiration generating negative pressure.

15. Teflon does not wet with water at all. The contact
angle for water on teflon is (a) 0°, (b) 90°, (c) 180°,
(d) 270°.

PROBLEMS
1. Assuming that the cream in a chocolate cream sand-

wich cookie behaves as a Newtonian fluid of 10 Pa-s
viscosity (probably not a great assumption), find the
force needed to slide one of the chocolate wafers off
the cream at a speed of 2 mm/s if it is a 5 cm diame-
ter disk and the cream filling is 2 mm thick.

2. Suppose that there is a partial blockage of the aorta,
which normally pumps about 5 L of blood per
minute. If the diameter of the aorta is reduced by
30%, find the average flow rate through the diseased
aorta. What increase in blood pressure would be
needed to obtain the normal flow rate? (Assume that
Poiseuille’s law applies.)

3. What pressure is needed to deliver saline solution
through a hypodermic needle with 0.3 mm inner diam-
eter and 2 cm length at a rate of 10 cm3/min. Assume
the saline has the same physical properties as pure
water. Also express the pressure in units of cm of H2O.
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4. In giving an intravenous (IV) of saline solution to a
patient, the storage bag is placed 1 m above the patient’s
arm and attached to a hypodermic needle. If the flow
rate out of the needle just before it is inserted into the
patient’s arm is 50 cm3/min, when it is inserted into a
vein with a blood pressure of 20 torr (gauge pressure),
how long will it take to give 1 L of saline? Assume the
saline has the same physical properties as pure water.

5. Find the Reynolds number for blood pumped into the
1 inch diameter aorta from the heart, using this dis-
tance as the characteristic length involved. Take the
volume of blood pumped each of 72 times per minute
to be 70 cm3. Is the blood flow turbulent? In fact,
because of the pulsatile nature of the heart pump,
blood flows into the aorta as a bolus or plug with rel-
atively little turbulence.

6. An intravenous blood plasma drip enters a vein in the
patient’s arm from a bag raised a height h above the
vein. If the diameter of the 5 cm long needle is 0.5 mm,
find the height h that results in a 5 cm3/min flow rate.
(Assume the blood pressure in the arm is 18 torr.)

7. A salt solution of specific gravity 1.018 has its efflux
time in a capillary viscometer measured to be 122.5 s
compared to a time for distilled water of 116.4 s.
What is the viscosity of the salt solution?

8. The viscosity of blood plasma is to be measured in
a capillary viscometer at 37°C. Using water as a
standard, the efflux time is found to be 95 s. Predict
the efflux time measured with blood plasma. Use
Tables 8.1 and 9.1 and assume that the ratio of the
densities of the two fluids is temperature-indepen-
dent. Suppose this viscometer were used to try to
measure the viscosity of whole blood. Knowing that
the shear forces are fairly high, would your result
be higher or lower than the low-shear value?

9. Plastic microspheres with a 5 �m diameter are added
to water to make up a suspension. If there are 109

such spheres in a 1 cm3 volume of water, what is the
expected viscosity of the suspension? If the same
numbers of 1 �m diameter microspheres are used in
the same volume of water, find the expected viscosity
of this suspension.

10. Viscosity standard solutions are to be made up from
distilled water and 10 �m diameter plastic micros-
pheres. If solutions of 1.05 cP, 1.1 cP, and 1.4 cP are
desired, starting from a large volume of stock solu-
tion of 109 spheres per cm3, give a recipe to make up
100 ml of each of the three desired solutions.

11. A long fine glass capillary pipette with an inner diam-
eter of 0.1 mm is immersed in distilled water. How
high will the water rise if the glass is extremely
clean? Repeat if the contact angle is 30°. Note that it
is well known that the meniscus is taller for glass
when it is extremely clean.

12. A spherical balloon is filled with air to a radius of 
10 cm. Find its surface tension assuming the pressure
inside is 5 kPa.



13. Imagine two bubbles of air of different sizes attached
via a tube with a valve as shown, all immersed in
water. With the valve closed, which bubble is at the
higher pressure? Show that unless both bubbles start
with the same size, when the valve is opened surface
tension will cause the smaller bubble to shrink and
the larger one therefore to grow. This illustrates a
potential problem in our lungs in inflating the alveoli,
or sacs connected via bronchioles. If the alveoli were
not all expanded at the same rate, in theory only the
largest would form. The result of this would be a min-
imizing of the total surface area. Fortunately the fluid
that coats our alveoli contains a surfactant that both
tends to reduce the surface tension, making it easier
to expand alveoli, as mentioned in the text, and also
reducing the dependence of pressure on the radius so
that not all alveoli need be the same size to inflate.
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pressure is uniform throughout and the surface ten-
sion, really the elastic tension of the balloon material,
varies with the stretch of the surface. Rank order the
surface tension, from high to low, for the labeled
points on the balloon.

14. Suppose an alveolus of the lung, with a radius of 
0.15 mm, is coated with pure water and devoid of sur-
factant. What pressure would be needed to keep the alve-
olus inflated? Treat the alveolus as a spherical air bubble.
Note that the maximum pressure that can be reached
normally is about 18 mm when inhaling maximally.

15. Suppose that in the previous problem the alveolus has
surfactant present, reducing the surface tension to
0.03 N/m. How small can the alveolus collapse to,
assuming it remains spherical, and still be inflatable
by a strong inhalation with a maximal pressure of 
18 mm Hg?

16. Laplace’s law for cylindrical geometry is 
 � �Pr,
where r is the radius of the cylinder; note that this is
a factor of 2 different from that for a sphere. Consider
a cylindrical balloon that is partially inflated as
shown. Because the balloon is in equilibrium, the

1
2

3

4

110

γ

17. Using the previous problem, we can understand how
thin-walled capillaries (thin to allow the exchange of
gases) can withstand the blood pressure within them.
Find the elastic tension (in N/m) in a 6 �m radius
capillary with a blood pressure of 30 mm Hg.

18. Healthy young human arteries have a maximum elastic
tension of about 500 N/m, a value that increases by
more than a factor of two with age. Find the maximum
pressure that such an artery can withstand before devel-
oping an aneurysm, or bulge often leading to rupture,
and compute how many times greater this pressure is
above the normal maximum systolic pressure of 
120 mm Hg. An aneurysm, or bulging of an arterial
wall, cannot occur in a heavy artery, but only in one with
a weakened wall due to a connective tissue disorder.

19. Water striders are able to walk on the surface of water.
This problem shows how they do it. Suppose that the
insect’s legs are nonwettable, so that the contact angle
with water is 110° (assume this is from the vertical),
and that the portion in contact with the water is cylin-
drical. If the insect has a mass of 0.01 g (and, remem-
ber, 6 legs) use Laplace’s law for cylinders, 
 � �Pr,
to find the length of each leg that must be immersed in
water to support the weight of the insect by the verti-
cal component of the surface tension.
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Of all the types of waves we study, we are most familiar with water waves as seen in
oceans, lakes, rivers, and bathtubs. We’re also familiar with waves created by air currents
through fields of grasses or wheat. In reality, we constantly experience waves of various
types. Sound, light, radio, and other forms of electromagnetic radiation surround us every
moment of our lives and although we do not directly “see” their waves, aside from visible
light, these phenomena can all be understood in terms of waves. Furthermore, we show
later that matter also behaves as a wave and that our current quantum physics picture of the
world is intimately connected with a mathematical description known as the wave func-
tion. Waves are thus the key to our understanding of nature on a fundamental level.

In this chapter we first return to the type of motion known as simple harmonic motion
that we used to describe a mass on a spring in Chapter 3. Here we extend our previous dis-
cussions to include the frictional loss of energy, known as damping, and the effects of a
“driving force” used to sustain the motion. With the addition of energy by this external
force comes the possibility of a resonance phenomenon in which the amplitude of oscil-
lation can grow rapidly. This is an extremely important idea in physics that we will see
often throughout the rest of our studies. We then introduce some fundamental concepts
concerning waves and consider traveling waves along a string and along a coiled spring
as mechanical examples of the two basic forms of waves, transverse and longitudinal. As
waves travel along or through a medium, they meet and interact with boundaries or obsta-
cles, and different interactions possible at a boundary are considered, including reflection
and refraction. We also discuss one possible result from such boundary conditions, the cre-
ation of standing waves. These are important in such diverse areas as musical instruments,
the human ear, and the basic functioning of a laser, all considered later in this book.

1.  SIMPLE HARMONIC MOTION REVISITED: DAMPING 
AND RESONANCE

A linear restoring force is the basis of simple harmonic motion. Our example has
been the spring force, F � �kx, first studied in Chapter 3. The characteristic of sim-
ple harmonic motion is the variation in oscillator position according to

(10.1)

where �0 is the angular frequency that depends on the parameters of the particular
type of simple harmonic oscillator. For example, in the case of a mass on a spring 

we have seen that the angular frequency is given by �0 � . We have already 

introduced the definitions of the frequency, f, and period, T, which are related to the
angular frequency in general by

(10.2)f0 �
1

T
�
v0

2p
.

A k

m

x(t) � A cos(v0 t),
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The frequency f0 is often called the natural frequency of oscillation of the isolated sys-
tem because it is the frequency the system adopts if released and left unperturbed. Later
in this section we consider cases when an external force, oscillating at a frequency dif-
ferent from the natural frequency, acts on the system (Figure 10.1). As we have also
seen when we considered potential energy, the energy of a simple harmonic oscillator
remains constant, exchanging periodically between kinetic and potential energy.

A second example of an oscillating system that can be modeled as undergoing
simple harmonic motion is the so-called simple pendulum, consisting of a point mass
suspended from a massless string or rod of length L. A true simple pendulum con-
sists of a mass with dimensions small compared to L and a light string or rod. If the
pendulum is made to oscillate in a plane, we can show that if the string makes a small
(�10°) angle with the vertical that this angle will oscillate according to Equation
(10.1) with x replaced by the angle A equal to the maximum angle, and �0 given by 

�0 � . Thus, the motion of the simple pendulum is independent of its mass, 

depending only on its length.
Simple harmonic motion is an abstraction. All real oscillators lose energy over

time due to frictional forces. This was first seen in the Chapter 3 section on vis-
coelasticity where we discussed models in which the elastic springs were combined
with frictional dashpots to describe the viscous effects of the material. Let’s now con-
sider in more detail the effect of frictional forces on the simple harmonic motion of
a mass on a spring. We model the frictional (damping) force as linearly dependent on
the velocity of the mass. This is a good approximation when the damping forces are
small. Then the net force on the mass is given by

(10.3)

where b is a frictional or damping constant.
What is the effect of this damping on the motion of the mass? If the damping is

small we might guess correctly that the resulting motion would be an oscillation with
slowly decreasing amplitude. The correct expression for the oscillator position with
damping is

) cos(ωdampt), (10.4)x(t) � (Ae� bt
2m

Fnet ��kx � bv,
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FIGURE 10.1 Oscillating systems: (from left) pendulum at the Griffith Observatory, 
an automobile coil spring, and the Tacoma Narrows bridge, just before its collapse.



where the angular frequency is a constant somewhat different than in the case of no
damping and given by

(10.5)

Note that if b � 0 this expression reduces to the angular frequency in the absence of
damping, as it must. The first term in parentheses in Equation (10.4) is an exponen-
tially decreasing amplitude. Figure 10.2 shows a typical graph of Equation (10.4); the
dashed lines are called the envelope of the equation and show the exponentially
decreasing amplitude of oscillation.

The energy of a spring undergoing undamped simple harmonic motion is equal to the
constant value 1⁄2kA2. The energy of the damped oscillator can be found by substituting
the exponentially decreasing amplitude to find

(10.6)

that itself decreases exponentially with time. Thus, once made to oscillate, a damped
harmonic oscillator will maintain a fixed period of oscillation, given by T � 2�/�damp,
but will have an amplitude and energy that continuously decrease (Figure 10.3). The
damped harmonic oscillator model can be used to describe many other systems in
addition to springs. For example, molecules that interact with each other but lose

E �
1
2k A2e� bt

m ,

vdamp �A k

m
�

b2

4m2
.
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FIGURE 10.2 Damped harmonic
oscillations showing the 
exponentially decreasing envelope
of the amplitude.

FIGURE 10.3 Left: Undamped simple harmonic motion showing constant energy and
amplitude; Right: Damped harmonic motion with decreasing energy and amplitude. The
peculiar shape of the energy loss curve is due to the nonlinear dependence of position
on time.



energy via collisions or other mechanisms can also be modeled using spring and
damping constants that can be related to the interaction parameters. Also a real
pendulum with damping forces can be modeled in a parallel way.
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Example 10.1 A 0.2 kg mass is attached to a spring with a spring constant of
k � 40 N/m and a damping constant of b � 0.02 kg/s and allowed to come to
equilibrium. If the spring is then stretched a distance of 10 cm and released
from rest, find the following: (a) the initial energy; (b) the natural frequency;
(c) the actual period of the motion; (d) the time for the amplitude to decrease
to 5 cm, half of its initial value; and (e) the time for half the energy to be
dissipated.

Solution: (a) The initial energy is equal to 1–2 kA2 (this is also the t � 0 value of
energy obtained from Equation (10.6)) and is therefore Ei � 0.5(40)(.1)2 � 0.2 J.
(b) The natural frequency is defined by Equation (10.2). Recalling that for a spring 

�0 � , we have that

(c) The actual period of the motion is T � 2�/�, where � is the actual angular fre-
quency of the oscillation, affected by the damping, and given by Equation (10.5).

We have that . This value is extremely close to 

the period in the absence of damping; the second term in the square root is neg-
ligible; in fact, in order for that term, b2/4m2, to make a 5% change in the period,
b must as large as 0.2 kg/s.

(d) Because the amplitude decays exponentially, we can write from Equation (10.4)
that A(t) � A(0)e�bt/2m. Substituting we have 0.05 � 0.1 e�0.02t/(2)(0.2) � 0.1
e�0.05t, or 0.5 � e�0.05t. We solve this equation by taking the natural
logarithm of both sides of the equation: log 0.5 � log(e�0.05t) � �0.05 t, so that
t � �(log 0.5)/0.05 � 13.9 s.

(e) The time for half the energy to be dissipated is found in a similar way using
Equation (10.6) in the form E(t) � E(0) e�bt/m. Because we want the time for
E(t)/E(0) � 0.5, we write 0.5 � e�bt/m and again take the natural logarithm of
both sides, to find t � �log(0.5)m/b � 6.9 s, or half the time for the amplitude
to drop to half its starting value, as expected from the factor of two difference in
the exponents.

T � 2p/A40

.2
�

0.022

4 # 0.22
� 0.44 s

f0 �A40

.2
  /2p� 2.25 Hz.

A k

m

In practice, oscillators have their amplitude maintained by adding energy from
the outside; for example, the pendulum on a grandfather clock maintains its ampli-
tude of oscillation from the energy of a spring or a mechanical gear mechanism that
requires winding. We can account for an external force Fext by adding a term to
Equation (10.3) so that the net force on the oscillator mass is now

(10.7)

If the external force is sinusoidal, with a frequency fext known as the external driving

frequency then, after sufficient time to reach a steady state in which the motion
remains periodic, the oscillator position is given as

(10.8)x(t) � A(v0,vext) cos (vext t �w),

Fnet � �kx � b v � Fext.



where the amplitude A depends on both the natural angular frequency of the oscilla-
tor �0 and that of the external driving force, the oscillation frequency is that of the
external force, but a phase shift � appears so that the driving force and oscillator
response are not necessarily in synchrony in time.

After reaching this steady-state condition, the energy added to the oscillator by the
driving force in one cycle of oscillation must equal the energy loss through dissipation
by the frictional damping force in that same period of time T. The input energy
in one cycle is given by the product of the power and the period  , where
the input power is averaged over one cycle of time. If this input energy is small,
then the dissipation (velocity term) must be equally small, and so the velocity and
hence the oscillator amplitude will be correspondingly small. On the other hand,
if the energy input is large then the dissipation must be large, so that the oscilla-
tor velocity and therefore amplitude will also be large. We call this phenomenon
resonance.

What controls the average energy input? Well, clearly the strength of the driving
force will be a factor here. However, for a given driving force amplitude, what deter-
mines the energy input is how close its driving frequency is to the natural frequency
of the oscillator. This is true because the energy input depends on and pointing
in the same direction and since both are sinusoidal functions oscillating in the 
�x and �x directions, as is shown in Figure 10.4, if their two frequencies are very
different, the average time they are pointed in the same direction will be much
smaller than if their two frequencies are close. Quantitatively, the amplitude of the
driven damped harmonic oscillator is given by

(10.9)

Figure 10.5 shows how the amplitude depends on the
external driving force. A pronounced maximum, or reso-
nance, occurs as the driving frequency approaches the
natural frequency of the oscillator.

Every day examples of resonance abound. When a
child on a swing is pushed by a friend, maximum
amplitude is reached when the pushes come in sync
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FIGURE 10.4 Top: Two sine curves
with frequencies differing by 50%.
Bottom: Same, with a frequency
difference of only 1%. If the two
sine curves represent F and v, then
when they are nearly in phase
(bottom) resonance will occur.
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with the natural frequency of oscillation. Hikers marching in
step over a suspended bridge can cause large amplitude vibra-
tions of the bridge. Occasionally a similar phenomenon will
destroy a poorly designed bridge or highway when energy
from wind or earthquakes causes large amplitude oscillations
that can weaken the structure. This was the cause of a major
highway collapse during the 1989 earthquake in the San
Francisco Bay area, for example (Figure 10.6). We also show
in the next chapter that resonance plays a major role in the
design of musical instruments as well as in the sensitivity of
our ears to different frequencies of sound. Many electronic
circuits have resonances; when you tune a radio or change
the channel on a TV you are choosing a particular resonant
frequency. A variety of biophysical techniques also involve

resonances, including nuclear magnetic resonance (NMR, and its imaging version,
magnetic resonance imaging or MRI), and electron spin resonance (ESR).

2.  WAVE CONCEPTS

Mechanical waves are vibrational disturbances that travel through a material medium
(in this section we assume no energy dissipation). Examples include water waves,
sound waves traveling in a medium such as air or water, waves along a string (as in
a musical instrument) or along a steel beam, or seismic waves traveling through the
Earth. A general characteristic of all waves is that they travel through a material
medium (except for electromagnetic waves which can travel through a vacuum) at
characteristic speeds over extended distances; in contrast, the actual molecules of the
material medium vibrate about equilibrium positions at different characteristic
speeds, and do not translate along the wave direction.

Mechanical waves on a stretched string can be directly visualized. Imagine
that we tie one end of a string to a fixed point and stretch it tightly. We can send
a wave pulse down the string by giving the held end a single rapid up and down
oscillation (Figure 10.7). The motion of the string is vertical whereas the pulse
travels horizontally along the string. The vertical forces acting from one region of
the string to the next near the leading edge of the pulse are what sustain the pulse
and cause it to move along the string. If we continue to oscillate the held end at a
fixed frequency f, then we set up a series of identical oscillations, or a periodic

wave, that travels down the string (Figure 10.8). Such waves are called transverse,
because the medium oscillates in a plane perpendicular to the direction in which
the wave travels.

Suppose we replace the string by a stretched spring tied at one end. If we oscil-
late the free end of the spring either once, or continuously, along the horizontal direc-
tion (along its axis), we set up a longitudinal pulse, or periodic wave, in which the
motion of the material medium is an oscillation along the direction of propagation of
the wave (Figure 10.8).

From a flash photo at some instant of time of the string undergoing continuous
oscillations, we can see that the wave consists of a repeating series of positive
(above axis, where the axis is the unperturbed string) and negative (below axis)
pulses. The distance between corresponding points of one pulse and the next is
called the wavelength, 	. Because the waveform, or shape, is repetitive, or periodic,
corresponding points can be neighboring maxima, crests, of the wave, or minima,
troughs, of the wave, or any set of neighboring corresponding points (Figure 10.9).
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FIGURE 10.6 One result of the
1989 earthquake near San
Francisco, CA. The earthquake
vibrations overlapped with the 
suspended highway resonant 
frequencies causing large amplitude
vibrations leading to its collapse.

FIGURE 10.7 Transverse wave
pulse on a string.



A similar analysis applies to the longitudinal waves of the spring, where now pos-
itive and negative refer to the compression or extension of the spring compared to
its unperturbed configuration. In this case it is easier to see the wave variation with
time clearly by performing the intermediate step of graphing the longitudinal dis-
placement as a function of time to obtain a curve similar to Figure 10.9.

As a wave moves along the string, we can ask with what speed it is traveling. If
we look at an arbitrary point along the string, we will see exactly one wave move by
in a period, the time T � 1/f required for one oscillation. The distance the wave trav-
els in this time is exactly one wavelength. Therefore, the velocity of the wave is
given, quite generally, by

(10.10)

This same expression holds for longitudinal waves as well and is applicable to all
types of waves, from mechanical to electromagnetic.

In addition to mechanical waves on a string or spring, there are several important
examples of other waves that we study in this book. Sound waves are mechanical
pressure waves traveling in an elastic medium, fluid or solid, causing density varia-
tions with regions of lower and higher density. In a solid these waves can be both
transverse and longitudinal (as in an earthquake when seismic waves travel through
the Earth), but in a fluid, such as air or water, sound waves are only longitudinal.
Water waves are also a combination of transverse and longitudinal waves that pro-
duce a rolling motion so that as a wave passes by, the water actually travels in an
elliptical path. (If you’ve ever floated in the ocean surf, you will remember that your
motion is both up and down as well as horizontal so that you periodically oscillate in
a looplike rolling motion.) Electromagnetic waves are transverse waves that are stud-
ied in some detail later where we show that these waves do not require a medium in
which to propagate but can travel through a vacuum at the speed of light.

Every type of periodic wave has its source in some periodic vibration. For example,
sound may be produced by the vibrations of a string, a membrane (drumhead), an air col-
umn, or a tuning fork; vibrations of electrons can produce electromagnetic waves of a
variety of types including visible light and radio waves. Furthermore, different types of
waves will interact with matter in different ways that we study in the course of the
remainder of this book.

Waves that can be described by a sinusoidal variation are called harmonic waves.
At any fixed position such waves vary with time according to Equation (10.1). The
wave will also vary with position at a fixed time. For waves on a string, the spatial
variation at a fixed time can be captured by a snapshot of a harmonic wave frozen in
time that would appear as a sinusoidal curve. We could then describe the vertical
position of the string measured from its equilibrium horizontal position in the snap-
shot photo as

(10.11)

where k, known as the wave number, is related to the wavelength through the relation

(10.12)k �
2p
l.

y (x) � A sin (kx),

 v �
l

T
� l f.
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Thus as we move horizontally along the snapshot of the string, in the x-direction, the
vertical variation in the height of the string is sinusoidal with an amplitude A and a
spatial repeat distance of 	 (Figure 10.10). Because the sine function has a period of
2� radians, writing the argument as 2�(x/	) ensures that each time x increases its
value by 	, the argument of the sine function will have increased by 2�, maintaining
the same value for the function y(x).

Each point on the string actually oscillates in the vertical direction as time goes
by so that y, the vertical coordinate, varies not only with x, the distance along the
string, but also with time. This is a generalization of Equation (10.1) in which a one-
dimensional harmonic oscillator was described using x(t). For a wave on a string the
y-coordinate of each point along the string (with a different x-coordinate) varies in
time according to an equation similar to Equation (10.1) but with x replaced by y. In
the next section we show how we can connect the motion of each point along the
string in a simple mathematical way.

3.  TRAVELING WAVES

The frozen-in-time snapshot of a sinusoidal wave on a string in the last section actu-
ally is traveling along the string in a way that maintains the shape of the wave as it
moves along the string. We can describe such a traveling harmonic wave mathemat-
ically by writing an expression for the vertical displacement of the string as a func-
tion of both x, the horizontal position along the string, and t, the time, as

(10.13)

where � is the angular frequency of oscillation (remember that � � 2�f ). In this sec-
tion we ignore what happens to the wave at the end of the string by imagining the
string to be very long. We consider the effects of a boundary, for example, the tied
end of the string, in the next section.

Let’s consider the meaning of Equation (10.13) more carefully. If we fix the
value of t, then we are looking at the spatial variation of the wave frozen in time as
we just did in the last section. Different constant nonzero values of t in Equation
(10.13) simply shift the argument of the sine function in Equation (10.11) without
any other changes. Note that for a wave to travel along a string, the string must be
elastic, or able to stretch. That this is so is obvious on considering that the contour
length along the sine curve is clearly greater than the straight line distance along the
string axis. The stretch of the string varies along its length and is proportional to
the slope of the string. Where the slope is greatest, at the y � 0 crossings or nodes,
the string is stretched the most, however, where the slope is zero, at the amplitude
where y is a maximum or minimum, the string is unstretched.

If we fix, instead of time t, the value of x so that we are looking at the time depen-
dence of the wave at a fixed point on the string, Equation (10.13) reveals a sinusoidal
oscillation of the string up and down with an amplitude A and an angular frequency
� or period T (Figure 10.11). Each element of the string moves only vertically. This
is precisely the motion of the string to be expected as the waveform given by
Equation (10.11) moves by with a velocity v. In this case the waveform remains con-
stant but moves along the positive x-direction at a velocity such as to keep the argu-
ment (kx � �t), and hence y, equal to a constant. This will occur if v � x/t � �/k �

(2�f)/(2�/	) � 	 f, in agreement with Equation (10.10). Thus as the clock ticks
on and t increases, the entire waveform, representing y(x, t) moves along the positive
x-axis at velocity v. In the case of a wave traveling toward the negative x-axis, the
argument in Equation (10.13) simply gets replaced by (kx � �t), so that there is a
negative velocity with the same magnitude as that in Equation (10.10).

What determines the frequency and wavelength of the waves traveling along the
string? In the case we have been discussing in which one end of the string is made to
oscillate, the frequency is determined by the external driving frequency. The wave

y(x,t) � A sin (kx �vt),
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velocity for small amplitude waves is determined by two quantities: the tension in the
string FT and an intrinsic property of the string, its mass density or mass per unit
length, according to

(10.14)

The wavelength of the traveling waves is then determined by the frequency and
the wave speed, according to Equation (10.10). From this discussion, we expect
that the greater the tension is in the string, the faster the waves travel, and, for a given
frequency of oscillation, the longer the wavelength. Similarly, for the same driving
frequency and length of string, a more massive string will result in a slower wave
speed and therefore a shorter wavelength.

 vwave �A FT

(m/L)
.
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Example 10.2 A traveling wave on a string is described by the equation y � 0.025
sin(1.5x � 200t) where x and y are measured in m and t in s. If the string has a mass
per unit length of 0.003 kg/m, find the following quantities: the amplitude, wave-
length, frequency, period, the velocity of the wave, and the tension in the string.

Solution: From the general form of a traveling wave on a string, given by
Equation (10.13), we can identify directly from the given equation that the ampli-
tude A � 0.025 m, the wave number k � 2�/	 � 1.5 m�1, and the angular fre-
quency � � 2�/T � 200 rad/s. We can therefore straightforwardly compute the
wavelength to be 	 � 2�/k � 4.2 m and the period to be T � 2�/� � 0.031 s. The
frequency is the inverse of the period and is therefore equal to f � 1/T � 31.8 Hz.
Because the wave travels a distance of one wavelength in a time equal to one
period, the wave velocity is given as v � 	/T � 130 m/s. From this value and the
equation connecting the speed of a wave on a string to the tension in the string
(Equation (10.14)), we can solve for the tension, FT � v2(m/L) � 53 N.

Having described the waveform, the relationships between the variables describ-
ing the waveform and the velocity of a wave on a string, we can ask the obvious ques-
tion: if a wave is not the translational motion of the material medium itself, what is
it that is transported with the wave velocity? The answer is energy. Continuing with
our example of the string, the energy that is input to the system from the external dri-
ving force at one end is transmitted along the string at velocity vwave. With a single
pulse sent down the string it is clear that the kinetic energy of the transverse motion
of the string is translated along the string with the pulse. If we imagine the string to
be divided up into short segments along the x-direction, we can ask where the seg-
ments have their maximum and minimum kinetic and potential energy when a har-
monic wave travels along the string. Because each element moves vertically,
oscillating harmonically about y � 0 as a function of time, the kinetic energy of an
element is a maximum as it moves through the y � 0 position (Figure 10.12).

At the amplitude, y � 
 A, the segment is instantaneously at rest and therefore
has no kinetic energy. The stretch of the string is proportional to its slope, and the
elastic potential energy is proportional to the product of the tension force and the
stretch, therefore we see that the elastic potential energy is also maximum at y � 0
where the slope of the string is a maximum. Again at the amplitude, y � 
 A, the
slope of the string is zero and therefore so is the elastic potential energy. (Note that
this is in contrast to a mass on a spring, where the elastic potential energy is a max-
imum at the amplitude.) In fact, it can be shown that the kinetic and potential ener-
gies are exactly equal for harmonic waves traveling along an elastic string, with the
peaks in energy located at the y � 0 crossings and moving with the wave velocity



along the string. So it is energy that travels along the string and constitutes the wave.
The elements of the string behave as harmonic oscillators each carrying a total energy
proportional to the square of the wave amplitude and transmitting that energy along
the string through the elastic interactions with neighboring string elements. This is a
general result of harmonic waves: the total energy carried by the waves is propor-
tional to the square of the wave amplitude.

We have only discussed traveling waves along an elastic string. Traveling longi-
tudinal harmonic waves can also be produced on a coiled spring by oscillating one end
longitudinally at a fixed frequency (see Figure 10.8). The variations in the compres-
sion and expansion of the spring result in a wave traveling down the spring. If y(x, t)
represents the local displacement (assumed small) of the spring from its equilibrium
position as a function of both the position along the spring, x, and the time, t, then
Equation (10.13) fully describes such longitudinal waves as well.

Both of the examples of traveling waves cited are one-dimensional cases with
waves traveling along the x-direction. When a rock is dropped in a pond of water, waves
spread out radially along the two-dimensional surface of the pond with the wavefronts

(or shape of the crests) forming circles. Light waves from a light bulb travel radially
outward in space in three dimensions with spherical wavefronts, as do sound waves
from a person who is speaking. We study some of these examples later in the text, but
we note that the fundamental definitions introduced in this chapter are still appropriate
but that our one-dimensional pictures need to be generalized for these other situations.

4.  WAVES AT A BOUNDARY: INTERFERENCE

When traveling waves reach boundaries between two different media several different phe-
nomena can occur. In the case of one-dimensional waves, at a boundary part of the inci-

dent wave will continue into the new medium as the transmitted wave, traveling at a
different velocity due to the medium’s different properties, and the balance of the wave’s
energy will be reflected back within the incident medium as the reflected wave. In the case
of waves traveling in the positive x-direction along a string with a particular linear mass
density m/L tied to another string with a different mass density at a knot between the two
strings, the knot serves as the boundary. As the incident wave (or pulse) arrives at the
boundary, there will be both a transmitted and a reflected wave (pulse). A portion of the
energy will enter the new medium and the transmitted wave (pulse) will continue to travel
in the positive x-direction but at a different velocity according to Equation (10.14). (FT will
be the same but m/L is different.) The reflected wave (pulse) will contain the balance of the
incident energy and will return along the string traveling along the negative x-direction.

258 WAV E S A N D R E S O N A N C E

velocity

time

FIGURE 10.12 A time series of the
motion of a wave on a string. The
thick line segment represents the
same piece of string oscillating as
the wave passes by. The red arrow
indicates the location of the
maximum energy of the pulse as
it moves along.



Consider the example of an individual pulse traveling to the right along our string as
shown in Figure 10.13. The figure shows the time sequence of events that occur when this
pulse reaches the knot between two different strings. A portion of the amplitude of the
pulse continues into the second string traveling to the right. The reflected pulse passes
through the incident pulse emerging in reverse order traveling to the left. During the time
that the two pulses overlap along the string their amplitudes are seen to add together. This
is an example of the superposition principle, an extremely important concept in wave
physics. We have already seen the superposition principle in action when, in Chapter 5,
we noted that the net vector force was the sum of the individual vector forces acting on
an object. For waves, this principle states that the wave displacement at any point is the
algebraic sum of the individual displacements of the overlapping waves at that point. Said
differently, the net waveform is the algebraic sum of the individual waveforms.

A consequence of the superposition principle is the phenomenon known as inter-

ference. Two transverse waves traveling in the same direction along the same string
will add together to produce a resultant wave that is the observed waveform.
Mathematically the expressions for the two waves add algebraically. If they have the
same wavelength (and, because the velocities are the same, also the same frequency)
and are in phase, so that their crests and troughs march together along the string, then
the resultant amplitude will be their sum. In this case if the two waves are identical,
each of amplitude A, the resultant wave will have an amplitude of 2A (Figure 10.14
left). These two waves are said to combine by constructive interference.

If the waves have equal amplitude A, and the resulting waves are completely out of

phase, so that the crest of one travels together with the trough of the other, then the two
waves combine by destructive interference and, in this case of equal amplitudes, will com-
pletely eradicate each other resulting in no disturbance of the string at all. If the two out
of phase waves have different amplitudes A1 and A2, as in the center panel of Figure 10.14,
then the destructive interference leads to partial cancellation of the waves and an ampli-
tude equal to |A1�A2|. When the two waves are partially out of phase, as in the right panel
of Figure 10.14, they will add together to produce a wave with the same wavelength but
an amplitude that is between 0 and A1 � A2 (�2A if the amplitudes are equal) depending
upon their phase difference (or relative position of their crests).

We can explore the interference of two equal amplitude waves a bit further by
writing each of the two waves that overlap in the form of Equation (10.13), but with
one wave shifted by an arbitrary phase � with respect to the other so that

(10.15)y1 � A sin (kx � vt)   and   y2 � A sin (kx � vt � w).
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time

position

FIGURE 10.13 A time sequence of events, from top to bottom, when a single pulse
waveform traveling to the right (blue) meets a boundary. The string on the right is heavier than
that on the left, so that the reflected (red) and transmitted (green) pulses are as shown with
the reflected wave inverting as it is reflected. Note that in the center picture the incoming and
reflected waves in the lighter string overlap (red � blue � purple) and add together at that
instant. If the strings were reversed so that the wave entered on the heavier string, there
would be no inversion of the wave on reflection.



When these two waves overlap, the principle of superposition tells us that the total
wave amplitude will be

Using a trigonometric identity (namely, 
we can simplify this expression to find

(10.16)

This result shows that the superposition is also a traveling wave with the same wave-
length and frequency, but shifted in phase by �/2 and with an amplitude, given by the
terms in the square bracket, that depends on the phase angle and lies between 0 and 2A.

If the two traveling waves are in phase, or interfere constructively with � � 0,
then Equation (10.16) yields a net amplitude equal to the sum of the separate ampli-
tudes (2A), as we saw earlier. On the other extreme, if the two traveling waves inter-
fere completely destructively with � � �, or 180°, then the two waves will exactly
cancel, giving an amplitude identically equal to 0. Equation (10.16) gives the result
for the general case of arbitrary phase angle.

As a further example of interference, consider the case of two waves of slightly
different wavelength (or frequency) traveling in the same direction along the same
string. Figure 10.15 shows two waves that differ in frequency by 10% (red and

y � 32Acos 
1

2
  w4 sin 1kx � vt �

1

2   w2.

sin a� sin  b � 2 sin 
1
2 
(a� b)cos 

1
2(a� b)), 

y � y1 � y2 � A1sin (kx � vt) � sin(kx � vt � w)2.
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FIGURE 10.14 The superposition of two harmonics with the same frequency. (left) Equal
amplitude waves in phase; (center) unequal amplitude waves 180° out of phase; (right)
unequal amplitude waves with arbitrary phase.

–3

–2

–1

0

1

2

3

0 20 40 60 80 100 120

time

a
m

p
li
tu

d
e

FIGURE 10.15 The superposition
(in blue) of two equal amplitude
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different frequency, illustrating the
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green sine curves) and their superposition (in blue). Notice that in addition to a
periodic variation at the average frequency, the resultant wave has a slower periodic
variation that occurs at the difference frequency. In the figure this lower frequency
component has a period equal to ten times that of the higher frequency component;
you can count ten peaks between a longer period repeat. The slower variation is due
to the interference of the two waves that leads to more or less cancellation in a
period fashion. This phenomenon is known as beats and in the case of sound waves
results in an audible low frequency variation in loudness. When two tones are
played that are very close in frequency, one hears the average frequency tone mod-
ulated in loudness at the difference or beat frequency. This phenomenon is dis-
cussed in more detail in Section 3 of the next chapter. Beats can be used to tune an
instrument when a standard frequency is used to generate one of the tones; the
instrument is tuned so as to lower the beat frequency, lengthening the period of the
loudness variations. In the limit of an infinite beat period the two frequencies are
identical.

5.  STANDING WAVES AND RESONANCE

We now consider the situation on a string when we force one end to oscillate in sim-
ple harmonic motion at some frequency f and fix the other end of the string so that it
cannot move. In this case as the wave reaches the fixed end, all of its energy is
reflected, and the reflected wave reverses its sign. This reversal of sign is a byprod-
uct of the requirement of a fixed point; if the wave did not reverse itself on reflection
then the amplitude would not always add to zero at the fixed point. Reversal of sign
of the reflected wave also occurs for the case of two strings tied together when the
wave travels from the lighter to the heavier string, a situation shown in Figure 10.13.

If the string has a length L, then the round-trip of the wave down and back along
the string requires a time equal to 2L/vwave. If the reflected wave arrives back at the
oscillating end of the string at a time just equal to a period of oscillation 1/f of the
driven end of the string, then the waves traveling to the right and the left will be
exactly in phase and constructively interfere, producing a standing wave as shown in
the sequence of events in Figure 10.16.

We can understand this result by adding together two waves of equal amplitude
that are traveling along the string in opposite directions. Given

y1 � A sin(kx � vt)    and   y2 � A sin(kx � vt),
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FIGURE 10.16 A sequence of eight
equal time views spanning one
period and showing a string tied
down at the right and driven at the
left. A wave pulse travels to the
right (blue) in the first four views,
reaching the knot. In subsequent
views, a reflected wave (red dashed
curve or red arrow) returns to the
left, and the incident wave contin-
ues to the right; the black curves
are the superposition of the incident
(blue) and reflected (red) waves and
may overlap the red/blue curves.
Note that the reflected (red) wave
returns to the left end just in phase
with the driver (or incident blue
wave), setting up a standing wave
with one-half the wavelength just
fitting along the string.



employing the same trigonometric identity that we used to get Equation (10.16), we
have for the sum

(10.17)

What is striking about this result is that the sum of these two traveling waves is no longer
a traveling wave. At any value of x the amplitude oscillates at angular frequency �, but
there is no waveform that travels along the string. In fact there are periodic positions
along the string (corresponding to kx equal to either 0 or multiples of �) where the
amplitude is always equal to zero. This type of wave is known as a standing wave.

Because the string length and wave velocity are fixed, for most continuous oscil-
lation frequencies the waves traveling to the right and left will have no particular
phase relation, with the wave returning to the left end at different values of transverse
displacement at the start of each of the forced oscillations. The result of such a situ-
ation will be a net destructive interference and no sustained displacement of the
string. Only for a particular set of frequencies, called the resonant frequencies, will
standing waves be produced. The lowest possible resonant frequency is called the
fundamental frequency, or first harmonic, and is the situation shown in Figure 10.17
(left) in which half of a wavelength fits on the string. The wavelength is then equal
to 	 � 2L, so that the fundamental frequency is equal to vwave/(2L), or the inverse of
the round-trip time.

As the frequency is increased beyond the fundamental, there will be a sequence
of discrete frequencies, called harmonics, at which resonance will occur. At the sec-
ond harmonic frequency, for example, the wave will reach the right end and reflect
back in the same round-trip time but now corresponding to two complete oscillations,
so that the resonant frequency is twice that of the fundamental. The wavelength is
then equal to 	 � L, with the second harmonic frequency given by vwave/L, precisely
twice the fundamental frequency. In this case, the waves traveling to the right and left
will always produce a point at the center of the string at which there is no displace-
ment. Such a point is called a node and, as can be seen in Figure 10.17, each higher
harmonic adds one additional node along the string. The wavelengths of these reso-
nances are given by

(10.18)

where n is the harmonic number; n � 1 refers to the fundamental or first harmonic,
n � 2 to the second harmonic, and so on. The corresponding resonant frequencies are
given by

(10.19)

The fourth harmonic is shown in Figure 10.17. The second and higher harmonics are
also known as the overtones, with the second harmonic also called the first overtone,
the third harmonic also called the second overtone, and so on.

fn �
 vwave

ln

� nf1.

ln �
2L

n
,  n � 1, 2, 3, Á ,

y � y1 + y2 � 2 A sin kxcos vt.
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FIGURE 10.17 Time sequences showing the fundamental (left), second (center), and
fourth (right) harmonic standing waves on a string. (Note that the time intervals between
snapshots are not equal; the string spends more time out near its amplitude where its
transverse velocity is slower and less time near the horizontal equilibrium position where
its velocity is most rapid.)



Standing waves on a string are one example of the more general phenomenon of res-
onance, introduced in Section 1 for the case of simple harmonic motion. In general, reso-
nance is the addition of energy to a system at one of the natural frequencies of the system.
In the case of the string, standing waves occur if the driving force frequency is equal to the
fundamental or any harmonic frequency of the system, as determined by the length and
mass per unit length of the string as well as its tension. As the driving frequency is tuned,
a series of resonances with different amplitudes is produced (Figure 10.18).

Standing waves can be set up in any object that is made to vibrate, including all musi-
cal instruments at sound frequencies, and bridges, buildings, and other manmade construc-
tions, as well as ocean water at subsonic frequencies (Figure 10.19). We study some of these
in connection with sound a bit further in the next chapter. Resonance can occur in many
other types of systems including atomic or molecular systems. In these cases involving the
microscopic world, electromagnetic oscillations, comparable to mechanical or sound vibra-
tions, produce the resonance. Nuclear magnetic resonance (NMR—the basis for MRI—
magnetic resonance imaging) occurs when electromagnetic radio waves are tuned to have
the energy needed to produce spin flips in the nuclei and are studied later in this book. A
variety of other spectroscopic techniques that involve the interactions of various types of
electromagnetic radiation with matter can be analyzed using the concept of resonance.

Even the simpler case of resonance in damped forced harmonic motion, as discussed
in Section 1, can serve as the basis for analyzing a variety of physical systems ranging from
the mechanical pendulum in a grandfather clock, or a child being rhythmically pushed on
a playground swing, to electromagnetic and quantum systems in which radiation acts as
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Example 10.3 A steel guitar string with a 10 g mass and a total length of 1 m has
a length of 70 cm between the two fixed points. If the string is tuned to play an
E at 330 Hz, find the tension in the string.

Solution: From the frequency and the fact that the fundamental has a wavelength
equal to twice the distance of 0.7 m, we find that the wave velocity must be equal
to v � f	 � (330)(1.4) � 462 m/s. Then given the mass per unit length of 
0.01 kg/1 m � 0.01 kg/m, we can use Equation (10.14) to find the tension. From 

v � , we can solve for FT to find

Enormous tensions are needed in stringed instruments. Steel, nylon, or natural
fibrous materials such as catgut are used to support these tensions.

FT � v2 am

L
b � (462)2 (0.01) � 2130 N.

A FT

m/L

Amplitude

driving frequency

FIGURE 10.18 Multiple resonances in a real system (such
as a string tied at one end) will occur as the driving
frequency is varied.

FIGURE 10.19 Standing wave sand markers where the
ocean and a stream meet.
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CHAPTER SUMMARY
In the presence of a damping force proportional
(through the damping constant b) to velocity, the posi-
tion as a function of time of a mass m attached to a
spring with spring constant k is given by

) cos(ωdampt), (10.4)

where the angular frequency is

(10.5)

When the b is equal to zero, these equations reduce to
the simple harmonic motion case:

(10.1)

with the natural frequency �0 � .

When the oscillator is driven by an external force F
oscillating at �ext the position of the oscillator is given by

(10.8)

(10.9)

Such an oscillator exhibits the phenomenon of reso-
nance: the amplitude rises rapidly as the external fre-
quency approaches the natural frequency of the spring
and more external energy is able to be absorbed by the
system. This model of the driven damped harmonic
oscillator using a spring is broadly applicable to a vari-
ety of other types of systems.

All periodic waves (with wavelength 	 and fre-
quency f ) travel at a speed given by

(10.10) v � lf.

A �
F/m

A1v0
2 - v2

ext 22 � a bvext

m
b

2
.

x(t) � A(v0, vext)cos (vext t �w),

A k

m

x(t) � A cos (v0 t),

vdamp �A k

m
�

b2

4m2
.

x(t) � (Ae� bt
2m

Periodic traveling waves (e.g., waves on a string) can
be written showing their displacement as a function of
both position x and time t:

(10.13)

where k is the wave number,

. (10.12)

Waves obey the principle of superposition: they pass
through each other undisturbed and where they overlap
in space, the net amplitude of the wave is equal to the
algebraic sum of those of the overlapping individual
waves. Interference is a consequence of superposition.
Two waves traveling along a string with equal ampli-
tude, wavelength, and frequency but with a phase dif-
ference � between them superimpose to yield a net
traveling wave that has an amplitude given by the term
below in square brackets and is shifted in phase by �/2
from either original wave:

(10.16)

In the special case of two overlapping waves of equal
amplitude traveling in opposite directions along a
string of length L (perhaps from reflections at the
ends), standing waves can be produced:

(10.17)

These only occur when the frequency (or wavelength)
satisfies the resonance conditions:

(10.19)

(10.18)ln �
2L

n
.  n � 1, 2, 3, Á .

fn �
 vwave

ln

� nf1,

y � y1 � y2 � 2  Asin kxcos vt.

y � 32Acos 
1

2
 w4 sin 1kx � vt �

1

2
 w2.

k �
2p

l

y(x, t) � A sin (kx � vt),

the driving force and the damped oscillations are those of electrons or nuclei in molecules.
Just as we saw in Chapter 4 (Section 4) that springs are the natural “picture” that we can
use to approximate the forces acting near equilibrium, the addition of a damping and a dri-
ving force allow for interactions of the spring with both internal forces (the frictional loss
of energy) and external forces (the addition of energy to the system). In biological systems,
receptors (of sound, light, or specific molecules) usually involve a resonance. For exam-
ple, in the next chapter on sound we learn about Helmholtz resonance in the ear and the
Békésy resonant waves in the cochlea.



QUESTIONS
1. Give several examples of everyday phenomena that

approximate harmonic motion. In each case name the
source of damping.

2. What are a few examples of forced harmonic motion?
3. Carefully define the amplitude, phase angle, driving

frequency, and natural frequency for driven harmonic
motion.

4. Name some examples of resonance phenomena,
giving the approximate resonant frequency involved.

5. What is the difference between equilibrium and
steady state? Which one requires an input of energy?

6. Define wavefront. What is the wavefront shape of
each of the following?
(a) A three-dimensional wave emanating from a point

in all directions
(b) An in-phase wave traveling along the x-direction
(c) A two-dimensional wave (such as on a drum

membrane or the surface of a lake) emanating
from a point

7. What is the difference between transverse and lon-
gitudinal vibrations of a spring? Distinguish
between the wave velocity and spring velocity in
each case.

8. What distinguishes a harmonic wave from any other
type of wave?

9. Equation (10.13) defines a wave traveling along the
positive x-axis, because as time increases x must
increase for points of constant phase. How would you
write an expression for a wave traveling along the
negative x-direction?

10. Why is the potential energy of a stretched string zero
at the amplitudes of a traveling wave and maximum at
the zero-crossings?

11. Two waves, each of amplitude A with intensities pro-
portional to A2, overlap in space producing an inter-
ference effect. Although the total intensity of the two
separate waves is proportional to 2A2, the net ampli-
tude where they overlap can range from 0 to 2A, so
that the net intensity can range from 0 to 4A2. Discuss
this in terms of conservation of energy.

12. Discuss in words how a node is produced for a stand-
ing wave on a string. How does the string move at an
antinode?

13. A string of length L, mass per unit length �, and ten-
sion FT is vibrating at its fundamental frequency.
Describe the effect that each of the following condi-
tions has on the fundamental frequency.
(a) The length of the string is doubled with all other

factors constant.
(b) The mass per unit length is doubled with all other

factors constant.
(c) The tension is halved with all other factors

constant.
14. When two different stringed instruments play the

same fundamental note, what is it that allows you to
distinguish the tone from the two instruments, for
example, a violin and a viola?
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15. Two strings are tied together in a knot. One string has
a length L and a mass m, and the other one has half
the length and twice the mass. If the strings are
stretched taut and put under tension and a transverse
wave travels down the longer string, through the knot
into the shorter string, what is the ratio of the wave
speeds in the shorter to longer string? What is
the ratio of the frequencies in the two strings? The
wavelengths?

16. Consider the same two strings tied together as in the
previous question. If a positive wave pulse (above the
axis of the strings) is sent down the longer string,
what will be the polarity of the pulse reflected at the
knot? If a positive pulse is sent the other way along
the string, what will be the polarity of the reflected
pulse in this case?

17. When a snowstorm occurs, often there is a variation
in the amount of snow on an electric high-voltage
wire strung between two support poles as a result of
standing waves. Show what you might expect the
pattern to look like for the lowest resonant modes.

MULTIPLE CHOICE QUESTIONS
1. Which of the following is not true of simple harmonic

motion of a mass on a spring? (a) The maximum
acceleration occurs at the amplitude of motion,
(b) the resonant frequency is proportional to the
square root of the mass, (c) the period is independent
of the amplitude of the motion, or (d) the kinetic and
potential energies of the mass exchange with each
other at twice the resonant frequency.

2. A disturbance in a string has a node at x � 0 m, at t �
0 s. At t � 1 s, the same node is observed to be at x �
5 m. This disturbance must be (a) a wave traveling in
the negative x-direction with speed 5 m/s, (b) a wave
traveling in the positive x-direction with speed 5 m/s,
(c) a standing wave with nodes separated by 5 m, (d)
either a standing or traveling wave with frequency equal
to 1 Hz.

3. A transverse sinusoidal wave travels along a string
with a constant speed 10 m/s. The acceleration of a
small lump of mass on the string (a) varies sinu-
soidally in time in a direction perpendicular to the
string, (b) varies sinusoidally in time in a direction
parallel to the string, (c) is 10 m/s2, (d) is zero.

4. In a periodic transverse wave on a string the value of
the wave speed depends on (a) amplitude, (b) wave-
length, (c) frequency, (d) none of the choices (a)–(c).

5. Two strings are held under the same tension. String A
has a mass per unit length that is two times that of string
B. The wave speed in A is (a) the same as in B, (b) one
half that in B, (c) two times that in B, (d) none of the
above.

6. Suppose the tension in a string is given by T and the
mass per unit length by �. What are the fundamental
dimensions (i.e., M, L, and T) of the quantity ?
(a) LT�1, (b) MLT�2, (b) L2T�2, (d) L1/2M�1/2T�1/2.

1T/m



Questions 7–9 refer to: A transverse traveling wave on a
string is described by the mathematical expression y �
(0.10)sin(2�x�10�t), where x and y are measured in
meters and t is measured in seconds.
7. The frequency of this wave is (a) 10 Hz, (b) 5 Hz,

(c) 2 Hz, (d) 1 Hz.
8. This wave is traveling in which direction? (a) �y,

(b) �y, (c) �x, (d) �x.
9. The speed with which this wave travels is (a) 1 m/s,

(b) 2 m/s, (c) 5 m/s, (d) 10 m/s.
10. Given the traveling wave y(x, t) � 0.1 sin(�x � �t/2 �

�/2), with x and y in meters and t in seconds, its fre-
quency is (in Hz)
(a) 0.25, (b) 2.0, (c) �, (d) �/2, (e) none of the above.

11. Antinodes and nodes occur(a) in standing waves,
(b) in traveling waves, (c) during beats, (d) in longi-
tudinal waves, (e) none of the above.

12. When a string tied down at both ends is plucked,
the resonant frequencies are characterized by all of the
following except (a) there must be nodes at both ends,
(b) they must satisfy the equation f � vwave/	, (c) the
fundamental frequency is the lowest allowed resonant
frequency, (d) the fundamental wavelength is L.

13. Two identical masses are each attached to a spring.
The springs are also identical. The masses are driven
by the same periodic external force and the response
curves (amplitude versus driving frequency) are
shown to the right. Which of the following best
describes what is seen in the graphs? (a) Mass B is not
as well attached to its spring as is mass A. (b) Mass A
is at resonance but mass B is not. (c) Mass A experi-
ences more friction than mass B. (d) Mass A experi-
ences less friction than does mass B.
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associated with each graph. (Hint: connect the dots.)
(a) A � B � C � D, (b) D � C � B � A, (c) A � D
� C � B, (d) D � A � B � C.

15. When two identical harmonic waves of amplitude A

interfere, the net result can be all but which of the fol-
lowing: (a) no wave, (b) a harmonic wave with an ampli-
tude of 2A, (c) a harmonic wave with an amplitude of
1.5A, (d) a harmonic wave with an amplitude of 4A.

16. In forced harmonic motion, as the frequency of the
external oscillation driving force approaches the nat-
ural frequency of oscillation in a phenomenon called
resonance, which of the following occurs? (a) The
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14. Four masses capable of moving along a line are inter-
connected by springs. These masses are driven into
resonance by an external force. The following graphs
show the masses’ displacement from equilibrium, at a
given instant, in each of the allowed resonant modes.
(The end masses in these graphs don’t move; they’re
not part of the system.) Rank order the frequencies



period becomes increasingly long. (b) The amplitude
becomes increasingly large. (c) The frictional damp-
ing becomes increasingly large. (d) The energy
steadily decreases.

17. You observe a string under tension (fixed at one end
and supporting a hanging weight at the other) to form
a standing wave when the driving frequency is 40
Hz. If you replace the 200 g hanging weight with a
100 g weight (but don’t change the wire length) the
standing wave with the same shape will occur at
about what frequency? (a) 40 Hz, (b) less than 40
Hz, (c) greater than 40 Hz, (d) you can’t form a
standing wave with the same shape under these
conditions.

18. You are told that the mass per unit length of a wire
is 1 
 10�3 kg/m and that a 0.1 kg mass is to be
used to stretch the wire, by hanging from one end
with the other end held fixed. Which of the follow-
ing is true about the wave speed in the wire? The
wave speed (a) depends on the length of the wire, (b)
depends on the frequency with which the wire is
vibrated, (c) is approximately 1000 m/s, (d) is
approximately 30 m/s.

19. The fundamental standing wave on a string of length
1 m that is fixed at both ends vibrates at a frequency
of 300 Hz. The speed of waves on this string must be
(a) 100 m/s, (b) 150 m/s, (c) 300 m/s, (d) 600 m/s.

20. Suppose a vibrating wire is exactly 1 m long. The
standing wave corresponding to the third harmonic on
this wire has a frequency of 30 Hz. The wave speed
of a transverse wave on this wire (a) is 10 m/s, (b) is
20 m/s, (c) is 30 m/s, (d) cannot be determined from
the information given.

21. In restringing a violin A string (fundamental f �

440 Hz), if a string with twice the mass/length is
incorrectly used and the tension is adjusted to play the
correct fundamental, by what factor is the tension dif-
ferent from what it should be using the correct string:
(a) , (b) , (c) 2, (d) 4.

22. A car travels over a dirt road that contains a series of
equally spaced bumps (a so-called “washboard” road).
While traveling at a given speed the driver experiences
a very jarring ride. When the driver drives at a higher
speed, however, the ride gets smoother. That is
because (a) the car actually leaves the ground at higher
speeds, (b) the faster moving car actually crushes the
bumps and makes the road smoother, (c) the car’s
shock absorbers have more friction at higher speeds,
(d) going faster in the car forces the suspension
to oscillate at a frequency higher than its natural
frequency.

23. A damped driven oscillator has an equation of motion
given by ma � �kx � bv � F0 cos(�dt), where �d is
the angular frequency of the driving force. At resonance
ma must equal (a) �kx, (b) �bv, (c) �F0cos(�dt),
(d) zero.

121/2
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PROBLEMS
1. You are watching a mass oscillate on a spring. You

measure the period to be a constant 1.1 s but you see
that the 10 cm initial amplitude of the oscillation
halves after 10 s. Write an expression for the time-
dependence of the position of the mass x(t) in terms of
t with all other factors given as numbers.

2. In the previous problem, how long will it take the
mass to lose half its initial energy?

3. A 0.5 kg mass attached to a linear spring, with spring
constant 5 N/m and damping constant 0.2 kg/s, is ini-
tially displaced 10 cm from equilibrium.
(a) What is the natural frequency of oscillation?
(b) What is its period of oscillation?
(c) How long does it take for the amplitude to

decrease to 10% of its starting value?
(d) How many oscillations have occurred in this time?
(e) What fraction of the initial energy remains after

this time?
4. A 0.2 kg mass is attached to a vertical hanging spring,

stretching it by 10 cm. The mass is then pulled down
an additional 10 cm and released. It is found that the
amplitude decreases to 5 cm in 30 s.
(a) What is the spring constant?
(b) Find the natural frequency of oscillation.
(c) What is the damping constant of the spring?
(d) Write the equation of motion for the mass as a

function of time.
(e) Write an equation for the energy of the mass as a

function of time.
5. A 1 kg mass is attached to a vertically hanging

spring with spring constant 10 N/m and damping
constant 0.1 kg/s. Suppose a harmonic driving force
with fixed amplitude of 1 N and variable frequency
is applied to the mass. Construct the resonance
curve showing the amplitude of oscillation as a
function of the driving frequency near the natural
frequency of oscillation of the mass. Use a set of
about 10 points to show the main features of the
curve.

6. A vertical spring with a spring constant of 8 N/m and
damping constant of 0.05 kg/s has a 2 kg mass sus-
pended from it. A harmonic driving force given by F �

2 cos(1.5t) is applied to the mass.
(a) What is the natural angular frequency of oscilla-

tion of the mass?
(b) What is the amplitude of the oscillations at steady

state?
(c) Does this amplitude decrease with time due to the

damping? Why or why not?
7. A 4 m long rope weighing 1.4 N is stretched so that

the tension is 10 N. The left end is then made to oscil-
late vertically at 4 Hz by shaking the rope up and
down a total distance of 10 cm.
(a) What is the speed of the traveling waves on the

rope?



(b) What is the wavelength of the waves?
(c) Write the equation of the traveling waves along the

rope (ignoring the reflected waves from the far end).
8. A traveling wave on a string is described by the equa-

tion y(x,t) � 0.1 sin(25x � 500t).
(a) What are the wavelength, frequency, and ampli-

tude of the wave?
(b) What is the wave velocity?
(c) If the mass density of the string is 0.001 kg/m,

find the tension in the string.
9. A wave traveling on an elastic string has a 5 cm ampli-

tude, a 25 cm wavelength, and a period of 0.01 s.
(a) Write an equation for the traveling wave y(x,t)

traveling in the positive x-direction.
(b) Find the wave speed.
(c) If the string is under a tension of 10 N, find the

mass density of the string.
10. A 10 m elastic cord with a mass of 0.42 kg has its left

end tied to a wall and is pulled with a force of 50 N at
the right end. When the right end is vibrated verti-
cally according to the equation y � 0.04 sin(2.5t),
where y is in meters and t in seconds, write the equa-
tion for the wave traveling to the left.

11. A string is tied at one end to a fixed point and the
other is attached to a 1 kg weight after passing over a
frictionless pulley. The 4 m long string weighs 0.1 kg
and the distance between the fixed point and the pul-
ley is 3.5 m.
(a) Find the speed of transverse waves on the string.
(b) What is the fundamental frequency?
(c) What is the wavelength of the fourth harmonic?

12. Derive Equation (10.16) for the superposition of two
equal amplitude traveling waves with a phase differ-
ence � between them.

13. Two traveling waves with the same amplitude A, fre-
quency f, and wavelength 	, but out of phase with
each other by one quarter of a wavelength, are both
traveling to the right and superpose in space. Find
the amplitude, wavelength, and frequency of the
resulting wave in terms of the given symbols. Write
the equation of the resulting traveling wave y(x, t).

14. A sinusoidal wave is traveling at 300 m/s along a
string with a mass-per-unit-length of 0.002 kg/m. If
the wave has an amplitude of 0.01 m and a wave-
length of 0.05 m find the following.
(a) The equation for the traveling wave, y(x,t)
(b) The tension in the string
If a second identical traveling wave is on the same
string but is shifted by 45° with respect to the first, find
(c) The net amplitude where the two waves overlap

on the string
(d) The equation for the net traveling wave, y(x,t)

15. Standing waves are set up on a 1.5 m long string
under tension and fixed at both ends. If the distance
between nodes along the string is 0.25 m what is the
wavelength of this mode and what harmonic is it?

16. A 3 m long string with a mass-per-unit-length of
0.005 kg/m is tied down at one end and has a 5 kg
mass hanging over a pulley from the other end of the
string putting it under tension. If standing waves are
set up, find the frequency of the fundamental mode
and of the fourth harmonic.

17. According to the Guinness book, the world’s largest
double bass instrument was 14 feet tall and had 4 strings
(of equal length) totaling 104 feet in length. If the heav-
iest of these strings had a mass of 2 kg, find its funda-
mental frequency when under a tension of 5000 N. This
sound would be felt but not heard.
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Sound is one of our most important forms of communication. The science of sound
is known as acoustics. In this chapter we learn about the physical properties of sound
and how to describe sound in the language of waves. We study how sound can be pro-
duced in speech as well as musical instruments, and how our ear works to detect
sound and transform its energy into electrical signals to be interpreted by our brain.
Depending on the relative motion of the sound source and detector, the frequency of
sound is changed according to the Doppler effect, studied next in this chapter.
Ultrasound is simply sound at frequencies beyond the detection capabilities of our
ears. It has a number of medical and scientific applications that we study, including
ultrasonic imaging, routinely used for fetal monitoring and for imaging internal
organs of the body.

1.  BASICS

What happens when someone is speaking to you that enables you to hear them? The
sound you hear is first generated by the person forcing a set of vocal chords in their
larynx to vibrate while expelling air. The intonation and pitch are controlled by var-
ious muscles, the tongue, lips, and mouth. Sound emitted by the person then travels
through the air to your ears where in a series of remarkable steps it is converted into
an electrical signal that travels to the auditory center of your brain. We interpret
sound to have several properties, including loudness, pitch, and tonal qualities or tim-
bre, but what is sound, how does it travel through the air, and what physical qualities
does it have that correspond to the properties just mentioned?

When vocal chords vibrate, they force molecules of air in the larynx to vibrate
through collisions that periodically transfer momentum to the surrounding air
(Figure 11.1). Consider a zone or band of air molecules in the vicinity of a vocal
chord and let’s follow those particular molecules through one oscillation in
Figure 11.2. The vocal chord’s motion to the right increases the local momentum of
our neighboring band of molecules thus increasing the local pressure (in the figure
we code the increased local momentum or pressure with a darker band). There is also
a corresponding increase in the local density above the mean density as our mole-
cules collide with those just to the right and a subsequent corresponding decrease in
the local pressure and density below the mean of the band of molecules just to the left
of the vocal chord. As momentum of our band on the right is transferred through col-
lisions with neighboring molecules farther to the right and the vocal chord oscillates
to the left, our band of molecules slows down, reducing its pressure and density, and
a net restoring force to the left is applied from the pressure (and density) imbalance.
Then, as the vocal chord moves again to the right, our molecules collide with others
from the left that have been pushed to the right and this process repeats itself. Thus
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any particular molecule will oscillate longitudinally about some posi-
tion and as a result, there is a local pressure and density variation in
time at any point.

The local pressure and density adjacent to the vocal chord vary
periodically, however, the collisions with neighboring molecules cause
the pressure variation to propagate outward in space. Sound is this spa-
tially periodic pressure (and density) longitudinal wave that travels
outward from the source. In a band where the pressure is high, so is the
density of the molecules and this pressure tends to push the molecules
apart. Similarly in a band of lower density, the neighboring higher-
pressure bands tend to restore the density and pressure toward their
mean values. The air is said to be compressed and rarefied in a peri-
odic manner. The centers of the bands of higher and lower density (and

pressure) instantaneously have zero displacement because molecules from either side
have moved either toward or away from them, respectively (Figure 11.3). These posi-
tions are called displacement nodes. Furthermore, the maximum displacements of the
molecules, or antinodes, occur precisely at the bands of zero density variation located
between those of high and low density extremes. This agrees with our discussion of
the energy propagated along a traveling wave on a string in Chapter 10, where we
showed that the maximum energy occurs at the displacement nodes where the slope
of the string is greatest. For sound, the pressure nodes are the positions where the
pressure equals atmospheric and there is no pressure (or density) variation. We can
summarize the situation by stating that the displacement antinodes occur at the pres-
sure nodes and the displacement nodes occur at the pressure antinodes. We return to
this idea in our discussion of musical instruments in Section 4.

We can write the pressure variation from atmospheric pressure in the form

(11.1)

where a positive value of �P corresponds to compression and a negative value to
expansion and the other variables are just as defined in Chapter 10 in our discussion
of traveling waves. There is a similar expression for the displacement of air molecules

(11.2)

According to our previous discussion, points of maximum displacement corre-
spond to points of zero pressure variation; the change from a sine to a cosine func-
tion accounts for this difference because when the sine is zero, the cosine function
has an extreme value of � 1 (see Figure 11.3). Values for �Pmax are usually very
small fractions of the ambient pressure (the maximum value that does not cause pain
to the ear is only 0.03% of atmospheric pressure) whereas values for �smax are
extremely small (with a value of about 10 �m corresponding to the pain threshold
just cited).

From our discussion, we might guess that the velocity of sound is related to the
mean velocity of the molecules themselves and this is true in an ideal gas. The speed of
sound, in general, depends on two parameters of the medium: its density � and a para-
meter of its elastic properties. For a fluid medium, the velocity of sound is given by

(11.3)

where B is the bulk modulus, the elastic constant of proportionality between the pres-
sure variation and the resulting volume strain (see Figure 3.17 and its discussion).
This equation has the same form as Equation (10.14) for the velocity of a mechani-
cal wave on a string. There the tension serves as the elastic parameter and the linear
mass density (mass/length) is the volume mass density analog. For a long solid rod,
such as a railway track, the velocity of sound is given by a similar expression but with
the elastic modulus E replacing the bulk modulus in Equation (11.3).

v �AB

r
,

¢s � ¢smax cos (kx � vt).

¢P � ¢Pmaxsin (kx � vt),
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FIGURE 11.1 The larynx, showing
the vocal chords that vibrate to
produce sounds.

FIGURE 11.2 Schematic of density
variations in air emanating from a
vibrating vocal chord over one
oscillation. The arrows indicate the
oscillatory velocity of the local 
molecules. These density oscilla-
tions comprise the sound wave and
travel outward at the speed of
sound.



The speed of sound in air at 20°C and 1 atm pressure is 343 m/s (about
770 miles/hour). Aircraft that break the “sound barrier” fly faster than this speed,
known as Mach 1. The Mach number is the ratio of the airspeed to the speed of
sound. Beyond Mach 1, also known as supersonic speeds, a shock wave is cre-
ated. This is a directed wave in which the gas density and pressure change dra-
matically as the wave passes.

Because the density of gases is dependent on temperature, the speed of
sound in air actually increases approximately 0.6 m/s for each 1°C increase in
temperature, as the density decreases. In liquids and solids, which are much less
compressible or much “stiffer” than gases with correspondingly higher bulk or
elastic moduli, the speed of sound is much faster. Table 11.1 lists the velocity of
sound in various materials.

Table 11.1 Densities and Velocities of Sound

Material (20°C Unless Noted) Density (kg/m3) Speed (m/s)

Air 1.20 343

Water 998 1,482

Seawater 1,025 1,522

Body tissue (37°C) 1,047 1,570

Glass (pyrex) 2,320 5,170

Frequency, wavelength, and intensity are other parameters characterizing sound.
Audible sound corresponds to frequencies in the range of about 20–20,000 Hz.
Lower frequencies than this are called infrasonic, whereas higher frequencies
are called ultrasonic and are discussed later in this chapter. From the general relation
� � v/f, wavelengths of sound waves can range from cm to many meters. The pitch

of sound is the audible sensation corresponding most closely to frequency; increas-
ing frequency corresponds to increasing pitch.

Intensity represents the energy per unit time (or the power) crossing a unit sur-
face area. Units for intensity are therefore given by J/s/m2 or W/m2. The intensity of
sound is discussed in some detail in the next section. Loudness is the audible sensa-
tion corresponding most closely to intensity, although there is no direct relation. For
example, at frequencies that are barely audible, a sound will not seem loud even if
the intensity is quite large. We discuss loudness later in the chapter after discussing
the ear and hearing.

2.  INTENSITY OF SOUND

Sound is a longitudinal traveling wave that carries energy in the form of mechanical
oscillations of the medium. For a one-dimensional longitudinal traveling wave, such
as travels along an ideal spring as seen in Chapter 10 (where we neglect damping),
the amplitude of the wave remains constant along its direction of travel. In this case,
the energy per unit time, or power, traveling with the wave velocity is constant. The
wave can be pictured as traveling along a fixed direction of propagation and repre-
sented as a plane wave, one having parallel wavefronts. These are the surfaces con-
structed by connecting all in phase points along the direction of propagation. For a
one-dimensional wave, points of common phase are planes with normals along the
wave velocity direction. Sound traveling along a railroad track is an example of such
a one-dimensional sound wave, although there is some damping or attenuation of
sound over large distances.

In three-dimensional examples, however, as the wave spreads out spatially, the
energy crossing a unit cross-sectional area decreases with increasing distance from
the sound source (see Figure 11.4). It is therefore more common to speak about the
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FIGURE 11.3 Pressure or density
variation along a sound wave in air.
Zero displacements of air occur at
the centers of the densest and
least dense bands whereas maxi-
mum displacements occur where
the density equals the mean den-
sity located midway between these
bands.

FIGURE 11.4 The power radiated
from a point source into the
pyramid shown with vertex at
the source is a constant, thus
the power density, or intensity,
must decrease according to
Equation (11.4).
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intensity of a three-dimensional wave than about its power. In this case, if the sound
originates at a localized source and flows outward in all directions, the wavefronts are
spherical and their surface area increases with radius from the source as A � 4	 r2.
If the power emitted by the source of sound is constant, then as the spherical wave-
front travels outward, the total amount of energy crossing any spherical shell centered
at the source is the same. Therefore the energy per unit time crossing a unit area must
decrease at increasing distances from the source. Mathematically, the intensity of
sound is related to the power P, generated by the source and the distance r from the
source by

(11.4)

If the power is constant then we see that the intensity is inversely proportional to
the square of the distance from the source

(11.5)

This is a general characteristic of spherical waves of any type and has only to do with
the geometry of space.

For all waves, whether mechanical, sound, light, or any other type, the intensity
I of the wave is proportional to the square of the wave amplitude. We know that this
is true in the case of a spring because the total spring energy is

and the intensity will therefore be proportional to In the case of sound, the
intensity is given by

(11.6)

where the intensity, pressure wave amplitude, and density values all refer to the same
spatial location. This expression can also be shown to be proportional to the square
of the amplitude of vibration of the medium, �smax. Recall from the last section that
these amplitudes are very small with typical �Pmax/Patm and �smax values of under a
few percent and submicrometer distances, respectively.

Sound intensities vary over an enormous range. The least intense sound that can
be heard by the human ear is called the threshold of hearing and is taken as 10�12

W/m2. Of course, this value actually varies from person to person as well as with a
person’s age. As the intensity increases so does the perceived loudness. The most
intense sound that the human ear can respond to without harm is called the threshold
of pain and is taken as 1 W/m2. Because of the enormous range of intensities to
which the ear responds, 12 orders of magnitude, sounds that are 10 times more
intense do not seem 10 times as loud to the ear. In fact, the ear responds nearly log-
arithmically to sound intensity, the sound loudness doubling for each decade increase
in intensity. A useful scale for intensity level is the decibel scale for which the sound
intensity level 
 is given by

(11.7)

where the logarithm is the common logarithm, with base 10, I0 is a reference inten-
sity, taken as the threshold of hearing (10�12 W/m2), and the unit of sound intensity
is the decibel or dB (where 1 dB � 1/10 bel, named in honor of Alexander Graham
Bell). The scale is chosen so that at I � I0 the intensity level is 0 dB, whereas at the
threshold of pain, I � 1012 I0, the intensity level is 120 dB (check this by substitution

b � 110 dB2 log 
I
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in Equation (11.7)). Table 11.2 gives examples of various sounds and their corre-
sponding intensity levels. We return to a discussion of the response of the ear to
sound intensity in Section 5 below.
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Example 11.1 Find the ratio of the intensity of two sounds that differ by 3 dB.

Solution: Let the two intensities be I1 and I2. According to Equation (11.7), the
two sounds have dB given by 
1 � 10 log I1/I0 and 
2 � 10 log I2/I0, so that if
the two sounds differ by 3 dB, we have that 

Solving for the ratio of the intensities, we find I2/I1 � 100.3 � 2.0. Any two
sounds differing by 3 dB have intensities that differ by a factor of two. The best
human ears can hear a difference in loudness corresponding to about 1 dB. To
what ratio of intensities does this correspond?

110 log I2 � 10 log I0 � 10 log I1 � 10 log I02� 10 log 
I2

I1
.

b2 � b1 � 3 dB � a10 log 
I2

I0
� 10 log 

I1

I0
b �

3.  SUPERPOSITION OF SOUND WAVES

REFLECTION, REFRACTION, AND DIFFRACTION

When sound waves traveling in more than one dimension come to a bound-
ary between two different media, additional considerations beyond what we
have seen in the last chapter are required. Consider the case of a plane
boundary between two different media and let’s imagine a sound wave trav-
eling through one medium and impinging on the boundary. Let’s take the
wave to be a plane wave, with all points along a plane wavefront in phase, an
often-used idealized wave that is traveling in synchrony in a particular direc-
tion. The wavefronts are drawn perpendicular to the propagation direction as
shown in Figure 11.5. When this wave meets the boundary, as in the case of
waves on a string, there will be a reflected wave as well as a transmitted
wave. If the wave approaches the boundary along the perpendicular, or nor-
mal, to the planar boundary, then the reflected and transmitted waves will
remain along that direction and the problem is quite similar to the one-
dimensional case of waves on a string.

θrefl.
θinc.

θrefr.

FIGURE 11.5 Reflection and
refraction of an incident plane wave
at a planar boundary between two
different media.

Table 11.2 Intensities of Sounds

Sound Intensity (W/m2) Intensity Level (dB)

Threshold of hearing 10�12 0

Whisper 10�10 20

Normal conversation (at 1 m) 10�6 60

Street traffic in major city 10�5 70

Live rock concert 10�1 110

Threshold of pain 1 120

Jet engine (at 30 m) 10 130

Rupture of eardrum 104 160



If the wave approaches the boundary along a line making an angle �incident with the
normal to the planar boundary then the reflected and transmitted waves do not travel
along the same line. In such a case the reflected wave remains in the incident medium,
remains a plane wave, and propagates in a direction making an angle �reflection with the
boundary normal that is equal to the incident angle as shown in Figure 11.5. The inci-
dent wave, reflected wave, and normal to the surface all lie in a common plane, known
as the plane of incidence. These two sentences comprise a statement of the law of

reflection: the reflected wave lies in the incidence plane at an angle of reflection equal
to the incident angle. When we study sound further and optics later on we show some
consequences of this law for acoustic and light waves. Although seemingly simple,
this law is fundamental to ultrasonic imaging, the functioning of mirrors, the imaging
of x-rays, and a wide variety of applications in optics.

The transmitted wave enters the second medium but is deviated from the origi-
nal propagation direction. Due to the different speed of the wave in the second
medium, the wavelength (but not the frequency) is changed and the wave direction is
bent or refracted (Figure 11.5). The angle of refraction, or the angle between the
direction the transmitted wave travels and the normal to the surface, can be related to
the incident angle and the ratio of wave velocities in the two media by

(11.8)

which is known as the law of refraction.

sin uincident

sin urefracted
�

vincident

vrefracted
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Example 11.2 An ultrasonic wave is incident on a person’s abdomen at a 20°
angle of incidence. Where should it be directed so as to hit a kidney stone
located 7 cm beneath the surface as shown in the figure? The ultrasonic waves
are emitted directly into an aqueous gel coating the abdomen. Take the speed of
sound in the gel to be vgel � 1400 m/s and in body tissue vtissue � 1570 m/s, and
specify the location in terms of the transverse distance x from the normal to the
surface going through the kidney stone.

Solution: The wave entering the abdomen tissue will refract at the surface enter-
ing at an angle of refraction given by

so that �refract � 22.6°. To then hit the kidney stone 7 cm beneath the surface, we
must have that tan �refract � x/(7 cm), so that x � 2.9 cm along the surface from
the normal. Note that without making the correction for refraction the distance x
would be 7(tan 20°) � 2.5 cm, and the wave would probably miss the kidney
stone.

sin urefract � sin uinca
vtissue

vget
b � sin 20a 1570

1400
b � 0.38,

x

θrefract



One other general property of waves should be briefly mentioned here. When a
wave meets either an obstacle or a hole in a reflecting boundary, it spreads out behind
the obstacle or hole into the “shadow” region (Figure 11.6). The extent of this diffrac-

tion, or bending, of the wave depends on the wavelength of the wave relative to the size
of the obstacle or hole. If the physical dimensions of the object are much larger than
the wavelength then there will be little diffraction of the wave but if the object is com-
parable or smaller than the wavelength there can be dramatic spreading of a wave
around an obstacle or behind the edges of a hole. When we study optics we show that
diffraction sets fundamental limits on our ability to “see” microscopic objects.

TEMPORAL SUPERPOSITION

Up until now we have been discussing sound as if it were of a single frequency, as in
Equation (11.1). Almost all of the sounds we hear cannot be described in such simple
terms, but can be thought of as the superposition of a variety of pure sine waves each
of a different frequency and amplitude. Figure 11.7a shows a time record of the
amplitude of vibration of air for a relatively simple sound. An analysis of this sound
record (waveform) is usually presented in the form of a spectrum, in which the ampli-
tudes of the different frequency components are plotted as a function of the frequency
(Figure 11.7b). In simple cases there will be a small number of discrete frequency
components present, as in our example in which there are four components. These are
the resonant frequencies of the sound source. As we discussed in Chapter 10, the low-
est frequency is called the fundamental whereas often the other frequency compo-
nents in the spectrum will be integral multiples of the fundamental and are known as
harmonics.

The mathematics involved in the superposition of harmonics of varying ampli-
tude is known as Fourier series and is illustrated in Figure 11.8 for the example of
the previous figure. The four different sine curves, with relative amplitudes and fre-
quencies given by the spectrum in Figure 11.7b, add together to reproduce the sound
waveform of Figure 11.7a. In fact, any periodic waveform, no matter how complex,
can be represented as the superposition of harmonics according to Fourier’s theorem.

Musical sounds are characterized by spectra that are constant over periods of
time of at least fractions of a second, the duration of the musical notes being played.
The waveform of a musical sound is therefore repetitive over at least that time inter-
val. Noise, on the other hand, is characterized by a chaotic frequency spectrum that
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FIGURE 11.6 Diffraction of water waves around obstacles. Ripples spreading out from
bottom center diffract around rocks and are seen in their “shadow” region.



changes rapidly with time and is nonrepetitive. Example spectra from complex music
and from noise are shown in Figure 11.9. Each musical instrument has its own unique
spectral tone that accompanies the playing of any particular note. Detailed analysis
of the Fourier composition of these tones from different instruments has led to digi-
tal synthesizers that can mimic the sounds from a large variety of musical instruments
with high quality. For each note played by these “computers” to mimic an instrument,
the appropriate set of overtones is added to give the proper tone quality for that par-
ticular instrument. The analysis and synthesis of musical tones has progressed to the
point where some digital synthesizers can actually give better tone quality than even
moderately priced individual instruments.

Let’s examine the particularly simple case of the temporal (time) superposition
of two pure tones of the same amplitude that are relatively close together in fre-
quency. What will we hear if this occurs? We show just below that we’ll hear a sound
at the average of the two frequencies that has an intensity that varies slowly in time
in a whining fashion. The tone of the sound does not change but the intensity oscil-
lates at the difference, or beat, frequency resulting in a slow repetitive whine as
briefly discussed in Section 4 of Chapter 10 (see Figure 10.15).

If we listen to these two sounds at the same spatial location, we can write expres-
sions for the time variation of their amplitudes as

(11.9)

Superposition of these two sounds results in a time-varying signal given by

(11.10)

By using the same trigonometric identity previously used to get Equation
(10.16),

sin u � sin w� 2 cos 
1

2
 1u � w2 sin 

1

2
 1u � w2,

y � y1 � y2 � A1sin v1 t � sin v2 t2.

y1 � A sin v1 t and y2 � A sin v2 t.
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FIGURE 11.7 (a) Amplitude
versus time for a simple sound.
(b) Spectrum of frequency
components for the sound in (a).

FIGURE 11.8 The waveform from
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we can rewrite Equation (11.10) as

(11.11)

If the two angular frequencies are nearly equal, then the average value (in the
second term) is approximately equal to each original frequency, whereas the differ-
ence term has a much lower frequency, close to zero. We can think of this as result-
ing in a time-varying amplitude prefactor multiplying a sine term with angular
frequency equal to the average


t, (11.12)

where �� � (�1 � �2)/2 and 
 and the square bracket emphasizes
that this term is a more slowly varying amplitude. Because the intensity is propor-
tional to the square of this amplitude, a beat, or maximum sound, will occur when 
cos �� t is equal to either 1 or �1. This occurs at an angular frequency of twice ��
or at �1 � �2. The corresponding beat frequency is

(11.13)

and it is at this frequency that one hears the loudness pulsate. Listening to beats is a
commonly used method of tuning musical instruments. Using calibrated standard
tones, the instrument is adjusted to make the beat frequency as long as possible, even-
tually disappearing when the two tones have matched frequencies.

fbeat � f1 � f2,

� (v1 � v2)/2

y � [2A cos¢vt]sin

y � c2A cosav1 � v2

2
b t dsinav1 � v2

2
b t.
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FIGURE 11.9 (left) Noise frequency spectrum from hitting a table with a plastic ruler;
(right) black curve is spectrum from a trumpet.
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Example 11.3 Suppose that two small speakers each play a pure tone. If one
speaker emits a frequency of 1000 Hz and you hear a beat frequency of 5 Hz,
what is the wavelength difference between the two tones?

Solution: The frequency of the second tone is either 1005 or 995 Hz, both of
which would produce 5 beats/s. Using the speed of sound in air from Table 11.1,
the wavelength of the first tone is (343/1000) � 0.343 m. The second tone has
a wavelength of either (343/1005) � 0.341 m, or (343/995) � 0.345 m, both
giving a wavelength difference of about 2 mm.

SPATIAL SUPERPOSITION

After having examined the superposition of two different frequency sound waves, we
now turn to the situation when two sounds, produced at different locations, combine at
some point in space. In this case we can write the two sound waves in one dimension as

y1 � A1 sin (kx � vt � w1) and y2 � A2 sin (kx � vt � w2),



where A1 and A2 are the amplitudes, �1 and �2 the phase angles, and k and �, as
usual, are given by k � 2	/� and � � 2	 /T � 2	 f, and we have assumed the two
sounds have the same frequency and wavelength. The phase angles account for the
relative shift of the sine curves with respect to the origin of coordinates because in
general the two waves originated at different locations with different phases. Setting
x � 0 in the expressions for y1 and y2, the phase angles are seen to determine the
amplitudes at a given time at the origin and thereby at any other point x. At a point
where these two sound waves overlap the net amplitude is simply the sum of the indi-
vidual amplitudes and the intensity is proportional to the square of those amplitudes.
To simplify the problem, suppose that the two amplitudes are also equal to each other
(we have considered a similar problem in Section 4 of Chapter 10 for waves on a
string). Then using a similar argument that lead to Equation (11.11) above, we can
write that

(11.14)

We see that when these two sounds combine at a point in space, the net amplitude
depends on the relative phases of the two waves. If the two waves have some definite
phase relationship that remains constant in time (i.e., the phase angles �1 and �2 are
constants), the two waves are said to be spatially coherent and exhibit interference. At
each point in space, if the two sine waves are “in phase”, meaning they have zero
phase difference, then because cos(0) � 1, the net amplitude is 2A, just as you would
expect when two identical sine curves exactly overlap in space (Figure 11.10). This is
known as constructive interference. If the two sine waves are out of phase by 180°, or
	 radians, then because cos(90°) � 0, the two waves exactly cancel, again just as
expected if the waves are shifted with respect to each other by half a wavelength. This
is known as total destructive interference. At any intermediate situation Equation
(11.14) gives the net amplitude and there will be some intermediate situation with the
amplitude in general lying between 0 and 2A.

Because the intensity is proportional to the square of the amplitude, the intensity
of the combined sound wave will be between 0 and 4I, where I is the intensity of each
of the two sounds. This should seem strange at first glance because the intensity is a
measure of the energy carried by the sound wave, and energy must be conserved. So
if each wave carries an intensity I, how can the sum ever be larger than 2I? What’s
going on here? It is clear that if the intensity of the combined sound wave is averaged
over a large region of space that the average intensity must be 2I, since each sound
wave carries intensity I. The phenomenon of interference leads to a redistribution of
the energy, concentrating it in some regions and depleting it in others, depending on

ynet � y1 � y2 � 2A ccosa w1 � w2

2
b dsin (kx � vt).
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FIGURE 11.10 Interference between two waves. ( left) Two in phase waves, with their
constructive interference superposition at bottom; ( right) two equal amplitude out-of-
phase waves showing complete destructive interference when added together at bottom.
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the phase relationship of the waves; maxima have intensity 4I, but
minima have zero intensity.

Although we have limited our discussion to one-dimensional
waves, real sound waves travel in real space. In Figure 11.11 we
show two experimental measurements of the superposition of two
waves emanating from “point sources” and traveling radially out-
ward. On the top is a photo of the surface ripples in a water tank
and the measurement on the bottom using NMR techniques is sen-
sitive to the local density and shows an image of sound waves trav-
eling through a material simulating human tissue. We show later
how this methodology can be used to image inside the human
body. In the last section of this chapter we return to take a further
look at imaging inside human tissue with ultrasound.

Another example of interference effects in three dimensions
involves designing a musical auditorium or concert hall where the
phenomenon of interference can lead to disasters. Because sounds
reverberate off walls as well as travel directly out to someone in
the audience, the listener hears the superposition of a complex col-
lection of sound waves. Depending on the phase relationships of
the different sound waves, there can be “dead spots” in an audito-
rium where there is significant destructive interference. Special
baffles as well as ceiling and wall designs and materials are used
to reduce direct reflections in order to avoid this problem.

We return to the very important and general phenomenon of
interference when we discuss other types of waves, including light
and also matter waves in our discussion of quantum mechanics.

4.  PRODUCING SOUND

Aside from incidental sounds generated from chemical or other forms of energy, such
as the crackling of a campfire or the noise when a branch of a tree falls (even in a for-
est with no one around), the production of sound usually involves two requirements:
a way to generate mechanical vibrations and a resonant cavity structure to amplify
and “shape” the sound. Here we discuss the generation of music from a variety of
instrument types. Each of these generates mechanical vibrations of a string, wire, or
drumhead (as in stringed instruments, pianos, or drums, respectively), or of the air
directly by vibrations of a reed (woodwinds) or the lips (brasses). The music gener-
ated then acquires its tone and quality from a resonant cavity such as the hollow
wooden body of a stringed instrument or the tube of a woodwind or brass instrument.
A loudspeaker produces sound by converting an electrical signal into mechanical
vibrations of a diaphragm. The mechanism for this conversion is the electromagnetic
force, discussed later, used to vibrate the diaphragm. In this case the shape and design
of the diaphragm help to amplify and direct the sound.

Let’s first review the generation of sound by a string held under tension, discussed
in Section 5 of Chapter 10, as a model for a stringed instrument such as a violin.
Excitation by plucking or bowing the string results in standing waves. The fundamen-
tal frequency is determined by the requirement of nodes at only both fixed ends of the
string so that the fundamental wavelength is twice the string length yielding

(11.15)

where v is the wave speed and L is the string length between fixed points. Recall that
the wave speed on a string is given by

v �A T

m/L
,

f1 �
v

2L
,  string,
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FIGURE 11.11 ( top) Interference of
ripples of water waves in a tank;
(bottom) magnetic resonance tech-
niques used to image the interfer-
ence between two sound waves
inside a material medium from
“point” sources at the top. Note the
similarities.



where T is the tension in the string and m/L is its mass
per unit length. In a violin, the four strings each have a
different mass per unit length and the tensions are adjusted
to tune the fundamental frequency appropriately. Recall
also that the harmonics are given as integral multiples
of the fundamental frequency. When a string on a violin
is played, not only does the string vibrate, so does the
entire volume of air within the wooden cavity as well as
the wood itself. These vibrations not only help to amplify
the sound by more effectively causing the air to vibrate,
but also add depth and quality to the sound. Figure 11.12
shows two examples of simple vibration patterns of a violin.

In general the standing wave patterns of the wood of the violin can be quite
complicated.

Wind and brass instruments have a resonant tube that serves to amplify only
those frequencies that produce a standing wave pattern. There are two main con-
figurations that occur in different musical instruments: tubes with two open ends,
such as in a flute (Figure 11.13a) or organ pipe, where the blowhole serves as an
open end, and tubes with one open and one closed end, such as a trumpet or trom-
bone, where the lips act as a closed end. Figure 11.13b shows a simple schematic
of both cases.

The conditions at the tube ends, known as the boundary conditions, are what
determine the nature of the standing waves produced. At a closed end, because
air is not able to oscillate longitudinally due to the wall, there must be a node
of displacement and the sound is completely reflected, neglecting losses. At
the open end, the sound wave is partially reflected and partially transmitted out
of the resonant tube. Although it is less obvious, there must be a displacement
antinode at the open end. We can see this by first observing that because atmos-
pheric pressure outside the tube serves to maintain a constant pressure at the open
end, there must be a node of pressure variation there. Any increase or decrease
from atmospheric pressure at the open end is immediately compensated for by
bulk flow of outside air to maintain a constant pressure node. As discussed in
Section 1, positions of pressure nodes correspond to displacement antinodes, and
so we see that the proper boundary condition at a tube open end is a displacement
antinode.

From these boundary conditions it is straightforward to detail the fundamental
and harmonic frequencies allowed for each configuration of a resonant tube. For
tubes that are open at both ends, the fundamental resonant mode has a displacement
antinode at each end so that half of one wavelength corresponds to the tube length L
(see Figure 11.14a). Therefore the fundamental wavelength is 2L and the fundamen-
tal frequency is v/2L. Each higher harmonic adds an additional node giving a set of
resonant mode wavelengths

(11.16)ln �
2L

n
, n � 1, 2, 3, Á ,
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FIGURE 11.12 Examples of simple
standing wave patterns on the
back-plate of a violin. The dark
lines, formed by black sand, repre-
sent nodal lines where the wood
does not vibrate.

Resonant tube open
at both ends

Resonant tube open
at one end 

FIGURE 11.13 ( left ) Emily playing a
flute as a resonant tube; (right )
simple models for wind and brass
instruments.



where the integer n is the harmonic number. Corresponding to these wavelengths are
the resonant frequencies of the open tube

(11.17)

where v is the speed of sound.
For tubes that are open at one end and closed at the other, the fundamental has

an antinode at the open end and a node at the closed end so that only 1/4 wave fits in
the tube length L (see Figure 11.14b). Therefore the fundamental wavelength is equal
to 4L. Each higher harmonic adds one additional node within the tube giving a set of
resonant wavelengths

(11.18)

where in this case only odd harmonics are present. The corresponding resonant fre-
quencies in this case are

(11.19)

We see that for a tube closed at one end, only the odd harmonics are present. The
differences in each of these cases (as well as those of resonant modes on a string) are
due to the different boundary conditions.

one side closed tube         fn �
v

ln

�
nv

4L
� nf1.       n � 1, 3, 5. Á

ln �
4L

n
, n � 1, 3, 5 Á ,

fn �
v

ln

�
nv

2L
� nf1, n � 1, 2, 3, Á  (open tube),
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a)

b)

FIGURE 11.14 The first three
resonant modes of (a) a tube open
at both ends: n � 1 blue; n � 2
red; n � 3 green; and (b) a tube
open at one end: n � 1 blue; 
n � 3 red; n � 5 green.

Example 11.4 Compare the resonant frequencies from two tubes, one open at
both ends with twice the length of the second one which is closed at one end.
Will they have the same fundamental and harmonics?

Solution: For the open tube the resonant frequencies are given by

whereas the tube closed at one end will have resonant frequencies given by

Because Lo � 2 Lc, the fundamental frequencies (for n � 1) will be the same for
the two tubes. However, notice that the closed tube will be missing every other har-
monic that the open tube will have, although the common frequencies will match.

fn � n 
v

4Lc

, n � 1, 3, 5, Á .

fn � n 
v

2Lo

, n � 1, 2, 3, Á ,

For a circular drumhead, the standing wave patterns observed when the drum-
head is made to vibrate are two-dimensional and arise from the condition that there
must be a node at the fixed circular boundary. The fundamental has a single antinode
at the center of the drumhead so that the entire membrane oscillates together. Higher-
order modes of vibration include a variety of interesting patterns, some of which are
shown in Figure 11.15.

FIGURE 11.15 Examples of modes
of vibration of a circular drumhead.



5.  THE HUMAN EAR: PHYSIOLOGY 
AND FUNCTION

Hearing is one of the primary sensory systems in man as
well as in many animals. It gives us information about our
surroundings, allows for oral communication, and gives us
pleasure in listening to music. Although hearing is one of
the earliest biophysical systems studied, until quite recently
there was surprisingly little known about the fundamental
physical processes involved. This is due, in part, to the
extremely complex and nonlinear nature of these processes
and also to the location of the ear within the skull in close
proximity to the brain, making it difficult to study in detail
while intact and functioning normally. Here we summarize
the important features and functions of the various portions
of the ear.

The ear is composed of three sections, the outer (or
external), middle, and inner ear, each of which has a specific purpose in the trans-
duction of sound from a pressure wave in the air to an electrical signal that is inter-
preted as sound by the brain (Figure 11.16). The outer ear consists of the external
pinna and the outer auditory canal that ends at the tympanic membrane (or ear
drum). In the air-filled middle ear lie the three tiny bones, the ossicles, known as the
malleus (hammer), incus (anvil), and stapes (stirrup) already introduced in Section
2 of Chapter 8 in connection with the hydraulic effect. The middle ear is bounded
by the tympanic membrane on the outer side and the oval window on the inner side.
There is also a connection, through the round window to the Eustachian tube that
connects with the pharynx. This is important in equalizing pressure between the
middle and outer ear and can lead to painful infections when clogged. Beyond the
oval window lies the inner ear, a complex multichambered cavity that contains both
the semicircular canals involved in balance (but not in hearing) and the cochlea, the
transduction center of hearing.

OUTER EAR

Serving two functions, the outer ear amplifies sound and protects the delicate
tympanic membrane. Protection is accomplished by providing a narrow (~0.75 cm
diameter) long (~2.5 cm) tube or ear canal, lined with hairs and wax-secreting
cells. In many animals the pinnae can be directed at the source of sound and
can help not only to increase sensitivity to sounds but also to locate their source.
In humans the pinnae serve no known purpose other than wiggling to make people
laugh.

Amplification occurs because the ear canal serves as a resonator. Recall that a
tube with one closed and one open end has a fundamental resonant wavelength equal
to four times the tube length. If we approximate the ear canal as such a tube, we find
that the resonant wavelength is about 10 cm, corresponding to a frequency of 3430 Hz
(using the velocity of sound in air as 343 m/s). In fact our ears are most sensitive near
this frequency as discussed later. Although the closed end of the ear canal, the tym-
panic membrane, is fairly thick (~0.1 mm) and stiff, both it and the walls of the ear
canal are elastic and there is not a sharp resonance, but a broad resonance spanning
about three octaves (frequency doublings) with a peak at about 3300 Hz. Typically
sound in the range from 1.5 kHz to 7 kHz is amplified by about 10–15 dB (a factor of
10–30) by the outer ear.

As we show in the next section, sound in air does not penetrate water very well.
Just think of how quiet it gets when you submerge your head under water in a bath
or when swimming. Over 99.9% of the sound energy traveling in air is reflected from
water. How then does sound, traveling in air, enter the cochlea, a fluid-filled tiny
coiled structure, in order for us to hear?
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FIGURE 11.16 Overall structure 
of the ear.



MIDDLE EAR

The middle ear functions to efficiently transmit and amplify
sound from the vibrating tympanic membrane (ear drum) to
the oval window at the entrance to the cochlea. The ossicles
are suspended by a set of ligaments and muscles so that the
malleus is in close proximity to the tympanic membrane, and
the “footplate” of the stapes is in the oval window, basically a
hole in the bone surrounding the inner ear (see Figure 11.17).
Fluctuating pressure differences between the outer and mid-
dle ear will cause the tympanic membrane to vibrate. (Excess
pressure within the middle ear is relieved via the Eustachian
tube. When in a rapidly descending airplane, the pressure
buildup in the middle ear can be painful and can even cause a
temporary hearing loss. A similar pressure increase can occur
in an infected ear.) The ossicles provide a transmission and
amplification mechanism in two basic ways.

First, there is some “lever action” of the mechanical
force transmission from the malleus to the stapes, providing
roughly a 30% increase in the force. In addition, there is a
large (~17-fold) reduction in area from that of the tympanic
membrane to that of the portion of the stapes in contact with
the oval window. This reduction in area results in a similar
phenomenon to “hydraulic pressure” with an increase in
pressure. The ratio of the pressure at the oval window to that
at the tympanic membrane is given by

(11.20)

Thus, the overall theoretical pressure amplification (ignoring damping losses) of
this simple model is about a factor of 22, comparing quite well with the actual exper-
imental value of about 17. The middle ear effectively changes the larger amplitude,
smaller pressure vibrations of the tympanic membrane to smaller ampli-
tude, larger pressure vibrations at the oval window. This is precisely what
is needed in order to effectively couple the sound waves into the fluid of
the cochlea. The middle ear is said to act as an impedance matching sys-
tem (see the next section), allowing the maximum transmission of energy.

INNER EAR

It is the cochlea of the inner ear that converts sound energy into an electrical
signal sent via the auditory nerve to the auditory centers of the brain for
interpretation. Humans can hear without a tympanic membrane and without
ossicles, although there is significant loss of hearing under these conditions,
but the cochlea has been thought to be essential for hearing. Recent cochlear
implants have had some success in direct coupling to auditory nerves. Each
inner ear is actually a cavity in the temporal bone (the hardest bone in the
body) with six independent sensory organs (Figure 11.18): there are two
detectors of linear acceleration, the saccule (mainly detecting vertical accel-
erations) and utricle (mainly detecting horizontal accelerations); three
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FIGURE 11.17 The middle ear 
(see also Figure 8.3).

FIGURE 11.18 The cochlea of the
inner ear.



semicircular canals, each monitoring angular acceleration about a different
orthogonal axis and aiding in maintaining balance; and the cochlea, a fluid-
filled, snail-shaped cavity with three turns having a total length of about
35 mm and ending in a closed apex. All of these detectors function in essen-
tially the same way. Each contains hair cells that are mechanically sensitive
and serve as the basic transducers, converting mechanical forces, due to
accelerations or sound waves, into electrical signals.

Along the cochlea there are three parallel ducts filled with fluid
(Figure 11.19). The total fluid volume is about 15 �l, roughly a drop of
water. The basilar membrane separates two of these, the scala tympani
and the scala media, or cochlear duct, and is the site of the organ of Corti
where the hair cells are located and the transduction occurs. The third, the
scala vestibuli, is separated from the cochlear duct by Reisner’s membrane
and connects with the scala tympani at the apex through a small opening.

If we imagine the cochlea to be unwound and examine a detail of the
organ of Corti (Figure 11.20), all of the “action” occurs between the basilar
and tectorial membranes along the length of the cochlea. There are about

16,000 hair cells in this region, each of which has a hair bundle, composed of about 50–100
stereocilia projecting from their apex into the surrounding fluid in precise geometric pat-
terns. Each stereocilia is a thin (0.2 �m) rigid cylinder composed of cross-linked actin fil-
aments that are arranged to increase uniformly in length from about 4 �m at the stapes end
to about 8 �m at the apex end of the cochlea (Figure 11.21). The stereocilia are so rigid
that applied forces do not bend them; instead they pivot at their base. Within a hair bundle,
all the stereocilia are interconnected by filamentous cross-links so that the entire hair bun-
dle moves together. For this to occur, stereocilia must slide along their neighbors by break-
ing and reattaching filamentous cross-links in a complex and incompletely understood
process. It is thought that this relative sliding mechanism results in ion channels opening
and closing along the stereocilia membrane that, in turn, lead to the propagation of elec-
trical signals down to the hair cell base. These electrical signals then trigger the release of
a chemical neurotransmitter near synaptic junctions leading to nerve cells comprising the
auditory nerve. We study nerve conduction in much more detail later in this book.

So, in principle, we see the path by which sound waves in air are eventually con-
verted into an electrical signal along a nerve fiber. Sound waves collected by the outer
ear vibrate the tympanic membrane. In turn, through mechanical vibrations, the stapes
sets up traveling waves along the basilar membrane and other structures of the cochlea.
For the stapes oscillations to effectively produce vibrations within the fluid of the inner
ear, there must be another site for pressure relief because the fluid is incompressible; this
is the round window. There are actually two types of hair cells, known as inner and outer.
The outer hair cells are attached to the tectorial membrane and have efferent (motor)
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FIGURE 11.19 A cross-section of
the cochlea showing the three
parallel ducts that spiral around 
the organ.

1

2

FIGURE 11.20 The organ of Corti,
showing the three chambers (tym-
pani (3), vestibuli (2), and media (1)),
basilar membrane (4), and tectorial
membrane (5).



neuron connections so that they do not provide information to the brain, but instead play
an active feedback role, taking signals from the brain and modifying the elastic interac-
tion between the basilar and tectorial membranes. Such processes are inherently both
extremely complex as well as nonlinear. The inner hair cells on the organ of Corti are
sheared by relative motions of the basilar membrane in the surrounding fluid to produce
an electrical change in the stereocilia membrane leading to a series of electrochemical
events that culminate in the recognition of sound in the auditory cortex of the brain.

Although we have given a reasonably complete outline of the primary mechanism for
the transduction of sound to nerve impulse, a number of general unanswered questions
remain, among them: how do we distinguish sounds of different frequency and intensity?

FREQUENCY RESPONSE

Our early understanding of how we hear different frequencies of sound is due to von
Békésy during the 1940s to 1960s, although a more complete picture came only in the
1980s. The key point is that the basilar membrane acts as a frequency filter in an as yet
incompletely understood, but remarkable way. Vibrations of the stapes result in travel-
ing waves of varying amplitude along the basilar membrane. These waves have a maxi-
mum amplitude that occurs at different distances along the cochlear spiral from the
stapes, with higher frequencies having a maximum closer to the stapes and lower fre-
quencies having their maximum further toward the apex (Figure 11.22). At high enough
frequencies there is no displacement at all near the apex. The variation in the position of
the wave amplitude maximum reflects variations in the basilar membrane thickness,
elastic properties and structure along the spiral. The cochlea ducts all become narrower
toward the apex, however, the basilar membrane thickens and widens so as to act as a
frequency filter. Only in the 1980s was it shown that the membrane stiffness turns out to
decrease exponentially along the spiral by almost a factor of 1000 (Figure 11.23), large
enough to account for the frequency range of hearing, so that the location of the maxi-
mum wave amplitude varies with the logarithm of the frequency. These experiments
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FIGURE 11.21 ( left) Electron
microscope detail of hair cells of
the cochlea, inner hair cells in a
nearly linear array in the back-
ground and outer hair cells in a
characteristic pattern; (middle)
inner hair cells; (right) outer hair
cells. (bar � 3 �m).

20 Hz

200 Hz

2000 Hz

Relative
amplitude

apexstapes

FIGURE 11.22 Frequency response of the
basilar membrane as a function of distance
from the stapes.

FIGURE 11.23 Stiffness of the basilar mem-
brane versus distance into the cochlea (Note
log scale on y-axis).



were done using laser holographic techniques (see Chapter 25) to visualize the variation
in membrane modes of vibration with the frequency of stimulation.

The human ear can typically detect sound within the frequency range of from 20 to
20,000 Hz, although the upper limit decreases dramatically with age. The ear is not
equally sensitive to all frequencies in this range, however, being most sensitive between
about 200 and 4000 Hz (see Figure 11.24). This range is sufficient to hear speech,
although a wider range is clearly beneficial for a fuller appreciation of music.

INTENSITY EFFECTS

The human ear has a tremendous range of response to sound intensity. At our most sen-
sitive frequency of 3 kHz, the ear responds to intensity levels as low as 10�12 W/m2,
the threshold of hearing, taken as 0 dB, as discussed above in Section 2. Taking the area
of the tympanic membrane as 0.5 cm2, the total threshold power incident on the ear is
equivalent to only 0.5 � 10�16 W. This corresponds to, for example, the average power
generated by dropping a tiny pin made from 100 million aluminum atoms from a height
of 1 m every second (remember the telephone commercial). Using Equation (11.6), this
intensity corresponds to a maximum pressure variation of about 2.8 � 10�5 Pa (recall
that atmospheric pressure is 1 � 105 Pa). Amazingly, this minimally detected pressure
variation corresponds to an amplitude of vibration of air molecules about 10 times
smaller than the radius of a single atom! The ear is an exquisitely sensitive detector. At
this same frequency, our ears can also tolerate sounds a million million times louder, or
1 W/m2, known as the threshold of pain. Using the decibel scale this corresponds to 120
dB. At this intensity level, air molecules have a displacement amplitude of about 11 �m
and beyond this level, sound becomes painful.

6.  THE DOPPLER EFFECT IN SOUND

The Doppler effect in sound occurs when either the source of sound or the listener
(detector) are moving. It is commonly experienced from the characteristic frequency
changes heard from the siren on a fire truck as it rushes by. The sudden drop in pitch
heard as the truck goes by is due to the Doppler effect. Although not as obvious, the
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FIGURE 11.24 The sensitivity of
the human ear.



frequency of the siren is also actually higher as the fire truck approaches the listener than
it would be if the truck stopped. This phenomenon occurs for all types of waves includ-
ing light, a form of electromagnetic wave that we discuss in detail later in this text.

In the case of light, when the frequency shifts, the color of the light changes. The
well-known red shift of starlight in astronomy is due to the fact that stars are rapidly
receding from us. Characteristic frequencies of light are emitted by various atomic ele-
ments as we show in Chapter 25. By comparing the frequencies of emitted light from
atoms in the laboratory with that emitted from stars, the frequency shifts can be used to
determine the recessional velocities of stars using similar equations to those derived
below. This is the ultimate source of our knowledge of the extent and age of the universe.

We can understand the Doppler effect by imagining that a point source of a pure
frequency sound emits a continuous set of spherical wavefronts, each one wavelength
� apart and that travel at velocity v, as shown in Figure 11.25. If the source and
observer are stationary then the frequency of the sound is determined simply by count-
ing the number of wave crests received per second. Because in a time t the number of
wavefronts reaching the detector is vt/�, the frequency is given by dividing this by
time to find the usual expression f � v/�.

Imagine that the detector now moves with a constant velocity v
D

along the line
towards (or away from) the source. In this case, the number of wavefronts reaching
the detector will increase (or decrease) because of the increased (decreased) relative
speed of the waves as seen by the detector, so that the detected frequency will be

(11.21)

This can be rewritten in terms of the frequency detected when the source and
detector are both stationary by substituting � � v/f to find

(�sign for D approaching; �sign for D receding). (11.22)

When the detector velocity is zero, Equation (11.21) predicts correctly that there is
no frequency shift. If the detector approaches the source the frequency rises above f,
whereas if it recedes from the source the frequency drops below f.

A similar phenomenon occurs if the detector is stationary but the source moves
toward or away from the detector at a constant velocity of vs. In this case the
motion of the source changes the distance between wavefronts emitted depending
on direction. As shown in Figure 11.26, the wavelength is decreased in the forward
direction and increased in the backward direction due to the motion of the source.
A stationary observer along the line of motion will hear a higher frequency as the
source approaches and a lower frequency as the source recedes. This is the expla-
nation of the fire truck siren effect for a stationary observer. In mathematical form
the detected frequency is changed due to the wavelength compression or expansion
( where T is the period, T � 1/f ) so that the detected frequency is

(11.23)

Rewriting this we have a result for the frequency detected from a mov-
ing source

(�for motion toward D; �for motion away from D).

(11.24)
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FIGURE 11.25 Spherical waves
from a stationary source detected
by a stationary observer.

moving
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detector at
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forward
wavelength
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FIGURE 11. 26 Doppler effect for
moving emitter and stationary
detector. The wavefront spacing in
the forward direction is decreased
whereas that in the backward
direction is increased.



In the more general case in which both source and detector are moving, but still along
the line joining them, the detected frequency, from Equation (11.21) and (11.23), is

(11.25)

where the upper signs are used when the relative motion brings the source and detec-
tor closer and the lower signs apply when that distance is increasing.

The Doppler effect can be used to measure the velocity of moving objects by
aiming a wave at the object and measuring the frequency of the reflected wave. This
technique is probably most familiar to you in the form of radar. Police radar uses
high-frequency radio waves (a form of electromagnetic radiation) to detect the veloc-
ity of cars on a highway; weathermen use Doppler radar to measure the velocities of
clouds to make forecasts. A medical application of the Doppler effect is the use of
ultrasound to determine blood velocities as discussed in the next section.

7.  ULTRASOUND

Sound at frequencies above 20,000 Hz is called ultrasound. Although our ears do not
respond to sounds of those frequencies, many animals can hear at frequencies rang-
ing up to 100 MHz. Ultrasound may be familiar to you from its use in ultrasonic
cleaning baths (for jewelry or glassware), cool mist humidifiers, and fetal monitor-
ing, a very common method of imaging a fetus within the womb. In this section we
study some of the physical properties of ultrasound and its interaction with matter.
We also learn the fundamental ideas behind medical imaging using ultrasound.

Ultrasound differs from audible sound only in its higher frequency and corre-
spondingly shorter wavelength. In most of the applications we discuss, ultrasound is
traveling through water or biological tissue in which the speed of sound is quite a bit
faster than in air. Referring back to Table 11.1 we see that the velocity of sound in
water and various biological tissues is quite fast (nearly a mile per second). For 1.5
MHz ultrasound, the wavelength in water (using the speed of sound as 1480 m/s) is
just about 1 mm. The fact that the wavelength is so short is important because the
wavelength ultimately limits the possible obtainable resolution when imaging with
ultrasound.

Ultrasonic waves traveling in a material undergo several interactions. Some por-
tion of the wave is absorbed as it travels through the material. This is usually
described by an absorption coefficient � that describes the loss in intensity of the
wave as it travels along

(11.26)

where I0 is the intensity at some arbitrary point labeled x � 0 and I(x) is the intensity
transmitted through the material after the wave has traveled a further distance x. The
smaller the absorption coefficient, the longer the wave can travel through the medium
without appreciable loss. In pure water absorption over the distances of 0.1–0.2 m
used in imaging systems is negligible. The absorption coefficient in human soft tis-
sue depends on the frequency of the ultrasound, increasing with frequency in the
MHz range with a typical value of about 12% per cm of distance per MHz. Thus,
1 MHz ultrasound loses 12% in the first 1 cm, an additional 12% in the second cm,
and so on, so that after 10 cm, there is only 28% of the original signal intensity left,
the rest being absorbed. At 5 MHz, in the first 1 cm 60% of the intensity is lost, so
that after 10 cm there is less than 0.01% of the original intensity left, all the rest being
absorbed.

This particular interaction of ultrasound with tissue is used in two different ways.
At low-intensity levels, the absorbed energy heats the tissue. This interaction is clini-
cally used in diathermy to locally heat tissue. At higher powers a new phenomenon
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occurs, known as cavitation. At these higher-intensity levels the local pres-
sure variation is sufficient to tear apart the medium, forming spherical holes
or cavities. Medical applications of cavitation include the disruption of kid-
ney stones or tumors using focused ultrasound. Other applications include
cleaning solid surfaces (such as glassware or jewelry) and disrupting cells and
cell constituents for scientific applications.

When an ultrasonic wave reaches a boundary between two different
media, some of the wave is reflected back and the rest of the wave is trans-
mitted (Figure 11.27). The acoustic impedance z, a parameter defined as
the product of the mass density and the velocity of sound in the medium, z � �v,
determines the fraction of the wave that is reflected. If z1 and z2 are the acoustic
impedances of the two media at a planar boundary then the fraction of the incident
intensity that is reflected back is

(11.27)

If the two impedances are equal, then Equation (11.27) confirms that there will be
no reflection and all the intensity will be transmitted (because Itransmitted � Ireflected �
Iincident, we have that

If one impedance differs from the other by a factor of 10 then Equation (11.27) pre-
dicts 67% of the intensity will be reflected. Table 11.3 lists the acoustic impedance of
some materials relevant for biological imaging. Different tissues in the body all have
impedance values similar to those of water except for bone, whereas air has a much
lower value, implying that the lungs should have a distinctly lower impedance. These
values are important in describing the “contrast” of different tissues to ultrasound.
That is, if neighboring tissues have similar impedances, there will only be a small
reflection of intensity at their boundary, but at bone or lung interfaces there will be a
much larger reflected signal. In addition, at an air–tissue interface, only a small frac-
tion of the intensity will be transmitted, so that it is difficult to “couple” ultrasound
into the body. We return to these ideas shortly when we consider imaging methods.
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FIGURE 11.27 The acoustic
impedance of the two media deter-
mines the division of the incident
acoustic energy into reflected and
transmitted waves.

Table 11.3 Acoustic Impedances

Material Acoustic Impedance (kg/m2s)

Air 430

Water 1.48 � 106

Fat 1.33 � 106

Muscle 1.64 � 106

Bone 6.27 � 106

In order to generate ultrasound, a mechanism for producing vibrations at MHz
frequencies is required. The diaphragm of a loudspeaker cannot be made to vibrate
at these high frequencies, however, there are special materials, known as piezoelec-

tric ceramics, which oscillate at such frequencies in response to a MHz time-varying
electrical signal. Other materials, known as magnetostrictive ceramics, respond sim-
ilarly to time-varying magnetic signals. Furthermore, these materials work reversibly,
just as a loudspeaker does. Loudspeakers normally interchange electrical energy for
sound energy, taking an oscillating electrical signal and producing vibrations of the
speaker, leading to sound. A microphone that converts sound into an electrical signal
is basically just a small speaker working in reverse. Sound impinging on the speaker



produces vibrations that cause a small electric signal to oscil-
late at the same frequency. We show how this works later
when we learn about electromagnetism.

Devices that change one form of energy into another
form are known as transducers. Ultrasonic transducers are
very efficient devices that can be used as a source or detector
of ultrasound because the conversion of acoustic energy to
electrical or magnetic energy is reversible in these devices. In
other words, an applied high-frequency electric or magnetic
signal can produce the mechanical oscillations that yield
ultrasound, or an ultrasonic wave impinging on the transducer
will induce mechanical oscillations that, in turn, produce a
time-varying electric or magnetic signal that “detects” the
presence of ultrasound.

Ultrasonic transducers must be very sensitive in order to
“see” the reflections from soft tissue boundaries because the

acoustic impedances are very similar and the reflections are correspondingly weak.
For example, at a boundary between fat and water only 0.5% of the incident wave is
reflected, as a short calculation using the data in Table 11.3 and Equation (11.27) indi-
cates. In ultrasonic imaging, the transducer is mounted in a microphone-type housing
with a fluid-filled tip that is pressed against the skin, coated with a layer of gel to elim-
inate an air gap through which ultrasound would not penetrate (Figure 11.28). The sin-
gle transducer is used as both source and detector of pulses of ultrasound as we now
describe.

Ultrasonic imaging is based on the pulse–echo method. A short pulse of ultra-
sound, typically of several MHz in frequency, is directed into the soft tissue of the
body. Reflections from boundaries with different acoustic impedance arrive back at
the transducer in times that depend on the round-trip distance and on the average
speed of sound (which we take as 1570 m/s for soft tissue: see Table 11.1). From the
delay time between the emission of the pulse and the detection of the echo, we can
reconstruct the distance to the boundary as

(11.28)

where d is measured in meters, t is the delay time, and the factor of 2 accounts for
the round-trip of the pulse. This pulse–echo method is the same as is used in sonar to
map the ocean’s floor or by flying bats to navigate. In ultrasonic imaging, this sim-
plest of methods is called an A-scan and gives information on not only the depths of
boundaries corresponding to each reflection, but also information as to the acoustic
impedance (and therefore the tissue type) of each region based on the intensity of the
pulse echo. Note that the transducer must be both very sensitive to detect the low
intensities of the echoes and have a fast response time. A-scans, however, give only
information on the depth of tissue boundaries; they do not give any spatial informa-
tion in the directions transverse to the direction of travel of the pulse.

By recording the information from an A-scan differently and by scanning the
incident pulse along a transverse line, an image of the major acoustic boundaries can
be displayed on a computer screen in a B-scan. The pulse–echo information is
recorded so that one axis of the image corresponds to the echo depth in the tissue and
the image brightness corresponds to the intensity of the echo. Without any scanning
a strong single echo would appear as a bright dot, a weaker echo as a fainter dot, and
multiple reflections as a series of such dots along the axis. If the incident pulses are
scanned along a transverse line, then because the pulse duration is short and the
reflection times are short, an entire sequence of such scans can be independently
accumulated to yield the outline of tissue boundaries. This is done by displaying the
scanning distance along an orthogonal axis. The time for a complete scan is short
enough to persist on the computer screen, much the same way as television works.

d �
1570t

2
,
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FIGURE 11.28 An ultrasonic fetal monitor at work.
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Techniques have been developed to produce narrow beams of ultrasound that
are scanned rapidly and continually to produce a continuous real-time image.
Figure 11.29 shows examples of a B-scan. Note that false color is added to the pic-
tures to enhance the contrast for our eyes. Each color corresponds to a different level
of intensity according to some grayscale level in which intensity is scaled between
black and white with shades of gray. The intensity levels of the pulses used in imag-
ing are sufficiently low (�3 � 104 W/m2) so that this method is considered a safe
and completely noninvasive technique. It is widely used in fetal monitoring and in
imaging internal organs of the body. The spatial resolution is limited to about 1 mm
due to the frequency of ultrasound; higher frequencies would give better resolution
in principle, but the absorption increase with frequency is prohibitive.

A third type of imaging, known as the M-scan or motion-scan, is similar to the
A-scan but measures the position of a moving target, such as a heart valve, in a time
sequence of pulse echoes. A more sophisticated version, known as Doppler scans,
makes use of the Doppler shift of sound (see the previous section) to produce veloc-
ity profile images. This technique is useful in mapping motions within the heart and
gives a two-dimensional image similar to a B-scan, except that the false color does
not indicate the intensity of the reflection but rather its frequency shift (related to the
velocity of the target). Figure 11.30 gives an example of this type of image.
Ultrasonic imaging is the first of a number of imaging methods that we study, includ-
ing CT scans (using x-rays), MRI (using radio waves), and PET (using the emission
products of radioactive particle decays). These techniques have revolutionized med-
ical care as well as our knowledge of the human body.

FIGURE 11.29 High resolution 3-D
ultrasound images of a fetus.

FIGURE 11.30 Doppler scan of the
adult kidney with color code indi-
cating flow rates.



QUESTIONS
1. Give a conceptual argument based on the nature of a

pressure wave as to why the speed of sound should be
greater in a liquid than a gas and still greater in a solid.

2. If we lived in “Flatland,” the two-dimensional world
of Edwin Abbott, and sound were confined to our
two-dimensional world, repeat the argument in
Section 2 to find how intensity would vary with dis-
tance from the source.

3. What is the ratio of intensities of two sounds that
differ by 1 dB? What is the intensity level difference

(in dB) between two sounds that differ by a factor of
2 in intensity?

4. Discuss the differences and similarities between tem-
poral and spatial superposition of sounds.

5. Why do two sound waves need to be coherent in order
to exhibit interference phenomena?

6. Suppose that you are given a set of three consecutive
resonant frequencies from a resonant tube. You do not
know if the tube is open at one end or at both.
Comparing Equations (11.17) and (11.19) how could
you tell?
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CHAPTER SUMMARY
Sound is a longitudinal pressure wave that can be
described by either a traveling pressure wave or a dis-
placement (of air, or whatever medium it travels in) wave:

(11.1)

(11.2)

Sound intensities are proportional to the square of
�P and are measured using the decibel scale

(11.7)

where Io is a reference intensity (here taken as 10�12

W/m2).
When sound waves strike a boundary between two

different materials, in which the speed of sound differs,
some fraction of the intensity is reflected and the rest is
transmitted but is refracted, or bent, according to the
law of refraction,

(11.8)

Two overlapping sound waves of different frequen-
cies will exhibit a phenomenon known as beats, in
which the net sound produced by interference will have
the average frequency, but will have an amplitude that
oscillates at the difference, or beat, frequency,

(11.11)y � c2Acos av1 � v2

2
b t d  sin av1 � v2

2
b t.

sin uincident

sin urefracted
�

vincident

vrefracted
.

b � (10 dB)log 
I

Io

,

¢s � ¢smax cos(kx � vt).

¢P � ¢Pmax sin(kx � vt),

Sounds produced by wind or brass instruments can
be modeled by closed or open tubes, or columns of air,
leading to a set of resonant frequencies able to be
excited in each type of tube according to

(11.17)

(11.19)

The relationship between the structure and func-
tion of the three parts of the ear is discussed, showing
how a pressure wave incident on the outer ear ends up
as an electrical signal produced by the hair cells of the
inner ear.

Sound waves that are either produced by a moving
source, detected by a moving sensor, or both, will have
their frequency f shifted, to f �, according to the Doppler
effect,

(11.25)

Ultrasound, sound waves at frequencies above
those capable of human detection (�20,000 Hz), can
be used to probe inside the human body by detecting
reflections from “objects” (organs, a fetus, blood, etc.,
with different acoustic impedance) and measuring
pulse echos to determine depth information.

f ¿ � f a 1 ; vd /v
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b .
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7. Musicians commonly tune their instruments to “A” �
440 Hz. Two violinists prepare to play a duet
together. One of them claims his instrument is tuned
perfectly to A. The partner is also sure that his instru-
ment is tuned to A. They draw their bows across their
respective instruments and hear a beat of 2 Hz. Is
there any way they can tell whose instrument is in
perfect tune?

8. Review the basic sequence of events that lead from an
incident sound wave to a signal along the auditory
nerve.

9. There is also a Doppler effect for light. If a source of
visible light is receding from an observer, based on
the discussion in Section 6 for sound, do you expect
a shift of detected frequency toward the red or toward
the blue? What if the source is directed towards the
observer? This effect is used, with other measure-
ments, to determine the recessional velocities of stars.

10. From a consideration of acoustic impedance, why
would ultrasound be better for detecting a bone frac-
ture than for detecting fat blockages in arteries?

11. The resolution of ultrasound is dependent on the
wavelength, increasing with decreasing wavelength.
Why doesn’t ultrasonic imaging use much higher fre-
quencies (shorter wavelengths) in order to increase
the resolution to be much better than about 1 mm
(Hint: consider absorption and its effects)?

MULTIPLE CHOICE QUESTIONS
1. Ultrasonic imaging is not based on (a) pulse echo

techniques, (b) differences in acoustic impedance,
(c) cavitation, (d) scanning.

Questions 2–5 refer to an acoustic resonator tube with a
speaker mounted at one end and a solid piston able to slide
in the tube mounted at the other end.
2. The ends of an acoustic resonator tube correspond to

which of the following pressure conditions: (a) antin-
ode at the speaker, antinode at the piston; (b) antinode
at the speaker, node at the piston; (c) node at the
speaker, antinode at the piston; (d) node at the speaker,
node at the piston.

3. You set the frequency of the speaker to 1000 Hz. As
you draw the piston head back from the speaker the
first resonance you hear occurs when the head is at
2.5 cm. The next resonance you hear is most likely to
occur at (a) 25 cm, (b) 20 cm, (c) 12.5 cm, (d) 7.5 cm.

4. Suppose you have a tube 0.25 m long with a speaker at
one end and with the other end open. If you gradually
increase the frequency of the speaker from zero at
about what frequency will you hear the first resonance?
(a) 350 Hz, (b) 700 Hz, (c) 1050 Hz, (d) 1400 Hz.

5. Suppose the tube is replaced with a tube that is open
instead of blocked by a piston head. Suppose further
that a fundamental resonance is produced for an input
frequency of 350 Hz. At about what frequency will a

first overtone be produced in the same tube? (a) 117 Hz,
(b) 175 Hz, (c) 700 Hz, (d) 1050 Hz.

6. An organ pipe of length 0.5 m has two open ends. The
fundamental and first overtones in this pipe have fre-
quencies of about (a) 350 Hz and 700 Hz, (b) 350 Hz
and 1050 Hz, (c) 700 Hz and 1400 Hz, (d) 175 Hz
and 525 Hz, respectively.

7. A fundamental standing wave is produced in the
vibrating wire at an input frequency of 22 Hz.
The first overtone will be produced when the input
frequency is set at (a) 7 Hz, (b) 11 Hz, (c) 44 Hz,
(d) 66 Hz.

8. Two people talk simultaneously, each creating a
sound intensity of 50 dB at a given point. The total
sound intensity at that point is (a) 0 dB, (b) 50 dB,
(c) 100 dB, (d) between 0 dB and 100 dB.

9. A car heads toward a wall at high speed while its horn
is blowing. The frequency of the horn when the car is
at rest in still air is f. An observer sitting on the wall
hears the horn having a frequency f �. The driver hears
an echo from the wall that has a frequency (a) equal
to f, (b) equal to f �, (c) greater than f �, (d) less than f �.

Questions 10–12 refer to: A room is filled with air with a
pressure P0. A speaker creates a sound wave in the room
described by �P � �Pmax sin(2	x � 700	t). The aver-
age intensity of this wave is I.
10. Under typical conditions �Pmax is (a) about the same

as P0, (b) much greater than P0, (c) much less than P0,
(d) about 350 m/s.

11. At one point in the room a wave directly from the
speaker combines with a wave that reflects off a wall
to produce a stationary node. This will occur if the
difference in distances traveled by the two waves is
(a) 0 m, (b) 0.5 m, (c) 1.0 m, (d) 3.14 m.

12. Suppose you wanted to increase the intensity of
the wave from I to 4I. You would have to change
(a) �Pmax to 2�Pmax, (b) �Pmax to 4�Pmax, (c) the
2	x to 	x and the 700	t to 1400	t, (d) the 2	x to
4	x and the 700	t to 350	t.

13. You have an empty 20 oz. soda bottle and an empty
32 oz. soda bottle, both roughly the same diameter.
You blow air over the opening of one and produce a
fundamental standing wave. Then you blow air over
the opening of the other and produce another funda-
mental standing wave. Which is true: (a) The funda-
mental tone in the 20 oz. bottle is lower in frequency
than in the 32 oz. bottle. (b) The fundamental tone in
the 20 oz. bottle is higher in frequency than in the
32 oz. bottle. (c) The tones are both fundamentals and
therefore are the same frequency. (d) The speed of the
airflow must be the same for both bottles.

14. You have an empty 20 oz. soda bottle and you blow
air over the opening to excite a fundamental standing
wave. Now, you slice off the bottom of the bottle (it’s
plastic) without changing its length very much. You
blow over the opening and excite a fundamental
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standing wave in the bottle with its bottom end open.
The frequency of the standing wave in the second
case (a) is higher than that in the first case, (b) is
lower than that in the first case, (c) is the same as that
in the first case, (d) no sound is produced in the sec-
ond case.

15. Which one of the following is true? (a) The air pres-
sure in a room is 1 atm; therefore the amplitude of a
sound wave in the air must be about 1 atm. (b) A hor-
izontal string is 1 m off the floor; therefore the ampli-
tude of a transverse wave on the string must be about
1 m. (c) A traveling water wave carries mass along
with it. (d) A traveling wave of people alternately
standing and sitting in a baseball stadium carries
energy along with it.

16. How much louder (in dB) is a sound heard 2 m from a
point source than when it is heard by the same ear 4 m
from the source? (a) 4, (b) 2, (c) 10 log 4, (d) 10 log
2, (e) none of the above.

17. In a resonant tube open at one end and closed at the
other, the resonant frequencies are determined by all
of the following except (a) the speed of sound, (b) the
length of the tube, (c) the boundary conditions at
the ends of the tube, (d) the temperature of the air, (e)
the tube diameter.

18. The intensity of sound wave A is 10 dB greater than
that of sound wave B. Measured in W/m2 the intensity
of A must be greater than the intensity of B by (a) a
factor of 2 times, (b) a factor of 10 times, (c) 10 N/m2,
(c) 105 N/m2.

19. Suppose that the speed of sound in still air is 350
m/s. A source of a pure tone of 1000 Hz moves
through the air at a speed of 30 m/s. An observer at
rest with respect to the air hears the tone at a fre-
quency of 1094 Hz. This is primarily because the
(a) speed of sound to the observer is 380 m/s,
(b) speed of sound to the observer is 320 m/s,
(c) wavelength of the tone as measured by the
observer is 0.32 m, (d) wavelength of the tone as
measured by the observer is 0.38 m.

20. Three speakers, all connected to the same amplifier,
all put out the same single frequency tone. At one
point in the vicinity of the speakers the three tones
add coherently, producing an intensity maximum. If
the intensity of each individual speaker at that point is
I (in W/m2) the intensity of sum of tones is (a) 9I,
(b) 3I, (c) I, (d) zero.

21. The auditory canal of a human ear is about 2.5 cm
long. From this we can infer that humans are espe-
cially sensitive to sound with a wavelength of about
(a) 2.5 cm, (b) 5 cm, (c) 7.5 cm, (d) 10 cm.

PROBLEMS
1. A beaver swims near its den on the shore of a lake

800 feet wide. Startled, it slaps its tail on the water
surface before diving underwater. How long does it
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take the sound of the slap to cross the lake to a beaver
near the opposite shore if the second animal is
(a) Above the water surface?
(b) Underwater?

2. A hunter stands 200 m away from one side of a steep-
walled canyon that is itself 600 m wide. If he fires a
gun, describe the sequence of echoes that is heard.

3. Write an equation for the speed of sound at any temper-
ature given the information in Section 1 of the chapter.

4. Determine how big a change there is in the speed of
sound due to seasonal extremes in outdoor air tem-
perature, taking the warm summer upper value to be
30°C and the cold winter lower value to be �10°C.

5. Compute the two wavelengths of sound, �low and
�high, corresponding to the 20 Hz low- and the 20 kHz
high-frequency limits of human hearing. Assume
343 m/s for the speed of sound.

6. An ironworker at a large construction site guides a steel
girder into place with a mallet, slamming the mallet
down onto the steel every 1.5 s. A foreman watching the
ironworker from some distance away discerns no time
lag between sight of the mallet impact and the sound of
the clang of the steel. How far away is the foreman?

7. Fill in the table with the lengths of resonant tubes that
will produce fundamental frequencies at the low and
high limits of human hearing, 20 Hz and 20 kHz,
respectively,

Tube, Open Both Tube with One 
Ends End Closed

Low freq.

High freq.

8. If the intensity of sound from a jet engine is 10 W/m2

at a distance of 30 m, how far away from the jet do
you have to be for the intensity to be 0.1 W/m2?

9. How much acoustic energy is emitted by a source
every second if the sound intensity is 80 dB at a dis-
tance away of 20 m?

10. At a distance of 10 m away, the equipment of a road
repair crew emits sound of 90 dB intensity.
(a) How much farther away would a passerby have to

remove himself so that the sound intensity would
be a somewhat more tolerable 80 dB?

(b) If a member of the repair crew must work at a dis-
tance of 1 m from the noisy equipment, to what
sound intensity, in dB, is he exposed?

11. Using values for the variation in air pressure due to
sound waves and the dimensions of the eardrum
(tympanic membrane), both given in the chapter, cal-
culate the force on the eardrum for sound at maxi-
mum safe intensity.

12. A crying child emits sound with an intensity of 8.0 �
10�6 W/m2.
(a) What is the intensity level in decibels for the

child’s sounds?



(b) Suppose that two children are crying with the
same intensity. What is the intensity level in deci-
bels for the two children crying together?

(c) Derive a general rule for the intensity level in
decibels (based on parts (a) and (b)) if there were
four children, eight children, or any even number
of children.

(d) How long does it take you to hear the children
crying if you are 100 m from them when they start
crying?

13. Suppose that you hear a clap of thunder 5 s after see-
ing the lightning stroke. If the speed of sound in the
air is 343 m/s and the speed of light in air is 3 � 108

m/s, how far are you from the lightning strike?
14. A listener moves with respect to a musician who

plays a steady middle C note of 262 Hz.
(a) Determine the speed with which a listener must

approach a musician such that the perceived pitch
is shifted upward a half step to C# (C-sharp) �
277 Hz.

(b) If the musician were instead playing C#, would
the note be perceived by the listener as C if the lis-
tener recedes from the musician at a speed equal
to that of the previous case?

(c) Suppose it was the source (i.e., the musician) that
was in motion. What is the magnitude and direc-
tion of such motion that would result in the mid-
dle C in fact being played by the musician to be
perceived by the listener as C#?

15. The musical scale of “equal temperament” has its
notes tuned as shown in the table below. Suppose a
string is stretched at such tension that the fundamen-
tal of the string oscillation is the lowest C of the scale.
Determine the lengths for the same string that will
produce fundamentals for all of the notes, assuming a
sound velocity of 350 m/s.

Q U E S T I O N S /P R O B L E M S 295

Higher tension also increases sound volume. There-
fore, it is musically advantageous to have the strings
for the lowest notes have as high a tension as possi-
ble. Piano wires have diameters ranging from 31 to
55 mils (0.79–1.4 mm) made of steel only, or of steel
cores wound with copper. Determine the string type
and size that will result in the largest volume of sound
for the lowest notes. Assume the length is fixed,
determined by the dimensions of the piano. Note den-
sity of steel � 7.8 � 103 kg/m3; density of copper �
8.9 � 103 kg/m3.

18. What will be the fraction of ultrasound intensity
reflected from the surface of the heart? Consider the
heart to be a muscle, surrounded by water.

19. How long is the time gap between ultrasound
reflections from the front and back of the heart,
assuming the heart to be modeled as a cube of edge
length 15 cm?

20. If we use the value given in the text for an absorption
coefficient of 0.12/cm/MHz, what distance in water
will result in an absorption of a 5 MHz ultrasound
beam
(a) of 10%?
(b) of 90%?
(c) Suppose instead the frequency is reduced to the

nominal minimum of 1 MHz. Calculate the dis-
tances traveled for the same fractional absorption.

21. A basic property of measurement with waves of any
type is diffraction, wherein the interaction of the
object under study with the wave gives rise to a dis-
tortion of the direction of wave travel. Diffraction
effects impose an effective lower limit on the deter-
mination of size of the target object and this limit
can be taken to be roughly equal to the wavelength of
the wave. By calculating the wavelength of an ultra-
sound beam of frequency of 10 MHz in water, what
is the size limit for objects under observation with
ultrasound?

22. A drummer begins to drum on iron railway tracks
with a regular beat. You are nearby with your ear near
the tracks and hear two sets of drumming, one start-
ing 0.8 s after the other. (The speed of sound in air is
345 m/s and in iron is 5,000 m/s.)
(a) How far away are you from the drummer?
(b) If the delayed sounds are 5 dB less intense than

the first set of drumming heard, find the ratio of
the intensities of the two sounds.

(c) If the drummer drums at a frequency of 4 Hz,
what frequency will a person hear on a
train approaching at 60 mph (conversion factor:
1 mph � 0.45 m/s)?

23. A scientist playing with musical instruments has a 1
m long guitar string with total mass 0.010 kg hooked
up to a mechanical oscillator.
(a) If the string oscillates in the second harmonic

with f2 � 330 Hz, what is the tension in the
string?

Note Freq. (Hz) String Length (m)

C 262

D 294

E 330

F 349

G 392

A 440

B 494

C 523

16. Suppose a string similar to that of the previous problem
is one meter long and carries tension for C � 262 Hz.
Determine the set of tensions necessary, in terms of the
initial tension T, for the rest of the notes of the scale
using strings of the same length.

17. A piano has about 240 strings (one key controls sev-
eral strings). Increasing the string tension increases
the pitch (i.e., the frequency of the fundamental).



(b) If the scientist doubled the oscillation frequency,
how many oscillating lobes would there be?

(c) Also in the laboratory is a pipe, open at both ends,
which the scientist wants to have resonate in the
fundamental mode at the same 330 Hz from part
(a). How long should this pipe be?

(d) The pipe in part (c) is slightly too long, such that
the beat note between the fundamental mode of
the pipe and the 330 Hz from part (a) is 5 Hz.
How much should it be shortened to reach the res-
onance sought in part (c)?

(e) A second pipe in the laboratory has resonances at
330 Hz, 550 Hz, and 770 Hz. Is this pipe open or
closed?

24. A nerdy scientist proposes to measure how fast he is
traveling toward vertical cliffs by blasting a pure
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1000 Hz tone and listening for beats produced by the
echo. If he hears a beat frequency of 2 Hz, what is his
speed? (Use vsound � 343 m/s and remember that he
is both a moving source and a moving detector.)

25. A stationary bat sends out an ultrasonic tone at
60,000 Hz searching for food. At what frequency
does the bat hear the echo from a dragonfly moving
away from the bat at 5 m/s?

26. A Doppler beat device is used to measure the veloc-
ity of blood flowing in an artery. Taking the velocity
of sound in tissue as 1500 m/s, what is the velocity
of blood flowing away from the detector emitting
ultrasound at 1 MHz that results in a beat frequency
of 15 Hz?
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In the broadest context, thermodynamics is the branch of physics concerned with the
study of macroscopic systems with extremely large numbers of constituent mole-
cules. Most prominent in this study is energy and its transformation and exchange
with the surroundings. Not only thermal energy, but all forms of energy are included
in the domain of thermodynamics. Even in cases in which the basic interactions
between the individual molecules are very simple, because of the sheer number of
molecules in a macroscopic volume of matter (1 cm3 of an ideal noninteracting gas
has about 3 � 1019 individual molecules), it is impossible to analyze such a system
directly using Newton’s laws of motion. Even more to the point, the information
gained from the enormous calculational exercise of following the trajectory of each
molecule would be unintelligible and useless without reducing that knowledge to some
small set of macroscopically averaged quantities that could be directly measured.
Thermodynamics deals with such systems by calculating these average quantities using
statistical arguments, as we show.

In this and the next chapter we learn basic terminology and ideas, study the fun-
damental laws of thermodynamics and some of their implications, as well as study a
number of biological applications of these laws. In this chapter we start by defining
temperature, its measurement, and the thermal expansion of materials. Then we turn
to the main topic of the chapter, thermal energy and the conservation of energy prin-
ciple known in the context of thermodynamics as the first law of thermodynamics.
Some general applications including thermal properties of matter, colligative proper-
ties of solutions, and the transfer of heat are discussed in the last three sections of
the chapter. In the following chapter we look beyond the first law and discuss a broad
array of topics of biological interest. Thermodynamics is a very rich subject with
connections to all areas of biology and chemistry. In these next two chapters, we
illustrate the importance of a basic knowledge of thermodynamics to the study of a
wide range of subject matter.

1.  TEMPERATURE AND THERMAL EQUILIBRIUM

The notion of whether an object is hot or cold is a relative one. Something that is hot
to one observer may be cold to another. To someone who has been outdoors in the
cold of a northern winter for several hours, a house kept at a temperature of 60°F may
be quite warm, whereas to someone visiting from southern Florida, the same house
might be very cold. This may seem like a mundane point, but it is related to an impor-
tant concept of thermodynamics: heat flows from a hotter object to a colder object.
The temperature of an object is a quantitative measure of its “hotness,” a term that
we replace below with “internal,” or “thermal energy.”

When two objects at different temperatures are placed in thermal contact with
each other, meaning that energy is allowed to exchange between them, heat will flow

12Thermal Energy
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from the hotter object to the colder object until eventually the two objects reach the
same temperature. When this common final temperature is reached, the two objects
are said to be in thermal equilibrium. As long as they are isolated from other objects
and cannot exchange any heat with their surroundings, they will remain at that tem-
perature. For example, a thermos bottle filled with warm juice and ice cubes that
melt, will arrive at some intermediate temperature that remains constant for a long
period of time (however, the thermos bottle, being imperfect, will eventually allow its
contents to reach the ambient temperature of the surroundings, coming into thermal
equilibrium with its environment).

Although two different observers may disagree on whether an object is “hot” or
not, they will agree on the temperature of that object. This is indirectly a statement
of the zeroth law of thermodynamics, a law that deals with the conditions under
which two objects may be said to be in thermal equilibrium without ever bringing
them into contact with each other. A third “measuring object” is used to test this.
Formally, if each of two objects, when put separately in thermal contact with a third
measuring object, is found to be in thermal equilibrium with the measuring object,
then the two objects are known to be in thermal equilibrium with each other, even
without coming into thermal contact with each other. This may seem obvious but,
because it really required experimental confirmation and is of fundamental impor-
tance, it is stated as a law (albeit the zeroth). By using a measuring object (or ther-
mometer), one can separately determine a property of each object (its temperature)
in order to know whether heat will flow if the two objects are brought into thermal
contact. Whether heat flows when the two objects are brought into contact does not
depend on any other variables, including their mass, color, shape, electric charge, and
so on, but only on their temperature.

In order to measure the temperature of an object, we first need to define some
scale of temperature. Since temperature is a scalar quantity, we need to define the unit
of temperature and also some origin or set point; together these define the tempera-
ture scale. Two commonly used temperature scales are the Celsius (aka centigrade)
and Fahrenheit scales. The Celsius scale is determined by fixing the temperature span
between the freezing and boiling points of water to be 100°C, and by defining the
freezing point of water to be 0°C. Alternatively, the Fahrenheit scale uses 180°F to
span between the same two physical points, and uses 32°F as the freezing point of
water. These two temperature scales are simply related to each other (as you should
verify) by

(12.1)

Of the two, the Celsius scale is favored in scientific work and is used here.
A question arises as to whether there are upper or lower limits to temperature. As

far as we know there is no upper limit to temperature. For example, temperatures of
109°C are present within the hottest stars. On the other hand, there is a lower limit of
temperature in nature, one that can only be approached, but never attained, as we show.
Using this lower limit of temperature as the set point, known as a temperature of
absolute zero, we define the fundamental or absolute Kelvin temperature scale by choos-
ing the temperature of the so-called triple point of water as 273.16 K. (The triple point
of water is that temperature at which ice, water, and water vapor coexist within a sealed
container and corresponds to 0.01°C.) Note that temperatures measured on the Kelvin
scale are not cited as degrees Kelvin, but simply as Kelvin, because of their more fun-
damental significance. Table 12.1 lists a variety of corresponding temperatures in the
three different temperature scales we have introduced. Note that the unit size of 1 K and
1°C are the same, so that

(12.2)TC � TK � 273.15° C,

TF �
9

5
TC � 32° F.
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Table 12.1 Comparison of Various Temperatures in Different Units

Temperature Celsius (°C) Kelvin (K) Fahrenheit (°F)

Helium liquefies �269 4.2 �452

Nitrogen liquefies �196 77 �321

Dry ice (CO2 freezes) �78 195 �108

Freezing point of water 0 273 32

Human body (core) 37 310 98.6

Boiling point of water 100 373 212

Gas flame (stovetop) 1630 1900 2970

Surface of sun 5730 6000 10,350

Center of Earth 15,700 16,000 28,300

Center of sun 107 107 1.8 � 107

where the 0.01°C difference in the triple point and freezing point of water in the
definitions of K and °C is noted.

FIGURE 12.1 Common thermometers. From left, mercury-in-glass, outdoor, cooking
thermometers.

Example 12.1 Find the general relation between the Fahrenheit and Kelvin
temperature scales and determine absolute zero in °F.

Solution: We can find the general relation by substituting Equation (12.2) for TC
into Equation (1) for TF. After substitution we find that

so that when TK � 0 then TF � �459.67°F.

TF �  
9

5
 1TK � 273.152� 32 �  

9

5
TK � 459.67° F,

We are familiar with several types of thermometers used to measure tempera-
tures close to the ambient atmospheric temperature (Figure 12.1). Perhaps the most
familiar is the mercury-in-glass thermometer that uses the thermal expansion (see
Section 2 below) of a column of liquid mercury with increasing temperature as an
indicator of temperature. Another thermometer uses the variation in thermal expan-
sion of two dissimilar metals (a bimetallic strip) wound into a coil that controls a
pointer. Other thermometers use changes in electrical properties to measure temper-
ature (thermocouples, platinum-resistance thermometers). A variety of other spe-
cialized thermometers are used for different ranges of extreme temperatures, both
low and high, but are not discussed here.



Having introduced the notion of temperature and thermal equilibrium, we need
to make a few general comments before continuing our discussion of thermody-
namics. Earlier, we mentioned that two objects in thermal contact but at different
temperatures will eventually reach thermal equilibrium. If this is generally true,
how do we explain that while we are in thermal contact with the atmosphere, we
manage to maintain our body temperature? How do warm-blooded organisms,
clearly not at the temperature of their environment, manage to survive? The answer
lies in distinguishing between two fundamentally different types of thermal sys-
tems: open and closed.

A closed system is one that does not exchange mass with its surroundings; such
a system typically is physically isolated but still can exchange energy with its sur-
roundings through the bounding walls. Other systems, including living organisms, are
open systems, exchanging mass, as well as energy, with the surroundings. Animals, for
example, require the exchange of water, nutrients, oxygen, and waste products in order
to survive. Our previous statements about reaching thermal equilibrium were restricted
to closed systems. Open systems are not in thermal equilibrium and are known as non-

equilibrium systems. Living organisms, for example, constantly replace most of their
constituent molecules: skin, muscle, and blood cells; nearly all of our constituents are
recycled over various time periods.

Although not in thermal equilibrium, many open systems reach what is known
as steady state. In this case there is a balance between the input and output of total
energy. Such a distinction can also be made in a chemical reaction. When the total
amounts of reactants and products are fixed and no mass is exchanged with the sur-
roundings, the reaction will reach a chemical equilibrium. On the other hand, when
new reactants are constantly supplied to the system at a sufficient rate to come
together and maintain a steady production of products that then leave the system,
we call this nonequilibrium situation one of steady-state behavior. We show exam-
ples of open systems in our later discussions of thermodynamics. For now, as we
introduce the basic concepts of thermodynamics, we limit our discussion to closed
systems.

2.  THERMAL EXPANSION AND STRESS

Almost all substances expand when heated and contract when cooled. This is true of
most liquids and solids as well as gases, discussed in the next section. You may have
used this idea to open a tightly sealed glass jar with a screw-top metal cover by warm-
ing the cover under tap water. The cover expands somewhat more than the jar and can
then be more easily opened. A second, now famous, example is the effect of freezing
temperatures on rubber o-rings, dramatically demonstrated by Richard Feynman,
Nobel laureate in physics, in connection with the failed Challenger shuttle mission.
Unusual freezing weather in Florida led to the contraction of an o-ring seal that
became brittle and leaked fuel, causing an eventual explosion of the rocket and loss
of life (Figure 12.2).

The origin of thermal expansion or contraction ultimately lies in the molecular
motions and interactions of the material. As we study further in the next section,
when heated, molecules move about more rapidly, and therefore make harder colli-
sions with neighboring molecules, pushing the material apart. In most materials
thermal expansion is uniform in all directions, although in certain crystalline mate-
rials with different crystal structure along different spatial directions, expansion may
occur to different extents along the different “crystal axes,” although these are not
discussed further here.

A solid rod of length L is found to expand by an amount that is directly proportional
to the temperature increase and to its length according to

(12.3)¢L � a L¢T,
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where � is the coefficient of linear expansion. For most solids � is quite small as
Table 12.2 shows.
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FIGURE 12.2 (left) Challenger just
before explosion; flames from leak
are visible at top center. (right)
Richard Feynman doing a tabletop
experiment to test the brittleness
of a cold o-ring as a demonstration
of the source of leaking fuel in the
rocket.

Table 12.2 Coefficients of Expansion for Various Materials*

Coefficient of Linear Coefficient of Volume 
Material Expansion (10�6/°C) Expansion (10�3/°C)

Solids � � � 3�

Quartz 0.4

Glass 9

Steel 12

Aluminum 24

Lead 29

Ice 51

Liquids

Mercury 0.18

Ethyl alcohol 1.1

Water 2.1

* Room temperature values listed except for ice which is at 0°C.

Example 12.2 A bridge over the New River Gorge in West Virginia has a steel
arch with a span of 1700 ft. Find the change in length when the temperature
drops by 70°F.

Solution: From Table 8.2, the coefficient of linear expansion for steel is 12 � 10�6/°C.
A 70°F temperature change corresponds to a 70(5/9) � 38.9°C change. Then the
length change will be given by �L � �L�T � (12 � 10�6)(1700)(38.9) � 0.79 ft.
Notice that whatever length units are used for L appear in �L and so no units conver-
sion is needed.

More often than not thermal expansion is a problem, not a solution. Roadways
and sidewalks buckling from the heat, walls developing cracks from extreme heat or



cold, and severe thermal stresses placed on large structures such as
bridges or tall buildings are all common problems (Figure 12.3).
These arise from the mismatch in thermal expansion of different
materials in contact with one another. In our discussion of stress
and strain in Chapter 4, we saw that an applied stress, or force
per unit cross-sectional area, resulted in a proportional strain, or
fractional change in length, for small stresses

where Y is the elastic, or Young’s, modulus. In the context of our
current discussion, if the material is heated so that it expands
and increases the strain, a stress is produced that is known as
thermal stress. Substituting for the strain from Equation (12.3),
we find that the thermal stress can be written as

(12.4)

Despite the relatively small values for coefficients of linear expansion of metals,
thermal stresses can be enormous because of very large Young’s moduli. Thermal
stress is also the basis of the bimetallic strip used as a thermometer (Figure 12.4).

F

A
� Ya¢T.

F

A
� Y 

¢L

L
,
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FIGURE 12.3 Thermal stress
rupture of an 8.5 foot diameter
tube used in a calciner, a device
for treating liquid waste and turning
it into high-level solid waste.

Example 12.3 A poorly designed bridge roadway has a 3 m steel beam butted
against a concrete wall without an expansion gap at 20°C. If the beam has a
4 � 6 cm rectangular cross-section, find the force exerted on the concrete
wall when the temperature rises to 30°C. Will the concrete buckle? Take the
Young’s modulus of steel as Y � 200 � 109 N/m2 and the ultimate strength of
concrete as 20 � 106 N/m2.

Solution: From Equation (12.4), substituting �T � 10°C, � � 12 � 10�6 /°C
from Table 12.2, and Y � 200 � 109 N/m2, we find that F/A � 2.4 � 107 N/m2.
From the cross-sectional dimensions we then find the force to be F � (2.4 � 107)
(0.04 � 0.06) � 5.8 � 104 N. To determine if the concrete buckles, we must
know if the applied thermal stress exceeds the ultimate strength of concrete,
20 � 106 N/m2; because it does, we know that indeed the concrete will buckle
under the thermal stress. This points out the need for expansion joints even
when the temperature variations are relatively mild.

Although we have singled out a linear dimension, expansion occurs in all direc-
tions. Imagine a cube of metal of volume V (length L on each edge) that is heated so
that it expands and increases its volume by �V. We can calculate the expanded
volume of the metal to be

Because � is so small, when we cube the expression in parentheses, keeping only
linear terms in �, we find it is equal to (1 � 3��T) so that

(12.5)¢V � b V¢T,

V � ¢V � (L � ¢L)3 � L3 (1 �
¢L

L
)3 � L3 (1 � a¢T )3 � V(1 � a¢T )3.
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FIGURE 12.4 (left) The bimetallic strip bends as the temperature changes due to
differences in thermal expansion of the two metals; the coil is used in a thermostat to
make or break electrical contact. (right) A older watch balance wheel with a bimetallic
circular strip (the yellowish brass circle with the grey inner steel circular band), designed
to compensate for temperature changes in the frequency of oscillation of the balance
wheel.

FIGURE 12.5 A steel machine nut
threaded onto a steel bolt.

Example 12.4 A steel bolt with a diameter of 0.2500 inches is to be inserted into
a hole in an aluminum plate that is only 0.2495 inches in diameter. Is this possi-
ble, and if so find the minimum temperature to which the materials must be heated
in order to accomplish this, and the diameter of the hole at this temperature.

Solution: The coefficient of thermal expansion of aluminum is greater than that
of steel, therefore the hole will expand faster than the bolt when they are heated.
In order to just fit the bolt in the hole we require that �L for the hole equal �L

for the bolt � (0.2500 � 0.2495) inches. Writing this out, we want

Solving for �T, the needed temperature increase, in terms of the coefficients of
expansion, we find that

using the data in Table 12.2. The hole diameter at this temperature can be found
from the first part of the above equation, �Lhole � �Al(0.2495) �T � 0.001 inches.
Then the hole and bolt diameters are both 0.2505 inches at this temperature.

¢T �
0.0005

(0.248aAl � 0.25asteel )
� 170°C,

¢Lhole � aAl (0.2495)¢T � ¢Lbolt � 0.0005 � asteel (0.25)¢T � 0.0005

where �, the coefficient of volume expansion, is equal to 3�. In general, arbitrary
shaped solids maintain their shape when heated.

Suppose that a solid object has a hole within it. When heated, the solid expands,
but what happens to the hole? On first glance one might imagine that the solid
expands equally in all directions, including into the hole and thus the hole contracts,
but this would be false. To see this consider a steel machine nut threaded onto a steel
bolt (Figure 12.5). When heated, the hole in the nut expands to the same extent as the
bolt. Thus, we can treat holes in solid objects as expanding in the same way that the
solid does.



Equation (12.5) also applies to the expansion of liquids and val-
ues for the coefficient of volume expansion of some liquids are
included in Table 12.2. Water is an extremely important exception to
the general rule of expansion of a liquid with increasing temperature.
Above 4°C, water behaves as a normal liquid, expanding as it is
heated so that its density decreases. As water is heated from 0°C it
behaves anomalously by increasing its density (decreasing its volume)
until it reaches 4°C. Thus, the density of water is a maximum at 4°C
rather than at 0°C. This unusual property has to do with the strong
hydrogen bonding properties of water that lead to microcrystalline ice
structures forming at temperatures above but close to the freezing
point. We return to the ordered structure of water in the next chapter,
in connection with entropy.

This unusual behavior of water has profound consequences for
aquatic life. In the winter, as the water in a lake or river cools but is above 4°C, the
colder water, being more dense, sinks producing convective flow that keeps the
water at a fairly uniform temperature. When the water temperature drops below 4°C,
colder water floats because it is less dense than warmer water. Ice eventually forms
on the surface when the temperature falls below 0°C and floats because it too is less
dense than water (Figure 12.6). The layer of ice actually helps to prevent the water
beneath from freezing by forming a layer of insulation and reducing convective
flow. This wonderful process allows aquatic life to survive beneath a frozen lake or
river surface in water at a temperature of 4°C. If water did not have this unusual
property, the coldest water would be densest and would sink so that lakes and rivers
would completely freeze in cold winters. By the way, ocean water does not freeze
because of the presence of salts, lowering the freezing point of water; this is
discussed in Section 6 below.

3.  INTERNAL ENERGY AND THE IDEAL GAS

When you drop a 1 kg mass onto your hand all of the atoms—that is, all of its elec-
trons and nucleons—are simultaneously moving downward as a coherent swarm.
This coherent motion can easily be measured with a meter stick, for example. As they
all fall, the atoms (as well as the stuff from which they are made) are also moving
incoherently. Because the latter motions are microscopic, we can’t see or measure
them directly. The latter, incoherent, unseen, microscopic motions are said to be
internal and the kinetic energy associated with them is called internal kinetic energy

(see Figure 12.7). The internal kinetic energy of a macroscopic body is very much
greater than the external kinetic energy associated with macroscopic motion of the
center-of-mass and the macroscopic motion around the center-of-mass. The falling
1 kg mass stings your hand when you catch it because, in effect, you are stopping the
coherent motion of all 1024 atoms. Those atoms transfer their coherent kinetic energy
to the atoms in your hand, and they, in turn, obtain a bit more incoherent motion as a
result. The nerves in your hand sense this increase in kinetic energy and send the sig-
nal, “sting,” to your brain.

The transfer of incoherent, internal kinetic energy from one body to another is
related to the sensation of temperature. If more internal kinetic energy is transferred
from a body to your hand when you touch it (i.e., when the atoms in the surface of
your hand come close to the atoms in the surface of the body) than is transferred
from your hand to the body, the body feels “hot.” Similarly, if more internal kinetic
energy is transferred from your hand to the body, the body feels “cold.” Although it
is not possible to measure internal motions with something as crude as a meter stick,
we can infer them with an ordinary device: a thermometer. If all the nucleons, elec-
trons, and jiggling atoms in a body were in their ground state, it would be impossi-
ble to remove any kinetic energy from that body. That’s because the ground state, by
definition, is the lowest allowed energy state. Such a state defines the absolute zero
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FIGURE 12.6 Ice fishing: the water
below remains at 4°C, allowing fish
to survive the winter.

FIGURE 12.7 The entire object
moves with downward coherent
motion, while the individual 
atoms are moving randomly with
incoherent motions.



point of the Kelvin temperature scale. Bodies with any degree of internal excitation
have temperatures above absolute zero. In the Kelvin scale, temperature is deter-
mined by the average internal kinetic energy per atom of a body, above the ground
state. When we say a body is “hot,” what we are really saying is that the body has a
high degree of internal excitation per atom.

All objects consist of molecules that interact through a variety of different electrical
mechanisms. Those interactions, no matter how complex, can be pictured as a potential
energy curve for a typical molecule that has a minimum at the equilibrium position. As
we saw in Section 4 of Chapter 4, near enough to this energy minimum, the curve can
always be approximated as parabolic, so that the interactions can be represented by a lin-
ear spring with potential energy Each molecule of the object has kinetic and poten-
tial energy while vibrating about its equilibrium position as if attached to such a spring.
The internal energy of an object is the sum of this kinetic and potential energy and is the
quantitative measure of the object’s “hotness”. Energy due to overall interactions and
motions of the entire macroscopic object, such as overall translation or rotation, are not
included in the internal energy. These constitute the mechanical energy in our discus-
sions of the mechanics of such objects. After introducing a few general terms, we begin
our study of thermodynamics with the specific example of an ideal gas. This leads us to
a quantitative connection between internal energy and temperature.

Every thermodynamic study divides the universe into two parts: a system, the
collection of objects under study, and the surroundings, everything else. As noted
above, we consider only closed systems at present, those that do not exchange any
mass with their surroundings. Thermodynamic systems can be described using a
common language. The system consists of an extremely large number of molecules
so that there are a correspondingly large number of possible states, or configura-
tions with different possible total energy values. Different systems (thermal, elec-
trical, magnetic, etc.) will need different sets of state variables to describe their
possible states. For example, state variables for a gas are the pressure, volume, and
temperature.

We next want to consider the relationship between the pressure and temperature
when a specific amount of gas is confined to a volume V. Let’s consider a collection
of N identical gas particles contained in a cubical box with edges of length L. We
aim to calculate the pressure that the particles exert on the walls of the container. We
assume that the gas is at a low density so that the volume occupied by the gas mol-
ecules themselves is a negligible fraction of V, although the gas completely fills the
volume. We also assume that the gas is in thermal equilibrium; particles with dif-
ferent velocities can interact with each other through elastic collisions that serve to
scramble their velocities and produce the thermal equilibrium. The gas is ideal in
that the only interactions between the gas particles are via direct elastic collisions;
there are no long-range interactions. As the gas particles move about, they also col-
lide elastically with the container walls. These collisions produce the measurable
pressure on the container walls that we wish to calculate.

Let’s focus on one particular gas particle that moves with constant momentum
until hitting a wall as shown in Figure 12.8. The collision at the wall, being elastic,
returns the particle with the same kinetic energy, but has reversed the x-component of
its momentum, the component perpendicular to the wall, while keeping the other
components unchanged. This particle will bounce back and forth periodically mak-
ing a collision with the wall at the right with a repeat period �t � 2L/vx. From
Newton’s second law, we can find the average force exerted on the wall by this one
particle to be in the x-direction and given by

(12.6)

Now, with N particles in the box, we allow for a variation in the velocity of
different particles (discussed below) and calculate the total force on the wall by

Fx �
¢px

¢t
�

mvx �  (� mvx )

(2L /vx )
�

2mvx

12L /vx2
�

mvx
2

L
.

1
2 kx2.
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FIGURE 12.8 A particle that makes
an elastic collision with the
container wall and rebounds with
its momentum in the x-direction
reversed.

x-axis

before

after



multiplying by N and using the average value for the square of the x-component of
velocity. Noting that the pressure P exerted on the wall is given by dividing this force
by the wall area L2 (so that the denominator becomes L3, equal to the volume V), and
so we find

(12.7)

where the bar indicates the average value. Because there is no preferred direction in
the box, the averages of each term in the expression for the square of the velocity are
equal so we can write

(12.8)

Substituting for in Equation (12.7), we find

(12.9)

The term is called the mean square velocity, and its square root is called the root
mean square, or rms, velocity.

It is important to realize that the average of the square of the velocity is not equal
to the square of the average velocity; the order of those two operations of squaring
and averaging is important. This is easily seen by calculating those two quantities
for a small set of numbers, for example, {1, 3, 5}. The average value of these three
numbers is 3, whose square is 9; thus On the other hand

whose square root, the rms value, 3.4, is quite different
from the average.

Recognizing that the term is equal to twice the mean kinetic energy of a par-
ticle, we see that

(12.10)

where we have used the fact that N times the mean kinetic energy is equal to the total
kinetic energy of the system.

Experimentally it is found that if N molecules of gas are confined in a container
of volume V at an absolute temperature T that the pressure is given by the ideal
gas law

(12.11)

where kB, Boltzmann’s constant, is given by Comparing
Equations (12.10) and (12.11) we find an expression that relates the mean kinetic
energy of a molecule of an ideal gas to the absolute temperature

(12.12)

This fundamental relation shows that the microscopic motion of the individual mol-
ecules of the system is directly related to the temperature of the gas.

We see that the product of Boltzmann’s constant and the absolute temperature is
a measure of the mean kinetic energy of the constituent gas molecules. The total
kinetic energy of the system will then be equal to U � 3/2NkBT where this energy is
called the thermal or internal energy because it arises from motion within the system
rather than overall motion of the container itself. It is this internal energy U that
changes when heat flows into or out of the gas through the fixed container walls,
raising or lowering the temperature.

KE �
3

2
kB T.

kB�1.38�10�23 J/K.

PV�NkB T,

PV �
2N(KE)

3
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3
,
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v2 � (1 � 9 � 25)/3 � 11.7,
vq2 � 9.
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21

3v2

v2 � (vx
2 � vy

2 � vz
2 ) � 3vx

2.

P �
Nmvx

2

V
,

306 T H E R M A L E N E R G Y



Because the mean kinetic energy of a molecule can be written as

Equation (12.12) gives us an expression for the rms velocity of an ideal gas particle
at temperature T,

(12.13)

This expression does not imply that all the gas particles have this same velocity, but
only that this particular average velocity (calculated as the square root of the mean
of the squares of individual velocities of the gas particles) is related to the temper-
ature of the gas. In fact, there is a wide range of different velocities of gas parti-
cles.

The Maxwell speed distribution, shown in Figure 12.9 for hydrogen molecules,
gives the relative numbers of molecules with different velocities in an ideal gas. Note
that the possible range of speeds is quite large, from near zero up to quite fast veloc-
ities, and that the curve is not symmetrical around the peak value, having a
larger “tail” extending to faster velocities. As the temperature of the gas increases
(see the figure), the velocity distribution shifts toward higher velocities and there will
be more gas particles moving faster. These curves are normalized so that the area
under the curves remains constant (equal to one). This explains the diminished peak
amplitude as the temperature increases.

Each gas molecule in an ideal gas is considered to behave as a point mass having
only translational kinetic energy so that there are three quadratic terms in the expression
for the total energy of each particle: It is clear that, because 
of the isotropic nature of the gas, on average the energy associated with each of these
terms is the same, therefore we can identify worth of internal energy with each
quadratic term, each so-called degree of freedom, in the energy expression, for a total
of as in Equation (12.12). Although we do not prove that it is true, in more com-
plex cases in which a molecule has additional energy associated with rotational or vibra-
tional motion, for each additional degree of freedom in the energy expression
(any quadratic term in a variable) classical thermodynamics dictates that there is an addi-
tional of energy per molecule. This is the equipartition theorem, stating that each
degree of freedom of a molecule has on average an associated worth of internal
energy. The failure of this classical physics theorem at very low temperatures was
one of the motivations for the development of quantum mechanics in the early years of
the 20th century.

An alternative expression to Equation (12.11) that is perhaps more familiar to the
reader from chemistry uses a different unit for the amount of gas rather than the num-
ber of molecules. One mole (mol) of a substance is defined as that same number of
atoms or molecules of the material as there are atoms contained in 12 g of the isotope
carbon-12. The name Avogadro’s number, NA, is given to this number of atoms or
molecules and it is experimentally found that

(12.14)

A mole of any substance corresponds to
Avogadro’s number of molecules. However, whereas a
mole of carbon-12 has a mass of 12 g, a mole of another
element or molecule will have a different mass, known
as its atomic or molecular mass. Keep in mind that the
term mole refers simply to a fixed number of mole-
cules. If we use the symbol n for the number of moles
of a gas, then n is simply equal to N/NA.

NA � 6.02 � 1023 molecules/mol.
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FIGURE 12.9 Maxwell speed
distribution for hydrogen molecules.
Black curve is for T � 300 K; 
red curve is for T � 77 K.



The ideal gas law can be rewritten by replacing the number of molecules by the
number of moles so that we can write

(12.15)

where R is the molar gas constant. By comparing Equations (12.11) and (12.15) we
see that so that J/(mol-K). The molecules of an ideal gas
move about independently, only interacting when they come into physical contact
(so-called hard sphere repulsion). Although we do not consider more complex non-
ideal behavior, we note that at higher densities longer-range interactions between gas
molecules become significant and deviations from Equation (12.15) do occur.

R�NA kB�8.31nR�NkB,

PV�nRT,
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Example 12.5 A compressed air tank holds a volume of 0.01 m3 and is at a pres-
sure of 50 atm (5 � 106 Pa). Taking air to be 80% nitrogen and 20% oxygen,
compute the number of moles of air and the density of the air in the tank at 20°C.
How many molecules of oxygen and of nitrogen are there in each cm3 of volume
within the cylinder and what is each of their rms velocities?

Solution: Using the ideal gas law, the number of moles of air is given by

n � PV/RT � (5 � 106)(0.01)/(8.31)(293) � 20.5 mol.

Because air contains 80% nitrogen molecules with molecular weight 28
g/mol and 20% oxygen molecules with molecular weight 32 g/mol, the mean
molecular weight of air is

M � (28)(0.8) � (32)(0.2) � 28.8 g/mol

and 20.5 mol of air then has a weight of 590 g. The density of air in the tank
is then

0.59 kg/0.01 m3 � 59 kg/m3.

Each mole of the air contains NA molecules, so that there are a total of
(20.5)(6.02 � 1023) � 1.23 � 1025 air molecules in the tank. In 1 cm3, or 10�6 m3,
there are then about 1.23 � 1021 air molecules, 80% (or 9.8 � 1020 molecules)
nitrogen and 20% (2.5 � 1020 molecules) oxygen.

According to Equation (12.13), the rms velocities of the molecules depend
only on the temperature and the molecular mass. We find the nitrogen molecules
move with an rms velocity given by

vrms � [3(1.38 � 10�23)(293)/(28)(1.67 � 10�27)]1/2 � 2510 m/s,

whereas the oxygen molecules move with a slower velocity of 2350 m/s because
of their larger mass.

4.  THE FIRST LAW OF THERMODYNAMICS

The principle of conservation of energy is one of the cornerstones of modern science.
For thermodynamic systems, the first law of thermodynamics is a statement of con-
servation of energy. Recall that the temperature (in K) of an object is proportional to
its internal energy per mole or per particle. Temperature is therefore a measure of the
concentration of internal energy within the object. When an object is allowed to come
into thermal contact with its surroundings, the larger system of (object � surround-
ings) will eventually reach thermal equilibrium with a uniform temperature, indicat-
ing a constant concentration of thermal energy throughout the system. Thus thermal
equilibrium can be viewed as that final state at which the internal energy has been



redistributed uniformly. In a macroscopic sense the density of internal energy is uni-
form at thermal equilibrium. We mention that because there is a distribution of gas
particle speeds, as discussed above, there are also microscopic variations of temper-
ature over smaller volumes; these fluctuations of the local temperature have impor-
tant consequences, for example, giving rise to scattering of light from the gas
(a perfectly uniformly ordered system—such as a high-quality gem diamond—will
not scatter light so that a beam of light in the system will not be visible).

If a closed system interacts with its surroundings it can increase (or decrease)
its internal energy U, and correspondingly its temperature, in two ways: by the
inward (outward) flow of heat or by work being done on (or by) the system
(Figure 12.10). We use the standard sign convention in which Q (	0) is the heat
added to the system from the surroundings and W (	0) is the work done by the
system on its surroundings. Then, 
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Q > 0

Q < 0

W < 0

W < 0

ΔU > 0 

ΔU > 0

FIGURE 12.10 A closed
thermodynamic system can change
its internal energy through heat
flow or work.

Δx

Area A

External F

FIGURE 12.11 A gas of volume V
exerting a pressure P on a movable
piston of area A with an external
force F ensuring a quasistatic
expansion of the volume.

Conservation of energy leads to a statement of the first law of thermodynamics,

(12.16)

where attention must be paid to the signs. Negative values of Q or W indicate

heat leaving the system or work done on the system, respectively.

¢U�Q�W,

Heat is a term that is used for the flow or transfer of internal energy between
objects. Thus, an object does not contain heat, but does contain internal, or thermal,
energy in proportion to its temperature. Internal energy is a physical property of an
object. As we have discussed, when two objects at different temperatures are in ther-
mal contact, heat flows from the hotter to the colder object until thermal equilibrium
is established and both objects reach the same temperature or concentration of inter-
nal energy. In effect, when two objects are in thermal contact internal energy is redis-
tributed by heat flow until the internal energy concentration is uniform throughout.
The amount of heat that flows out of the hotter object is not determined by the object
itself, but depends on the thermal properties and temperature of the other object as
well, as we show in the next section. Thus, heat is not a state variable.

The amount of work done by or on a system is also not a physical property of the sys-
tem itself, depending on external macroscopic forces and displacements. Work is also not
a state variable. Equation (12.16) is therefore a somewhat strange relationship, stating that
a change in a physical property of a system, �U, a state variable, can be written as the
sum of two physical processes, neither of which is itself a physical property of the sys-
tem. This is why we do not write the heat flow or work expressions as �Q or �W, since
that notation would imply changes in some state variable, but rather as just Q or W.

If a closed system has no heat flow in or out and does no work, so that Q � W � 0,
then �U � 0 and the internal energy must remain constant; the system is said to be iso-

lated. An example of an isolated system is a (perfect) thermos bottle that does not allow
any exchange of heat with its surroundings. In general the internal energy of a thermody-
namic system can change from both heat flow and work. In the rest of this section, we dis-
tinguish several special cases that are of interest. However, to put things in a more concrete
fashion, let’s first consider the work done by a system composed of an ideal gas.

Imagine that we put n moles of a gas into a cylinder of volume V with a movable
piston of cross-sectional area A as shown in Figure 12.11. The gas pressure P exerts
a net force on the piston that can cause it to move a distance �x. In moving the pis-
ton a small distance (during which time the pressure can be assumed to be constant)
the gas does a small amount of work on the piston given by

(12.17)

where �V is the change in volume of the gas as the piston moves.

dW�F¢x�PA¢x�P¢V,
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In general the force on the piston would make it accelerate. In order to ensure that all
portions of the system remain at thermal equilibrium (so that the pressure and tempera-
ture of the gas are the same throughout the volume), we can imagine that an external
force is applied on the piston to maintain a quasistatic process. That is, the external force
is adjusted to keep a zero net force on the piston so it moves at a slow constant velocity.
Equation (12.17) is a very general expression for the work done by any fluid but it
applies only to a very small change in volume during which the pressure does not
change. To proceed further we limit ourselves to the case of an ideal gas.

For an ideal gas we know that the three variables P, V, and T are connected by
Equation (12.15), so that if one is held constant, the other two variables must change
in a corresponding manner. We can distinguish four limiting cases of behavior for
discussion of the first law.

(1) If the pressure of the gas is held constant, known as an isobaric process, then we
can simply add up the contributions in Equation (12.17) to find that in general
the total work is

(12.18)

The work will be positive if done by the system on the surroundings so that
the final volume is greater than the initial. If the surroundings do work on the gas
system decreasing its volume, then the work is negative leading to an increase in
internal energy according to Equation (12.16). In such an isobaric process, as the
volume varies the temperature will change according to Equation (12.15) and
lead to a corresponding change in internal energy. For example, if work is done
on the system decreasing its volume then the temperature must drop, according
to the ideal gas law. But if only work were done on the system then the first law
says that the internal energy would increase. Clearly then there must also be a
flow of heat out of the system giving a net decrease in internal energy. In gen-
eral the internal energy of the gas will change according to the first law because
of both work done and heat exchange with the surroundings.

(2) We show in the box below that if instead the temperature is held fixed, known as
an isothermal process, then the work done for the case of an ideal gas is

(12.19)

where ln is the natural logarithm. In this case, because the process is isothermal
then in general there can be no change in internal energy and the work and heat
flow must be balanced to maintain �U � 0. As the gas volume changes slowly
in the quasistatic process, heat must flow to maintain the system at a constant
temperature. If the gas expands, doing positive work, then heat must flow into
the system to maintain the temperature; if work is done on the system causing
the gas to compress, then heat must flow out of the system. Equation (12.19) rep-
resents the specific result for the work in the case of an ideal gas, but the result
that �U � 0 holds for all isothermal processes.

(3) If the volume is held constant, an isochoric process, then according to Equation
(12.17) in general no work is done and the first law reduces to �U � Q. In this
case the heat flow directly determines the change in internal energy and hence
the temperature of the gas.

(4) A fourth process of interest in which none of the variables P, V, or T is
held fixed, but in which there is no exchange of heat, is known as an adia-

batic process. In this case because Q � 0, the first law becomes �U � �W,
and, in general, the work done directly determines the internal energy change or
temperature.

W � nRT lna Vfinal

Vinitial
b , (isothermal),

W � P1Vfinal � Vinitial2. (isobaric).



Many interesting situations are described by one of the above four
limiting cases, but it is also commonly the case that an overall process is
either a sequential combination of those cases or is still more complex.
We introduce some other combinations of thermodynamic variables
below that are useful for the study of chemical reactions and biological
systems.

If we attempt to apply the first law to warm-blooded living
organisms, we see that Q will be less than zero under ordinary situations,
because body temperature is normally above ambient temperature. Also
W is usually also positive because living organisms generally do work
on their surroundings rather than have work done on them. Thus, under
normal circumstances �U 
 0 for living organisms and their tempera-
tures would seem to necessarily approach that of the surroundings. The
flaw in this argument is that living creatures are not closed systems, but
constantly exchange mass with their surroundings, whether it is in the
form of gases, nutrients, or waste products. This exchange of mass and
its metabolism supplies the necessary chemical energy to maintain life.
We return to this discussion in the next chapter when we introduce the
second law of thermodynamics.

From the very statement of the first law of thermodynamics, it is
clear that internal energy, work, and heat all can be measured in the
same energy units (e.g., joules). Historically there are other com-
monly used units for heat that should be mentioned. Before it was
realized that heat is the flow of thermal energy, it was believed to be
the flow of a substance that was called caloric and measured in units
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Example 12.6 Classify each of the labeled processes A, B, and C shown in the
PV diagram for an ideal gas and find the work done by the gas for each and the
total work for all three. In curve C, P ~ 1/V.

P (Pa)

V (m3)

1 4

10

40 A

B

C

Solution: For curve A the pressure remains constant and so the process is an iso-
baric one. The work done by the gas is then simply, reading values from the
graph, WA � P�V � (40 Pa)(4 � 1)(m3) � 120 J. The gas does positive work in
expanding its volume. Note that this result represents the area under curve A. For
curve B, the volume does not change, the process is isochoric, and no work is
done, WB � 0. For curve C, because P ~ 1/V, PV remains a constant and
the process is isothermal. In this case the work done by the gas is given by
Equation (12.19), representing again the area under the curve, and is WC � nRT

ln (1/4). Using the ideal gas law we can rewrite this as WC � PV ln(1/4) � 40
ln(1/4) � �55.5 J, after we read the product of PV from the graph. The net work
for this complete cycle, returning to the same values of P and V is the sum of our
three values, Wnet � WA � WB � WC � 64.5 J, and represents the area enclosed
by the three curves.

Our expression, Equation (12.17), for the
work done by a fluid system for an infinitesi-
mal volume expansion can be written replac-
ing �V by dV and then integrating to write a
general expression for the total work done as

According to this very general result, the
work done is the area under a curve repre-
senting the pressure variation of a system
as a function of its volume. For an ideal
gas, we know that the pressure varies as the
volume changes according to Equation
(12.15), so that we can write

In an isothermal process for which the tem-
perature T is a constant and remembering that

L
dx

x
� ln x,

W � LVinitial

Vfinal nRT

V
 dV.

W � LVinitial

Vfinal

PdV.



of calories (cal). James Prescott Joule in the 1840s first showed
that heat could do mechanical work and established the mechanical

equivalent of heat, the heat required to raise the temperature of
1 g of water by 1°C (specifically from 14.5 to 15.5°C), known today
to be

1 cal � 4.186 J. (12.20)

This value varies slightly (by less than 1%) as the water temperature is changed
within 0 to 100°C. Other units used specifically for measuring heat are the kilocalo-
rie (1 kcal � 4186 J � 1 Cal (with a capital C) note that the Cal is the unit used in
reporting energy content on packaged food) and the British Thermal Unit (1 BTU �
1055 J, still used predominantly in engineering).

5.  THERMAL PROPERTIES OF MATTER

When heat flows into or out of a material its internal energy and temperature will
change. For a given material, it is found experimentally that the amount of heat
needed to produce a temperature change of �T is proportional to both the mass of
material and to the temperature change and is given by

(12.21)

where c is called the specific heat of the material given in units of J/(kg-K) or
kcal/(kg-°C). A block of material with twice the mass of another made from the
same substance will require twice the heat transferred to it in order to warm both
blocks by the same temperature. The specific heat of a material is actually depen-
dent on its detailed electronic structure and can be calculated using quantum
mechanics. It is a measure of the heat release or absorption capability of the mate-
rial as the temperature changes. Temperature changes correspond to internal energy
changes, and in a simple way we can understand these for a solid to be due to
changes in the potential energy of molecules bound by effective springs. Thus the
specific heat is related to the potential energy of interaction represented by these
springs.

Specific heats for most materials are dependent on the temperature, but vary
slowly near room temperature and can often be assumed constant. Table 12.3 lists
the specific heats of several materials. Those with higher specific heats require

Q � cm¢T,
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we can write that the work is given by

which results in Equation (12.19).

W � nRT lnV `
Vinitial

Vfinal

Table 12.3 Specific Heats of Various Materials

Specific Heat
Material kcal/kg-°C J/kg-°C

Aluminum 0.22 900

Copper 0.093 390

Glass 0.20 840

Human body (mean at 37°C) 0.83 3500

Ice (�5°C) 0.50 2100

Iron or steel 0.11 450

Mercury 0.033 140

Silver 0.056 240

Steam (110°C) 0.48 2010

Water 1.00 4186

Wood 0.4 1700



Our discussion so far has been limited to materials not changing their phase,
remaining either solid, liquid, or gas. Because electronic interactions are dramat-
ically different for a material depending on its phase, we expect that the thermal
properties of a material will strongly depend on what phase it is in. In fact as a
solid is melting, heat must be input to break the orderly bonding in the solid to
form the liquid and during this melting transition the temperature does not change.
For example as a block of ice at 0°C melts, the water–ice mixture remains at 0°C
until the ice is totally melted. Additional heat added will then increase the
temperature of the water. The heat needed to change the phase of a unit mass of
material is known as the heat of transformation. Possible transformations are
shown in Figures 12.12 and 12.13.

The corresponding amount of heat per unit mass required for the transformation
is known as a latent heat L, where

(12.22)

We distinguish between latent heat of fusion (for melting or freezing), latent
heat of vaporization (for evaporation or condensation), and latent heat of subli-
mation (for phase changes directly from solid to gas, as in solid CO2 known as

Qtransformation � Lm.
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Example 12.7 A liter of tea at 100°C is poured into a glass-lined thermos bottle
at room temperature (20°C). If the glass bottle has a mass of 0.2 kg, find the final
temperature of the tea in the sealed thermos.

Solution: Heat will flow from the tea (water) to the glass until the two are in ther-
mal equilibrium at the same final temperature T. We can write that Qloss from tea �
Qgain to glass, so that cwater mwater (100 � T) � cglass mglass (T � 20). Using values
in Table 12.3 for the specific heats and the density of water, we have that

(1)(1 g/cm3)(1000 cm3)(100 � T) � (0.2)(200 g)(T � 20)

Solving for T we find that T � 96.9°C. The relatively large specific heat
of water results in a final temperature much closer to the water starting
temperature.

FIGURE 12.12 Phase changes of water (from left) Evaporation in salt flats, sublimation
of dry ice, and freezing water!

more heat per unit mass in order to increase their temperature than other materials
or, in turn, give off more heat per unit mass when their temperature drops. Water
has one of the highest specific heats of all substances making it a valuable source
of heat, for example, in hot water heaters and in our bodies.
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Table 12.4 Latent Heats of Various Substances

Melting Heat of Fusion Boiling Heat of Vaporization
Material Point (°C) (kJ/kg) (kcal/kg) Point (°C) (kJ/kg) (kcal/kg)

Helium — — �269 25 6.0

Nitrogen �210 25.7 6.1 �195.8 200 48

Ethyl alcohol �114 104 24.8 78 854 204

Mercury �39 11.3 2.7 357 296 71

Water 0 333 79.7 100 2260 539

Carbon dioxide �79 Sublimates — 578 138

Aluminum 660 399 95.3 2467 10550 2520

Tungsten 3410 184 44 5660 4940 1180

FIGURE 12.13 Possible phase
changes and their associated heats
of transformation.

“dry ice”). Each of these processes is reversible in terms of
energy requirements; that is, the amount of heat required to melt
a block of ice to water is the same as the heat given off when that
same mass of water freezes to ice. Table 12.4 lists some materi-
als with their melting and boiling point temperatures, together
with their corresponding latent heats.

In more complex systems, other phase transitions are possible.
For example, in biological membranes there are specific transitions
that occur at particular temperatures in which the lipids and proteins
in the membrane arrange themselves in more or less well-ordered
states. These transitions also involve latent heats that can be deter-
mined from thermodynamic measurements.

solid liquid gas

melting
or

freezing

evaporating
or

condensing

Heat of fusion Heat of vaporization

Heat of sublimation

subliming
or

condensing

Example 12.8 Construct a quantitative graph showing the heat input to a 100 g
block of ice at �20°C as a function of its temperature as the ice first warms,
melts to water, heats to its boiling point, vaporizes, and heats to 150°C.

Solution: Starting with the ice at �20°C an amount of heat equal to

cicem�T � (0.5 kcal/kg-°C)(0.1 kg)(20°C) � 1 kcal

is needed to bring the ice to T � 0°C. This is plotted as the straight line labeled
A below; the temperature rise is proportional to the heat added over this tem-
perature range. As additional heat is added, the ice melts and the temperature
remains at 0°C until the ice is completely melted. Because the latent heat of
fusion of water is 79.7 kcal/kg, a total additional amount of heat equal to 79.7
(0.1 kg) � 8.0 kcal is needed to melt the ice. This portion of the graph is a ver-
tical line labeled B because there is no temperature change. Once the ice has
melted, any additional heat added will warm it according to Equation (12.21). To
raise the water temperature to 100°C requires additional heat equal to

Q � cwaterm�T � (1 kcal/kg-°C)(0.1 kg)(100°C) � 10 kcal.

This portion of the graph is plotted as the line labeled C.

Once the water is all at 100°C, additional added heat will cause it to boil and
change to steam. To vaporize all the water requires (539 kcal/kg)(0.1 kg) �
54 kcal of heat and this part of the graph is drawn as the vertical line labeled D.



Next, we introduce a new state variable, the enthalpy, H, that can be used to char-
acterize chemical bond energies and heats of chemical reactions and is defined as

H � U � PV. (12.23)

We show in the box that for a process that occurs at constant pressure, the change
in enthalpy is equal to the (reversible) heat flow between the system and its
surroundings, or

(12.24)

Why do we bother to introduce H, if under isobaric conditions its
change is just equal to Q? Recall that Q is not a property of a system,
not a state variable, but rather depends on the system and its surround-
ings. On the other hand, H is a well-defined property of a system
(because U, P, and V are well-defined state variables). Therefore under
isobaric conditions, which are fairly common, enthalpy changes tell us
about heat flow during the process.

Enthalpy may be used to characterize a chemical reaction, such as

A � B → C � D,

where each of the reactants (A and B) and products (C and D) are char-
acterized by an enthalpy and the net change in enthalpy.

is an important piece of information about the energetics of the reaction. If �H is pos-
itive, the reaction is called endothermic, with a net absorption of heat to the system,
whereas if �H is negative, the reaction is called exothermic, with a net liberation of
heat. Endothermic reactions require input of energy to occur although exothermic
reactions may occur spontaneously.

The strength of chemical bonds may be measured by their enthalpy, in this case a
measure of the energy required to break the bond. Using tabulated values (see Table 12.5)
one can estimate the total bond energy of any particular molecule by adding up the indi-
vidual bond energies. This procedure works quite well in many situations although there
are some notable exceptions. One such exception is the benzene ring that has a lower
overall energy than one would calculate from the individual bonds (three single C¬C,
three double C“C, and six C¬H bonds) due to “resonant energy,” a quantum mechani-
cal phenomenon that stabilizes the ring structure compared to a linear molecule.

¢H � HC � HD � HA � HB

¢H � Q. (isobaric process).
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To now heat the trapped steam even further to 150°C, additional heat needs to be
added according to the specific heat of steam of 0.48 kcal/kg-°C for a total
amount of (0.48)(0.1 kg)(50°C) � 2.4 kcal. This final line of the graph is labeled
E. In the graph note that the largest heat inputs occur during the phase changes,
particularly the evaporation.

From the definition of H (Equation (12.23)),
we find that in general dH � dU � PdV �
VdP.

Using the first law of thermodynamics
for the case when only pressure–volume
work is involved (dU � Q � PdV) and not-
ing that if the pressure is constant (dP � 0),
we have dH � Q � PdV � PdV � Q,
which is rewritten as Equation (12.24).
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Table 12.5 Average Bond Dissociation Energies

Bond �H (kcal/mol)

C¬C 83

C“C 146

C‚C 200

C¬H 99

C¬N 70

C¬O 86

C“O 178

N¬H 93

O¬H 111

O¬O 119 

Example 12.9 Estimate the enthalpy change for the synthesis of glucose
(C6H12O6) from carbon dioxide and water. This is the most important result of
photosynthesis in green plants. The overall chemical reaction is

6 CO2 � 6 H2O → C6H12O6 � 6 O2.

Solution: We solve this problem by estimating, using Table 12.5, the energy
needed to break all the bonds of the starting reagents and form all the bonds
of the products. To break all of the 12 C“O bonds of CO2 requires 12 �
178 � 2136 kcal/mol. Similarly, to break all 12 of the O¬H bonds of water
requires 12 � 111 � 1332 kcal/mol, for a total of 3468 kcal/mol required to
break the bonds of the starting reagents.

In forming glucose, with all its bonds as shown, the following energies
are liberated: 5 � 83 � 415 kcal/mol, for the C¬C bonds along the linear
backbone of the molecule; 7 � 99 � 693 kcal/mol, for
the C¬H bonds; 5 � 111 � 555 kcal/mol, for the O¬H
bonds; 5 � 86 � 430 kcal/mol, for the C¬O bonds; and
1 � 178 � 178 kcal/mol, for the C“O bond. To this
must be added the 6 � 119 � 714 kcal/mol, for the
O¬O bonds in the O2 molecules, so that the total energy
released in the product formation is 2985 kcal/mol. The
net heat of formation is then given by the difference between the 2985
kcal/mol liberated and the 3468 kcal/mol needed for bond dissociation yield-
ing a value of 483 kcal/mol. According to the calculation the reaction is
endothermic, or heat consuming, and requires energy input whereas the
reverse reaction, the “burning” of glucose to form carbon dioxide and water
is exothermic, or heat releasing, and can occur spontaneously. The actual
energy required in the formation of glucose is 673 kcal/mol; this crude cal-
culation underestimates the correct answer by about 30%.

O=C -C -C -C -C -C -H

O  O  O  O O

H H H H H H

H H H H H

Net values for enthalpies can be measured using a technique called calorimetry

in which the heat input or output is determined as a chemical reaction proceeds. The
particular values of enthalpy actually depend on temperature, pressure, and other
experimental conditions. A modern version of such measurements is the differential

scanning calorimeter in which the heat input or output is measured as the tempera-
ture is scanned. This technique is a sensitive way to detect phase transitions in
biopolymers (Figure 12.14).



6.  VAPOR AND OSMOTIC PRESSURE; MEMBRANE
TRANSPORT AND THE KIDNEY

In this section we take up several related properties of solutions, collectively known
as colligative properties, that deal with the thermodynamic effects of the addition of
small amounts of solutes to a solvent. These dilute solution effects can be described
using a formalism quite similar to that of an ideal gas because the individual solute
molecules do not interact with each other. Because of this, the form of the equation
of state is seen to be similar to that for the ideal gas.

Before we consider the effects of solute molecules on the properties of a liquid,
we need to first briefly discuss thermal effects at a boundary surface of a pure fluid,
such as water. Imagine a cup of warm water exposed to air at room temperature.
Because the water molecules move about with a distribution of velocities, those with
rapid velocities that reach the surface may have sufficient energy to escape from the
liquid surface, entering the gas phase in a process known as evaporation. As only the
most energetic molecules escape from the surface, the remaining water molecules
have a lower average energy and the water thus cools by evaporation. We note here
that this process is responsible for cooling our bodies by evaporation when we sweat.
Furthermore, this same process also occurs when a liquid in a container is cooled by
“pumping,” or by attaching the container to a vacuum pump that pulls the faster mol-
ecules from the surface of the liquid. This method can be used to cool liquids well
below the ambient temperature, often even freezing them.

If a thermos bottle is partially filled with warm water and sealed so that no heat
is lost to the outside, the water molecules will evaporate until eventually an equilib-
rium is reached in which the number of molecules evaporating from the surface
equals the number of gas molecules that collide with the water surface, giving up
most of their energy and condensing to the liquid phase. At this point the pressure of
the gas phase is known as the equilibrium (or saturated) vapor pressure. The value
of this pressure depends only on the temperature of the liquid, and not on the volume
above its surface. A larger volume would cause more evaporation to occur but would
arrive at the same final equilibrium vapor pressure.
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FIGURE 12.14 Differential scanning
calorimetry of a particular lipid
bilayer showing four distinct peaks
of endothermic activity.



Suppose we return to our cup of warm water and now heat
the water. As the temperature rises, more evaporation occurs
and the vapor pressure near the surface rises. When the vapor
pressure exceeds the ambient pressure on the liquid surface
(from atmospheric pressure, unless the container is sealed),
boiling occurs. Bubbles filled with vapor form in the liquid and
expand and rise to the surface. As long as the vapor pressure is
at least equal to the ambient atmospheric pressure at the surface
bubbles can support themselves against the external pressure.
The vapor pressure of water is equal to atmospheric pressure at
100°C (at sea level), so that water will boil at this temperature.
If we were hiking at an elevation of 3000 m rather than at sea
level, atmospheric pressure is only about 70% that at sea level
and water will boil at a lower temperature. The temperature
dependence of the vapor pressure for water is shown in
Figure 12.15, where it can be seen that at a pressure of 0.7 atm
water will boil at about 90°C. The lower boiling temperature at

high elevations requires foods to be cooked for a longer time (Figure 12.16).
Remember that no matter how much heat flows into the water, its temperature will
not rise above the boiling point. A pressure cooker is designed to increase the boil-
ing temperature of water, in order to speed cooking. The higher pressure inside the
cooker raises the vapor pressure and allows boiling to occur at a higher temperature.

Now that we have an appreciation of vapor pressure and boiling, let’s consider
what happens when salt is added to the heated water. Experimentally it is found that
the vapor pressure of the solvent (water in our case) decreases when a solute (salt) is
added. You cooks out there will recognize this, because salt is often added to rapidly
boiling water to quench the boiling. Quantitatively, for dilute solutions it is found that
the vapor pressure decreases according to Raoult’s law,

(12.25)

where P0 is the vapor pressure of pure solvent and X is the mole fraction (fraction
of total number of moles) of the solvent. The decrease in vapor pressure can
be understood in this ideal case as simply due to the decreasing mole fraction

P � XP0 ,
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FIGURE 12.15 The temperature
dependence of the vapor pressure
of water.

FIGURE 12.16 Why does it take longer to cook foods at higher elevations (here in the
Andes of Equador)?



represented by the volatile solvent. The nonvolatile solute does not contribute to the
vapor pressure. As a consequence of the reduced vapor pressure with solute present,
a higher temperature is needed before the vapor pressure equals atmospheric pres-
sure and boiling occurs. The boiling point rises in the presence of a solute by an
amount proportional to the concentration of solute. Salt added to boiling water will
stop the boiling; continued heating of the water will lead to boiling again but at a
higher temperature. An exactly analogous situation occurs in the process of melting
from a solid to a liquid or freezing of a liquid to a solid. In the presence of a solute
the freezing point of a liquid is lowered. This important phenomenon helps keep sea
water from freezing. It is also the basis for salting roadways that are covered with
freezing water to prevent icing.

Another colligative property, particularly important in biology, is osmotic pres-

sure. Osmotic pressure is a solution phenomenon quite akin to vapor pressure. We
have seen that a decreased vapor pressure occurs at an air–solution boundary because
the solute is not volatile. An analogous situation can occur in solution if there is a
semipermeable membrane present that allows water to freely pass through but has
pores too small to allow a solute to penetrate. The membrane acts as if it were the
air–solution interface.

To give a more concrete example, consider the situation when a sealed semiper-
meable membrane (not unlike that used to encase sausage or hot dogs) containing a
protein solution is immersed in pure water (Figure 12.17). The membrane allows the
exchange of water but keeps larger proteins from leaving. Because the water inside the
tube is at a lower concentration than the pure water outside, its pressure is decreased
somewhat, just as the vapor pressure would be. As a result water enters the membrane
and it swells until reaching an equilibrium at which the water pressure is the same
across the membrane (analogous to equilibrium vapor pressure). Although the water
pressure is equal across the membrane, the protein (solute, in general) exerts a pressure
as well and so the internal pressure within the membrane is greater.

The osmotic pressure � is defined as the pressure difference across the mem-
brane at equilibrium and can be shown to satisfy

(12.26)

where n is the number of moles of protein, V is the volume of the solution within the mem-
brane, and the protein is assumed to be dilute. This equation, known as the van’t Hoff law
for osmotic pressure, is just the ideal gas law that surprisingly works in the dilute solution
case because the ideal noninteracting proteins behave as an ideal gas within the water.

The flow of water due to osmotic pressure differences is known as osmosis. The
swelling that occurred in our example is a process that occurs in biology and is
known as osmotic shock. Cells immersed in a solution with lower ion content (hypo-
tonic) will swell, leading eventually to a rupture of the cell membrane. Such a process
is commonly used in biochemistry to disrupt cells. (It is precisely the same phenom-
enon that swells hot dogs in boiling water causing them to split open.) There are a
number of other important applications of osmosis in biology and medicine; we dis-
cuss two of them here, namely dialysis in the laboratory and the functioning of the
kidneys, including kidney dialysis.

Dialysis is a technique used in biochemistry in a way similar to our example of
the swelling membrane in order to change the solvent in which macromolecules are
immersed. The starting solution of macromolecules is sealed in a dialysis tube (semi-
permeable membrane) and bathed in a large volume of the desired final solvent for a
long period of time. Typically both solvents are water-based but contain different
small ions that are also free to pass through the membrane whereas the macromole-
cules cannot. After some time, depending on the sample and external volumes,
the outer solvent is replaced by a fresh large volume, and after several changes of
outer solvent the inner solvent has been essentially completely replaced while the
macromolecules remain inside.

p�
nRT

V
,
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FIGURE 12.17 A semipermeable
membrane containing a protein
solution immersed in pure solvent
and swollen with water due to an
elevated osmotic pressure.



Osmosis is an important factor in the exchange of blood gases and
small molecules such as sugars through the capillary walls. As we
have seen in Chapter 9, the total hydrostatic pressure in the capillary
drops from the arterial end to the venous end, causing blood to flow
through the capillary. The osmotic pressure inside the capillary is
about 20 torr higher than outside the capillary. This osmotic pressure
difference results in a higher internal than external capillary pressure

in the first (arterial) half of the capillary, and a higher external than internal pressure in
the second (venous) half of the capillary. Accordingly there is a net outward flow of
fluid during the arterial half and a net inward flow during the venous half of the cap-
illary (Figure 12.18). Clearly these osmotic flows aid in distributing nutrients and
oxygen and in collecting wastes and carbon dioxide.

This passive control of the exchange of small molecules through the pores of the
capillaries can be disrupted in many ways leading to edema, a swelling due to excess
fluid buildup in the tissues. An abnormally low blood protein level can reduce the
osmotic pressure sufficiently to increase the net outward flow of fluids from the cap-
illaries. This can occur in diseases of the kidney in which the nephrons, the basic
building blocks of the kidney (see below), become permeable to larger macromole-
cules so that protein is lost in the urine, or in diseases of the liver, leading fluids to
collect in the abdomen. Other possible sources of edema include right heart failure in
which the returning blood is not processed fast enough to avoid backing up fluids,
and injury or infection of tissue, in which the capillaries dilate increasing blood flow
and leakage of fluids.

The kidney, a vital organ of the body, maintains and regulates the solute compo-
sition in the blood plasma. Consisting of a collection of about one million indepen-
dently functioning units called nephrons, each kidney filters an incredible 850 L of
blood every day in order to remove waste products. All of the blood in the body is
thus processed every five minutes throughout one’s entire life! Simply put, each
nephron consists of two functional parts: the Bowman’s capsule, containing the
glomerulus, and the tubule, a relatively long (2–4 cm) duct with walls that are only a
single membrane thick (Figure 12.19). Arterial blood passes by the glomerulus, con-

sisting of an extensive membrane (with a total area of several m2) serv-
ing as a semipermeable filter. This membrane has pores (with diameter

5 nm) making up roughly 5–10% of the surface and allowing a huge
volume of blood to be processed rapidly. A set of arterioles regulates
the blood pressure within the glomerulus so that the hydrostatic pres-
sure is high (~70 torr).

From the large volume of blood processed, roughly 180 L of fil-
trate (consisting of blood plasma and low molecular weight solutes, but
no blood cells) passes through the membrane and is collected in the
tubules of the nephrons each day. This volume vastly exceeds that
excreted each day in the urine (about 1.5 L). For example, the glomeru-
lus membrane filters out roughly 2.5 pounds of sodium chloride daily
with all but 5–10 g being reabsorbed by the capillary bed. The kidneys
thus function by massive filtration and reabsorption as part of an
extremely sensitive control mechanism, believed to be controlled by
active transport, which rapidly regulates the solute balance in the blood
plasma.

Kidney failure can be due to a variety of causes, including nephron
destruction over a period of time, too high a permeability of the
glomerulus membrane, or failure of the active transport mechanism in
the tubules preventing reabsorption of specific solutes. The artificial
kidney, or renal dialysis, may then be used to control solute levels in
the blood plasma. In principle, the artificial kidney is quite simple
(Figure 12.20). It relies on passive diffusion through a semipermeable
membrane and to be effective, it must work in a period of a few hours
to balance solute concentrations, removing wastes. Continuous flow
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filtering can be done, but at much slower rates (~0.2 L/min) than in the kidney
(~5 L/min). To keep the blood from clotting, heparin, an anticoagulant, is added as
the blood enters the hemodialysis unit but is neutralized by the addition of protamine
as the blood returns to the body. Although renal dialysis is a successful therapy, about
50% of those on dialysis will develop a critical cardiovascular problem.

7.  HEAT TRANSFER MECHANISMS

This section discusses the three basic ways in which heat can be transferred from one
object to another: conduction, convection, and radiation. Before discussing each in
some detail let’s introduce the major concepts. Our bodies are heat engines, fueled by
the food we eat. Of all the energy gained in the metabolism of our food, we use less
than 20% of the energy generated to do work while dissipating roughly 80% as heat.
For a typical adult, just lying at rest generates about 90 kcal/h, the basal metabolic

rate. Any activity will increase this rate (see Table 12.6).
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FIGURE 12.20 A hemodialysis unit with a detail of the actual dialysis filters (center) and
its schematic use.

Table 12.6 Metabolic Activity Rates*

Heat Production Rate
Activity kcal/h W

Sitting at rest 100 115

Slow walking 225 260

Cycling (15 km/h) 360 420

Climbing stairs (2/s) 600 700

Running (15 km/h) 1000 1150

* Based on typical 65 kg person.

In a 24 h period, the basal metabolic rate generates about 2100 kcal of heat that
needs to be removed from the body. If this heat were not removed, we can estimate
that the average body temperature rise, given by �T � Q/(m cbody), would be dra-
matic. Using the specific heat of water and a mass of 80 kg, the temperature rise
would be about 1°C per hour. How does the body get rid of this heat so that its
temperature remains relatively stable?

Passive conduction, in which heat travels through the body tissue to its
surface just as it does along a metal frying pan handle when the pan is heated,
is not efficient enough because the body tissue is not a very good thermal con-
ductor. Instead heat is carried near the surface of our bodies by the blood, acting
as a convective medium to transport heat just as air from a hot oven does by bulk
air currents when the oven door is opened. We then lose heat from our capillary
beds near the skin surface by conduction through the relatively thin skin layer.
Finally, the heated surface of skin loses energy through a variety of possible



processes, including convective losses from circulating air, sweating, and from
the emission of thermal radiation, discussed below.

The body has a variety of involuntary safety mechanisms that attempt to regulate
heat losses. When we are overheated either from exercise that generates excess heat or
from a high air temperature, there is an involuntary shift in blood flow so that more
blood flows near the body surface. This is the source of the typical skin reddening that
occurs from heavy exercise. Sweating is also a mechanism to cool the body surface by
evaporation. When cold, the body involuntarily attempts to maintain the temperature
of the body core by reducing the blood flow to the body surface and to the limbs in
general. This is the origin of the danger of frostbite especially to toes and fingers.
Another mechanism for warming the body is involuntary shivering, designed to burn
more fuel in the muscles in an attempt to maintain a constant internal temperature. We
obviously also can consciously control heat loss or gain by the clothing we wear.

In the rest of this section we consider each of the three heat transfer mechanisms
in some more detail. We begin with heat conduction. Imagine a rod, of length L and
cross-sectional area A, with both ends held at different fixed temperatures (hot and
cold), TH and TC. Individual molecules in the rod do not travel long distances, but rather
oscillate about fixed equilibrium locations. Hotter molecules oscillate more rapidly and
transfer some of their energy to cooler neighboring molecules via collisions. Heat will
flow from the hot to the cold end through the huge number of molecular collisions that
transfer energy along the rod. After reaching a steady state, the temperature along the
rod will not change with time but will vary linearly with distance along the rod between
temperatures TH and TC (Figure 12.21).

What factors determine the rate at which heat is transferred along the rod? The
larger the cross-sectional area A of the rod, the more rapidly heat can be trans-
ferred because of the increased area for collisional transfer of internal energy. We
might also expect that the rate of heat conduction along the rod depends linearly
on the thermal gradient (or variation of temperature along the rod �T/�L) so that
either a larger temperature difference between the ends of the rod or a shorter rod
will lead to an increased thermal conduction rate. Finally, we expect that the con-
duction rate will depend on an intrinsic thermal property of the material, known
as the thermal conductivity k. Putting these factors together, the thermal conduc-
tion rate is given by

(12.27)

The thermal conductivity varies with material due to different efficiencies of the col-
lision mechanism in transferring energy. Metals are good thermal conductors for the
same reason they are good conductors of electricity: they have large numbers of rela-
tively unbound (free) electrons that can diffuse about making collisions effectively to
transfer energy. Materials such as styrofoam or down are poor thermal conductors, also
known as insulators. Table 12.7 lists thermal conductivities of a variety of materials.
Note that air is a very good thermal insulator. Animals and humans make use of this to

Q
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FIGURE 12.21 Thermal conduction in a bar: (left) schematic and (right) photo of an
aluminum bar kept at fixed temperatures at each end with liquid crystal color coding
of temperature.
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As mentioned earlier we regulate our body temperature predominantly by con-
trol over convective blood flow. The temperature of the human body is both nonuni-
form, being warmer in the core than the limbs and surface, and fluctuates in time over
a day by about 1°C. When the body is cold, muscles around the elastic veins constrict
(vasoconstriction) limiting blood flow near the body surface to reduce heat losses. In
fact, the body has two venous return paths to the heart, one deep in the body and one
near the body surface with a “valve” controlling which path is used. When you are
overheated, the valve to the superficial veins is opened and these veins also dilate
(vasodilation) causing the skin to become “flushed” allowing an efficient heat
exchange with the surroundings to cool the blood.

To conserve heat more efficiently, the body uses a system of “countercurrent heat
exchange” in which the major core arterial and venous blood vessels in the limbs (with
flows in opposite directions, hence the term countercurrent) exchange heat with each other.
The returning cooled venous blood is thus warmed before reaching the body core, and the
warmer arterial blood is cooled so that less heat is lost in the limbs. Without such a mech-
anism, cooler blood from the limbs would need to be warmed from within the body core
and the limbs would be warmed beyond their need, draining heat from the body core.

Fluids that are not at a uniform temperature, due to external heating or cooling, for
example, will flow because of differences in the density of the fluid as a function of its
temperature. As the fluid is heated it expands and the decrease in density makes that
region of fluid more buoyant. Thermal convection is the flow of heat via the bulk flow
of a fluid. Convection currents are very common on the Earth. Winds and ocean currents

H E AT T R A N S F E R M E C H A N I S M S 323

Table 12.7 Thermal Conductivities of Various Materials

Thermal Conductivity 
Material (kcal/s-m-°C)

Water 1.4 � 10�4

Air (dry) 0.06 � 10�4

Body tissue 0.5 � 10�4

Fiberglass 0.1 � 10�4

Down 0.06 � 10�4

Glass ~2 � 10�4

Metals:

Steel (stainless) 3.3 � 10�2

Aluminum 5.6 � 10�2

Copper 9.6 � 10�2

Silver 10 � 10�2

Example 12.10 How much energy is lost in 1 h by conduction through a single-
pane glass window that is 1.4 � 1.1 m and is 0.5 mm thick if the outside tem-
perature is 0°C and the inner surface temperature is 18°C?

Solution: The temperature gradient across the window is (18°C/0.5 � 10�3 m) �
3.6 � 104 °C/m and the cross-sectional area is 1.54 m2. The rate of heat conduc-
tion is then given by Q/t � (2 � 10�4)(1.54)(3.6 � 104) � 11.1 W, so that in 1 h
(or 3600 s) 4.0 � 104 J or 40 kJ of energy would be conducted through the glass.

keep warm in cold weather by trapping air in fur or feathers or in clothing or blankets
(using down, e.g.) or in double-paned glass windows that have an air gap between the
panes. In acting as a good insulator, air must be trapped so as to avoid convection, or
bulk flow of matter that carries thermal energy, discussed next after an example.



are major factors determining the weather. Forced convection, by use of a pump or fan,
is a common way to heat or cool a system: convection ovens speed cooking, hot air heat-
ing system fans circulate heated air in a house, cooling fans in computers and other elec-
tronic equipment keep devices from overheating, and the water pump and radiator fans
in a car cool the engine by convection of water and air, respectively.

Heat transfer by conduction through an object or by convective flow of a fluid
clearly requires the presence of molecules. Heat transfer by thermal radiation (no rela-
tion to nuclear radiation) can occur through a vacuum, in the complete absence of mat-
ter. Radiation refers to the transfer of photons, the elementary quanta of
electromagnetic radiation, between objects at different temperatures. All objects emit
radiation. Hotter objects emit radiation that is visible to our eyes, such as a hot toaster
coil, embers in a campfire, or the sun. Objects need to reach about 1000 K before they
emit a visible red glow due to the emission of photons with an energy that we inter-
pret as red light. At progressively higher temperatures more energetic photons are
emitted, until at around 1700 K objects glow white hot from the mixture of photons
with energies corresponding to all visible colors. Beyond that ultraviolet radiation is
also emitted, as from the sun, and it is this radiation that can produce sunburn. Later
in the book we discuss the properties of radiation and their interaction with matter.
Below 1000 K, and even at ambient temperatures, objects emit infrared radiation that
we cannot see. Night vision detectors and infrared thermography can be used to image
thermal sources such as heated buildings or machines and people (Figure 12.22).

Experimentally it is found that the time rate of emission of radiation is very
strongly dependent on the surface temperature, varying as T 4. The Stefan–Boltzmann

law gives this rate, or the radiated power, as

(12.28)

where A is the surface area of the object, � is the Stefan–Boltzmann constant, a uni-
versal constant equal to 5.67 � 10�8 W/m2-K4, and e is the emissivity of the object.
The emissivity, varying between 0 and 1, is the property of an object characterizing
its quality as an emitter of radiation. Light-colored materials with shiny surfaces have
e values close to zero, whereas objects with a black dull finish have e values near 1.

All objects not only radiate but absorb radiation as well. If an object at tempera-
ture T1 is in a “temperature bath” large enough to be at a fixed temperature T2, then
the net rate of radiant emission will be given by

(12.29)

where the second term is the power absorbed from the bath. One might question why
the constant e should be the same for emission and absorption. The answer lies in
considering what happens when T1 � T2. In this case no net power can be radiated,
so the coefficient e in the absorption term in Equation (12.29) must be the same as
in the emission term in order that P � 0, and this must then be generally true.

An object can maintain a temperature different from its surroundings if it has either a
source of internal energy or a sink for removal of internal energy and if the object balances

P � es A(T 1
4 � T2

4 ),

P � esAT 4,
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FIGURE 12.22 Examples of infrared imaging color-coded thermograms: (left) the imprint of a
hand 5 min after touching a wall; (center) a shoe; (right) color-coded house showing heat leaks.



the rate of uptake and loss of energy. This situation is one of steady state rather than ther-
mal equilibrium and warm-blooded animals are a primary example of this phenomenon.
We produce energy from metabolism at the same net rate that we lose energy to our envi-
ronment in order to maintain an approximately constant temperature.

Another example of steady-state thermal behavior is the atmosphere of the Earth.
The thermal balance between the net absorption of energy from the sun and the net emis-
sion of radiation to space determines the Earth’s mean temperature. The gases in the
Earth’s atmosphere transmit the sun’s radiation, but reflect some portion of the infrared
radiation from the warmed surface of the Earth, thus trapping some of the heat that
would otherwise escape from the Earth. This is known as the greenhouse effect. The
name comes from how a garden greenhouse functions to transmit the sun’s light, but pre-
vent the loss of heat. Necessary for most life on Earth, the greenhouse effect causes the
average temperature of the Earth to be about 32°C warmer than it would be otherwise.

Global warming is a consequence of an imbalance in this steady state due to exces-
sive absorption, caused by increasing amounts of “pollutants” in the atmosphere. These
molecules, including carbon dioxide, nitrous oxide, ozone, methane, and other mole-
cules together known as greenhouse gases, strongly absorb in the infrared and have been
increasing in concentration. Dramatically increasing amounts of manmade greenhouse
gases, most notably carbon dioxide from the burning of fossil fuels such as oil, coal, and
natural gas, have led to an enhanced greenhouse effect in which there has been a rela-
tively rapid rise in average temperature of the Earth. CO2 levels were about 280 ppm
(parts per million) at the start of the industrial revolution in the late 18th century and
have increased to about 380 ppm today; we know that CO2 levels have not been this high
in the past 420,000 years and probably have not been this high in 20 million years.

Part of the grave nature of this enhanced greenhouse effect is that many aspects of
global climate are coupled together. An increasing number of scientists believe that the
greenhouse effect can lead to a positive (but not in the good sense) feedback process,
whereby increasing global temperatures may lead to the release of trapped greenhouse
gases (especially in marine sediments in the oceans and in the polar icecaps), spiraling
the world’s temperature to even higher values. Furthermore, increasing temperatures are
leading to the polar ice caps shrinking, which may produce a major increase in the height
of the oceans. Perhaps even more threatening, although uncertain, is the impact of higher
temperatures on potable water, on agriculture, and on the development of strains of bac-
teria and virus that will cause new diseases. It is imperative that the world community
address these issues now and begin steps designed to cut greenhouse gas emissions.
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CHAPTER SUMMARY
Temperature is a measure of the thermal energy of an
object. Three common temperature scales are the
absolute (Kelvin), the Celsius (centigrade), and the
Fahrenheit scales, with only the Kelvin scale having a
nonarbitrary zero level. These are related to each other by

(12.2)

and

(12.1)

When an object of length L is heated so that its
temperature changes by �T, it will expand by �L

according to

(12.3)

where � is the coefficient of linear expansion.
For an ideal gas (one with no long-range interac-

tions), the pressure P and volume V are related through

(12.10)PV �
2(KEtotal )

3
,

¢L � a L¢T,

TF �
9

5
 TC � 32° F.

TC � TK � 273.15° C,

(Continued)



QUESTIONS
1. Two bars made of different metals are placed in con-

tact with each other and come to thermal equilibrium.
Are the temperatures of the two bars the same? Are
their internal energies the same? Are the rms veloci-
ties of their atoms the same?

2. What do you think will happen if you add an equal
volume of liquid helium to liquid nitrogen?

3. Give some examples of engineering safety measures
that allow for the differential thermal expansion of
neighboring materials.

4. A tightly sealed jar with a metal cover is often put
under hot water to make it easier to open. Why?

5. Distinguish carefully between average velocity and
rms velocity in three dimensions. Which is important
in determining temperature? For a solid what do you
think the average velocity of the constituent molecules
would be?

6. Discuss why the first law of thermodynamics is
referred to as a conservation of energy equation for an
isolated system.

7. In an isothermal process with an ideal gas, what
happens to the gas pressure as its volume increases?

8. In an isobaric process in which an ideal gas
expands its volume, what happens to the tempera-
ture? Be careful: the ideal gas law might seem to
imply that as the volume increases at constant
pressure the temperature should go up, whereas
the fact that the gas has done work implies that
its temperature should go down. Which is correct
and why?

9. How much heat is required to melt 1 kg of ice at 0°C
to water at 0°C compared to the heat needed to turn
that same mass of water at 100°C to steam at 100°C?
Discuss why so much more heat should be required to
produce steam.

10. When water boils, salt can be added to stop the boil-
ing. Discuss why this works.

11. Why do hot dogs swell when boiled in water, often to
the point of splitting?

12. Why does a piece of metal feel cooler to your hand
than a piece of wood at the same temperature?
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so that, using the ideal gas law

(12.11)

we have that the average kinetic energy of a molecule
is given by

(12.12)

The first law of thermodynamics is a statement of
conservation of energy, in which the change in internal
energy of a system �U is equal to the heat flow in (Q)
minus the work done by (W) on the system:

(12.16)

Heat flow into or out of an object of mass m and
specific heat c will lead to its temperature changing
according to

(12.21)

as long as there is no phase change. For the object to
change phase at a fixed temperature, a specific amount
of heat per unit mass, the latent heat, is required:

(12.22)

Enthalpy H, defined as

H � U � PV, (12.23)

can be used to describe bond energies and chemical
reactions.

Colligative properties of solutions are discussed,
including vapor and osmotic pressures, and the basic
filter functioning of the kidneys (and artificial dialysis)
is described in terms of osmotic pressure.

Heat can be transported by convection, conduction,
or radiation. Convection is the flow of heat via bulk
motions of the surrounding fluid. The rate of thermal
conduction is proportional to the thermal gradient
(�T/L) according to

(12.27)

where A is the cross-sectional area perpendicular to the
heat flow and k is the thermal conductivity. Heat is radi-
ated by all objects at some temperature T1, surrounded
by a medium at temperature T2, at a rate given by

(12.29)

where A in the surface area of the object, e is the emis-
sivity (a pure number between 0 and 1), and � is the
Stefan–Boltzmann constant, � � 5.67 � 10�8 W/m2-K4.

P � es A(T 1
4 � T 2

4 ),

Q

t
�kAaTH�TC

L
b ,

Qtransformation � Lm.

Q � cm¢T,

¢U�Q�W.

KE �
3

2
 kB T.

PV � NkB T,



13. Discuss the various mechanisms by which you
maintain your body temperature when doing heavy
exercise. Frame your answer in terms of the physics
of heat transfer.

14. Why do you think it is true that the more strenuous
exercise a person does, the cooler is the average skin
temperature?

15. Why is the glass liner of a thermos bottle coated with
silvered paint?

MULTIPLE CHOICE QUESTIONS
1. Liquid nitrogen is used by dermatologists to remove

precancerous growths on the skin by flash-freezing
the unwanted cells. The temperature of liquid nitro-
gen is approximately (a) 77 K, (b) 273 K, (c) 373 K,
(d) �273 K.

2. The difference in Fahrenheit temperature between the
steam point and ice point of water is (a) 100, (b) 180,
(c) 212, (d) 273 degrees.

3. The internal energy of a beaker of gas in thermal equi-
librium at room temperature is more than 10,000 J,
whereas the internal momentum of the gas is zero.
That is most closely related to the fact that (a) the gas
molecules aren’t moving at room temperature, (b) kinetic
energy is a positive number, independent of the direc-
tion of motion, whereas momentum is a vector, (c) the
kinetic energy of an atom is totally independent of its
momentum, (d) electrons cannot be excited by room
temperature collisions.

4. Two identical containers of gas (same volumes, same
number of atoms) are at different temperatures.
Which of the following is higher in the gas that has
the higher temperature: its (a) volume, (b) density,
(c) internal energy, (d) average atomic spacing?

5. You want to raise the temperature of an ideal gas to a
maximum value with a fixed Q joules of heat. Which
of the following is the best process for doing so?
(a) Hold the volume constant. (b) Hold the pressure
constant. (c) Hold the internal energy constant. (d) It
doesn’t matter because all processes will yield the
same final temperature.

6. Two closed containers both contain 1 mol of the
same ideal gas. The gas in container A has a volume
of 1 L and a pressure of 1 atm. The gas in container
B has a volume of 1/2 L and a pressure of 2 atm.
When the containers are placed in good thermal
contact with each other (with no exchange of gas)
which of the following changes occur? (a) The pres-
sure in A increases. (b) The pressure in B increases.
(c) There are no changes in either container.
(d) There isn’t enough information to determine
what happens.

7. Body A and body B are in thermal contact and are in
thermal equilibrium. Which of the following is true?
In thermal equilibrium, (a) the total amount of energy

due to atomic motion is the same in A as it is in B,
(b) each of the atoms in A and in B have exactly the
same amount of energy, at any instant, (c) the atoms
in both A and B stop moving, (d) the average amount
of energy transferred by atomic collisions from A to
B is the same as the average amount transferred from
B to A from instant to instant.

8. The average translational speed of each molecule in
an ideal gas is doubled. The Kelvin temperature of the
gas (a) decreases by a factor of four, (b) decreases by
a factor of two, (c) increases by a factor of two,
(d) increases by a factor of four.

9. An aluminum block slides across a horizontal wood
surface. Initially, the block’s center-of-mass is travel-
ing with a kinetic energy of 50 J. Later the block is at
rest. That is because (a) the internal energy of the
block and the surface has increased by about 50 J,
(b) the air is flowing with an increase of 50 J of
kinetic energy, (c) 50 J of kinetic energy is converted
into 50 J of potential energy, (d) 50 J of energy is
destroyed in this process.

10. Volume can be used to measure the temperature of a
solid because (a) atoms swell as their temperature
increases, (b) atoms collide more often at higher tem-
peratures, (c) the potential energy of atomic interac-
tion gets weaker at higher temperatures, (d) the
average separation between atoms increases as
atomic kinetic energy increases.

11. Zero degrees Kelvin is defined as the temperature at
which (a) ice coexists with sea water at 1 atm, (b) ice
coexists with pure water at 1 atm, (c) steam coexists
with pure water at 1 atm, (d) one mole of argon gas
would exert zero pressure.

12. A system of fixed mass does 300 J of work on its sur-
roundings and takes in 500 J of heat from its surround-
ings. As a result, the internal energy change of the system
is (a) �800 J, (b) �200 J, (c) �200 J, (d) �800 J.

13. A closed system interacts with its surroundings. For
which of the following is �U 	 0? (a) W � �500 J,
Q � 0, (b) W � �500 J, Q � �300 J, (c) W � �100
J, Q � �100 J, (d) W � �100 J, Q � �100 J.

14. Two different reversible processes connect the same
two equilibrium states. Which of the following must
be the same for the two processes? (a) �U and �T, (b)
Q and W, (c) Q and �T, (d) �U and W.

Questions 15 and 16 refer to: A column of liquid mercury
inside an evacuated glass tube is used as a thermometer. As
the equilibrium temperature of the thermometer increases,
the length of the mercury column increases.
15. In order for this system to measure temperature as

stated (a) the density of mercury must be greater than
that of glass, (b) the density of mercury must equal
that of glass, (c) the coefficient of volume expansion
of mercury must be greater than that of glass, (d) the
coefficient of volume expansion of mercury must
equal that of glass.
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16. When the bulb (bottom) of a mercury–glass ther-
mometer is placed in contact with a hot body the length
of the mercury column initially falls. That is because
(a) the hot body initially draws energy out of ther-
mometer, (b) the glass temperature is initially higher
than the mercury temperature when placed in contact
with the hot body, (c) at the temperature being mea-
sured glass expands more per unit volume than mer-
cury, (d) the thermometer is upright; this wouldn’t
happen if the thermometer were lying on its side.

17. A patient with a high fever is given an isopropyl alcohol
rubdown. That is because alcohol (a) evaporates rapidly
at temperatures around 40°C, (b) has a large heat capac-
ity, (c) has a large coefficient of thermal conductivity, (d)
has a large coefficient of volume expansion.

18. 310 K is closest to the temperature of (a) the interior
of a living human, (b) a comfortable room, (c) ice
water, (d) liquid nitrogen.

19. A copper block of mass 2 kg is placed in good ther-
mal contact with a copper block of mass 1 kg. When
the blocks are in thermal equilibrium (a) they have
the same amount of internal energy, (b) the more mas-
sive one has half the internal energy of the less
massive one, (c) the more massive one has twice the
internal energy of the less massive one, (d) they con-
tain the same amount of heat.

Questions 20 and 21 refer to: The specific heat of alu-
minum is twice as big as the specific heat of iron. One kg
of aluminum is placed in good thermal contact with 1 kg
of iron. After the two bodies have come into thermal equi-
librium 1 J of heat has flowed out of the aluminum.
20. Assuming no other body is involved, which of the fol-

lowing is true? (a) 0.5 J of heat has flowed into the
iron. (b) 1 J of heat has flowed out of the iron. (c) 1 J
of heat has flowed into the iron. (d) 2 J of heat has
flowed into the iron.

21. The temperature change of the aluminum is (a) half as
large as the temperature change of the iron, (b) the
same as the temperature change of the iron, (c) twice
as large as the temperature change of the iron, (d)
unrelated to the temperature change of the iron.

Questions 22 and 23 refer to an experiment in which two
equal mass cylinders of different materials (A and B) at
different temperatures are put into thermal contact within
an insulated container.
22. In this experiment cA�TA � �cB�TB. This is because

(a) the temperature loss of A equals the temperature
gain of B, (b) the internal energy loss of A equals the
internal energy gain of B, (c) the process involved is
adiabatic, (d) the process involved is isothermal.

23. One room temperature cylinder and one cold cylinder
are placed in thermal contact, but not inside the
Styrofoam container. The initial temperatures of the
cylinders are measured to be 20 and 0°C, respec-
tively. The temperature at which the two cylinders
come into equilibrium will be (a) about 10°C, (b) a

few degrees above 10°C, (c) a few degrees below
10°C, (d) none, because the two cylinders will never
come into equilibrium if they are not in the Styrofoam
container.

24. The source of the tremendous energy associated with a
hurricane is water vapor condensing into liquid
droplets. Which of the following is most closely related
to this effect? (a) Volume expansion, (b) specific heat,
(c) vapor pressure, (d) latent heat of vaporization.

25. Work done by a fluid requires (a) the fluid’s volume
to change, (b) the fluid’s pressure to change, (c) the
fluid’s internal energy to change, (d) a heat flow.

26. A desk has a wooden top and metal drawer. When you
place your hand on the wood top it feels warmer than
when you place your hand on a drawer. That is because
(a) wood has more internal energy per atom than metal
at room temperature, (b) wood has a lower heat capac-
ity than metal at room temperature, (c) wood has a
lower coefficient of thermal conductivity than metal at
room temperature, (d) your hand makes better thermal
contact with wood than it does with metal.

27. A snowbank covered with fine dark soot melts much
faster on a sunny day than a snowbank with a bright
white surface. That is because (a) the emissivity of a
dark snowbank is greater than that of a white snow-
bank, (b) the melting point of snow lying below a
layer of soot is less than for pure snow, (c) the specific
heat of snow lying under a layer of soot is less than for
pure snow, (d) the thermal conductivity of snow lying
under a layer of soot is greater than for pure snow.

28. A liter container of O2 gas obeys the relation PV �
NkBT. The number of atoms in the gas equals (a) 2N,
(b) 3N/2, (c) N, (d) N/2.

29. Suppose a liter of N2 gas has its absolute (Kelvin)
temperature doubled. The average translational speed
of an N2 molecule will (a) increase by a factor of 2,
(b) increase by a factor of 3/2, (c) increase by a fac-
tor of (2)1/2, (d) remain the same.

PROBLEMS
1. Find the temperature at which the numerical values of

the Celsius and Fahrenheit temperatures agree.
2. When it is 0°F in the northeastern United States,

someone in southern Europe mistakenly thinks that it
is 0°C. By how many °C and °F are they wrong?

3. If a cube of aluminum is heated from 20 to 100°C and
one edge expands by 0.19 mm, by how much has its
volume increased? By what percent has its volume
increased?

4. Water at 10°C is poured into molds to make cubic
blocks of ice at �20°C. If the molds are 20 cm on a
side what fraction of the mold should be filled for the
ice to just make a cube?

5. Some lasers use invar rods to define the optical length
of the laser because invar has a very low thermal
expansion coefficient (0.9 � 10�6/°C). Calculate the
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length change of a 1.2 m invar rod when heated from
room temperature (20°C) to 45°C.

6. How many ideal gas molecules are there in a 1 cm3

volume at STP (standard temperature and pressure of
0°C and atmospheric pressure)? If the gas is argon,
what is its mass density?

7. What is the rms velocity of the oxygen molecules in
the air at room temperature (20°C)?

8. What is the ratio of the rms velocity of oxygen to that
of nitrogen molecules in air?

9. Two pressurized gas tanks at room temperature have
a sealed gas valve between them. One compartment
with a 20 cm3 volume has nitrogen gas at a 100 atm
pressure and the other one with a 50 cm3 volume has
nitrogen at a 25 atm pressure. If the valve is opened,
what will be the final common pressure?

10. Find the work done when 1 mol of an ideal gas at
room temperature is isothermally heated to twice its
volume.

11. How many moles of water are there in 1 L? How
many water molecules is this?

12. Given the following ten numbers, calculate their rms
value and compare it to their average value: 3, 5, 2, 8,
4, 3, 6, 5, 6, 4.

13. Suppose an 80 kg person takes in 3000 calories
(1 calorie � 1 kcal � 4180 J) of food energy per day.
Out of this, the body requires about 1800 just to
maintain itself at rest (the basal metabolic rate). If our
muscles are 20% efficient and the balance of the food
energy is used to do work, calculate how many flights
of 3 m tall stairs the person can go up in a day with-
out using any stored energy.

14. The caloric value of fats is more than twice that of pro-
tein or carbohydrates. Each gram of fat is equivalent to
about 9.3 Cal, whereas a gram of protein or carbohy-
drate is equivalent to about 4.1 Cal. If a 200 lb (90.8 kg)
man wanted to “burn” off 5 lb (2.3 kg) of fat, how
long would it take him bicycling where heat is gener-
ated at 6 Cal/min? Running, where heat is generated at
15 Cal/min? This points out why it is easier to lose
weight by reducing calorie intake.

15. Ice is added to 500 cm3 of water at 30°C. How many
grams should be added so that the final temperature
will be 5°C when it has all melted?

16. Although different types of foods, with different com-
positions of protein, carbohydrates, and fats, give dif-
ferent caloric values, the different pathways of
oxidation of these nutrients all end up generating
about 5 kcal of energy per liter of oxygen. Based on
this, how many liters of air (20% oxygen) must be
breathed in a day in order to burn 3000 Cal if all the

O2 were burned. Then calculate the actual fraction of
the oxygen consumed by that person using an average
breathing rate of 12/min with a lung volume intake
of 0.5 L.

17. Physical fitness of an individual can be measured by the
rate of maximum oxygen uptake during exercise. This
reflects the person’s ability to sustain aerobic energy
pathways during exercise, producing heat at a rate of
5 kcal per liter of oxygen. Anaerobic pathways are only
about 50% as efficient and lead to the buildup of lactic
acid in the muscles, causing muscle cramping. A typi-
cal maximum oxygen uptake rate for a normal young
male is about 2.5 L/min, although a well-trained athlete
might double this rate. Assuming the muscles are 20%
efficient, find the maximum mechanical power output
in W possible for an athlete (remember to subtract the
basal metabolic rate of about 80 kcal/h).

18. Estimate the rate of heat loss from the skin due to
thermal conduction and thermal radiation when
doing moderate exercise. Under these conditions the
skin surface temperature is 31°C. Take the ambient
temperature to be 23°C, the emissivity to be 0.97, the
body surface area to be 2 m2, and assume a 5 cm
layer of air through which heat is conducted in the
absence of any convection, so that at 5 cm from the
skin the temperature is reduced to the ambient
temperature.

19. In addition to conduction and radiation cooling of the
body when exercising, evaporation of perspiration
also is very effective in giving off heat. During mod-
erate exercise the two to three million sweat glands
produce about 8 g of sweat per second. From the heat
of vaporization of water at 37°C of 580 kcal/kg, find
the rate of energy loss from the body due to sweating,
assuming that 5% of the sweat evaporates.

20. The SR-71 Blackbird is the world’s fastest airplane,
flying at altitudes over 80,000 feet and at over three
times the speed of sound (Mach 3). The aircraft is
107 feet 5 inches long and when it lands after a long
flight it is too hot to be touched for about 30 min and
is 6 inches (15.24 cm) longer than at takeoff.
(a) How hot is the Blackbird when it lands, assuming

that the coefficient of linear expansion is 24 �
10�6 K�1 and its temperature at takeoff is 23°C.

(b) Suppose that the plane looks like an isosceles tri-
angle. If the wingspan (base of the triangle) is
55 feet 5 inches, what is the new cross-sectional
area of the plane when it lands?

(c) Suppose that the plane loses heat by radiation. What
is the net rate of heat loss through the upper surface
of the plane if the emissivity of the plane is 0.80?
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Our discussion of thermodynamics in the last chapter was limited to energy consid-
erations. Although energy conservation is a necessary requirement for any process to
occur, it is not a sufficient condition. There are many energy-conserving processes
that occur spontaneously, but that are not reversible even though that reversed process
would also conserve energy. In this chapter we continue our introduction to thermo-
dynamics with a discussion of entropy and the second law of thermodynamics. We
relate entropy to the degree of disorder in an isolated system through a microscopic
picture and we show that this disorder always increases with time. Life is a constant
struggle to maintain a high degree of order. The corresponding reduction in entropy
is accomplished at the expense of even more disorder in our environment in order to
satisfy the second law of thermodynamics. We next discuss Gibbs free energy, related
to chemical potential, the most important energy concept in biology. This thermody-
namic state variable is a measure of the energy available for useful work at constant
temperature and pressure, the usual conditions of life. The chapter concludes with
several biological applications of these concepts, including ATP hydrolysis, photo-
synthesis, and conformational changes in biomolecules.

1.  ENTROPY AND THE SECOND LAW 
OF THERMODYNAMICS

Many processes in nature that conserve energy and do not violate any of the other fun-
damental principles we have introduced so far in our study of physics simply do not
occur. Now when a basic physical process never happens even though it seems to sat-
isfy all of the fundamentals in our theories of knowledge, there is something amiss.
From many historical examples, it is usually the case that there is some new principle
that would be violated by the occurrence of such a process. We begin this section with
a brief discussion of some examples of processes in different areas of physics that never
occur, leading to a qualitative presentation of the common principle that prohibits them.

In mechanics, all sliding objects eventually come to rest because their kinetic energy
has been lost due to what we call friction, the process by which mechanical energy is
transferred to heat. Energy has not been lost, but the “useful” form of energy, which in
mechanics is the sum of kinetic and potential energy, called mechanical energy, has been
lost through its transfer to internal energy. Once a sliding object comes to rest, it is never
the case that the internal energy of the object and surroundings spontaneously transfers
back to the object in the form of mechanical energy making it move again. We conclude
that although energy would be conserved in the reverse process, once “organized” energy,
such as kinetic energy in which all molecules of the moving object translate together, is
converted to random thermal motions of molecules, the process is irreversible. It is too
improbable that all the molecules will spontaneously coordinate their motions in order to
propel the object again.

13Thermodynamics: Beyond 
the First Law
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In fluid mechanics there are many similar examples. Suppose
that a gas is confined to half of a closed container by means of a par-
tition. If a hole is punctured in the partition the gas will leak into the
other half of the container, eventually reaching a uniform distribu-
tion throughout the container (Figure 13.1). Energy conservation
would not be violated if the molecules on one side of the partition
spontaneously re-entered the other side and all the gas returned to

only one side of the container. We know, however, that this process is fundamentally irre-
versible because it is again too improbable that such a sequence of events would occur.

An example from thermodynamics further illustrating this point is the inevitable cool-
ing of hot coffee. A thermos bottle can be used to reduce the rate of heat loss from the cof-
fee compared to when it is just in a cup. “Vacuum” bottles reduce the conduction of heat,
and the silver coating on the glass inner bottle reduces radiation losses. Despite this, the
coffee eventually will lose heat to its surroundings and the cooling process is irreversible.
Irreversibility here means that the original situation cannot be restored without additional
energy input. Of course the coffee can be heated again, but the heat lost to the surround-
ing air cannot be collected and used alone to reheat the coffee to its initial temperature
without additional energy input, even though such a process would conserve energy.

What is common to all of these examples is the notion of the probability of the
occurrence of an event and of its time-reversal event. The bookkeeping of energy
conservation is satisfied for both events, however, the likelihood of the reversal is
essentially zero. Here we see how a methodology, known as statistical mechanics,
can be developed for calculating the likelihood of events. We start with some simple
notions from coin-tossing problems.

If we flip a legitimate coin in the air, there is an equal probability of getting a head
or tail when it lands. Flipping three coins in the air at the same time results in a vari-
ety of possible “outcomes” including 0, 1, 2, or 3 heads, but these do not occur with
equal probability. There is only one combination that gives either 0 or 3 heads,
whereas there are 3 possible combinations that will result in either 1 or 2 heads, giv-
ing a total of 8 possible distinct “states” for the coin flip (Figure 13.2). As more and
more coins are flipped together the total number of different possible states grows
rapidly (with N coins, the number is 2N; with N � 100, the number is about 1030 or
more than the number of protons in your body!), and the number of possible outcomes
is much smaller (in the case of N coins, there are simply N � 1 possible outcomes;
what are they?). No matter how many coins are flipped, the number of states resulting
in the most “ordered” outcomes of all heads or all tails remains just 1 so that those
events become essentially impossible as the number of coins increases to a number of
100. Flipping 100 coins and finding 100 heads would be the equivalent to a cold cup
of coffee spontaneously heating up by absorbing heat from the room temperature air.

FIGURE 13.1 When a small hole is
made in the partition between the
two chambers shown on the left,
the gas distributes itself uniformly
as shown on the right. The reverse
process never occurs.

FIGURE 13.2 The three coin flip
experiment with up and down
arrows indicating heads or tails.

Example 13.1 Find the number of states and outcomes for the case when 4 fair
coins are tossed and then find the probabilities of each of the outcomes.

Solution: With 4 coins there are 5 possible outcomes (ranging from 4 heads to
0 heads) and 24 � 16 possible states. There is only one way to have 4 heads and
only one way to have 0 heads, so that the probabilities for each of these is 1/16 �
6.25%. There are 4 different ways to have 1 head—each of the 4 coins could be
a head—and similarly there are 4 different ways to have 3 heads—each of the 4
coins could be a tail—so that each of these has a probability of 4/16 � 0.25 �
25%. For 2 heads, the two coins that are heads could be any of the four coins and
we can find 6 ways for this to occur, so the probability for 2 heads is 6/16 �
37.5%. Of course, this last value could have been obtained from noting that the
probabilities must add up to 1 (or 100%). Check this.
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Of the 101 different possible outcomes of the 100 coin flip experiment, which are
most likely? As you should already have guessed the most likely case is 50 heads and
50 tails. Probability theory can tell us that if this experiment is repeated over and over
again that about 90% of the time we will find between 45 and 55 heads out of the
100 coins. The distribution of possible outcomes is fairly sharply and symmetrically
peaked around 50.

In real physical systems, what is analogous to the notion of “states” and “out-
comes” in the coin-toss experiment? To answer this we need to jump ahead a bit. We
show later in this book that the world is governed by quantum mechanics and that, for
atoms and molecules, possible energy values are quantized, or discrete, so that there
are a countable number of different values for the energy of an atom or molecule.
Atoms or molecules cannot have any random value of energy, but must exist in a quan-
tum state with one of a discrete list of possible energies that can be labeled by a num-
ber, a so-called quantum number. These energy states can be pictured as energy levels,
which may be familiar to you from a previous physics or chemistry course, with the
atom or molecule “residing” in a particular level. In Figure 13.3 the energy levels have
a quantum energy separation of ε with this particular atom in the third “excited state”
with an “excitation level” of 3 and an allowed state of motion corresponding to a total
energy of 3ε. We can think of the atom in this state as having 3 quanta of energy, each
worth ε joules.

Now, suppose we have a large number NA of such atoms. Each of the atoms
has its own excitation level and its own corresponding energy. To find the internal
energy of the large system due to atomic motions we just add up all of the
individual atomic motional energies. Thus, we can write the internal energy of
the system as NE ε, where NE, the total excitation level of the whole system, is just
the sum of all of the atomic excitation levels. (For example, if there were three
atoms in the system with excitation levels 4, 5, and 6, the excitation level of 
the system would be 15.) NE is the total number of energy quanta the system con-
tains. Typically, for a macroscopic system both NE and NA will be huge, perhaps
1025 or so.

A microstate of this system is one of the very large number of states described
by a particular set of excitation levels, one for each atom in the system. It is one of
the premises of statistical mechanics that at equilibrium all allowed microstates of a
system (those satisfying conservation of energy) are equally probable. Microstates
are analogous to the 2N different possible “states” of the coin-flip experiment. Unlike
the heads or tails options for a coin, we are dealing with rolling a huge number of
special dice, one for each atom, each of the dice with an enormous number of faces
representing the different excitation levels of an individual atom rather than the usual
six faces.

However, just as with the coin-flip experiment, when all is said and done, what
is most important are the “outcomes”: how many heads we will get with what prob-
ability for N coin flips. The details of which particular coin landed as a head or tail
are not important. In our atomic system, the analog to an outcome is a macrostate.

This is specified by the total numbers of atoms with each of the possible excitation
levels, known as the occupation numbers. Occupation numbers together with the
associated excitation levels represent the information needed to determine the total
energy of the system. There will be many microstates corresponding to each par-
ticular macrostate, just as there are many different possible coin-flip sequences that
result in the same outcome (except for all heads or all tails). Because, as we have
noted, each microstate is equally likely to occur, the probability of a particular
macrostate will depend solely on the number of microstates corresponding to a
given macrostate. Thus, as we saw in the coin-flip experiment, the possible out-
comes (or macrostates) may be limited by probability to those that are most likely
to occur based on those with the largest number of states (microstates) leading to
that outcome.

0

ε

2ε

3ε

4ε

•

FIGURE 13.3 Typical energy level
diagram for an atom, with the 
lowest (ground) state and several
excited states shown (there are
many more levels above the fourth
excited state not shown; also, in
many cases the energy levels are
not equally spaced). A typical
energy spacing is 10�21 J for
atoms in a solid and 10�23 J for
atoms in a gas.



The information on the numbers of microstates in a given macrostate (the occu-
pation numbers) is contained in a function �, known as the statistical weight of the
system, that is directly related to the entropy S of the system

(13.1)

where kB is the Boltzmann constant. Entropy is thus a statistical function depending
ultimately on the occupation and quantum numbers but indirectly on the state vari-
ables, such as pressure, temperature, and volume, and is a measure of the likelihood
of that particular macrostate, given total values for energy and other conserved quan-
tities. One immediate question is how much choice there is in the macrostate that the
system occupies. In our coin-flip experiment with only 100 coins we saw that the
probabilities are fairly sharply peaked with a probability of about 90% that the out-
come is between 45 and 55 heads. With the typically much larger numbers of
microstates in thermodynamic systems, the range of parameters of the final macrostate
is extremely sharply peaked.

Having introduced some concepts that can be used to describe a thermodynamic sys-
tem (with large numbers of atoms), we’re now in a position to state a new law of physics. 

S = kB ln Æ,
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Example 13.2 Suppose that there are four identical atoms each with equally
spaced energy levels given in Figure 13.3 and with a total energy of 6ε. Find all
the possible macrostates of the system by defining their occupation numbers.

Solution: Because the total energy is 6ε, we need to include energy levels up to that
value, because one possible macrostate has 3 atoms in the zero energy ground state and
1 atom with excitation level 6. If we write out the occupation numbers of this state as
(3,0,0,0,0,0,1) where from left to right we show the number of atoms at increasing exci-
tation levels from the ground state to 6, we can use this notation to find the other pos-
sible macrostates. These can be written as: (2,1,0,0,0,1,0), (2,0,1,0,1,0,0),
(2,0,0,2,0,0,0), (1,2,0,1,0,0), (1,1,1,1,0,0,0), (0,3,0,1,0,0,0), and (0,2,2,0,0,0,0). We note
that not all of these macrostates are equally likely. For example, there are 4 microstates
that could correspond to the macrostate given by (3,0,0,0,0,0,1), corresponding to a dif-
ferent one of the 4 atoms having excitation level 6. For the macrostate given by
(1,1,1,1,0,0,0) there are 4 choices for filling the first state, 3 for the second, 2 for the
third, and the remaining atom fills the fourth so that there are 4! “4-factorial” �
(4)(3)(2)(1) � 24 different possible microstates in this case. Thus this macrostate is six
(24/4) times as likely as the one in which only one atom has all the energy.

The second law of thermodynamics states that the total entropy of a closed

system always increases,

(13.2)

with �S � 0 only in the special case of a reversible process. 

¢S Ú 0,

A reversible process is an idealization of a process that is performed slowly enough
so that the system remains in equilibrium throughout, a so-called quasistatic process.
In general, the total entropy of a closed system must increase; this is fundamentally
a statistical statement about probabilities of occupation numbers. As we saw in the
last chapter the internal energy of a system can change over time by either work being
done or by a flow of heat. Given a variety of different events that can occur (satisfy-
ing energy conservation and other conserved quantities), the one having the most



possible microstates will be the one that occurs. The number of different microstates
of a particular macrostate is intrinsically related to its increased “randomness.”

Mechanical energies are more “organized” and much less “random” in nature than
thermal energies. The second law implies that, although both forms of energy may be
equal in magnitude, statistics drives reactions or events toward producing thermal energy
from mechanical energy in order to maximize entropy. Frictional forces are nonconser-
vative precisely because the thermal energy they produce cannot be reversibly trans-
formed back to mechanical energy. A general conclusion is that whenever the entropy of
a closed system increases, the amount of energy available to do work is decreased.
Increasing entropy degrades the usefulness of energy. To see this from a microscopic
picture, let’s now return to our atomic model system of NA atoms with energy levels
shown in Figure 13.3 and ask how we can change the energy of the system.

We can change the internal energy of a system of atoms in three ways. We might
add or subtract atoms (change NA). We might increase or decrease the atomic energy
level spacing (ε). And we might increase or decrease the total number of energy
quanta of the system (NE), leaving the number of atoms fixed. As in previous dis-
cussions, we only consider closed systems, ones with fixed numbers of atoms, so that
only the latter two options are available.

So, how can ε be changed? The exact value of ε depends on the details of how
the atoms interact with each other and their container, but if the average region in
which an atom is confined has length L, the value of ε is roughly proportional to 1/L2.
(We study this in some detail in Chapter 25, but the proportionality arises from quan-
tum mechanics.) That is, by changing the volume that the system is confined in we
change ε. In fact, if we change the volume very slowly, each atom will stay in its
allowed state of motion and the total excitation number will not change. (This is a
formal result derived from quantum mechanics.) Very slow change in volume only
changes ε and not NE. That sounds a lot like what we have previously called work.

Similarly, we can change NE without changing ε. We place our system in close
contact with a second system so that the atoms at the interface can swap energy. If
one system has more energy per atom than the other (a larger value of εNE/NA) and
if atomic interactions can effectively be taken to be random processes, then random
scrambling will cause a preferential flow of quanta of energy from the system with
the higher energy per atom to the system with lower. This is demonstrated in
Figure 13.4. Here white means “hot” (high number of energy quanta) and dark means
“cold” (low number of quanta). Random swapping of energy quanta between atoms
preferentially moves energy from the hot side to the cold because there are more
quanta to select from on the hot side. (Quanta from the cold side move to the hot side
also, but there are just fewer of them at first from which the random swapping process
can choose.) As time goes on the quanta become more-or-less evenly distributed
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FIGURE 13.4 Sequence of snapshots of the flow of energy quanta from the initially hot
(left) side to the colder (right) side of a system.
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throughout the container. All of this sounds a lot like what we have called heat flow.
So here’s the atomic level interpretation of work and heat flow. Changing the energy

level spacing ε of the atoms in a system corresponds to work; changing the number

of energy quanta a system has corresponds to heat flow.

Entropy has something to do with assessing how much internal energy is avail-
able to do work. To be useful, internal energy has to be concentrated. The more dilute
or disorganized the internal energy, the less useful it is and the larger the entropy.
Microscopically, entropy is a measure of the number of different ways you can dis-
tribute NE quanta over NA atoms. This is precisely the statistical weight of Equation
(13.1) and the occupation numbers represent the bookkeeping needed to keep track
of this. The more ways you can divvy up the fixed total energy in packages of quanta
of energy over the atoms of the system, the less concentrated the energy will be and
the less useful it will be. The more ways you can divvy up quanta over the atoms of
the system, the more “mixed up” the energy is, the more disordered it is, and the
greater is the system’s entropy. Microscopically, entropy is a measure of disorder.

The formal expression for counting all of the different arrangements of energy is

where “!” means “factorial:” N! � N(N � 1)(N � 2)(N � 3) . . . 1, as in Example 13.2.
The number of arrangements of energy quanta over atoms increases extremely
rapidly as either NE or NA increase. For example, suppose NA � 10 and NE � 10. Then
A � 92,378. If the number of atoms just doubles to NA � 20, still with NE � 10, then
A � 3,628,800, an increase of a factor of 40. Similarly, if NA � 10 but the number of
quanta doubles to NE � 20, then A � 10,015,005, an increase of a factor of 110.

One immediate consequence of all of this is that unusually concentrated arrange-
ments of energy in a large system are extremely unlikely. Suppose we have 20 atoms
and 40 energy quanta. The number of ways to arrange 40 quanta over the 20 atoms is
A � 1.22 � 1017. The number of ways of arranging the 40 quanta on just 18 of the
atoms is 3.56 � 1014. Thus, if all of the different arrangements of energy over atoms
are equally likely—that’s the random swapping, microscopic form of “thermodynamic
equilibrium”—the chance of finding this system with all of its energy located on just
18 of the 20 atoms is 3.56 � 1014/1.22 � 1017 � 0.0011; that is, there’s about a tenth
of a percent chance of this happening spontaneously. This result is for just 20 atoms
and 40 quanta. In a real macroscopic system where the numbers of atoms and quanta
are about 1025 the chance that any even slight spontaneous concentration of energy
would occur is unimaginably small (although, of course, it could happen). The point
is, if we start a system off with its energy concentrated and let random atomic swap-
ping processes mix energy units around for a while, the chance that the energy will
spontaneously (just via the swapping processes) reassemble itself into a concentrated
state is essentially zero. Increasing the number of ways to distribute the available
energy among the atoms of a system degrades the usefulness of the energy. Thus, from
this perspective thermodynamic equilibrium is just a matter of counting: there are
vastly more states a large system can be in with its energy scattered about (and less
useful) than states with energy clumped (and more useful).

It can be shown that entropy can be defined in an equivalent, strictly thermody-
namic way based on the heat flow into or out of a system and its temperature. In these
terms the second law of thermodynamics is written as

(13.3)

where Q is the heat input to the system at absolute temperature T and the equality
holds again only for processes that are quasistatic. Loosely speaking, T�S is a mea-
sure of the energy content of the “order” in a system. From Equation (13.3) it is seen

¢S Ú
Q

T
,

A =
(NE + NA - 1)!

NE !(NA - 1)!
,



that entropy has units of J/K or kcal/K, but often is expressed in molar units of
kcal/(mole-K).

So, then, how do we understand the macroscopic relation �S � Q/T in terms of
atoms? This macroscopic relation says that when heat flows into a system at constant tem-
perature, the system’s entropy increases. But, microscopically entropy is disorder. So how
does Q/T 	 0 imply greater disorder? Well, if heat flows into a system at constant tem-
perature, the system’s volume has to increase, otherwise, the internal energy would
increase and the temperature would increase also. Because the volume increases, the
region of confinement of each atom increases and the energy level spacing decreases
(recall that ε ≈ 1/L2). The internal energy of the system starts out at εNE, but ε changes
to a smaller value when volume increases. To keep the internal energy constant (temper-
ature is constant) NE must therefore increase. This means that the number of quanta in the
system increases when heat flows in at constant temperature. Increase in quanta, as we
have argued, produces an increase in the number of ways of dividing up quanta among
atoms, or more disorder. This is the microscopic reason why entropy change is Q/T.

Remember that the second law speaks of the total entropy of a closed system. We
have seen that there are two classes of systems: closed, exchanging only heat but not
mass with the surroundings, and open, exchanging mass as well as heat. The second
law applies directly only to closed systems. Open systems can appear to violate the
second law and have a decreasing entropy. Life itself is fundamentally a process that

reduces entropy in a series of self-organizing processes. There is no violation of the
second law because life cannot occur as a closed system. When the surroundings are
included, the total entropy of the larger closed system always tends to increase. We
are able to create ordered structures within our cells and organs at the expense of
excess energy that we acquire from food. Said differently, we are able to live (and
reduce our entropy) by increasing the entropy of our surroundings even more.

An interesting and important example of a molecular application of entropy is the
structure of water. Water molecules are polar structures that form long-range hydrogen
bonds that we study in Chapter 15. Those bonds are relatively weak and constantly break
and reform on a picosecond (10�12 s) timescale. Because each water molecule has two
hydrogen atoms and therefore can have two possible hydrogen bonds, water can form
a network of bonds (illustrated in Figure 13.5), known as a cluster, that may persist for
~30 ps before “dissolving.” Pure water can be pictured as a dynamic assembly of clusters
that constantly break and re-form so that there is a fairly high degree of ordering in the
water. In fact, the highly unusual thermal expansion property of water below 4°C,
discussed in Section 2 of the previous chapter, is due precisely to the nature of the
growing cluster formation as the temperature approaches the freezing point.

When a macromolecule is immersed in water it disrupts the organized clustering of
water molecules in its neighborhood. Due to this effect polar regions on the macromol-
ecule will tend to lie near water whereas hydrophobic portions tend to pack together
internally to minimize contacts with water. An unfolded macromolecule will sponta-
neously fold into a characteristic native conformation (see Section 3 below). This phe-
nomenon appears to be driven by strong interactions between the hydrophobic portions
of the macromolecules, and is therefore called the hydrophobic interaction, but in fact
the dominant interactions are entropic and are driven by the water hydrogen bonding.
Minimum energy with the macromolecule impurity present is achieved in the more
ordered state with water structure maintained as well as possible. The same effect occurs
in membranes where the hydrophobic lipids aggregate within the membrane bilayer so
that the polar heads can be exposed to water, minimizing the decrease in ordering of the
water. This explains the very common bilayer structure of biological membranes.

2.  GIBBS FREE ENERGY

So far in our discussion of thermodynamics we have studied two energy functions,
the internal energy U and the enthalpy H, H � U � PV, both introduced in the last
chapter. We have also seen that in a closed system the entropy will be maximized,
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FIGURE 13.5 Cluster of water
formed by hydrogen bonding.



338 T H E R M O DY N A M I C S :  B E Y O N D T H E F I R S T L AW

and in an open system the entropy of the {system � surroundings} will
be maximized. It is useful to introduce another energy function, the
Gibbs free energy G, that is particularly useful in open systems at con-
stant temperature and pressure, the usual conditions in biology. We show
that the free energy of an open system tends to decrease and that events
(such as chemical reactions) will proceed spontaneously so long as the
free energy decreases.

The Gibbs free energy is defined by

(13.4)

Under conditions of constant temperature and pressure, the only
energy changes that can occur within an open system are P�V work, heat
flow to or from the surroundings and other forms of useful work such as
chemical or electrical work. Under those conditions, changes in free
energy represents just those changes in “useful” work, hence the term
“free,” meaning available to do such useful work. The discussion in the
box shows this and that the Gibbs free energy must always decrease as a
system approaches equilibrium and must remain at that minimum value at
equilibrium.

For an isothermal process �G � �H � T�S, thus depending on the
signs of �H and �S for a particular system we can distinguish four dif-
ferent possibilities (see Table 13.1). If �H 
 0 and �S 	 0 then �G is
certainly negative and the process will occur spontaneously, decreasing
the free energy until equilibrium occurs. Similarly if �H 	 0 and �S 
 0,
then �G is positive and the process cannot proceed spontaneously, but
could only proceed with some outside energy source. The two other cases
are not as clear. If �H 	 0 and �S 	 0, then �G will be positive at low
temperature, but may become negative at high temperature. Similarly if
�H 
 0 and �S 
 0, then �G will be negative at low temperature, but
will become positive at high temperature. In these cases the process will
only be spontaneous below or above a threshold temperature.

G = H - TS = U + PV - TS.

Table 13.1 Spontaneity of Thermodynamic Processes

�H �S �G Reaction Occurs


0 	0 
0 Always

	0 
0 	0 Never


0 
0 
0 at low T Only at low T

	0 	0 
0 at high T Only at high T

The rest of this section explores the application of Gibbs free energy
to various types of chemical reactions as a prelude to the next section on
biological applications. In a solution, chemical work can be done by
changing the numbers and types of components (reactants and products)
within the system. In this case the change in the Gibbs free energy can
be written as

(13.5)

where the summation is over all the species {i} in solution, ni is the
number of moles of species i, and �i is the Gibbs free energy per mole,
known as the chemical potential, of species i.

In the special simple case of a phase equilibrium between two
species, for example, water and ice, Equation (13.5) becomes

¢G = ©1¢Gi2 = ©1mi¢ni2,

We can show, in a straightforward way,
that the Gibbs free energy must decrease
with time t in an isobaric isothermal
process. Using the first law, dU � Q � W,
for our system, and writing W � PdV, 
we have

where we have assumed an isobaric
process (dP � 0, so that d(PV ) � PdV ),
and used the definition H � U � PV.

Inserting this expression for Q into the
thermodynamic form of the second law
(Equation (13.3)), we have

and by differentiating with respect to time
we can write

Putting both terms on the left side of the
inequality

where we have also assumed an isother-
mal process (dT � 0). We conclude that
the free energy decreases with time for all
such systems until a minimum is reached
at which thermal equilibrium has been
established. In the special case when no
heat flows (dH/dt � 0) then the decrease
in free energy is matched by the increase
in entropy alone.

To investigate the significance of the
free energy, we start with its definition
(Equation (13.4)) and write (using the
product rule) that

so that in an isobaric isothermal process 
(P � T � constant), we have

Writing the first law as dU � Q � W, and
noting that for a reversible process
Q � TdS, we have on substituting for dU,

dG = dU + PdV - TdS.

dG = dU + PdV + VdP - TdS - SdT,

d(H - TS)

dt
=

dG

dt
… 0,

dH

dt
… T 

dS

dt
.

Q = dH … TdS,

Q = dU + PdV = dU + d(PV) = dH,



(13.6)

Because nw � ni � constant, we know that any change in the num-
ber of moles of one species is due to the opposite change in the other so
that It follows from Equation (13.6) that at equilibrium

when �G � 0, we must have

so that the molar chemical potentials of both species must be equal at
equilibrium.

Let’s consider in some detail the thermodynamics of a general
bimolecular chemical reaction

(13.7)

where nA is the relative number of moles of species A reacting with nB moles of B to
produce nC moles of C and nD moles of D. To proceed, we need to know that the
chemical potential can be written for the ith ideal solution component as

(13.8)

where is its chemical potential at some standard condition and ci is its molar con-
centration. At equilibrium the total Gibbs free energy of the reactants must equal that
of the products, resulting in �G � 0 for the reaction, so that we can write

Substituting expressions from Equation (13.8) with appropriate subscripts for
each term, we have

and after using the mathematical facts that n ln(c) � ln(cn) as well as that ln A � ln
B � ln(AB), we find

(13.9)

where G0
total is the first term in parentheses in the previous equation, equal to the net

standard free energy for the reaction. In this expression the cis are now the equilibrium
molar concentrations, although for clarity we do not label them differently. Defining the
equilibrium constant for the reaction Keq as the term in brackets we have that

(13.10)

Note the general form of the equilibrium constant, having its numerator equal to
the product of the equilibrium molar concentrations of the reaction products, each
raised to the appropriate relative number of moles (as in the balanced chemical reac-
tion equation) and its denominator equal to the same relation for the reactants.

Let’s pause to digest these important results. In Equation (13.10), we note that if 
Keq 	 1 then �G0

total 
 0 and the reaction will proceed spontaneously under standard
conditions, a so-called exothermic reaction. If Keq 
 1 then �G0

total 	 0 and the

¢Gtotal
0

= -RT ln Keq.

¢Gtotal
0

+ RT ln a cC
nC cD

nD

cA
nA cB

nB
b = 0,

- nAln(cA) - nBln(cB)2 = 0,

1nCmC
0

+ nDmD
0

- nAmA
0

- nBmB
02 + RT1nCln(cC) + nDln(cD)

nCmC + nDmD = nAmA + nBmB.

mi
0

mi = mi
0

+ RT ln(ci),

nA A + nB B 3 nC C + nD D,

mw = mi,

¢nw = -¢ni.

¢G = mw¢nw + mi¢ni.
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or

We conclude that for a reversible isobaric,
isothermal process the decrease in Gibbs
free energy is equal to the “useful,” non-
PdV, work done by the system.

- dG = W - PdV.

= PdV - W,
dG = (TdS - W) + PdV - TdS
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reaction cannot proceed spontaneously, but requires external energy in
order to occur, a so-called endothermic reaction. In biology many reac-
tions are coupled reactions in which energy from a spontaneous
exothermic reaction may be used to drive an otherwise unallowed
endothermic reaction. The hydrolysis of ATP to ADP is the most com-
mon such spontaneous reaction in cells with a value of �G0

total � �7
kcal/mole at standard conditions (25°C, pH 7; not those in a cell) 
and is used to “drive” many endothermic coupled reactions. We dis-
cuss some aspects of the thermodynamics of ATP hydrolysis in the
next section.

A second important point about Equation (13.10) is that it can be solved for Keq

(13.11)

so that a measurement of �G0
total can be used to determine the equilibrium constant of the

reaction. The term e��G/RT, or when more commonly written in per particle instead of per

mole form, e��E/k
B

T, is known as the Boltzmann factor and gives the relative populations
of the two states separated by energy �E (Figure 13.6). Note that, as we saw in the last
chapter, the term kBT is an energy, equal at room temperature (20°C) to 4 � 10�21 J or
1/40eV (electron-volt, where 1 eV � 1.6 � 10�19 J). In the previous chapter we saw that
kBT is roughly the thermal energy of a gas molecule, so that the ratio in the exponent of
the Boltzmann factor is comparing the energy difference between the two states to the
thermal energy of a particle. When �E is large compared to thermal energies, the expo-
nent is large and negative so that the population of the higher energy state is very small
compared to that of the lower energy state. There is not enough thermal energy to excite
reasonable numbers of particles to the higher energy state. On the other hand if �E is small
compared to kBT then the exponent is close to zero and the exponential is close to one, so
that the populations of the two states are comparable because it is easy to make an upward
energy transition because there is sufficient thermal energy available. We use the
Boltzmann factor in later studies of atomic and molecular systems.

Our discussion has been based on equilibrium thermodynamics alone and as such
does not give any information on times to reach equilibrium. Predictions can be made
of whether reactions will occur spontaneously, but the rates of reactions cannot be
determined from equilibrium thermodynamics alone. In concluding this section, we
briefly consider some issues from reaction kinetics that concern the time-dependence of
reactions. We focus on a simplified version of the bimolecular reaction given by
Equation (13.7) in which two reactant molecules, A and B, produce two product mole-
cules, C and D (so that all ni � 1 in Equation (13.7)).

In a general way the steps of the reaction can be divided into three parts: the
approach of A and B (often by diffusion), the reaction, and the separation of C and D.
The free energy of interaction between molecules can be schematically represented
as a function of the reaction coordinate, as shown in Figure 13.7, where the reaction
coordinate is a parameter that indicates the progress of the reaction and so is related,
but not necessarily proportional, to the elapsed time. The overall free energy change
for the reaction is the net difference between the free energies of the final and initial
states.

Typically in such a reaction, there will be an energy barrier, or activation

energy, that needs to be overcome before the reaction products can be formed. This
may be due to charge interactions or to steric effects requiring a more ordered
arrangement of A and B before they can react. If this activation energy is small, then
the “rate-limiting step” may be the simple coming together of A and B. In this case
the reaction is known as diffusion-controlled (or diffusion-limited). With larger acti-
vation energy, the reaction is said to be reaction-controlled. In this case, remember-
ing that the thermal energies of A and B are not equal but distributed about an
average, only the more energetic molecules with sufficient energy to “climb” the

Keq = e
- 

¢Gtotal
o

RT
 
,

∆E = E2–E1

E1

E2

N1

N2

N2/N1 = e–∆E/kT

E

FIGURE 13.6 The Boltzmann factor
gives the relative populations of
two energy levels with populations
N and energies E.

reactants
A + B 
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E

products
 C + D
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∆E

(ΑΒ)∗

FIGURE 13.7 An energy diagram
for a general chemical reaction
showing the activation energy Eact
of the forward reaction and the
overall free energy change �E. The
particular reaction shown here is
endothermic.



energy barrier can interact and form an intermediate complex (AB)* that can then
form products.

Many reaction-controlled processes in biology are modulated by enzymes,
proteins that effectively lower the activation energy of reactions to enhance their
completion in a process known as catalysis. Enzymes are highly specific, each hav-
ing a unique active site at which binding to a specific macromolecule (substrate)
occurs. Lowering of activation energies by enzymes may speed up that particular
reaction by tremendous factors, often as much as 1014 times. Upon completion of the
enzyme-assisted reaction, the enzyme molecules are released unchanged and can
bind another substrate.

3.  BIOLOGICAL APPLICATIONS OF STATISTICAL
THERMODYNAMICS

In this section several examples of important biological processes are considered
from a thermodynamic point of view. The energy-driving mechanisms of ATP
hydrolysis and photosynthesis are first considered from an overall energy and mole-
cular perspective. As they are important molecular processes in many facets of biol-
ogy, we also briefly consider conformational transitions in macromolecules,
including protein folding, helix–coil transitions in biopolymers and the self-assembly
processes in polymerization.

If the food we eat were to be simply burned, all its energy would go to heat. In
order for our bodies to utilize some fraction of this energy, elaborate reactions occur
that convert some of the energy stored in various foods into ATP. For example, each
molecule of glucose, when completely oxidized, yields about 36 molecules of ATP,
with an energy conversion efficiency of over 50%. Such an efficiency is much higher
than that of manmade motors or engines with typical efficiencies of 10–20%. As you
probably know, ATP is the predominant source of energy for chemical reactions in all
living cells and is usually present at fairly high concentrations of 1–10 mM 
(where 1 mM � 10�3 M).

The ATP molecule consists of the parts shown schematically in Figure 13.8: ade-
nine with ribose attached and the three phosphate groups. Under physiological con-
ditions, ATP is highly negatively charged and has divalent cations (Mg2� or Ca2�)
bound. Hydrolysis (or splitting) of ATP involves the combining of a water molecule
with the phosphate group farthest from the ribose to produce ADP and inorganic
phosphate. The reaction releases a relatively large amount of energy; the farthest
phosphate bond in ATP is said to be a high-energy phosphate bond. The precise total
free energy change from the hydrolysis of ATP to ADP will depend on local concen-
trations of ATP, ADP, and phosphate but typical actual free energy changes in cells
are quite large, ranging from �G � �11 to �13 kcal/mole. This reaction is so favor-
able and likely to proceed spontaneously, that ATP must be constantly replenished in
the mitochondria of cells. If allowed to reach thermal equilibrium, the cell would die.
Rather, ATP concentration is maintained in a complex nonequi-
librium steady-state reaction.

ATP plays an essential role in nearly all biosynthetic reac-
tions, producing new protein (using most of the cell’s ATP) as
well as DNA, RNA, and polysaccharides in all cells. Each day
an average adult hydrolyses as well as produces over 70 kg
(roughly the person’s weight) of ATP. The large free energy
change of ATP hydrolysis can be linked with other reactions that
have positive free energy changes, so that the coupled reactions
become energetically feasible.

Let’s consider an example reaction to illustrate the role of
ATP in synthesizing glutamine, an amino acid. As with all such
syntheses, the key to ATP’s effect is the energetic coupling via a
common intermediate. Figure 13.9 shows the free energy
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FIGURE 13.9 Free energy diagram
for glutamine synthesis. The energy
from ATP hydrolysis is used to form
a high-energy intermediate from
glutamic acid that subsequently
combines with ammonia to form
glutamine. The separate reaction
#2 does not occur without energy
input. Coupling of the two
reactions #1 and #2 leads to an
overall reaction that proceeds
through the common intermediate
with a net release of free energy.
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changes associated with ATP hydrolysis and the unfavorable reaction forming gluta-
mine from glutamic acid and ammonia. This latter reaction alone has a standard free
energy change of �G0 � �3.4 kcal/mole and cannot proceed without a source of
energy. Coupling with ATP hydrolysis to form a “high energy intermediate” allows
the biosynthesis to occur with a net standard free energy change of (�7 � 3.4 �)
�3.6 kcal/mole. In order to replace the macromolecular building blocks of the organ-
ism, ATP must be continually produced. All animals and most microorganisms rely
on photosynthesis as their ultimate source of food.

Green, chlorophyll-containing, plants are the ultimate converters of energy sup-
plied by the sun into oxygen and organic molecules that sustain life. In its most sim-
plistic form, photosynthesis converts carbon dioxide and water to glucose and oxygen
in an overall reaction

The free energy change for this reaction is �G0 � �686 kcal/mole, so that clearly
the process does not occur spontaneously, but must have an outside energy supply
in the form of photons of light. Photosynthesis is a unique process that harvests
photon energy into chemical energy. More than 100 sequential reaction steps have
been elucidated in the overall reaction, each with a specific enzyme.

Briefly, the overall process can be divided into two major portions known as the
light and dark reactions. The light reactions, requiring photons and unique to photo-
synthesis, first convert water to free oxygen, protons, and electrons. The protons are
pumped across a membrane generating ATP, and the electrons bind to an enzyme
(NADP) to be used in a subsequent coupled reaction. The dark reactions use the ATP
and electron–donor enzyme NADP to convert carbon dioxide to glucose. For each
carbon dioxide molecule 8 photons are needed for a total of 48 photons per glucose
molecule. The efficiency of conversion of photon energy at the site of photon absorp-
tion, the reaction center, is about 20%, whereas the overall efficiency of photosyn-
thesis is about 5% under optimal conditions. Uncovering the molecular details of
photosynthesis is an active area of research involving lots of physics. For example,
pulsed laser experiments carried out at very low temperatures have shown that the
earliest steps in the direct absorption of a photon occur faster than 1 ps (10�12 s).
Spectroscopy of various types has been essential in unraveling the kinetics and
conformational changes that occur as the photon energy is distributed to various
chemical bonds.

Finally, we consider some thermodynamic aspects of the conformations of macro-
molecules. As discussed in Section 5 of Chapter 3 there are certain biostructural
motifs that are common in nature: the �-helix in proteins, the Watson–Crick double
helix in DNA, or the self-association of identical protein molecules to form complex
structures such as the filamentous polymer actin or smaller aggregates such as hemo-
globin (Figure 13.10). Under certain conditions, macromolecules may spontaneously
form these ordered conformations or aggregates from less well-ordered states of ran-
dom coil or from isolated monomer subunits, respectively. The driving mechanisms
are the detailed electrical bonds that form between portions of the macromolecules, or
between individual subunits, stabilizing the overall structures. Even without that
detailed electrical information, thermodynamic quantities can give some general infor-
mation about the possible conformational reactions and some insight as to the mech-
anisms and stability of various ordered configurations of macromolecules.

Proteins in their native form have unique conformations that consist of regions
of more (helix, 
-sheet) or less (random coil) order. If a protein is mildly heated so
enough thermal energy is added to break the weaker bonds that maintain the
secondary conformation, but not so much as to break covalent bonds along the pro-
tein backbone, then the protein can lose its overall structure and become entirely
random coil in a process known as denaturation. If cooled under controlled condi-
tions, proteins will often spontaneously renature to form native, functioning protein
molecules.

6CO2 + 6H2O: C6H12O6 + 6O2.



We can understand this behavior from some simple thermodynamic arguments.
Comparing the denatured and native helical (for example) conformations, it is clear
that the entropy of the denatured state is greater. This is due to the fact that the coil
is a much more random structure with many more possible ways to distribute its
energy and thus a much larger statistical weight � and entropy related through
Equation (13.1). We can write this as �Scoil 	 0, with reference to the helix state.
Furthermore, it is clear that in order to disrupt the secondary bonding to form the coil
from the helix, heat must be input and so �Hcoil 	 0 for the coil, again compared to
the helix. Combining these, we see that

�Gcoil � �Hcoil � T �Scoil

may be positive at low temperatures, but may become negative at a sufficiently high
temperature (see Table 13.1). Thus, the helix is stable at lower temperatures whereas
the coil is stable at higher temperatures.

Furthermore, we know that where

with these concentrations representing the fraction of protein residues in each
conformation. The transition from having most residues in the helix (small Keq and
therefore large �Gcoil 	 0) to having most in the coil (large Keq and therefore large
�Gcoil 
 0) will occur over a range of temperature as the protein is heated. Note that
if both �H and �S are themselves large as well as positive, then whether their

Keq =
ccoil

chelix
,

Keq = e
-¢Gcoil /RT,
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FIGURE 13.10 Three structural motifs in biomolecules: (a) alpha helix, (b) beta-sheet,
and (c) double helix. (d) The protein lysozyme showing regions of alpha helix 
(red) and beta sheet (green) as well as random coil, and (e) hemoglobin, composed 
of four identical subunits shown in colors.

a
b

e

c

d
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difference in the expression for �G (� �H � T�S) is positive or negative
becomes a very sensitive function of T and the “melting transition” of a pro-
tein will occur over a narrow temperature range as is actually observed for
most proteins (Figure 13.11). Because the values of �H and �S are modest
for each residue’s bonds, this sharp melting occurs as a result of a coopera-

tive transition in which many residues melt simultaneously.
Similarly if the coil-to-helix transition is monitored, one discovers that

this transition is also cooperative, meaning that after several energetically
costly bonds are formed, subsequent bonding occurs with less energy
required per bond. The large initial energy needed to form the several bonds
that greatly restrict possible conformations of the backbone substantially

decreases the entropy. Once that initial start is formed in the helix, additional neigh-
boring bonds form rapidly with less energy per bond required.

For the case of subunit assembly in a protein or other biopolymer, there is a
decrease in entropy as subunits form a larger structure. This is true because the overall
translational and rotational motion of the subunits are coupled together and many side
chains become immobilized as well, reducing the number of degrees of freedom and
thereby increasing the order. A typical decrease in entropy of dimerization is about 0.1
kcal/mol-K, corresponding to about �30 kcal/mol of free energy (the term �T�S, with
T ~ 300 K) at room temperature. In order for dimerization to proceed spontaneously,
there must be a source of free energy for the reaction so that the overall free energy
change is negative. Most of this energy comes from hydrophobic interactions when
water is excluded from the surface area of subunit contact. Because on dimerization less
total protein surface is exposed to water, there is a decrease in this contribution to the
free energy as discussed in Section 1 above. Estimates are that in a typical dimerization
of a protein 10–20 nm2 of surface area previously exposed to water becomes internal-
ized within the dimer. At an average free energy change of about �2.5 kcal/mol/nm2

of surface area, hydrophobic interactions result in a �G of �25 to �50 kcal/mol. In
addition there are specific bonds (hydrogen, van der Waals) between the protein sub-
units causing the dimer to be stabilized. Many macromolecules can continue to add
subunits spontaneously and rapidly to form a long polymer molecule. Included are such
important molecules as DNA, RNA, and the proteins actin and tubulin.

temperature

Helix

fraction

1.0

0
Tmelting

FIGURE 13.11 Typical temperature
dependence of the melting of a
helical protein. The cooperative
transition temperature is
characterized by a relatively sharp
decrease in the helix content of the
protein.

Whereas overall energy conservation holds for an
isolated system, various forms of energy have different
degrees of “order,” or “usefulness,” or entropy. For
example, such a system of particles with only thermal
energy, in the form of random diffusive motions, is less
ordered and less useful than the equivalent amount of
energy in the form of overall translational kinetic
energy. The system with only an overall translational
energy will have lower entropy than the thermal system
because such a translating system is much more
ordered and there are very many fewer ways that the
energy can be distributed over the possible macrostates.
On the other hand, such a system will tend to thermal-
ize, or randomize its motion over time, heading toward
the thermal system, and thus increasing its entropy
over time. This idea is contained in the second law of

CHAPTER SUMMARY
In treating macroscopic systems composed of large
numbers of particles, statistical methods are used. A
microstate is defined as a detailed specific state (one of an
extremely large number) in which each atom in the system
has a particular energy level. A macrostate, in contrast, is
defined by the set of energy levels and the numbers of
atoms in each level, the occupation numbers; this infor-
mation defines the overall energy of the system, but, in
general, there are many, many microstates that all produce
the same macrostate. Entropy, S, is defined in terms of the
statistical weight of the system �, which is a function that
contains all the occupation number information, as

(13.1)S = kB ln Æ.



QUESTIONS
1. The figure below shows a P–V diagram in which 

an ideal gas goes from state A to state A in a
reversible cycle via the processes A→B, B→C,
C→A. In each entry of the following table insert 
�, �, or 0 to indicate the sign of the associated
quantity.

3. Please order the following from highest to lowest
entropy: 1 kg of ice, water, and water vapor.

4. Discuss a colloquial statement of the second law: the
energy available for useful work always decreases.

5. Find three examples of a system going from less
ordered to more ordered and discuss why the
second law of thermodynamics is not violated in
each case.

6. Some cashiers arrange dollar bills to all face the same
way, whereas others do not. Which pile of bills has
more entropy?

Isobaric Isothermal Isochoric Adiabatic

�U

�T

�P

�V

�S

Q

W
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thermodynamics, which states that the total entropy of
a closed system always increases,

(13.2)

with �S � 0 only in the special case of a reversible
process. An alternate statement of this law is contained in

(13.3)

where Q is the heat input to the system at absolute tem-
perature T.

Another thermodynamic variable that is particu-
larly useful in open systems at constant pressure and
temperature, conditions often occurring in biology, is
the Gibbs free energy, G,

(13.4)

As an example of its utility, G can be related to the
equilibrium constant of a chemical reaction, Keq,

(13.10)

Given a set of energy levels in an atomic system,
with energies Ei and populations Ni, the Boltzmann fac-
tor gives the relative populations of any two states, for
example 1 and 2, as

In Section 3, we considered two specific applica-
tions of some of these ideas: coupled kinetic reactions in
the hydrolysis of ATP and the helix–coil melting transi-
tion of a protein. Analysis of both of these involves
studying the Gibbs free energy changes, resulting from
both enthalpy and entropy changes.

N2

N1
= e

-(E2-E1)/kBT.

¢Gtotal
0

= -RT ln Keq.

G = H - TS = U + PV - TS.

¢S Ú
Q

T
,

¢S Ú 0,

A B

C

P

V

2. In the following table check the boxes of those quan-
tities that must be zero in the respective reversible
process. Assume the system is an ideal gas.

�U Q W �S

A→B

B→C

C→A

Total
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7. Discuss the molecular basis of the hydrophobic
effect. In particular which is the more fundamental
process: the attraction of hydrophobic portions of a
macromolecular structure, or the minimization of the
disruption of hydrogen bonding in water?

8. Discuss why the Gibbs free energy is appropriately
named “free.”

9. Discuss the difference between an endothermic
and an exothermic reaction. What state variable
determines which one a particular reaction is?

10. Explain the difference between reaction and diffusion-
controlled chemical processes.

11. What is the difference between the reversible melting
of a biopolymer and its irreversible denaturation?

12. What does it mean for a transition in a macromolecule
to be cooperative? Give an example.

13. What is the function of an enzyme?

MULTIPLE CHOICE QUESTIONS
1. Which of the following statements is false? The

entropy of a closed system (a) is a measure of its
disorder, (b) always increases unless the process is
quasistatic, (c) is a measure of the dilution of internal
energy among allowed microstates of the system, (d) is
proportional to the statistical weight of the system.

2. Suppose there are three identical atoms each with
energy levels given in Figure 13.3. If the total energy
of the system is 3ε, the number of macrostates of the
system is (a) 1, (b) 2, (c) 3, (d) 4.

3. In the previous question one of the macrostates is 
(1, 1, 1, 0) using the notation of Example 13.2. How
many microstates correspond to this macrostate? 
(a) 1, (b) 2, (c) 3, (d) 6.

4. A hypothetical engine operates in a cycle taking in
10,000 J from a hot reservoir and 5000 J from a cold
reservoir. In the cycle it performs 15,000 J of work.
Such an engine (a) obeys both the first and second
laws of thermodynamics, (b) obeys the first law
but violates the second law of thermodynamics, 
(c) violates the first law but obeys the second law of
thermodynamics, (d) violates both the first and sec-
ond laws of thermodynamics.

5. The zeroth law of thermodynamics concerns bodies A,
B, and C, and the relation “is in thermal equilibrium
with.” Suppose each of the following relations is substi-
tuted for “is in thermal equilibrium with.” For which

relation will the “zeroth law” fail? (a) “communicates
via email with,” (b) “is as tall as,” (c) “works in the same
building with,” (assume one job for each), (d) “owns the
same model car as” (assume one car for each).

6. Living cells constitute a low entropy state of matter.
Living cells (a) violate the second law of thermody-
namics, (b) can exist because they help increase the
entropy of the rest of the universe, (c) are not subject
to physical laws such as thermodynamics,
(d) demonstrate that the laws of thermodynamics are
incomplete.

PROBLEMS
1. At rest, our bodies generate heat at a rate of about

100 W. Calculate the minimum amount of entropy we
generate in a day, neglecting the small entropy
increase from eating.

2. What is the entropy change of a cube of water 1 cm
on a side that freezes at 0°C?

3. Repeat the calculations of Example 13.1 for the case
of six coins. Make a table showing the possible
microstates and macrostates and find the probabilities
of each macrostate.

4. The splitting of ATP can be schematically given as
ATP � H2O → ADP � P. If the reaction has a �G �
�7 kcal/mole at 25°C, what is the equilibrium con-
stant at that temperature?

5. If Equation (13.10) is solved for (ln Keq) and (�H �
T�S) is substituted for �G, we can write that

Describe how you might use this equation to deter-
mine both �H and �S from a knowledge of Keq as a
function of temperature. Such a graphing procedure is
known as a van’t Hoff graph. What assumptions are
involved in your analysis?

6. Suppose there are three identical atoms, each with
energy levels shown in Figure 13.3. If the total energy
of the system is 4ε, find all possible macrostates and
the number of microstates for each of them. Use the
notation of Example 13.2.

7. Re-do the previous problem for the case when the
total energy of the three atoms is 6ε.

ln Ke q =
-¢H

RT
+

¢S

R
.
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In this chapter we begin our study of electromagnetism, one of the four fundamental
interactions in nature. Aside from gravity, ultimately all of the forces that we are famil-
iar with are due to electromagnetic interactions; pushes and pulls, normal, frictional,
tension, compression, shear, and viscous forces are all electromagnetic in origin. Other
forces that we learn about are also electromagnetic, including the historically diverse
electric and magnetic forces as well as all the various chemical bonding forces. In fact,
all of chemistry (other than nuclear chemistry) is basically electromagnetic in origin.
Even more surprising is that light and other forms of (nonnuclear) radiation are elec-
tromagnetic in nature and can exert electromagnetic forces. Optics, the science of light,
is thus also a branch of electromagnetism.

The basic laws of electromagnetism were developed over a 50 year span in the
19th century, culminating in Maxwell’s four fundamental equations. Maxwell’s equa-
tions are one of the most successful descriptions of our world, only requiring modi-
fication by quantum mechanics on the atomic distance scale. Aside from gravity, the
other two fundamental forces in nature are nuclear forces that we do not experience
directly in our daily lives. These are considered later in this book in connection with
nuclear radiation and the fundamental structure of matter. In this and the next two
chapters we turn our attention first to the nature of electricity, the electrical proper-
ties of matter, and methods used to study those properties.

1.  ELECTRIC CHARGE AND CHARGE CONSERVATION

Humankind’s first contact with electricity was through electrical storms and bolts of
lightning hurled from the heavens with the power to kill or create fire (Figure 14.1).
The Greeks discovered manmade static electricity, produced by friction, just as we
know it today. Frizzy hair charged up by combing on a dry day and electrical sparks
produced when touching a metal doorknob after walking on a thick carpet are common
examples of static electricity buildup through friction. It is only in the 20th century that
we have learned that these macroscopic phenomena are due to the elementary charged
particles, electrons and protons, making up all atoms.

Our modern picture of matter, briefly introduced in Chapter 1, views atoms as
composed of protons and neutrons within a central nucleus and electrons. Electric
charge is a property of elementary particles that comes in two types, termed positive
and negative, and in a quantized, or discrete, smallest possible unit. The quantum of
electric charge is

e � 1.6 � 10�19 C

(the SI unit for electric charge is the coulomb, C, defined in Section 2 below) and is
equal in magnitude to the electric charge of the electron or the proton. It is taken as

14Electric Forces and Fields
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positive so that the charge on the electron is �e. All known parti-
cles have been found to have electric charges that are multiples
of � e.1 Atoms have no net electrical charge, consisting of as many
positively charged protons as negatively charged electrons and
some number of neutral, or uncharged, neutrons.

The fact that there are two types of electric charge allows the
electric force to be either attractive or repulsive. In contrast, there is
only one type of mass and all masses attract each other via gravita-
tional interaction. Electrical forces between like charges (either both
positive or both negative) are repulsive, whereas those between
unlike charges are attractive. In the next section we discuss the
nature of the electrical force in more detail. Because protons are all
positively charged, those in a nucleus (aside from hydrogen with its

single proton) should repel one another so that the nucleus would be unstable. This
argument compels one to search for another fundamental force that holds the nucleus
together, the strong nuclear force, discussed later in this book.

Macroscopic matter is typically electrically neutral, being composed of neutral
atoms and molecules. However, because the numbers of molecules are so large, even a
relatively small fraction of charged atoms or molecules (known as ions) give an object
a net charge and can lead to macroscopic electrical forces between charged objects.
Often objects are charged by a transfer of electrons from another object so that one
gains an excess of electrons and the other has an excess of protons. Furthermore, many
neutral molecules have their centers of positive and negative charge offset (so-called
polar molecules) in either a permanent fashion, as in water, or by inducing such a polar-
ity through electrical interaction with other objects (Figure 14.2). In such cases, neutral
molecules can interact electrically with net charges or even with other polar molecules,
although the forces generated are weaker than those between charged molecules. The
electrical properties of macroscopic objects are discussed in Section 3 below.

Among the pillars of modern science are the conservation laws of physics. We
have already seen applications of the conservation of energy, linear momentum, and
angular momentum in our discussions of mechanics. 

1Quarks, the theorized constituents of protons and other heavier elementary particles, have elec-
tric charge magnitudes of e/3 or 2e/3 and are always found in combinations in nature resulting
in integral charges.

FIGURE 14.1 Lightning strikes.

FIGURE 14.2 The positively
charged rod induces a separation
of charges in the neutral object on
the left.
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Conservation of electric charge is another hallmark of science. It may be succinctly

stated that the net electric charge in an isolated system remains constant. 

Although apparently simple, it is a very powerful law that can be somewhat subtle as
well. Its simplest form occurs in a system with a fixed population of elementary par-
ticles. In this case those particles remain unchanged. However, there are many sys-
tems in which the “fundamental” constituents may change identity and number.

As an example, although the proton and electron are stable particles, the isolated
neutron decays to produce three other elementary particles (proton, electron, and
antineutrino) in the following reaction

where the superscripts indicate the electric charges. Isolated neutrons will decay by this
reaction in a few minutes whereas those within a nucleus may be stable or decay on
varying time scales. When a neutron within a nucleus decays, a new species of nucleus
with one more proton and one fewer neutron forms in a process known as beta-decay.

This process results in the ejection of a high-speed electron and antineutrino. Although

no
:p�1 � e�1 � v

� o
,



this reaction is complex, it must satisfy a number of conservation laws,
among them energy, momentum, and electric charge. In terms of elec-
tric charge, the original neutral neutron becomes three particles with
electric charges �1, �1, and 0, so that the total final charge remains
equal to zero. A second example is the production of matter from
energy, in which a proton and an antiproton (negative antiparticle to the
proton) annihilate to produce pure energy which then produces a set of
pions; the initial zero electric charge is conserved even here in the pro-
duction of matter since four positive and four negative pions are pro-
duced (Figure 14.3).

We see that charge conservation is basically a question of
bookkeeping, maintaining the total net charge. Nature, the ultimate
bookkeeper, seems to be exquisitely precise at conserving electric
charge. At any time the total charge of the system remains constant,
even if the numbers and cast of particles change. Conservation of
electric charge has never been found wanting, no matter how com-
plex the physical system may be.

2.  COULOMB’S LAW

The electrical force on a charged object may be determined from two pieces of
knowledge. First, we need to know the fundamental law governing the force between
any two charged particles, known as Coulomb’s law. In addition, we need to appre-
ciate the superposition principle that allows us to use the rules of vector addition to
compute a net force on an object from individual forces from other charged particles
based on Coulomb’s law.

A charged particle (known as a point charge) exerts a force on a second point charge
that is proportional to the product of their charges, inversely proportional to the square
of their separation distance, and directed along the line joining the two particles,

(14.1)

where k is a constant of proportionality and is a unit vector (a vector with a magni-
tude of one; remember that the special symbol ^ is used for unit vectors; you might
want to review some basic ideas on vectors discussed in Chapter 5) pointing from par-
ticle 1 to particle 2 (Figure 14.4). Note that the sign of F changes from positive, if the
charges are like (both negative or both positive), to negative, if the charges are unlike,
indicating that the force is repulsive or attractive, respectively. Also remember that
because of Newton’s third law, the force of q1 on q2 is equal and opposite to that of q2
on q1, so that these two form an action–reaction pair of forces. The exponent on r is
known to be very precisely 2; from careful experiments it has been determined to be
2.00 . . . out to 16 places after the decimal point, that is, to one part in 1016.

Coulombic forces are long-range forces, decreasing as 1/r2 the farther away the
two interacting charges are, but in principle always remaining nonzero. We show in
a discussion of charges in solution in Section 5 that in reality Coulombic forces do
not extend infinitely far because there are always other nearby charges tending to
shield them and effectively decrease their range. If the two charges are in a vacuum,
the constant k is equal to

k � 9.0 � 109 N-m2/C2,

but the constant varies in different media as we show.
Coulomb’s law also applies to atomic systems even though quantum

mechanics is needed to correctly describe the physics at those distances. As
discussed above, the smallest electric charge found in nature is e, so that the

r̂

F
:

1 on 2 � k 
q1q2

r 2
 r̂,

q1

q2r

F1on2

F2on1

r̂

FIGURE 14.4 The pair of equal and
opposite Coulomb’s law forces
between two like point charges.
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FIGURE 14.3 Bubble chamber
photo of the trail of an antiproton
(labeled as ) colliding with a sta-
tionary proton, annihilating each
other to create pure energy which
in turn created 8 pions (�). The
chamber lies in a strong magnetic
field that curves the oppositely
charged particles in opposite direc-
tions. One of the pions subse-
quently decays into a muon and a
neutrino which leaves no track.

p
�



force between a proton and an electron in an atom, with separation distance of 0.1 nm, is
attractive with a magnitude given by

Although this appears to be small, it is actually a relatively large force, as can be deduced
by mentioning the recently measured force between a myosin and actin molecule (the
major protein constituents of muscle) of several piconewtons (10�12 N), determined in
a petri dish assay using a laser tweezers experimental technique (see Chapter 19).

F � k
e2

r2
� 9 � 109 

(1.6 � 10�19 )2

(10�10 )2
� 2.3 �  10�8 N.
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Example 14.1 How much stronger is the electric force of a proton on an electron
than the gravitational force between them?

Solution: In Equation (2.6), let M be the proton mass and m be the electron
mass. In Equation (14.1), let |Q| � |q| � e. If we then divide Equation (14.1) by
Equation (2.6) we get

(Plug in the values of k, e, G, M, and m to see that this is true.) This ratio is inde-
pendent of the separation of the proton and the electron, because both the elec-
tric and gravitational forces depend on separation exactly the same way and the
r2,s cancel in numerator and denominator. The electric force of one proton on
one electron is about 1039 times greater than the gravitational force of the pro-
ton on the electron at any distance of separation.

Felectric, proton on electron

Fgravity, proton on electron
�

ke2 /r2

GMm/r2
�

ke2

GMm
� 2 � 1039.

As the previous example showed, the electrical force between the proton and
electron is tremendously greater than their gravitational attraction, greater by a fac-
tor of about 2 � 1039 times. Whenever electrical forces are involved, gravitational
forces can be completely neglected. It is only when objects are electrically neutral
that it becomes necessary to include the gravitational force.

In order to simplify future equations, Coulomb’s law is usually written in terms of
another constant �0, the permittivity constant of the vacuum, where k � 1/4��0 so that

�0 � 8.85 � 10�12 C2/N-m2.

Coulomb’s law can then also be written in the more common form,

(14.2)

When there are more than two point charges involved in a system under study the
superposition principle for forces allows one to find the net force on one point charge
by adding up the individual vector forces acting on that charge. We can write this as
a simple vector addition

(14.3)F
:

net �a  F
:

i,

F
:

1 on 2 �
1

4pe0
  

q1q2

r 2
 r̂,



where it is implied that the sum is over the forces due to all other charges present.
Recall that in vector addition we do not just add the magnitudes of the forces alge-
braically. An example helps to illustrate this.
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Example 14.2 Find the net force on a 4.0 	C charge at a corner of a square with
20 cm sides if the two neighboring corners have charges of �3.0 	C and 5.0 	C
as shown in Figure 14.5.

Solution: We first separately find the force on the 4 	C charge from each of the
other two charges using Coulomb’s law, keeping track of the direction of those
two forces. The force from the �3 	C charge is attractive, directed along the
negative x-axis, and of magnitude

(9 � 109)(3 � 10�6)(4 � 10�6)/(0.2)2 � 2.7 N.

Similarly the force from the 5 	C charge is repulsive, directed along the posi-
tive y-axis, and of magnitude

(9 � 109)(5 � 10�6)(4 � 10�6)/(0.2)2 � 4.5 N.

The net force is then given, in ordered pair notation, by

so that its magnitude is

and it is directed at an angle of

from the negative x-axis (or 121° from the x-axis).
To briefly review, the major steps in solving problems of this type are to

first find the individual vector forces produced and then use the rules of vector
addition to find the magnitude and direction of the net force, if needed.

u � tan�1 (4.5/2.7) � 59°

Fnet � 3(2.7)2 � (4.5)2 � 5.2 N,

F
B

net � (�2.7, 4.5) N,

4.0 µC
–3.0 µC

5.0 µC

y

x

(0,0)

Fnet

FIGURE 14.5 Point charge 
arrangement for Example 14.2 
showing the forces acting on the 
4 	C charge.



If a real extended object is charged by, for example, transfer of
charge to its surface, then the distribution of the charge on the object
will depend on its electrical characteristics. We study the basic differ-
ences in the electrical properties of materials in the next section. To
find the electrical force between real charged objects, it is not imme-
diately clear how to determine values to use for r in Equation (14.2).
If the separation distance is much greater than the dimensions of the
object, then we can treat the objects as points. With spherical objects
charged so that the electrical charge distributes itself uniformly
around the sphere (as we say, “in a spherically symmetric manner”),
we can take the distance r to be the center-to-center distance regard-
less of the separation distance of the surfaces of the spheres. An
example calculation for the force on a point charge from an extended
object is given in the box. In Section 4 we show another method for
such calculations.

3.  CONDUCTORS AND INSULATORS

Electrical properties of materials are determined by their atomic struc-
ture. In particular, the nature of the binding of the outermost (valence)
electrons of the atoms in the material defines its electrical interactions.
Other atomic electrons closer to the nucleus do not take part in inter-
atomic interactions. In a solid composed of an enormous number of
identical atoms, the atoms or molecules are strongly interacting and are
often arranged in a crystalline well-ordered array. We show in Chapter
25 that as a consequence of the quantum nature of the atomic interac-
tions solids can be divided into three distinct classes based on their elec-
trical properties.

In one class, known as electrical conductors, including metals
such as copper, iron, and aluminum as the most common members,
the outermost electrons of the atoms are not bound to any particular
atom but are free to migrate about in the solid. Although the conduc-
tor as a whole remains electrically neutral, these “free electrons” can
wander about under the influence of electric forces and give rise to the
characteristic ability of conductors to allow a ready flow of electrons.
In the absence of an externally applied electric force, these free elec-
trons still migrate about in their local lattice, or array, of positive
metal ions in a random diffusive motion so that the solid remains
locally electrically neutral. When an external electric force is applied
to a conductor, the electrons immediately respond throughout the con-
ductor, making up an electric current, or flow of electrons, which we
study in Chapter 16.

A second class of solids, known as electrical insulators or
dielectrics, consists of materials whose outermost electrons are very
tightly bound to individual atoms and are not at all free to move even
under the influence of rather large forces. Common insulators include
rubber, wood, glass, and most plastics. These are very poor conductors
of electricity because the electrons are so tightly bound to the atoms of
the solid lattice.

Usually materials that are good electrical conductors are also good
thermal conductors and those that are good electrical insulators are also
good thermal insulators. This is explained by the observation that
motion of free electrons is the predominant mechanism for heat conduc-
tion (random or diffusive free electron motions) as well as electrical con-
duction (drift velocity of free electrons). Electrical insulators with few,
if any, free electrons are also poor thermal conductors.
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As an example of the use of calculus to find
the force on a point charge due to a charge
distribution, let’s calculate the force on a
positive point charge a perpendicular dis-
tance d from a very long straight line of
positive electric charge with a uniform
charge per unit length, 
 � Q/L, along the
x-axis as shown in Figure 14.6. We divide
the line of charge into infinitesimal ele-
ments of length dx with charge 
dx and use
Coulomb’s law to write an expression for
the force on the point charge from this ele-
ment of charge. This force will be along the
line joining the two charges. It is clear that
there will be another element of charge
symmetrically placed so that when we add
its force on the point charge, the x-compo-
nents will cancel and there will only remain
a repulsive force along the perpendicular
direction to the line of charge as shown.
The net force on q from the pair of sym-
metrically placed line charge elements is

Substituting (d/r) for cos � and 
for r, and integrating from 0 (we’ve already
included the charges along the negative x-axis
so we only integrate along the positive axis)
to we have

After a trigonometric substitution and a bit
of work, the result of the integration is

F �
lq

2pe0 d
.

F �
1

2pe0L
q

0

lqd

[x2 � d2]3/2
 dx.

q,

[x2 � d2]1/2

dF � 2 cos u 
1

4pe0
 
q(ldx)

r2
.

d

r

θ
x = 0

x

λdx

q
•

Fnet

FIGURE 14.6 Geometry for the 
boxed infinite line charge example.



Air is also a good insulator, although under extreme conditions at
which the electrical forces are very large, air molecules can become ion-
ized, in a process known as dielectric breakdown (Figure 14.7). When
this occurs the air becomes conducting and a spark jumps through the air
between conducting surfaces, such as between your fingers and a metal
doorknob on a dry day. Under the right atmospheric conditions, light-
ning may discharge by charge transfer to the Earth, a conductor with
infinite storage capability. In the case of a doorknob the spark contains
a relatively small total charge. Lightning often contains huge amounts of
charge and is correspondingly much more dangerous. The ionized air is
known as a plasma, a gas of ionized particles. Often plasma is consid-
ered a fourth state of matter (in addition to solids, liquids, and gases)
because of its unusual properties.

Pure water is also a good insulator, because it has few ions to
transport charge. The normal high conductivity of water is due to the
presence of contaminating ions, usually salts and metal ions. In Section 5 we study
the electrical properties of solutions to learn about the electrical forces that macro-
molecules experience.

A third class of solids, known as semiconductors, has mixed electrical properties,
sometimes acting as a good insulator, but also capable of conducting electric cur-
rents. Silicon and germanium are the two most common semiconductor materials;
these behave intrinsically as semiconductors. Today, nearly all electrical devices con-
tain semiconductor materials, characterized by normally being insulators, but
through the use of small controlling signals, able to become good conductors of elec-
tricity. Semiconductor “microchips” can be manufactured with specific desired prop-
erties by “doping” intrinsic semiconductor materials with small amounts of specific
impurities designed to lead to the desired electrical performance. We study these in
more detail in Chapter 25.

When an object has a net charge, either positive or negative, it
has gained this charge by the flow of electrons. An excess of elec-
trons on an object gives it a net negative charge, whereas a defi-
ciency of electrons on that object gives it a net positive charge. The
excess charge on an insulator remains locally where the charge was
deposited, usually by contact with another charged object. On the
other hand, the excess charge on a conductor adds to the free elec-
tron density and is rapidly distributed on the conductor, ending up
on the surface of the conductor as we show in the next section. Most
manmade electrical devices consist of layers of conductor, semi-
conductor, and insulator configured to perform specific functions.
Perhaps the simplest is the electrical cord, consisting of copper con-
ducting wire surrounded by a plastic or rubber layer. The copper
wire is used because of its highly efficient transfer of free electrons
along its length and the insulator functions to isolate the copper
wire, not allowing it to come into contact with other conductors
(including us!).

4.  ELECTRIC FIELDS

Coulomb’s law is an example of a long-range force, one in which
the interacting objects need not be in contact. Such forces involve
action at a distance, as opposed to contact forces. (Actually all
contact forces really involve action at a distance because, as was
discussed in connection with friction, they are all due to electro-
magnetic forces; although very close together, these “contacts”
actually involve distances that are large compared to atomic
dimensions.)
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Note that the 1/d spatial dependence of this
result means the force varies more slowly
with distance than that between two point
charges. In fact, the line of charge has an infi-
nite charge and so the real question is why
we get a finite answer for the force. This is
due to a cancellation effect. Charges far from
x � 0 contribute very weakly to the net result
not only because they are farther away (the
fundamental 1/r2 dependence for point
charges), but also because they contribute
very weakly to the net perpendicular compo-
nent because the angle � is so close to 90°.

FIGURE 14.7 Dielectric break-
down of air around a Van de Graaf
generator.



A natural question to ask when long-range forces are at work in Coulomb’s law
is exactly how each charge learns about locations and values of other charges in order
to experience a force. For example, given a point charge q* that experiences a force
due to another charge q a distance r away (Figure 14.8), suppose charge q moves to
a larger distance r�. How will charge q* learn of the change? Will q* immediately
experience a decrease in the electric force acting on it and a change in its direction?

Einstein’s special theory of relativity (Chapter 24) tells us that no information
signal can travel faster than the speed of light c � 3 � 108 m/s (186,000 mi/s or
670 million miles per hour). Given this fact of nature, which is universally accepted
in science, charge q* will not learn of changes in the other charge’s position until
some finite time later, no matter how brief. The information actually propagates out-
ward from charge q at the speed of light in the form of an electric field, defined
below. Thus, the act of a static point charge q exerting a force on another static point
charge q* actually is a two-step process: first, q continually produces an electric field
that travels outward at the speed of light; and second, q* experiences a force by direct
interaction with the electric field arriving at its location. Clearly the process is recip-
rocal, with q* also producing an electric field that interacts with q directly.

As long as both charges are held at rest the situation is completely reciprocal
with each charge interacting with the static electric field produced by the other
charge. However, if one of the charges, say q, at time t rapidly moves to a new posi-
tion (e.g., as in Figure 14.8), getting farther from charge q*, it will immediately expe-
rience a smaller force in a different direction through interaction with the
ever-present (not changing with time) local static electric field due to q*, which is
weaker farther from q* and which is radially directed from q*. On the other hand, q*
will not experience a decreased force until some time later when the information
(field) travels at the speed of light from q the separation distance r� between the two
charges (taking a delay time 
t � r�/c). The introduction of the electric field in the
case of static charges may seem arbitrary and unnecessary, however, the electric field
is a real physical quantity that can carry energy, momentum, and angular momentum.

By using the notion of a test point charge, taken by convention to be positive, we
can introduce the definition of the electric field at some point in space as

(14.4)

where is the force on the test charge q*. The electric field at the site of q* is inde-
pendent of the magnitude of the test charge, depending only on the charges produc-
ing and their location with respect to q*. In fact, the electric field exists whether or
not there is a charge q* at that location. From Equation (14.4) we see that units for E
are N/C. The test charge is taken to have a vanishingly small electric charge so that
it does not produce significant forces on those other charges that are producing the
electric field. Although a real test charge may actually be used to probe the electric
field, more often it is only a hypothetical construct used in the definition of the elec-
tric field. A real charge used in place of q* would measure the same electric field only
if it had a charge small enough so that no distortion of the source charges producing
the electric field occurred.

The electric field of a point charge q at a distance r away may be found from

Coulomb’s law and the definition of to be

(14.5)

where is a unit vector along the outward radial direction from q. The choice of
direction agrees with our previous definition in Equation (14.1) and ensures that if
a positive test charge is placed at this position it will experience a repulsive or
attractive force directed along depending on whether q is positive or negative,rN
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FIGURE 14.8 How does charge q*
learn that charge q has moved?



q
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E

FIGURE 14.9 The electric field of 
a point charge is spherically 
symmetric.

Example 14.3 Let’s calculate the electric field due to a pair of equal and oppo-
site point charges at a point along the perpendicular bisector of the line joining
the charges.

Solution: We choose to place the two charges symmetrically along the x-axis a
distance d apart and then to calculate the electric field at an arbitrary point along
the y-axis as shown.

The magnitude of the electric field from each charge is the same and
equal to

with the color-coded directions shown in the figure. From symmetry it is seen
that the y-components cancel and the x-components add to give the resultant
electric field (shown in black). The net electric field is then equal to the net 
x-component given by

where we have used the large triangle in Figure 14.10 to obtain an expression for
cos �.

Enet � 2E cos u � 2E
(d/2)

[y2 � (d/2)2]1/2
�

q d

4pe
0

1

[y2 � (d/2)2]3/2
,

E �
q

4pe0

1

[y2 � d/2)2]
,

(0,y)

y

q –q
x

θ. .
d

p

FIGURE 14.10 Geometry for
Example 14.3.

(Continued)

respectively. Note that the electric field is radially symmetric (has the same magni-
tude at any point on the surface of a sphere of radius r centered at charge q) as
expected, because there is no preferred direction in space (Figure 14.9).

To find the net electric field produced by more than one point charge, we use the
principle of superposition for vectors to simply add up the vector contributions

(14.6)

where is the electric field at the observation point due to the ith point charge. An
example helps to reinforce this idea.

E
B

i

E
B

net � aE
B

i,
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Often we are interested in the case when the distance y is much larger than
the charge separation d. In this limit, the equal and opposite charges are known
as an electric dipole, and we can neglect the term (d/2) compared to y in the
denominator to find that

(along dipole perpendicular bisector),

where p � qd is defined as the electric dipole moment, with its direction taken
as from – to � charge, along the �x direction in this example. An electric dipole
is then a pair of equal and opposite charges with very small separation distance
compared to the distance to the observation point. Note that the electric field of
the dipole decreases faster (1/r3) than that of a point charge (1/r2), as might be
expected because of the partial cancellation effect of having opposite charges.

E
:

dipole �
� p:

4pe0 y3
 ,

Edipole �
qd

4pe0 y3
 or

Example 14.4 Repeat the previous calculation, finding the electric field along
the x-axis (Figure 14.11).

Solution: In this one-dimensional case we only have fields along the x-axis. The
net result is along the x-axis and given by

At this point if we look at the situation when x �� d, the dipole limit, then if we
simply let d � 0 in the above expression, we find E � 0. Clearly E does go to
zero, but we are interested in how it approaches zero and so we need to do some
more mathematical manipulations. By factoring out the x2 terms in both denom-
inators, we can rewrite this expression as

In the dipole approximation with d��x, we can expand each of the terms in
the bracket using the binomial theorem: (1 � �)�n � 1 � n� . . . , valid when 
� �� 1, so that we have, to a good approximation (with � � d/2x),

E �
q

4pe0 x2
 [11 � d/2x2�2 � 11 � d/2x2�2 ].

E �
1

4pe0

q

[x � (d/2)]2
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1
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q

[x � (d/2)]2
 .

–q+q

x

E+E–

••
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FIGURE 14.11 Charges and field of Example 14.4.



(along dipole axis)

Note that in this case the electric field points along the dipole axis.
We find the same (1/x3) spatial dependence here as in the previous
example. In fact, the electric field due to an electric dipole varies as
(1/r3) everywhere, as long as the dipole approximation d��r is
true. As already mentioned, this more rapid decrease with x (or, in
general, with r) than for a point charge is due to the near cancella-
tion of electric fields by the two equal and opposite charges.

E
:

dipole �
1

2pe0
 
 p:

x3
.

Edipole �
q

4pe0 x2
[(1 � d/x) � (1 � d/x)] �

�1

2pe0
 
qd

x3
 or
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In order to find the net electric field produced by a continuous dis-
tribution of electric charge, the charged object is divided into small
elements, each of which resembles a point charge. In place of a
discrete summation of electric fields, as in Equation (14.6), a continu-
ous summation, via calculus, must be done. As an example, we work
out the electric field above an infinite plane of uniformly distributed
electric charge. The surprising result of the boxed calculation is an
important conclusion that is referred to again in the next chapter.
The electric field above a uniform plane of charge, with charge per unit
area � � Q/A, is a constant, �/2�0, directed perpendicular to the plane
no matter how far above the plane. Thus, the plane of charge produces
a constant electric field everywhere. Table 14.1 lists some formulas for
the electric fields of several symmetric charge configurations.

Table 14.1 Electric Fields of Various Geometries

Geometry Parameters E

Point charge Q

Line charge (infinite) 
 � Q/L r � perp. 
distance from line

plane (infinite) � � Q/A

sphere total Q  r � distance from 
center with r � sphere radius

1

4pe0
 
Q

r2

s

2e0

1

2pe0
 
l

r

1

4pe0
 
Q

r2

Next, we discuss a method to view a mapping of the electric field in
space. A topographical map, showing the elevations above sea level, is
an example of a two-dimensional scalar field. At any point {x,y} on the
map a scalar, the elevation, is assigned. We could use a function h(x,y)
to describe this scalar field, where for each {x,y} the function h(x,y)
assigns a height (Figure 14.13). An example of a three-dimensional
scalar field might be a mapping of the temperature within a room. In this
case a scalar is assigned to each point {x,y,z} whose value might also be
a function of time, perhaps varying differently at each point, so that a
more complex function T(x,y,z,t) might be used to map this scalar tem-
perature field.

Here we calculate the electric field due to an
infinite plane of charge. Consider the x–y

plane to have a uniform positive charge per
unit area � � Q/A and let’s calculate the
electric field along the z-axis at a distance d
above the plane. We divide the plane into
concentric rings of radius r and thickness dr

(Figure 14.12). All the charge in each ring is
the same distance from the point at which
we calculate the electric field. The ring with
radius r contains a charge

By symmetry, the electric field due to the
ring is along the z-axis; the x- and y-
components cancel. The contribution of
the ring to the vertical electric field at our
observation point is

Substituting

and integrating over all r values, the total E
field is given by

The integral can be performed directly
resulting in

This is a very surprising result, showing that
the electric field is constant and independent
of the height d above the plane.

E �
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FIGURE 14.12 Geometry for the
calculation of the electric field of an
infinite plane.



The electric field is an example of a vector field. At
each point {x,y,z} a vector is assigned whose value may
also depend on time, In the case of static
charges, there will be no time-dependence and to each spa-
tial point a constant vector is assigned. How can we pictori-
ally represent a vector field in a way similar to that used for
a scalar field, as in Figure 14.13? We have already used a
mapping of a vector field when we discussed the steady flow
of a fluid and used the notion of streamlines to map the
velocity vector field. There, as here, we needed to represent
not only the magnitudes of the vectors but also their direc-
tions. A representation known as electric field lines (stream-
lines in the context of fluid flow) can be used in which
contours are drawn that are everywhere tangent to the vec-
tor directions. To convey information on the magnitudes of
vectors, the density of lines drawn is made proportional to
the local magnitude of the vectors in that region. Regions
where electric field lines are dense correspond to strong

electric fields, whereas regions devoid of lines of force correspond to weak or absent
electric fields. For a point charge, electric field lines are therefore radial lines drawn
outward from a positive charge and inward toward a negative charge. Electric field lines
must always start and end on electric charges, the origins of the electric field. Two-
dimensional maps for a few point charge distributions are shown in Figure 14.14.

Calculations of the electric field from a continuous distribution usually require
more sophisticated mathematics, as in the boxed example above. In certain cases
with sufficient symmetry, however, useful information about the electric field can
be obtained from a symmetry argument. For example, for a long wire with a static
positive uniform charge distributed along it (see the boxed example in Section 2
above and Figure 14.15), symmetry dictates that the electric field far from the ends
of the wire must radiate outward from the wire as shown by the electric field lines.
There can be no component of the electric field along the wire direction because
there is no reason why the field would point one way or the other along the wire.
We say that symmetry dictates that the field must lie in a plane transverse to the
wire. Furthermore, in that plane there is also no preferred direction (we say there
is azimuthal symmetry about the wire axis) so that the electric field can only
depend on the perpendicular distance from the wire and not on the orientation
around the wire. The only other parameter that the field can depend on is the lin-
ear charge density 
 � (Q/L), and not the charge Q, which is infinite for an infinite
wire. Simply by noting the dimensions of E (given by Q/�0L2) and 
, one could sur-
mise that the electric field magnitude must be proportional to in agreement
with the boxed calculation in Section 2 above apart from constants (there we found
F � 
q/2��0d so that

where . Symmetry arguments are powerful tools when the situation allows
their application.

d � r
�
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FIGURE 14.13 A topographical
(topo) map of Mount Rainier in the
state of Washington.

FIGURE 14.14 Electric field
mappings for (left) an electric
dipole, or a pair of equal and
opposite charges, and (right) three
equally spaced co-linear charges
of �4, �2, and �2 units from left
to right.



Thus far in our discussion of electric fields we have dealt with point charges and
briefly with continuous charge distributions. We conclude this section with a discus-
sion of the effect of a conducting metal object, charged or uncharged, on the nearby
electric field; the case of insulating objects is taken up in the next chapter. We do not
try to be rigorous, but rather try to motivate and explain general phenomena using
specific examples.

Suppose first that an isolated solid metal object (a good electrical conductor) is
given an excess electric charge. How does the excess charge distribute itself on the
conductor? Will it spread uniformly throughout its volume? Uniformly over its sur-
face? Or will it distribute itself in some more complex way? Remembering that a con-
ductor has mobile free electrons, the excess free electrons will experience long-range
repulsive forces and very rapidly move to reduce their interaction. To this end, they
move to the surface of the conductor where they cannot escape; it can be shown that
within the volume of a solid conductor there are no excess free electrons: there is zero
net charge within a solid conductor. After reaching this electrostatic equilibrium, the
distribution of charge on the surface is such that the electric field within the conduc-
tor is exactly zero. We can prove that this must be true by contradiction: if the electric
field inside were not zero, free electrons would experience a net force and move,
contradicting our assumption of equilibrium. These are general results: the electric

field and net charge inside any conductor after reaching electrostatic equilibrium

are zero.
If the object is both isolated and has sufficient symmetry (sphere, cylinder, large

plane surface, etc.), then one can argue that any excess charge must be uniformly
distributed over its surface. In general, the electric field just outside the conducting

surface must be perpendicular to the surface. We again argue this last statement by
contradiction: if there were a component of parallel to the surface it would result
in a net force on the surface charges along that direction parallel to the surface and
therefore the assumed equilibrium could not exist. The outward force perpendicular
to the surface is balanced by the attractive binding forces holding the charge on the
surface, so that the charges remain in equilibrium. Any net charge on a conductor
rapidly distributes itself so that the field inside is zero and the field outside is per-
pendicular to the surface (Figure 14.16). When the object has no symmetry, it turns
out that the charge and external electric field tend to be greater where the curvature
is greatest, that is, where the object has the smallest radius of curvature.

Suppose that an uncharged conductor is not isolated but lies in an external elec-
tric field produced by other charges with which we are not concerned. What can we
say about the interaction of the field with the neutral conductor and about the con-
ductor’s effects on the external electric field? By the same arguments just made, at
electrostatic equilibrium the electric field outside the conductor must be perpen-
dicular to its surface and the field inside must be zero. But how has the electric field
due to the external charges been modified by the presence of the uncharged
conductor so as to result in zero electric field inside the metal? Even an uncharged
conductor has many free electrons that can respond to the force produced by the
external electric field. Rapidly these electrons will distribute themselves until they
experience no net force; in doing so, they create an electric field just opposite to
the external field within the volume of the conductor (Figure 14.17). At that point
electrostatic equilibrium is reached and the particular stable arrangement of surface
charges is just appropriate to cancel the electric field inside the conductor from the
external charges. The electric field outside the conductor is modified by the pres-
ence of the conductor to assure that the field lines end on the conducting surface
perpendicularly.

These properties of electrical conductors allow them to electrically shield their
insides from any external electric fields. Electrical cables used for electronics appli-
cations are often made with braided metal sheaths that are used as electrical shields,
protecting the internal signals from any undue influence from stray external electric
fields. Indeed, the metal chassis (or case) around the major “chips” in computers and
other electronic equipment is designed to do this same job.

E
:
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FIGURE 14.15 By symmetry, the
electric field from a long charged
wire must be radially directed and
depend only on the distance from
the wire (away from the ends of 
the wire).

Einside  =  0

FIGURE 14.16 A metal object with
a net charge that distributes itself
on the surface producing an
external E field perpendicular to
the surface but having zero internal
E field.



5. PRINCIPLES OF ELECTROPHORESIS;
MACROMOLECULAR CHARGES IN SOLUTION

Electrophoresis is the forced migration of charged particles, usually macromolecules,
in an electric field (Figure 14.18). If a macromolecule has a net charge q and a con-
stant, uniform external electric field is applied, there will be a net force on the
molecule given by . In general, the macromolecule will quickly accelerate
and the electric force will be balanced very rapidly by a growing frictional force

due to collisions with solvent molecules. After reaching equilibrium, the mol-
ecule will migrate in the electric field with a constant velocity, obtained from setting
the net force equal to zero and solving for the velocity,

(14.7)

The electrophoretic mobility U is defined as the velocity normalized by the applied
electric field, and using Equation (14.7) can be written as

(14.8)

Electrophoretic mobility is an intrinsic property of the macromolecule, depending
only on its charge and frictional properties.

For a real macromolecule in solution, both the actual net charge q and the fric-
tional factor f will be difficult to ascertain. If electrophoretic mobility were to be mea-
sured, one of these parameters would still need to be obtained independently before
the other could be found from the above equation. This fact, and difficulties in gen-
erating a known uniform field locally at the site of the macromolecule, have made
electrophoresis complex and little used as an analytical tool to learn about the elec-
trical properties of macromolecules. However, there are a number of electrophoresis
methods in use in most biomolecular laboratories. Before considering some of these
techniques in a bit of detail in the next section, we need to gain a basic understand-
ing of the charge on a macromolecule in solution.

Unlike isolated ions, such as Na� or Cl�, that have a definite charge state,
macromolecules have a variable net charge that depends on the pH of their local envi-
ronment. Macromolecules such as proteins or nucleic acids, consist of many sub-
units, each with multiple ionizable charged groups that may be neutral, positive, or
negative, depending on the pH. The term zwitterion or polyelectrolyte is used to
describe such macromolecules with numerous charged groups (Figure 14.19). By
adjusting the pH, the net charge on a macromolecule can thus be made positive, neg-
ative, or neutral. That particular pH at which the macromolecule is electrically neu-
tral (having a net charge equal to zero) is called the isoelectric point. At pH values
below the isoelectric point the macromolecule has a net positive charge whereas at a
higher pH its net charge is negative.

Macromolecules are rarely suspended in pure water. Almost always they are
found with salts, buffers, and often with many other small and large molecules. The

U �
v

E
�

q

f
.

v
:

�
q
:

E

f

qE
:

� f v:

� f v:

F
:

� qE
:

F
:

E
:

360 E L E C T R I C F O R C E S A N D F I E L D S

FIGURE 14.17 (left) Original uniform external electric field in space. (right) Distortion of
external field by an uncharged metal object so that the E field lines end perpendicularly on
the metal. Induced charges on the metal surface cancel the electric field inside the metal.
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FIGURE 14.18 Electric and 
viscous drag forces acting on a
macromolecule.



concentration of ions gives some measure of their effectiveness in
electrical shielding; a better measure, however, is the ionic strength

I, defined as

(14.9)

where the sum is over all ionic species of concentration ci and valence zi.
It is important to realize that although the Coulomb force is long-range, as we have

discussed, normally macromolecules in solution will be effectively electrically shielded
unless at very low ionic strengths (Figure 14.20). Because of the electrical attraction of
opposite charges, a charged macromolecule in solution will have large numbers of
small ions of opposite charge, called counterions, surrounding each of its charged
groups. These counterions form a charge cloud that tends to completely cancel the
effects of the macromolecular charge beyond a certain characteristic distance, known
as the screening (or Debye) length. A calculation of the screening length LD finds

(14.10)

where � is a (dielectric) constant characteristic of the electrical properties of the sol-
vent (water has � � 80), kB is Boltzmann’s constant, and T is the absolute tempera-
ture. Table 14.2 gives the screening lengths for different concentrations of ions in
water. Effectively, at ion concentrations above about 10–100 mM, the macromolecu-
lar charges are fully screened and there are no electrical interactions with other large
molecules until they come within about 1 nm. At lower ion concentrations there may
be longer-range electric interactions between macromolecules.

Table 14.2 Screening Lengths at Different Ionic Strengths of Solution

Screening Length (nm) Screening Length (nm)
Concentration (mM) for Monovalent Ions for Divalent Ions

0.1 30.4 17.6

1.0 9.6 5.6

10 3.0 1.8

100 1.0 0.6

6. MODERN ELECTROPHORESIS METHODS

There is a fundamental problem in using electrophoresis as described in the previous
section. In order to maintain a buffer and solvent system with a typical salt concen-
tration of 0.1 M, close to physiological, even a very modest electric field will create
substantial heating of the solution, resulting in convection currents that would com-
pletely distort the controlled migration of macromolecules. We study this heating
phenomenon when we study electric currents, but it is ultimately due to the transfor-
mation of kinetic energy of the charge carriers (ions or free electrons) into internal
energy of the medium through collisions and it is a similar effect, for example, to that
resulting in the heat generated by a toaster. Early in the history of electrophoresis, the
answer to the heating problem was to reduce the ionic strength of the solution;
but then, as we have seen, long-range interactions are possible and in some cases
the macromolecules may not be stable under those conditions. Today almost all
electrophoresis is carried out not in solution, but in gels, to avoid overall convection
problems due to heating or vibrational disturbances.

One of the most important electrophoresis techniques is SDS gel electrophoresis,
used to measure molecular weights of proteins. Because the conformations of
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FIGURE 14.20 A region of a
macromolecule with its surrounding
cloud of counterions. The concen-
tration of counterions is usually
many orders of magnitude greater
than that of macromolecules.
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FIGURE 14.19 The three different
ionic forms of the amino acid
alanine. Proteins, made from
hundreds of amino acids, will have
large numbers of variable electric
charges, depending on the pH of
the surroundings.



proteins are so diverse, substantial information about a pro-
tein would be required to know how the friction factor in
Equation (14.8) is related to molecular weight. Instead, in
this technique the proteins are first denatured so that they
lose all of their secondary structure and become simply ran-
dom coil backbone polymers. Then SDS (sodium dodecyl
sulfate), a highly charged reagent that binds to all proteins
with a very similar mass of SDS per unit length of protein
backbone, and thus a very similar electric charge per unit
length of protein, is added to saturate the protein. These
highly charged SDS molecules exert strong internal repulsive
forces that tend to stretch out the random coil protein into a
rodlike shape. In essence, all proteins are made to look vir-
tually the same: rods of the same diameter but with lengths
that are proportional to the molecular weight of the protein.

The technique involves placing a small amount of such
denatured SDS-protein mixture (with a colored dye or

stain added so that one can see where the fastest migrating protein is located) at
the top of a slab or tube of a gel (typically polyacrylamide), and turning on an
electric field within the gel using electrodes attached to a power supply (Figure
14.21). The proteins and dye migrate down the gel at a constant rate that depends
on the molecular weight of the protein with the smaller proteins migrating faster
because they are less impeded by the gel. At a given concentration of gel material
and given electric field strength, standards of known molecular weight are used to
empirically construct a calibration curve of molecular weight versus elec-
trophoretic mobility (basically determined from the distance traveled down the gel
normalized between 0 and 1; see Figure 14.22). Molecular weights of unknown
samples can be determined from their mobilities and such a calibration curve.
Over a limited molecular weight range, the electrophoretic mobility of proteins is
found to be proportional to the logarithm of their molecular weight, as shown in
the figure. This technique, known as SDS-PAGE (polyacrylamide gel elec-
trophoresis), can rapidly and cheaply measure molecular weights with an accuracy
of about 5% and can also determine trace amounts of impurities in a sample. It is
one of the most common tools in the study of proteins today.

Precisely how macromolecules move through the supporting gel material in
gel electrophoresis is not well understood. Our description and the usual analysis
of electrophoretic mobility are totally empirical. For very large macromolecules
such as high molecular weight DNAs that tend to get stuck in the pores of even
very dilute gels, it has been experimentally discovered that, by using a series of
electric field pulses of short duration and varying direction, DNA migration can
be enhanced. These efforts have led to an increased understanding of the migra-
tion of macromolecules in gels. Such knowledge is also applicable to the motion
of macromolecules through networks of filamentous proteins within the cytoplasm

of a cell and is leading to new insights on the dynamics of cells.
Another important gel electrophoresis method, using the ideas developed

above on the polyelectrolyte nature of macromolecules, is isoelectric focus-

ing. Native proteins migrate in an electric field through a gel in which a pH
variation has been established. Proteins migrating in the gel will constantly
vary their electric charge as the local pH changes until they arrive at the loca-
tion corresponding to their isoelectric point (Figure 14.23). They remain there
because, with their net charge equal to zero, they experience no force. The
isoelectric point of a protein is an intrinsic property, therefore a detailed map
of proteins separated according to isoelectric points can be obtained.

Often isoelectric focusing is combined with SDS-PAGE in two-dimensional
gel electrophoresis. In this case, the native proteins are first run in a pH gradient
gel slab along one direction. When completed, the electric field is set at 90° to
its initial direction, a new gel slab saturated with SDS and denaturants is butted
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FIGURE 14.21 Gel electrophoresis
being set up to run. Plexiglass
housing holds a slab gel connected
to a power supply being adjusted.

FIGURE 14.22 Example of calibra-
tion plot for SDS-polyacrylamide
gel electrophoresis.



against the original gel slab, and the proteins are made to migrate into the
new gel. There they denature, acquire an SDS coat, and migrate accord-
ing to molecular weight along the new direction. When complete there is
a two-dimensional map of proteins with isoelectric point along one direc-
tion and, by calibration, molecular weight obtainable from the position
along the other direction (Figure 14.24). Proteins with similar isoelectric
points or with similar molecular weights can be further separated by this
method as long as the other property is distinct. There are numerous other
variations of these techniques in one or two dimensions in current use
with new methods constantly being developed.

7. *Gauss’s Law

This section is optional. Subsequent material does not depend on this section. Starred
questions and problems at the end of the chapter refer to this optional section.

We’ve seen how electric charges create electric fields and in Section 4 of this
chapter we saw, at least in principle, how to calculate the electric field from charge
distributions based on the field produced by a point charge and the superposition
principle. In this section we learn one of the fundamental principles of electricity,
Gauss’s law, which connects the average electric field on a closed surface (one that
has an inside and an outside, or said differently, one that encloses some volume) to
the net charge contained within that surface.

The easiest way to picture Gauss’s law is to use the mapping of electric field
lines. Suppose that there is no charge contained with some closed surface. Then any
field lines that enter the surface must also leave the surface and no new lines can orig-
inate from within the surface, since there are no charges on which the field lines can
end or begin. Any net charge contained within the closed surface can serve as end-
points for electric field lines, with positive charges generating new lines and negative
charges ending field lines. Thus the net number of field lines crossing a closed sur-
face is related to the enclosed net charge. To quantitatively discuss Gauss’s law, we
need to introduce the notion of the flux of a vector field.

Suppose there is a uniform electric field in a region of space, as shown in
Figure 14.25. If a plane surface (shown here as an open surface, not surrounding any
volume) lies with its normal making an angle � with respect to the electric field lines,
we define the electric flux �E through the surface to be

(14.11)

where and Thus, in words, the electric flux is a mea-
sure of the number of electric field lines that cross the surface. Picture the field lines
as arrows shot at a bulls-eye target. If the target directly faces the oncoming arrows

A
�

� A cos u.E
�

� E cos u

£E � E
�

A � EA
�

� EA cos u
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FIGURE 14.23 Schematic of iso-
electric focusing. Polyelectrolytes
move until they reach their isoelec-
tric point and have zero net charge.
Remember at a pH below (above)
the isoelectric point they are posi-
tively (negatively) charged.

FIGURE 14.24 Two-dimensional
gel electrophoresis of the cytoplas-
mic proteins of a bacterium. The
vertical scale is molecular weight
(in kDa) and the horizontal scale is
isoelectric point.



(so that � � 0) then the flux of arrows will be maximum. On the other hand, as the
tilt angle � increases towards 90°, less and less area presents itself as a target and the
flux decreases toward zero (in the limit as � goes to zero and the target is thin).

Now that we have a working definition of electric flux, we can state 
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FIGURE 14.25 The flux of a uni-
form E field.

Example 14.5 Calculate the electric field produced by a point charge q, using
Gauss’s law.

Solution: We put the point charge at the center of
an (imaginary) spherical surface of radius r, called
a Gaussian surface, shown in Figure 14.26. The
surface is not actually present in the problem; we
choose its shape and size and evaluate the electric
flux over the surface in order to find an expression
for the electric field at its surface, a distance r from
the point charge. Because the single point charge of
this problem suggests spherical symmetry, we
picked a spherical surface.

Because we know the electric field of a
point charge points in the radial direction and
depends only on the distance r from the point
charge, the electric field will lie along the nor-
mal to the spherical surface and will be constant in magnitude on its surface, so
that the electric flux can be written as � � EA. Substituting this into Equation
(14.12) and writing that the surface area of a sphere is A � 4 � r2, we find on
solving for E, and writing it as a vector, that

in agreement with Equation (14.5).

E
:

�
q

4pe0 r2
 rN,

FIGURE 14.26 Charge q
surrounded by an imaginary
Gaussian spherical surface
of radius r.

Example 14.6 Calculate the electric field produced by a long thin wire with a
uniform positive charge per unit length 
 along the wire.

Gauss’s law, which relates the electric flux over a closed surface to the net

charge contained within that surface as

(14.12)

Gauss’s law is very generally true and it is one of the four basic relations of

electromagnetism, known as Maxwell’s equations, 

£E �
Qnet, enclosed

e0
.

discussed in Section 4 of Chapter 18. The calculation of the electric flux is very diffi-
cult in most cases, but can be greatly simplified if there is sufficient symmetry. In those
cases, Gauss’s law enables you to calculate the electric field produced by the enclosed
charges. We look at several examples of the power of this law just below. Even in the
absence of such simplifying symmetry, Gauss’s law remains true and, with advanced
mathematics, serves as the basis for solving many problems in electromagnetism.



Solution: From the symmetry of the problem
we know that the electric field will point radi-
ally away from the wire and will depend only
on the distance r from the wire and not on the
angle around the wire. To take advantage of
this symmetry, we choose a Gaussian surface
with the same symmetry, a cylinder centered
on the wire with a radius r and some length L,
as shown in Figure 14.27. We first need to
evaluate the electric flux. But because E is
constant on the cylindrical wall of our
Gaussian cylinder, the contribution to the flux
from the cylinder walls is just � � EA, where
A is the area of the cylinder wall, A � 2� rL.

The circular end-caps on the rest of the closed
cylindrical surface do not contribute to the flux because the E field is radially
directed and the normals to the two end-caps are each perpendicular to this
(think of an arrow shot at the end-caps: if they are oriented as shown the arrows
cannot strike these targets.)

Therefore we have from Gauss’s law that

or solving for E, we find that

where E points radially. This agrees with the formula quoted in Table 14.1 above.

E �
l

2pe0 r
,

£E � EA � E12prL2 �
Qenclosed

e0
�
lL

e0
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FIGURE 14.27 An (infinite) line
charge with a Gaussian cylin-
der setup for calculating
Gauss’s law.

Example 14.7 Find the electric field between two parallel plane metal plates
with equal and opposite charges Q on them, as shown in Figure 14.28. This con-
figuration is known as a parallel-plate capacitor.

Solution: From the planar symmetry, we expect the electric field to lie along
the direction perpendicular to the planar surfaces, unless we get near the edges
of the plates where the symmetry breaks down. We use a small Gaussian cylin-
der with cross-sectional area A oriented along the E field lines and with one
end located within one of the metal plates. To calculate the electric flux we
consider the three different portions of the cylindrical surface separately. The
end-cap within the metal plate sees no electric field, because as we learned ear-
lier in this chapter the electric field within metals is always zero in electrosta-
tics, and therefore has no flux contribution. The cylindrical wall also
contributes nothing to the electric flux because its normal is perpendicular to
the electric field direction. The only contribution to the flux comes from the
end-cap on the right with area A and with an electric field E pointing along its
normal. Therefore the total electric flux is

£E � EA.

(Continued)



Gauss’s law says that this flux is proportional to the total charge enclosed within
the Gaussian surface; this charge is equal to the surface charge density, � (the
charge per unit surface area on the plates) times the area A of the Gaussian cylin-
der end-cap. Then we have that

so that we have

This is a somewhat surprising result (but in agreement with the formula in
Table 14.1), since it says that the E field is a constant between the plates and
does not depend on where between the plates you look. On first glance you
might expect the E field to depend on the distance from the plates in some way.
This was further discussed in connection with the E field from an infinite plane
of charge in Section 4.

E �
s

e0
.

£E � EA �
sA

e0
,
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FIGURE 14.28 Two parallel, flat metal plates (charged
equal and opposite) shown with a small Gaussian cylinder
in place to use Gauss’s law to find E between the plates.

CHAPTER SUMMARY
Electric charge can be either positive or negative, but
comes in individual units, or quanta, in multiples of
the charge on the electron or proton, with magnitude
e � 1.6 � 10�19 C. In an isolated system, the total
electric charge is conserved and remains constant in
time.

The fundamental force law between two point
electric charges, q1 and q2, separated by a distance r is
given by Coulomb’s law

(14.2)

where the unit vector lies along the line joining the two
charges and is directed from 1 to 2 and the permittivity
is �0 � 8.85 � 10�12 C2/N-m2.

Materials can be categorized by their electrical
properties into conductors, such as metals, that have

F
:

1 on 2 �
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q1 q2
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 rN,
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“free electrons” able to move in response to electric
forces, insulators (or dielectrics), such as wood or rub-
ber, that do not conduct electricity under normal condi-
tions and semiconductors, such as (doped) silicon, that
allow for controlled conductivity in modern electronics.

The electric field is defined as the force per unit
positive test charge q*

(14.4)

Electric forces are an example, along with gravity, of
“action at a distance,” where electric charges experi-
ence electric forces without “contact.” One way to
explain this is to use the field concept, whereby all
electric charges emit electric fields that travel at the
speed of light and interact with other charges to pro-
duce electric forces. A point charge q produces an elec-
tric field at a distance r given by

(14.5)

Table 14.1 gives the electric field produced by a variety
of other charge distributions.

Because conductors respond extremely rapidly to
external fields, at electrostatic equilibrium the electric
field inside any conductor vanishes, there can be no net
charge inside any conductor, and the electric field just

:

E �
q

4pe0 r2
 rN.

:

E �

:

F

q*
.

outside any conducting surface must point perpendicu-
lar to the surface.

Electrophoresis is a broad category of experimen-
tal methods involving forced migration of electrically
charged macromolecules in electric fields. Modern
methods use SDS polyacrylamide gel electrophoresis
(PAGE) and isoelectric focusing to gain information on
the molecular weight and electric charge properties,
respectively, of the macromolecules. In the former
method, the electrophoretic mobility, given by

(14.8)

is related to the molecular weight of the migrating
macromolecule, whereas in the latter method macro-
molecules are brought to an equilibrium location
within a pH gradient where their net charge vanishes.

Gauss’s law is one of the four fundamental
Maxwell equations and relates the electric flux over a
closed surface to the enclosed charge,

(14.12)

where the flux is defined as

(14.11)£E � E
�

 A � EA
�

� EA cos (u).

£E �
Qnet, enclosed

e0
,

U �
v

E
,

QUESTIONS
1. A system has a total net charge of �15e. If 20 protons

and 5 electrons are removed what is the system charge?
2. A nucleus with 81 protons and 127 neutrons is observed

to emit a beta particle (high-speed electron). How many
protons and neutrons are left in the nucleus?

3. Two equal charges are a fixed distance apart. If a third
charge of the same sign is placed at the midpoint of
the line joining the two charges, is it in equilibrium?
What happens if it is slightly displaced to one side
along the line? What if it is slightly displaced off the
line? Repeat these questions if the third charge is of
opposite sign to the other two.

4. What would happen to the force between two point
charges if
(a) The distance between them was doubled?
(b) The charge of one of them was halved?
(c) The sign of both was changed?
(d) The sign of one was changed?
(e) The distance between them was doubled and the

charge of one was halved?

5. Distinguish between the net charge on a conductor
and its total number of free electrons.

6. Why do you expect good electrical conductors also to
be good thermal conductors?

7. Two isolated charges are 1 m apart. If one of the
charges “instantaneously” moves to a nearby loca-
tion, how long will it take for the other charge to dis-
cover this?

8. What is the direction of the force on a positive point
charge q close to a large plane sheet of positive
charge? Does your answer depend on how far the
charge is from the plane?

9. Why is it that you can sometimes generate static
charge “shocks” when going to touch metal (such as
a doorknob) when the humidity is low but not when it
is high?

10. Give some examples of scalar fields; of vector fields.
11. Does the electric field of a spherical ball of charge

exactly equal that of a point charge with the same
total charge located at the center of the sphere? What
about inside the spherical ball?



12. Why does the test charge, used in defining the electric
field, need to be infinitely small in magnitude?

13. At a point in space there is an electric field, due to
external charges, with magnitude E and pointing in
the positive x-direction. A small charge having a
magnitude of 1 	C experiences a force of 1 	N in the
negative x-direction. Circle the letters of all of the fol-
lowing that is/are true.
(a) The charge must be positive.
(b) The charge must be negative.
(c) The mass of the charge must be 1 kg.
(d) The strength of E must be 1 N/C.
(e) A charge having a magnitude of 2 	C placed at

the same point would experience a force of 1 	N

because E due to the external charges doesn’t
change.

(f) A charge having a magnitude of 2 	C placed at the
same point would experience a force of 2 	N

because E due to the external charges changes to 2E.

(g) A charge having a magnitude of 2 	C placed at
the same point would experience a force of 2 	N

because E due to the external charges doesn’t
change.

14. The figure shows two charges separated by a distance D.

Point P is D to the right of the positive charge and D up
from the negative charge. Draw an arrow with its tail at
P and whose head points in the correct direction of the
electric field due to �Q and �Q. P is just a point; there’s
no charge there. Use the lines emanating from P as a
guide. You can place your field vector along any one of
the eight lines through P or somewhere between.
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square. Find the direction of the electric field at the
fourth corner.

17. A hollow charged conducting sphere of radius R and
charge Q is centered at the origin. There is a positive
point charge of charge q located at the origin as well
as an infinite line of charge (with linear charge den-
sity 
) parallel to the x-axis at y � 2R. What is the
electric field at the point x � z � 0, y � R/2? (Hint:
First consider which charges produce an electric field
at the observation point.)

18. Explain the apparent paradox that a charge inside a
closed uncharged metal container produces an electric
field outside the container that can interact with other
external charges, but these charges do not produce an
electric field inside the container (electrical shielding).

19. Why is ionic strength a better parameter than concen-
tration to use for describing electrical properties of
solutions?

20. Explain what the screening length means. In particu-
lar, why does it decrease as the ionic strength is
increased?

21. Explain how SDS-PAGE is able to separate macro-
molecules based on molecular weight.

22. Why is it that SDS-PAGE can be performed on any
macromolecule with the same electrode arrange-
ment of negative electrode at the top (or start) and
positive electrode at the bottom (or end) of the gel,
regardless of the sign of the intrinsic charge of the
macromolecule?

23. *Explain electric flux in words, discussing its depen-
dence on all three variables in Equation (14.11).

24. *Why does the electric flux only depend on the total
electric charge contained inside the Gaussian surface?
In answering this think about the electric field lines
produced by charges outside the surface versus inside
the surface.

25. *Discuss the surprising result that the electric field
produced between a pair of flat parallel metal plates
with equal and opposite electric charge on them does
not depend on location between the plates.

MULTIPLE CHOICE QUESTIONS
1. A proton is initially at rest at x � �d and an electron

is initially at rest at x � �d. At the same instant they
are released. They subsequently (a) fly away from
each other, (b) collide at x � 0, (c) collide close to
x � �d, (d) collide close to x � �d.

2. Two equal positive charges are held in place, 2 cm
apart. Where should a positive test charge be placed
so that the test charge oscillates back and forth?
(a) On the perpendicular bisector of the line connect-
ing the first two charges. (b) On the line connecting
the first two charges and between them. (c) On
the line connecting the first two charges but not
between them. (d) It is not possible to make such an
oscillator.

D

D

P

–Q +Q

15. Consider three identical charges at the corners of an
equilateral triangle. What is the electric field at the
center? In the case of four identical charges at the cor-
ners of a square, what is E at the center? Can you gen-
eralize this for the E field at the center of an N-sided
equilateral polygon with N identical charges at the
corners?

16. Three parallel infinite lines of charge with the same
linear charge density are located at the corners of a



9. Which of the following is not a scalar field? (a) a map-
ping of the temperature of the human body, (b) a map-
ping of the topography of New York State, (c) a
mapping of the water velocity in a stream, (d) a map-
ping of the mass distribution in our galaxy.

10. Which of the following is an incorrect symmetry argu-
ment about the external electric field of a charged
spherical conductor? (a) It must point radially because
at any observation point there is always a symmetric
distribution of charge to cancel any components of E
transverse to the radial direction; (b) it can only
depend on the distance from the sphere center r

because the sphere is uniform and an arbitrary rotation
of the sphere cannot change the result, so the answer
must be independent of the angles in spherical coordi-
nates and can only depend on r; (c) it must decrease as
1/r2 because that is the spatial dependence of the elec-
tric field of a point charge; (d) it is proportional to the
net charge on the conductor because the charge is dis-
tributed uniformly on the sphere.

11. Which of the following statements about a conductor
is false. (a) The electric field inside is always zero; (b)
just outside, the electrostatic field is perpendicular to
its surface; (c) at equilibrium the net charge inside the
conductor is zero; (d) a charge located within a hole
in a conductor at equilibrium feels no force from
charges outside the conductor.

12. A lump of copper is placed in a uniform external elec-
tric field E that points left to right. When the charges
in the copper come into equilibrium the induced elec-
tric field inside the lump (a) is larger than E and
points left to right, (b) is smaller than E and points

• B

• C

• A

• D

8. Suppose that a picture of electric field lines is drawn
following the convention that 2 field lines emerge
from a small sphere with �2 pC of charge. In this
picture there is an irregular closed surface, the inte-
rior of which is hidden, as shown to the right. The net
amount of charge inside the closed surface must be
(a) �8 pC, (b) �6 pC, (c) �4 pC, (d) �2 pC.

Distance (cm) Field strength (V/m)

4 12.84

8 1.69

12 0.52

6. A solid sphere of copper has a small spherical bubble
at its center. At first, the copper is electrically neutral.
Then, at one instant the surface of the bubble is
coated with some added charge (such as some extra
electrons). After a few minutes (a) the added charge
will still all be on the bubble’s surface, (b) half of the
added charge will be on the bubble’s surface and half
on the sphere’s outer surface, (c) the added charge
will all be on the sphere’s outer surface, (d) the added
charge will be uniformly distributed throughout the
material between the bubble and the outer surface.

7. In the figure below a uniform external field points left
to right. A negative spherical charge is placed in this
field as shown. At which point is the total field (exter-
nal plus sphere’s) most likely to be zero? (a) A, (b) B,
(c) C, (d) D.

3. The electric field at the midline between two infinite
line charges with linear charge densities of 
 and �

separated by a distance 2d is given by

(a) (b) (c) (d) 0.

4. With three equal point charges Q at the corners of a
square with sides of length L, the magnitude of the
electric field at the fourth corner will be (a) equal to
three times the electric field of the point charge Q, or 

(b) less than three times the electric field of

a single point charge but more than twice that value,

so between and (c) less than 

(d) more than 

5. The table below represents electric field values mea-
sured at different distances from some source. Which
one of the following is most likely to be the source?
(a) a sphere of charge, (b) a line of charge, (c) a dipole,
(d) a sheet of charge.

3Q

4pe0 L2
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2Q

4pe0 L2
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3Q

4pe0 L2
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left to right, (c) is the same size as E and points right
to left, (d) is zero, (e) none of the above.

13. The electrophoretic mobility of a macromolecule in a
uniform electric field depends on all but which of the
following? (a) The pH of the solution, (b) the iso-
electric point of the macromolecule, (c) the electric
field applied, (d) the frictional properties of the
macromolecule.

14. SDS polyacrylamide gel electrophoresis can be used
to measure the (a) electrophoretic mobility, (b) net
charge, (c) isoelectric point, or (d) molecular weight
of a macromolecule.

15. *In applying Gauss’s law to a problem to find the elec-
tric field outside a thin spherical shell of radius R with
electric charge distributed over its surface, the best
choice for a Gaussian surface would be (a) a long
cylinder of radius R, (b) a spherical shell of radius R,
(c) a spherical shell of radius r � R, (d) a spherical
shell of radius r � R.

16. *When using Gauss’s law to solve for the electric field
between two long concentric cylinders, of radii R1 and
R2 � R1, with equal and opposite electric charge on
them, the appropriate Gaussian surface would be (a) a
cylinder of radius r, such that r � R2; (b) a sphere of
radius r with R1 � r � R2; (c) a cylinder of radius r with
r � R1; (d) a cylinder of radius r with R1 � r � R2.

17. *In Example 14.7, when calculating the flux through
the Gaussian surface why is the flux through the
cylinder wall equal to zero? Is it because (a) the elec-
tric field is perpendicular to the normal to the cylin-
der, (b) the effective area of the cylinder wall is zero
because the average direction of the normal to the
surface cancels out, (c) the electric field is zero on
that surface, (d) the angle � between the electric field
and the normal to the cylinder wall is zero?

PROBLEMS
1. How many electrons make up 1 C of electric charge?

What is the mass of these electrons?
2. Estimate the number of electrons in the Earth. The

Earth’s mass is 6.0 � 1024 kg. Assume that for each
electron there is one proton and on average one
neutron.

3. How close must two protons be if the electric force
between them is equal to the weight of either at the
Earth’s surface?

4. An electron is suspended at
rest in a uniform electric field of magnitude E. Take
into account gravity at the Earth’s surface, and deter-
mine the magnitude and direction of the electric field.

5. In a simple model of the hydrogen atom, the electron
revolves in a circular orbit around the proton at a dis-
tance of 0.53 � 10�10 m. What is the speed of the
electron in orbit?

6. Consider an arrangement of two point charges �Q

and �Q each of which has a mass m, placed on either

(m � 9.11 � 10�31 kg)
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7. A large electroscope is made with “leaves” that are
50 cm long wires with 20 g spheres at the ends.
When charged, nearly all the charge resides on the
spheres. If the wires each make a 30° angle with the
vertical as shown on the right, what total charge Q
must have been applied to the electroscope and what
is the tension in the wire? Ignore the mass of the
wires.

8. Suppose that electrical attraction, rather than gravity,
were responsible for holding the moon in orbit
around the Earth. If equal and opposite charges Q

were placed on the Earth and the moon, what value of
Q would be needed so that the moon would stay in
its present orbit? Potentially useful data: mass of
Earth � 5.98 � 1024 kg, mass of Moon � 7.35 �
1022 kg, radius of orbit � 3.84 � 108 m.

9. Three equal 2 	C charges are equally spaced 0.2 m
apart along a line as shown. Find the net force on each
of the charges.

30°

end of a massless rod of length D. Suppose that the
rod is fixed to a horizontal surface by a nail through
its center and that the apparatus is subjected to a uni-
form electric field E parallel to the plane of the sur-
face and perpendicular to the rod. What is the net
torque on the system of rod and charges about the
pivot point?

0.2 m 0.2 m

10. Find the force on a 5 	C point charge located at a ver-
tex on an equilateral triangle of 0.5 m sides if 10 	C
point charges are located at the other two vertices.

11. Six equal charges are at the corners of a hexagon.
What is the force on a seventh equal charge at the
center of the hexagon? Suppose one of the six
charges is removed. Find the force on the charge
at the center. (Hint: As is often the case there is a
hard way and an easier way to solve this. For the
easier method, use superposition ideas to remove the
sixth charge by adding an equal and opposite charge
at its site.)

12. Equal and opposite 5 	C point charges are located at
the points y � � 0.5 mm (�5 	C at y � �0.5 mm
and �5 	C at y � �0.5 mm). Find the force acting
on a 2 	C point charge when it is located at each of
the following sites: (a) (x � 1 mm, y � 0); (b) (x � 0,
y � 1 mm); (c) (x � 0, y � �1 mm).



fields as low as 7 	N/C. At a 1 m distance, what is the
minimum charge these fish can detect (ignore charge
screening)?

23. The electric field inside biological membranes is
extremely high, roughly 1 � 107 N/m. If this electric
field generated the only force on a sodium ion, what
would its acceleration be?

24. What is the ionic strength and Debye screening length
at room temperature (300 K) of the following aque-
ous solutions
(a) 0.15 M NaCl � 0.015 M MgCl2
(b) 0.5 M MgCl2 � 0.2 M KCl

25. A sphere with a 0.05 	C net charge on it undergoes
electrophoresis in distilled water at 20°C due to a uni-
form 1 N/C electric field. If the sphere migrates at a
speed of 1 cm/s find its radius. Reminder: the friction
factor for a sphere is f � 6��R.

26. *Given a spherical shell of radius R with total positive
charge Q together with a positive charge q at its cen-
ter, find the electric field both inside and outside the
shell using Gauss’s law.

27. *Two long concentric cylinders of radius R1 and R2,
with R1 � R2, have equal and opposite charges per
unit length, � 
, on them (with � 
 on the cylinder
at R1). Find the electric field in the following regions
using Gauss’s law: (a) r � R1, (b) R1 � r � R2, and
(c) r � R2.

28. *Using Gauss’s law find the electric field produced by
a large planar sheet of electric charge with a charge
per unit area equal to �.

29. *Using the previous problem and the principle of
superposition, find the electric field between two such
planar sheets separated by distance d with equal and
opposite charge densities, � �. Check that your
result agrees with Example 14.7.

30. *A spherical conducting shell of inner radius R1 and
outer radius R2 has zero net charge. A point charge
�q lies at its center.
(a) Use Gauss’s law for a Gaussian spherical surface

of radius r, such that R1 � r � R2, to prove that
there must be an induced charge of �q on the
inner metal surface. What is the charge density on
this surface?

(b) What is then the charge on the outer surface of the
conductor and what is the charge density on this
surface?

(c) Use Gauss’s law to find the electric field both
inside and outside the conductor and show that
you get the same result in the absence of the con-
ductor. Note that any additional electric charges
outside the conductor will not affect the electric
field within the conductor. The region inside the
conductor is said to be shielded from electric
fields outside the conductor.

13. According to the boxed calculation in the chapter, the
force on a point charge a distance d from an infinite
line of charge with charge per unit length 
 is 

Find the force on a 2 	C charge located 2 m from a
line charge with a linear charge density of 0.2 	C/m.
Compare this to the situation when the same 2 	C
charge is 2 m away from a second point charge and
find the value of the second charge that would give
the same net force.

14. Find the electric field at the center of a square pro-
duced by four equal 2 	C charges located at its cor-
ners. Also for the same situation, find the electric field
at the center if two of the neighboring charges at the
corners are �2 	C and the other two charges are 2 	C.

15. A sphere of radius R contains a uniform distribution
of total charge Q. What is the force on a point charge
q located a distance 2R from its center?

16. Find the electric field at the midpoint between a pair
of equal and opposite 5 	C charges separated by 3 m.
Which way does it point?

17. Find the electric field at the center of an equilateral
triangle of 0.5 m sides with charges at the corners of
5 	C, �10 	C, and �10 	C.

18. Two point charges, 5 	C and �8 	C are 1.2 m apart.
Where should a third charge, equal to 5 	C, be placed
to make the electric field at the midpoint between the
first two charges equal to zero?

19. Three parallel infinite line charges with equal charge
densities of 2 	C/m lie in a plane and are equally
spaced by 0.5 m. Find the electric field along a line
perpendicular to their plane through the middle line
charge a distance of 2 m away.

20. Compare the electric field produced 10 cm away from
either a 10 	C point charge, from a 10 m long line of
charge with the same 10 	C total charge, and from a
10 m � 10 m plane with the same charge distributed
uniformly. Assume the equations for an infinite line
or plane apply.

21. A biological membrane can often be modeled as two
closely spaced parallel planes with equal and oppo-
site surface charge densities. We study this in detail in
later chapters, but for now calculate the electric field
within the membrane assuming the charge density on
either plate is � 0.1 	C/cm2 and “vacuum” between
the plates. We show later that this calculation is only
about a factor of three too large when the vacuum is
replaced by the lipid molecules actually present in the
membrane. (Hint: See Table 14.1 and use superposi-
tion to find the net field from both planes.)

22. Certain fish are extremely sensitive to small electric
fields, with sharks, rays, and eels able to detect electric

F �
lq

2pe0 d
.
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In the last chapter we discussed the forces acting between electric charges. Electric
fields were shown to be produced by all charges and electrical interactions between
charges were shown to be mediated by these electric fields. As we’ve seen in our
study of mechanics, conservation of energy principles can often be used to under-
stand the interactions and dynamics of a system. In this chapter we introduce the
concept of electric potential energy and electric potential, and apply these consid-
erations to a variety of situations. The fundamental electric interactions in atomic,
macroscopic, and macromolecular systems are each presented. Biological mem-
branes are discussed in some detail, with emphasis on their ability to act as capac-
itors, energy storage devices. Membrane channels are introduced, focusing on
sodium channels: how they work and how they are selective. We return to a more
detailed description of the electrical properties of channels in the next chapter. This
chapter concludes with a discussion of the mapping of the electric potential pro-
duced by various organs of the human body including muscles, heart, and brain
(EMG, EKG, and EEG, respectively). These medical techniques are often used for
diagnostic purposes.

1.  ELECTRIC POTENTIAL ENERGY

The electric force is a conservative force. As we saw in Chapter 4, this means that the
work done by the electric force in moving a particle (in this case, charged) between
two points is independent of the path and depends only on the starting and ending
locations. Furthermore, there is an electric potential energy function that we can write
down, whose negative difference at those two locations is equal to the work done by
the electrical forces

(15.1)

Recall that two expressions we have used for potential energy functions in
mechanics, gravitational (mgy) and spring potential energy followed from
the general definition of work and the particular form of the force. In a similar
way, if Coulomb’s law for the force due to a point charge q1, on a second point
charge q2, separated by a distance r is substituted into the general definition of
work (see the box below), one obtains the electric potential energy of the two
point charges

(15.2)PEE (r) �
q1q2

4pe0 r
.

112kx22,

�(PEE,final � PEE,inital ) � -¢PEE � W.

15Electric Energy and Potential
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Note that, just as in the mechanical energy cases, we need to define
the location of zero potential energy because only potential energy differ-
ences have meaning. For springs, the natural choice was to reference the
spring potential energy to a zero value for an unstretched spring that exerts
no force. For gravitational potential energy near the Earth’s surface, we
were free to define the location of zero potential as we chose because the
gravitational force on a mass is constant in the approximation we used.
For other more general situations using gravity, the zero of gravitational
potential energy occurs when all masses are infinitely far apart so as not
to be interacting. Similarly, in the case of electrical forces, when the
charges are infinitely far apart (r → �) they do not interact and it is there-
fore natural to choose this situation to correspond to zero electric poten-
tial energy. Equation (15.2) already satisfies this convention.

The electric potential energy for charges of like sign that repel one
another is positive according to Equation (15.2), whereas for unlike charges
that attract each other it is negative. Example plots for both cases are given
in Figure 15.1. We recall that the negative of the slope of such a plot is
equal to the force acting at position r. In this case, with one charge at the
origin and the other at r, when PEE(r) � 0 because the energy decreases
with increasing r, the negative of the slope is always positive, consistent
with a repulsive force acting. The steeper the curve is, the larger the force
(and therefore acceleration) acting. We can imagine a charged particle sit-
ting on the energy curve and falling down its hill with a decreasing accel-
eration (but still increasing velocity) as it moves toward larger r values. A
charge projected toward the origin with some initial kinetic energy will
travel up the PEE hill as far as corresponds to the conversion of all its
kinetic energy to potential before falling back down the energy hill.

Similarly, when PEE(r) � 0, because increasing r leads to less neg-
ative, or increasing PEE, the negative of the slope is itself negative, con-
firming that the force is attractive. A charged particle placed on this
curve will also fall down the potential hill ever more rapidly (with
increasing acceleration) as its distance from the other charge at the ori-
gin decreases. We discuss electric potential energies for other situations
later in this chapter in connection with molecular bonding.

Having found an expression for the electric potential energy of a
pair of point charges, we can write an expression for the total energy of
this two-particle system. We include the kinetic energy of each particle,
the electric potential energy, and any other mechanical potential ener-
gies, PEmech, appropriate to the situation. The conservation of energy
principle then states that

(15.3)

As we have seen in applications in mechanics, energy conservation is
a powerful concept that has a great degree of practical utility as well.

E � KE1�KE2�PEmech �
q1  q2

4peo r
� constant.

Here we derive an expression for the electric
potential energy between two point charges.
We imagine that there is a point charge, say
q1 � 0, located at the origin and bring a sec-
ond point charge, q2 � 0, from infinitely far
away where it does not feel any electric force
to some distance r away from q1. Because
both charges are positive, there is a repulsive
force between them and positive external
work must be done to bring q2 toward the
charge at the origin. This work is equal and
opposite to the (then, negative) work done on
q2 by the electric force from q1. According to
Equation (15.1) the change in potential energy
will then be positive as might be expected,
because if the external force is removed, the
repulsive force will change the positive elec-
tric potential energy of q2 into kinetic energy
as it accelerates away from the origin.

From the general definition of work and
Equation (15.1), the electric potential
energy change is given by

where F is the electric force on charge q2
and � is the angle between the force vector
and the displacement vector The path
taken by the charge does not matter, there-
fore we choose it to be inward along the
radial direction. In this case � is equal to
180°, so that cos � is equal to �1, and the
displacement ds is equal to �dr. We substi-
tute Coulomb’s law for the force to find

Remembering that

we do the integration and evaluate the
resulting expression at the limits to find that
the potential energy at a distance r from the
origin is given by Equation (15.2).
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FIGURE 15.1 Electric potential
energy for two point charges of
1 	C magnitude with the upper
curve for like sign charges and the
lower curve for opposite charges.
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Example 15.1 Find an expression for the total energy of a hydrogen atom treat-
ing the electron as traveling in a circular orbit around the stationary proton. Find
an answer in terms of only the radius of the circular orbit.

Solution: The total energy consists of the kinetic energy of the electron, travel-
ing in a circle, and the electric potential energy of the electron–proton pair. We
can write this as

To express the velocity of the electron in terms of its orbital radius, we use
the fact that the only force on the electron is the Coulomb force and this must
supply the centripetal acceleration according to

where both the force and centripetal acceleration are radially directed. Solving
for mv2 and substituting into the expression for the energy, we have

This result says that the energy of a hydrogen atom is solely determined by the
radius at which the electron orbits the proton. Note that the total energy is neg-
ative. This is the signature of a bound system, with the negative potential energy
term dominating over the positive kinetic energy term. We show in Chapter 25
that although this is a correct statement, the electron cannot orbit the proton at
any radius, but only at certain allowed radii. This fact of nature leads to a dis-
crete set of allowed energy levels for the hydrogen atom from the above equa-
tion relating E to r, as first derived by Neils Bohr in 1913.
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In our discussion, electric potential energy has been introduced as arising from a
direct interaction between charges via the Coulomb force. However, as was discussed
in the last chapter, charges experience electric forces by direct interaction with an
electric field due to the other charges rather than by action at a distance interactions
of charges. In the next section, we introduce the electric potential, an important con-
cept that intrinsically accounts for electric fields.

2.  ELECTRIC POTENTIAL

A charged particle qo in an electric field will experience a force equal to 
Associated with the interaction of the charge and the electric field is an electric
potential energy. In the last section we saw the form of this potential energy if there
is only one other point charge producing the electric field. In general, the electric
potential energy will factor into a product of the charge qo and a function that
depends only on the other charges present and their distribution in space. This func-
tion therefore represents the electric potential energy per unit charge and is called the
electric potential (or simply the potential), V(r), where

(15.4)

Specifically, qo is the charge located at the position at which the potential is being
determined. The SI unit for electric potential is the volt, from Equation (15.4) given by

V(r)�PEE (r)/qo.

qoE
:

.E
:



1 J/C � 1 volt (V). From our discussion you may correctly suspect that V(r) is intimately
related to the electric field produced by the other charges of the system; we show this con-
nection shortly.

A very important unit for electric potential energy is the electron volt (eV),
defined as the work done in moving an electronic charge through a potential difference
of 1 V. From the charge on an electron, e � 1.6 
 10�19 C, we see that 1 eV � (1.6 

10�19 C) 
 (1 V) � 1.6 
 10�19 J. The electron volt is a very useful unit of energy in
dealing with elementary particles such as electrons and protons since typical values
are eV and awkward powers of 10�19 are not needed.

To find an equation for the electric potential produced by a single point charge at
the origin we can use Equation (15.2) in which we arbitrarily assign q2 to be the
charge located at the origin, and q1 to be a charge q0 at an observation point a dis-
tance r away where we wish to evaluate V. Using Equation (15.4), V is found by
dividing Equation (15.2) by the charge q1 (� q0). Because the label q2 is arbitrary,
we drop its subscript to find a general expression for the electric potential of a point
charge located at the origin,

(15.5)

The electric potential function of a point charge maps the potential energy per
unit charge in space, so that if a charge q0 were placed at position r the potential
energy of the two-charge system would be PE � q0V(r). Implicit in this is the zero-
level of electric potential to be at infinite separation.

Note that the electric potential function of a point charge is defined everywhere in
space and does not actually require another charge to interact with at a point in order
to have a defined value at that point. Note the physical significance of the electric

potential at a point is the external work needed to move a unit positive charge from

infinitely far away to that point along any path. This is true because the change
in electric potential energy equals the negative of the work done by the electric forces,
which in turn is equal and opposite to the work done by external forces. So, for
example, when you turn on your flashlight using two 1.5 V (2 
 1.5 � 3 V total)
batteries, each unit of charge (1 C) that moves through the light bulb from one side of
the battery to the other has used 3 J worth of battery energy.

It may be helpful to discuss an analogy with gravitation in order to better appreciate
the meaning of electric potential. If a gravitational potential function had been analo-
gously defined as PEgrav/m � gh, we see that such a “gravitational potential” would cor-
respond to the height function multiplied by the constant g. A roller coaster track would
define this gravitational potential function by virtue of its height (Figure 15.2). An expres-
sion for the gravitational potential energy function of someone riding on the roller coaster
could then be easily found by multiplying that function by her mass. We did not introduce
such a gravitational potential previously because, in our constant g approximation near

the Earth’s surface, there would be no particular benefit. However, in the
case of electricity with both positive and negative charges and with a spa-
tially varying electric field, a mapping of the electric potential in space
without regard for other interacting charges will be quite useful in the
same way in which a mapping of the electric field was in the last chap-
ter. Remember, however, that the electric potential is a scalar function,
whereas the electric field is a vector quantity representing three func-
tions, one for each vector component. A two-dimensional mapping of the
scalar field representing the electric potential is similar to a topological
map as discussed in the last chapter. In this case the height above a
point in the plane represents the potential at that point. For the three-
dimensional case, a scalar potential value is assigned to each point in
space. These mappings can be visualized using color-coded computer
methods, for example (see ahead to Figure 15.9). But, what is the rela-
tion between the electric field and the electric potential?

V(r) �
q

4pe0 r
.
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FIGURE 15.2 Boomerang, Knott’s
Berry Farm, California: gravitational
potential varies with height.



To answer this question let’s take the simple case of a constant, uniform elec-
tric field along the x-direction, reducing the problem to essentially one dimension.
The force on a point charge qo in such an electric field is and the work
done on qo by the electric field in moving a distance �x along
the electric  field direction is

Accordingly, the change in electric potential energy is so that the
electric potential is given, in this simple case, by

(15.6)

where �x is positive when along the E field direction. This equation relates the constant
electric field to the change in potential between two locations separated by �x. If the
potential function is known, then the electric field may be found from the relation

(15.7)

where, in more than one dimension, there are similar expressions for the y and z com-
ponents of the electric field. We mention that in the two- or three-dimensional case,
given a mapping of the potential, the direction of the electric field is along the direc-
tion of the steepest descent of the function; that is, at any given point the electric field
will be along that direction corresponding to the most rapid decrease in potential.

It is also worth mentioning that Equation (15.7) shows that the electric field may be
expressed in units of (V/m) in addition to the previously introduced equivalent units of
(N/C), with 1 N/C � 1 V/m. The V/m is probably the more common unit for electric
fields. Note that when Equation (15.7) is multiplied by a charge qo its meaning becomes

(15.8)

recovering an equation we have seen previously (Equation (4.23)).
For a positive electric charge qo, the positive work done by an electric field acting

alone will tend to drive the charge toward lower electric potential. This is seen by the
fact that the product of W � Fx�x � qoEx�x � �qo�V � 0, so that �V � 0, and
the charge will move down the potential hill. On the other hand, a negative charge will
be attracted toward a higher potential because in that case with qo � 0 we must have
�V � 0. Plots of electric potential have the same dependence on r as electric
potential energy and are therefore quite similar to those in Figure 15.1. These
statements concerning the directions of the forces acting on charges are gen-
erally true despite our assumption of a constant electric field. Positive charges

tend to move toward lower potentials, or down potential hills, whereas nega-

tive charges tend to move toward higher potentials, or up potential hills.
Figure 15.3 shows a mapping of the electric field and electric potential of a

point charge. Note that the potential is mapped as a series of, in this case spheri-
cal, contours of constant potential, known as equipotential surfaces (in three-
dimensional space). No work is required to move a charge around on an
equipotential surface because there is zero potential difference between all its
points. Therefore, the electric field is always perpendicular to equipotential sur-
faces, as we saw in the previous chapter for the case of a conducting surface. This
is true because if the electric field had a component parallel to an equipotential
surface, there would then be a net force acting to do work on a charge moving on
the surface and it could not have a constant potential. It is straightforward to map

Fx� �
¢PEE

¢x
,

Ex� �
¢V

¢x
,

¢V �
¢PEE

qo
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FIGURE 15.3 Radial E field 
vectors and spherical equipotential
surfaces (circles in two dimensions)
of a point charge.



equipotential surfaces once a mapping of the electric field is known. A surface is
constructed that is everywhere perpendicular to the electric field lines (Figure 15.4).

An interesting example of an electrostatic potential in biology involves the honeybee.
Coated with a fine layer of hair, the honeybee develops electrostatic charge when it flies,
so that it actually can reach electrostatic potentials of several hundred volts. When the bee
lands on a flower to drink nectar, pollen grains are electrostatically attracted to the
fine hairs and will “jump” short distances through air from the electrostatic forces (see
Figure 15.5). The honeybee then grooms itself and collects the adhered pollen in pollen
sacs attached to its hind legs. Fortunately, not all of the pollen is collected for the bees to
eat and the remaining pollen is able to pollinate other flowers as the bee visits them. It is
also thought that the electrostatic voltage developed may help deliver pollen grains to the
stigma of flowers by electrostatic attraction. (As an aside, for your information, recently
there has been a precipitous decline in honeybee populations around the world. As yet the
cause is unknown, although quite a number of factors have been surmised including virus
infections, parasites, pesticide effects, nutritional issues, and other factors. Because hon-
eybees pollinate about 90% of the fruit and vegetable crops in the United States alone,
their declining numbers are having a major impact on the worldwide economy.)

3.  ELECTRIC DIPOLES AND CHARGE
DISTRIBUTIONS

From the equation for the electric potential of a point charge (Equation
(15.5)), we can find the electric potential of an arbitrary distribution of
electric charge by generalization. If there are a number of individual
point charges in the system (see Figure 15.6), the potential at some
point in space, that we call the observation point, is simply the algebraic
sum of the individual potentials due to each charge,

(15.9)

where ri is the distance from the observation point to the ith charge, qi.
In this sum, one must be careful to include the sign of the electric charge.
There is a clear advantage in calculating the net electric potential, a
scalar quantity, over adding vector components of the electric field in
order to find the net electric field. Because there is a direct connection
between the two, it is almost always easier to find V first and then find 
directly from V. A specific example helps to illustrate these ideas.

E
:

V �
1

4peo
gqi

ri

,
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FIGURE 15.5 A honeybee with
pollen grains adhering to its fine
body hairs by electrostatic attraction.

FIGURE 15.4 Electric dipole field
map with equipotentials. Note in
this case the equipotential surfaces
are not spheres, but are everywhere
perpendicular to the electric field.
Make sure you are clear on the 
difference between electric field
lines and equipotentials. Which are
which in the figure?
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Example 15.2 Calculate the potential and the electric field at the empty corner
of a square of 1 m sides when there are point charges at each of the other cor-
ners as shown.

One particular arrangement of two charges that is of general significance is the elec-

tric dipole already studied in Examples 14.2 and 14.3. Its significance lies in the fact that
even though it is electrically neutral, the separation of positive and negative charges
allows it to produce an electric field and corresponding electric potential.
Electric dipoles of two types occur in nature. A net separation of equal positive
and negative charges may be permanent, as, for example in the important case
of the water molecule (Figure 15.7). Even molecules that are electrically neu-
tral and have no permanent dipole moment can, in the presence of an external
electric field, form a dipole moment by a process known as electric polariza-
tion. The imposed electric field causes a separation of positive and negative
charges in the otherwise neutral molecule leading to an induced dipole moment.
This important process is discussed in more detail in the next section.

To calculate the electric potential of a dipole, we first specify a
coordinate system and then use Equation (15.9) to add the individual

observation
point

qi

ri

FIGURE 15.6 Geometry to
calculate potential from a
distribution of point charges.

Solution: We first calculate the electric potential at the empty corner of the
square. Because potential is a scalar, we simply add the potential due to each
charge, as in Equation (15.9), to find

The factor is the length of the diagonal of the square, the distance from the 
�5 	C charge to the observation point. To find the electric field at the same
point we must add the electric field vectors produced by each point charge at the
observation point. This sum is given, in ordered pair notation, by

where the direction of the field from the �5 	C charge is along the diagonal of
the square toward the charge and we have taken its x- and y-components.
Combining terms, the net electric field is

In general, it is clearly easier to calculate scalar electric potentials than vector
electric fields.
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potentials. If we choose the arrangement shown in Figure 15.8, we find the poten-
tial to be

(15.10)

where r� and r� are the respective distances of the positive and negative charges to the
observation point. If the observation point is much farther away than the size of the
dipole d, so that with r � r� ~ r� � �r as shown in Figure 15.8, then from the figure,
we can write that

where � is the angle between the vector from the dipole center to the observation
point and the dipole axis, chosen by a convention in which the axis points from neg-
ative to positive charge along the dipole. Substituting this into Equation (15.10)
results in

(15.11)

where we have defined the electric dipole moment to be p � qd, equal to the magni-
tude of either charge times the charge separation distance.

The electric potential of a dipole differs from that of an isolated charge in two sig-
nificant ways. First, the dipole potential decreases much faster with increasing distance,
varying as 1/r2 whereas the potential of a point charge varies as 1/r. This is to be
expected because the net charge of the dipole is zero and the force on, or the interac-
tion energy with, a charge at the observation point is expected to be substantially less
than that due to a single charge q at the site of the dipole (see the example just below).
Second, the dipole potential is no longer spherically symmetric, but has an angular
dependence. This is also to be expected because the dipole has a symmetry axis defin-
ing a preferred direction in space.
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FIGURE 15.8 Geometry for electric dipole 
calculation.
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FIGURE 15.7 Molecular struc-
ture of the water molecule. The
red oxygen carries a partial
negative charge, and the blue
hydrogens each carry a partial
positive charge so that there is
a separation of the centers of
positive and negative charge
producing a permanent dipole
moment for water.
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Example 15.3 Calculate the electric potential and field of an electric dipole
along its axis.

Solution: Using the notation of Figure 15.8 as applied to an observation point
along the dipole axis, say the z-axis, we can write expressions for the electric
potential and field of a dipole as

and

where points along the z-axis. To proceed, we simplify the final term in the
bracket of each expression using the binomial theorem when 

to find

and

We compare the z-dependence of these two expressions, per unit dipole
moment, in Figure 15.9. Note the faster decrease in E with distance from the
dipole, varying as 1/z3 versus the 1/z2 variation of V.
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FIGURE 15.9 Electric potential (1/r2, lower dashed line) and field (1/r3, solid line in
blue) along the axis of a (unit) electric dipole. The plots have been normalized to
coincide at the maximum value shown. Upper curve (red) has a 1/r dependence, for
comparison.



Continuous distributions of electric charge, in which the charge is found
throughout a volume or on a surface, are obviously more common real-life
examples of actual charge distributions than point charges. Most of these sit-
uations must be handled using numerical methods on a computer, but if there
is sufficient symmetry in the geometry of an object on which the charge
resides then analytical expressions for the potential can be obtained using
calculus. One useful representation for the electric potential of a charge dis-
tribution is a potential map, very much like a topological map. An example
is given in Figure 15.10 for a protein molecule. Such mappings are particu-
larly useful for visualizing the potential in the neighborhood of a complex
macromolecular surface that would be detected by a small ion or molecule.

4.  ATOMIC AND MOLECULAR ELECTRICAL
INTERACTIONS

Our current understanding of the electrical interactions between elementary constituents
of matter comes from quantum mechanics, a subject we explore briefly toward the end of
this book. One ultimate question in our fundamental understanding is why atoms are sta-
ble objects. Consisting of a positive nucleus and negative electrons that, according to
Coulomb’s law, should attract each other, they might be expected to be unstable and col-
lapse. The negative potential energy curve of Figure 15.1 corresponds to this situation. An
electron would be expected to “fall” down this potential energy hill to the nucleus at the
origin. We show later how quantum mechanics addresses this fundamental question but
for now we simply treat atoms as stable objects. As two atoms approach each other, once
their electron clouds (for now, a vague term that indicates the rough size of an atom) over-
lap, there is a very strong repulsive force arising from quantum mechanical effects. This
very strong repulsion is sometimes called a hard-sphere repulsion because it resembles the
strong repulsive interaction between two billiard balls that prevents them from overlap-
ping in space when they come into contact. As long as atoms do not overlap in space, we
will have a reasonable degree of understanding of their electrical interactions by treating
them as point charges and dipoles and ignoring quantum mechanics.

Atomic distances are usually measured in angstroms (Å), where 1 Å � 0.1 nm.
The smallest atom, hydrogen, has a diameter of about 1 Å, whereas the largest atoms
are only several Å in diameter. If we calculate the magnitude of the electric potential
energy due to the Coulomb interaction between two electrons, separated by a distance
of 1 Å, we find from Equation (15.2),

(For comparison with bond strengths discussed in Section 5 of
Chapter 12, this energy corresponds to

about 4–5 times larger than the energy of the strongest atomic bonds
that exist.)

We can classify the various types of electrical interactions possible
between atoms or molecules. The strongest interactions are those due
to direct charge–charge interactions, having a potential energy given
by Equation (15.2), but with the permittivity of vacuum �o modified
by the electrical properties of the medium in which the charges are
immersed (discussed in the next section). With one charge at the origin,
the potential energy of such interactions decreases with separation
distance as 1/r. Charge–charge interactions only occur between two

PE �
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 1023 bonds/mol
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� 33 kcal/mol,

PE �
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 10�1922
4peo110�102 � 2.3 
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FIGURE 15.10 The acetylcholine
esterase molecule with two types
of color coding. On the left, the
surface is color-coded with positive
(blue) and negative (red) charges
(with the dipole moment shown as
the white arrow), whereas on the
right two equipotential surfaces are
mapped, each corresponding to
kBT energy (GRASP modeling).

It is interesting to check that we can calcu-
late the electric field for Example 15.3
directly from the expression for the electric
potential using Equation (15.7). To find Ez
we simply differentiate V with respect to z:

in agreement with the separate and more
difficult calculation in the example.
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ionized atoms or molecules, both having net charge. Other types of electrical interac-
tions are discussed in decreasing order of strength based on their dependence on sep-
aration distance.

The charge–dipole interaction occurs when one atom or molecule is charged
and the other has a permanent dipole moment. According to Equation (15.4),
the interaction potential energy should be given by the product of the charge
and the dipole potential, given by Equation (15.11). In this case the potential
energy decreases with separation distance as 1/r2 and is proportional to the product
of the charge and dipole strength, also depending on the orientation of the dipole
in space.

If both atoms or molecules have no net charge but are permanent dipoles then the
dipole–dipole interaction occurs with an energy that varies as 1/r3 and depends on
the two dipole strengths as well as their relative orientation in space. All of the above
interactions can be either attractive or repulsive, resulting in potential energies that
are either negative or positive, respectively.

When one of the atoms or molecules has both no net charge and no permanent
dipole moment, it can still interact electrically with a charge on another atom or mol-
ecule. The charge creates an electric polarization (or separation of positive and neg-
ative centers of charge) of the neutral atom or molecule so that an induced dipole is
formed (Figure 15.11). The charge–induced dipole interaction is always attractive
because the induced dipole is always created with the opposite charge closest to the
original isolated charge. The interaction dies away faster still with separation dis-
tance, varying as 1/r4.

What is the situation when both atoms (or molecules) have neither a net
charge nor a permanent dipole moment? Will they still interact electrically? All
atoms are composed of a number of electrons and an equal number of protons in
the nucleus. The time average of the electric dipole moment will be zero, because
we have assumed no permanent dipole. However, over short time intervals there
will be a nonzero rapidly varying dipole moment that can interact with a second
neighboring neutral, nonpolar atom or molecule to induce a corresponding electric
polarization and induced dipole moment. Known as the dispersion interaction,
this interaction is always attractive, just as for the case for the charge-induced
dipole interaction. Varying as 1/r6 it is the most rapidly decaying attractive force
between atoms or molecules and is only significant for two molecules that are in
very close proximity.

The total potential energy function for the interactions between two atoms or
molecules is the sum of all the interaction energies. It will, of course, depend on the
details of the particular atoms or molecules, but for many purposes can be accurately
modeled by combining a positive (repulsive) hard-sphere potential energy function
with a negative (attractive) longer-range potential energy function. One commonly
used form for neutral nonpolar atoms or molecules is the Lennard–Jones or “6–12”
potential function

(15.12)

a plot of which is shown in Figure 15.12. This function displays most of the usual
features seen in atomic or molecular systems. There is a very steep “repulsive wall”
at the closest approach distances representing the hard-sphere
repulsion. The minimum represents the equilibrium separation
distance (at 21/6B) for the two particles. Beyond the minimum,
the slope becomes positive indicating an attractive force (recall
Equation (15.8)) and there is a much less steep “attractive tail”
that reaches a nearly neutral plateau beyond about 2B. With the
parameters A and B chosen for the particular system, this poten-
tial form is a generally useful approximation.
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FIGURE 15.11 A charged rod
inducing a net dipole on a neutral
sphere.

–0.4

–0.2

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

r

P
E

FIGURE 15.12 The Lennard–Jones
potential function often used to
model atomic or molecular systems.
In this case A � 1 and B � 0.105.



5.  STATIC ELECTRICAL PROPERTIES 
OF BULK MATTER

Having described the fundamental nature of conductors and insulators,
let’s examine and contrast some of their properties in the presence of
an electric field. As we have seen in Section 4 of the previous chapter,
at electrostatic equilibrium any excess charge on a conductor resides
on its surface and the electric field inside a conductor is zero even
when the conductor is placed in an external electric field. Furthermore,
at equilibrium the electric field at the external surface of the conductor
is always perpendicular to its surface. In the language of electric poten-

tial, the surface of a conductor is an equipotential (Figure 15.13). No work is required
to move charges on the conductor’s surface or throughout its interior as well, since
all portions of the conductor are at the same potential.

In the case of an insulator in an electric field, charges are not free to migrate in
response to the field. We can distinguish two types of insulators based on whether the
molecules have a permanent dipole moment. In polar dielectrics, those with a per-
manent dipole moment, the dipoles will tend to align in the external electric field to
some extent. This alignment is due to a torque on the dipole p from the interaction
with the electric field E. In a uniform electric field each of the dipole charges q will
experience the same force qE, resulting in equal but opposite forces on the dipole
(known as a couple). The resulting torque on each charge about the dipole center is
equal to (see Figure 15.14) so that the net torque is given by

(15.13)

where d is the dipole length and � is the angle between the dipole and the electric
field. This torque will tend to align the dipole with its axis along the E field direction.
However, they will not all completely align with the field because of thermal motions
that tend to randomly orient the dipoles. Only if the external electric field is quite
large and/or the temperature is sufficiently low will the dipole alignment be essen-
tially complete.

A dipole in an electric field will have a potential energy corresponding to the
work done by the torque in rotating the dipole. In a uniform electric field this poten-
tial energy can be shown to be

(15.14)

where � is defined just as in Equation (15.13) to be the angle between p and E

As expected, the lowest energy (PEp � �pE) occurs when the dipole is oriented
along the E field, a position of stable equilibrium, and the highest energy occurs
when p and E point in opposite directions (PEp � pE), a position of unstable equi-
librium. When the dipole is oriented along the E field small perturbations in its
orientation lead to a restoring torque as seen in Figure 15.14, but when the dipole is

aligned oppositely to the field a small perturbation will lead to a large
torque that tends to flip its orientation to line up with These energy ideas
are important in later discussions.

When nonpolar dielectrics are placed in an external electric field, the
molecules become polarized, with their electrons shifting the center of
charge away from that of the nuclei in the direction of E, producing an
induced dipole moment (Figure 15.15). The extent of this polarization, and
therefore the magnitude of the induced dipole moment, depends on the
electrical characteristics of the particular molecules.

In any case, when a slab of dielectric, either polar or nonpolar, is
placed in an electric field, the net result is to create surface charge layers
on the slab as shown in Figure 15.16. There is no net charge throughout
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FIGURE 15.14 A couple is exerted
on a permanent dipole in a uniform
E field.

FIGURE 15.13 Electric field 
and equipotential surface for a 
conductor. The electric field is
greatest where the curvature is
greatest; equipotential surfaces are
bunched where the field is largest.
The metal surface itself is an
equipotential.



the dielectric volume, but because of either the orientation of polar dielectric mol-
ecules or the induced dipole of nonpolar dielectrics, surface layers of charge are
present. The net effect of these surface charges is to reduce the electric field within
the dielectric through a partial shielding. Unlike in a conductor, where the free
charges can move in response to an electric field and distribute themselves on the
surface so as to cancel the electric field within the conductor, dipoles in a dielec-
tric can only partially reduce the internal electric field. The extent of field reduc-
tion depends on the dielectric material and is characterized by the dielectric

constant 
, a dimensionless number that indicates the factor by which the internal
electric field is reduced compared to its value in vacuum

(15.15)

Table 15.1 lists some values for dielectric constants of various insulating materi-
als. Note the extremely high dielectric constant of water indicating that water is a
very good insulator. This seems contrary to common knowledge that, for example, it
is dangerous to be in water during an electrical storm. The conductivity of water is
due entirely to the ionic content of the water. Pure water itself is a very poor con-
ductor of electricity.
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FIGURE 15.15 (left) Nonpolar atom with centers of positive (blue) and
negative (red) charge overlapping; (right) same atom in a uniform 
electric field, with center of negative charge shifted to the left creating
an electric dipole along the electric field.
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FIGURE 15.16 The net internal E field is the
superposition of the external field (light green)
and the internal field due to the induced surface
charges (red). It is always reduced due to the
shielding of the induced charges.

Table 15.1 Dielectric Constants of Some Insulating
Materials

Material Dielectric Constant

Air 1.00054

Paper ~4

Pyrex glass 4.7

Rubber (Neoprene) ~7

Ethanol 25

Water 80

Recently scientists have developed methods to calculate accurate electric poten-
tials near the surface of a macromolecule. This has been a significant advance in our
understanding of the interplay of native structure and function and also in our ability
to design synthetic new macromolecules not found in nature. Macromolecules are
inherently highly charged structures immersed in an ionic environment, whether
inside a cell or in a buffered solvent in a test tube. The charges on macromolecules,
such as proteins or nucleic acids, play a major role in determining the native structure
of the molecule as well as its functioning. Specific small molecules that bind to a
macromolecule, known as ligands, may be recognized not only by their size and
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shape, but also through their charge interactions. Charge groups near
an active site on an enzyme may play a role in regulating the bind-
ing rates of ligands.

These electric potential calculations require a detailed knowl-
edge of the three-dimensional structure of a macromolecule, com-
plete with the locations of all its atoms. A catalog of the complete
structure of many proteins is rapidly growing and is available in
computer databases. In one widely used calculational scheme, a
cubic lattice grid of points (like three-dimensional graph paper) is
chosen and values for charge density, dielectric constant, and ionic
strength parameters are assigned to each lattice point. The surface
of the macromolecule is usually taken as the so-called van der
Waals (or hard-sphere) envelope of the surface atoms and a low
internal dielectric constant (2 – 4) is chosen to represent a mean
value whereas a large value (~80) is assigned to external lattice
sites to represent the aqueous solvent. At this point the problem
becomes a classical electrostatics calculation with a large set of

point charges given at known locations. The qualitative presentation in Section 3
above is used in a more quantitative form to write down the mathematical problem
and numerical methods have been developed in order to calculate the electric poten-
tial. Those methods have been greatly improved in recent years so that fairly rapid
calculations can now be performed and these improvements have led to a rebirth in
the application of electrostatics to the study of macromolecular interactions.

The three-dimensional mapping of the electric potential (see color-coded examples
in Figures 15.10 and 15.17) reveals patterns of interaction energies that are not at all
apparent from the three-dimensional structure of the macromolecule itself. Patterns of
positive or negative potential can be seen over the surfaces of macromolecules and such
specific potential features near an active site for binding of a ligand can give important
information on the electrostatic interactions with the ligand. Studies of similar macro-
molecules can show the importance of various specific portions of those structures.

A general knowledge has been assembled on the electrostatic effects of various
common structural elements found in proteins and nucleic acids and this body of
knowledge has been extremely useful in de novo protein design, the planning and
fabrication of new proteins not known to occur in nature. Since the mid 1980s sev-
eral such proteins have been designed and made. So far they have not been
designed with the idea of inventing important new macromolecules, but rather to
test fundamental notions on the relationship between structure and functioning of
macromolecules by designing simplified macromolecular “motifs”. For example, a
number of proteins have been created to act as membrane channels (see below) in
order to test ideas on the minimum necessary characteristics of such proteins to
allow a functioning channel. Knowledge gained in these endeavors will no doubt
lead to the future development of new proteins able to perform specific biological
functions in living tissue, perhaps replacing the function of defective proteins.

6.  CAPACITORS AND MEMBRANES

The lipid bilayers of cell membranes can be electrically modeled as a sandwich
consisting of two layers of a conductor (the plane of the polar lipid heads) sepa-
rated by a dielectric layer (the hydrocarbon tails; see Figure 15.18). Such an elec-
trical arrangement is known as a capacitor, or sometimes a condenser. When made
of metals and insulators this is a common device for storing electric potential
energy and is found in essentially all electronic devices, from telephones to com-
puters. Surrounding a cell, the lipid bilayer provides a barrier to maintain a differ-
ent internal environment of ions and macromolecules from the extracellular
bathing fluid. Because of an unequal distribution of various ions between the
inside and outside of all living cells, there is an electric potential difference across

FIGURE 15.17 Two color-coded
images of the protein lysozyme.
The left image is coded by 
curvature and shows a major bind-
ing cleft for polysaccharides,
whereas the right image is coded
by electrostatic charge and shows
a highly negative (red) binding site
in an otherwise positively charged
(blue) lysozyme. Computer model-
ing has allowed these detailed 
pictures only in recent years.



all cell membranes known as the resting potential. Its magnitude varies according
to cell type, but the inside of cells is always negative with respect to the outside and
the magnitude of the potential difference is roughly 100 mV or 0.1 V and is rela-
tively constant.

Certain types of cells have evolved to respond to particular types of stimuli (elec-
trical, chemical, or mechanical) all with the same basic signal, a transient change in
the membrane potential (depolarization of the membrane), followed by a restoration
of the resting potential (repolarization). Such cells include nerve, muscle, and sensory
cells, all having a similar basic membrane structure. We first develop some concepts
about the storage of charge on a generic capacitor before returning to consider the
capacitance and charge properties of membranes.

As we have seen, the work done in assembling any array of electric charges results
in an electric potential energy. A device used to store electric charge will also thereby
store energy. Any array of conductors will serve this function and act as a capacitor,
but several simple geometries using two conductors (known as the plates of the capac-
itor) usually separated by a dielectric are most often used. Figure 15.19 shows
some examples of common capacitors used as electrical devices.

Consider a parallel-plate capacitor shown in Figure 15.20. Such a capac-
itor is a prototype for all capacitors and even the electrical symbol for a 

capacitor resembles a parallel-plate capacitor. If made with thin metal foil
conductors and dielectric layers in between, the plane sheets can be rolled up
to form a compact cylindrical device. In introducing capacitance, we first
assume that there is no dielectric layer between the plates but just vacuum.
Suppose equal and opposite charges �Q are placed on the two plates. There
will then be an electric field between the two plates and a corresponding
potential difference that we denote by V. In general, the charge Q on either
plate of a capacitor and the potential difference across the plates are propor-
tional, defining the capacitance C by

(15.16)

From the boxed calculation in Section 4 of Chapter 14, the electric field
from a plane sheet of charge is E � �/2 , where � is the charge per
unit area (Q/A) on the sheet. For the parallel plate situation of Figure 15.20,
the fields produced by each plate add in the space between the plates, but

eo

Q�CV.

� �
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FIGURE 15.19 Variously packaged
common capacitors.

FIGURE 15.18 Two models of a lipid bilayer with polar heads on the surface and 
hydrocarbon tails buried within. The image on the right also shows an �-helical 
transmembrane polypeptide.
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where Q and A are the charge on an area of one of the plates. Because E is a constant,
the potential difference between the plates is given by Equation (15.6) as

(15.18)

where d is the plate separation. From Equations (15.16) and (15.18), we find 
that the capacitance of the parallel-plate capacitor is given by purely geometric
factors as

(15.19)

The fact that the capacitance depends entirely on geometry is a general result,
regardless of the capacitor’s shape. Units for capacitance are given by those of Q/V

or 1 C/V � 1 farad (F). A farad is an enormous value for capacitance and units of pF
to 	F are common.

A charged capacitor not only stores charge, but also energy. For a parallel-plate
capacitor we can calculate the stored energy from the following argument. Imagine
the plates to be initially uncharged and the charging to occur by the transfer of elec-
trons from one plate to the other in a process that results in equal but opposite final
charges. After the plates have been partially charged and the potential is at some
intermediate value V� between 0 and the final potential V, in order to transfer a small
additional amount of charge �q we need to do an amount of work equal to �q V�.
To transfer a total amount of charge Q, we cannot simply multiply the final charge
and potential together because the potential changes in proportion to the amount of
charge transferred. However, we can obtain the correct value for the work done by
imagining that instead of continuously transferring charge, we transfer all of the
charge Q through a constant potential difference that is equal to the average value
during the actual process. Because the average potential is V/2 (see Figure 15.21),
we find that the work done is W � Q(V/2) The potential energy stored in the capac-
itor is then equal to

(15.20)

Because in the actual charging process both Q and V vary with time, it is often
useful to rewrite Equation (15.20) in terms of the capacitance and only one vari-
able, using Equation (15.16). Substituting for either Q or V in Equation (15.20),
we obtain three equivalent forms for the stored energy of a capacitor,

PE�
1

2
 QV.

C �
eo A

d
. ( parallel�plate C).

V � Ed �
Qd

eo A
,

FIGURE 15.20 A charged parallel
plate capacitor, showing the 
cancellation of electric fields outside
and net E field within the capacitor.
The electric field from each plate is
constant and points either away
from the positive or toward the 
negative plate. Superposition of
these electric fields leads to confine-
ment of the electric field between
the capacitor plates.

V

Charge on capacitor Q

Potential across capacitor

V = V / 2

FIGURE 15.21 The potential across
the capacitor increases linearly with
the charge on the plates. The same
work (equal to the area under the
diagonal line) is done in charging
the plates continuously as would
be done by transferring charge Q
across the average potential of V/2
(area under the heavy dashed line).

+Q –Q

E +

E +
E +

E –

E –
E –

 

Enet = 0 Enet = 0

Enet

cancel in the space outside the plates as shown. The electric field
between the plates (away from the edges where boundary effects
occur) is therefore constant and given by

(15.17)E �
Q

eo A
,

(15.21)

An example may help to clarify the appropriate use of these
expressions.

PE �
1

2
 QV �

1

2
CV2 �

1

2
 
Q2

C
.
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Example 15.4 This is our first example of an electrical circuit. We want to find the
charge on the 10 
 10 cm plates of a parallel-plate capacitor (shown below on the
right) with a 1 mm air gap after it is connected to the terminals of a 12 V battery
as shown.

Solution: The figure shows both the actual physical arrangement and the elec-
trical circuit diagram used to represent the situation. Note that the symbol for a
battery (with “��”, longer line, and “��”, shorter line, terminals) is somewhat
similar to that for a capacitor (with equal length lines) and that the drawing of
connecting wires is arbitrary as long as they have the same connections at their
ends. The battery is a device that supplies a potential difference, or voltage,
between its two terminals. When the switch shown in the diagram is closed,
charge flows from the battery onto the capacitor plates until the voltage across
the capacitor plates reaches the same value of 12 V that is across the battery ter-
minals. At this point the two separate “halves” of the circuit, the left and right
portions of the circuit diagram corresponding to the two physically separated
metal parts of the circuit, divided by the air gap in the capacitor and the battery
acid within the battery, are each equipotential surfaces and no further charge
flows. The positive side of the circuit is at a potential of 12 V with respect to the
0 V of the negative side.

To determine how much charge flows, we must first calculate the capaci-
tance of the parallel-plate capacitor using Equation (15.19). We find

The amount of charge on each plate of the capacitor is then found from the def-
inition of capacitance, Equation (15.16), to be

with the plate attached to the positive battery terminal with �1.1 nC and the
other plate with �1.1 nC of electric charge.

Q�CV�88
10�12 F
12 V�1.1
10�9 C,

C �
eo A

d
�

8.85 
 10�12 (0.1 
 0.1)

0.001
� 88 pF.

What does it mean that the work done in charging a capacitor is stored as poten-
tial energy? One view is that the energy is stored in the configuration of charges and
that if the two capacitor plates are connected by a conductor, electrons on the nega-
tive plate will gain kinetic energy and rapidly flow to the other, positive, plate, thus
neutralizing both plates. We discuss this further in the next chapter where we discuss
the flow of electric charge.



Another equivalent, but perhaps more revealing, view is that the energy is stored
in the electric field that is created between the capacitor plates. If we substitute for C
and V from Equations (15.18) and (15.19), we can find an expression for the potential
energy that depends only on E and the geometry of the plates

(15.22)

The product Ad is just the volume between the capacitor plates that the electric
field fills uniformly without extending outside the capacitor, thus Equation (15.22)
states that there is an energy per unit volume, or energy density, stored in the electric
field and given by

(15.23)

This is a fundamental relationship for the energy stored in an electric field.
Despite the rather specialized example used to derive this result, we show later 
that it is indeed a very general and important result that is not restricted to capaci-
tors. The fact that there is energy in the electric field, and that the energy is
proportional to the square of the field, leads us to many significant developments
in electromagnetism.

If a dielectric material with dielectric constant 
 fills the space between the plates,
then, as we have seen, the internal electric field is reduced by the factor 
. With a given
charge Q on the plates, the presence of the dielectric reduces the potential difference
between the plates by the same factor 
 (because according to Equation (15.6) V μ E)
so that the capacitance is thereby increased by the factor 
 (because according to
Equation (15.16) C μ 1/V):

(15.24)

where the initial values are those without the dielectric.
With a good insulator, capacitance values can be substantially increased. The

increase in capacitance with a dielectric implies (from Equation (15.22)) that if the volt-
age across the capacitor is maintained constant by a battery, for example, then the
stored energy and charge will both increase by a factor 
 relative to the same capacitor
without a dielectric. On the other hand, Equation (15.23) implies that because the elec-
tric field decreases by 
, E2 should decrease by a factor of 
2, whereas the term �� is
multiplied by a factor of 
, so that the energy stored should decrease by a factor of 

relative to the same capacitor without a dielectric. The following example should help
to clarify this apparent paradox.

V�
Vo

k
; C�Cok,

PE

(Vol.)
�

1

2
eo E2.

PE �
1

2
CV2 �

1

2
 a eo A

d
b (Ed)2 �

1

2
 eo E2 Ad.
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Example 15.5 A 0.1 	F parallel-plate capacitor is charged by a 12 V battery and dis-
connected from the battery. A slab of dielectric with 
 � 4 is then inserted to fill the
gap in the capacitor. Find the charge on the capacitor plates and the voltage across
the plates before and after inserting the dielectric. If the capacitor is then reconnected
to the battery, how much more, if any, charge will flow onto the capacitor?

Solution: When connected to the battery, the capacitor will be
charged to 12 V and will have Q � CV � (0.1 	F)(12 V) �
1.2 	C of charge on each plate. After the capacitor is discon-
nected from the battery, this charge will remain on the capac-
itor. (We show in the next chapter that for a real (nonideal)
capacitor, the charge will, in fact, slowly leak off, but we
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So, the resolution of the apparent paradox presented before this example is that
the resulting energy stored depends on whether the capacitor has its voltage fixed,
while attached to the battery, or has its charge fixed, when isolated. In the first case
additional charge will flow onto the capacitor to maintain the voltage fixed at the
battery value, whereas in the second case the field and voltage will decrease because
of the dielectric screening.

The capacitance per unit area (specific capacitance) of cellular membranes was
first determined in the 1920s to have a value of about 1 	F/cm2. This number was
used to estimate the thickness of the previously undetected cell membrane using the
parallel-plate relation for capacitance (Equation (15.19) multiplied by the factor 
)
C/A � 
��/d. Using a value of 
 � 3 (based on the knowledge that membranes con-
tained lipids and that oils have a value of 
 ~ 3) and the measured value for C/A, an
estimate for the membrane thickness of d ~ 3 nm was obtained (you can verify this).
Although today we know that most membranes are about 7.5 nm thick, this was the
first such determination and indicated that the membrane thickness might corre-
spond to the length of a macromolecule.

Assuming that the charge on a cell membrane is uniformly distributed, we can
obtain an estimate of how much charge lies on a membrane. From Equation (15.15),
by dividing both sides by the area of the membrane, we obtain

(15.25)

If we take V � 0.1 V and a capacitance per unit area of 1 	F/cm2, then we find
a charge per unit area of 0.1 	C/cm2. We can get a feeling for this charge density on
the membrane by calculating the average spacing of the individual charges on the
membrane surface. With x equal to the average separation between charges on the
membrane surface, so that there is one charge per surface area x2 (see Figure 15.22),
we can find a value for x from

so that, solving for x, we find that there is one charge every x � 13 nm in a square
array over the surface of the membrane.

1 charge

x2 cm2
�

0.1 
 10�6 C/cm2

1.6 
 10�19 C
� 6.25 
 1011 charges/cm2 ,

Q

A
�

C

A
V.
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ignore that here.) When the dielectric is inserted, the charge still remains on the
capacitor, but the dielectric will have an induced layer of surface charge that will
shield the charge on the metal plates (see the figure) and reduce the electric field
and the potential within the capacitor by a factor of (1/
). Accordingly, the poten-
tial is reduced to V� � 12/4 � 3 V.

Equation (15.23) tells us there is a corresponding decrease in potential
energy stored in the capacitor by a factor of (1/
). What happened to this energy?
As the dielectric is inserted between the capacitor plates, the induced charges on
the dielectric cause an attractive force pulling the slab into the gap between the
capacitor plates. In terms of overall energy conservation, negative work has to
be done on the dielectric by an external agent, using an external force to hold the
slab back from accelerating into the gap, in order to position the dielectric within
the capacitor. A careful calculation shows that this negative work just balances
the decrease in stored potential energy.

If the capacitor is then reconnected to the battery, the potential across the
plates will again rise to 12 V with the transfer of additional charge to the metal
plates. The total charge on the plates is then given by the product of the
voltage and the capacitance (now increased by a factor of 
), Qtotal � (12
V)(0.4 	F) � 4.8 	C, so that an additional (4.8 � 1.2) � 3.6 	C of charge
was transferred to the plates.



We can also calculate the electric field inside the membrane from Equation
(15.18). Substituting V � 0.1 V and d � 3 nm, together with a reduction in E by the
factor 
 � 3, we find that E � 1.1 
 105 V/cm, an extremely high value. In fact, the
largest possible E field in dry air is only 0.3 
 105 V/cm, with higher E fields in air
causing dielectric breakdown. Such large E fields in membranes are responsible for
relatively large forces on molecules within membranes, suggesting that by proper
triggering, much energy can be released through interaction with the electric field.

Although the membrane capacitance can be approximated by an expression for
a parallel-plate capacitor, it should be pointed out that the electrical properties of
a membrane are quite a bit more complex than an ideal capacitor. As we show in
the next section and again in the next chapter, membranes do allow a flow of charge
through specific pores known as channels. Furthermore, along membranes in large
cells such as nerve or muscle, the properties of the membrane vary both spatially
along the membrane and with time. Membranes are indeed far from passive con-
ducting plates separated by an ideal insulator. They are dynamic structures with very
complex electrical properties capable of rapidly changing the ionic environment of
a cell, of transporting large macromolecules across the cell barrier, and of propagat-
ing electrical signals rapidly over long distances.

7.  MEMBRANE CHANNELS: PART 1

Membrane channels are specific integral membrane protein/sugar/fatty acid com-
plexes that act as pores designed to transport ions, water, or even macromolecules
across a biological membrane (see Figure 15.23). Channels play a distinctive role in
excitable cells, such as neurons and muscle cells, where they control the flow of ions
and the subsequent generation of electrical signals. In this section, we learn some fun-
damentals of the general nature of channel structure and functioning in anticipation of
a fuller discussion of the role of channels in nerve conduction in the next chapter.

There are probably hundreds of different specific channels in various types of mam-
malian cells. Although first studied and modeled by Hodgkin and Huxley in the early
1950s in ground-breaking experiments, channels have recently been studied using a large
array of techniques including modern electrophysiology, biochemistry, and molecular
biology. In a simple picture, channels can be said to exist in either of two states, open or
closed, in which specific ions or small molecules can either pass through the channel
“gate” or not. Control of the gating of a channel can be either by specific charges (volt-

age-gating) or by the binding of small molecules (ligand-gating). Ligand-gated channels
include those for neurotransmitters and small proteins involved in
other forms of cell signaling. Voltage-gated channels are present
in nerve and muscle and we focus on these in our discussion.

To give a more concrete idea of what a channel is and how
it functions in a cell membrane, let’s consider the sodium ion
channel in some detail. The Na channel is formed by a complex
of a single polypeptide chain of about 2000 amino acids with
associated sugars and fatty acids. This single chain has four
similar subunits, each composed of six helical portions, with
each of these spanning the membrane so that the overall struc-
ture resembles that shown in Figure 15.24. The Na channel has
been purified and shown to be functionally active when recon-
stituted in pure lipid membranes. In muscle, there are between
50 and 500 Na channels per 	m2 on the membrane surface.
Each of these is normally closed, but can be opened by a
change in the electric potential across the membrane. The open
state is short-lived, lasting about 1 ms, during which time about
103 Na� ions flow into the cell through each channel from the
higher Na� ion-rich extracellular medium. When the channel is
open, the flow is highly selective for Na� ions, with potassium
(K�) ions some 11 times less likely to cross the Na channel.
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FIGURE 15.23 Molecular model of
a membrane showing a channel in
the form of a mostly helical protein
that spans the membrane (shown
in blue) allowing selected ions to
enter or leave the cell.

FIGURE 15.22 A uniform surface
charge model for a cell 
membrane with one charge
centered in each box.



From the vast array of questions that have been and are being asked about how these
channels function, we consider two. How can the electric potential control the gating or
flow of Na� ions through the channel? What allows the Na channel to be so selective in
the transmission of ions? Although complete answers to these questions cannot yet be
given, our knowledge has dramatically increased in the recent past.

Channels open in response to a stimulus detected by a sensor. In Na channels,
the stimulus is an electric field near the channel, sensed by a collection of charges or
dipoles on one particular helical section of each of the four subunits within the channel.
It has been shown that there is a small movement of charge across the membrane just prior
to the opening of a channel. These four to six gating charges move in response to the elec-
tric field stimulus and this interaction provides the needed energy to open the channel.
Several specific models of voltage gating have been proposed that suggest different types
of conformational changes in the channel helices spanning the membrane to explain the
opening of a Na channel. Experiments with a large variety of monovalent ions and with
various chemical blockers to prevent the channel from opening have shown that the Na
channel has a pore of dimensions about 3 by 5 Å with its interior surrounded by a cluster
of oxygen atoms. The size filtering of the pore coupled with the need to interact with the
negative oxygen charge sites provides the specificity of the channel. Potassium (K�) ions
have a diameter of about 2.66 Å, whereas Na ions have diameters of about 1.9 Å. It is
thought that the K� ions are associated with at least one water molecule and this would
thereby prevent them from entering the Na channel simply based on size.

An obvious question that arises is how the potassium channel can then be even more
specific, about 100 times more permeable to K� than to Na�, given sodium’s smaller
size? The K channel is the narrowest channel known, excluding all ions larger than 3 Å
in diameter. Smaller ions that could fit through the K channel as bare ions, such as lithium
or sodium, do not enter because of the free energy cost to dehydrate these small ions. The
potassium ion is able to shed its water molecules because it is able to interact very closely
with the oxygens lining the K channel. Sodium and other small ions would not make such
close contact with the oxygens, because their bare diameters are smaller than that of K�,
and the energy cost in shedding their water molecules is therefore too high.

We return to a somewhat detailed study of the cellular electrical properties
controlled by channels in the next chapter.

8.  ELECTRIC POTENTIAL MAPPING OF THE HUMAN 
BODY: HEART, MUSCLE, AND BRAIN

The human body uses a complex system of electrical signaling to control various life
functions. A network of nerve cells provides both sensory input and motor control.
Our brains are complex webs of neurons able to outperform the most sophisticated
computers in even the simplest tasks of recognition. Muscles conduct electricity as
well as generate force. The heart should be singled out as the most notable muscle in
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FIGURE 15.24 Sodium channel:
(left) schematic of alpha-helical
sections spanning cell membrane;
(right) molecular model of channel.



the body, pumping blood by contraction of a series of muscles all controlled by the
electrical activity of a pacemaker group of cells.

A number of medical technologies have been developed over many years to map
the electrical activity of these various organs of the body. Here we briefly describe
three such technologies to map the electric potentials from muscles, the heart, and the
brain. The methods are known as electromyography (EMG of muscle), electrocardio-

graphy (ECG or EKG of the heart, the K rather than C appearing from the original
Dutch), and electroencephalography (EEG of the brain). Although we have little fun-
damental knowledge that would enable us to directly interpret the complex time and
spatial patterns of such electric potentials, doctors have many years of empirical data
allowing these methods to be used as indicators of normal or abnormal behavior.

The fundamental principles of the three techniques are the same: the mapping in
time and space of the surface electric potential corresponding to electric activity of
the organ. When a resting nerve or muscle cell, with a membrane potential of about
�100 mV relative to the external medium, is stimulated, a wave of depolarization
spreads over the surface of the cell. The resting cell has no dipole moment, but while
the cell is undergoing depolarization it can be electrically represented by a time-varying
electric dipole moment that goes to zero after the resting membrane potential is
restored in a process of repolarization. We study some details of the depolarization
and repolarization processes in connection with nerve conduction in the next chapter.
For now, it is clear that such changes will lead to local variations in electric potential.
In trying to map these changes in electric potential, only in EMG can an electrode be
directly used to measure local potentials. Otherwise, for the heart and brain surface
electrodes must be used. Implicit in their use is the notion that the body is a very good
conductor, so that potential changes measured, for example, in an EKG, between the
ankle and the wrist, reflect the potential differences directly across the heart.

In EMG, the simplest of the three techniques discussed, either surface electrodes
on the skin or a needle electrode inserted into a muscle record the time variations in
electric potential. Needle electrodes can probe a single muscle fiber and give a char-
acteristic time record of electric potential with variations of several mV observed
(Figure 15.25). Such recordings of voluntary muscle activity can check for normal
functioning of nerve stimulation of muscle. More detailed information can be
obtained with external electrical stimulation of the muscle because an entire group of
muscle fibers can be simultaneously activated. Measurements at a number of dis-
tances along a muscle can determine conduction velocities along the stimulating
nerve. Although not as common as the EKG or EEG, the electromyogram can be
more directly related to the depolarization of a single cell or small group of cells.

The heart is composed of many individual muscles contracting in a synchronous
fashion controlled by the pacemaker or sinoatrial (SA) node, located in the right atrium.
Triggering of the pacemaker cells roughly once per second stimulates a wave of depo-
larization down across both atria, leading to their contraction and pumping of blood into
the ventricles (as discussed in Chapter 9). Following the atrial contraction and repolar-
ization, another wave of depolarization is initiated by the atrioventricular (AV) node that
lies between the two ventricles, leading to contraction of the ventricles and their subse-
quent repolarization. This entire sequence of events constitutes a heartbeat cycle and,
just as in EMG, the waves of depolarization can be measured as surface electric poten-
tial changes, although in this case the potential waveform is quite complicated.

In its simplest form, an EKG can be imagined to measure the electric potential
due to the heart being represented as a single time-varying electric dipole moment

In order to determine the value of three independent measurements must
be made so as to determine the three vector components of the dipole moment as
functions of time. Accordingly, there are three required surface electrodes that must
be used in EKG. These are attached at both wrists and the left ankle. Additional
electrodes, usually a total of 12, are used to assist in the analysis, but these are not
fundamentally required. An EKG recording gives information on the time sequence
of potentials and the characteristic peaks and valleys are labeled in a standard
manner (Figure 15.26). Newer computer-interfaced instrumentation can obtain 
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FIGURE 15.25 Contemporaneous
EEG and EMG recordings when
awake, in rapid eye movement
(REM) sleep, about 20% of the time
for an adult, and when in slow
wave sleep (SWS).



high-quality data and analyze EKGs for the amplitudes, durations, and areas under
the primary peaks. These are then used for diagnostic purposes, with computers
even able to point out potential problems. As we have already remarked, despite a
lack of knowledge to interpret these potential mappings in detail, simply by the
huge number of recordings available, EKGs are very useful empirical tools for the
diagnosis of various forms of heart disease.

Since the first detection of electrical signals from the brain in 1929, doctors and
scientists have been recording such signals in the form of EEGs in order to learn
about the electrical activity of the brain. These signals are much weaker than those
from the heart or muscle, typically less than 0.1 mV, and the patterns of voltage sig-
nals recorded are much more complex as might be expected from much more asyn-
chronous firings of neurons compared to the heart. Some characteristic wave trains
can be associated with various activities or abnormalities, including different stages
of sleep, epileptic seizures, and visual or auditory excitation (so-called evoked
responses). Frequency analysis of the wave trains divides signals into four frequency
bands ranging from slow � waves at 0.5–3.5 Hz common during sleep, � waves in the
range from 5 to 8 Hz common in newborns but indicating severe stress in adults, to
normal � waves at 8–13 Hz from a relaxed brain and faster � waves at greater than
13 Hz from an alert brain (Figure 15.27).
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FIGURE 15.26 A segment of an EKG signal showing the prominent features.

FIGURE 15.27 Lower EEG trace
analyzed in terms of its fre-
quency content in the upper
spectrogram. Note the microvolt
scale for the EEG signal and
also the mixture of 
different types of waves based
on frequency content.
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A standard arrangement of 8–16 electrodes placed in a regular pattern around the
head is used to record an EEG. Again, it should be emphasized that such measure-
ments are not well understood, but are able to help in a diagnosis based simply on
clinical studies of many individuals. In Chapter 18 we show another new technique
for studying the electrical activity of the brain by measuring the very small magnetic
fields generated by the brain. This technique, known as magnetoencephalography, or
MEG, is better able to localize electrical activity within the brain and has recently led
to very interesting results. The method requires some quite specialized equipment but
is a growing area of research and potential clinical use.

CHAPTER SUMMARY
Electric potential energy is defined by the negative of
the work done by the electric force. For two interacting
point charges q1 and q2, separated by distance r, the PE

of interaction is

(15.2)

More commonly used is the electric potential V, at
some point in space, defined by

(15.4)

where qo is a small, positive test charge imagined to
be placed at the point of observation. The electric
potential at a point is the external work needed to
move a unit positive charge from infinitely far away to
that point along any path. For a point charge q at the
origin, the potential it produces a distance r away is
given by

(15.5)

When the electric field is uniform along some
direction x, it is simply related to the variation in the
electric potential along that direction as

(15.7)

We can visualize variations in electric potential
using equipotential mappings that show the surface
contours with constant voltage. These surfaces must lie
perpendicular to the electric field lines.

Ex � �
¢V

¢x
.

V(r) �
q

4peo r
.

V(r) � PEE (r)/qo,

PEE (r) �
q1 q2

4pe0 r
.

One particular arrangement of charges, a positive
and equal negative charge q separated by some distance
d, is particularly important. Known as an electric dipole,
such a pair of charges gives rise to an electric potential
given by

(15.11)

where r is the distance from the dipole p to the observa-
tion point and � is the angle between the dipole direction
(taken as from the negative to positive charge) and the
observation direction. Water molecules are the ubiqui-
tous dipole in biology. Electric interactions between
two charge distributions can be classified according to
their energy dependence on the separation distance.
Charge–charge interactions have a 1/r dependence, as
given by Equation (15.1). Charge–dipole, dipole–dipole,
and dipole–induced dipole interactions are each weaker
than the previous listed interaction, dropping off faster
with separation distance r. Even in the absence of per-
manent dipoles, molecules can interact through attrac-
tive dispersion forces, involving fluctuating induced
dipole interactions.

When an electric dipole is placed in a uniform electric
field it experiences no net force, but a net torque given by

(15.13)

where � is the angle between the dipole and the electric
field. There is also a potential energy of this interaction
given by

(15.14)

A capacitor (with capacitance C) is an electrical
device with two conductors oppositely charged (with

PEp � � pE cosu.

t� qEd sinu� pE sinu,

V �
qd cos u

4peo r2
�

p cosu

4peo r2
,
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QUESTIONS
1. Kinetic energy is always positive, whereas gravita-

tional potential energy can be positive or negative
depending on the choice of zero reference level. On
the other hand, electric potential can also be posi-
tive or negative, but not because of the zero refer-
ence level (usually chosen at infinity) but rather
because of the two types of electric charges.
Discuss the physical significance of the sign of the
electric potential energy and the shape of the curves
in Figure 15.1.

2. In Example 15.1, the electron orbiting a proton in a
hydrogen atom was found to have a negative energy.
What would a positive electron energy imply?

3. Two point charges interact with each other. Discuss the
sign of the electric potential at the location of the sec-
ond charge (with respect to infinity) for all possible
variations of the signs of the charges. That is, what will
be the sign of the potential at the second charge in each
of the four possible cases when the first charge is
either positive or negative when the second charge is
either positive or negative?

4. What is the change in kinetic energy, measured in
both joules and electron volts, when a calcium ion
Ca2� is accelerated through a potential difference
of 100 V.

5. Show that the SI units for electric field, either 1 N/C
or 1 V/m, are equivalent.

6. A region of space has a uniform electric field present,
say along the z-axis. How does the electric potential
vary along the z-axis? If a negative charge is located
at z � 100 units in this electric field and is moved to
z � 50 units, does its electric potential increase or
decrease? Does its electric potential energy increase
or decrease? What direction is the force on the
charge? Is the work done by the electric forces on the
charge in changing its position positive or negative?

7. Sketch the equipotential surfaces around a long
straight charged wire; around a charged sphere; around
a charged plane; around a “point” electric dipole.

8. Explain why electric field lines are always perpendic-
ular to equipotential surfaces.

9. In the graph shown of potential versus distance, which
curve might represent the potential due to (i) a plane
of charge, (ii) a point charge, (iii) a point dipole?

� Q on either surface) with a potential difference V

between them, where

(15.16)

In the case of two parallel conducting plates of area
A separated by distance d, (e.g., a good model for the
lipid membrane bilayer, consisting of two layers of
polar, conducting “heads” separated by hydrocarbon,
nonconducting chains) the capacitance is given by

(15.19)

A capacitor stores electrical potential energy
according to these equivalent expressions:

(15.21)PE �
1

2
 QV �

1

2
CV 2 �

1

2

Q2

C
.

C �
eo A

d
. (parallel�plate C).

Q�CV.

When the gap between the conducting plates of a
capacitor is filled with a dielectric with dielectric constant

, the electric field between the plates is reduced by 
,

(15.15)

and, when the charge on the capacitor is fixed, the
potential and capacitance are also changed according to

(15.24)

Thus, the addition of a dielectric increases the capac-
itance and the charge storing ability of a capacitor.

The chapter includes a few applications of these
ideas in the study of membrane channels in biological
membranes and in a variety of medical techniques to
study the electrical activity of the heart (EKG), brain
(EEG), and muscles (EMG).

V�
Vo

k
; C�Cok.

E�
Eo

k
,

a

b

c

V

r

10. Represent atoms by small circles that can be charged,
neutral, or have a permanent dipole moment repre-
sented by an arrow within the circle. Show in a sketch
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how two such atoms interact in the following cases
(show the direction of the force and/or torque on each
atom): (i) one charged and one neutral atom; (ii) one
charged and one polar molecule; (iii) and both dipolar
molecules with parallel dipoles.

11. Suppose a uniform electric field exists along the x-axis
and an electric dipole is oriented along the negative 
x-direction. Is it in equilibrium? What will happen if it
wobbles slightly so that it orients slightly off the neg-
ative x-direction? Repeat this question if the dipole is
oriented along the positive x-axis.

12. For a parallel plate capacitor, how does the capaci-
tance change if (i) the plate areas are doubled, (ii) the
voltage across the capacitor is halved, (iii) the plate
separation is halved, (iv) the material between the
plates is changed to one with twice the dielectric
constant, (v) the charge on the capacitor is doubled?

13. The equation for the energy stored in a capacitor,
PE � 1/2 CV 2, implies that if a dielectric is inserted
in an air-spaced capacitor, the capacitance increases
by a factor of 
 so that the stored energy should also
increase by that factor. However, our other equation
for the stored energy per unit volume says that
PE/V � 1/2�oE2 and with a dielectric inserted, �o
becomes �o
 and E decreases by a factor of 
 so that
the stored energy should decrease by a factor of 
.
Explain the resolution of this apparent paradox.
(See Example 15.5.)

14. The electric field within a biological membrane is as
large as is physically possible. Discuss this statement.

15. Why is it more appropriate to discuss charge per unit
area and capacitance per unit area for biological
membranes than simply charge and capacitance?

16. What factors allow channels to be so specific to
certain ions?

17. Contrast ligand-controlled gating with voltage-controlled
gating of membrane channels.

18. What are the similarities and differences among the
three techniques EMG, EKG, and EEG? Do a bit of fur-
ther research into these techniques using the library or
Internet resources.

MULTIPLE CHOICE QUESTIONS
1. The fundamental dimensions (mass, length, time, 

Q-charge) of electric potential are (a) MLT�2,
(b) ML2T�2, (c) ML2T�2Q�1, (d) QT�1.

2. An electron travels through free space from point
A, which is at � 100 V, to point B, which is at
� 200 V. The kinetic energy of the electron during
this trip (a) stays constant, (b) increases by 1.6 

10�17 J, (c) decreases by 1.6 
 10�17 J, (d) decreases
by 100 V.

3. A sphere of copper has a radius of 10 cm. The sphere
is in equilibrium, and the electric potential at one point
on the surface of the sphere is known to be � 100 V.
Which one of the following is true? The electric

potential at the center of the sphere (a) is infinity, (b) is
zero, (c) is � 100 V, (d) cannot be determined from the
information given.

Questions 4 through 7 refer to two 1 	C point charges that
are 2 m apart.
4. The energy that went into assembling these two charges

is (a) 0.0045 J, (b) 0.009 J, (c) 0.0023 J, (d) 4500 J.
5. The net force on each charge is (a) 0.0045 N, (b) 0.0023

N, (c) 0.009 N, (d) 0.0045 N.
6. The magnitude of the electric field at each charge

is (a) 2250 V/m, (b) 0.0023 N/C, (c) 4500 N/C,
(d) 1125 V/m.

7. The potential at each charge due to the other charge is
(a) 2250 V, (b) 9000 V, (c) 1125 V, (d) 4500 V.

8. Points A, B, and C are on the same line and are 0.01 m
apart. The electrostatic potential at A is �5 V, at B is
�4 V, and at C is �3 V. The component of the electric
field at B along the line AC is closest to (a) �4 V,
(b) �1 V, (c) 100 V/m pointing toward A, (d) 100 V/m
pointing toward C.

9. The equipotential surfaces around a long straight wire
with a uniform charge/length are concentric (a) spheres,
(b) cylinders, (c) donuts, (d) planes.

10. An electric dipole oriented along the x-axis sees a uni-
form electric field along the y-axis. The dipole will
experience which of the following? (a) A net force
along the y-axis and a torque orienting the dipole along
the y-axis, (b) 0 net torque and a force along the y-axis,
(c) 0 net force and a torque orienting the dipole along
the y-axis, (d) 0 net force and a torque orienting the
dipole along the z-axis.

11. The resting potential of a cell membrane is roughly
(a) 120 V, (b) 1 V, (c) 0.1 V, (d) 1 mV.

12. The capacitance value of a capacitor depends on (a) the
applied voltage, (b) the net charge on either of its plates,
(c) geometrical factors, (d) all of the above.

13. The energy stored in a capacitor depends on (a) only
the charge on either plate, (b) only the applied voltage,
(c) only its capacitance, (d) any pair of the previous
quantities.

Questions 14–16 refer to the following circuit diagram in
which the battery has 6 V:

14. When the switch S1 has been closed for a long time (and
S2 and S3 remain open), the voltage across the capacitor
is read on a perfect voltmeter to be Va � Vb � (a) 3 V,
(b) 6 V, (c) �6 V, (d) �3 V.

15. If then switch S3 is closed (with S2 remaining open),
the voltage across the capacitor immediately reads
Va � Vb � (a) �6 V, (b) 6 V, (c) 0 V, (d) 3 V.

S1

S2

a b
S3
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16. If instead of closing switch S3 in Question 15 after
S1 had been closed a long time, S2 were closed, the
voltage Va � Vb immediately reads (a) �6 V, (b) 6 V,
(c) 0 V, (d) �3 V.

17. A parallel-plate capacitor is attached to a 12 V battery.
A slab of dielectric constant 3 is then inserted between
its plates, filling the gap, while the capacitor is still con-
nected to the battery. Which of the following occurs:
(a) the voltage drops by a factor of 3, (b) the electric
field between the plates drops by a factor of 3, (c) the
stored energy drops by a factor of 9, (d) the stored
energy increases by a factor of 3.

18. If the capacitor of the previous question is first dis-
connected from the battery and then has the same
dielectric slab inserted, then (a) the voltage will drop
by a factor of 3, (b) the stored energy will increase
by a factor of 3, (c) the electric field will increase by
a factor of 3, (d) the capacitance will increase by a
factor of 9.

19. Suppose a lump of glass is placed in a uniform external
electric field E that points left to right (see Chapter 14,
multiple choice question 12). When the charges in the
glass come into equilibrium the total electric field
inside the lump (a) is larger than E and points left to
right, (b) is smaller than E and points left to right, (c) is
the same size as E and points right to left, (d) is zero,
(e) none of the above.

PROBLEMS
1. Calculate the electric potential energy of three equal

3 	C point charges at the vertices of an equilateral
triangle with 5 cm sides.

2. Imagine assembling four equal charges, one at a time,
and putting them at the corners of a square. Find the
total work done to assemble these if the charges are
each 5 	C and the square has 25 cm sides.

3. Equal and opposite � 10 	C charges lie along the 
x-axis with the � charge at x � 0.1 m and the �
charge at x � �0.1 m. Find (a) the electric potential
at the origin; (b) the electric field at the origin; (c) the
work required to bring a third �10 	C charge from
far away to the origin. Repeat all three parts if now all
charges are �10 	C.

4. There is a 10 N/C uniform electric field along the x-axis.
(a) If the potential at the origin is �15 V, what is the

potential at x � 10 m?
(b) Where is the potential zero?

5. A pair of equal and opposite 1 	C charges lies along
the y-axis symmetrically about the origin, each a dis-
tance 0.01 m away, creating a dipole pointing along
the y-axis. Find the following.
(a) The electric field 10 m away along the y-axis
(b) The potential at the same location as in part (a)
(c) The electric field 10 m away along the x-axis
(d) The potential at the same location as in part (c)

6. A 20 C-m electric dipole is located at the origin and
points along the y-axis. Find the electric potential at
the following locations.
(a) x � z � 0, y � 1 m.
(b) y � z � 0, x � 1 m.
(c) z � 0, x � y � 1 m.

7. What is the torque on a 0.01 C-m electric dipole
located between, and oriented parallel to the plates of,
a 10 	F air-spaced parallel-plate capacitor with plates
of 0.1 m2 area connected to a 6 V battery?

8. Repeat the previous problem if the dipole is oriented
at a 45° angle to the electric field. Also, what is the
potential energy of the dipole?

9. Construct a graph of the electric potential energy of a
dipole as a function of its angle with respect to the
electric field. Where are the equilibrium points and
which is a stable and which an unstable equilibrium?

10. What is the maximum torque on a 0.5 C-m electric
dipole in a 10 N/C uniform electric field?

11. A lightning flash transfers 5.0 C of charge and 30 MJ
of energy to the Earth from a cloud. What potential
difference existed between the clouds and the ground?

12. In lightning storms, the potential difference between
the Earth and the bottom of the thunderclouds can be
as high as 50 MV. The bottoms of the thunderclouds
are typically 1.0 mile above the Earth, and can have an
area of 25 mi2. If we model the Earth–cloud system as
a huge capacitor, what are the capacitance of the
Earth–cloud system, the charge stored in the “capaci-
tor,” and the energy stored in the “capacitor?”

13. An uncharged 20 	F capacitor is connected to a power
supply set to 10 V. How much charge flows onto the
capacitor plates? If the power supply voltage is then
increased to 30 V, how much more charge flows onto
the plates?

14. A 0.01 	F capacitor is to be constructed by rolling
two strips of 10 cm wide metal foil with a 1 mm thick
paper layer (dielectric constant � 4) sandwich into a
cylinder. How long must the strips be?

15. A capacitor is formed between two metal plates, each
10 
 10 cm, separated by 1 mm.
(a) What is its capacitance?
(b) When connected to a 10 V battery how much

charge flows onto the plates?
(c) What is the net electric field between the plates?
(d) What is the total force on each plate? (Hint: Find

the electric field acting on each plate. The force per
unit area is given by the product of the electric field
acting on one plate and its charge per unit area.)

16. A 100 pF parallel-plate capacitor with a 0.5 mm plate
spacing is charged by a 12 V battery.
(a) What is the electric field between the plates?
(b) What is the total energy stored in the capacitor?

Find this in two ways: directly from the given
information and also from the result of part (a).

17. An air-spaced parallel-plate capacitor is connected to
a 12 V battery.
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(a) If 36 	C of charge flows onto the plates, find its
capacitance.

(b) If a slab of pyrex glass is inserted between the
plates filling the gap, find the new capacitance of
the capacitor.

(c) If the capacitor remained attached to the battery
when the glass was inserted, what charge is now on
the plates?

18. An air-spaced parallel-plate capacitor has an initial charge
of 0.05 	C after being connected to a 10 V battery.
(a) What is the total energy stored between the plates

of the capacitor?
(b) If the battery is disconnected and the plate separa-

tion is tripled to 0.3 mm, what is the electric field
before and after the plate separation change?

(c) What is the final voltage across the plates and the
final energy stored?

(d) Calculate the work done in pulling the plates
apart. Does this fully account for the energy
change in part (b)?

19. Suppose that a biological membrane is “doped” with
excess surface charges so that there is the equivalent of
one charge every 5 nm in a square array on each sur-
face, with positive charge on one surface and negative
charge on the other. If the resting membrane voltage is
100 mV, find the specific capacitance, the capacitance
per unit area. (Hint: See the discussion at the end of
Section 7.)

20. Find the electric field inside a 10 	F parallel-plate
capacitor when connected to a 6 V battery if the gap
between the capacitor plates is filled with air. Repeat
your calculation if the gap is filled with paper with a
dielectric constant of 4.

21. Suppose a biological membrane with a specific
capacitance of 1 	F/cm2 has a resting surface charge
density of 0.1 	C/cm2. Also suppose there are
50 sodium channels per 	m2 and that when each
opens for 1 ms 1000 Na� ions flow through the chan-
nel. Find the membrane voltage 1 ms after 10% of
these channels open, assuming no other changes
occur during this time.

22. In a 100 	m2 area of a muscle membrane having a
density of sodium channels of 50 per 	m2 of surface
area, when the sodium channels open there is a rapid

flow of 1000 ions per channel across the membrane.
Assuming a 100 mV resting potential, all the channels
opening at once, and a membrane capacitance of
1 	F/cm2, find the voltage change across this area of
membrane due solely to the sodium ion flow.

23. The immediate cause of many deaths is ventricular fib-
rillation, an uncoordinated quivering of the heart as
opposed to proper beating. An electric current dis-
charged to the chest can cause momentary paralysis of
the heart muscle, after which the heart will sometimes
start organized beating again. A defibrillator is a
device that applies a strong electric shock to the chest
over a time interval of a few milliseconds. Assume that
an energy of 300 J is to be delivered from the defibril-
lator, having a 30.0 	F capacitance. To what potential
difference must the defibrillator be charged?

24. An alpha particle (which contains 2 protons and 2 neu-
trons) passes through the region of electron orbits in a
gold atom, moving directly toward the gold nucleus,
which has 79 protons and 118 neutrons. The alpha parti-
cle slows and then comes to a momentary rest, at a cen-
ter-to-center separation r � 9.23 
 10�15 m before it
begins to move back along its original path. (This tech-
nique is called Rutherford Backscattering Spectroscopy

and the alpha particles are usually accelerated using a
particle accelerator.)
(a) What was the initial kinetic energy of the alpha

particle when it was initially far away, external to
the gold atom? (Hint: Assume that the gold atom
does not move because it is much more massive
than the alpha particle.)

(b) Given the kinetic energy in part (a), through
what potential difference was the alpha particle
accelerated?

(c) How much work was done on the alpha particle in
accelerating it through the potential difference in
part (b)?

(d) When using a 1.1 MV tandem electrostatic accelera-
tor, alpha particles are accelerated two times in suc-
cession (hence the tandem) and interact with the
nucleus of a gold atom. Supposing that the alpha par-
ticles reach an energy of 3.3 MeV using the acceler-
ator, what will be the minimum center-to-center
separation of the alpha particle and the gold nucleus?
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Thus far in our study of electricity, we have essentially confined our attention to
electrostatics, or the study of stationary charges. Here and in the next three chapters
we show some of the new phenomena that arise when charges move. We begin this
chapter by generalizing our discussion to allow the flow of electric charges, known
as an electric current, and we give a semiempirical derivation of Ohm’s law.
Electrical measurement methods and devices are described as an application of
Ohm’s law. More realistic models for a capacitor are then developed in a continued
study of cell membranes in which electric charge can passively leak across the mem-
brane. We give an overview of nerve structure and functioning and the spatial and
temporal properties of the neuron membrane potential are detailed for both the qui-
escent and active states. The chapter concludes with a discussion of the electrical
properties of individual ion channels as the underlying basis for membrane currents.

1.  ELECTRIC CURRENT AND RESISTANCE

Although we have introduced the topic of membrane channels in the last chapter, we
have not discussed the consequences of channels on the electrical properties of mem-
branes. Membranes act as capacitors, storing charge and electric potential energy, but
because of “leakage” of charge through channels, membranes are not the ideal capac-
itors treated in the last chapter. In order to discuss more realistic models for mem-
brane electrical properties we first need to introduce some concepts related to the
flow of electric charge.

Figure 16.1 shows a conducting wire attached at time zero between the plates of
a previously charged air-spaced capacitor. Before the wire is connected we have
already seen that there is an electric field between the plates of the capacitor, but no
charge flows because the air is a good electrical insulator. As soon as the wire is con-
nected, there will be an electric field in the wire that will drive the free electrons
toward the positive capacitor plate, discharging the capacitor. The electric current in
the wire is defined as the time rate of flow of charge along the wire

(16.1)

where the direction of the current is chosen by convention as opposite to the flow of
the electrons. Thus, the electric current flows from the positive to negative plates of
the capacitor in our example. The SI unit for electric current is the ampere (A), given
by Equation (16.1) as 1 C/s � 1 A.

In our example, all of the net charge will travel through the wire very rapidly,
resulting in a final uncharged capacitor. Clearly the electric current flowing in the
wire is not constant in this situation because as the charge drains off the capacitor

I �
¢Q

¢t
,

16Electric Current and Cell
Membranes



plates, the electric field that drives the electric charges decreases. If the initial charge
on each capacitor plate was 1 �C and the flow of charge is complete within 1 �s,
then the average electric current flowing is given by Equation (16.1) as I � 1 �C/
1 �s � 1 C/s � 1 A. But clearly the current is not constant over this 1 �s, decreasing
continuously as the charge is drained from the capacitor plates. We show below how
to find the actual time dependent current flowing in this simple electric circuit.

Unlike the electric fields of previous chapters, the electric field driving the
charges through the wire is not an electrostatic field. In fact, as we have seen, elec-
trostatic fields cannot exist within a conductor. The electric field that drives the elec-
tric current, on the other hand, does exist within the conductor and is responsible for
pushing the charge making up the current. This example illustrates that without a
source of energy to maintain net charge on the plates of the capacitor, both the elec-
tric field in the wire and the current flow rapidly decrease to zero.

After charging the capacitor in Figure 16.1, we can think of the discharging of the
capacitor as the conversion of electric potential energy to the kinetic energy of the elec-
trons in the wire connecting the plates. As we show at the end of this section, the kinetic
energy of the free electrons making up the current is then converted into heat via colli-
sions with the metal atoms of the wire. The discharging of the capacitor occurs rapidly
and therefore there is only a pulse of electric current in this case. In order to maintain a
flow of electric charge, an external source of energy per unit charge, traditionally called
an emf (pronounced “ee em eff,” and short for the misnomer—electromagnetic force—
because it is not really a force), is needed in the form of a battery or power supply.

The simple electric circuit shown in Figure 16.2 (left) consists of a battery with a
uniform wire connected between its terminals. If the battery were simply a capacitor as
in Figure 16.1, the initially separated positive and negative charges would quickly can-
cel each other out as charge flows along the wire and there would be no further change.
Batteries convert chemical energy to electrical energy to continually maintain a separa-
tion of charge and supply a fixed voltage between their terminals. This is shown on the
right side of the figure where the varying voltage is shown as it might be measured
around the circuit, with the battery increasing the voltage each time around. A very good
analogy is the flow of water due to gravity where the potential energy decreases as the
water flows down hill and can only be restored by a pump of some kind, playing the role
of the battery, to increase the height and thus the potential energy of the water. In our
case the uniform wire of length L has a constant potential V between its ends, resulting,
as we show, in a constant current flow along the wire. The constant flow of current is
produced by a uniform electric field in the wire maintained by the battery and given by
E � V/L. Electric field lines begin on the positive (�) terminal and end on the negative
(�) terminal of the battery as long as the wire has no sharp bends and is smooth.

We can understand the origin of the constant current in this case by considering a
microscopic picture of a collection of free electrons in the conducting wire and the
forces acting on them. In the absence of an external electric field, the thermal energy
of the free electrons causes them to diffuse about in a random walk traveling at very
high speeds of about 106 m/s and making random collisions with the atoms of the
metal wire (see the discussion in Chapter 2). The average velocity of the electrons, as
opposed to their high speed, is zero in this case and there is no net flow of charge,
therefore no electric current. When an electric field is applied, superimposed on its
high-speed random walk motion, a free electron will experience an acceleration (in

the direction opposite to the electric field because of the
negative electric charge) given by

(16.2)

where e and m are the charge and mass of the electron. This
acceleration lasts until the electron makes a collision with a
metal atom causing it to veer off in another random direction
at high speed, accelerating again according to Equation (16.2).
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FIGURE 16.1 Two charged
conducting plates connected 
by a conducting wire at time zero.
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FIGURE 16.2 (left) A battery with
its terminals connected by a
uniform wire. (right) Voltage as a
function of distance around the
circuit showing the decreasing
voltage in the wires and the boost
in voltage across the battery from
chemical energy every time around
the circuit loop.



The mean time between collisions, �, is so short that the electrons only acquire a very slow
drift velocity of about 10�3 m/s given by

(16.3)

If the number of free electrons per unit volume, or number density, in the wire is n and
the wire has a cross-sectional area A, then the net free charge in a short length of the wire
l is �Q � nAle (Figure 16.3). To find the current in the wire, we must divide �Q by the
time required for all of that charge to move a distance l down the wire, �t � l/vdrift, to find

(16.4)

Substituting from Equation (16.3), the electric current is

(16.5)

Defining the conductivity � of the wire, an intrinsic property of the material, to be

we can rewrite Equation (16.5) as

(16.6)

where G is known as the conductance.
Solving for V, this can be rewritten in terms of the resistance R

(16.7)

where

The resistivity of the material 	 is given by the inverse of the conductivity,

both intrinsic parameters. This definition is made in analogy with the equality
between the resistance and the inverse of the conductance

except that both of these quantities are dependent on the size and shape of the mate-
rial, so that they are extrinsic parameters, unlike the intrinsic parameters depending
only on the nature of the material and not on any geometric parameters.

We conclude that the current flowing in a conducting wire is proportional to the
potential difference applied between the ends of the wire. This linearity of current with
applied voltage (Equation (16.7)) is known as Ohm’s law. A plot of the current through
a wire as a function of the voltage across the wire is shown in curve A of Figure 16.4.
The linear plot is characteristic of an ohmic (or linear) circuit element. Another equiv-
alent statement of Ohm’s law is that the resistivity of the material remains a constant,
independent of the applied voltage.
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FIGURE 16.3 Free charge in a wire
of cross-sectional area A and
length l traveling with a drift
velocity vd.
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FIGURE 16.4 The I–V curve for 
an ohmic circuit element (A) and a
semiconductor diode (B).



The SI unit for resistance is the ohm (
), where 1 V/A �
1 
 (read as 1 ohm). Units for resistivity are then given as 

-m and for conductivity as (
-m)�1. The unit for conduc-
tance, the reciprocal of resistance, is the 
�1 which is also
known as the siemens (S). Table 16.1 lists some values for
resistivity of various materials. A wire made from a metal will
have a very low resistance value. For example, a 1 m length of
1 mm diameter copper wire has a resistance of only 0.02 
.
Simple devices known as resistors (shown in Figure 16.5) are
manufactured to have various resistance values. The symbol

is used to represent a resistor in a schematic or circuit
diagram such as the one shown in Figure 16.6. Connecting
wires have negligible resistance, so that their length and shape
are usually not important in a circuit diagram or in the actual
circuit itself.
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Table 16.1 Resistivities of Various Materials (20°C)

Material Resistivity, 	 (
 .. m)

Conductors

Aluminum 2.8 � 10�8

Copper 1.7 � 10�8

Iron 10. � 10�8

Mercury 96. � 10�8

Silver 1.6 � 10�8

Tungsten 5.6 � 10�8

Ionic materials

Water (distilled) ~2 � 105

Fresh water ~5 � 102

Sea water ~0.3

Cytoplasm ~0.5

Fatty tissue ~15

Semiconductors

Germanium ~0.5

Silicon ~2. � 103

Insulators

Air (dry) 4 � 1013

Glass 1010 � 1014

Rubber 1013 � 1016

Example 16.1 How much electric current flows through water contained in an
insulating tube 10 cm long and 5 cm in diameter when a 100 V potential differ-
ence is applied across the ends of the tube using electrodes inserted at either
end? Ignore any complications from the metal electrode–water contact and do
the calculation using the three entries in Table 16.1 for different purities of water.

Solution: The current that will flow is given from Ohm’s law by I � V/R, where
R is the resistance between the two electrodes supplying the 100 V potential
difference. Using the relation between resistivity and resistance, and the dimen-
sions of the water tube, we find that

FIGURE 16.5 An assortment 
of resistors.

R1

R2

FIGURE 16.6 A simple circuit
diagram showing a battery
connected to two resistors, one
wired after the other.



Ohm’s law is not a fundamental law on par, for example, with Newton’s laws. It
is a heuristically derived statement that the current and voltage are proportional in a
conductor. Many electrical components, such as diodes, transistors, operational
amplifiers, and the like, do not satisfy Ohm’s law and are known as nonlinear devices
(e.g., curve B in Figure 16.4). In fact, most if not all electronic devices have both
resistors and nonlinear circuit elements in them.

Next we briefly consider the general topic of electrical energy and power. In the
simple circuit of Figure 16.2, the battery terminals are maintained at a constant
potential difference by chemical energy with the positive terminal at potential Vbattery
with respect to the negative terminal at V � 0. When the wire of length L is con-
nected between the terminals, an electric current flows from the positive to negative
terminal. If we plot the electric potential as a function of position along the wire
(Figure 16.7), we see that it decreases linearly from the battery voltage at the posi-
tive terminal to zero at the negative terminal of the battery. A (positive) charge �Q

flowing from the positive to negative battery terminal flows down this potential hill
so that the decrease in electric potential energy is

(16.8)

Because in a time �t, the charge flowing in the wire is �Q � I �t, the rate at which
electric energy is lost is given by the electric power P,

(16.9)

The SI unit for electric power is the Watt, just as for all other powers, as can be ver-
ified by substituting units for IV, 1 A � 1 V � 1 CV/s � 1 J/s � 1 W.

If we examine the flow of energy in this example, stored chemical energy of the
battery is used to maintain a constant potential difference between the battery termi-
nals. This constant V produces a constant E field within the wire that, in turn, main-
tains a constant drift velocity for the charges. Thus, the kinetic energy of the charges
remains constant along the wire, although energy is continually lost through colli-
sions. As charge flows along the wire and down the potential hill of Figure 16.7, the
potential energy loss at a rate P appears as thermal energy of the wire causing a tem-
perature increase. This transfer of energy occurs through the collisions with the array
of metal atoms in the wire while the drift velocity is maintained by the constant elec-
tric field using energy supplied by the battery. The electrical energy is said to be lost
because the entire process is irreversible. As we have seen in our study of thermody-
namics, a loss of potential energy of any kind to heat cannot be a truly reversible
process.

Other expressions can be obtained for the power in terms of the resistance of the
wire in our example. Using Ohm’s law, Equation (16.7), to eliminate either V or I, we
obtain

(16.10)P � IV � I 2 R �
V 2

R
.

P �
¢PEE

¢t
�

¢Q

¢t
V � IV.

¢PEE � ¢Q V.
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Corresponding values are then, for distilled water, R � 0.1 � 1012 
 and I �
1.0 nA; for fresh water, R � 2.5 � 108 
 and I � 0.4 �A; and for sea water, R
� 0.15 M
 and I � 0.67 mA. The huge increase in current of almost a factor of
one million is due to the increase in ion content of the sea water versus fresh
water versus distilled water.

R � rL/A � r 
0.1

p(0.05/2)2
� 51r.

Vbattery

V

distance along wire L

FIGURE 16.7 The voltage,
measured with respect to the
negative terminal of the battery,
along the uniform wire of length L
in Figure 16.2.



This conversion of electrical energy to thermal energy in a resistor is known as Joule

heating. It is beneficially used in devices such as toasters, electric ovens, and heaters,
but is a major source of energy loss in most other electrical devices. Excess heating
can also be a fire hazard in poorly designed or defective house electrical wiring.
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Example 16.2 Calculate the power consumption for the three situations in Example
16.1. Also, find the rate at which the water temperature increases if no heat is lost
to the surroundings.

Solution: The power calculation is straightforward using, for example, V2/R, to
find powers of 0.1 �W (distilled water), 40 �W (fresh water), and 67 mW (sea
water). If none of the input power is lost, it is all converted to heat in the water.
The water temperature will rise at a rate determined from

where P is the I2R Joule heating. The volume of water is given by �r2L �
(3.14)(.025)2(0.1) � 2.0 � 10�4 m3, so that the mass of the water is about 0.2 kg,
roughly independent of the salt concentration. Using a specific heat of
4180 J/(kg°C), we find rates of temperature increase of 1.2 � 10�10°C/s (for dis-
tilled water), 4.8 � 10�8°C/s (for fresh water), and 8.0 � 10�5°C/s (for sea water).
These heating rates are quite negligible, taking several hours to heat the sea water
1°C. However, if the tube length is decreased by a factor of 10 and the tube diam-
eter is increased by a factor of 10, then the resistance will decrease by a factor of
1000, and both the current and power will increase by that same factor. In this case
the heating is appreciable, increasing the sea water temperature by about 5°C/min.

¢Q

¢t
� mc

¢T

¢t
� P,

2.  OHM’S LAW APPLICATIONS AND ELECTRICAL
MEASUREMENTS

Now that we have learned about electric current and resistance as well as potential,
in this section we learn how to measure these in actual circuits and how to analyze
some basic circuits. There are three common types of electric meters, often packaged
in a multipurpose device known as a multimeter. By flipping a switch this device can
measure current (as an ammeter), voltage (as a voltmeter), or resistance (as an ohm-
meter). Although today these devices consist of complex semiconductor components,
the fundamental principles of the devices can be more simply explained. Given a sim-
ple circuit consisting of a battery and resistor as shown in Figure 16.8, how can one
use a multimeter to measure the current in the circuit, the voltages across the battery
or resistor, and the resistance value of the resistor?

Voltmeter
V

AAmmeter

R

Ohmmeter

R

R

a b c

A B

FIGURE 16.8 Measurement of (a) the current through R, with an ammeter inserted into
the circuit in series with R; (b) the voltage across R, with a voltmeter in parallel with R; or
(c) the value of the resistance R itself, with an ohmmeter after removing the resistor from
the circuit, as shown above.



Any electrical measuring device has its own internal resistance that must be
designed to minimize the impact of the presence of the meter on the electrical prop-
erties being measured. To measure the current in the circuit of Figure 16.8a, the mul-
timeter must be set to act as an ammeter and be inserted into the circuit by
“breaking” a wire (actually by replacing the one wire between the resistor and bat-
tery with two wires) and inserting the meter “in series” with the resistor. Being “in
series” means that the same current must flow through the ammeter as flows through
the resistor; there is no other path for the current to follow. However, the presence
of the ammeter, with its internal resistance, affects the total resistance in the circuit
and thereby the current. We would like to “analyze” this circuit; that is, we would
like to write the equations that allow us to predict the current the ammeter would
measure for given values of the battery voltage, resistance, and ammeter resistance.

There is a very general method to analyze circuits, even very complex ones,
known as Kirchoff’s loop equation. In this analysis, starting at an arbitrary point in
the circuit diagram, one mentally “travels” around a closed loop, adding and sub-
tracting the potential increases and decreases algebraically as the loop is traversed.
The sum must add to zero because on returning to the starting position, the potential
has that same starting value and thus the potential difference around any closed loop

must be zero. In using the loop method, care is needed in choosing the proper alge-
braic sign for the potential difference across each circuit element. For batteries the
potential increases when going from the � to � terminal across the device, whereas
for resistors, the potential drops in going across the resistor in the direction of the cur-
rent flow according to Ohm’s law. Whichever direction one chooses to go mentally
around a loop, a consistent set of potential differences must be summed to zero for
the loop method to work properly. Let’s continue with our analysis of Figure 16.8a;
below we show the benefit of the loop equation in more complex circuit analysis.

Starting at the negative battery terminal (side with the shorter line in the symbol),
we mentally “travel” around the loop clockwise (our arbitrary choice) adding and
subtracting the appropriate voltages using Kirchhoff’s loop equation for circuit (a) in
the figure to obtain

or

where

(16.11)

In this equation, V is positive because we are “traveling” from the � to � terminal,
and the IR voltages across resistors are both decreases (drops), taken as negative,
because we are “traveling” around in the direction of the actual current flow from the
� terminal of the battery. Our answer for this circuit is actually an example of a gen-
eral result when any two (or more) resistors are connected in series:

The equivalent resistance of resistors in series is the sum of their individual

resistances.

It also suggests that for an ammeter to have a negligible effect on the current in the
original circuit, it must have a very small resistance, certainly negligible compared to
the resistance in the circuit. Modern ammeters have a very low resistance, typically
less than 1 
. Given values for V and R, the equation above predicts the measured
ammeter current.

In order to measure the voltage across any component in a circuit, a multimeter
is set to act as a voltmeter and needs to have its terminals connected across that cir-
cuit element as shown in Figure 16.8b to measure the voltage across the resistor. The
voltmeter resistance is said to be “in parallel” with resistor R because both elements
have the same potential difference across them. However, the current flowing out of

R equiv � R � R ammeter.   (resistors in series)

V � IRequiv,

V � IR � IRammeter � 0,
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the positive terminal of the battery, when arriving at point
A in the figure, divides with part of the current flowing
through each “branch” of the circuit later to recombine at
point B. This is our first example of a multiloop circuit,
one in which the same current does not flow through all
the circuit elements, and we digress further to show how
it can be analyzed.

Consider the circuit shown on the left in Figure 16.9,
similar to that of Figure 16.8b because the voltmeter is
represented by a resistor in parallel with the original resis-
tor. Using Kirchhoff’s loop equation to analyze this

circuit, we can write down several equations depending on the chosen loop:

clockwise around the outer loop, starting from B;

clockwise around the lower loop, from B; (16.12)

clockwise around the upper loop, from B.

Clearly these equations are not all independent, because, for example, subtracting the
second from the first results in the third. An additional independent equation can be
obtained by noting that at points A and B (branch points) where the current divides,
by conservation of electric charge we must have that

(16.13)

where I is the current from the battery (see Figure 16.9 left). This is an example of a
second more general rule, known as Kirchoff’s junction rule, which states that at a

branch point (or junction) where several wires come together, the total current enter-

ing the branch point must equal the total current leaving that point. Clearly this is a
consequence of the general law of conservation of electric charge. Solving the first
two equations of Equations (16.12) for each of the currents I1 and I2 and substituting
into Equation (16.13), we can write that

where Requiv is the single equivalent resistor that, when connected across the same
battery voltage V will cause the same current I to flow from the battery (see the right
side of Figure 16.9), so that V � I Requiv. Dividing by V, we obtain

(16.14)

showing the general rule for resistors in parallel:

The inverse of the equivalent resistance of resistors in parallel is the sum

of the inverses of individual resistances.

Returning to the measurement of the voltage across a resistor in the circuit of
Figure 16.8b, by putting the voltmeter in parallel with the resistor the equivalent
resistance seen by the battery will change (actually, it will always decrease; can you
show this from Equation (16.14)?) and therefore so will the current flowing out of the
battery (it will always increase in such a circuit). The excess current will be drawn
into the voltmeter loop of the circuit. The battery current is entirely determined by
the “load”, or equivalent resistance, on the battery from V � IRequiv. To avoid chang-
ing the battery current significantly, the voltmeter must have a very high resistance,
so that it draws negligible current and the equivalent resistance is essentially that of
the circuit, R. Modern voltmeters have resistances of about 10 M
 (1 M
 � 106 
).

1

Requiv
�

1

R1
�

1

R2
,   (resistors in parallel)

I �
V

Requiv
�

V

R1
�

V

R2
,

I � I1 + I2,

 I2R2 � I1 R1 � 0,

 V � I2 R2 � 0,

 V � I1 R1 � 0,
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R1

R2

V

I1

I2

V

Requiv

I I

BA

FIGURE 16.9 A simple circuit with
two resistors in parallel.



A multimeter can also function as an ohmmeter when directly connected to both
sides of (across) a resistor which has been removed from the circuit, as in Figure
16.8c. By using an internal battery to send a known current through the resistor and
by measuring the voltage across the resistor, the ohmmeter directly measures its
resistance.
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Example 16.3 Find the current that flows through each of the resistors shown in
the circuit of Figure 16.10. Also determine the power generated in each resistor.

Solution: In solving circuit analysis prob-
lems it is important to first take a careful
look at the “lay of the land” or the circuit’s
basic “topology.” In this example, the 12 V
battery is the only source of current in the
circuit and so it sends current out of its �
terminal that then divides at the lower left
branch point, some traveling through the
5 k
 resistor and the rest traveling through
the 1.5 k
 and 2.5 k
 resistors, which are
in series with each other. The currents in
these two branches (the 5 k
 branch and
the (1.5 k
 � 2.5 k
) � 4 k
 branch) recombine in the upper right corner and
their sum, the net battery current, then travels through the 2 k
 resistor and returns
to the � terminal of the battery. It is very important for you to be able to understand
and eventually generate this type of qualitative analysis before going to equations
in order to find values for the currents.

With the understanding of the previous paragraph, we can solve this problem
in a simple straightforward manner, by finding the total equivalent resistance in
the circuit from the following: (1) first, the 1.5 k
 and 2.5 k
 are in series and
together have a net resistance of 4 k
 shown on the left below; (2) then the 4 k

and 5 k
 are in parallel with each other (do you see why?), so that their equiva-
lent resistance R is given by 1/R � 1/4k
 � 1/5k
, giving R � 2.22 k
, shown
in the middle below; (3) then the 2.22 k
 and the 2 k
 are in series with each
other yielding a net resistance in the circuit of 4.22 k
, shown on the right.

The circuit on the right tells us that the current out of the battery is just I �
(12 V/4.22 k
) � 2.84 � 10�3 A � 2.84 mA. All of this current passes through
the 2 k
 resistor because it is in series with the battery, but each of the other resis-
tors only gets part of this current. To find how the current divides, we can work
backwards in the set of figures just above. The current divides at the branch point
so that the voltages across the 5 k
 and equivalent 4k resistor (see the left figure
above) are equal because the two branch points have a fixed potential V between
them whether we “travel” through the 5 k
 or 4 k
 resistor. This implies that

V � (I5 k 5 kÆ) � (I4 k 4 kÆ)

12 V 2 KΩ

5 KΩ

1.5 KΩ 2.5 KΩ

12 V
2 kΩ

5 kΩ

4 kΩ

12 V
2 kΩ

2.22 kΩ

12 V 
4.22 kΩ

FIGURE 16.10 Circuit for Example
16.3. Which resistors are in series or
parallel with the others?

(Continued)



The preceding example was solved by simply using the rules for combining
various resistors in series and parallel. There are more complex circuits where this
type of analysis is not possible and Kirchoff’s loop equation must be used. The next
example has such a circuit.
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so that I5k/I4k � 4/5. But we know that the total current, I5k � I4k, is 2.84 mA,
so that we can find the individual currents from either the previous two equations
with their two unknown currents, or from the following simple argument. By
dividing the total current in 9 parts (based on the ratio equation above using 9 �
4 � 5) we note that (4/9) of the total current, or 1.26 mA, flows through the 5 k

and (5/9) of the total current, or 1.58 mA, flows through the 4 k
 equivalent
resistor. Finally returning to the original circuit, each of the 1.5 k
 and 2.5 k

resistors have I4k � 1.58 mA flowing through them. You should check that these
results are consistent and add up properly; follow each current around the orig-
inal circuit and check Kirchoff’s junction rule.

We finish this problem by noting that the power generated in each resistor is
given by P � I2R, so that if we know the values of the currents and resistors we
can simply compute these values to be P2k � 0.016 W, P5k � 0.0079 W, P1.5k �
0.0037 W, and P2.5k � 0.0062 W. Note that the power supplied by the battery,
given by P � ItotalV � 0.034 W is equal to the total power dissipated in all the
resistors. Check this yourself !

Example 16.4 Find the current flowing though each resistor of the following circuit.

Solution: In this case, because of the sec-
ond battery in the circuit we cannot simply
combine resistors in series and parallel but
must use Kirchoff’s loop equation. Using
the set of labeled currents, which can be
chosen arbitrarily as long as they are
consistent, we can write down two loop
equations to allow us to solve for the two
unknown currents labeled I1 and I2 in the
figure. We have already implicitly used the
junction equation in choosing the sum of
the two currents from the batteries as the
current in the central branch of the circuit. Follow the currents to the right junction
point and check that they are self-consistent there as well. We need only choose two
of the three possible loops: the top, bottom, or outer loops, but for practice we write
all three down and then only use two of them to solve for I1 and I2.

First around the outer loop, starting arbitrarily at the lower left corner and
going clockwise, we have

Make sure you understand why the signs are as they are (these are not arbitrary).
Around the top loop, starting at the upper left corner and still going clockwise
(note: the direction is arbitrary, but it is perhaps a good idea always to “travel”
around loops the same way to help reduce mistakes)

�12 V � I1 (2 kÆ) � (I1 � I2)(1 kÆ) �  0.

�12 V � I1(2 kÆ) � I2(3 kÆ) � 6 V � 0.

I1

I2

12 V
2 kΩ

3 kΩ

1 kΩ

6 V 

I1 + I2

FIGURE 16.11 Multiloop circuit for
Example 16.4. Do you see why these
resistors are not in series or parallel
with each other?



We can also consider simple electrical circuits that have two capacitors C1 and
C2 connected either in series or in parallel to a battery as shown in Figure 16.12. As
just studied in the case of resistors, there will be a single equivalent capacitor that,
when connected to the same battery, will produce the same resulting final state: the
same charge will flow from the battery, storing the same amount of potential energy
as in the original situation with two capacitors. In the next section we show the
effects of having both resistors and capacitors in the same circuit, but first we com-
plete this section by calculating the equivalent capacitance corresponding to those
equations for the equivalent resistance of series and parallel resistor combinations,
Equations (16.11) and (16.14).

Consider the case of two capacitors in series as shown on the left in Figure 16.12.
Using the fact that the voltage across a capacitor is proportional to the charge on it,
we have that V1 � Q1/C1 and V2 � Q2/C2, where the charges are those on each
capacitor. Now, consider the portion of the circuit outlined in the dotted lines. This
section of the circuit is completely isolated electrically and if it was originally neu-
tral must remain so. Therefore the net negative charge on the right plate of C1 and the
net positive charge on the left plate of C2 must add to zero, proving that Q1 � Q2.
Then, using the loop equation, the voltage V across the battery is equal to the sum of
the voltages V1 and V2 across each capacitor and we have that

(16.15)

where Q is the common charge on each capacitor. The battery supplies positive
charge Q to the left plate of C1 which then induces an equal negative charge on its
adjoining right plate, resulting in an equal and opposite positive charge at the left
plate of C2 and an induced equal negative charge on its right plate. We show in the
next section that this “charging” of the capacitors when first connected to a battery
takes some finite time, depending on the stray electrical resistance of the circuit.
Finally, we see that if we replace the two capacitors by a single equivalent capacitor
with capacitance C, that in order to have the same charge stored on this capacitor we
require that

(16.16)

Capacitors in series combine reciprocally, just as resistors in parallel
do according to Equation (16.14).

Using a similar analysis for capacitors in parallel, we see from
the right-hand portion of Figure 16.12 that we now have that the total
charge Q supplied by the battery is the sum of the charges on both
capacitors: Q � Q1 � Q2. From this, we can write

(16.17)Q � Q1 � Q2 � C1 V1 � C2 V2,

V �
Q

C
�

Q

C1
�

Q

C2
 or 1

C
�

1

C1
�

1

C2
.   (capacitors in series)

V � V1 � V2 �
Q

C1
�

Q

C2
,
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Finally, although not needed, around the bottom loop, again clockwise from the
lower left corner,

Now, picking any two of these three equations, we need to do the algebra to
solve for the two unknowns. We find that I1 � 3.82 mA and I2 � 0.55 mA.
Check this for yourself.

� ( I1 � I2)(1 kÆ) � I2(3 kÆ) � 6 V � 0.

V

C1 C2

V1 V2

V

C2

C1

FIGURE 16.12 Two capacitors in a
(left) simple series or (right) parallel
combination.



and again replacing the two capacitors with a single capacitor C and noting
that the voltages across each capacitor are the same because they are in paral-
lel (V1 � V2 � V ), we find

(16.18)

Remember that, just as for resistors, these results for combining two
capacitors in series or parallel can easily be generalized to larger arrays of
capacitors using the same tools as in the above discussion. Circuits with
only resistors or only capacitors present are ideals. In the next section we
turn to a presentation of more realistic circuits with both resistors and
capacitors present. Such circuits are more realistic because there is always
a small amount of resistance (in the conducting wires themselves) or stray
capacitance (between different conducting surfaces) present in any circuit
regardless of whether an actual resistor or capacitor device is present in
the circuit. We approach this topic using a model for cell membranes.

3.  MEMBRANE ELECTRICAL CURRENTS

In the last chapter membranes were considered as ideal capacitors with
a specific capacitance (capacitance per unit area) of about 1 �F/cm2.
This turns out to be a very good approximation for a pure phospholipid
bilayer which has an extremely high resistivity of about 1015 
-cm,
comparable to a very good insulator. The very high equivalent resis-
tance prevents charge from crossing the lipid region and maintains the
stored charge as if the bilayer were an ideal capacitor. However, as dis-
cussed in the last chapter, biological membranes are full of proteins that
act as channels allowing ionic currents to flow across a membrane.

The simplest model, or equivalent circuit, for a biological mem-
brane in the resting state is shown in Figure 16.13 and is known as an
RC series circuit. For now, we ignore how the equivalent capacitor was
charged (to a voltage V0 � Q0/C) and we imagine that at time zero the
switch S is closed (corresponding to the membrane channels opening),
discharging the capacitor. The capacitor does not discharge instanta-
neously, but follows a time course that depends on the values of R and C.
The resistance R represents the effective resistance to current flow
across the membrane and is discussed further below.

To analyze this circuit, we use Kirchhoff’s loop method, discussed
in the last section. Let’s write a loop equation for the circuit in Figure
16.13 after the switch is closed and a path is provided for current flow.
When the switch is closed current will flow from the �Q0 side of the

capacitor clockwise around the circuit. Starting at the switch S and mentally going
clockwise around the loop, we find

(16.19)

Because both Q and I vary with time, it turns out that we need calculus to solve this
equation (see box) to find that the charge on the capacitor and the current through the
resistor are given by

(16.20a)

(16.20b)I � I0 e
�

t

RC,

Q � Q0 e
�

t

RC,

� IR �
Q

C
� 0.

C � C1 � C2.   (capacitors in parallel)

Q � CV � C1 V � C2 V   or
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R

C

Qo–Qo

S

Starting from Equation (16.19), and substi-
tuting from the definition of 

(the minus sign is needed to make the cur-
rent positive because it is equal to the time
rate of decrease of the capacitor charge), the
equation becomes 

.

Rewriting, we have

.

Integrating both sides of this equation from
t � 0 to time t and from Q(t � 0) � Q0 to a
value of Q(t), written simply as Q, we find

,

so that

.

Taking the antilog of both sides, remembering
that these logarithms are to the base e, we find

,

or Equation (16.20a). To then find the cur-
rent as a function of time, we again use its
definition, so that

, 

or Equation (16.20b). This same procedure
can be used to analyze any electrical circuit
consisting of batteries, capacitors, and
resistors via the loop equation.
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FIGURE 16.13 An RC series circuit
with the capacitor initially charged
before closing the switch S
connected to the resistor.



where Q0 is the initial charge on the capacitor and I0 is
the initial current when the switch is closed and given by
I0 � Q0/RC.

The results obtained in Equations (16.20) are shown
in Figure 16.14 with the charge and current plotted as
functions of time. Because the voltage across the capaci-
tor is proportional to the charge (V � Q/C) and the volt-
age across the resistor is also proportional to the current
(V � IR), these voltages follow the same time courses as
Q and I, respectively. The key parameter in these results is
the product RC, which has units of time and is known as the RC time constant � � RC.
Its value determines the rate at which the discharging of the capacitor occurs, with the
charge, current, or voltage across either R or C dropping to (1/e) � 0.37 of its initial
value in a time � � RC (see Figure 16.14).

All electrical devices and complete circuits have some associated capacitance as
well as resistance. In high-speed electrical applications, such as computers, the RC

time constant sets fundamental limits on the speed at which a circuit can change its
voltage. Computers use voltage as information, with a high or low voltage represent-
ing a bit of information, either a 1 or a 0, and calculations are done by electronic
arithmetic that changes bits rapidly. Consequently, increasing the processing speed of
a computer depends heavily on reducing the associated capacitance of the funda-
mental electronic device building blocks of the microprocessor.
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FIGURE 16.14 Normalized capaci-
tor charge or electric current in an
RC circuit (Equations (16.20a) and
(16.20b), normalized to their initial
values) for a � � 15 ms RC time
constant. The voltages across the
capacitor and resistor also follow
the same time course. Dashed lines
indicate that at t � �, the normal-
ized Q or I has decreased to (1/e) �
0.37 of its starting value of 1.0.

Example 16.5 In the simple RC circuit of Figure 16.13, the 10 �F capacitor
is initially charged to 60 �C. When the switch is closed, an initial current of
0.3 mA is measured in the circuit. Find the charge on the capacitor and the
current in the circuit after 0.6 s.

Solution: To learn the time course of the current and charge, we need to first find
the value of the resistance in the circuit. When the switch is first closed, the ini-
tial voltage across the resistor is the full initial voltage V0 across the capacitor.
Because the initial charge on the capacitor is 60 �C, the initial voltage is V0 �
Q0/C � 60 �C/10 �F � 6 V. This voltage, on closing the switch, immediately
produces the given initial current flow I0 � 0.3 mA. From Ohm’s law R � V/I,
so knowing the initial current we can solve for R � (6 V)/(0.0003 A) � 20 k
.
Now, knowing RC � (20 k
)(10 �F) � 0.2 s, we can use Equations (16.20) to
find the charge and current after 0.6 s, equal to three time constants. Substituting
that (t/RC) � 3, we find that the exponential is given by e�3 � 0.05, so that after
0.6 s there will remain only 0.05 times the initial charge and current. Our
answers then are that after 0.6 s there remain (60 �C)(0.05) � 3 �C of charge
and the current is (0.3 mA)(0.05) � 15 �A.

Let’s now apply some of these ideas to a biological membrane where we are par-
ticularly interested in the transverse currents across the membrane. For membranes
in the resting state, RC time constants range from 10 �s to 1 s. In dealing with mem-
branes it is useful to discuss the electrical properties of a 1 cm2 area; these are known
as the specific capacitance C/A, and specific resistance RA. Defined in this way the
product of the specific capacitance and specific resistance (C/A)(RA) � RC is still
equal to the time constant. From R � 	L/A, we have that RA � 	L in units of 
-cm2.
Using the value quoted for the membrane specific capacitance C/A, in the previous
chapter of 1 �F/cm2, the different time constants correspond to different values for
the specific resistance RA � 	L of 10 to 106 
-cm2. The broad range of values for
the resistivity indicates a large variability in both the numbers of channels per unit
area and in the average number of open channels in the resting state in different cells.



We now want to get some estimate of the numbers of charges flowing through
each open channel that make up the membrane current. Using a value of 0.1 V for the
resting potential, we determined in the last chapter that a typical value for the surface
charge density Q0/A is about 0.1 �C/cm2. Because 1 mol of a monovalent ion corre-
sponds to a charge of , where F
is known as the Faraday constant, we can find the number of moles corresponding to
a charge Q0 per unit area. If due to monovalent ions, the surface charge density cor-
responds to

If we approximate the average current density (current per unit area) by dividing the
charge density value by the time constant, we find a current density I/A of
100 �A/cm2 using a 1 ms time constant. This corresponds to the flow of 1 nmol of
ions/cm2/s. Using a value of about 10 channels/�m2 (or 109 channels/cm2) for the
surface density of channels, the ratio of I/A (10�4 A/cm2) to channels/cm2 gives a
value for the current in a single channel of about 0.1 pA, corresponding to the flow of
about 10�18 mol of ions/s. This means that each channel carries about 600,000 ions/s
or about 600 ions in the 1 ms time constant. Measured values for a variety of single
channels give currents of this magnitude or 10–100 times larger (see Section 6). Note
that the number of ions flowing across the membrane is insignificant in terms of the
total concentrations of ions both in the cytoplasm and extracellular medium, so that
the ion concentrations in these media remain essentially constant.

Thus far in our discussion we have ignored the membrane charging mechanism,
or in the language of equivalent circuit diagrams, we have ignored a source of energy,
a battery or power supply. What is the origin of the membrane resting potential? We
show that the selective permeability of the membrane to various ions, controlled by
the channels, is the source of this potential.

Suppose first that there are only K� channels in a membrane so that, to a good
approximation, only those ions can cross the membrane barrier. If we start with an
excess of KCl on one side of the membrane, the K� will reach an equilibrium across
the membrane in which there is no net flow of ions even though the K� concentra-
tion is not equal on both sides of the membrane. Why is this? Clearly in the absence
of any electrical effects, diffusion alone would tend to drive the K� concentration to
the same final value on both sides of the membrane. However, despite this diffusional
driving force, electrical attractive forces due to the presence of the excess (negative Cl�)
ions, which cannot cross the membrane, balance this tendency toward a uniform
concentration at equilibrium (Figure 16.15).

From an equilibrium equation similar to that of the discussion of Figure 13.6 in
Chapter 13, we can write that

(16.21)

where R is the molar gas constant, and the c’s and PE’s are molar concentrations
and potential energies, respectively, of the K� on the outside (o) and inside (i)
of the membrane. Writing that 
where NA is Avogadro’s number, z is the valence or number of charges per ion
(so that is the charge of a mole of ions), and VK is the equilibrium membrane
potential due to potassium ions. Solving for VK by taking the natural logarithm
of Equation (16.21), we have

(16.22)VK �
RT

zF
 log a c0

ci

b .

zF

PE0 � PEi � NAq¢V � z F(V0 � V i) �  zFVK,

c0

ci

� e
�

PE0�PEi

RT ,

(10�7 C/cm2)/F� 10�12 mol/cm2 � 1 p mol/cm2.

F �  NA e � 6 � 1023 � 1.6 � 10�19 L 105 C/mol
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FIGURE 16.15 Portion of a
membrane (with channels not
shown) permeable only to K� (blue)
showing that even at equilibrium,
the concentration of K� is higher
on the side with Cl� (pink) due to
electrical forces.



The Nernst potential represents the equilibrium situation for a particular ion
species. If the transmembrane potential is equal to the Nernst potential for some ion
species “A,” VA, then there will be no net flow of A across the membrane even if the
membrane has a high conductivity for A. No net flow does not mean that the chan-
nels do not allow any ion flow, but rather that the inward and outward flows of ion A
are equal. If the transmembrane potential is higher or lower than the Nernst potential
then there will be a net flow of A one way or the other across the membrane with the
ionic current proportional to the difference between the actual potential and the
Nernst potential for that ion

(16.23)

where GA is the A ion conductance and V is the actual transmembrane potential. If
only the one ion species can cross the membrane, then the membrane potential will
equilibrate at the Nernst potential for that ion. In the resting state, open K� channels
dominate and the resting potential is close to the equilibrium potential for K�, �0.1
V. This behavior is identical to that expected if there were a battery in series with a
resistor for each ion species. These separate batteries across the membrane function
when their corresponding channels are open, corresponding to when their series resis-
tance decreases.

At this point in our discussion we can present a more realistic circuit diagram
for a membrane than a simple RC circuit. In the membranes of the axons of neu-
rons, Na� and K� channels dominate, and Hodgkin and Huxley proposed the
equivalent circuit shown in Figure 16.16. The arrows through the resistors in the
figure indicate conductances that can vary with time as the ionic channels are made
to open or close (known as gated channels). Only Na� and K� channels are explic-
itly indicated with a net leakage conductance representing other net ion flows.
Before we study some of the electrical properties of neurons and this equivalent
circuit representation in Section 5, we first give a more qualitative overview of the
structure and functioning of neurons and the ways in which their electrical
properties have been studied.

4.  OVERVIEW OF NERVE STRUCTURE AND FUNCTION;
MEASUREMENT TECHNIQUES

The human nervous system consists of some 1011 nerve cells, or neurons, each
one making an average of over 1000 interconnections. On an individual level
we have a reasonable understanding of the functioning of a single nerve cell,

IA � GA (V � VA ),
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Table 16.2 Typical Ion Concentrations and Nernst Potentials (Mammalian Skeletal Muscle)

Typical Internal Typical External Nernst Potential
Ion Concentration (mM)* Concentration (mM) (mV)

Na� 12 145 �67

K� 155 4 �98

Ca2� 10�4 1.5 �129

Cl� 4 120 �90

* 1 mM � 10�3 M � 10�3 mol/L.

IC IK IL

outside

inside

C

VNa VK VL

GNa GK GL

INa

FIGURE 16.16 The Hodgkin–
Huxley equivalent circuit for an
axon membrane. The batteries
represent the specific ion Nernst
potentials (L �� leakage, represent-
ing the small contribution from
other ions), producing specific
ion currents as shown. The total
membrane current is given by the
sum of the four currents listed
with the capacitor current equal to
(from Q �� CV)

where V is the voltage across the
membrane.

IC � C
¢V

¢t
,

Equation (16.22) is known as the Nernst equation and determines the equilibrium
membrane potential contribution from the imbalance of a particular ion, known as the
Nernst potential. Table 16.2 gives typical concentrations and Nernst potentials for
Na�, K�, Ca2�, and Cl�.



but we have precious little knowledge of the larger-scale, or more global func-
tioning, of our nervous system. Three main ways to categorize nerve cells include
whether they are part of the central (brain � spinal cord) or peripheral (all else)
nervous systems, part of the autonomic (connections with involuntary muscles and
internal organs) or somatic (peripheral connections to voluntary muscles and sur-
face sensors) nervous systems, or whether they are afferent (so-called sensory
neurons, carrying information from the peripheral to the central nervous system)
or efferent (so-called motor neurons, carrying information in the opposite direc-
tion). There are many different types of neurons, however, they all have common
features and are believed to function in a very similar manner.

Neurons are single cells with a cell body containing a nucleus and usually a
single long thin structure, the axon, which may be more than 1 m in length.
There are also several shorter processes, known as the dendrites, radiating away
from the cell body (Figure 16.17). Cell bodies tend to be clustered together in
regions connected by bundles of axons. At the far end of the axon are the termi-
nal endings.

Nerve cells conduct an electrical signal called the action potential, or nerve
impulse, discussed in detail in the next section. These signals are very similar in all
nerves, traveling from the dendritic end to the terminal bundle end at speeds of up
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FIGURE 16.17 Structure of the
neuron (top) schematic; bottom
multiphoton scanning microscopy
view of nerve bundles (green) and a
retinal “starburst” cell (red) found in
visual processing network.



to 100 m/s. Usually each neuron is electrically isolated from the next and signals are
passed on to the next cell chemically. This occurs through the release of a neuro-
transmitter from synaptic vesicles at the terminal endings. These chemicals diffuse
across the synapse, a small cleft between the terminal endings of one neuron and the
dendrites of the next, and are detected by membrane receptors on the dendrites to
provoke an electrical response. Receptors are membrane bound proteins that, on
binding neurotransmitters either directly (through so-called ligand-gated channels)
or indirectly through open ion channels, cause a membrane depolarization and a
continuation of the action potential. In certain neurons direct electrical connections
between neighboring cells occur via “gap junctions,” pores connecting two neigh-
boring cells that allow the direct passage of very small molecules. These are com-
monly found in embryo tissue and are believed to provide a means for cell–cell
communication in undeveloped tissue. In nerve cells, however, gap junctions do not
allow as great a variety of control mechanisms as chemical synapses do, and are
therefore relatively rare.

It is useful to describe the overall circuitry involved in a simple reflex response. At
a minimum such a response requires four cells. The knee jerk reflex is well known as
a simple reflex involving a muscle fiber, a receptor transducer cell, a sensory neuron,
and a motor neuron. When a doctor taps the patellar tendon near the knee, the attached
muscle is stretched. A stretch receptor senses this and produces an electrical response
that is carried by an action potential along a sensory neuron to the spinal cord. There a
reflex response is generated as an action potential in a motor neuron returning to the
same muscle fiber. Arrival of this action potential generates a sequence of chemical
steps that result in the contraction of the muscle, and the knee jerk response. A similar
sequence of events occurs when you respond to a pinprick on your finger (Figure
16.18). Of course this is a simplistic view, and there are other neural connections that
allow control over the sensory and motor signals from the central nervous system as
well, but it serves to give a picture of the overall circuitry in a simple reflex.

Electrical properties of individual neurons can be studied in living tissue using
inserted microelectrodes. Most of the early research work was done using the
giant axon from a squid, a particularly large cell with an axon of about 1 mm in
diameter. The electrode is a glass capillary tube containing a conducting salt solu-
tion and a metal wire electrode. Electrodes are used both to measure membrane
voltages (with the wire inside the tube connected to a sensitive voltmeter) and to
inject small amounts of current (with the wire attached to a power supply).
Usually the microelectrode is set to zero potential in the extracellular medium and,
when inserted through the membrane into the cell, reads the resting membrane
potential, typically a small (0.1 V) negative voltage with respect to the outside.
When used to study a nerve impulse, often current is applied through a second
electrode as a stimulus and subsequent changes in potential are measured.
Alternatively, a constant voltage step change could be applied, fixing the mem-
brane potential, and the changes in current flow across the membrane measured.
This method is known as the voltage-clamp technique.

On first thought, one might guess that the membrane
could be voltage-clamped by connecting an ideal battery
across its thickness. The battery would supply whatever
current was needed to offset the membrane currents in
order to maintain a fixed membrane potential. This is, how-
ever, not quite true because the battery terminals cannot be
“attached” to the membrane and there are unpredictable
junction potentials at the metal–solution boundary due to
contact resistance that would vary with the current flow.
Only the metal electrodes would be voltage-clamped, not
the membrane itself. Instead, voltage-clamping involves
using an electric feedback loop to continually inject small
currents in order to maintain a fixed potential.
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FIGURE 16.18 A simple reflex circuit.



Figure 16.19 shows three examples of voltage-clamp circuitry using feedback
loops. In each method, the membrane potentials are “space-clamped” in such a
way as to have no spatial variation of potential. In two of these methods two elec-
trodes are used, with one measuring the potential relative to a reference voltage set
at the desired level. This voltage difference signal is then used to inject a current
through the second electrode to reduce the difference signal and maintain the volt-
age clamp. Such a procedure is an example of negative feedback, in which an
“error signal” is sent back to the source and used to make small corrections so as
to restore a desired value of a variable. The space-clamping is achieved by either
using long intracellular electrodes or by using a small membrane area isolated by
either applying insulators in gaps dividing the membrane or by a patch-clamp
arrangement. Patch-clamping, developed in 1976, uses a micron-diameter pipette
tip pressed against an intact cell with some suction applied to form a very tight
seal on a microscopic area of membrane so that the resistance between the inside
and outside solutions is many G
 (1 G
 � 109 
). Patch-clamping has led to a
100-fold increase in the sensitivity of membrane current measurements (see
Section 6 below).

5.  ELECTRICAL PROPERTIES OF NEURONS

When several electrodes are used to probe the spatial pattern of normal membrane
potentials it is found that small cells have membrane electric potentials that are con-
stant over their entire surface whereas larger cells, such as neurons, can have poten-
tials that vary spatially as well as temporally. Although a small cell’s membrane can
be reasonably modeled by a simple single-loop circuit diagram, Figure 16.20, in
which the membrane voltage and current values depend on time, but not on spatial
location (a so-called lumped-parameter model), neurons cannot.

Modeling the electrical properties of a neuron requires a so-called distributed-

parameter network. The simplest scheme for a neuron that leads to some useful
results is a linear cable model shown in Figure 16.21. This ribbon of repeated circuit

elements is characterized by a set of parameters that vary along the
length x. Here the inner and outer conductors represent the intracellu-
lar and extracellular fluid. Each section of length �x along the cable
has per-unit-length values of membrane capacitance cM, conductivity
gM, transverse (inner to outer) current Im, and inner and outer longi-
tudinal resistance ri and r0, as well as inner and outer values for lon-
gitudinal current along the axon Ii and I0, and voltage difference
across the membrane VM. The model was first developed to represent
an electrical cable (hence the name) that leaks some current trans-
versely across the insulation between the two co-axial conductors.
Although the mathematics of this model is complex, it is based on a
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straightforward application of Kirchhoff’s rules. Here we are content with showing a
few of the model’s predictions.

Two parameters of the model are needed: the RC (� C/G) time constant, given by

(16.24)

and the space constant given by

(16.25)

Note how the units work out in Equation (16.24), with both cM and gM per-unit-length
constants so that their ratio has time units, whereas in Equation (16.25) the per-unit-
length constants combine to give 
 units of distance. The time constant is a property
solely of the membrane with typical values of several ms, whereas the space constant
depends also on the cell dimensions and geometry and has typical values of several mm.
If a steady electric current is applied at one point (x � 0) along a neuron, the mem-
brane voltage difference VM from the resting potential decreases exponentially along
the axon in either direction according to

(16.26)

as shown in Figure 16.22. After a brief initial time when the current is applied, this
result is time-independent because current is continually injected by the electrode to
achieve a steady state.

If, on the other hand, a short pulse of current is injected
into an axon at x � 0 at time zero, the model can be used to cal-
culate the voltage response as a function of both position and
time. This situation corresponds to a typical stimulation of a
nerve or muscle membrane. Results for this model are plotted
in two ways in Figure 16.23. On the left the spatial variation of
the voltage response is shown for several different times (dif-
ferent curves). At increasing times the response spreads out
from x � 0, decreasing in amplitude at x � 0, but increasing in
amplitude at other locations for a brief time. This is perhaps
better shown in the figure on the right where the time-
dependence is plotted at several different distances from x � 0
(given in units of 
). The voltage rises and then falls with an
exponential tail. The peak can be seen to move to farther loca-
tions at later times, but with a rapidly decreasing amplitude. If

VM � VM (0)e
�

|x|

l ,

l�
11(ri � r0)gM

.

tM �
cM

gM

,
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FIGURE 16.21 A cable model for
the electrical properties of the
membrane of a nerve axon. There
are two parallel conductors along
the inner and outer surfaces with
repeated transmembrane circuit
elements representing the local
current-voltage characteristics that
vary with position.

FIGURE 16.22 The spatial variation
in the membrane voltage from
measurements along axons stimu-
lated by a small current from an
electrode at x � 0.



the potential changes are below a threshold value, this will be the only response of
the membrane, a localized brief signal. Data on so-called miniature end-plate poten-
tials, due to spontaneously released neurotransmitters, are accurately modeled by the
cable model. On the other hand, if the potentials exceed a threshold value, then a
totally different type of behavior is observed: a nonlinear nerve pulse is initiated.

A nerve pulse, or action potential, is an all-or-nothing propagating potential wave
that is the basis of all neural communication. The Hodgkin–Huxley (H-H) model is a
generalization of the cable model in which the cross-membrane elements of the cable
are spelled out in detail. In place of a single conductance channel, H-H uses three such
paths, for K�, Na�, and for other leakage currents, with the conductances for Na� and
K� given as variable conductances (shown with arrows through their equivalent resis-
tor values in Figure 16.16). This latter change makes the entire problem nonlinear
because the conductances for Na� and K� are now themselves functions of both
membrane voltage and time. From Equation (16.23), we see that the ionic currents will
now depend on the membrane voltage in some nonlinear way (with the exponent of
VM not equal to 1).

The crux of the H-H model is the specification of the conductances GNa and GK.
Hodgkin and Huxley obtained these functions by fitting data from space-clamped mea-
surements (eliminating the x-dependence, or the cable properties) that were also volt-
age-clamped, allowing direct measurement of membrane currents. Individual
membrane currents due to Na� and K� were measured by a number of methods,
including radioactive labeling of the salt ions, or using channel blockers, specific chem-
icals that block, or shut off, only one type of ion channel. From numerous measure-
ments of currents at specific membrane voltages, plots of the conductances of each type
of channel as functions of potential were obtained. With empirical equations for these
conductances, the H-H model can account for all of the features of an action potential.

Figure 16.24 shows the time-dependence of an action potential and the asso-
ciated ionic conductances. The Na� conductance increases
after a time delay relative to the potential, peaks with the
potential, and then falls off more rapidly. Again relative to
the potential, the K� conductance rises more slowly and
peaks after the fall of the potential. Although the H-H model
was developed under space and voltage-clamped conditions,
it can explain a large number of distinguishing features of an
action potential, including: (1) an all-or-nothing response,
with a threshold value of membrane current, in which a fixed
pulse shape propagates down an axon at a constant speed; (2)
an absolute refractory period of time after the action poten-
tial during which a second action potential cannot be elicited;
(3) a relative refractory period of time during which a second
action potential can only be elicited by an elevated current
level substantially beyond a lower threshold; (4) a specific
strength-duration relation giving the threshold current for
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FIGURE 16.24 Membrane voltage
changes during an action potential
(bold), together with sodium and
potassium ion conductances
across the membrane.



different duration current pulses; and (5) accommodation, in which the membrane
adjusts to a sufficiently slow increase in current without producing an action
potential.

The H-H model was developed through studies of the giant squid axon, however,
most vertebrate neurons have a quite different structure that greatly modifies the nerve
conduction mechanism. All neurons are found in association with other nonneural
cells, known as supporting cells. In the central nervous system these are mostly glial
cells and in the peripheral nervous system they are predominantly Schwann cells. Most
of these supporting cells provide a myelin sheath that surrounds the axons of neurons
in segments, or internodes, that have narrow gaps, known as nodes of Ranvier, at regu-
lar intervals. The internodes are roughly 1 mm long, some 1000 times longer than the
nodes (Figure 16.25), and substantially change the electrical properties of nerve con-
duction. The myelin sheath provides a highly insulating layer effectively reducing
membrane currents, which are fairly well confined to the nodes where there is a much
higher density of channels than in the internodes. Myelin also greatly increases the
space constant 
 so that the membrane potential changes occurring at one node spread
over many nearby nodes. Thus, a membrane potential depolarization occurring at one
node caused by local membrane currents will rapidly appear at nearby nodes triggering
membrane currents there as well. This type of signal propagation is known as saltatory

conduction (from the Latin for “to jump” and having nothing directly to do with salt)
because the membrane currents are triggered only at the nodes and not in a continuous
fashion along the axon. Action potentials generated by saltatory conduction travel at
much faster speeds (up to 100 m/s versus 20 m/s in squid giant axons) and myelinated
neurons also have much smaller diameters (20 �m versus 0.5 mm in squid giant
axons). A number of neuromuscular diseases, including multiple sclerosis (MS), affect
the myelin around axons.

6.  MEMBRANE CHANNELS: PART II

In Part I of our discussion of membrane channels in the previous chapter, we
focused on the control and selectivity of voltage-gated ion channels. Now that we
have learned something about electrical circuits, we return to membrane channels
and discuss patch-clamp measurements of the electric currents through single chan-
nels. Patch-clamping was mentioned at the end of Section 4 above as a means of
space-clamping, or electrically isolating a patch of a cell membrane. Four types
of patch-clamps can be distinguished for use in recording the electrical activity of
single channels (Figure 16.26).

A micropipette tip pushed up against a cell membrane provides an initial low
resistance seal of about 50 M
. By applying suction, a gigaseal (G
 seal) is then
obtained where the patch is isolated from its surroundings by a huge resistance
value; this configuration is known as the cell-attached mode (A in Figure 16.26)
and is useful for studying voltage-gated channels or channels controlled by extra-
cellular molecules supplied by the pipette. If the pipette tip is withdrawn pulling
on the membrane, the membrane will rupture at the pipette tip edge producing an
inside-out patch mode (B) if done in air or in the absence of divalent cations. By
then immersing the inside-out patch in an external solution, one can control the
ion content on the “cytoplasmic” side of the membrane.
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Nodes of Ranvier
Axon

Myelin FIGURE 16.25 Myelin sheath
surrounding the axon with regularly
spaced nodes of Ranvier.



Alternatively, after forming a gigaseal, an additional pulse of suction or voltage
will open the membrane, exposing the cytosol to the pipette contents. This allows
whole-cell recording (C) to occur in which the pipette can introduce ions or chemi-
cals or even proteins into the cell. Small cells can be studied quite well using this
method. For larger cells, pulling on the attached membrane, by surface tension, leads
to the formation of an outside-out patch (D), with the extracellular face of the mem-
brane able to be immersed in an external solution.

Each of these methods results in a patch of membrane (possibly the entire small
cell) as a boundary between two controlled solutions, one within the pipette and one
external. At that point current flow across the membrane can be monitored by elec-
trodes and amplifier circuitry. With only a few channels per square micron of mem-
brane area, the sensitivity of the electronics is such that single channel recordings can
be made in which the flow of typically 5 picoamperes (1 pA � 10�12 A) of current
lasting typically 1 ms can be measured. Such a flow corresponds to about 30,000
monovalent ions through a single channel in the membrane. Our ability to measure
such small currents accurately hinged on the development of field-effect transistor
(FET) amplifiers which have very low noise characteristics.

Based on the macroscopic sodium channel currents measured for large membrane
surfaces discussed in the last section, one might guess that the single channel Na� cur-

rent recording would be just a miniature version of that continuous curve in time.
However, what is found in a single channel measurement is totally different. The cur-
rent instead comes in individual discrete, rapid bursts of charge flow (Figure 16.27).
These pulses are spaced close together at times corresponding to a large macro-
scopic current and farther apart, on average, during smaller macroscopic currents.
Effectively, with a large number of identical channels, the current pulses add together
to give the continuous macroscopic current curve. An alternative way to consider this
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FIGURE 16.26 Types of patch-clamps.
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1

FIGURE 16.27 Single channel
recording from a patch-clamp.
Each step in current is the opening
and closing of a single ion channel.



is that repeated depolarization of the same channel, under identical conditions, will
elicit a seemingly random, different response each time; but when those responses are
summed, the average single channel current is found to mimic the macroscopic current
observed from a single simultaneous measurement on large numbers of such channels
(Figure 16.28).

The conductance of a single channel can be determined by measuring the chan-
nel current as a function of the membrane potential difference from the equilibrium
potential for that ion species (see Equation (16.23)). Figure 16.29 shows an example
of data from a K� channel. The slope is the conductance for that channel under the
experimental conditions.

A simple model of ionic channels can be developed in which the channels exist
in only two possible states, closed (C) with zero conductance and open (O) with a
constant conductance. Figure 16.30 shows a hypothetical energy diagram for this
model. Note that the energy levels might well depend on the membrane voltage.
According to equilibrium thermodynamics, the ratio of the number of open to closed
channels is given by the Boltzmann factor as

(16.27)

The probability that a channel is open, P0, is given by the ratio

(16.28)

A plot of P0 versus (E0 � EC)/kBT is shown in Figure 16.31. For large negative val-
ues of the abscissa, corresponding to a higher closed than open state energy, with the
difference large compared to thermal energies, all channels are open. In the opposite
limit of large positive values, all channels are closed. When the open and closed
energy values are equal, 50% of the channels are open. The energy levels of both
states change in response to the membrane potential.

In a further refinement of this model, various mechanistic models of the energies of
the two states can be assumed. For example, one simple scheme is to imagine a gating
molecule acting as a dipole and either spanning the channel, so that the channel is closed,
or not, so that the channel opens. Thus the rotation of a dipole—triggered by electrical

P0 �
N0

N0 � NC

�

N0

NC

N0

NC

� 1

�
e�(E0�EC)/kBT

e�(E0�EC)/kBT
 � 1

�
1

1 � e(E0�EC)�kBT
.

N0

NC

� e�(E0�EC )/kB T.
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FIGURE 16.28 The upper voltage represents an applied depolarizing voltage
clamp, and the three single channel recordings, top three I versus t curves,
indicate a series of repeated measurements of current in synch with the
applied voltage pulse. When many repeated single channel recordings are
summed (bottom curve) the macroscopic aggregate current that results is
found to be the same as when measurements are made over a larger surface
area to give a macroscopic current signal directly in a single measurement.

FIGURE 16.29 Current-voltage relations for
a single K� channel. The conductance of
the channel can be obtained from the slope
of the dashed line.

FIGURE 16.30 Energy diagram for
two-state model of an ion channel.



forces—controls the conductance of the channel (Figure 16.32). The interaction energy
can then be written in terms of the dipole and the membrane potential and an analysis
and comparison with data can lead to an estimate of the valence of the gating charge ze

on the dipole. Hodgkin and Huxley’s work showed that z is about 6 for the sodium chan-
nel, so that six positive charges are needed to shift from the cytosolic to the extracellu-
lar side of the membrane in order to give the observed voltage-dependence for the
gating. Equivalently 6 negative charges can shift across the membrane in the opposite
direction, or 12 charges could shift halfway across, and so on. Although some features
of the H-H model can be recovered from this simple model, multistate channel models,
with additional parameters, have also been developed.
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FIGURE 16.32 A model for a 
two-state dipole control of channel
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FIGURE 16.31 Probability of channel being
open as a function of the energy difference.

CHAPTER SUMMARY
When placed in an electric field directed along a wire,
the free electrons in the conductor move randomly
about at thermal velocities (~106 m/s) while drifting
along the wire at very low speeds (~mm/s). The drift
velocity produces a net flow of charge Q, making up an
electric current I, defined as

(16.4)

In a conductor, the current is proportional to the
applied potential difference V through Ohm’s law

(16.7)

where R is the electrical resistance of the conductor. As
current flows through a conductor, electrical energy is lost
thermal energy through joule heating at a rate given by

(16.10)

Electrical circuits can be analyzed using two fundamental
rules: Kirchoff’s loop equation, stating that the net voltage
difference around any closed loop in a circuit is zero, and

P � IV � I2 R �
V 2

R
.

V � IR,

I �
¢Q

¢t
.

the junction rule, stating that at any branch point in a cir-
cuit the total current into the branch point must equal the
total current flowing out. In simple circuits with either just
two resistors or two capacitors, we can develop the fol-
lowing rules for finding net R and net C values:

(16.14)

(16.16)

(16.18)

In circuits with series R and C elements, an analysis
finds that when discharging the capacitor the charge on
the capacitor and the current in the circuit both
decrease exponentially according to

(16.20a)Q � Q0 e
�

t

RC,

C � C1 � C2   (capacitors in parallel).

1

C
�

1

C1
�

1

C2
   (capacitors in series)

1

Requiv
�

1

R1
�

1

R2
,  ( resistors in parallel)

Requiv � R 1 � R 2   (resistors in series)
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QUESTIONS
1. Some mistakes students make as they are learning

about circuits involve using wrong language to
describe situations, leading to or caused by concep-
tual misunderstandings. For example, it is fairly com-
mon to hear students say that current flows across a
resistor, or that voltage flows around the circuit, or to
ask what the voltage of the resistor is. What is wrong
with each of these statements?

2. Explain how it is that when you turn on an electric
light switch, the light comes on immediately even
though the electrons making up the electric current
travel at very slow speeds of only about mm/s.
Develop an analogy with water coming out of a full
hose when the valve is first opened.

3. If conductors cannot have electrostatic fields within
them, what is the mechanism that produces the force
on electrons within a conducting wire in a circuit
when there is an electric current flowing?

4. If free electrons in a conducting wire experience a net
force due to the electric field in the wire, why don’t
they accelerate continuously instead of traveling
along with a constant average velocity?

5. Explain the difference among resistivity, resistance,
conductivity, and conductance. Which are intrinsic
properties of a material and which depend on its size
and shape?

6. If a resistor of resistance R is connected to a battery
of voltage V, the equation for the power dissipated in
the resistor, P � I2R, implies that a larger resistor will
dissipate more energy and get hotter than a smaller
resistor. This is not true. Explain why not.

7. A homeowner keeps losing electric power during a
hot summer evening due to blown 20 A fuses. After
replacing the blown fuse several times and having the
same problem, he decides to use a 30 A fuse so it
won’t blow with the same electrical devices on. Why
is this a bad idea?

8. Copper wires covered with rubber-based insulation are
commonly used in household electrical wiring. These
wires come in different gauges, corresponding to differ-
ent diameters of the copper wire, where increasing
gauge corresponds to decreasing diameter. Calculate the
resistance of 100 m length of 14 gauge wire (1.63 mm
diameter) and of 10 gauge wire (2.59 mm diameter).
According to National Electric Code standards, the
maximum current capacities of these two wires are 15 A
and 25 A. Which can carry more current?

9. Check that the SI units of the product of R and C are
seconds; verify that specific resistance times specific
capacitance also has units of seconds.

10. Two physics students are each measuring the RC

time constant of a simple series RC circuit. One of
them sets the initial voltage on the capacitor to 10 V
and measures the time for the voltage to drop to 5 V.
The second student, using the same circuit, sets the
initial voltage to 20 V and measures the time for the
voltage to drop to 10 V. Will these times be the
same? Why?

11. In circuit analysis, Kirchhoff’s loop equation is often
equated with conservation of energy, whereas
Kirchhoff’s branching equation for currents is often
equated with conservation of electric charge. Discuss
this statement.

constant. Using this basic idea, nerve impulses can be
modeled as combinations of such potential differences
that have different time behaviors in the Hodgkin–Huxley
and other models of nerve conduction.

To test these models, special techniques have been
developed to measure electrical properties of membranes
in order to relate them to their structure. In particular,
patch-clamping techniques allow scientists to study the
electrical properties of single special channels or pores,
made from individual proteins embedded in biological
membranes, by measuring pulses of current flow corre-
sponding to the opening of a single one of these mem-
brane channels. The time-varying voltage signal seen
from earlier voltage clamp measurements agrees with
both patch clamp measurements averaging over large
numbers of such pores, and with time-averaging single
current pulse measurements after repeated channel open-
ings, as seen, for example, in Figure 16.28.

(16.20b)

An analysis of the potential difference across a mem-
brane with an imbalance in the concentration of ions on
both sides of the membrane leads to an equation, the
Nernst equation, for the potential difference across the
membrane due to the difference in ion concentration on
the inside (ci) versus outside (c0)

(16.22)

where K is the example of potassium ions, R is the molar
gas constant, z is the ion valence and F is the Faraday

VK �
RT

zF
 log a c0

ci

b

I � I0 e
�

t

RC,



12. Explain in words what an equivalent resistor means
when replacing some collection of resistors in a cir-
cuit by an equivalent resistor.

13. Explain why when using a multimeter as a voltmeter
its two wire leads can be simply put in parallel, or
across, the circuit element whose voltage is to be
measured, but when used as an ammeter this cannot
be done, but rather a wire leading to that circuit ele-
ment must be “broken” so that the ammeter can be
inserted in series with it. Discuss this in words and in
terms of Kirchhoff’s equations.

14. A flashlight bulb acts as a small resistance when con-
nected to a battery. If two identical bulbs are con-
nected in parallel to the same battery will they be
brighter, dimmer, or the same brightness as when a
single bulb is connected to that same battery? Repeat
this when the two bulbs are placed in series across the
same battery.

15. In the previous question, does the battery supply
more, less, or the same current with two bulbs in par-
allel as when a single bulb is connected to the bat-
tery? Answer this when the two bulbs are placed in
series across the battery.

16. Given an unlimited supply of 100 
 resistors, how
could you arrange a network of them to have an
equivalent resistance of 150 
? Of 75 
?

17. Discuss the meaning of the two parameters of the lin-
ear cable model of a neuron, the space and time con-
stants. What do they tell us?

18. In the cable model, discuss in words the function of
each of the circuit elements.

19. What is the fundamental goal of a patch-clamp?
20. Can you think of any other physical processes like

membrane channel current that appear continuous on
one level, but are actually made up of discrete small
packets on a finer level?

Questions 21 and 22 refer to: Consider the circuit to the
right. The battery is a perfect source of emf. Treat A, B,
C, and D as bulbs of equal resistance.

MULTIPLE CHOICE QUESTIONS
1. One end of a resistor in a simple circuit is at �5 V; the

other is at �3 V. Which one of the following is true? (a)
Electrons must be entering the resistor at the �5 V end
and leaving at the �3 V end. (b) Electrons leaving the
resistor have a higher kinetic energy than electrons enter-
ing the resistor. (c) Electrons at the �3 V end have a
higher electric potential energy than at the �5 V end. (d)
A current of 2 A must be flowing through the resistor.

2. A pure parallel combination of resistors has an equiv-
alent (or effective) resistance of 2 
. Which one of
the following is true? (a) The sum of the individual
resistances is 2 
. (b) The sum of the reciprocals of
the individual resistances is 2 
. (c) Each of the indi-
vidual resistances is greater than 2 
. (d) Each of the
individual resistances is smaller than 2 
.

3. The statement, “The current in a resistor is directly
proportional to the potential difference across the
resistor,” is known as (a) Coulomb’s law, (b) Gauss’s
law, (c) Ohm’s law, (d) Ampere’s law.

4. The electrical resistance of a long piece of wire is R.
The wire is stretched to be twice as long and, because
the wire’s volume doesn’t change, its cross-sectional
area is halved. The electrical resistance of the stretched
wire is (a) R/2, (b) R, (c) 2R, (d) 4R.

5. A steady current flows through a resistor. An electron
in the current flow enters the resistor at the resistor’s
�5 V end and leaves at the resistor’s �10 V end.
Which one of the following is true? (KE � kinetic
energy, PEE � electric potential energy.) (a) �KE � 0,
� PEE � 0, (b) �KE � 0, � PEE � 0, (c) �KE � 0,
� PEE � 0, (d) �KE � 0, � PEE � 0.

6. A voltmeter is used to read the potential difference
across the poles of a battery. The battery is rated at
20 V. The battery is connected in series to a switch,
an ammeter, and a resistor. When the switch is open,
the ammeter reads 0.0 A and the voltmeter reads
20.0 V. When the switch is closed the ammeter reads
1.0 A and the voltmeter reads 19.0 V. Which one of
the following is most likely to be the explanation for
this result? (a) The ammeter has too little resistance.
(b) The voltmeter has too much resistance. (c) The
battery has an internal resistance of 1.0 
. (d) The
resistor in the circuit has a resistance of 20.0 
.

7. A battery has an emf of 10 V and an internal resis-
tance of 1 
. When the battery is connected to a com-
bination of resistors, a perfect ammeter reads a
current of 1 A leaving the positive pole of the battery.
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A

B

DC

21. Rank order the brightness of the bulbs in the circuit
shown.

22. Fill in the following table with “S” for same bright-
ness, “D” for dimmer, “B” for brighter, and “O” for
goes out. “U” means that bulb is “unscrewed” for that
situation.

Situation A B C D

1 U

2 U

3 U

4 U



12. V1 must read (a) 0 V, (b) 5 V, (c) 10 V, (d) some value
that depends on the actual emf of the battery and the
actual resistances.

13. V3 must read (a) 0 V, (b) 5 V, (c) 10 V, (d) some value
that depends on the actual emf of the battery and the
actual resistances.

14. A1 must read (a) 1 A, (b) 2 A, (c) 3 A, (d) some value
that depends on the actual emf of the battery and the
actual resistances.

15. A2 must read (a) 1 A, (b) 2 A, (c) 3 A, (d) some value
that depends on the actual emf of the battery and the
actual resistances.

16. Two light bulbs, one rated at 50 W and a second rated
at 100 W, are both supposed to be connected to a 110 V
source of emf. Which one of the following is true? The
50 W bulb has (a) twice the resistance as the 100 W
bulb, (b) four times the resistance of the 100 W bulb,
(c) half as much resistance as the 100 W bulb, (d) one
quarter as much resistance as the 100 W bulb.

17. A bulb (i.e., a resistor) is connected in series to a switch,
a battery, and an uncharged capacitor. At t � 0, the
switch is closed. Which of the following best describes
the brightness of the bulb as a function of time?
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8. Two resistors are in parallel as shown in the figure
above. When the current at point 1 is 0.15 A and the
current at point 2 is 0.05 A, what is the current at
point 3? (a) 0.15 A, (b) 0.10 A, (c) 0.05 A, (d)
between 0.05 A and 0.10 A.

9. Two resistors are connected to an ideal battery in
series. Resistor 1 has a potential difference across it of
10 V and resistor 2 has a potential difference across it
of 20 V. Now, the two resistors are connected to the
same battery in parallel. The potential difference
across resistor 1 (a) is now 10 V, (b) is now 20 V,
(c) is now 30 V, (d) cannot be calculated because the
resistances aren’t given.

Questions 10 and 11 refer to the figure above
10. What is the equivalent resistance of the circuit shown

in the figure to the right? Each resistor is 1 
. (a) 4

, (b) 1.67 
, (c) 0.60 
, (d) 0.25 
.

11. In the circuit shown if the battery supplies 3 V and
each resistor is 1 
, what is the current through the
resistor in the middle branch? (a) 3 A, (b) 2.4 A,
(c) 1.2 A, (d) 0.6 A.

Brightness 

Time

Brightness

Time

Brightness

Time

Brightness

Time

(a) (b) 

(c) (d) 

(a)

(c)

(b)

(d)

18. Which of the following best describes the potential
difference across a capacitor that is connected in series
to a resistor and a source of emf that is sequentially
�V for time T, then 0 for time T, and so on, when T is
small compared with RC? Vertical axes are potential
difference, horizontal axes are time. The lighter plots
are the emf, the bolder plots are the capacitor voltage.

At the same time, a perfect voltmeter placed across
the poles of the battery will read a potential difference
of (a) 11 V, (b) 10 V, (c) 9 V, (d) 1 V.

Questions 12–15 refer to the figure above. The A’s are
perfect ammeters, the V’s are perfect voltmeters, the bat-
tery is a perfect source of emf, and the resistors are equal.
V2 reads 5 V and A3 reads 1 A.



PROBLEMS
1. What is the equivalent current in a solution of

monovalent ions flowing through a capillary
tube such that 1 mM of ions leaves the tube each
second.

2. A capacitor with a charge of 5 �C has its terminals
shorted by a metal wire so that the charge flows off
within 2 �s. What is the average current flowing dur-
ing that time?

3. What is the average current when all the sodium chan-
nels on a 100 �m2 patch of muscle membrane open
together for 1 ms? Assume a density of 50 sodium
channels per �m2 of surface and a flow rate of 1000
ions per ms through each channel.

4. Calculate the conductance and the resistance of a
10 m length of 14 gauge copper wire, which has a
diameter of 1.63 mm. If this wire is connected
directly to the terminals of a 12 V dc power supply,
shorting it, how much current will flow assuming
the power supply can deliver an unlimited amount
of current?

5. A 1 cm3 cube of gold (	 � 1.61 � 10�8 
m) is
drawn out into a uniform cylinder of 20 m length.
What is its electrical resistance?

6. Two 100 m 14 gauge wires (1.63 mm diameters), one
of copper and one of aluminum, are soldered together
and the 200 m wire is then connected to a 6 V dc
power supply with unlimited current.
(a) How much current flows in the wire? 
(b) What is the potential across each 100 m section

of wire?
(c) How much power is developed in each section of

wire?
7. A 1000 W heater runs from a 100 V dc power

supply.
(a) How much current flows in its heating cable

wire?
(b) What is the resistance of the wire?

8. An electric eel, found in the rivers of Brazil, can
discharge lethal currents of 1 A at 400 V. How much
power does the eel generate?

9. An immersible heater coil is to be designed to heat an
insulated container with 4 liters of distilled water
from 20° to 50°C in less than 30 min.
(a) How much energy must be input to heat the

water to this temperature?
(b) To heat the water, what minimum power must be

supplied?
(c) If a 12 V power supply is to be used, what

minimum current must flow in the heating coil?
(d) What must be the total resistance of the heating

coil? Is this a maximum or minimum resistance
to heat the water in 30 min or less?

10. Determine the equivalent resistance between points A
and B in the following circuit.

11. Given the network of equal 1 k
 resistors shown
below, compute its equivalent resistance and the cur-
rent drawn from the 12 V power supply. (Hint:
Combine resistors in stages using the simple rules for
series and parallel combinations of resistors.)
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A

B

5 kΩ 5 kΩ

4 kΩ1 kΩ

8 kΩ 3 kΩ

6 V 1.5 kΩ

4 kΩ

1.5 kΩ 2.5 kΩ

10 V
1 kΩ

3 kΩ

1 kΩ 5 kΩ

V2

V1

10 kΩ

A2

A1

12. Analyze the circuit shown below to find the currents
flowing through and the power generated in each
resistor.

13. A single 1 M
 resistor is connected across a power
supply. An ammeter is inserted to measure the current
out of the battery. If a voltmeter with 10 M
 resis-
tance is used to measure the voltage across the
resistor, what will be the percent change in the current
reading on the ammeter when the voltmeter is con-
nected across the resistor?

14. Find the reading that each of the (ideal) meters would
have in the following circuit.



15. Analyze the following circuit to find the current flow-
ing through the 10 k
 resistor.

(c) Suppose the second identical resistor is placed in
parallel with the first resistor, still connected to
the capacitor. What is the new time constant in
this case?

20. Consider a defibrillator, acting as a 32 �F capacitor
and a 47 k
 resistor in a series RC circuit. The cir-
cuitry in this system applies 5000 V to the RC circuit
to charge it.
(a) What is the time constant of this circuit?
(b) What is the maximum charge on the capacitor?
(c) What is the maximum current in the circuit during

the charging process?
(d) What are the charge and current as functions of

time?
(e) How much energy is stored in the capacitor when

it is fully charged?
21. We’ve seen that the Earth’s atmosphere is able to act

as a capacitor, with the ground and the clouds acting
as plates with an air gap in between. Under certain
circumstances air can be made to conduct, so that
electric charge can flow from the clouds to the ground
in what we call a lightning bolt. Assuming that the
clouds are distributed around the entire Earth at a
fixed distance of 5000 m above the ground of area
4�R2

Earth, where REarth � 6400 km, the resistance of
the air between the clouds and the ground is calcu-
lated to be R � 300 
.
(a) Assume that the charge is distributed spherically,

so that V � k(Q/r) and therefore �V is the differ-
ence in potential between the lower plate (the
Earth’s surface) and the upper plate (the clouds).
In addition, assume that in a typical day, 5 � 105

C of charge is spread over the surface of the Earth.
What is the potential difference between the
clouds and the ground?

(b) What is the capacitance of the Earth–cloud
capacitor?

(c) If the charge on the clouds is discharged through
the air, what is the capacitive time constant for this
discharge?

(d) How many lightning strikes does this amount of
charge correspond to if each lightning strike con-
tains about 25 C of charge?

(e) Approximately how long would it take the
Earth–cloud capacitor to discharge to 0.1% of its
initial charge?

(f) Assuming that the charge is immediately replen-
ished as soon as the discharge process ends,
approximately how many lightning bolts are there
per day?

22. Fill in all the steps in the calculation of the number of
ions crossing a membrane channel when it opens (see
Section 16.3 following Example 16.5). Now, using
those same numbers, calculate the total number of
moles of charge crossing the membrane when the
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12 V
5 kΩ

10 kΩ

6 V
2 kΩ

16. Find the current in the central branch of the following
circuit.

12 V
3 kΩ

5 kΩ

12 V
10 kΩ

17. RC time constants can be easily estimated by measuring
the time (known as the half-time) for the capacitor volt-
age to decrease to half of some arbitrary starting value
when discharging through a resistor. From Equation
(16.12a), the voltage across the capacitor will vary as

Show how a single measurement of the half-time can
be used to determine the RC time constant. (Hint:
Substitute V(t) � V0/2.)

18. A 100 �F capacitor wired in a simple series RC cir-
cuit is initially charged to 10 �C and then discharged
through a 10 k
 resistor.
(a) What is the time constant of the circuit?
(b) What is the initial current that flows?
(c) How much charge is left on the capacitor after

1 time constant?
(d) What is the current after 1 time constant?
(e) How much charge is left on the capacitor after

3 time constants have elapsed and what current is
flowing then?

19. A simple RC series circuit has a 100 �F capacitor.
(a) If the time constant is 50 s, what is the value of the

resistor?
(b) Suppose that a second identical resistor is inserted

in series with the first. What is the new time con-
stant of the circuit?

V(t) � V0 e
�

t

RC.



membrane of a spherical cell with a radius of 10 �m
completely depolarizes. If this charge were all K�

leaving the cell, calculate the fraction of the K� pre-
sent in the cell interior that crosses the membrane
when it depolarizes. (Hint: You need to calculate the
number of moles of K� inside the spherical cell and
the number on the surface of the membrane, all of
which is assumed to cross the membrane when it
depolarizes; see Table 16.2.)
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23. Check the values of the Nernst potential in Table 16.2
using Equation (16.22).

24. Show that Equation (16.28) leads to the plot shown in
Figure 16.31. In particular, show that the P0 values
for E0 � EC and for large and small values of the dif-
ference (E0 � EC) are correct.
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Imagine that you are a student in a summer program at a major research institution.
The training involves learning how to do different types of microscopy and you are
studying a sample of bacteria under the light microscope. You notice that some of the
bacteria always seem to migrate toward the same side of the microscope slide and
you get curious and wonder what could be causing them to choose that direction.
Remembering chemotaxis, the directed motility response to chemicals, and thinking
that perhaps there is a variation in oxygen level or something of that kind, you check
that the cover slip is on correctly and that there is no preferred direction. After puz-
zling a bit you decide to make up another slide but even then you still observe the
same type of bacteria all clumped toward the same side of the microscope.

You decide to rotate the microscope around on the table and find that the bacteria
always appear to clump toward the same side of the room, independent of the orienta-
tion of the microscope. Now you are truly puzzled. After a number of repeated observa-
tions, you begin to wonder about some strange external force. But what could it 
be? Gravity acts vertically and the bacteria are confined to the horizontal slide, and fur-
thermore always go in the same direction, independent of the microscope orientation.
You try taking the microscope into another room where you observe the same phenom-
enon, and you notice that they always move in the same direction. You try a third room,
where there happens to be a small stirring bar magnet lying nearby on the table. Now the
bacteria move in a different direction, but still move in that same direction regardless of
the orientation of the microscope. By chance, the magnet gets moved and you discover
that the bacteria clump in the direction of the magnet. You pick up the magnet and, by
moving it about, can control the direction in which the bacteria move. You have discov-
ered magnetotactic bacteria.

Something similar to this story actually occurred in 1975 when the first magnetic
bacteria were discovered. These bacteria actually have microscopic permanent magnets
embedded in them that steer the bacteria toward the Earth’s magnetic north. Figure 17.1
shows an electron microscope image of such a bacterium with the tiny crystalline mag-
nets visible. One can only speculate on the significance of the magnets for the bacteria.
Causing them to swim toward magnetic north in the northern hemisphere means that
they swim not only toward the north, as a horizontally held compass points, but also
vertically downward at an angle toward the North Pole through the Earth. The magnetic
force then causes them to swim beneath the murky waters of ponds and lakes to the
muddy bottom where they are found to thrive. Other animals, including bees and some
types of fish and birds, and some algae also contain microscopic magnetic particles,
although their function in orientation or sensory input is not totally clear.

Permanent magnets, like those that hold pictures on a refrigerator door, are familiar
to us as objects that attract and are attracted to other magnetic materials, such as iron. This
actually occurs through the production of a magnetic field and the interaction of a magnet
or magnetic material with this field. In this chapter we show the equivalence of such a
magnetic field to one produced by moving electric charges or electric currents, including

17Magnetic Fields



those of the neurons in our brain. We first learn the basic force
law governing the interaction of moving electric charges with a
magnetic field and some ideas on the interaction energy.
Magnetic forces on macroscopic objects, such as magnets or
wires with electric current flowing, are shown to have the same
origin as magnetic forces on atoms.

1.  MAGNETIC FIELDS AND FORCES

Our fascination as children with bar and horseshoe magnets is
no doubt similar to the earliest human experiences with mag-
netite, the naturally occurring magnetic mineral Fe3O4, or with
iron. The physical basis of the familiar attraction or repulsion
of two magnets (Figure 17.2) brought near each other is com-
plex and resides in the atomic structure of the materials. A
compass needle, itself a small magnet, can be used to deter-
mine the presence, direction, and even strength of a magnetic
field. Thus, a compass needle can be thought of as the mag-
netic analog of a test charge for electric fields. We show later
that a compass needle experiences a torque proportional to the
magnetic field strength causing it to orient along the magnetic
field. In Section 4 below, we discuss the generation of a mag-
netic field by electric currents, whether macroscopic currents
in a wire or microscopic currents in a neuron or in a piece of

magnetic material. Here we first discuss the interaction of a magnetic field with
electric charges.

Suppose there is a uniform magnetic field B in a region of space. Let’s discuss
the magnetic force on an electric charge q in this region of space. First of all it is
found that if the charge is at rest there is no magnetic force acting at all. Furthermore,
if the charge does move, but has its velocity along the magnetic field direction (deter-
mined, e.g., by a compass needle) then there is still no magnetic force on the charge.
If, however, it moves perpendicular to the magnetic field direction with velocity v,
then there is a magnetic force FM that acts on the charge and is given by

(17.1)

The direction of the magnetic force is found to be perpendicular to the plane in which
the velocity and magnetic field lie as shown in Figure 17.3. To remember which of the

two possible directions is correct for the magnetic force (up or
down from the plane of and ) we use the right-hand rule that
tells us to consider the set of three vectors , and (in that
order corresponding to x-, y-, and z-axes) as making up a right-
handed coordinate system as shown in Figure 17.4. Thus, curling
the fingers of your right hand from toward results in your
thumb pointing along the appropriate direction for as in
Figure 17.3. With a little practice, this rule is useful for finding
the direction of the magnetic force if the directions of the mag-
netic field and charge velocity are known.

The SI unit for magnetic field is the tesla (T) where, from
Equation (17.1), 1 T � 1 N-s/C-m. One tesla is a fairly large
magnetic field (a large magnet for an MRI—medical resonance
imaging—machine may have a magnetic field of several tesla)
considering that the Earth’s magnetic field is only about 0.5 �
10�4 T. A smaller unit, the gauss (G), with 1 G � 10�4 T, is
often used for magnetic fields, so that the Earth’s magnetic field
is approximately 0.5 G.

F
B

M

B
B

v
B

F
B

Mv
B, B

B

B
B

v
B

FM � qvB     (v � B).
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FIGURE 17.1 A magnetic bacterium with chains
of small magnetic particles, called magnetosomes,
made from magnetite and each about 100 nm
in size.

FIGURE 17.2 Iron filings mapping out the magnetic field
of a bar magnet. A compass needle placed near the
magnet will orient along the magnetic field lines.



What will be the trajectory of this charge under the influence of the magnetic
force? Because the force is perpendicular to the velocity vector, we know from
our discussions of centripetal force in mechanics that the speed of the particle will
not change but that its direction will change. As it does, the magnetic force con-
tinually remains perpendicular to the velocity vector and so the charge will move
in a closed circular path just as in the case of a centripetal force. When an object is
tied to a string and swung in a circle, the string provides the centripetal force that
is always directed toward the circle’s center and is perpendicular to the tangential-
directed velocity. In the present case, the magnetic field supplies the force needed
to steer the charge in a circle. We can further analyze the motion of the charge by
using Newton’s second law and our knowledge of centripetal acceleration to write

(17.2)

where m is the mass of the particle and r is the radius of the circle. Solving this equa-
tion for the ratio q/m, an intrinsic property of the particle, we find

(17.3)

indicating that for a particle of given charge-to-mass ratio with a velocity perpendic-
ular to a constant uniform magnetic field, the particle will move in a circular orbit
with a radius proportional to its velocity.

At this point in our discussion we can understand the basis for a mass spec-

trometer, a device used to determine the relative masses and abundances of ions.
As shown in Figure 17.5 the material to be analyzed is first vaporized and ionized
by stripping an electron from each atom. The positive ions are then accelerated
through a fixed potential difference V, so that they obtain a kinetic energy equal
to eV. They then pass through a hole and enter a region in which there is a uni-
form magnetic field perpendicular to their velocity. As we have just seen, they
will travel in a circular arc under the influence of the magnetic force. Those ions
traveling in a circle of particular radius r will pass through a second hole and be
detected.

We can use this knowledge to find the ion’s mass. Because, from we
have that

 v � A2eV

m
,

eV � 1
2 mv2

q

m
�

 v

rB
,

FM � qvB � ma �
mv2

r
,
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FIGURE 17.5 Schematic of a mass
spectrometer. Positive ions travel in
circular paths with radii depending
on their charge-to-mass ratio. The
B field is out of the paper as shown
by the dots representing arrow tips
coming out towards you.

B

vq

FM

FIGURE 17.3 Charge q moving
with velocity v perpendicular to
a uniform B field. The charge
experiences a force FM, given by
Equation (17.1), perpendicular to
the plane containing B and v and
in the direction given by the 
right-hand rule.

x

y

z

FIGURE 17.4 The right-hand rule:
curl the fingers of your right hand
from x to y and your thumb points
along z. This rule works for any
three vectors that follow the right-
hand rule, where the order of the
vectors corresponds to the first (x)
and second (y) vectors resulting in
the third (z).



we can substitute this expression into Equation (17.3) (with q � e) to solve for m
after a bit of algebra,

(17.4)

With V and r fixed, B can be varied and the masses of the detected ions determined. By
measuring the number of detected ions per unit time, the relative abundances of the ions
can also be found. Plotting the detector output signal as a function of B2 shows peaks
appearing at intervals corresponding to the atomic mass of the ions (Figure 17.6).

Mass spectrometers can be used to separate different isotopes, atoms with the
same numbers of protons but different numbers of neutrons, of a material. All large
hospitals have mass spectrometers used for a variety of purposes including identifi-
cation of respiratory gases (those inhaled and exhaled during a diagnostic test) and
anesthesia gases as well as various isotopes used for radiation therapy purposes.

Returning to our discussion of the force on an ion in a magnetic field, what
happens if the electric charge has a velocity in an arbitrary direction in the region of a
uniform magnetic field? From our special cases, we can conclude that if the velocity
vector is written as the sum of its component parallel and perpendicular to , the par-
allel component will be unaffected, whereas the perpendicular component will result
in a magnetic force given by Equation (17.2). Writing this mathematically, the
perpendicular component of velocity can be written as v sin �, where (see Figure 17.7)
� is the angle between the vectors and , so that in general

(17.5)

We can conclude from this that for a given speed, the magnetic force on the ion will
be greatest when the velocity is perpendicular to the magnetic field.

With an arbitrary velocity, the net effect on the particle’s motion is to produce
a helical trajectory about the magnetic field direction as if the particle moved along
the path of a stretched spring oriented along the field (Figures 17.8 and 17.9). This
is so because the axial velocity along the field is constant, and the perpendicular
component is turned about the field direction by the magnetic force, resulting in a
helical motion. Circular or helical orbits are characteristic of the motion of charged
particles in magnetic fields.

FM � qvB sin u.

B
B

v
B

B
B

m � a er2

2V
bB2.

434 M A G N E T I C F I E L D S

FIGURE 17.6 Mass spectrograph showing relative abundance of different detected ions.
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FIGURE 17.7 Charge q moving in a
uniform magnetic field at an arbi-
trary angle � with respect to the
field. The parallel component of 
is unaffected, but the perpendicular
component will be turned by a
magnetic force.

v
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B

FIGURE 17.8 In general a
charged particle in a uniform
magnetic field travels in a helix
around the B field.

Example 17.1 A proton enters a region where there is a uniform 0.5 T magnetic
field along the y-axis between y � 0 and y � 20 cm. If the velocity of the proton
has x- and y-components of (4 � 105, 6 � 105) (m/s), find (a) how long the pro-
ton takes to travel through the B field region; (b) describe its trajectory; (c) find
the point where it emerges from the B field and its velocity at that point.

Solution: (a) The y-component of velocity remains unchanged and so the proton
takes a time

to emerge from the B field region. (b) Although it keeps the constant y veloc-
ity, its initial x velocity results in a centripetal force (evx B) when in the B field
region that steers the proton in a circle in the x–z plane with the constant
tangential speed of vx (make sure you see why). Thus the overall motion of the
proton is helical with the radius of the circle it travels in given from Equation
(17.3) as

(c) We know the trajectory of the proton will bring it more or less straight through
the B field, undergoing a small circular motion in the x–z plane as it travels along

r �
vx m

Be
� 8.4 mm.

t �
y

 vy

�
0.2

6 � 105
� 0.33 �s

B

v
vy

vx

  X 

(vx)f

View from bottom
with B field into paper

  x 

z

(vx)o

FIGURE 17.9 Solar flares are due to charged particles
moving in the magnetic field of the sun. The orbits are
many Earth diameters with the charged particles 
spiraling around the magnetic field lines.

(Continued)
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We have seen that the magnetic force on a moving charged particle is always per-
pendicular to its velocity. Because this is generally true and because the velocity is always
directed along the instantaneous displacement of the charge, magnetic forces can never

do any work. This follows from the general definition of work because it is only the com-
ponent of the force along the direction of the displacement that can do work. In the case
of magnetic forces, this component is always zero and so, in general, no work can ever
be done by magnetic forces. Magnetic forces only steer a charge’s velocity vector, but do
not change its magnitude. Thus, the charge’s kinetic energy does not change and from the
work–energy theorem we can also conclude that no work is done by magnetic forces.

Thus far in our discussion of the magnetic force on charges we have only considered
isolated charged particles. When charges flow through a conductor that is in a region
where there is a magnetic field, these charges will also experience a magnetic force. As
shown in Figure 17.10, if a wire with a current flowing is oriented perpendicular to a mag-
netic field, then according to Equation (17.1) the moving charges will experience a force
transverse to the wire as well as to the direction of the B field. The actual moving charges
are free electrons (going to the left in Figure 17.10), experiencing an upward force as
shown (using Equation (17.1) and remembering that the electrons have negative charge).
As the electrons move in response to this force they attract the positive charges of the wire
so that the entire wire feels an upward force as shown. From now on we analyze mag-
netic forces assuming that the charge carriers are positive and moving along the current
direction. Check that you get the same direction for the magnetic force from Equation
(17.1) in this case. If the wire is free to move then the kinetic energy the wire gains as it
moves cannot be due to the magnetic force, because this force can never do any work; the
wire’s increased kinetic energy comes from the work done by the electric field from the
electrons pulling on the positive charges of the wire. Of course, such an electric force will
only exist if there is a current flowing in the wire to produce the charge separation.

We can adapt Equation (17.1) to the case of a current I flowing along a wire per-
pendicular to a uniform B field to find the net magnetic force on the wire. In a length
L of the wire, the total charge Q making up the electric current flowing with velocity
vdrift can be found. Because the current I is given by the total charge Q divided by the
time �t for the charge to flow a distance L, �t � L/vdrift we can write that Q � I�t �
IL/vdrift, so that Equation (17.1) becomes

(17.6)

If we use the same right-hand rule as used for Equation (17.1), curling the fingers of
your right hand from the direction of L (taken as the direction of the current flow)
toward B, your thumb determines the direction of the magnetic force (see Figure 17.4).

In this section we have seen that moving electric charges, whether making up a cur-
rent in a wire or any other type of configuration can experience a magnetic force due to
interaction with a magnetic field. The force law for this interaction is more complex, how-
ever, than that for the electric field interaction because it not only depends on the charge
and field magnitude, but also on the magnitude of the velocity vector and its orientation
with respect to the field (or equivalently the current and its orientation). Furthermore, we
have seen that this interaction, in general, can do no work on charges. In the next two sec-
tions we look at two specific important applications of the magnetic force.

FM � ILB.    (L � B)
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FIGURE 17.10 A current carrying
wire in a uniform magnetic field
(directed into the page; the crosses
representing tails of arrows) experi-
ences a force given by Equation
(17.6).

the y-axis at 6 � 105 m/s. To find how many revolutions the proton makes around
the B field we calculate its total circumferential distance traveled as 
(vx t) � 0.13 m, so that dividing this by the circumference, 2�r, we find that the
proton has made 2.5 circular trips in the x � z plane. Its net displacement from the
start when it entered the B field region (see above figure) is then �x � 0, 
�y � 20 cm, and �z � 2r � 16.8 mm. It emerges with its y-velocity unchanged
and its x-velocity turned around because it has made a net 1/2 turn in the x � z

plane, so that its x-, y-, z-components of velocity are (�4 � 105, 6 � 105, 0) (m/s).
After it leaves this region it will maintain those constant velocity components.



2.  TORQUE AND FORCE ON A MAGNETIC DIPOLE

At the end of the last section we considered the magnetic force on a straight current-
carrying wire in a uniform magnetic field. Another important geometry of current
flow, the current loop, is worthy of its own discussion. A current loop is a generic
term for a simple circuit with a single closed loop, regardless of the exact trajectory
of the current. Its importance lies not only in actual conducting wire circuits, but also
in its use as a model for understanding the magnetic properties of matter through
atomic electron current loops.

In Section 4 we show that a current loop, or in fact any current carrying 
wire, generates its own characteristic magnetic field. Here we wish to examine the
forces acting on a current loop placed in an external uniform magnetic field.
Consider the rectangular current loop in Figure 17.11 lying in a region of uniform
B field as shown. In this orientation, the two edges that are parallel to the magnetic
field have no force acting on them, whereas the other two edges perpendicular to
the B field each have a force on them given by Equation (17.6). Because the cur-
rent direction is opposite in those two wire segments, the corresponding forces act
in opposite directions to create a couple (the torque due to equal and opposite
forces) about the horizontal axis shown in the figure. There is no net force acting
on the loop but the net torque acting will tend to produce a rotation of the loop 
as shown.

Using the dimensions of the loop shown, we can calculate the net torque 
acting on the current loop about its central axis in the orientation shown in 
Figure 17.11 to be

(17.7)

where w/2 is the lever arm and is the area of the loop. If the loop is able to
rotate, the couple will produce a rotation of the loop about the axis of rotation as
shown. Equation (17.7) gives the maximum torque acting on the loop because, as can
be seen in the side view shown in Figure 17.12, the lever arm distance changes with
the orientation of the loop. With � equal to the angle between the B field and the
normal to the plane of the loop, the lever arm can be written as

so that in general the torque on a current loop in a uniform B field becomes a func-
tion of the rotation angle

(17.8)

where we have introduced the magnetic dipole moment � � IA.
The magnetic dipole moment is a vector quantity, just as is the electric dipole

moment, and we choose its direction to be perpendicular to the plane of the current
loop. A simple second right-hand rule indicates which of the two directions
perpendicular to the current loop plane is correct: if the fingers of your right hand
are curled along the direction of current flow in a wire loop, your thumb will point
in the proper direction of the magnetic dipole moment. Of course, if the current
direction reverses so does the direction of the magnetic dipole moment, in
accord with this right-hand rule. Note that if, instead of a single loop, we have a
circuit with a tightly wound helical loop of N turns, we can replace this with N

identical loops each having the same area and current so that the magnetic dipole
moment of the circuit is � � NIA. Also note that Equation (17.8) is very similar to
the equation for the torque on an electric dipole moment in an electric field
(Equation (15.13))

t � pE sin u,

t � mB sin u,

r
�

�
w

2
 sin u,

A � /w

t � I/B 
w

2
	 I/B 

w

2
� I/wB � IAB,
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FIGURE 17.11 A current loop in a
uniform magnetic field. The two
forces shown are perpendicular to
the plane of the paper as deter-
mined by the right-hand rule for
Equation (17.6).

FIGURE 17.12 Side view of a cur-
rent loop in a uniform magnetic
field. The normal to the loop makes
an angle � with respect to the B
field. The two forces that produce
a net torque are shown with the
moment arm r

�
as well as the

magnetic dipole moment � � IA
along the normal to the loop. The
net torque tends to align the
magnetic dipole moment with the
magnetic field.
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Example 17.2 A circular coil of radius 15 cm and made of 100 turns has a resis-
tance of 100 
 and is attached to a 12 V battery with light flexible wires through
a switch. If the normal to the coil is oriented at 45° to a uniform 2 T magnetic
field, find the torque on the coil when the switch is closed.

Solution: When the switch is closed the current in the coil is I � V/R � 0.12 A.
The magnetic dipole moment of the coil is � � NIA � 0.85 Am2 (equivalent units
are Nm/T or J/T). The net torque on the coil is then � � �B sin 45° � 1.2 Nm.
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where the electric dipole moment p and electric field have their analogs in the mag-
netic dipole moment and magnetic field. We conclude that although a current loop in
a uniform magnetic field will experience no net force it will feel a torque tending to
align the magnetic dipole moment with the magnetic field direction just as an elec-
tric dipole tends to align along an electric field.

Our discussion thus far in this section has been limited to uniform magnetic fields.
Qualitatively, it is easy to see that if the magnetic field varies in magnitude with distance at
the current loop then the loop will feel a net force. Because the force on each current seg-
ment is given by Equation (17.6) and the B field in that equation will be different at the two
sides of the loop, the forces producing the torque shown in Figure 17.12 will be different
in this case. The same will apply if the B field changes direction across the loop. In a
nonuniform magnetic field there will be a net force on a current loop, as well as a torque
tending to align the magnetic dipole moment with the magnetic field. In the next section we
show that the first experiment to detect the intrinsic spin of the electron involved sending a
beam of atoms through a nonuniform magnetic field in which a net force acted on them that
depended on the orientation of the intrinsic magnetic dipole moment of their electrons.

Before concluding this section we mention that there is also an effective energy
associated with the interaction of a magnetic dipole moment with an external magnetic
field. From the general equation for work, we found that the work done by a net torque
in rotating an object by a small angle is (see Equation (7.20))

In the case of a magnetic dipole this becomes �W � �B sin � ��. For a given mag-
netic dipole moment in a uniform magnetic field B, this expression leads to a potential
energy given by

(17.9)

analogous to the expression for the potential energy of an electric dipole in an electric field
(see Equation (15.14)). We return to Equation (17.9) in the next section as well as in our
discussions of magnetic resonance techniques in the next chapter where we show its fun-
damental role. It is important to reiterate here that although the expressions for the force,
torque, and potential energy of a magnetic dipole involve the magnetic field, magnetic
fields do no work. As we discussed in the last section, it is always an electric field that
must be responsible for any work and therefore for any changes in mechanical energy.

3.  THE STERN–GERLACH EXPERIMENT AND ELECTRON SPIN

Electron spin was first demonstrated experimentally by Stern and Gerlach in 1922 in
an experiment in which a beam of silver atoms was passed through a nonuniform mag-
netic field and then detected. According to Equation (17.9), the magnetic dipole
moment � of an atom interacts with the magnetic field with an interaction energy

PEm � � m B cos u,

PEm � � m B cos u,

¢W � t¢u.



where the magnetic dipole moment is proportional to the total angular momentum of
the atom. At the time of this experiment the angular momentum of atoms was thought
to consist entirely of angular momentum of the electrons orbiting around the nucleus.
If the nonuniform B field is along the z-axis then there will be a force on the atom
according to the general relation

(see Equation (15.8)). In our case if B varies in the z-direction, then there will be a
net force given by

which is only present if the B field is nonuniform.
Now classically we might expect that, since the orientation of the atoms in the

beam is random, the magnetic dipole moment would have no preferred direction and
the narrow initial beam would be spread out symmetrically in the z-direction as
shown in Figure 17.13a. We show in Chapter 25 that, in fact, the magnetic dipole
moment cannot point in any direction, but is spatially quantized to point only in
directions that result in certain discrete values of the z-component of the dipole
moment. At the time of this experiment the predictions of quantum mechanics were
that for atoms with a net angular momentum, the z-component of its value �z, takes
on values that are small integer multiples of a basic amount, say A, so that �z � nA,
where n, an integer, might, for example, equal 1, 0, or �1 (having a positive, zero, or
negative component along the z-axis), or perhaps in another case n � 3, 2, 1, 0, �1,
�2, �3. Quantum mechanical predictions always had an odd number of possible val-
ues for �z centered on zero. A beam of these atoms, after passing through the nonuni-
form magnetic field, would separate into an odd number of beams, each with a
different z-component of �, with one beam, the n � 0 beam, undeflected.

Of course, with the magnetic field turned off, the beam of atoms would travel
straight through without any deflection. Also, if the atoms had no orbital angular
momentum, so that it was thought � � 0, it was expected that the entire beam would
pass through with no deflection. However, when the experiment was done with silver
atoms that had no orbital angular momentum, or a few years later when the experi-
ment was repeated with ground state hydrogen atoms with a single electron with no
orbital angular momentum, the result was as depicted in Figure 17.13b. Rather than
no deflected beam as expected (or an odd number of beams centered around an unde-
flected beam as would be expected if the atoms actually did have some orbital angu-
lar momentum) only two distinct components were detected with each deflected in
the opposite direction and no undeflected beam. This result was interpreted in terms
of two spatially quantized components of an intrinsic magnetic moment of the elec-
tron, known as electron spin. The Stern–Gerlach experiment was an early dramatic
confirmation of the spin hypothesis, discussed further in Chapter 25.

4.  PRODUCING B FIELDS

In our discussion of electric charge, the fundamental quantities were the individual
electric charges which produce electric fields. These could be positioned to form
electric dipoles or more complex arrangements of charges. Despite much effort
looking for an expected symmetry between magnetism and electricity in this regard,
individual magnetic charges, or magnetic monopoles, have never been found in
nature. The magnetic dipole moment introduced in Section 2 is the most elementary
magnetic quantity known. Effective “circulating currents” of electrons in an atom
produce a magnetic dipole moment, as do the individual charged particles of the
proton and electron due to their intrinsic “spin”. We show that such elementary

Fz � m cos u 
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FIGURE 17.13 Schematic of the
Stern–Gerlach experiment. An
atomic beam passes through a
nonuniform magnetic field. In A,
the classically expected continu-
ously spread beam, a result not
observed; in B the actual observed
splitting of the atom beam with no
orbital angular momentum into two
components, explainable only by
introducing electron spin.



magnetic dipoles are ultimately responsible for permanent magnets. Compass nee-
dles, for example, behave as magnetic dipole moments, orienting along the magnetic
field direction because of a torque on them according to Equation (17.8).

The lack of symmetry between electricity and magnetism has the important con-
sequence that magnetic fields are not simply produced by the presence of magnetic
charge as electric fields are produced by electric charges. Instead, all magnetic fields
require the motion of electric charges, either as macroscopic or microscopic currents.
There is, however, a natural symmetry between the form of the interactions of elec-
tric charges with electric and magnetic fields and before discussing how to produce
B fields, we digress a bit in order to mention this.

Earlier in this book we learned that electric charges produce electric fields that in
turn can interact with other electric charges. We show shortly that moving electric
charges produce magnetic fields that, as we have just seen, can interact only with other
moving electric charges. These are very powerful statements. With some thought
about the relative nature of velocities, we can reach a very significant conclusion.
Electric charges that are at rest as seen by one observer will be in motion as seen by a
second observer moving relative to the first. Therefore, given our statements about
electric and magnetic fields, the first observer at rest with respect to the charges will
measure only electric fields resulting in forces on other stationary charges, whereas
the second observer will see the same charges to be moving and producing magnetic
fields and feeling magnetic forces from other B fields as well.

When this apparent paradox is carefully considered, it leads to the undeniable
conclusion that electric and magnetic fields are manifestations of the same underly-
ing phenomenon, one that we call the electromagnetic field. Different observers may
detect different combinations of electric and magnetic fields but the theory of elec-
tromagnetism makes consistent predictions for all of the observables, including the
complete description of the trajectories of all the charges, as it must in order to be a
correct theory. We return to some of these ideas in the next chapter, but first turn to
a discussion of the production of magnetic fields.

Consider a long straight wire with a constant current I flowing along it as shown
in Figure 17.14. Experimentally it is found that there is a magnetic field produced by
the current. This finding, first discovered in 1820 by Oersted, initiated the linkage
known as electromagnetism between the previously separate subjects of electricity
and magnetism. The magnetic field was found to depend on the magnitude and direc-
tion of the current and on the perpendicular distance r from the wire. The B field is
proportional to the current in the wire and inversely proportional to r so that

(17.10)

where �0/2� is the constant of proportionality. The constant �0 is known as the per-
meability of the vacuum and is exactly equal to 4� � 10�7 T · m/A. Do not confuse

it with a magnetic dipole moment. It is the fundamental constant of mag-
netism, playing the role of �0 for electricity. The magnetic field is found to
point tangentially along circles centered on the wire lying in a transverse
plane. A compass held near the wire would have its needle always pointing
perpendicular to a radial line from the wire to the compass giving the tan-
gential direction for B as shown in the figure.

Magnetic field mappings can be constructed in a similar way to the elec-
tric field mappings of Chapter 14. There we used the notion of a small pos-
itive “test charge” to sample the electric field at various points in space to
determine the electric field. The magnitude and direction of at a point in
space were obtained in principle from the magnitude and direction of the
force on the test charge at that position. By “moving” the test charge around,
the electric field lines could be mapped out. In an analogous way we can
imagine using a small “test compass” to map the magnetic field lines. The
magnitude and direction of the magnetic field at a point can be obtained in
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FIGURE 17.14 The magnetic field
of a long straight current-carrying
wire.



principle from the magnitude of the torque on the compass needle and its orien-
tation, respectively, when it is placed at that point. For the long straight wire just
discussed the field mapping consists of concentric circles centered on the wire
as shown in Figure 17.15.

The direction of the field around the circles is determined by the direction
of the current flow. The same right-hand rule as for the magnetic dipole moment
indicates the proper direction of the magnetic field: put the thumb of your right
hand along the direction of the current and your fingers curl in the proper direc-
tion of the magnetic field lines around the wire. Reversing the current direction
reverses the clockwise/counterclockwise nature of the B field circles.

B
B

B
B
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Right Hand Rule

FIGURE 17.15 The magnetic field
of a long straight current-carrying
wire is along the tangent to
concentric circles in the direction
given by the right-hand rule.

Example 17.3 Two long parallel wires a distance of 20 cm apart carry equal and
opposite currents of 10 A. Find the magnetic field midway between the wires.

Solution: Each wire produces a magnetic field with a magnitude of B � �0I/2�r.
Using the right-hand rule the wire on the left produces a B field into the paper at
the midpoint shown, as does the wire on the right. Therefore the net B field is the
sum of the two magnitudes and is equal to 

.B �
m0 I

pr
�

4p *  10�7(10)

p (0.1)
� 4 *  10�5 T

XX

In mapping electric fields we saw that the electric field lines either started or
ended on electric charges. Because there are no magnetic charges, magnetic field
lines must be closed curves. In adding magnetic fields from different currents, the
same principle of superposition applies as in the case of electric fields. For example,
the net magnetic field due to two long straight equal current-carrying wires with the
current flowing in opposite directions, the example just worked out midway between
the wires, is shown in Figure 17.16.

Another interesting example is the magnetic field produced by a current-carry-
ing circular loop. A cross-section through a diameter of the loop gives a magnetic
field mapping similar to that of Figure 17.16. Close to the wire, the wire appears to
be nearly straight and this nearby current dominates to produce a magnetic field
nearly circular around the wire. Along the axis of the loop the field from the entire
loop adds to produce a more uniform field that can be enhanced by looping the wire
many times, each loop increasing the field near the center. Several coiled geome-
tries are commonly used. One of these, the solenoid or helical coil of wire, is used
to produce a large uniform magnetic field along its axis
(Figure 17.17).

Permanent magnets produce their magnetic fields
from the net magnetic dipole moment of their constituent
atoms. As we saw in the last section, all atoms have orbit-
ing electrons that constitute atomic current loops with
a magnetic dipole moment. In addition the intrinsic
electron spin produces a spin magnetic dipole moment.

FIGURE 17.16 (left) Magnetic field
lines for two long straight current-
carrying wires perpendicular to the
plane of the page each carrying
equal and opposite currents. 
(right) Same mapping for a coil of
current-carrying wire.



Usually these magnetic moments are randomly oriented and, on average, pro-
duce no net magnetic dipole moment and hence no macroscopic magnetic field
(Figure 17.18). Ferromagnetic materials, including iron, nickel, and cobalt, have
long-range interactions between their magnetic dipole moments causing large num-
bers to align in magnetic domains, small but macroscopic regions with dimensions
of 0.01–0.1 mm. If many of these domains are aligned, as in permanent magnets,
there is a large effective magnetic dipole moment produced that creates an external
magnetic field similar to one produced by a current loop or solenoid (compare left
and right in Figure 17.19). The two poles of a magnet, the north N and south S,
are labeled so that the external magnetic field lines go from north to south
(Figure 17.19; and the internal field lines complete closed loops and run from south
to north).

Microcrystals of magnetite found in various bacteria, plants, and animals are sin-
gle domains with a characteristic size of about 50 nm. Domains smaller than about
40 nm would have magnetic dipoles too small to be effective due to thermal motions,
whereas domains larger than about 80 nm would tend to divide into multiple
domains. By aligning a collection of 20 or so single domains in a magnetic filament,
the magnetic dipole moment of magnetotactic bacteria is sufficiently strong to act
very much like a compass needle to orient the bacteria’s swimming direction, as men-
tioned at the beginning of this chapter.
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FIGURE 17.17 A very large solenoid to be used to steer elementary particles
at the CERN accelerator in Geneva, Switzerland. The section seen here is
wrapped with 8 km of superconducting wire to create a 2 T magnetic field
along the central axis.

FIGURE 17.18 A random array of
atomic magnetic moments result-
ing in no net dipole moment.

FIGURE 17.19 (left) Aligned ferro-
magnetic domains in a magnet with
its effective magnetic field; (right)
effective surface winding currents
producing the same magnetic field
as the magnet.
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Ferromagnetic materials with unaligned domains can be magnetized by plac-
ing them in a strong magnetic field that serves to increase the extent of domain
alignment and to increase the size and strength of the net magnetic domain. These
materials then show induced magnetism. The induced magnetism occurs through
the same mechanism that produces an aligning torque on a current loop in a mag-
netic field. Figure 17.20 shows a permanent magnet, with its external dipole field,
causing the alignment of the effective magnetic dipole moments of the magnetic
domains of a second ferromagnet. It can be seen that the induced magnetism is such
as to produce the opposite magnetic pole nearest the magnet so that there is a net
attractive force. The detailed reason for the attractive force hinges on a nonuniform
B field and the discussion in Section 3. It is this phenomenon that explains the abil-
ity of a permanent magnet to pick up paper clips or to “stick” to a refrigerator door
containing iron. Induced magnetism does not occur in nonmagnetic materials such
as aluminum, copper, ceramics, or plastics and thus magnets will not “stick” to
these materials.

Ferromagnetic materials can be demagnetized by heating them above a charac-
teristic temperature, known as the Curie point, or Curie temperature. For example,
iron loses its ferromagnetic properties above a temperature of 1040 K.

An electromagnet makes use of induced magnetism to create very large magnetic
fields. A solenoid wrapped around an iron rod can be used to create an axial magnetic
field down the bore of the rod that aligns magnetic domains, enhancing the mag-
netic field typically by a factor of several thousand. One common geometry has two
such solenoids with iron cores and with current windings in the same direction placed
in close proximity with a small gap between the magnet “pole faces”. The strong axial
magnetic field generated in the gap is then nearly the same as the internal field in the
iron core. The strongest electromagnets are limited to producing B fields of about 0.5 T,
with joule heating of the coils the limiting factor in these magnets (Figure 17.21). To
produce larger B fields requires the use of wires that are superconducting, having effec-
tively no resistance to current flow and thus no joule heating. Superconducting magnets
are routinely used in MRI machines, for example, where magnetic fields of several T
are used.
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FIGURE 17.20 A strong permanent magnet, with its
dipole magnetic field, causing the alignment of the
ferromagnetic domains of a second material, above.
The induced magnetic field is such as to create a
south pole near the permanent north pole of the
magnet, producing a net attraction of the magnets
due to the interaction of the induced dipoles with
the nonuniform B field of the magnet.

FIGURE 17.21 An electromagnet on a crane used to pick
up scrap metal.



5. *AMPERE’S LAW

This section is optional. Subsequent material does not depend on this section. Starred
questions and problems at the end of the chapter refer to this optional section.

We’ve just seen in the last section that magnetic fields can be produced by a long
straight current-carrying wire according to Equation (17.10). This result is limited to
that particular configuration. What is the general law that governs the magnetic field
produced by some arbitrary configuration of electric current? It is given by Ampere’s
law, the magnetic analog of Gauss’s law, studied in Chapter 14. There we saw that the
flux of the electric field over some Gaussian surface is related to the total charge
enclosed within the Gaussian surface. Electric field lines start and stop only on elec-
tric charges; but there are no magnetic charges (monopoles) found in nature. This
statement gives rise to another fundamental law: Gauss’s law for magnetic fields, in
which the flux of B over a Gaussian surface is equal to zero. Because there are no mag-
netic charges, magnetic fields arise from electric currents and Ampere’s law takes a
different, but analogous form.

In place of the flux of E, Ampere’s law involves the “circulation” of B around an
“Amperian loop.” We choose a closed path, or Amperian loop, constructed of many
short segments of length as shown in Figure 17.22. The circulation of B is calcu-
lated by forming the products , where is the component of B parallel to the 
segment , and adding these up all around the closed path

Ampere’s law states that the circulation around a closed curve is proportional to the
net current that passes through, or is enclosed by, the Amperian loop

(17.11)

The following two examples illustrate how to apply Ampere’s law to calculate the
magnetic field produced by currents. Just as for Gauss’s law, Ampere’s law is gener-
ally true (as long as the currents are steady currents; Ampere’s law is not universally
true, but needs some modification in the case of time-varying electric currents, made
by Maxwell, as we show in Chapter 18). However, in order to be able to calculate B
fields directly from Ampere’s law, there must be sufficient symmetry as we now show.

©B7¢/ � m0 Ienclosed.

circulation � ©B7¢/.

¢/

B7¢/
¢/
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FIGURE 17.22 A long current-
carrying straight wire with a 
concentric Amperian loop
composed of many short 
segments and the B field 
directed circumferentially.

Example 17.4 Calculate the B field produced by a long straight wire-carrying
current I.

Solution: This is the same problem as discussed in the previous section and we
know that the solution should be given by Equation (17.10), so that this is a good
check for us. Refer back to Figure 17.14 for a sketch of the situation. By the
symmetry of the problem we know that the B field lies in concentric circles
around the wire with current I. Therefore let us choose an Amperian loop that is
a circle, centered on the wire, of radius r. Then we know that the B field is con-
stant in magnitude on the Amperian loop and the circulation is given by

, where B is already tangent to the circle all the 
way around and has a constant value that depends only on the radius r, namely
B(r), and the sum of all the segments is just the circumference of the circle.
Then, from Ampere’s law, we have

B(r) 2pr � m0 I,

¢/

circulation � ©B7¢/ � B(r) 2pr
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Example 17.5 Calculate the B field within a solenoid of radius R carrying current
I made from N turns of wire and having a total length L as shown in Figure 17.23.

Solution: With the coils wound tightly, the magnetic field inside the solenoid will
be parallel to its axis except at the ends whereas the magnetic field outside the
solenoid will be very weak, again except near the ends. We choose an Amperian
loop in the form of a rectangle, shown in Figure 17.23 (on the right) and evaluate
the circulation around the loop by adding the contributions from each side. The
segment outside the solenoid contributes a negligible amount because the B field
is extremely small. Similarly the two segments that lie perpendicular to the inside
B field do not contribute because there is no parallel component of B along these.
Only the segment of length inside the solenoid contributes an amount

so that Ampere’s law becomes

where the term in parentheses represents the number of turns of the solenoid
contained within the Amperian loop. Each turn of the coil contributes a term I to
the total enclosed current, therefore we need to insert the total enclosed current
on the right-hand side of Ampere’s law. Solving this equation for B, we find that

where n � N/L is the number of turns of the solenoid per unit length. Note that
the length of the Amperian loop does not and cannot enter the final answer,
because the Amperian loop is invented by us and not a part of the original prob-
lem. We see that the magnetic field inside the solenoid is uniform (this is approx-
imate for a finite length solenoid) and only depends on the current in the coil and
the number of turns per unit length, or the current per unit length. This result is
somewhat similar to that for the E field within a capacitor, E � 
/�0, which only
depends on the charge per unit area on the plates.

B � m0 (N/L)I � m0 nI,

B/ � m0 (N//L)I,

 circulation � B/

/
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FIGURE 17.23 (left) A solenoid made from winding wire around a metal
core; (right) a longitudinal cross-section of the center portion of a solenoid
showing the cut windings with current flowing around from the bottom to
the top (counterclockwise, as viewed from the left), producing a uniform
B field to the left. The rectangular Amperian loop is used to evaluate
Ampere’s law in order to find the B field inside the solenoid.

or solving for B we have

in agreement with Equation (17.10).

B1r2 �
m0 I

2pr
,



446 M A G N E T I C F I E L D S

CHAPTER SUMMARY
The magnetic force on a charge q moving with a veloc-
ity v in a direction making an angle � with a magnetic
field B is given by

(17.5)

Note that in order to feel a magnetic force the charge
must be moving and have a component of velocity per-
pendicular to the magnetic field. If the charge is mov-
ing perpendicular to then its orbit will be a circle
around the B field direction (its orbit will lie in a plane
perpendicular to ). In general the orbit will be a helix
with its axis along the B field direction and with this
axial velocity component remaining constant. The
mass spectrometer uses magnetic forces to measure the
mass m of small ions by causing them to orbit in circles
of radius r after acceleration through a potential differ-
ence V according to

(17.4)

A current (I) carrying wire of length L lying per-
pendicular to a magnetic field will also experience a net
force given by

(17.6)

The magnetic analog of the electric dipole is a
small current loop, constituting a magnetic dipole
moment given by

where A is the area of the loop. If such a loop is placed
in a uniform magnetic field it will not experience any
net force, but will feel a torque given by

(17.8)

where the angle � lies between the magnetic field and
the normal to the area of the loop. Such a loop will also
have a magnetic potential energy given by

t � mB sin u,

m � IA,

FM � ILB.    (L � B).

m � a er2

2V
bB2.

B
B

B
B

FM � qvB sin u.

(17.9)

If the magnetic dipole lies in a nonuniform mag-
netic field then there will also be a net force that will
deflect the dipole along the direction of the field vari-
ation. This effect was used in the Stern–Gerlach exper-
iment in which a beam of atoms with no orbital
angular momentum, and hence no expected magnetic
dipole moment, was deflected into two separated
beams by a spatially varying magnetic field. Such a
deflection was the first experimental evidence for elec-
tron spin.

Magnetic fields are produced by electric currents;
there are no magnetic charges (monopoles). A long
straight current-carrying wire produces a magnetic
field a distance r away given by

(17.10)

where �o is the magnetic permeability of the vacuum.
The field is directed in circles around the wire with a
direction given by a right-hand rule. A solenoid can
be used to produce a uniform magnetic field through-
out its interior, in a similar way to that by which a
capacitor produces a uniform electric field between its
plates. Permanent magnets, or ferromagnets, are pro-
duced by microscopic circulating currents in ordered
domains.

Ampere’s law relates the circulation of the mag-
netic field around a closed Amperian loop to the total
enclosed current that passes through the loop:

(17.11)

Although Ampere’s law is generally true for steady
currents, solving it for the B field produced by current
distributions is difficult without sufficient symmetry.
In general Ampere’s law needs to be modified for
time-varying currents in order to be universally true.
We show this in the next chapter as one of Maxwell’s
equations.

©B7¢/ � m0 Ienclosed.
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QUESTIONS
1. What trajectories of motion can a charged particle

have in the region of space where there is a uniform
magnetic field? Consider a charge moving parallel,
perpendicular, and at an arbitrary direction to the field.

2. Discuss the following statement. Because the mag-
netic force is proportional to the strength of the mag-
netic field, it is always the case that a larger magnetic
field will produce a larger acceleration of a charged
particle.



opposite directions. Is there a torque acting on either
loop? Which one is in stable equilibrium?

11. Why does the Stern–Gerlach experiment require the
atom beam to travel through a nonuniform magnetic
field?

12. A long straight wire has a constant current flowing along
it. A small square current loop, also with a constant cur-
rent flowing through it, sits in the magnetic field of the
straight wire. At what orientation of the loop is the
torque on it a maximum? A minimum? At what orienta-
tion of the loop is its potential energy a maximum? A
minimum? Draw appropriate sketches for each part.

13. Find the direction of the magnetic field produced by
a long straight vertical wire with current flowing up
at the following points in a horizontal plane.
Indicate your answers using N–S and E–W direc-
tions as appropriate. (a) A point east of the wire; (b)
a point north of the wire; (c) a point 45° southeast of
the wire.

14. What is the difference between ferromagnetism and
paramagnetism. Which type of magnetism is the kind
that holds refrigerator magnets up?

15. What is the purpose of the iron core in an electro-
magnet?

16. Magnetic bacteria in waters in the northern hemi-
sphere swim toward magnetic north, which has a
downward component, causing the bacteria to swim
toward the murky bottom where they can feed. What
magnetic bacteria behavior would you expect to find
if you traveled to the southern hemisphere?

17. The electric field of a long straight line of charge with
linear charge density � is

If these charges move along a wire, making up an elec-
tric current, we have seen that a magnetic field is pro-
duced with a magnitude given by Equation (17.10) and
oriented in circles around the wire. Contrast these two
expressions, discussing similarities and differences.

18. *In electrostatics, electric fields must start and end on
electric charges. What do you expect the circulation
of the electric field to equal?

19. *Discuss the differences between the magnetic field
produced by a current traveling in a single circular
loop versus the field produced by a solenoid of the
same radius.

MULTIPLE CHOICE QUESTIONS
1. In which direction is the magnetic force on Q due to

the current I in the figure shown? The force points
(a) into the page, (b) out of the page, (c) in the same
direction as the velocity, toward the wire, (d) to the
“northwest” (vertical component up, horizontal com-
ponent to the left).
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8. A long straight horizontal wire oriented along the
N–S direction has a constant current flowing towards
the north. What is the direction of the magnetic force
on the wire due to the Earth’s magnetic field, remem-
bering that there will be a vertical component of the
Earth’s field? Given that the Earth’s magnetic field is
typicaly about 0.5 � 10�4 T is the wire much influ-
enced by this force?

9. A square loop of wire forms a current loop. When
placed in a uniform magnetic field the four sides of
the loop will, in general, experience a magnetic force.
Describe the net force and net torque on such a cur-
rent loop oriented in the x � y plane with the current
flowing clockwise as viewed from above when placed
in a uniform magnetic field that is oriented along
(a) the z-axis or (b) the x-axis. Which situation has the
greater magnetic potential energy?

10. A current loop is oriented with its normal along the
direction of a uniform B field throughout the region.
Compare two such loops with current flowing in

3. What is wrong with the following argument? Because
the work done by a force is the product of the force
and the displacement and because the magnetic force
is proportional to the magnetic field, the larger the
magnetic field is, the greater the work done on a
charged particle moving in the field.

4. A positively charged particle sits at rest at the origin.
If only a uniform magnetic field is applied in the x-
direction, describe the motion of the particle. If only
an electric field is applied along the y-direction,
describe the particle’s motion. If both fields are
simultaneously applied with the directions as given,
describe the particle’s motion.

5. Describe the motion of a positively charged particle at
the origin under each of the following circumstances:
(a) the particle is initially moving along the x-axis and
a uniform magnetic field lies along the y-axis; (b) the
particle is initially moving along the x-axis and a uni-
form magnetic field lies along the x-axis; and (c) the
particle is initially moving in the x � y plane at a 45°
angle between the positive axes and a uniform mag-
netic field lies along the x-axis.

6. A mass spectrometer is to be used to separate
hydrogen from deuterium (containing an extra par-
ticle, a neutron, with essentially the same mass as a
proton, both in the nucleus). What will be the ratio
of the radii of curvature at which the two are
detected? Which will have the larger radius of
orbit?

7. Find the direction of the missing vector in the follow-
ing diagrams for a positively charged particle.
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2. The figure below shows a proton (q � 	e) at one
instant with velocity V pointing along the positive 
x-axis. The proton is moving through a magnetic field
B that points along the positive y-axis. At the instant
shown the magnetic force on the proton (a) points in the
positive x-direction, (b) points in the positive y-direction,
(c) points in the positive z-direction, (d) is zero.
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5. A negatively charged particle traveling east in a hori-
zontal plane enters a region where there is a uniform
magnetic field pointing vertically down. The initial
force on the particle points (a) north, (b) south,
(c) east, (d) west.

6. A uniform 1 T magnetic field is directed vertically
downward in a region of space. A proton traveling at
105 m/s in a horizontal plane and aimed northward
enters this region. The initial acceleration of the
proton is (a) 1.6 � 10�14 m/s2 westward, (b) 9.6 �
1012 m/s2 eastward, (c) 1.6 � 10�14 m/s2 eastward,
(d) 9.6 � 1012 m/s2 westward.

7. A proton is spiraling around 1 T uniform magnetic
field lines along the x-axis. If the x-velocity of the
proton is 105 m/s and the radius of the circular pro-
jection of the trajectory in the y � z plane is 1 mm, the
average velocity of the proton is (a) 1.4 � 105 m/s,
(b) 1.96 � 105 m/s, (c) 105 m/s, (d) 0 m/s.

8. A 5 m long straight wire carries a current of 5 A
directed north (ignore the rest of the circuit). The
magnitude of the force on this section of wire in a
region where a uniform 5 T magnetic field points
south is (a) 125 N, (b) 25 N, (c) 0 N, (d) depends on
how the current completes the circuit.

9. A uniform magnetic field of 1.5 T pointing north
extends over a large region of space. A small ball car-
rying charge 	1 pC travels east at 103 m/s. After the
charge has traveled 0.01 m in this field the work done
on it by the magnetic force (a) is zero, (b) is 1.5 �
10�9 J, (c) is 1.5 � 10�11 J, (d) cannot be calculated
because the path is circular.

Questions 10 and 11 refer to a current loop lying in the 
x � y plane and having a magnetic dipole moment of 
0.1 A-m2 along the z-axis. A uniform 2 T magnetic field
lies in the x � z plane at a 30° angle to the x-axis.
10. The net torque on the current loop has a magnitude

(a) 0.2 Nm, (b) 0.1 Nm, (c) 0.17 Nm, (d) 0 Nm.
11. The potential energy of the current loop is (a) �0.2 J,

(b) 0.2 J, (c) �0.17 J, (d) �0.1 J.
12. Two long straight wires are parallel to each other, a

distance of 4 m apart, and each carries a current of 5
A but in opposite directions. The magnetic field along
the midline between the wires is (a) 0 T, (b) 10�6 T,
(c) 5 � 10�7 T, (d) 2.5 � 10�7 T.

13. Suppose in the previous question the two wires have
their currents in the same direction, say vertically
upwards on the paper. The magnetic field at a point
1 m to the right of the wire on the left (a) is zero,
(b) points out of the paper, (c) points up along the
wire, (d) points into the paper.

14. The figure below shows two circular loops of the
same diameter, each carrying a current circulating in
the same direction. They are held in place so that their
faces are parallel to each other. Their centers lie on a
line that is perpendicular to both faces. The magnetic
force on the upper loop due to the lower loop tries to

Q -- is a positive charge 

the velocity of Q is in

the plane of the page 

the current I in a long

straight wire is coming

out of the page 

+x

+z 

+yV
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3. Suppose that the proton in the previous question were
an electron (q � �e) instead. Which one of the fol-
lowing would then be true? (a) The magnetic force on
the electron would have the same magnitude and
direction as on the proton. (b) The magnetic force on
the electron would have the same magnitude but the
opposite direction as on the proton. (c) The magnetic
force on the electron would be much smaller than on
the proton because the mass of the electron is much
smaller than that of the proton. (d) The magnetic
force would still be zero.

4. With our usual convention that the symbols x and •
mean “into the page” and “out of the page,” respec-
tively, which of the following pictures best depicts the
direction of the magnetic field in the plane of the
paper due to the associated wire?

• •

I

x x

I

• x

I

x •

I

(a) (b) (c) (d) 



make the (a) upper loop smaller and pull it down-
ward, (b) upper loop smaller and push it upward, (c)
upper loop larger and push it upward, (d) upper loop
larger and pull it downward.
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19. *Three long parallel vertical wires each carry current I,
with two having current traveling upwards and one
downwards. What is the total circulation of B around a
closed curve containing all three wires? Is it (a) �0I, (b)
2�0I, (c) 3�0I, (d) 0?

20. *Suppose a current I is traveling down a long thin-
walled cylindrical shell of radius R and you would
like to find the B field outside the shell using
Ampere’s law. A good choice for an Amperian loop
would be (a) a sphere of radius r � R, (b) a cylinder
of radius r � R and length L, (c) a circle of radius 
r � R, (d) a square with sides of length r � R.

PROBLEMS
1. How fast must an electron travel in an extremely large

magnetic field (30 T) so that the force on it will be as
large as the force on a single myosin muscle protein
from the chemical energy of one ATP molecule, 3 pN
or 3 � 10�12 N? This should indicate to you that
even large constant magnetic fields can exert only
negligible forces on the atoms in our body. In fact,
people are routinely exposed to such large DC mag-
netic fields in magnetic resonance imaging (see the
next chapter) without any ill effects.

2. A proton moving at a constant velocity of 106 m/s
enters a region of uniform magnetic field perpendicular
to its velocity. If the magnetic field is 5 T, find the force
on the proton. What will the force be if the proton’s
velocity makes a 45° angle with the field direction?

3. How fast must a proton be traveling to be steered in a
0.02 m radius circle by a 6 T uniform magnetic field?

4. An electron initially traveling at a speed of 105 m/s
enters a region where there is a uniform magnetic
field of 2 T oriented 45° to its initial velocity. Quanti-
tatively describe the trajectory of the electron, includ-
ing its path, the orbit radius and average velocity of
the electron.

5. A beam of electrons is accelerated from rest through
a potential difference of 100 V. What uniform mag-
netic field perpendicular to the beam is needed to
steer it in a circle of 5 cm radius?

6. An electron enters a uniform magnetic field of mag-
nitude B � 0.5 T at a 45° angle to the magnetic field’s
direction. What is the radius r and the pitch p

(distance between loops as shown below) of the
electron’s helical path assuming its speed is 0.05c?
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15. Which one of the following best illustrates magnetic
field lines associated with the bar magnets shown?

16. Which one of the following is true? (a) The end of a
compass labeled N is a magnetic north pole and the
Earth’s geographic north pole is also a magnetic north
pole. (b) The end of a compass labeled N is a mag-
netic north pole and the Earth’s geographic north pole
is a magnetic south pole. (c) The end of a compass
labeled N is a magnetic south pole and the Earth’s
geographic north pole is also a magnetic south pole.
(d) The end of a compass labeled N is a magnetic
south pole and the Earth’s geographic north pole is a
magnetic north pole.

17. The magnetic field of a bar magnet comes from 
(a) magnetic monopoles sprinkled throughout the mag-
net, (b) one end being positively charged, the other neg-
atively, (c) atomic currents running up and down the
length of the magnet in its interior, (d) atomic currents
circulating around the outside surface of the magnet.

18. The figures show a cylindrical bar magnet viewed look-
ing at a side and looking down on the top. The magnetic
field is produced by electrons moving coherently
together over the surface of the magnet. Which picture
shows the proper direction of the electron flow?
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7. Suppose that in a charge-to-mass ratio experiment
electrons are accelerated from rest through a potential
difference of 200 V and then travel through a region



of magnetic field along a curved path due to a mag-
netic force exerted on them. The radius of the path is
measured to be 7.5 cm.
(a) What is the velocity of the electrons as they leave

the “accelerator”?
(b) What is the magnitude of the magnetic field,

assuming that it is perpendicular to the beam?
(c) What is the angular velocity of the electrons?
(d) What are the frequency and period of orbit of the

electrons?
8. A mass spectrometer can detect the different isotopes

of an ionized element. If Zn2	 ions are accelerated
through a 10 kV potential and enter a 10 T magnetic
field region, calculate the different radii for the iso-
topes 64Zn and 66Zn, where the numbers refer to the
atomic weight in atomic mass units.

9. Fill in the details in the derivation of Equation (17.4).
10. A 0.5 m length of rigid metal rod is connected,

through two springs (with 10 N/m spring constants)
perpendicular to the rod at either end, to a circuit
that supplies 2.5 A of current through the wire. If
the rod is perpendicular to a uniform 2 T magnetic
field, find the distance each spring is stretched.
What force is the origin of the work done to stretch
the springs?

11. A 5 cm diameter circular loop of wire carries a 2 A
current. When placed in a 0.5 T magnetic field, find
the maximum and minimum torque that can act on
the loop and sketch the loop orientation relative to the
B field for each case.

12. What is the magnetic potential energy of a 2 cm
diameter circular loop carrying a 1A current when
placed in a 2 T uniform magnetic field after reaching
its stable equilibrium position?

13. A solenoid consists of 4000 closely wound turns with
a circular cross-section of 4 cm diameter. If a 0.5 A
current flows through the solenoid, calculate its mag-
netic dipole moment.

14. A beam of neutral hydrogen atoms with a speed of
104 m/s along the x-axis enters a 1 m long region
where there is an inhomogeneous magnetic field
pointing in the z-direction but with a gradient (varia-
tion) in the z-direction given by 0.01 T/m. Given the
atom’s magnetic dipole moment of 9.27 � 10�24 J/T,
compute the following.
(a) The acceleration of the atoms while in the mag-

netic field region.
(b) The possible deflections in the z-direction of the

atoms as they pass through the magnetic field
region, depending on whether the atom’s magnetic
moment is along the 	z or �z direction.

15. A long straight vertical wire carries an 8 A current
upwards. Find the magnetic field (magnitude and
direction) at the following points in a horizontal plane
relative to an origin at the wire: (a) 2 m east of the
wire and (b) 4 m south of the wire.
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16. Two long vertical wires are separated by 2 m. The one
on the left carries a current of 8 A upward and the
other carries a current of 5 A downward.
(a) Find the magnetic field at the midway point

between the wires.
(b) Where is the location of the line at which the mag-

netic field vanishes?
17. Three long parallel wires each carry a 2 A current

with two of the currents up and one down. The wires
pass through the corners of an equilateral triangle
with 0.2 m sides. Find the magnetic field (magnitude
and direction) at the center of the triangle.

18. Two long parallel wires separated by a distance d

each carry a constant electric current I. Find an
expression for the magnitude of the force per unit
length of wire (F/L) on each wire from the magnetic
field of the other wire. Also find the direction of the
force on each wire if the two currents are either par-
allel or antiparallel.

19. A current balance is a device that has two parallel
rigid wires carrying the same current in opposite
directions. The bottom wire is fixed and the other one
is attached in such a way that it can pivot in response
to a force from the second wire (see figure). First the
pivot is adjusted so the top wire is in equilibrium with
no current flowing, and then the current is turned on.
By adding external weight to the top wire it can be
kept at its equilibrium separation distance and the
magnetic force between the wires can be determined.
This device can be used to calibrate current by direct
force measurement.
(a) Write down the B field produced by the bottom

fixed wire (assuming it to be infinite) and deter-
mine that it will produce an upward force on the
top current carrying wire.

(b) Compute the force on the 40 cm long top wire if both
currents are equal to 10 A and the separation distance
is 0.5 cm, and thereby determine the mass needed to
be added to the top rod to keep it at that separation
distance. Note that these forces are not large.

I
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Fmag

mg 

20. The magnetic field produced by the ionic currents of the
heart tissue is about 5 � 10�11 T, about a million times
weaker than the Earth’s magnetic field. (These weak
fields can be directly recorded using modern technol-
ogy in a magnetocardiogram. Special detectors known
as superconducting quantum interference devices or
SQUIDs, invented in 1970, can measure both constant
and alternating magnetic fields even 1000-fold weaker



than that of the heart.) How far would you have to be
from a long straight wire carrying a 1 A current to pro-
duce the same magnetic field as the heart, assuming it
is the constant value given above?

21. A cyclotron consists of large magnets (called dees
because they are in the shape of the letter D) with a
small gap between them as shown in the figure. An
accelerating voltage is applied across the gap and
charged particles, such as protons, are accelerated
across the gap and then enter a region where a uni-
form magnetic field steers them in a semicircle to
return to the gap. The accelerating voltage polarity is
then reversed and so the particle accelerates further,
returning across the gap and entering the opposite
region of magnet field, where it is steered around in a
semicircle again. This process is repeated many times
to accelerate the particle to high speeds in a relatively
small region of space.
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rail gun consists of two long, parallel, horizontal
metal rails 3.50 cm apart. A projectile of 5.0 g mass
is placed on a metal bar that rests across the two rails,
is originally at rest at the midpoint of the rails, and is
free to slide without friction. When the switch is
closed, electric current is established in the circuit
consisting of the rails and the bar, both having low
electric resistance. Suppose that the battery used in
the rail gun produces a current of 30 A clockwise, as
viewed from above.
(a) Find the magnitude and direction of the magnetic

field at the midpoint of the bar immediately after
the switch is closed, assuming that the magnetic
field is due to two long straight wires.

(b) The magnetic field varies along the bar in such
a way that as you move closer to either wire
B increases. Assuming that the average effective
B field along the length of the bar is 10 times
larger than the field at the midpoint, what is the
magnitude and direction of the force on the bar?

(c) What is the acceleration of the bar when it is in
motion? Is it constant?

(d) What is the velocity of the bar after it has traveled
1.0 m to the end of the rails?

(e) Suppose that instead of the velocity in part (d),
you wanted a velocity that was larger by a factor
of 50. What current would you need to produce
this velocity, everything else being the same?

24. *Current I travels along the axis of a long cylindrical
shell of radius R, with a negligible thickness. Use
Ampere’s law to find the B field both inside and out-
side the shell.

25. *Suppose that the current I traveling down a long
straight (nonmagnetic) solid cylindrical wire of radius
R is uniformly distributed throughout the cross-section
of the wire, so that the current density is I/�R2. Find
the magnetic field using Ampere’s law both inside and
outside of the wire as a function of r, the distance from
the wire’s axis.

26. *A solenoid of 25 cm length is wound with 10,000
turns of wire and has a radius of 3 cm. Find the mag-
netic field inside the solenoid when a current of 2 A
is flowing.

27. *Three long straight parallel wires each carry a cur-
rent I � 1.5 A, two in the same direction and one in
the opposite direction. In a transverse plane, the wires
lie at the vertices of an equilateral triangle of side 
L � 10 cm. Using Ampere’s law and the principle of
superposition, start from scratch and find the mag-
netic field at the center of the triangle.
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(a) First show that if the particle of mass m and
charge q has a speed v and the uniform magnetic
field is B, then it will travel in a semicircle of
radius r � mv/qB.

(b) Then show that the particle will travel in the semi-
circle in a time t � �m/eB that is independent of
the radius of the orbit. This allows the cyclotron to
have a constant frequency of oscillation of the
accelerating voltage given by f � 1/(2t) as long as
the particle energy is below about 50 MeV.
Beyond this relativity effects occur and the time
does vary with particle velocity or radius of orbit.

22. A cyclotron is sometimes used for carbon dating.
Carbon-14 and carbon-12 ions are obtained from a
sample of the material to be dated and are accelerated
in the cyclotron. If the cyclotron has a magnetic field
of magnitude 2.40 T, what is the difference in
cyclotron frequencies for the two ions?

23. Rail guns, like those, for example, in the movie
Eraser, have been suggested for launching projectiles
into space without chemical rockets and for ground-
to-air antimissile weapons of war. A tabletop model
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In this chapter we generalize our discussion of magnetic fields in the previous chapter
to include time-varying magnetic fields. A new phenomenon arises, known as
electromagnetic induction, in which a time-varying magnetic field actually produces
an electric field. This is described by a new fundamental law of electromagnetism
known as Faraday’s law. nuclear magnetic resonance (NMR) is discussed in some
detail as an application of this new physics. We also discuss the use of NMR tech-
niques to allow medical imaging within the human body, a tremendously growing
and beneficial method to image soft body tissue in three dimensions with remarkably
high resolution. As NMR imaging developed and became clinically used, the med-
ical community quickly decided to change the name of the method to Magnetic
Resonance Imaging (MRI), dropping the term nuclear, present in NMR because of
the role of nuclear magnetic moments but having the incorrect connotation of nuclear
energy and radiation. An analogous technique using Electron Spin Resonance (ESR)
is also briefly discussed.

A final major piece of electromagnetism, the fact that changing electric fields can
produce magnetic fields, allows us to qualitatively summarize in words the complete
theory of electromagnetism, given by a set of four equations known as Maxwell’s
equations. We show how these equations lead to the production of electromagnetic
radiation. At the outset it should be made clear that electromagnetic radiation is quite
distinct from nuclear radiation which has its source in the nuclei of atoms. There are
many different forms of electromagnetic radiation, including visible, ultraviolet, and
infrared light as well as microwaves, x-rays, radio waves, and so on, all comprising
the entire electromagnetic spectrum discussed in the next chapter. All of these have
some common features that we study in this and the next chapter.

1.  ELECTROMAGNETIC INDUCTION AND FARADAY’S LAW

If a current-carrying coil is placed in a uniform magnetic field we have seen that it
will feel a torque tending to orient the coil with its normal (the direction of its mag-
netic dipole moment) along the field direction. Suppose that a wire forming a com-
plete (or closed) circuit, but with no battery or power supply, is placed in a uniform
magnetic field. Because there is no current source in the circuit, no current flows and
the loop experiences no torque. Remarkably, however, if an external torque is applied
to make the loop rotate so that the direction of its normal relative to the B field
changes, a current will flow in the wire while it is rotating (Figure 18.1). This is an
example of the phenomenon of electromagnetic induction; the current that flows in
this situation is known as an induced current.

Consider another example in which we have an isolated loop of wire. If a per-
manent bar magnet is held near the loop and moved toward it, an induced current will
flow in the wire while the magnet is moving (Figure 18.2). Once the magnet stops,

18Electromagnetic Induction 
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there is no longer any induced current. If the magnet is moved away from the loop,
the induced current flows in the reverse direction, but again only while the magnet is
moving. Alternatively, if the same loop of wire sits near a solenoid, a tightly coiled
helix of wire as shown in Figure 18.3, when the switch is closed sending current from
the battery through the solenoid, there will be a brief pulse of induced current in the
loop. If the switch is opened up, there will also be a brief pulse of induced current
flowing in the opposite direction while the solenoid current drops to zero.

What is the fundamental connection in these three seemingly different examples
that leads to an induced current in a wire loop physically isolated from a battery or
power supply? In the latter examples of a bar magnet moving closer to or farther from
the loop or in a solenoid having its magnetic field turned on or off, the common fea-
ture is a changing magnetic field at the loop. However, the first example of a rotating
loop takes place in a uniform magnetic field, so the general phenomenon cannot be
due simply to a changing magnetic field magnitude at the loop.

Experiments show that three factors affect whether electromagnetic induction
occurs in a circuit. There must be a time variation in either the local magnetic field
at the circuit, in the orientation of the magnetic field relative to the plane of the loop,
in the area A of the loop itself, or in some combination of these three. The link
between these factors comes from the general condition that there must be a change
in time of the quantity known as the magnetic flux �B, defined as

, (18.1)

where B
–
⊥ is the component of the average magnetic field B

–
perpendicular to the face of the

wire loop and � is the angle between the magnetic field and the normal to the loop (Figure
18.4). Magnetic flux is defined in exact parallel to electric flux introduced in connection
with Gauss’s law in Section 7 of Chapter 14 (Equation 14.11). Thus �B can vary with time
from changes in any of the three factors making up its definition in Equation (18.1).

Before considering magnetic flux in more detail, we mention that if in any of these
examples we were to replace our single isolated loop with an isolated tightly wound
coil of N turns, we can approximate this situation by imagining that we replace the coil
with N identical stacked loops. This is commonly done for reasons that are clear shortly.
In that case, the total magnetic flux through the isolated coil when placed in the same
B field is simply N times the flux through a single loop given by Equation (18.1).

We can think of magnetic flux as a measure of the number of magnetic field lines
that cross the area of the loop. This number is affected by any of the three factors dis-
cussed above. Suppose first that our loop is oriented with its normal parallel to the
field lines (thus � � 0 in Figure 18.4). The stronger the magnetic field is, the denser
the field lines and therefore the more will cross the area of the loop, and thus the
greater the magnetic flux. If the loop is rotated (increasing � ), then just as in the case
of shooting arrows towards a bulls-eye target that is rotated so that the projected area
seen by the archer is decreased, the magnetic flux will decrease. When the loop is ori-
ented at � � 90°, the projected area is zero and no magnetic lines can cross the loop
so that the magnetic flux is zero. So a variation in the angle � clearly affects the mag-
netic flux, as does the actual area A of the loop itself. From the three examples above,
we’ve seen that there must be a time variation in at least one of these three variables
appearing in the magnetic flux to produce electromagnetic induction.

We can now write the general statement of the law of electromagnetic induction,
known as Faraday’s law, named after Michael Faraday for his discoveries in the 1830s.

£B � B
�

A � BA cos u
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FIGURE 18.1 A loop of wire in a
uniform B field. When rotated, for
example, about the horizontal axis
shown, an induced current is 
produced as long as the loop is
changing its orientation with
respect to B.

FIGURE 18.2 As a bar magnet is
moved relative to the loop, an
induced current flows.
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Faraday’s Law relates the average induced emf in terms of the time rate of

change of the total magnetic flux through a coil
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Recall that the emf � is the “driving energy per unit charge” supplied by a source such
as a battery or power supply. Although it is related to the potential V, having the same
units, we give it a different name and symbol because it has its own energy source,
for example, chemical energy for a battery. Recall also that the emf produces an aver-
age electric field E within the conducting material whose magnitude is given by

(18.3)

where �x is the length of wire (similar to Equation (15.7)). Whenever there is a
changing magnetic flux in a coil, Faraday’s law states that the coil will act as a bat-
tery, producing an induced emf and generating an electric field within the wire that
will produce a charge flow.

Thus far we have introduced Faraday’s law by discussing currents flowing in a
circuit and noting that a time-varying current, which produces a time-varying B field,
results in an induced emf which in turn produces an E field. Because electric charges
that move at constant velocity produce steady currents, time-varying currents are pro-
duced by accelerating electric charges. On a more fundamental level, we can state
that accelerating electric charges, producing time-varying magnetic fields, will also

generate electric fields. Electric fields generated in this way are fundamentally dif-
ferent from electrostatic fields. Electrostatic fields must start and stop on stationary
or constant velocity electric charges and they never form closed loops. Electric fields
produced by accelerating charges, whether making up an electric current in a wire of
a circuit or in empty space, form closed loops. We have seen that this is true for
closed loops of wire where the electric field acts continuously around the wire to pro-
duce the induced current, but it also holds in empty space. In Section 4 of this chap-
ter we show that as an important consequence of this, accelerating electric charges
produce electromagnetic radiation. Faraday’s law is one of the fundamental laws of
electromagnetism.

In the examples we mentioned above, depending on the sign of the change in the
magnetic flux (whether the bar magnet moves toward or away from the loop, or
whether the magnetic field from the solenoid is increasing or decreasing when the
switch is opened or closed) the induced current will flow one way or the other. The
negative sign in Equation (18.2) indicates the proper direction for the induced emf
and current flow. Its meaning is that

the induced emf is always of a polarity such as to oppose

the change of magnetic flux that created it.

This statement on the polarity of the induced emf is known as Lenz’s law.
Lenz’s law has its foundation in the conservation of energy principle. Consider

the solenoid example of Figure 18.5. When the switch is closed, there is a brief
time during which the current increases from zero to a final value. Because the
windings are right-handed, the current flows clockwise (viewed from below) so as
to produce an increasing magnetic field upwards along the solenoid axis in the
figure as shown. During that brief time while the B field also increases (in tandem
with the current increase) to its final value, Faraday’s law
tells us that an induced emf is produced in the upper coil,
leading to an induced current flow in that isolated solenoid
circuit. Lenz’s law then states that the magnetic field pro-
duced by this induced current will be in a direction leading to
the creation of a downward B field to oppose the increasing
upward B field from the first solenoid. The downward B field
produces a downward magnetic flux that tends to cancel the
increasing upward magnetic flux from the B field of the
lower circuit. Be clear that these effects only last for the very
short time during which the lower circuit’s current is chang-
ing when the switch is closed. To produce a downward B

E �
e

¢x
,
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FIGURE 18.3 When the switch is
closed, so that the solenoid has a
current that changes from zero to a
constant final value, an induced
current will flow in the isolated loop
during the brief time while the
solenoid current changes.

A

B

θ

FIGURE 18.4 A coil of area A with
its normal oriented at an angle �
with respect to a uniform B field.
Only when either A, �, or B
changes at the loop will there be
an induced current flowing in
the coil.



field, the induced current must flow around the upper loop with the oppo-
site polarity as shown.

As a proof of this, consider what would happen if, in fact, the induced
current actually flowed in the other direction (counterclockwise around the
upper loop). Then this changing induced current in the upper solenoid
would create its own changing local upwards B field that would add even
further to the increasing upward magnetic field. This would produce yet a
greater change in magnetic flux at the upper solenoid, causing a further
induced current in the same direction as that produced by the lower circuit.
The resulting change would then lead to a further flux change at the upper
coil, and so on. This process of positive feedback would lead to a runaway
increase of energy with no apparent source, violating conservation of
energy. We conclude that the induced current must flow as Lenz’s law

states to provide a negative, rather than positive, feedback and to conserve energy.
This discussion provides a proof of Lenz’s law by contradiction that is generally
applicable.
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FIGURE 18.5 The lower coil (with
right-handed windings) produces
an increasing B field in the
direction shown for a brief time
when the switch is closed. This
changing magnetic flux at the
upper solenoid coil (also with 
right-handed windings) produces 
a brief induced current in the
direction shown. Once the B field
reaches its final value, the induced
current vanishes.

Example 18.1 What happens when the circular coil with N loops shown in
Figure 18.6, in a uniform magnetic field B aligned with the loop axis, is suddenly
pulled at two points along a diameter so that the coil collapses to a linear array
of wires in a time T, as shown in the right side of the figure.

Solution: Initially there is a net flux through the coil given by �B � NBA,
where A is the cross-sectional area of one circular loop. The factor N appears
because each turn in the coil contributes to the total flux. Because the flux is
constant, there is no induced current in the coil. During the time T while the
coil is stretched, shrinking its area to zero, the flux changes from its initial
value to zero and there is a time variation of the magnetic flux. The average
emf during this time interval has a magnitude given by � NBA/T, and only
exists during the time T, after which the flux is zero and no longer varies with
time. The direction of induced current flow is such as to maintain the original
upward magnetic flux through the coil and, opposing the decrease, given a
right-handed coil, is therefore clockwise around the collapsing coil as viewed
from below.

e

Consider one application of this new physics: the basis of an electric AC (alter-
nating current) generator. Shown schematically in Figure 18.7, a simple AC genera-
tor consists of a coil of wire, with N turns of area A, made to rotate at a uniform
angular velocity � in a region of uniform magnetic field B. As the coil rotates, the
magnetic flux varies (co-)sinusoidally (because of the variation of cos � � cos �t

B B

FIGURE 18.6 A coil of N turns, initially with a uniform B
field along its perpendicular axis (left), is stretched along
the dotted lines collapsing it to a linear dimension in a time
T (right). While the area is changing, there is an induced
emf in the coil.



Example 18.2 A long straight wire lies along the x-axis and carries a constant
5 A current. Two identical 100 turn circular coils of 10 mm diameter and 500 	
resistance each lie 5 m from the wire in the x � y plane (with their normals per-
pendicular to the x � y plane; see Figure 18.8), the first along the positive and
the second along the negative y-axis. Find the average induced current in the
appropriate coil(s) under the following circumstances. (a) If the first coil is
rotated around an axis through its center parallel to the x-axis by 90° in a time
of 10 ms. (b) If the second coil is continuously spun around an axis through its
center along the y-axis direction at a rate of 4 turns/s. (c) If both coils are left as
originally given and the current in the wire doubles in a time of 10 ms. In each
case give the magnitude, direction, and duration of the average induced current.
Assume that the flux is uniform over each small coil area.

Solution: (a) The magnetic field produced by the current in the straight wire is
directed out of the paper at the location of the first (upper) loop and so the mag-
netic flux is maximal at the start. When the coil rotates by 90° the magnetic flux
goes to zero in 10 ms and so the magnitude of the average induced emf is given by

e �
¢1NBA cosu2

¢t
�

NBA

t
,
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FIGURE 18.7 (left) Diagram of a sim-
ple AC generator, with a coil rotating
in a uniform magnetic field; (right)
photo of an AC generator useful
when the power is otherwise out.

(Continued)

factor in Equation (18.1)) and so there is a corresponding continuous variation in the
induced emf. Since the magnetic flux varies as

the induced emf will be given by

(the middle mathematical step involves calculus—the differentiation of the cosine term,
resulting in the product—� sin �t). As the coil rotates the induced emf varies sinusoidally
and is called an AC voltage. In the United States residential AC voltages are supplied at
a frequency of 60 Hz and with a magnitude measured by an AC voltmeter of 120 V.

e � �
¢£B

¢t
� �NBA

¢cos vt

¢t
� NBA v sin vt � emax sin vt

£ B � NBA cos vt,
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Another application of Faraday’s law is in the detection of time-varying magnetic
fields. An isolated small coil, known as a search coil, connected to a very sensitive
ammeter can be used to detect a time-varying magnetic field. Any time-varying mag-
netic flux at the search coil will result in an induced current that is detected by the
ammeter. This basic technology is used in nuclear magnetic resonance measurements
discussed in the next section. To measure the intrinsic weak magnetic fields of the
human body requires a much more sensitive means of detection. Electric currents in
the human brain produce local magnetic fields of only about 10�12 T. These should
be compared to the Earth’s static magnetic field of 10�4 T or even the spontaneous
fluctuations in the Earth’s magnetic field of 10�7 T (Table 18.1). Magnetic field noise
due to electrical power lines can be as large as the Earth’s magnetic field, making it
extremely difficult to detect the small B fields produced in the brain.

where B is the field due to the straight wire, B � 
oI/2�r, r is the distance from
the straight wire to the upper coil, N the number of turns of the coil, A the coil area,
and t the rotation time. Putting in the numbers, we have that B � 2 � 10�7 T and
� � 0.16 
V. From this we can find that the average induced current that flows is
given by �/R � 310 pA. To find the direction of the induced current note that as
the coil is rotated about a diameter in the x-axis direction and the flux out of the
paper decreases, the induced current is produced to oppose that decrease, so as to
produce its own magnetic flux out of the paper. This means that the induced cur-
rent flows around the loop in a counterclockwise direction, persisting only for the
10 ms during which the coil is rotated. There is no induced current in the second
coil in this case because its magnetic flux doesn’t change.

(b) In this case the B field at the bottom loop has the same magnitude as in part
(a) but is directed into the paper at its location. As the coil spins about a diame-
ter along the y-axis, the induced emf varies sinusoidally just as in the generator
example and is given by � � NBA � sin �t, where � � 2� . 4 rad/s. We find the
induced current is I � �/R � 7.9 sin(8�t) (in nA) and alternates direction as the
coil rotates. The average induced current is actually zero in this part because the
average of the sine curve is zero. In this case the first coil has no induced current.

(c) In this case the flux through each coil changes due to the change in the B field
from the wire and we have

where the B field now doubles in a time t � 10 ms, so that � � 0.16 
V for both
coils and the induced currents are both 310 pA. These are the same numbers as in
part (a) because the magnitude of the flux change is the same as in that part. Using
a similar argument as in part (a) the first coil will have a clockwise induced current,
and the second will have a counterclockwise induced current. (Do you see why?)

e �
¢1NBA cos u2

¢t
�

N¢BA

t
,

I

y

x

FIGURE 18.8 Diagram for Example 18.2.



Measurement of the extremely weak magnetic field due to brain activity
(magnetoencephalography or MEG) has been made possible by an exquisitely sensi-
tive detector based on superconductivity known as a superconducting quantum inter-

ference device or SQUID (Figure 18.9). These devices operate at liquid helium
temperatures (4.2 K) and can detect magnetic field fluxes as low as 10�15 T m2. Even
with our ability to measure such small magnetic fields, there is the issue of how to
avoid the overwhelmingly larger local fields due to the Earth or stray power lines men-
tioned above. This is accomplished using detector coils arranged to be sensitive only
to magnetic fields that vary rapidly with position in space (said differently, with non-
constant spatial gradients) and are known as gradiometers (Figure 18.10; note that in
the figure if both loops see the same time-varying B field, there is no net induced cur-
rent; only if the two loops see different time-varying B fields will there be a detected
current). With this arrangement, spatially slowly varying stray magnetic fields are not
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FIGURE 18.10 Gradiometer with
two coils that cancel out distant
spatially constant B fields. Note the
direction of the induced current flow
in the two coils. Do you see how it
works? See text.

SQUID noise 

10–4

10–5

10–6

10–7

10–8

10–9

10–10

10–11

10–12

10–13

10–14

10–15

B field (T)

Earth’s field

Urban B noise {
heart

eye

brain

}

car at 50 m

screwdriver at
arms length

transistor at 1 m

Table 18.1 Weak Magnetic Fields

FIGURE 18.9 A SQUID detector, several cm on a side,
made using thin film technology.



detected and only the local fields that vary rapidly in space, even though they are very
weak, are recorded. MEG recordings use arrays of over 100 SQUID detectors around
the human head to measure local time-varying magnetic fields generated from the
whole head. Figure 18.11 shows an example of some MEG brain mappings.

2.  NUCLEAR MAGNETIC RESONANCE (NMR)

Nuclear magnetic resonance originated in 1946 in independent experiments by two
groups of physicists in the United States. In the early 1950s the technique expanded to
studying the structure of small organic molecules and there was an explosion of activity
by organic chemists using NMR. By the mid-1960s the technique had been improved to
the point where the first larger biologically important molecules were studied. Since that
time the technique has undergone several huge leaps in progress and is now routinely
used to study the detailed structure and dynamics of all sizes of biological molecules.
Perhaps even more important is its application in medical diagnosis, using imaging
methods, known as magnetic resonance imaging (MRI), discussed in the next section.

Our discussion of NMR begins with a brief description of a few properties of atomic
nuclei. Remember that nuclei are extremely small (~10�15 m) composite structures con-
taining protons and neutrons. Nuclei with an odd number of either protons and/or neu-
trons possess the property of nuclear spin, an intrinsic angular momentum. As a
consequence of having both electric charge and nuclear spin these nuclei also have
intrinsic magnetic dipole moments. One can think of these magnetic dipole moments as
arising from the spinning electric charge of the nucleus. Some biologically important
nuclei that have a magnetic moment, so that they can be studied using NMR, include 1H,
13C, 15N, 17O, and 31P (the numbers indicate the total number of protons and neutrons
in the nucleus). For now, we limit ourselves to the most common nucleus, that of the
hydrogen atom, consisting of a single proton.

Quantum mechanics predicts that the magnetic moment of a nucleus is given by

(18.4)

where Sn is the nuclear spin angular momentum and 
n is called the gyromagnetic
ratio, a quantity that is usually positive but whose value depends on the particular
nucleus as well as its environment. The nuclear spin angular momentum, for a single
unpaired spin, is given by

where h is Planck’s constant, h � 6.63 � 10�34 J-s. For the isolated proton the gyro-
magnetic ratio is equal to 
p � 2.68 � 108 s�1 T�1. Its exact value depends on the

Sn �
23

4p
 h,

m � gn Sn,
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FIGURE 18.11 MEG false color recording (left) of brain response to hearing pure tone,
(center) superimposed on MRI cross-section of the brain. (right) mapping of the MEG
signal used to generate the false color recording.



local environment of the proton (neighboring bonds and charges) and it is this varia-
tion that allows NMR to identify hydrogen protons attached to different atoms.

When placed in an external magnetic field, the nuclear magnetic dipole moment
will interact with the field with an interaction energy given by

(see Equation (17.9)). For a nucleus of spin such as a proton, quantum mechanics also
predicts that its magnetic dipole moment vector is not free to point in any direction at
all, but must align so as to have a fixed component of nuclear spin along the magnetic
field, as mentioned for the electron in connection with the Stern–Gerlach experiment in
the last chapter. Figure 18.12 shows the possible orientations of the proton magnetic
dipole moment when in an external magnetic field. The two different orientations are
commonly referred to as having their spins either parallel (spin up) or antiparallel (spin
down) to the field, even though the spins do not actually point in those directions but
can orient anyway along the cones shown so as to have the same z-component.

Accordingly, there are two possible energy levels for a proton in a magnetic field
given as

(18.5)

where we have chosen to orient the z-axis along the external magnetic field and �
z are
the possible components of the magnetic dipole moment along the z-direction for the spin
“up” and spin “down” nuclei. We can schematically draw this situation using an energy
level diagram (Figure 18.13) in which the original energy of the nucleus (single proton) in
the absence of an external field splits into two different energy levels in the presence of an
external magnetic field. The difference in energy between the two energy levels is

(18.6)

and depends only on the external field and the local environment of the proton
through the parameter 
n of Equation (18.4).

¢E � mz B � (�mz B) � 2mz B,

E � �mB cos u � ;mz B,

1
2

PEm� �mB cos u
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FIGURE 18.13 Energy level diagram for a 
proton in a magnetic field.

z

B
Spin up 

Spin down

FIGURE 18.12 The two possible
orientations of a spin 1⁄2 nucleus 
in a magnetic field along the z-axis.
The z-components (and so the
cone half-angle of about 55°) are
determined, although the spins
may have any orientation along 
the cones and are classically
pictured as rotating about the
vertical B field direction somewhat
like a spinning top.



Now that we’ve introduced some concepts about the nucleus (N) and its interaction
with a magnetic field (M) we’re now ready to turn to the resonance (R) phenomenon and
to the basis for NMR. Putting some numbers into Equation (18.6) for the energy differ-
ence between the two orientations of the proton spin, using a strong magnetic field of 1 T,
the difference is found to be ~2 � 10�7 eV, an extremely small energy difference. It is so
small even compared to kBT at room temperature, 2.5 � 10�2 eV, that according to the
Boltzmann factor for the ratio of the numbers of nuclei in the two different states,

(18.7)

there will be nearly the same number of nuclei with their spins in either orientation.
The difference in numbers amounts to only a few nuclei more per million in the lower
energy state than in the upper energy state.

NMR involves adding electromagnetic energy to the sample in quantum packets (pho-
tons), each with an energy corresponding precisely to �E (a resonant condition), and mea-
suring the net absorption of such photons. These very low energy photons have a frequency
given by E � hf (as we show in the next chapter; h is Planck’s constant introduced above
in connection with nuclear spin), corresponding to radio frequency (RF) radiation with
typical frequencies of several hundred MHz. The resonant condition can then be written as

(18.8)

For a given type of nucleus in a given local environment, the component of magnetic
moment is determined. By either fixing B and varying f, or by fixing f and varying B,
a resonance condition can be achieved at which there will be a net absorption of
energy causing the nuclei in the lower energy state to flip their spins and jump to the
higher energy state. In NMR machines of this type (continuous wave machines), the
RF frequency is fixed and continuously applied and the B field magnitude is varied
by small amounts while scanning through resonance conditions.

Albert Einstein showed that the same RF photons that can be absorbed and cause
a nuclear spin flip to a higher energy state, can also, with equal probability, stimulate a
nucleus already in the higher energy state to drop to the lower energy state and emit
a second RF photon also with energy �E. If there were equal numbers of nuclei in each
of the two states, there would be no net absorption of RF photons because there would,
on average, be as many absorbed as emitted. Therefore the net absorption of energy is
due only to the fact that there are slightly more nuclei in the lower energy state than in
the upper energy state. Because this population difference is so small, the NMR signal
is correspondingly very small. Although this finding of Einstein’s makes NMR more
difficult than it might be otherwise, we show later in Chapter 25 that this same predic-
tion of Einstein is a key ingredient in the functioning of the laser.

How is this net absorption of RF radiation detected? After the small amount of RF
energy has been absorbed and the RF excitation signal is turned off, the sample returns to
thermal equilibrium by emitting radio frequency energy of this same frequency. This

occurs as the net magnetic dipole moment created by the absorption of the
excitation energy by the sample relaxes back to the lower energy states. The
changing magnetic dipole moment creates a changing average magnetic field
at the detector or search coil that, according to Faraday’s law, induces a current
in the search coil (Figure 18.14). After amplification, the induced current
detected as a function of the applied magnetic field represents the NMR spec-
trum that is then used to understand properties of the sample.

Figure 18.15 shows a simple NMR spectrum recorded from a sample of
small organic molecules. Some of the features of the spectrum include the num-
ber and position of the peaks, the area under each peak and the “line shape” and
structure within a peak. In the rest of this section we indicate the kinds of infor-
mation contained in each of these features and how NMR can be used to learn
about the structure and function of more complicated biomolecules.

¢E � 2mz B � hf.

n�

n�

� e
�
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kBT � e
�
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� 0.999992,
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RF Source

Detector Recorder

N S

sample

FIGURE 18.14 Block diagram of an
NMR spectrometer. Note the two
separate coils, the RF input coil (in
blue) and the detector search coil
(in red) wound around the sample
tube.



Even though the resonance signal detected in proton NMR measurements is entirely
due to the energy differences between nuclear spin states �E, there is not just a single
peak due to all the protons. Each different local environment in which a hydrogen nucleus
resides experiences a slightly different magnetic field due to local screening effects of the
nearby magnetic dipoles. For example, delocalized electrons in benzene rings or other
ringlike organic structures moving under the influence of the large external magnetic field
produce their own small local magnetic fields. From the discussion in the last section, we
know that Lenz’s law tells us that these induced currents produce magnetic fields gener-
ally in the opposite direction, a phenomenon known as diamagnetism. The extent of this
shielding depends on the ring orientation relative to the proton location.

The primary feature of any NMR spectrum is the position of a peak, measured as
the chemical shift �, a dimensionless parameter with respect to some reference position,

(18.9)

where fext is the frequency of the applied RF radiation (from Equation (18.8)), 
fref and fsample are the measured reference and sample signal frequencies, and the factor
of 106 gives � in parts-per-million (or ppm), the most appropriate scale because the
frequency shifts are so small due to the tiny differences in nuclear energy levels.
One commonly used reference material is (CH3)4Si (tetra methyl silane or
TMS) because it is chemically inert and has 12 equivalent protons giving a single
strong peak.

Chemical shifts and their origin is the key science in NMR. The “art” of NMR is
in interpreting the chemical shifts of the very large number of peaks found in the
spectra of complex macromolecules and being able to associate particular peaks with
specific hydrogen nuclei.

The relative strengths of various peaks, measured best by the areas under the
peaks, are proportional to the relative numbers of equivalent nuclei (protons in our
case). Thus in simple spectra of ethanol, CH3CH2OH, there should be three peaks

d �
fsample � fref

fext

# 106,
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FIGURE 18.15 The proton NMR spectrum of ethyl acetate with eight protons in three 
different environments. Zero ppm is defined by the peak due to TMS and the other small
peak is due to a small amount of contaminating water.



(at low resolution) with areas in the ratio of 3:2:1 corresponding to the three
local environments for H (Figure 18.16).

When spectra are taken at higher resolution, the detailed widths and structure
of peaks, as well as their positions, reveal much information. The widths of peaks
are fundamentally determined by the so-called “relaxation mechanisms” that
return a nucleus to the lower energy state after excitation by an RF photon. These
widths can give information about the local environment and can be clues as to the
location of certain nuclei in a larger macromolecule. Furthermore, what appears at

low resolution to be a single peak, may at higher resolution be “split” into multiple peaks,
often in characteristic sets. For example, in the case of acetaldehyde, CH3COH, whether
the lone OH proton has spin “up” or “down” will produce a different local environment
at the site of the other three equivalent protons. Therefore, in a population of such mole-
cules, the low-resolution single peak for the CH3 (methyl) group is split into two roughly
equal peaks in a higher-resolution spectrum. Similarly, the methyl group protons can have
a variety of possible relative spin states with either zero, one, two or all three protons with
spin “up”. If you count up the various possibilities, the probabilities for these corre-
sponding spin states are in the ratio of 1:3:3:1 (see Figure 18.17). The resulting single
low-resolution OH proton peak is split into the commonly observed methyl quartet of
peaks with areas in the ratio of 1:3:3:1. These spin effect splittings of low-resolution lines
are limited to protons attached to nearby covalently bound groups because the spin ori-
entation-dependent magnetic fields are so weak.

There are a number of problems in both obtaining high-quality NMR data and in
interpreting those data from large macromolecules. All biological materials are water
based and the protons in the water hydrogens far outnumber other hydrogens in
macromolecules. The NMR peak from water is so large that it typically covers up all
other peaks in a large range of chemical shifts. This masking of other peaks can be
avoided by either working in D2O, also known as heavy water, where D is the isotope
of hydrogen known as deuterium with one proton and one neutron in the nucleus, or
most commonly nowadays by using a variant technique known as Fourier transform
NMR (see below). Deuterium has an NMR signal but it is at a quite different reso-
nant frequency and does not mask the proton peaks.

Another measurement problem is the fact that the signals are usually quite weak
and difficult to distinguish from background noise (Figure 18.18). By averaging
many repeated measurements, in a general method known as signal averaging, the
ever-present but random noise is averaged out while the signal remains and can be
better distinguished. With macromolecules the number of peaks can be extremely
large (thousands) and in order to have peaks fairly well separated, very large mag-
netic fields are required. The larger the external magnetic field is, the higher the RF
frequency needed for resonance conditions according to Equation (18.8), and
the larger the corresponding frequency shift of characteristic peaks, and therefore the
better the resolution. Currently many NMR machines use RF frequencies of over
600 MHz with corresponding external magnetic fields of over 14 T. Such high mag-
netic fields require a superconducting magnet because of high I2R power losses and
heating in the electromagnets.

464 E L E C T R O M A G N E T I C I N D U C T I O N A N D R A D I AT I O N

ppm

–OH

CH2

–CH3

FIGURE 18.16 Low resolution NMR
spectrum of ethanol showing the
3:2:1 ratio of peak areas.

–OH

–CH3

ppm

FIGURE 18.17 Possible spin states
and high-resolution NMR spectra
of acetaldehyde showing the spin
splittings, where the methyl peak is
split into two by the –OH proton
and the –OH peak is split into a
methyl quartet. The various 
spin-splittings are labeled for each
peak. The total area under the CH3
peaks is three times that of the
–OH peak total area.



Ultimately, the objective of NMR spectroscopy of biological macromolecules is
to learn details of the structure and dynamics that will aid in understanding their
functioning. Since all proteins and nucleic acids are built from a relatively small
number of building blocks, either amino acids or nucleotides, the results of detailed
NMR studies of these smaller molecules, as well as model helical, or for protein �
sheets, have been tabulated. These have been helpful in identifying some peaks that
are more easily distinguished.

Most current NMR work uses Fourier transform (FT) NMR, a variation of the
method discussed thus far. In this technique one or several RF pulses are used, rather
than a continuous wave, to excite the hydrogen protons and monitor their relaxation. The
basis of the technique can be understood most easily when a single pulse is used (one-
dimensional FT-NMR). The external magnetic field is kept constant, and the single RF
pulse can be shown to be equivalent to the sum of a large range of different frequencies
of RF radiation centered about the “carrier frequency” of the pulse. Thus, in this method,
in place of varying the RF frequency monotonically as a function of time, a large range
of different frequencies are simultaneously applied to the sample and, by proper detec-
tion and analysis (involving the mathematical manipulation known as Fourier trans-
forms) the entire NMR spectrum can be obtained from the single pulse (Figure 18.19).

FT-NMR methods have become extremely sophisticated, using sequences of
pulses applied with varied delay times between the pulses (multidimensional NMR) to
better resolve differences in the response of protons in different environments. These
methods have become almost routine in determining the structure of small proteins,
and can now be used on solutions of proteins even up to molecular weights of about
25,000 to resolve the positions of their atoms with a resolution of about 2 Å, compa-
rable to that obtained using x-ray diffraction methods on crystals of proteins.

In concluding this section, we briefly discuss the related technique of electron spin

resonance (ESR), sometimes also known as electron paramagnetic resonance (EPR).
Some materials that are not ferromagnetic exhibit a weaker form of magnetism known as
paramagnetism. This effect occurs in atoms, molecules, or ions that have a net magnetic
dipole moment usually due to an unpaired electron, such as O2, Cu2�, Mn2�, and other
transition or rare earth ions. Most other atoms and molecules have paired electrons so that
the spin and orbital angular momentum add to zero magnetic dipole moment.
Paramagnetic materials tend to align their magnetic dipole moments in an external field
producing a weak magnetism that, unlike ferromagnetic materials, does not persist when
the external field is removed. The extent of the alignment of the individual magnetic
dipole moments depends on the strength of the B field because the interaction energy,
given by PE � �
B cos �, competes with the thermal energy of the atom or ion. It is the
Boltzmann factor, that determines the extent of the alignment of
the magnetic dipole moment and the overall net magnetic moment of the material.

e�¢U/kBT � emBcosu/kBT,

N U C L E A R M A G N E T I C R E S O N A N C E (NMR) 465

FIGURE 18.18 (bottom) Single
proton NMR scan of a sample of
the female sex hormone,
progesterone; (top, with reduced
amplitude) the sum of 500 scans
showing the vast improvement in
the signal-to-noise ratio



Basically very similar to NMR, ESR requires an unpaired electron in an atom, whose
magnetic dipole moment generates a signal when placed in an external magnetic field.
The electron magnetic dipole moment is given by an equation similar to Equation (18.4),

(18.10)

where the electron’s gyromagnetic ratio 
e is about 2000 times larger than the pro-
ton’s, as are the interaction energies with the magnetic field. Just as in Equation (18.4),
there will be a resonance condition but now the photon frequencies must be several
thousand times greater, corresponding to microwave frequencies of about 10 GHz.

In biological studies, ESR can be used to study macromolecules containing transition
metal complexes with unpaired electrons such as iron and copper that occur in such
interesting native macromolecules as hemoglobin (with Fe) and cytochrome oxidase
(with Cu). Alternatively, because most macromolecules do not contain unpaired electrons,

me � ge Se,
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FIGURE 18.19 (a) The direct FT NMR signal from acetaldehyde, CH3CHO, and 
(b) a portion of its spectrum, obtained by taking the Fourier transform of (a). 
Note the methyl quartet structure for the OH proton.



a so-called “spin label,” or small free radical with unpaired elec-
tron, can be attached to a macromolecule at a specific site. ESR
clearly does not give the same kind of detailed structural infor-
mation as NMR because the signal comes only from unpaired
electrons, usually a single site on a macromolecule. The method
has, however, been widely used to study conformational changes
at important sites on a macromolecule, often binding sites for
small ligands, and to probe motions of macromolecules, espe-
cially those bound to membranes.

3.  MAGNETIC RESONANCE IMAGING

In the previous section we discussed the physical basis for
NMR and its application to the study of biomolecules in
solution. The samples in those types of studies are small
(with volumes of ~1 cm3) and the magnetic field must be extremely uniform over the
small sample volume in order to have a consistent resonance condition throughout
the sample. In this section we show how to apply the same NMR principles to allow
imaging of large regions of the human body in a technique known as magnetic
resonance imaging (MRI).

There are two main new considerations that need to be discussed. First, how is the
spatial information encoded in the data in order to obtain images of cross-sections through
the body? Second, what is responsible for the contrast seen in these images? Clearly the
magnet configuration must be very different to allow a person to be in the strong magnetic
field needed to align nuclear spins throughout a large region of the body. Very large gaps
between the magnetic poles (~1 m) are needed for a person to lie in the magnetic field
(Figure 18.20). The magnetic field must be very large to give high resolution and must also
be controlled extremely well in order to be able to do the spatial imaging, as we show. The
magnets used in MRI are exclusively superconducting magnets, electromagnets that
use high-efficiency superconducting current coils. Special wire materials are used that
must be kept at very low temperatures (typically liquid helium temperatures of �269°C)
in order to be superconducting, essentially eliminating the I2R heating and allowing very
high currents and correspondingly high magnetic fields to be maintained.

Let’s first consider how the spatial information can be encoded. If the magnetic
field were completely uniform over the entire area of the body to be imaged, there
would be no way to spatially distinguish the origin of the signal. Instead, magnetic
field gradients (varying linearly in a particular direction at a typical rate of 10�2 T/m
or 1 G/cm) are used so that the resonance condition, Equation (18.8), will vary along
that direction, say the z-direction, according to the local magnetic field value. If a
selective RF pulse with a carrier frequency matching those resonant frequencies of
protons within a particular slice or plane perpendicular to the z-direction is used, then
only those protons will be detected (Figure 18.21). In essence, the z-position of a free

M A G N E T I C R E S O N A N C E I M A G I N G 467

FIGURE 18.21 (left) Field gradient
established by gradient coil; (right)
signal detected if there were only
three equivalent “proton centers” in
the patient’s head (shown in red);
note that only two peaks are seen
because of the variation in
resonance position along the field
gradient, one with twice the
integrated intensity of the other.

FIGURE 18.20 An MRI machine
used for whole-body medical
imaging.



proton is encoded in a resonant frequency that is proportional
to z. For a constant magnetic field gradient, the thickness of
the slice depends on the equivalent range of frequencies in
the pulse, typically a few Hz. The longer the RF pulse is, the
narrower the slice detected because a longer pulse more
closely resembles a pure sine curve which would match the
resonance condition at a very narrow slice.

Once the slice selection has been achieved and the protons
in a particular slice transverse to the field gradient z-direction are
aligned, subsequent field gradients in the x- and y-direction are
applied consecutively, each for varying times. This procedure,
after being applied n different times for the x-gradient and n dif-
ferent times for the y-gradient and performing a Fourier analysis,
yields an image with n2 datapoints, or pixels, in the transverse
plane. The limit on n, and hence on the ultimate spatial resolu-
tion, depends on factors such as the signal detection sensitivity as
well as the linearity and stability of the magnetic field gradients,
patient movement during the typical several minutes needed for
a scan, and other artifacts. The overall RF pulse sequence and
field gradient sequence is repeated many times using signal aver-
aging to reduce the noise and give a larger signal-to-noise ratio.

A remaining major question is what is responsible for the
high degree of image contrast seen in MRI images (Figure 18.22). We have seen that
protons in different local magnetic fields will have different resonances yielding dif-
ferent chemical shifts in an NMR frequency spectrum. Because the predominant form
of protons in the body is in the water content (roughly 70% of the body is water) one
way to distinguish different structural features is simply in the local water content
(Table 18.2). For soft tissue these differences are relatively small and do not give suf-
ficient contrast alone. Another signature of NMR spectra is the relaxation time corre-
sponding to the return of spin states to an equilibrium population mentioned in the last
section. There are two characteristic times, the spin–lattice relaxation time T1 and
spin–spin relaxation time T2. The spin–lattice relaxation involves the transfer of
energy to neighboring molecules and the spin–spin interaction involves the emission
of an RF photon by a proton as its spin flips to a lower energy state and the subsequent
absorption of the photon by a neighboring nuclear spin causing its excitation. These
characteristic times vary substantially depending on the type of tissue and are the pri-
mary source of image contrast. Thus in the false color MRI images commonly seen,
the different colors usually refer to differences in relaxation times.
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FIGURE 18.22 An MRI image of a
cross-section through the human
head.

Table 18.2 Water Content of Normal
Human Tissue

Tissue % water

Brain (white matter) 84

Kidney 81

Myocardium 80

Skeletal muscle 79

Brain (gray matter) 72

Liver 71

Nerve 56

Bone (cortex) 12

Teeth 10

MRI methods have steadily advanced in sophistication, both in magnet
design (open high field strength magnets avoid the claustrophobia problems some



patients have while maintaining the rigorous requirements on uniformity and stability
of fields) and in pulse sequences and data analysis methods so that multislice high-
resolution images at any orientation can be obtained rapidly (Figure 18.23).

Interesting and significant variations on MRI include the use of other nuclei to
monitor, in real-time, changes in specific biomolecules within the body. For example,
the real-time MR imaging of 31P nuclear spins present in ATP can monitor the split-
ting of ATP because the phosphate environments change leading to an NMR signa-
ture change. Such studies can be used diagnostically to check for proper metabolic
functioning within the human body.
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FIGURE 18.23 Separate MRI scans of (from left) head, thorax, abdomen, upper thigh,
knee, and feet.



4.  MAXWELL’S EQUATIONS; ELECTROMAGNETIC
RADIATION

In our discussions of electricity and magnetism, we have seen that electric charges
produce electric fields and that electric currents, whether they be in a circuit or in cir-
culating atomic charges, produce magnetic fields. Faraday’s law also revealed that
changing magnetic fields (or more generally magnetic fluxes) can produce electric
fields as well. It was first proposed by Maxwell, on theoretical grounds of symmetry,
that changing electric fields can also produce magnetic fields by an induction process
similar to that of Faraday’s law. The mathematical relations between electric and
magnetic fields and their sources, electric charges and currents, as well as their vari-
ations in space and time are known as Maxwell’s equations.

Consisting of a set of four fundamental equations, Maxwell’s equations represent
one of the most successful theories of all science, more successful than even Newton’s
laws or the law of gravitation. Although Maxwell’s equations were first published
in 1873 and Einstein’s special theory of relativity was not published until 1905,
Maxwell’s equations proved to be relativistically correct. Today, Maxwell’s equations
still stand without change as the fundamental explanation of all electromagnetic phe-
nomena, requiring only a quantum mechanical synthesis in order to explain those
same phenomena on an atomic distance scale.

We summarize Maxwell’s equations in words. The mathematical statement of the
equations, involving calculus, does not provide further illumination at the level of our
presentation. However, it should be mentioned that particular real-life problems, such
as magnet design for MRI machines, are approached by the direct mathematical solu-
tion of Maxwell’s equations subject to particular “boundary conditions” imposed by
the geometric spatial boundaries and time constraints of the problem. Usually com-
puters are used to generate numerical solutions, although in certain idealized situa-
tions analytic solutions can be obtained.

In words, two of Maxwell’s equations involve relating the fields to their sources of
charge in relations known as Gauss’s laws. Gauss’s law for electric fields connects the
electric field to electric charges and holds not only under electrostatics, where it yields
Coulomb’s law, but also quite generally (see Section 7 in Chapter 14). A second similar
law for the magnetic field includes the fact that there is no magnetic “charge” (no mag-
netic monopoles) and predicts that magnetic field lines will form closed curves.
Maxwell’s other two equations connect a changing magnetic flux with an induced elec-
tric field (Faraday’s law), and a current or a changing electric flux (see below) with an
induced magnetic field. It should be made clear that Maxwell’s equations have their
roots in many years of experimentation as well as in less complete theories by others
(including Ampere’s law studied in Section 5 of the previous chapter). Maxwell’s major
contributions were his completion of the content of the last-mentioned law of induced
magnetic fields, his synthesis of these results in a minimal set of four equations, and the
predictions he then made based on these equations. Perhaps the most important of these
predictions is the production of electromagnetic (EM) radiation.

First, recall from Chapter 14 that electric field lines start on positive charges and
terminate on negative ones. Electric fields due to charges that are at rest are called “sta-
tic” fields. Static fields never loop around back onto themselves to form closed curves.
In Chapter 17 we found that moving charges also make magnetic fields. Magnetic field
lines never start or stop; they always loop around in closed curves. Thus, if the source
charges are at rest or moving with constant speed, they make starting and stopping E
and looping B. In the first section of this chapter we learned that it is possible to make
E-lines that loop around by having B change in time. That is, E that loops around and
is perpendicular to B can arise when the source charges accelerate.

Maxwell’s great contribution to electromagnetism was to conjecture that if time-
changing B could make E, maybe time-changing E could make B. Here’s his idea.
Consider a capacitor with vacuum between its plates. Connect the capacitor to a battery
and begin to charge it. Around the wire coming into the capacitor there is looping B as
the current flows. Around the wire leaving the capacitor there is also looping B. But, no
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charge moves between the plates of the capacitor, so between the plates there
is no current. Before Maxwell, it was thought that there was no B between the
capacitor plates. The magnetic field around the wires, it was thought, abruptly
stopped at the capacitor plates. But there’s E between the plates and as
the capacitor charges that E changes in time. So perhaps, Maxwell argued,
B doesn’t just abruptly stop at the plates. Perhaps the same kind of looping
B around the wires is found between the plates looping around changing 
E-lines. It turns out that he was right.

Maxwell’s idea is depicted in Figure 18.24. The plates of the capacitor
are circular disks. The current in equals the current out as the capacitor is
charging. The E-field points from the positive plate to the negative, from left to right
in the figure, and is increasing in this scenario. B curls around the increasing E as one’s
right fingers curl around one’s right-hand thumb when the thumb points in the direc-
tion of changing E (as around the current in the wires).

As a result of Maxwell’s insight we have this mantra: “time changing B makes
curling E, time changing E makes curling B.” That’s how “EM radiation” is made. A
good analogy to study first is what happens when you shake one end of a long string.
The instant you accelerate one end of the string, material near your hand begins to
get an upward velocity (see Figure 18.25). But, because of inertia (the mass of the
string), that velocity can’t get to the other end of the string instantaneously. What
happens is that the upward velocity makes some slope in the string near your hand.
Then that new slope makes some upward velocity out ahead of it. Then that new
velocity makes some newer slope. Then the newer slope makes newer velocity. And
so on. Figure 18.25 shows more precisely what happens.

The hand on the left accelerates the end of the string (originally horizontal and at
rest) for a brief time and then continues upward with constant speed. During the accel-
eration a kink forms in the string. The kink travels away from the hand at a fixed speed:
the speed of a wave in the string. In front of the kink the string is not moving. Behind
the kink the string moves upward with constant speed. Down through the kink the
upward velocity of string material changes from a maximum in the back to not much
in the front. It takes time for the information that the hand has accelerated the left end
of the string to travel to the right end. The fact that the information doesn’t travel instan-
taneously is because of Newton’s second law: a finite force produces a finite accelera-
tion when there is mass to be moved. We saw in Chapter 10 that the speed of the wave
is v � ÷T/
, where T is tension in the string and 
 is mass per unit length.

Essentially the same thing happens with electric and magnetic fields. If you
accelerate a charge upward, the E-line attached to the charge begins to get some
upward velocity. This time changing E makes a curling B (that is also changing in
time). The time-changing B then makes curling E (that is also changing in time).
And on and on. In fact the picture is similar to Figure 18.25, except instead of a
string there is an E-line. The information can’t propagate infinitely fast because E
and B obey a kind of Newton’s second law. In this analogy between strings and elec-
tromagnetism, B corresponds to slope in the string and E corresponds to upward
velocity in the string. The role of tension is played by 1/kM (where kM � 
0/4� is
the magnetic force constant equal to 1 � 10�7 N-s2/C2) and the role of mass density
is played by 1/kE (where kE � 1/4��0 is the electric force constant equal to 9 � 109

N-m2/C2). These two initially quite independent concepts, that of electric and mag-
netic fields, are united through Maxwell’s equations to predict the speed of electro-
magnetic radiation. Thus, the wave speed for a traveling EM disturbance is

(18.11)

which comes out to be 3 � 108 m/s, the speed of light in vacuum.
Amazingly, Maxwell’s equations led to the proposal that all electro-
magnetic radiation travels at the speed of light, a statement that was
subsequently shown to be true.

 c �  A kE

kM

�A 1
m0e0

,
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FIGURE 18.24 A parallel-plate
capacitor being charged, showing
the B-field around the wires and
within the capacitor due to the
changing E-field.

FIGURE 18.25 A string being driven
on the left to produce a traveling
“kink” in the string.



You shouldn’t take the relation between EM radiation and strings
literally. They share lots of common features, but they are also very
different. If Figure 18.25 represents an E-line, the B that travels along
with the E kink is not the slope of the line, but rather is a separate field
perpendicular to E, in and out of the page. (These waves are called
“electromagnetic” because B always tags along with E; or is it vice
versa? See Figure 18.26.) Waves on a string are disturbances in the
string from equilibrium. Similarly, EM waves are disturbances in the
background electric and magnetic fields throughout space. Waves on
a string require a tangible body, the string. Electromagnetic waves are
perfectly happy to travel through a vacuum. Electromagnetic waves
don’t need anything to ripple through.

For both strings and electromagnetism, the disturbance is initiated
by acceleration, acceleration of a bit of the string or acceleration of
charge. If the acceleration is periodic, the disturbance is periodic as

well. In that event, it is possible to generate periodic traveling EM waves and, if there are
boundaries, standing EM waves as well. It is customary to speak of the “electromagnetic
spectrum” (see Section 4 in the next chapter) that is related to the wave relation c � �f.
Periodic waves have a wavelength and a frequency the product of which is the wave
speed, c in the case of EM radiation. EM waves of different f, or equivalently, different �,
are often given different names, although they are the same thing. These names are his-
torical and usually have to do with the mechanism by which the radiation is produced and
detected. The phenomenon we call “light” is periodic EM radiation with � between about
400 nm and 700 nm, where the size of an atom is about 0.1 nm. (The corresponding fre-
quencies are 7.5 � 1014 Hz and 4.3 � 1014 Hz, respectively.) Light is EM radiation
whose wavelength is a few thousand atoms long. We go into the phenomenon of color in
more depth later, but for now it is sufficient to say that a single frequency of light corre-
sponds to a “pure color” (just as a single frequency of sound corresponds to a pure tone).
Light that consists of a broad range of frequencies mixed together is called “white light.”

When EM radiation “impinges” on matter, the electric field in the wave causes—or
“induces”—charges in the matter to accelerate. When charges accelerate they produce
“induced” EM radiation. As a result, the total EM field one detects at any point is a

superposition of the incident fields due to the original sources and these induced fields.
This idea is the entire basis for all of optics, a topic that we treat in a great deal more
depth later. But first, in the next chapter we continue our study of electromagnetic radi-
ation, learning about the different types of EM radiation and their description as waves.
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CHAPTER SUMMARY
Faraday’s law relates a changing magnetic flux,

(18.1)

to an induced emf, �, according to

(18.2)

The flux can change in several ways: B itself may be
time-dependent and/or the area A of the circuit may
change, and/or the orientation of the circuit may

e � �
¢£B

¢t
.

£B � B
�

A � B Acos u,

change with respect to the direction of B. In any case,
when the magnetic flux changes with time, there will
be an induced emf in the circuit. Its polarity is gov-
erned by Lenz’s law: the induced emf is always of a
polarity such as to oppose the change of magnetic flux
that created it.

Applications of Faraday’s law are numerous and
diverse. Time-varying electric currents in nerve cells
of the brain can be detected through changes in mag-
netic flux through SQUID (superconducting quantum
interference device) detectors in order to map brain
activity in MEG (magnetoencephalography) record-
ings. NMR (nuclear magnetic resonance) signals are
also detected using Faraday’s law. NMR involves
causing nuclear spins to flip to excited states in a

B 
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z 

x 

y 

E 

B

FIGURE 18.26 An oscillating current
along the vertical z-axis produces a
periodic electromagnetic wave. In
this figure we focus on that part of
the wave that travels out along the
y-axis and show the time-varying B
(along the x-axis; blue arrows) and
time-varying E field (along the 
z-axis; red arrows), perpendicular to
each other and to their direction of
travel (to the right in the figure). The
lower graph plots the coupled E and
B fields at one instant of time.
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QUESTIONS
1. Define magnetic flux, clearly distinguishing the three

different factors that can affect its value. Give an exam-
ple for each of the three different ways in which the
flux can change.

2. Discuss the statement that “A changing magnetic field
produces an electric field” in light of Faraday’s law.

3. If there is a changing magnetic flux through a coil, an
emf is produced that leads to an induced electric field
within the coil. How can this be, since we we learned
earlier when we studied statics that there cannot be any
electric field within a conductor?

4. Find the direction of the induced current, if any, in the
circular coil shown in each of the following situations,
pictured below. In (a) the coil is in a region where the
B field is increasing into the paper, indicated by the tail
of the vector x; in (b) the B field is constant in magni-
tude and initially oriented into the paper but is rotating
about a vertical axis; in (c) the B field is constant and
the coil is stretched by pulling it along the horizontal;
in (d) the B field is constant in magnitude but rotates as
in part (b) but so does the coil rotate with the field.

5. Suppose that there is a small coil lying near a long
straight current-carrying wire as shown in the sketch
below. Find the direction of the induced current, if
any, in the coil under the following circumstances. If
there is an ambiguity, indicate why and the possible
answers. In (a) the coil remains stationary, but the
current in the wire increases; (b) the current is con-
stant, but the coil moves downward; (c) the current is
constant and the loop remains stationary; (d) the cur-
rent decreases and the coil moves downward; (e) the
current decreases and the coil moves upward.

strong magnetic field by added resonant energy and
then watching the relaxation back to the ground state.
The resonance condition

(18.8)

must be satisfied, where the energy difference �E is
between the two spin states in the applied B field and the
frequency f is the photon frequency needed to cause the
transition. NMR looks at the frequency of emitted photons
from the relaxation process or the decay times of these
relaxations. Different local environments of the nuclei lead
to slightly different (few ppm) frequencies and so different
nuclei in different portions of a molecule can be distin-
guished and studied. By applying B fields that are spatially
varied, NMR can be used to produce images in a technique
known as MRI (magnetic resonance imaging). MRI tech-
nology makes use of the different relaxation times for
different tissue to produce ~1 mm resolution images of
cross-sections, with any desired orientation, of the human
body and has been a powerful medical diagnostic tool.

Section 4 of this chapter summarizes our fundamen-
tal knowledge of electricity and magnetism in a discussion

¢E � 2mz B � hf,

of Maxwell’s four equations. Two of these are Gauss’s
laws, for the electric field (see Section 7 of Chapter 14)
and for the magnetic field (where the magnetic flux over
any closed surface must equal zero because there are no
magnetic charges). These are both related to field map-
pings, where electric field lines must start or stop on elec-
tric charges and magnetic field lines form only closed
contours. Faraday’s law and a modified form of Ampere’s
law constitute the other two Maxwell equations. These
relate either a changing magnetic field with an induced
electric field (Faraday’s law), or a changing electric field
with an induced magnetic field. Electromagnetic radiation
is a direct consequence of Maxwell’s equations and a
number of general properties of EM radiation follow from
the equations, including the fact that it travels at the speed
of light, given by

(18.11)

and that EM radiation consists of oscillating E and B
fields that are mutually perpendicular and lie in a plane
transverse to the direction of propagation.

 c � A 1
m0e0

,

I

6. Two parallel coils lie along the same axis as shown
with both wrapped in the same sense. Find the direc-
tion of the induced current in the larger coil if
(a) The current in the smaller coil (direction shown) is

increasing.
(b) The smaller coil, with constant current, is moving

away from the larger coil.
(c) The larger coil is moving toward the smaller coil,

having a constant current.



(d) The smaller coil, with constant current, is rotating
counterclockwise around a vertical axis as shown.

constant magnetic field. (b) A compass points toward the
Earth’s north geographic pole. (c) A coil of wire is
rotated in the field of a permanent magnet. (d) A perma-
nent magnet is dropped vertically into an aluminum tube.

2. The figure shows a conducting rod riding along two
horizontal, conducting rails. The rails, in turn, are
connected by a light bulb. A uniform magnetic field
pointing out of the page exists in the region between
the rails. At one instant, the rod is moving toward the
light bulb. Current flows through the light bulb and
the rod experiences a magnetic force. Which one of
the following is true? (a) Current goes through the
bulb from A to B and the force on the rod is to the
right. (b) Current goes through the bulb from A to B
and the force on the rod is to the left. (c) Current goes
through the bulb from B to A and the force on the rod
is to the right. (d) Current goes through the bulb from
B to A and the force on the rod is to the left.
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9. Show that the gyromagnetic ratio in Equation (18.4)
has units of s�1 T�1.

10. In order to have an NMR signal, nuclei must have an odd
number of protons or neutrons or both. Why is this so?

11. Why is it the case that NMR machines with larger mag-
netic fields must operate at higher radio frequencies?

12. Discuss the expected relative intensities for the three
lines observed in the low-resolution proton NMR spec-
trum of benzyl acetate, shown below, corresponding to
C5H5, CH2, and CH3.

Questions 3–4 refer to: The figure shows a conducting rod
sliding over two bare wires. The wires are in a horizontal
plane (ignore gravity) and are connected through the resis-
tor R. A uniform magnetic field points out of the page
everywhere. Friction between the rod and the wires is neg-
ligible. At the instant shown, the rod is moving from right
to left, toward R, with a speed v. (A hand got the rod started
before the instant shown, but is no longer in contact with it.)

7. Suppose the two coils of the previous problem each
have N turns. Why does the induced emf increase by a
factor of N2 over that when each coil is a single turn?

8. A bar magnet is thrust toward a coil as shown. In what
direction is the induced current as the magnet
approaches the coil at constant speed? As it recedes
from the magnet after passing through?

NS

CH2OCOCH3

13. Why are NMR chemical shifts commonly measured in
parts per million?

14. According to Equation (18.7), do you expect the
NMR signal to increase or decrease with increasing
temperature?

15. Explain how spatial imaging is obtained in MRI.
16. Describe some similarities and differences between

NMR and ESR.

MULTIPLE CHOICE QUESTIONS
1. Which one of the following does not involve electro-

magnetic induction? (a) A wire is dragged through a

RodBulb

Rail

Rail

• B is out

A

B

3. Which one of the following is true at the instant shown?
(a) Current is flowing through R from a to b. (b) Current
is flowing through R from b to a. (c) There is no current
flowing through R. (d) The rod experiences no net force.

4. Which of the following best describes the magnitude
of the current in R subsequent to the instant shown?
(a) The magnitude increases because the rod speeds up.
(b) The magnitude decreases because resistance always
decreases current over time. (c) The magnitude decreases
because the rod slows down. (d) The magnitude remains
constant because the rod travels with constant speed.

5. A (metal) car is traveling due north in the United
States where the Earth’s magnetic field points both
northward and vertically downward. As seen by the
driver, the induced emf causes (a) the right-hand side
of the car to be positively charged and the left-hand



side to be negatively charged, (b) the right-hand side
of the car to be negatively charged and the left-hand
side to be positively charged, (c) the top of the car to
be positively charged and the bottom to be negatively
charged, (d) the top of the car to be negatively charged
and the bottom to be positively charged.

6. A bar magnet is dropped into a vertical aluminum tube.
Suppose the north pole of the magnet is pointing down.
You look down the tube from the top (south pole end of
the magnet pointing up at you). Which one of the fol-
lowing is true at any instant, as viewed by you, while the
magnet is inside the tube? (a) Current circulates around
the tube in a counterclockwise fashion below the mag-
net, and the magnet experiences a magnetic force point-
ing up. (b) Current circulates around the tube in a
clockwise fashion below the magnet, and the magnet
experiences a magnetic force pointing up. (c) Current
circulates around the tube in a counterclockwise fashion
below the magnet, and the magnet experiences a mag-
netic force pointing down. (d) Current circulates around
the tube in a clockwise fashion below the magnet, and
the magnet experiences a magnetic force pointing down.

7. The figure shows a copper ring dropped vertically
into a region of magnetic field. In which direction is
the force on the ring due to electromagnetic induc-
tion? (a) Up at a, up at b. (b) Up at a, down at b.
(c) Down at a, up at b. (d) Down at a, down at b.

potential difference of 10 V is induced from one end
of the coil to the other. The coil is replaced by one
with the same orientation as the first but with 10 turns.
The induced potential difference in the second coil is
(a) 5 V, (b) 10 V, (c) 15 V, (d) 20 V.

10. Which of the following nuclei does not give an NMR
signal? (a) 13C, (b) 19F, (c) 40Ca, (d) 31P.

11. If a 13C nucleus, when put in a uniform magnetic field,
has two energy levels E1 and E2 resulting from its nuclear
spin pointing either up or down, the resonant frequency
will be (a) E1/h, (b) E2/h, (c) E1E2/h, (d) (E2 � E1)/h.

12. If a low-resolution NMR single peak splits, at higher
resolution, into four peaks with areas in the ratio of
1:3:3:1, we can usually conclude that (a) the species
representing the peak is the methyl group, (b) there is
a nearby OH group, (c) there is a nearby methyl group,
(d) the species representing the peak is OH.

13. The stronger the magnetic field is in an NMR exper-
iment, (a) the stronger the NMR signal, (b) the
greater the magnetic moment of the nucleus. (c) the
greater the chemical shift, (d) the greater the reso-
nant frequency.

14. By using a linear magnetic field gradient along a given
direction in MRI, the resonance frequency is (a) the
same throughout a slice along that direction, (b) varies
linearly with distance away from the gradient line in a
plane perpendicular to the gradient direction, (c) varies
linearly along the gradient direction, (d) varies qua-
dratically with distance along the gradient line because
magnetic energy varies as B2.

15. An electromagnetic wave is said to be transverse
because (a) E is perpendicular to B, (b) E points in the
direction of propagation, (c) E equals Bc, (d) both E
and B are perpendicular to the direction of propagation.

16. The speed of an electromagnetic wave in vacuum is
determined by the electric and magnetic force constants
through the relation

PROBLEMS
1. Suppose a small 1 cm radius coil with 100 turns is used

to try to measure the time-varying magnetic field pro-
duced by neuronal electric currents in the brain. If the
normal component of this field varies by 0.5 � 10�12 T
over 0.1 s, find the average induced emf in the coil dur-
ing this time.

2. A long straight wire lying along the x-axis carries a
constant 5 A current along the positive x direction.
A small 5 mm diameter loop lies in the x–y plane
centered at y � 2 m. If the loop is suddenly stretched
so that its area shrinks to zero in 0.2 s, find the aver-
age induced emf in the coil assuming the B field is
constant over its area. Draw a sketch showing the
direction of the induced current.

 (a)1kE kM,  (b)A 1

kE kM
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8. A uniform horizontal magnetic field B points north.
The average induced emf measured when a circular
wire of radius R oriented in a vertical plane along the
N–S direction as shown is stretched vertically until it
collapses to a vertical straight wire in a time t is (a)
�R2B/t, (b) B/t, (c) 2�R2B/t, (d) 0.

B, out

b

a

9. A coil of wire consisting of 5 turns is placed in a
uniform external magnetic field that is changing in
strength at a constant rate. As a result, an electrical



3. A square coil of 100 turns with 2 cm sides lies in a
uniform 2 T magnetic field. If the coil is made to
rotate at a frequency of 60 Hz about an axis through
its center and parallel to one side, as shown, write an
expression for the induced emf as a function of time
and find the maximum emf generated in the coil.

10. A 4 mm diameter circular coil of 25 turns and total
resistance 0.001 	 lies in the x–y plane at a distance
of 3 m from a long straight current-carrying wire
along the x-axis. If the current in the wire is increasing
at a rate of 0.2 A/s, find the induced current in the coil
and give its direction in a sketch. (Assume the mag-
netic flux is uniform over the area of the coil.)

11. A 20 cm long conducting rod completes the circuit
shown through which there is a constant uniform 1.2 T
magnetic field. If the rod, having essentially all of the
electrical resistance of the circuit, R � 100 	, is free to
slide along the track without friction and is pulled at a
speed of 2 m/s to the right, find the average electric
field in the rod.
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4. A 5 cm radius circular coil lies in a region with a uni-
form magnetic field perpendicular to its surface. If the
magnetic field varies with time t according to B(t) �
0.1 � 0.05 t for 0 � t � 100 s, with B measured in
tesla and t measured in seconds, find the induced emf
during the 100 s interval.

5. Give an order of magnitude estimate, based on Faraday’s
law, of the maximum induced emf detected by a search
coil with a 0.2 m diameter 1 cm away from a long neu-
ron which carries an average current of 10 pA switched
on in 1 ms.

6. A helicopter has blades of length 2.5 m, extending out
from a central hub and rotating at 4.00 rev/s. If the
vertical component of the Earth’s magnetic field is
50.0 
T, what is the emf induced between the blade
tip and the center hub?

7. A Boeing 737 has a wingspan of approximately 40 m
(120 ft). Suppose that a 737 is flying horizontally where
the downward component of the Earth’s magnetic field
is 50 
T. At what speed would the 737 have to fly in
order for there to exist a 1.5 V potential difference
across its wingtips? Is this a reasonable speed for a 737?

8. To monitor the breathing of a hospital patient, a thin
belt (a 200-turn coil) is placed around the patient’s
chest. Suppose that the belt has a radius of 20 cm and
when the patient inhales, the belt expands to a radius of
20.5 cm. The magnitude of the Earth’s magnetic field
is 50.0 
T and makes an angle of 50° with the normal
to the coil. Assuming that a patient takes 1.80 s to
inhale, find the average induced emf in the coil during
this time. What is the induced emf when the person
exhales over the same time interval. What would a
voltage versus time trace look like on a monitor screen
as the person inhales and exhales?

9. A lightning bolt strikes the ground 200 m from a
100-turn coil. Suppose that the radius of the coil is
0.8 m and that the current carried by the lightning
bolt is 6.0 MA and falls to zero in 10.5 ms. What is
the induced emf in the coil if it is oriented with its
normal along the magnetic field direction? If the
wire has a cross-sectional area of 7.85 � 10�7 m2

(diameter of wire is 1 mm) and it is made out of cop-
per (� � 1.7 � 10�8 	m), what is the magnitude and
direction of the induced current in the wire?

X  X  

X  X  

X  X  

XX

12. In the previous problem, what force is needed to pull
the rod at the constant speed of 2 m/s to the right?

13. If you wanted to produce a sinusoidal 20 V peak-to-
peak signal in a 10 cm diameter pick-up coil with
100 turns sitting in a 1.2 T uniform magnetic field, at
what angular velocity would you have to spin the coil?

14. Induced emf measurements can be used to measure
the speed of a conducting fluid such as sea water. If
a 20 cm inner diameter nonconducting pipe has sea
water flowing through it at a flow rate of 10 gal/min
and a uniform magnetic field of 0.05 T is applied trans-
versely across the pipe, find the induced emf across a
diameter. (Hint: Look at Problem 11 above.)

15. Suppose a proton NMR resonance peak occurs at a fre-
quency of 453 MHz when measured at a temperature
of 300 K. Find the average number of protons with
spin-down versus spin-up per every million protons in
the sample.

16. Calculate the difference in spin state energy levels in
joules and in eV for a mole of protons in a 14 T mag-
netic field using the free proton gyromagnetic ratio, 
p,
of 2.68 � 108 s�1T�1 and the fact that the proton mag-
netic moment is equal to 
z � 
p(h/4�). What is the
expected proton resonance frequency? How many more
protons, per million, will have their spins up than down?

17. Given the gyromagnetic ratios for protons and for C13

of 2.68 � 108 and 0.67 � 108 s�1T�1, respectively,
calculate the resonant frequencies, in MHz, for these
two nuclei at a magnetic field strength of 1.41 T.

18. In MRI, suppose the static magnetic field is 0.5 T and
a field gradient of 0.5 � 10�4 T/cm is applied across
a person’s head that is being imaged. If protons are
being imaged, by what percent does the resonant
frequency for protons in identical environments vary
across the 15 cm width of the person’s head?
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In this chapter we begin to investigate the broad area of physics concerned with electro-
magnetic radiation and waves. The next four chapters discuss various aspects of optics,
the science of light. Here we first introduce electromagnetic waves and some of their
properties including their structure, energy, and momentum. Laser (or optical) tweezers
is an exciting new technique that allows manipulation of microscopic structures or of
individual macromolecules even within living cells. We introduce the technique based
on the momentum contained in an electromagnetic wave, and show that laser tweezers
represents a novel rapidly growing experimental technique. A brief discussion of pho-
tons, the elementary quanta of electromagnetism, and the notion of wave–particle dual-
ity are given in order to understand the basis for a large array of spectroscopic techniques
using the various portions of the electromagnetic spectrum.

1.  ELECTROMAGNETIC WAVES

Electromagnetic (EM) radiation is created whenever charges accelerate. This occurs, for
example, when time-varying currents run up and down the transmitter of a radio station or
when atoms bounce around inside a fluorescent light bulb. The “news” that acceleration
has occurred travels outward at the speed of light c. Figure 19.1 is a picture of a sphere of
radius r surrounding a negatively charged electron. At time t, the radiation E-field is mea-
sured everywhere on the surface of the sphere. That field (a few of the vectors are shown
in red) is due to the acceleration of the electron at a time earlier than t. The relevant earlier
acceleration is shown in the figure (in black). The time at which the fields shown were cre-
ated is the present time t minus the time necessary for the radiation to travel a distance r;
that is, t � r/c. At that earlier time the electron was at the center of our sphere.

The electric field radiated by the electron in Figure 19.1 has a magnitude given by

(19.1)

where e is magnitude of the electronic charge, � is the smallest angle between the
acceleration direction and the line connecting the charge to the point of observation, and
a (t � r/c) is the value of the charge’s acceleration at the time r/c before the present time
t. Because of the � dependence, the magnitude of the field is a maximum on the equator
of the sphere (where sin(90°) � 1) and zero at the poles (where sin(0°) � sin(180°) � 0).
In other words, if you look at a charge directly along its line of acceleration you don’t see
any radiation; the maximum radiation is observed at right angles to the acceleration. The
radiation E-field vectors are tangent to the sphere everywhere and point as shown. They
are always perpendicular to the direction of propagation of the radiation.

The Erad field of Equation (19.1) decreases with distance from the source as 1/r and
not as the usual 1/r2 dependence of the electrostatic field. We can demonstrate that this

Erad �
e

4pe0 c2 r
sin (u)a1t �

r
c
2,

19Electromagnetic Waves



must be true from the following geometric argument. The oscillating electron supplies
energy at a certain constant rate so that the power P carried by the radiation is constant.
Remember that power is proportional to the intensity, which is itself proportional to the
square of the field. As this energy is carried away by the spherical radiation wave trav-
eling at a constant speed c, the total amount of energy crossing any spherical surface per
second must be the same. As shown in Figure 19.2, because the surface area of a sphere
increases with the square of the radius (remember that the surface area of a sphere of
radius r is given by A � 4�r2), the total energy crossing a spherical surface per second
at two different radii r1 and r2 can only be equal if the intensity decreases as 1/r2. This
follows because if the intensities I1 and I2 represent those at radii r1 and r2, then we must
have P � I14�r1

2 � I24�r2
2, so that I � 1/r2. From this, we can conclude that the E-field

then must vary as � 1/r in agreement with the above expression for Erad.
Often electrons have heavy, positively charged, protons nearby (as in an atomic

nucleus, e.g.). The electric field causing the electrons to accelerate will also cause the
protons to accelerate, but because the protons are 2000 times more massive, their
motion usually can be ignored. In that case, the total electric field near a neutral glob
of matter equals the static Coulomb fields of the protons plus the static Coulomb fields
of the electrons plus the radiation fields of the electrons. The static fields approxi-
mately cancel out, leaving just the radiation fields. That’s why we can’t measure the
static electric field of a galaxy 10 billion light years from Earth, but can detect its

radiation field just fine (as light, with our eyes; oh, okay, and maybe a
telescope).

If the electron in Figure 19.1 oscillates up and down periodically,
it emits a continuous series of concentric spheres of radiation, each
with radius expanding at the speed of light. Some of these spheres are
shown at one instant in Figure 19.3. A few E-vectors are also shown. E
is large near the oscillating electron and smaller farther away. Suppose
the period of oscillation of the electron is T seconds. The concentric
spheres shown are generated every T/2 seconds and the distance
between them is cT/2. If one sits at a fixed point in space, such as P in
the figure, the sequence of E’s that pass through there will vary sinu-
soidally in time with a fixed amplitude. This passing wave of E is trans-
verse. Furthermore, if we look at E at any instant over a small planar
patch that is tangent to any one of the spheres of radiation, the value of
E will be about the same everywhere in the patch. The size of such a
patch of uniform E will be small in close to the radiating electron and

21/r 2
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FIGURE 19.1 A map of the E-field on a sphere
of radius r due to an accelerating electron
shown at an earlier time, t � r/c, located at the
center.

r1

r2

A2

A1

FIGURE 19.2 A point source radiating
at the center of two concentric spheres
showing that the energy passing
through A1 and A2 per second must be
the same and thus that the intensity
must decrease as 1/r2.

P

FIGURE 19.3 A series of spherical
waves of radiation emanating from
an oscillating electron at the center.
Oscillating E-fields with decreasing
amplitude with distance from the
center are shown.



will be larger the farther out one goes. A set of E-vectors that are all the same at one
instant over a plane is called an “electric field plane wave.”

Figure 19.4 depicts a series of time-lapse photographs of the electric field, produced
by the radiating electron in Figure 19.3, over a small planar patch that is perpendicular
to the direction of propagation of the radiation. Read the panels in cartoon fashion: left
to right, top to bottom. Thus, at first E is large and pointing up, then small and up, then
small and down, then large and down, then small and down, then small and up, then large
and up (one complete cycle after the first panel), and so on. The period of the oscillation
equals “six panels” in this strip. The cartoon keeps running along in the same way, over
and over. Because the electron in Figure 19.3 is always oscillating vertically, the E-fields
in the panels of this strip are also always pointing vertically because we are at point P
on the sphere’s equator (see Figure 19.1). Such a plane wave is said to be “linearly polar-
ized.” More typically, the source of electromagnetic radiation is a large number of elec-
trons that tumble about irregularly. Usually, such electrons will vibrate in concert with
each other for only a short time. The cartoon for radiation from a collection of tumbling
electrons will have panels where E is vertically oriented for a while, then oriented at
some other angle, then oriented at another angle, and so on, with no connection between
panels. Such a plane wave is said to be “unpolarized.”

Because time-varying E makes B, there is a magnetic field that travels along with
E. When E is large, so is B. When E is zero, so is B. The magnetic field is perpendicu-
lar to E and both are perpendicular to the direction of propagation. The direction of B
at any moment can be determined by the following usual right-hand rule equivalent to

forming a right-handed coordinate system such as (x, y, z): place the thumb of
your right hand in the direction of propagation of the wave and your extended fingers
in the direction of E; curl your right-hand fingers 90° to point in the direction of B.

When far from the source, these fields can be described as plane waves shown
schematically in Figure 19.5. Here an electromagnetic plane wave is shown to be com-
posed of oscillating electric and magnetic fields traveling along the x-axis. Both E and

are found to lie in a transverse plane, perpendicular to the x-direction along which
the wave travels. Furthermore, and are also perpendicular to each other and oscil-
late together, in phase with each other, as the wave travels along at speed c. We can
write each of the magnitudes of the fields in the form of traveling waves (as in Section
3 of Chapter 10)

(19.2)

where, as before,

with � the wavelength and T the period of the wave (T � 1/f
where f is the frequency of oscillation of the wave). The speed
of the wave is given by v � c � �/k, (equivalent to c � � f;

k �
2p

l
  and v �

2p

T
,

 B(x, t) � Bmax sin (kx � vt),

 E(x, t) � Emax sin (kx � vt),

B
:B

E

B
:

:

(
B

E, 
B

B,Bv )
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FIGURE 19.4 Series of time-panels
of the electric field at point P in
Figure 19.3 (see text).

y
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time = T/2 
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FIGURE 19.5 A portion of a travel-
ing electromagnetic wave with in-
phase mutually perpendicular E
(red, along y-axis) and B (blue,
along z-axis) fields. The wave is
shown moving toward the right
along the x-axis at four different
times separated by T/2, the time
for the wave to move a distance
�/2, where �/T � c.



see Equation (10.10)). As a consequence of Maxwell’s equations, the
values of Emax and Bmax are related to each other as

(19.3)

We show shortly that this expression leads to the fact that both the and
fields carry the same contribution to the total energy of the wave.

Remember that Figure 19.5 is like four snapshots of the fields (if
they were somehow made visible) traveling along the x-axis. As time

ticks on, the wave shown will move along the x-axis at speed c with the E and fields
oscillating with period T at any particular x location, as in Figure 19.4 for the E-field.
The wave also has some spatial extent in the transverse plane (not shown). A plane

wave has a flat or plane wavefront (the locus of all points at which E is in phase;
e.g., all the crests of the wave). For this type of idealized wave, the amplitudes in
Equation (19.2) are constants, not varying with the distance the wave has traveled
(Figure 19.6).

Recall that at the end of the previous chapter we made an analogy between EM
waves and waves on a string. There we loosely associated the velocity of the string
with E and the slope of the string with B. The correct analogies are that E corresponds
to transverse velocity and B corresponds to stretch of the string. On a string, velocity
is associated with kinetic energy and stretch is associated with potential energy. For a
traveling wave on a string these energies are at a maximum together and they travel at
the wave speed. The same is true of EM waves. The E part of the energy and the B part
are in phase, having maxima together and zeroes together, and they both travel at the
speed of light.

We have seen that there is an energy density associated with an electrostatic field
given by Equation (15.22),

It can be shown that energy can also be stored in a magnetostatic field and that the
energy density associated with B is given by

Given this, it should not be surprising that an electromagnetic wave made from oscil-
lating E and B fields also has an associated energy density given by

(19.4)

where the E and B fields vary sinusoidally. We can rewrite this expression using Equation
(19.3) to substitute for B � E/c and the fact that 	0 � 1/(
0c2) (from Equation (18.11)),
where we have also used the fact that E and B are in phase so that Equation (19.3) holds
not only for the maximum values but at all times. We then have that B2/	0 � 
0E2, so the
energy density can be rewritten as

(19.5)

Because each of the terms in the bracket in Equation (19.5) is equal, the electric and
magnetic fields each contribute equally to the total energy density of the EM wave.

As an EM wave moves with speed c in vacuum, it carries energy. If we imagine
such a wave traveling along the x-axis (Figure 19.7), then in a time �t the wave will
move a distance of c �t. In that time a volume of the wave equal to Ac �t will sweep
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FIGURE 19.6 A plane electromag-
netic wave (showing only the 
E-field) traveling along the x-axis
with its common plane wavefront
highlighted. This entire wave is
shown at the same time, unlike the
previous figure, which is a series of
four different snapshots in time.
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FIGURE 19.7 An EM wave carries
energy per unit area per unit time
according to Equation (19.6).



through a cross-sectional area A perpendicular to the wave velocity. The energy trans-
ported by the wave in time �t through the area A is then

so that the EM wave energy per unit time per unit area, S, is equal to

(19.6)

S is known as the Poynting vector. It points in the direction of travel of the wave,
and is measured in units of J/s/m2, or W/m2. Because E is taken as a sinusoidal func-
tion, S varies with time as well.

The average value of S represents the intensity I of the wave, or the mean energy flow
per unit time per unit cross-sectional area. Intensity is important because that’s what the
eye detects when the EM radiation is in the visible range. Because E is given by Equation
(19.2) and the average of the function sin2(x) over one period is equal to 1⁄2, we have that

(19.7)

The intensity of EM waves is a measurable quantity; detectors can measure the
amount of energy per unit time and per unit area that reach them. On the other hand,
the Poynting vector fluctuates with time, often much too fast to be detected directly.
For example, visible light has a frequency of about 1015 Hz. In order to detect such
rapid fluctuations a time resolution of about 1/1015 s � 1 fs, is required and this is
just at the edge of our current abilities.

I �
1

2
e0 cEmax
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Example 19.1 An EM plane wave traveling along the x-axis has an effective cross-
sectional area of 1.5 cm2, a maximum electric field of 1500 N/C and a frequency
of 4 
 1015 Hz. Find each of the following quantities: its maximum B field, energy
density, an expression for the Poynting vector, the intensity of the wave, and the
energy striking a 0.5 cm2 area with its normal along the x-axis in 10 s.

Solution: We first find the amplitude of the magnetic field from Equation (19.3) to
be B � E/c � 5 
 10�6 T. These values then allow us to calculate the energy den-
sity, from Equation (19.4) to be 2 
 10�5 J/m3. Alternatively we can use Equation
(19.5) directly to find the same result. The Poynting vector then has an amplitude
given by Equation (19.6) to be Smax � (PE /V)c � 6000 W/m2 along the x-axis and
varies at the very high frequency of 4 
 1015 Hz. It can be written as S �

and is directed along the x-axis. Its average value over
time is the intensity given by Equation (19.7) as .
Finally, if this wave strikes the given surface, the power reaching the surface is just
P � IA � 0.15 W, so that in 10 s the energy absorbed will be 1.5 J.

3000 W/m2I � 1/2Smax �

6000 sin (2p # 4 # 10�15t)

:

Example 19.2 If the maximum intensity of an EM wave is 1000 W/m2 (about
what it is in sunlight reaching the Earth), what is the maximum E?

Solution: Solving for E from Equation (19.7), we find 
or about 9 V/cm. Such a field drives as much current through a cm of skin as a 9
V battery!

E � 12I/eoc � 870 V/m,



When an electric radiation field encounters a charge, it makes the charge jiggle
with the same frequency as the radiation. A jiggling charge is accelerating, so it radi-
ates as well, emitting “induced” radiation with the same frequency as the “incident”
radiation. This induced radiation travels outward in all directions. The total E

observed at any point in space is the vector sum of all E’s, the incident E’s as well as
all induced E’s. This is just the superposition principle for electric fields that we’ve
discussed previously. We return to this in Chapter 22.

In addition to carrying energy, an electromagnetic wave also carries linear
momentum, and hence can exert a force. Although the amount of momentum or force
is usually small compared to ordinary forces we experience, the force generated by
an intense light beam, for example, from a laser, is enough to provide an upward
force on small particles to balance their weight and suspend them in air. The pressure
exerted by EM waves is known as radiation pressure. Figure 19.8 shows a small drop
of glycerol being suspended in water by the radiation pressure of a laser beam. The
possibility of “trapping” micron-sized spheres was first demonstrated in the early
1970s. In the next section we discuss a new technique that uses radiation pressure to
allow the direct manipulation of microscopic objects.

2.  LASER TWEEZERS

First conceived and developed in the mid-1980s by Ashkin and colleagues at AT&T
Bell Laboratories, laser, or optical, tweezers is a method of using radiation pressure to
trap atoms, molecules, or larger particles. In applications with the simplest possible
arrangement using a single laser beam, particles with sizes in the range of several hun-
dred microns down to about 25 nm can be “trapped” and moved about using the radi-
ation pressure of the EM radiation. How does radiation pressure trap such particles?

If a plane electromagnetic wave is incident on a particle, the radiation pressure on the
particle would be such as to propel it along the direction of the beam. This is due to the
fact that the reflected wave results in a net decrease in forward momentum of the wave.

Conservation of momentum for the system composed of the EM wave and
the particle then dictates that the particle must sustain a forward momentum.
This process is responsible for the suspension of micron-sized spheres in
gravity as in Figure 19.8 when the beam intensity is adjusted so as to just
balance the sphere’s weight. A higher intensity beam would propel the
sphere upwards, whereas a lower intensity beam would allow the sphere to
fall but at a reduced acceleration compared to g. This analysis does not as yet
explain how a laser or optical tweezers can trap a particle.

Consider a transparent sphere with dimensions large or comparable to
the wavelength of the EM wave that impinges on it. We show in the next
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FIGURE 19.8 Optical levitation of a
drop of glycerol at the center of the
chamber by a vertical green laser
beam.
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FIGURE 19.9 The refraction of a
focused laser beam passing
through a transparent sphere. The
magnitude of the light beam’s
momentum depends on its color
and its intensity. For fixed color and
intensity only the direction of the
light momentum changes on refrac-
tion. The insert shows the change
in momentum of the extreme light
rays shown. The symmetric situa-
tion results in a net change in
momentum of the laser beam along
its propagation axis, so that there is
a reaction force upwards on the
sphere, toward the focus point.



chapter that at an interface between different materials, EM waves are
bent, or refracted, as shown in Figure 19.9. This process is studied
in detail later; for now, all we need to know is that the arrows drawn to
represent the direction of travel of the wave will be bent at each surface.
Refraction of an EM wave is the basis for laser tweezers. In Figure 19.9,
the EM wave is shown coming to a focus above the sphere and two rays
are drawn to typify the path of the wave. As shown in the insert, if the
change in momentum of the wave is determined for this situation,
the net change is in the forward direction, so that there is an equal and
opposite change in the sphere’s momentum resulting in a net force on
the sphere in the opposite direction, toward the focus point. Similarly if
the focus point is below the sphere, there will be a restoring force due
to the radiation pressure directed again toward the focus point. These longitudinal forces
directed toward the focus point act to stabilize or “trap” the particle longitudinally.

Figure 19.10 shows the same arrangement with the sphere off-center but with the
beam having a variation in intensity across its cross-sectional area. A similar momentum
change analysis, shown in the insert, reveals that in addition to a force toward the focus
point, in this case downward, there will also be a transverse force directed toward the
more intense portion of the beam along its axis. In a real single beam laser tweezers
arrangement, the beam will have its maximum intensity at the center and the sphere
would be trapped transversely to lie along the center and at the focus point.

Typical forces capable of being exerted are in the pN (10�12 N) range. In order to
move the trapped particle about, either the laser beam itself or the sample, sitting on a
microscope stage, is moved. An experimental station uses a good quality inverted micro-
scope with an optical port for the laser as shown in Figure 19.11. Usually near-infrared
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FIGURE 19.10 Similar to the
previous figure, but with the laser
beam having a typical transverse
intensity profile as shown and with
the sphere off-center and above the
focus point. The insert shows the
momentum change of the extreme
laser beam rays, now no longer
symmetric. This analysis shows that,
because the intensities are not sym-
metric, there will be a net change in
the light momentum as shown and
so the sphere feels an oppositely
directed reaction force not only
along the beam toward the focus
point, but also transversely toward
the beam axis.

FIGURE 19.11 (left) Schematic of a basic laser tweezers experimental setup; (right) Laser
tweezers experimental station with microscope at far end of optical table.



laser light with a wavelength of about 1 	m is used with biological
samples. Although the beam is invisible to the human eye and there-
fore needs to be detected with an infrared-sensitive CCD camera for
recording, its use usually avoids the problems of light absorption and
subsequent heating of samples that can occur when using visible light.
The sample can be directly viewed through the usual microscope eye-
piece using a standard visible light source of the microscope. Care
must be exercised to ensure that the laser beam is not directed on the
sample when viewing by eye because the beam is invisible and, for a
sufficiently intense laser beam, can cause damage to the eye. Laser
beams have a cross-sectional intensity profile that is bell-shaped with
a maximum in the center and therefore automatically act to trap parti-
cles in the transverse direction according to the above discussion.

Optical tweezers of biological samples takes place in an aque-
ous solvent, whether a solution in which the biomolecules of inter-
est are placed or the cytoplasm of a cell. As the trapped object is
moved, there will be an immediate viscous drag force acting that
will balance the trapping force, so that the object will move at a
constant velocity. This Stokes’ drag force (see Equation (9.6))

can be used to calibrate the trapping force achieved at a particular
laser intensity and beam geometry. By measuring the maximum velocity with which a
micron-sized plastic sphere of known radius can be dragged by the laser tweezers, the
trapping force can be determined by its balance with the Stokes’ force because the vis-
cosity and sphere radius are known. In this way, the maximum applied trapping force
can be found as a function of the laser intensity.

If a sphere is attached to one end of a linear macromolecule such as DNA or a fil-
amentous protein such as actin and the other end of the macromolecule is immobilized,
laser tweezers can be used to stretch the macromolecule a given distance and measure
the minimum applied trapping force at which the sphere just “pops out” of the trap
(Figure 19.12). Under this condition, the applied trapping force is just equal to the force
the macromolecule is exerting on the sphere, allowing a measurement of the elastic
force exerted by the macromolecule. 

There are already many applications for which laser tweezers have been used.
Individual motile (swimming) organisms, such as E. coli bacteria, have been trapped by
laser tweezers while they continue to live normally with flagella beating (Figure 19.13).
Similarly laser tweezers can be used to manipulate subcellular organelles within a living
cell. The IR laser passes through the cell membrane and can trap large organelles or struc-
tures, such as individual chromosomes, that can then be moved about. It can also be used
to exert forces directly on a cell membrane (Figure 19.14). More quantitative measure-
ments of forces have been made with laser tweezers as mentioned in the last paragraph. In
this way the stiffness and breaking strength of such molecules can be measured. Time-
resolved measurements on trapped micron-sized plastic spheres attached to the ends of an
actin filament or a microtubule have been made to study the forces generated when single
molecules of either myosin or kinesin move along the respective filaments (Figure 19.15).
These motility assays have recently achieved measurements at subpiconewton force and
nanometer displacement resolutions with a time resolution of about 1 ms, allowing the
results of single molecule interactions to be studied in great detail.

Ff � 6phr v
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FIGURE 19.12 Time series showing
a plastic sphere with a motor pro-
tein attached that is trapped in
laser tweezers. The motor protein is
driving the sphere upwards on the
axoneme but the trapping force is
just greater and able to keep the
sphere trapped although it wobbles
about the trap center (red line).

FIGURE 19.13 Images of an E. coli
bacterium rotating into a focused
laser trap in frame 18 and remaining
trapped for four frames before
shutting the trap, releasing the
bacterium.



3.  POLARIZATION

We have seen that electromagnetic waves are transverse waves with their electric and
magnetic fields both lying in the transverse plane (perpendicular to the wave velocity)
and also perpendicular to each other. The direction of the electric field is known as the
polarization direction of the wave. If, as the wave propagates, the electric field remains
along the same direction in space, the wave is said to be linearly polarized. Sometimes,
in this case, the wave may be referred to as vertically or horizontally polarized if the 
field points in either of those directions.
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FIGURE 19.14 Laser tweezers
applied at the arrow exert
mechanical forces on a membrane,
stretching it from its undeformed
contour (dashed curve).

FIGURE 19.15 A time series of phase
contrast images of a microtubule,
deflected by laser tweezers (visible as
a set of four bright spots), returning to
its unbent position. The images are
taken at t � �0.04 s (upper left; the
laser is switched off at t � 0), t � 0.12
s (top right); t � 0.52 s (bottom left);
and t � 1.0 s (bottom right). Laser
tweezers can give information about
the forces and displacements involved
and can be used to micromanipulate
individual macromolecules.



In more general terms, because is confined to the transverse plane, there are
two independent orthogonal directions possible, let us say the x- and y-axes as shown in
Figure 19.16. Depending on the source of the EM radiation, the electric field may or may
not have a definite polarization direction. For example, light from the sun, from a flame,
or from incandescent or fluorescent light bulbs has its origin in the independent motions
of huge numbers of atoms or molecules and has no particular polarization direction. Such
light is said to be unpolarized, meaning that the superposition of the E field directions
from all of the individual sources of light (atoms/molecules) leads to a random orienta-
tion for as a function of time.

Various methods can be used to change the polarization properties of EM radiation.
We discuss some of these in more detail in our discussions of optics in the next chapters.
Here we illustrate one particular method, the use of an absorption polarizer such as a sheet
of Polaroid, for producing a linearly polarized light wave from unpolarized light. Polaroid
sheets contain long chains of organic molecules that are preferentially oriented in one
direction. When incident unpolarized light falls on such a sheet, the oscillating electric
field component along the chain direction is preferentially absorbed because, simply put,
the electrons are able to move along that direction and take up some of the energy corre-
sponding to light polarized along the chains. In contrast, the electric field polarized per-
pendicular to the chains is not able to interact strongly with electrons because they have
more limited mobility in the transverse direction and this electric field polarization passes
directly through the otherwise transparent sheet. The net effect is that after passing
through a Polaroid sheet, unpolarized light becomes linearly polarized along the Polaroid
axis, which is perpendicular to the organic chain axis, as shown in Figure 19.17.

Other forms of EM radiation behave quite similarly, although the nature of the
polarizer device will be different. For example, an unpolarized microwave beam (with
a wavelength of several cm) can be polarized by passing it through a set of parallel
wires, such as the metal baking rack used in a conventional oven. The polarization axis
in this case is perpendicular to the wires for the same reason as in Polaroid film: elec-
trons are better able to absorb the energy of the microwaves along the axis of the wire,
leaving the transmitted microwaves preferentially polarized perpendicular to the wires.

Polaroid sunglasses function just as described above, having their polarization axis
vertical. What is the advantage of Polaroid sunglasses over others that simply attenuate
the total intensity regardless of the polarization direction? As was mentioned above, sun-
light is unpolarized and so there would be no benefit in preferentially blocking one polar-
ization direction over another in looking directly at sunlight. However, when unpolarized
light reflects from a surface, more of the horizontally than vertically polarized light is
reflected and this is commonly seen in the form of “glare”. As long as you hold your head
upright, Polaroid sunglasses are quite effective in blocking this glare (Figure 19.18).

The polarization properties of a wave may be investigated using polarizers placed in
the path of the wave. If we choose to orient a first polarizer with its axis vertical then
regardless of the polarization of the incident wave, only vertically polarized waves will
be transmitted through the polarizer, assuming an ideal polarizer. If the incident wave was
unpolarized, then because on average horizontal and vertical polarizations are present in
equal amounts, half the incident intensity will pass through the first polarizer. If the ini-
tial wave were already vertically polarized then all of its intensity would be transmitted
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FIGURE 19.16 Three types of EM polarization indicated by doubled-pointed arrows in the
transverse plane: A, linearly polarized in the vertical direction; B, linearly polarized at 45° to
the vertical; C, unpolarized, schematically drawn, where the electric field randomly orients
as a function of time. Note that the EM wave is traveling along the z-axis in all cases.

Polarization axis 

c

FIGURE 19.17 Vertically polarized
light is obtained from an unpolar-
ized light beam, traveling to the
right, that is incident on a sheet of
Polaroid oriented with its transmis-
sion axis oriented vertically.



whereas, on the other hand, if it were initially horizontally polarized no light
would be transmitted.

Suppose that a second polarizer, often called an analyzer, is now placed in
the path of the vertically polarized wave transmitted by the first polarizer. We
can treat the vertically polarized wave as a superposition of two linearly polar-
ized waves, one parallel and one perpendicular to the analyzer’s axis, making
an angle � with that of the polarizer (see Figure 19.19). Only the parallel com-
ponent will be transmitted through the analyzer. If the incident electric field on
the analyzer is E0, its transmitted component along the analyzer’s axis, is

(19.8)

Clearly if the analyzer is rotated around, there will be two positions
(� � � 90°) at which the transmitted field vanishes and the polarizers are
then said to be “crossed.” Because, according to Equation (19.7), the intensity is
proportional to the square of the electric field, the transmitted intensity It is related to
the incident intensity I0 by

(19.9)

Equation (19.9) is sometimes known as the law of Malus.

It � I0 
cos2u.

Et � E0 
cosu.
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FIGURE 19.18 A Polaroid screen
(on the right) used to block glare on
a computer monitor.

Example 19.3 A vertically polarized 0.15 W laser beam is incident on a polar-
izer with its transmission axis 45° to the vertical. The beam then passes through
a second polarizer with its transmission axis horizontal. What is the intensity of
the transmitted beam? What would be the intensity of the transmitted beam if the
second polarizer were removed? What would it be with the second polarizer in
place if the first polarizer were removed?

Solution: Using Malus’ law the intensity passing through the first polarizer will be
I1 � 0.15 cos245 � 0.075 W. Then the intensity passing through the second polar-
izer will be I2 � I1cos245 � 0.038 W, because the second polarizer’s transmission
axis makes a 45° angle with that of the first. If the second polarizer is removed, the
transmitted intensity will simply be I1 � 0.075 W, whereas if the first polarizer is
removed there will be no transmitted intensity because the angle between the ver-
tically polarized incident beam and the horizontal second polarizer is 90°.

θ θ 

x

z

y

FIGURE 19.19 Vertically polarized (along z) wave
traveling to the right incident on an analyzing polarizer
in the transverse plane oriented with its transmission
axis at angle � from the vertical. The original E field
can be decomposed into the two components
(shown as dashed lines) along the polarizer axes.
Only the portion of E along the transmission axis of
the polarizer (in black) is then transmitted.
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y
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FIGURE 19.20 In phase x- (red) and y- (blue) components
of an electric field add to give linearly polarized light (black),
as shown in this time sequence covering one period of
oscillation.

In our discussions the transverse electric field vector was pictured in general as two
orthogonal components along a pair of axes in the transverse plane. For unpolarized light
each of these components varies randomly in time and, on average, has equal amplitude.
For linearly polarized light along some arbitrary direction, the components of oscillate

B

E



in phase and add to give a resultant along a fixed linear direction as shown in Figure 19.20.
Different relative magnitudes of the two components of result in linearly polarized light
at different angles. For example, the larger the red component is compared to the blue, the
closer the resultant E points to the x-axis.

Another interesting type of polarization is known as circular (elliptical) polariza-
tion, where the E field moves around the transverse plane in a circle (ellipse). We can
think of this type of polarization as arising from x- and y-components of E that are 90°
out of phase as shown in Figure 19.21. Starting with the y-component at a maximum
and the x-component equal to zero, as the y-component decreases the x-component
increases; the x-component reaches a maximum when the y-component vanishes; and
so on. With both x and y-components equal in magnitude, the E field traces out a cir-
cular pattern in the transverse plane. In our example, the E field traces out a counter-
clockwise directed circle in the transverse plane as viewed from the right. If the x- and
y-components are unequal, elliptical polarization occurs. Note that the actual path of  E
is a circular (or elliptical) helix in space as the wave moves along (as shown in Figure
19.21). These types of polarization are important in discussing the spectroscopic tech-
nique of circular dichroism (CD) in Chapter 23.

4.  THE ELECTROMAGNETIC SPECTRUM

In our general discussion of electromagnetic waves in Section 1, we have seen that accel-
erating electric charges produce electromagnetic radiation in the form of transverse travel-
ing waves of E and B. There we introduced the notion of a frequency and wavelength,
connected through their product with the speed of light c � f �, for the traveling wave
expressions for E and B. The range of possible wavelengths, or frequencies, is enormous.
Figure 19.22 shows the electromagnetic spectrum with wavelengths, frequencies, and
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FIGURE 19.21 Circularly polarized
light with the Ex (blue) and Ey (red)
components 90° out of phase so
that the net E vector (black) tip
traces out a circle in the transverse
plane (or a helix in space, as
shown).

102 104 106 108 1010 1012 1014 1016 1018 1020 1022

Wavelength (m)

Frequency(Hz)

3x104 3x10–4 3x10–8 3x10–123

Energy(eV)4x1054x1014x10–34x10–74x10–11

Radio waves Infrared Gamma raysX-rays

Ultra-

violet

Visible Light

Long waves

FIGURE 19.22 The electromagnetic spectrum. The logarithmic scales for frequency,
wavelength, and energy are shown together with the names of the various general regions.



corresponding energies given using logarithmic scales. Electromagnetic radiation can arise
through a large number of different types of processes, all having to do with accelerating
electric charges. The broad categories of electric waves, radio waves, microwaves, infrared,
visible, ultraviolet, x-ray, and gamma rays are used to distinguish the various parts of the
EM spectrum that are produced in different ways. All electromagnetic waves are similar,
in our classical wave picture, in having transverse electric and magnetic fields. They differ
greatly not only in how they are produced but also in how they interact with matter.

We show in the next section that EM radiation, although for some considerations can
be thought of as a classical wave, is actually composed of individual “wave-particles,”
known as photons. These elemental quanta of energy have associated frequencies and
wavelengths. The energy carried in each photon is proportional to its frequency. We saw
this briefly in Equation (18.8) of the previous chapter in connection with RF photons in
NMR. This proportionality is the origin of the energy scale labeled in Figure 19.22.
Higher-frequency EM radiation corresponds to higher-energy photons.

The lowest-energy, lowest-frequency radiation is produced by simple alternating
current circuits in which the electric current is made to oscillate in time at a given fre-
quency. Higher-frequency oscillations of current along an antenna result in radio or TV
signals. Associated frequencies range from about 10 kHz to about 1 GHz (109 Hz).
Interestingly, radio signals can also arise from nuclear magnetic dipole transitions, as
was discussed in connection with NMR (nuclear magnetic resonance) and MRI (mag-
netic resonance imaging) in the last chapter. The highest frequencies obtainable in
oscillating electric circuits, up to about 1011 Hz, are associated with microwaves
(including radar). We have seen that microwave radiation is also emitted in the phe-
nomenon of ESR (electron spin resonance) in paramagnetic materials.

Still higher frequency radiation has its origin in various energy transitions in atoms,
molecules, or nuclei. When an atom or molecule makes a transition from a higher
energy state to a lower one, often the energy difference is emitted in the form of a pho-
ton. In macroscopic systems the number of emitted photons is enormous and consti-
tutes electromagnetic radiation. The higher the frequency of radiation is, the larger the
energy difference between the two transition energy levels, or states, involved. The low-
est such energy transitions occur in different spin states within the nucleus (NMR tran-
sitions; radio frequency radiation) and in paramagnetic electron spin transitions (ESR;
microwave radiation) as mentioned. Higher-frequency radiation, such as infrared, visi-
ble, ultraviolet, or x-rays, is produced by transitions between various electron energy
levels, whether closely spaced rotational or vibrational, or further spaced electronic
states (these are discussed in Section 6 below and also in Chapter 25). The highest-
energy, highest-frequency radiation, gamma rays, consists of high-energy photons
resulting from energy transitions of the protons and neutrons within the nucleus.

It is also very instructive to examine the wavelengths of the various forms of elec-
tromagnetic radiation as shown in Figure 19.22. Note that longer wavelengths corre-
spond to lower energy radiation. This is due to the inverse relation between frequency
and wavelength and is explained further in the next section in connection with photon
energies. Visible light is but a very narrow window of the EM spectrum, although the
only one visible to the human eye. Other animals have visual receptors that extend out
into the infrared or ultraviolet regions. We discuss the functioning of the eye in
Chapter 21. Nonvisible radiation interacts with our bodies in various ways. We feel
warmth from infrared radiation, get sunburned from damage that ultraviolet radiation
causes to our skin, and receive small amounts of molecular damage from x-rays at
the doctor or dentist and from naturally occurring gamma radiation. In Section 6 we
survey the interactions of various forms of radiation with matter.

5.  THE QUANTUM THEORY OF RADIATION: CONCEPTS

Our discussion of electromagnetic radiation has thus far been in terms of electro-
magnetic waves produced by accelerating charges. Maxwell’s equations predict
such waves and give a rather full account of their properties. In the early 1900s and
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culminating in the 1920s and 1930s, a more complete theory of radiation was devel-
oped incorporating particlelike properties of radiation as well as wavelike proper-
ties. These additional properties cannot be accounted for by classical physics, but
have their basis in quantum mechanics, our best theory of the microscopic world.

Our understanding of radiation is now based on a picture in which there is a fun-
damental quantum of radiation, known as the photon. Introduced by Einstein, the pho-
ton has both particlelike and wavelike properties. Photons carry discrete amounts of
energy and momentum that can be localized in space, just like a particle. The energy
of a photon is related to its frequency, a wavelike property, by

(19.10)

where h is a new fundamental constant of nature known as Planck’s constant, and has
the value h � 6.63 
 10�34 J · s. Because f � c/�, we can also write Equation (19.10)
as E � hc/�. The theory of special relativity (which we study briefly in Chapter 24)
shows us that the energy and momentum of a photon are related as E � pc. From this
we can conclude that the photon’s momentum depends only on its wavelength, another
wavelike property, as

(19.11)

You should definitely be surprised that photons, with no mass, can have momen-
tum, a property that up until now we have associated with a particle with mass. We
show in Chapter 24 that these two fundamental equations for the energy and momen-
tum of a photon can explain a number of phenomena that cannot be explained by a
theory based solely on classical electromagnetic waves.

How are we to picture radiation having both wave and particle properties? We
are accustomed to thinking of waves as extended disturbances and of particles as
“pointlike” objects. Up until now these have been mutually exclusive concepts.
Particles do not have wave properties and waves do not have particle properties.
Quantum mechanics turns those ideas upside down as we show. For now, it is suf-
ficient to qualitatively introduce the notion of a wave packet. Figure 19.23 shows
a schematic representation of a wave packet, a wave that has a limited extent in
space. Although not a pure frequency, a wave packet can change its spatial dimen-
sion in response to interactions with the external world. The greater the spatial
extent, the closer the frequency content is to a pure single frequency (the limit
being a perfect sine wave of infinite extent). In this way a single photon can
behave more like an extended wave or like a particle depending on its spatial
extent.

The intensity of a classical wave (being the energy per unit time per unit area and
proportional to the square of the amplitude of the wave) does not correspond to a
property of a single photon, but rather to the number of photons per second, each car-
rying a particular energy given by Equation (19.10). A more intense beam of light of
a single color contains more photons per second traveling in the beam. For example,
in a 1 W beam of laser light at a visible green wavelength of 514.5 nm there are
many, many photons per second.

p �
h

l.

E � hf,
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FIGURE 19.23 A wave packet,
localized in space but able to
change its spatial extent on
interaction with its environment.



Because there are so many photons at the usual ambient levels of light, we
are not usually aware of the discrete nature of light or of the interactions of a single
photon.

Processes that rely on a single photon to have sufficient energy to cause an
event to occur will be sensitive to the frequency of the radiation and not to the
intensity of the beam. For example, in the photoelectric effect, a process involved
in the photodetection of light and discussed in Chapter 24, a minimum energy
threshold must be exceeded in order for the detection process (absorption of the
photon with the ejection of an electron) to occur. A high-intensity beam of photons
with subthreshold energies (huge numbers of photons, each with not enough
energy) will not cause the emission of any electrons, whereas another beam of
higher-frequency photons but with very low intensity may allow the detection of
single photons (Figure 19.24).

We have stressed the common features of electromagnetic radiation up
to this point. What most distinguishes the different forms of photons, aside from their
method of production, is their interaction with matter. In the next section we discuss
the large variety of such interactions and some of their consequences.

6.  THE INTERACTION OF RADIATION WITH MATTER; 
A PRIMER ON SPECTROSCOPY

When electromagnetic radiation is incident on matter some fraction of the photons
will usually be transmitted, passing through a sufficiently thin piece of matter with-
out interacting, and the rest will be absorbed and will interact with the material. The
particular type of interaction will depend on the energy of the photon and the struc-
ture of the matter. We have already discussed some of the interactions of radio and
microwave radiation in connection with NMR and ESR. In this section we focus on
photons of higher energies, especially the infrared, visible, and ultraviolet portions of
the EM spectrum.

The energy level diagram is the crucial indicator of the type of possible
interactions with radiation. Figure 19.25 shows a schematic diagram of typical
energy levels with closely spaced rotational and vibrational energy levels, with
energy differences of 0.01–0.1 eV. These correspond to overall rota-
tional motions of molecules or to the relative positional vibrations
of atoms in a molecule and are the lowest energy transitions other
than nuclear or electron spin flip energy differences. Larger energy
level spacings, with energy differences of about 1 eV, are due to the
various electronic states (related to the valence electron’s mean dis-
tance from the nucleus), and the even larger binding energies of the
inner electrons.
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Example 19.4 Calculate the number of photons per second in a 1 W beam from
an argon ion laser with a wavelength of 514.5 nm.

Solution: Since each green photon carries an energy given by Equation (19.10) as
Ephoton � hf � hc/� � (6.6 
 10�34)(3 
 108)/(514.5 
 10�9) � 3.8 
 10�19 J,
the number of photons in the 1 W beam is given by

a very large number indeed.

N �
1 J/s

3.8 
  10�19 J/photon
� 2.6 
  1018 photons/s,

Photon beam 

Photon detectors

Detector output 

No Detector output 

FIGURE 19.24 An intense photon
beam with red photons, all with
energy too low to be detected,
produces no output from a photon
detector, whereas individual more
energetic blue photons each can
be detected and produce an
output signal.



Transitions of electrons from the lower “ground state”
to higher energy levels, with a change in energy equal to
�E, can occur upon the absorption of a photon with an
energy, frequency, and wavelength such that

(19.12)

Table 19.1 shows the general correspondence between
the type of EM radiation and the atomic or molecular tran-
sitions produced. In general, the shorter the photon wave-
length, the more energy imparted to the atom or molecule
that absorbs the photon.

Ephoton � hf �
hc

l
� ¢E.
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Vibrational levels
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Ground electronic state 

First excited electronic state 

~0.1 eV ~0.01 eV 

FIGURE 19.25 Typical energy level
diagram of an atom or molecule
showing two electronic states
and associated vibrational and
rotational energy levels. Table 19.1 Types of Atomic or Molecular Transitions Produced 

by EM Radiation

EM Radiation (Increasing Energy) Energy Level Transitions

Microwave Rotational

Infrared Molecular vibrational

Visible and Ultraviolet Valence electronic

X-ray Inner electronic

Two general types of interactions can be distinguished based on whether ioniz-
ing or nonionizing radiation is used. Ionizing radiation consists of x-rays or gamma
rays and results in the ejection of one or more electrons; we study such processes in
Chapter 26. Nonionizing radiation results in a large variety of possible interactions
and there is a correspondingly large number of spectroscopic techniques used to
probe the radiation–matter interactions in order to learn something about the struc-
ture of the sample.

Let’s imagine that we perform a spectroscopy experiment in which a beam of
monochromatic (literally, single color, but this term is used to mean a uniform fre-
quency or wavelength for nonvisible light where we don’t use the concept of color)
photons is directed on a biomolecular sample to study the nature of the absorbed or re-
emitted radiation. Figure 19.26 shows a typical experimental setup for spectroscopy.
Although the wavelength of the incident light is varied, the appropriate detector,
monitoring either the transmitted or scattered light, records a spectrum showing the
variation in the measured parameter as a function of incident wavelength. Depending
on the type of interaction, we discuss the information one can obtain from such mea-
surements. Our presentation is by no means a complete summary of the various types
of spectroscopy.

sample 

Transmission

detector 

Scattering

detector 

Incident beam 

computer

FIGURE 19.26 A scattering experi-
ment in which both the transmitted
and scattered (typically at 90°) EM
radiation is detected. In some tech-
niques the incident wavelength of
light is continuously changed and
the detected signal is recorded as
a function of wavelength to pro-
duce a spectrum, whereas in oth-
ers the incident wavelength is fixed
and the detected signal is analyzed
for wavelength content to produce
a spectrum.



With infrared, visible, or ultraviolet light incident on a sample, some small
fraction of the incident photons will be absorbed and can be detected using
absorption spectroscopy. Most of the absorbed energy that has caused various
transitions to occur ends up heating the solution via collisions of the molecules.
If the incident intensity on the sample is I0 then the intensity detected after trav-
eling a distance x through the sample with molar concentration c of absorbing
molecules will be

(19.13)

where 
 is the molar extinction coefficient, dependent on the wavelength of
the incident EM wave. When rewritten taking the logarithm using base 10 as 
log (I/I0) � �
xc log(e) � �
xc/2.3, we can introduce the absorbance A, from the
Beer–Lambert law

(19.14)

When the distance x is taken to be 1 cm, the standard path length of special optical
cells used in spectroscopy, then A is commonly called the optical density. An optical den-
sity of 2 means that only 10�2 � 0.01 or 1% of the light will be transmitted. Remember
that 
, and thus A, depends on the wavelength. At the wavelength corresponding to a
maximum absorbance, A is known as the extinction coefficient, and, once known, can be
routinely used to determine the concentration of a solution of absorbing molecules after
a measurement of the absorbance.

A � exc/2.3 � log (I0 /I).

I � I0 e�exc,
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Example 19.5 A 1:10 dilution of a DNA solution is pipetted into a 1 cm path length
quartz (non-uv absorbing) cuvette which is then put in an absorption spectrometer
to determine its optical density at 260 nm. Measurements find that the absorbance
is 0.24 OD. If the extinction coefficient is known to be 6600 M�1 cm�1, what is the
molar concentration of the original DNA sample and what fraction of the incident
light would be transmitted through a cuvette with the original DNA solution in it?

Solution: According to Equation (19.14) the molar concentration c is given by
c � 2.3A/
x � (2.3)(0.24)/(6600)(1) M � 8.4 	M. Then because the measured
sample was a 1:10 dilution, the original concentration of the sample was
84 	M. If the original DNA solution had been used directly the measured opti-
cal density would be, barring any nonlinear effects, 2.4 OD. Using Equation
(19.14), we find the ratio Io/I � 102.4 � 250, so that only 0.4% of the intensity
is transmitted.

In infrared spectroscopy, the infrared photon energies are just sufficient to excite
vibrational excitations of various covalently attached atoms. In general, IR radiation
will heat such samples because the internal energy is increased by the absorption of
these photons. Imagining that the bonds correspond to springs (see Chapter 4), when
the photon frequency corresponds to the spring resonant frequency there will be a
large increase in the absorption of photons. Because the “effective spring constant”
of a bond is specific to the type of atoms bound, IR spectra can be used to “finger-
print” the sample molecules. Methyl (C–H), carbonyl (C � O), and amide (N–H)
bonds, for example, each have characteristic absorption energies that depend also on
the local environment of the atoms. Because of the large number of similar absorp-
tion energies in large macromolecules such as DNA, IR spectra tend to be broad
superpositions of many peaks. One major difficulty is that water, the universal sol-
vent in biology, is a strong absorber of IR radiation and, because it is present in



relatively enormous quantity, masks the absorption peaks due to other molecules.
The use of D2O or other methods have overcome this problem. Much of the IR work
with larger macromolecules compares two otherwise identical samples when one
variable of the environment, for example, the pH, has been changed. The informa-
tion obtained from such difference measurements can be used to learn about con-
formational changes that have occurred under these conditions.

Ultraviolet-visible (uv-vis) absorption spectroscopy probes valence electron
excitations. It is precisely these interactions that determine the “chemistry” of
the material in that these valence electrons make up the chemical bonds between
atoms. Photon energies are sufficient to excite the stronger double and triple
bonds and the strongest contributors to the absorption are ring-structures com-
monly found in biomolecules such as the amino acids tryptophan and tyrosine
or the bases of nucleic acids (see Figure 19.27). This technique is routinely used in
biological research to measure the concentration of molecules because the absorp-
tion is usually proportional to concentration. Measurements are very sensitive to
the overall conformation of molecules and can be used to monitor such changes as
the melting of DNA (Figure 19.28). Again, difference measurements are commonly
used to study the specific effects of a particular perturbation on the sample.

Of the absorbed visible photons, some small fraction will be re-emitted (scattered)
by the molecules with nearly unchanged photon energy (elastic scattering), but redi-
rected spatially. If the scattering molecules of molecular weight M are small compared
to the wavelength of light, then the scattering will be uniform in all directions (isotropic).
In this case, the intensity of the scattered light will depend on the wavelength of the inci-
dent light � in a characteristic and very strong way (inverse fourth power of �)

(19.15)

where c is the mass concentration (kg/m3) of the scatterers. Light-scattering mea-
surements, usually performed using monochromatic incident light, can be used to
determine the molecular weight of the scatterers. For larger molecules, the scattering
is no longer isotropic, and the spatial dependence of the scattered intensity can be
used to give information on the size and shape of such molecules.

Lord Rayleigh, in the 1870s, first discovered the strong ��4 dependence of scat-
tered light and was able to answer the age-old fundamental question: Why is the sky
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FIGURE 19.27 Example uv-vis spectrum from
small ringlike molecules showing broad charac-
teristic peaks.
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FIGURE 19.28 An absorbance melting profile of
DNA showing likely conformations in each
region. The absorbance maximum at � � 260 nm
is monitored as the temperature of the DNA
sample is changed. As the double-stranded DNA
is heated it opens up in definite stages before
irreversible strand separation occurs. Prior to this
the DNA will spontaneously reassemble to a
completely functional state when cooled under
controlled conditions.



blue? The answer lies in Equation (19.15) and the fact that when we look up at the sky,
the light that we see is sunlight that has been scattered from small gas and dust parti-
cles in the atmosphere. Of all the visible colors that our eyes are able to see, shades of
blue have the shortest wavelength and, according to Equation (19.15), are therefore
scattered with greater intensities. Hence, the sky appears blue. The same argument
also explains the brilliant colors of a sunrise or sunset. In those cases we are looking
toward the sun and the blue light is predominantly scattered out of the sunlight headed
toward our eyes, leaving reds and oranges to reach our eyes directly (Figure 19.29).

Some still smaller fraction of the absorbed visible light will be re-emitted as pho-
tons with a wavelength and energy different from the incident light. After a molecule
absorbs a visible photon, thereby exciting its valence electron to a higher energy state,
often the excited electron will lose some energy to heat via collisions with the solvent
in a very short time (10�12 s). Subsequent emission of a photon (typically within a
time of 10�9 s) requires, by conservation of energy, the photon to have a lower energy
than the incident photon, and therefore a longer wavelength (recall that Ephoton �
hc/�). Thus, for example, if a solution of macromolecules has blue light shining on it,
some small fraction of the light will emerge, let’s say, red. This process is known as
fluorescence and although the fluorescent intensity is very small compared to the inci-
dent intensity it can be detected quite easily because of its different color.
Fluorescence also occurs when ultraviolet light is absorbed and visible fluorescent
photons are emitted. The detergent industry even adds fluorescent “brighteners” in
order to enhance the appearance of clothing from extra visible light emitted from uv
fluorescence.
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FIGURE 19.29 (top) The shorter wavelengths (blues) of sunlight are preferentially scat-
tered by the upper atmosphere so that the sky will appear blue to an observer looking
up. When the sun is on the horizon, and the blue light is scattered out, the remaining
reds and oranges give the wonderful colors of sunsets and sunrises. (bottom) Sunrise
over the coast in Maine and sunset over Tuscon, Arizona.



In some few types of molecular systems, the excited electron finds itself in a very
long-lived state as far as molecular times go, roughly 10�3 s. After this long time a photon
is emitted in the process of phosphorescence. This is the way in which fireflies generate
their mysterious light using the chemical compound luciferase. Roughly half of all types
of jellyfish also emit phosphorescence, also known as bioluminescence (Figure 19.30).

Fluorescence spectroscopy can use “intrinsic” fluorescent groups, known as chro-
mophores, if they are present (in proteins tryptophan is a good chromophore) or
“extrinsic” fluorescent molecules, or fluors, if attached to the molecule of interest. In
either case, fluorescent light is usually detected at a 90° angle to the incident beam
direction using some sort of color filter to only detect the fluorescent photons. The
quantum yield, defined as the ratio of the number of fluorescent photons emitted to the
total number of photons absorbed, is usually very small and quite sensitive to the local
environment of the chromophore, including the pH, temperature, neighboring chemi-
cal groups, and concentration. Therefore, the fluorescence intensity can be a measure
of the local conformation of the biomolecule and measurements can often be used to
detect the binding of ligands, small molecules with specific attachment sites, or the
polymerization of monomer proteins, such as actin, to form long threadlike filaments.

Aside from its use in spectroscopy, fluorescence is also quite useful in imaging
molecules in microscopy. By labeling specific molecules with a fluorescent dye and
modifying a microscope with a color filter device, striking images of the arrangement
of molecules otherwise too small or dilute to see are possible using fluorescence

microscopy (Figure 19.31). We return to this topic in the next chapter in a more
detailed discussion of microscopy.

Often spectroscopic techniques can study not only the intensity of the scattered or
absorbed radiation, but also its polarization and time-dependence. Polarization infor-
mation can be quite useful in learning about the rotational motion of macromolecules.
In fluorescence polarization measurements, if a brief pulse (~ns duration) of intense
vertically polarized light is incident on a sample, then after absorbing a photon, chro-
mophores will be able to rotate before emitting a fluorescent photon. In doing so, the
polarization of the emerging fluorescence will have a horizontal component as well as
a vertical component. By analyzing the time-dependence of these two independent
intensity components in the subsequent fluorescent burst of emission, the rotational
timescales of motion of the macromolecules can be determined. Several other impor-
tant types of polarization measurement techniques are discussed in Chapter 23.
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FIGURE 19.30 A lovely phospho-
rescent jellyfish at the Monterey
Aquarium.
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FIGURE 19.31 Three examples of multiply labeled epithelial cells using fluorescence
microscopy. (top) Nonmuscle myosin (green), alpha–actinin (red) and the nucleus (blue);
(lower left) with actin (red), vinculin (an adhesion plaque protein; green), and the nucleus
(blue); (lower right) microtubules (green) and nucleus (blue).

CHAPTER SUMMARY
Electromagnetic radiation is produced by accelerating
electric charges and consists of coupled traveling E

and B waves, perpendicular to each other and to the
direction of propagation, and that decrease in ampli-
tude as they travel outward as 1/r. The waves have the
form, in one dimension,

(19.2) B(x, t) � Bmax  sin (kx � vt),

 E(x, t) � Emax 
sin (kx � vt),

(Continued)

with

(19.3)

The energy density of the EM radiation is given by

(19.4, 5)
PE

V
�

1

2
ae0 E2 �

B2

m0
b � e0 E2,

Emax

Bmax
� c.



the focal point on a microscopic particle. See
Figure 19.9.

6. If a laser beam has a transverse intensity profile
decreasing symmetrically from a maximum in the
center of the beam, explain in words how the
focused beam can supply a transverse force toward
the center of the beam on a microscopic particle. See
Figure 19.10.

7. Assuming that micron-sized spheres can be attached
to biological molecules and these can be then trapped
in laser tweezers, suggest several experiments that
can be done to study cellular and macromolecular
properties.

8. Distinguish between unpolarized and polarized elec-
tromagnetic waves. Because all electromagnetic
waves are transverse, aren’t they all polarized?
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QUESTIONS
1. Why must the electric and magnetic fields of a spher-

ical wave vary as 1/r? Fill in the details of the energy
argument of Figure 19.2.

2. Compare electromagnetic waves with waves on a
string. Give as full an accounting as you can of how
they are similar and how they are different.

3. Even though the magnetic field of an electromagnetic
wave is a factor of c weaker than the electric field, the
energy contained in the magnetic field is the same as
that of the electric field. Show how this follows from
the definitions of the field energies.

4. What is the distinction between the Poynting vector
and the intensity of an electromagnetic wave?

5. Explain in words how a focused laser beam can
supply a longitudinal force in the direction of

where the two terms have equal energy. The Poynting
vector is the energy per unit time per unit area and is
given by

(19.6)

and points in the direction of propagation of the wave.
The average value of S is given by the intensity,

(19.7)

Laser tweezers is a technique that traps small trans-
parent objects at the focal point of a laser with a trap-
ping force proportional to the laser beam intensity.
Careful calibration can then measure the force acting
on the individual object. A wide range of biological
applications have been developed using laser tweezers,
now capable of studying the forces generated by indi-
vidual macromolecules.

In EM waves, the direction of the E field is
known as the polarization direction. If the E field
is confined to a linear direction, the wave is said to
be linearly polarized. Random orientation of E in a
wave is known as an unpolarized EM wave. The E

field can also be made to sweep in a circle or an
ellipse as the wave propagates in circularly or ellipti-
cally polarized beams. The law of Malus gives the
intensity transmitted through an analyzing polarizer
in terms of the incident intensity I0 after passing
through a first polarizer with an angle � between the
two polarizers,

I �
1

2
e0 cEmax

2 .

S � c  

PE

V
� ce0 E2,

(19.9)

Photons are the elementary constituents of electro-
magnetic radiation and each photon has an energy and
a momentum given by

(19.10)

(19.11)

Photons with different frequencies (or wavelengths)
constitute electromagnetic radiation from different parts
of the electromagnetic spectrum (see Figure 19.22). The
study of the interactions of electromagnetic radiation
with matter is called spectroscopy. Nonionizing radia-
tion can be absorbed according to the Beer–Lambert law

(19.14)

where A is the absorbance and I and I0 are the transmit-
ted and incident intensity, respectively. Absorption can
only occur if the incident photon energy matches a pos-
sible energy transition in the absorbing atom or mole-
cule. Scattering may also occur, whereby the incident
photon energy is absorbed and re-emitted, either at the
same frequency (elastic scattering) or at a lower fre-
quency (e.g., fluorescence). In elastic scattering, the
scattered intensity varies as the inverse fourth power of
the wavelength and this strong dependence on wave-
length is responsible for the blue color of the sky and for
the bright red/orange colors of sunrises/sunsets.

A � log(I0 /I),

p �
h

l.

E � hf,

It � I0cos2u.



9. How does Polaroid film work to polarize light? If
unpolarized light is incident on a Polaroid sheet, what
fraction of the incident intensity is transmitted?

10. If vertically polarized light passes through a perfect
polarizer and no light is transmitted, what can you
conclude?

11. Unpolarized light passes through two consecutive
polarizers with axes oriented at 45° from each other.
What fraction of the incident intensity is transmitted
through the second polarizer?

12. Explain why circularly polarized light is equivalent to
two linearly polarized electric fields at right angles to
each other and 90° out of phase. Describe the phase
relations that produce a clockwise or counterclock-
wise circularly polarized plane wave as viewed from
in front of the wave watching it approach. Using your
two arms, kept at right angles to each other, devise a
way to move your arms to simulate the electric fields
of right or left circularly polarized light.

13. The visible spectrum of light ranges from around 400 nm
violet to 750 nm red. Which color photon has more
energy? More momentum? Does having more momen-
tum mean that those photons travel faster?

14. A pure sine wave has infinite spatial extent and a sin-
gle frequency. A square pulse has a finite spatial size
and is composed of an infinite range of different fre-
quencies. These two examples are limits for a wave
packet. Discuss this idea.

15. What type of radiation would you expect to be emitted
when a molecule makes a transition between neighbor-
ing rotational states with energy spacings of about 0.01
eV? Between neighboring vibrational levels with
energy differences of about 0.1 eV? Between elec-
tronic states with energy differences of about 1 eV?

16. What fraction of the incident light is transmitted
through a sample with an optical density of 1.0? Of
2.0? Of 1.5?

17. Can a fluorescent dye that absorbs strongly in the
green appear to be blue? Red? Yellow?

18. Discuss the difference between inelastic and elastic
scattering. Can there be absorption with elastic scat-
tering? Can there be fluorescence with elastic
scattering?

MULTIPLE CHOICE QUESTIONS
1. In electromagnetic radiation (a) the electric and mag-

netic fields are both parallel to the direction of prop-
agation, (b) the electric field is perpendicular to and
the magnetic field is parallel to the direction of prop-
agation, (c) the electric field is parallel to and the
magnetic field is perpendicular to the direction of
propagation, (d) the electric and magnetic fields are
both perpendicular to the direction of propagation.

2. Which of these is not an example of the “electromag-
netic spectrum”? (a) X-rays used by your dentist. (b)
�-rays used to prevent food spoilage. (c) Microwaves
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used to boil water. (d) Ultrasonic waves used to image
a fetus.

3. A TV wave has a wavelength of about 1 m. The fre-
quency of such a wave is (a) 1 Hz, (b) 3 Hz, (c) 300
MHz, (d) 3 
 1015 Hz.

4. The wavelength of violet light is about (a) 400 m,
(b) 400 cm, (c) 400 	m, (d) 400 nm.

5. Electromagnetic waves emitted from the wiring in your
house due to AC currents have a wavelength of about 5
times (a) 10�10 m, (b) 10�2 m, (c) 103 m, (d) 106 m.

6. The magnetic field inside a solenoid is proportional to
the current flowing through the solenoid. Suppose the
current through a solenoid is doubled, by how much
is the energy associated with the magnetic field in the
solenoid changed? (a) It remains the same. (b) It is
doubled. (c) It is increased by a factor of four. (d) It
is halved.

7. One light source is four times more intense than a
second light source. The maximum electric field in the
light from the first source is (a) four times greater than
that from the second, (b) two times greater than that
from the second, (c) one half as great as that from
the second, (d) one quarter as great as that from the
second.

8. The intensity of an extremely bright laser is 107 W/m2,
about 10,000 times brighter than sunlight. The average
electric field in sunlight is roughly 103 V/m. The aver-
age electric field in the bright laser is about (a) 107

V/m, (b) 105 V/m, (c) 103 V/m, (d) 10 V/m.
9. The sun emits electromagnetic radiation uniformly in

all directions. Given the distance from the sun to the
Earth of about 150 
 106 km, and the mean radius of
the Earth of about 6400 km, the fraction of the sun’s
radiation that falls on the Earth is (a) (6400/150 

106), (b) (6400/150 
 106)2, (c) (6400/300 
 106)2,
(d) (1/2)(6400/300 
 106)2.

10. The central 1 cm diameter portion of a 10 W laser
beam with a diameter of 2 cm is focused down to a
100 	m diameter spot size. The intensity at the focal
point is (a) 1.3 
 109, (b) 6.4 
 108, (c) 3.2 
 108,
(d) 8.0 
 107 W/m2. (Assume the laser beam has a
uniform intensity across its cross-sectional area.)

11. A small plastic sphere is initially located below and to
the left of the center of a focused laser beam. The
force on this sphere is directed (a) down and to the
right, (b) up and to the left, (c) up and to the right,
(d) down and to the left.

12. A typical force capable of being exerted by a focused
laser beam in a laser tweezers experiment is (a) 10�2 N,
(b) 10�7 N, (c) 10�12 N, (d) 10�17 N.

13. A plane wave of light propagating along the positive
x-axis is linearly polarized along the z-axis. A polar-
izing sheet parallel to the y � z plane is at x � 1 m.
The transmission (or polarizing) axis of the sheet is
parallel to the y-axis. A second polarizing sheet
is placed parallel to the y � z plane at x � 0.5 m.
A light detector is placed at x � 1.1 m. The detector



will receive (a) maximum light when the transmission
axis of the second sheet makes a 45° angle with
respect to the y-axis, (b) maximum light when the
transmission axis of the second sheet is parallel to the
z-axis, (c) maximum light when the transmission axis
of the second sheet is parallel to the y-axis, (d) no
light no matter what is the orientation of the trans-
mission axis of the second sheet.

14. If a laser beam with intensity I0 is incident on a polar-
izer and the transmitted intensity is determined to be
also approximately I0, we can conclude that (a) the
initial beam was unpolarized, (b) the initial beam was
polarized perpendicular to the polarizer’s transmis-
sion axis, (c) the initial beam was circularly polar-
ized, (d) the initial beam was polarized parallel to the
polarizer’s transmission axis.

15. If a laser beam with intensity I0 is incident on a polar-
izer and the transmitted intensity is determined to be
approximately I0/2, we can conclude that the initial
beam (a) must have been unpolarized, (b) may have
been unpolarized, circularly polarized, or linearly
polarized at 45° to the transmission axis of the polar-
izer, (c) must have been circularly polarized, (d) must
have been linearly polarized at 45° to the transmis-
sion axis of the polarizer.

16. The number of photons per second emitted by a 1000
W, 100 MHz FM radio station is about (a) 103,
(b) 108, (c) 1011, (d) 1028.

17. A 440 nm photon has an energy of (a) 4.5 
 10�19 J,
(b) 1.5 
 10�27 J, (c) 4.5 
 10�17 J, (d) 3.8 

10�19 J.

18. A sample with an optical density of 2.5 transmits (a) 8,
(b) 300, (c) 3, (d) 0.3 percent of the incident light.

19. The midday sky appears blue because (a) our eyes see
blue better than other colors making up white light;
(b) molecules in the sky reflect back light from the
oceans which are blue; (c) molecules in the sky re-
emit blue light more than other colors visible to our
eyes; (d) hydrogen molecules in the sky have a strong
absorption peak in the blue.

PROBLEMS
1. If a plane electromagnetic wave has a maximum mag-

netic field amplitude of 2 
 10�7 T, find the peak
value of the electric field of the wave.

2. A plane electromagnetic wave is traveling along
the x-axis. If the electric field of the wave has a
maximum value of 2 
 10�4 N/C and lies along the
y-axis, find the wave’s maximum magnetic field and
its direction.

3. Given that the peak value of the magnetic field of an
electromagnetic plane wave is 5 
 10�7 T, find the
intensity of the wave.

4. If the maximum trapping force from a laser tweezers
on a 1 	m radius spherical particle in water at 20°C
is 10�12 N, find the minimum flow velocity of the

water, in mm/s, that will just free the particle from
the trap.

5. If in the previous problem the calculated flow veloc-
ity of the water is doubled, by what factor must the
intensity of the laser beam be increased to just main-
tain the trap?

6. A vertically polarized beam of light passes through a
sheet of Polaroid with its transmission axis at a 30°
angle to the vertical. What fraction of the incident
intensity emerges from the Polaroid? If this beam is
then incident on a second sheet of Polaroid with its
transmission axis along the vertical, what fraction of
the beam’s original intensity is transmitted?

7. Unpolarized light of intensity I0 passes through a
Polaroid with its transmission axis vertically oriented.
What intensity emerges? If the transmitted light
passes through a second Polaroid sheet with its trans-
mission axis 60° to the vertical what fraction of the
original incident light intensity I0 emerges?

8. Three polarizers arranged in series are each oriented
at 30° from the previous one. If an unpolarized light
beam travels through the three polarizers and emerges
with an intensity of 0.2 W/m2, what was the intensity
of the beam incident on the first polarizer?

9. A circularly polarized light beam is incident on a ver-
tically oriented polarizer. If the incident beam has an
intensity I0, describe the transmitted beam intensity
and polarization.

10. Two polarizers are in series with one another with an
angle of 45° between their axes. If a circularly polar-
ized beam with an intensity of 0.8 W/m2 is incident
on the first polarizer, oriented vertically, describe the
intensity and polarization of the beam transmitted
through the second polarizer. What happens if the two
polarizers are interchanged keeping their axes’ orien-
tation fixed? Does the transmitted intensity change?
Does the polarization direction of the transmitted
beam change?

11. Suppose a point source of light generates 60 W. Four
meters away there is a light detector that is 75% effi-
cient and has a detector area of 10 cm2 oriented with
its normal directed at the point source. What power
will the detector record?

12. Suppose a 50 kW radio station, operating at a fre-
quency of 106.5 MHz, emits EM waves uniformly in
all directions.
(a) What is the wavelength of the radio waves?
(b) How much energy per second crosses a 1.0 m2

area 100 m from the transmitting antenna?
(c) What is the maximum value of the electric field at

this point, assuming the station is operating at full
power?

(d) What voltage is induced in a 1.0 m long vertical
car antenna at this distance?

13. Our nearest star (Proxima Centari) is 4.2 light-years
away (1 light-year equals the distance light travels in
a year). How far away is Proxima Centari in meters?
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14. The Andromeda Galaxy (our nearest neighbor
galaxy) is approximately 2 million light-years away
(see the previous problem). How far away is
Andromeda in astronomical units? 1 AU � 1.5 

108 km.

15. The human eye is most sensitive to light having a
wavelength of 5.50 
 10�7 m, which is in the
green–yellow region of the visible electromagnetic
spectrum. What is the frequency of this light?

16. Suppose that a laser pointer is rated at 3 mW. If the
pointer produces a 2 mm diameter spot on a screen,
what is the radiation pressure exerted on the screen?

17. A laser pulse lasting 10�9 s from a Neodymium–YAG
laser has an energy of 5 J. If the wavelength of the
laser is 1.06 	m, how many photons are in the pulse?
What is the power of the laser pulse? If the pulses are
repeated at a rate of 10 Hz (10 pulses/s), what is the
average power output of the laser?

18. Calculate the frequency range and photon energies
(in eV) of visible light if the wavelength range is
400–750 nm.

19. If the wave packet of a photon contains frequencies in
the range 6.8–7.1 
 1014 Hz, what is the average
wavelength and � wavelength uncertainty spread of
the photon?

20. Suppose an atom has two energy levels at �3.40 eV
and �1.51 eV. If an electron makes a transition from
the upper to the lower of these levels, what is the
wavelength of the emitted photon?

21. A 1 ns laser pulse from a neodymium–YAG laser, at
532 nm, contains 5 J.
(a) Find the energy and momentum of each photon.
(b) How many photons are in the 1 ns pulse of laser

light?

(c) If all the photons are completely absorbed by an
object, what is the force exerted on the object by
the laser light?

22. The laser light pulses from the previous problem are
passed through a device known as a frequency dou-
bler that basically combines two pulses into a single
one with twice the frequency.
(a) Find the wavelength, energy, and momentum of

the frequency doubled pulses.
(b) Assuming 100% efficiency, how many of these

photons are in the 1 ns pulse?
(c) If all of these photons are absorbed by the same

object as in the previous problem, compare the
force exerted on the object by the frequency dou-
bled pulse compared to the original pulse.

23. A solution of a purified protein is put in a 1 cm path
length quartz optical cell and into a uv spectropho-
tometer. The optical density measured at a 260 nm
wavelength is 0.05. If the molar extinction coefficient
of this protein is 349 M/cm at 260 nm find the molar
concentration of the protein and the % of uv light
transmitted by the solution.

24. If the incident intensity on a 0.01 M protein solution
in a 1 cm optical cell is reduced in the transmitted
beam by a factor of 1500, what is the molar extinction
coefficient of the protein at the measuring wave-
length?

25. A detector measures the elastic scattering from a gas
in a sealed glass cell. If the incident light intensity is
halved and the wavelength of the light used is reduced
by 20%, find the percent change in the scattered
intensity. Does the amount of scattered light increase
or decrease with the 50% reduction in incident inten-
sity at the new wavelength?
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In our ordinary experiences, light seems to behave as if it travels in straight lines
until it strikes an object. Shadows cast by objects, the beam of light from a flash-
light or a car’s headlights, the bright rays of sunlight through a clearing in the
clouds, and the pencil-like laser light beams used in light shows all tell us that this
is true (Figure 20.1). On the other hand, sound does not cast a “shadow;” you can
be heard around sharp corners without a straight path to the listener. Radio and
television waves also can be received without straight line paths to the radio or TV
station antenna and as we have seen these are also forms of electromagnetic radia-
tion just as is light. What distinguishes light in its ability to travel in straight lines is
its small wavelength of about 5 � 10�7 m, much smaller than any characteristic
dimension of a typical object in its path. Sound, as well as radio and television EM
waves, have wavelengths with macroscopic dimensions.

In this chapter we consider the properties of light that can be understood based
on geometrical optics, in which light is treated as traveling in a straight line path in
a uniform medium. We show that only at a boundary between two media with dif-
ferent optical properties (defined below) will light be deflected from its straight tra-
jectory. Spherical mirrors are discussed as a method for imaging objects. Fiber
optics is discussed as a “device” used to steer light. In the next chapter further
applications of geometrical optics are discussed including lenses, the structure and
function of the eye as well as the use of eyeglasses to correct vision problems, and
a discussion of magnifying glasses and the compound microscope used routinely in
biology.

1.  OPTICAL PROPERTIES OF MATTER

In our discussions of electricity and magnetism we have seen that there are two
fundamental parameters that describe the electric and magnetic interactions in
space, the permittivity �0 and permeability �0 of the vacuum. These two parame-
ters together determine the speed of light in vacuum. When light interacts with a
material medium, the electromagnetic fields interact with charges and atomic cur-
rents and the fundamental parameters are modified by the presence of the medium.
The effects of the material medium can be taken into account by modifying the two
fundamental parameters to values � and �, characteristic of the material. Note that
the dielectric constant � introduced in Chapter 15 is just equal to the ratio �/�0. For
isotropic materials these will be constants whose values will determine the speed
of light in the medium

(20.1) v �
11em,
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in a relation similar to that defining the speed of light in vacuum c. Because, in general,
� � �0 and � � �0 we have that the speed of light in a material medium is always less
than c. For most materials � is very close to �0, and it is the permittivity � that really
determines the speed of light. We introduce the index of refraction of the medium n to be

(20.2)

so that the speed of light in the medium is given by

(20.3)

Table 20.1 lists indices of refraction for some common materials that are transparent
to visible light.

 v �
c

n
.

n � A eme0 m0
L 3k,
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FIGURE 20.1 (left) Geometrical optics through a cloud: sun’s rays travel in straight 
lines. (right) Geometric optics by laser light.

Table 20.1 Refractive Indices of Materialsa

Material (20°C Unless Specified) Refractive Index

Diamond 2.42

Glass (crown) 1.52

Benzene 1.50

Quartz (fused) 1.46

Water 1.33

Air (1 atm, 0°C) 1.0003

aMeasured at a wavelength of 589 nm (yellow sodium light).

n

1.4

1.5

1.6

1.7

0 200 400 800600

Crown glass

Fused quartz

Wavelength (nm)

FIGURE 20.2 Dispersion curves for
two different transparent materials.

Unlike the permittivity and permeability of the vacuum, those of a material
medium are dependent on interactions with electromagnetic (EM) radiation and are
therefore dependent on the frequency (or wavelength) of the light. This phenomenon
is known as dispersion and will account for some of the experimental findings dis-
cussed below when using white light. White light is a generic term used to describe
a broad mixture of light waves of different colors (frequencies or wavelengths) that
can be quite different in its intensity mix of colors from different sources. Figure 20.2
shows typical dispersion curves (index of refraction versus wavelength) for two dif-
ferent transparent materials.



As an aside, we briefly mention what occurs when the material is
not transparent to EM radiation. Near wavelengths at which EM radia-
tion is absorbed by the material and thus no longer transparent, the
index of refraction rises with increasing wavelength in an atypical
behavior known as anomalous dispersion. This is due to the phenome-
non of resonance, where the radiation frequency matches a natural
absorption frequency of the material and can be readily absorbed. In
our discussion of absorption spectroscopy, we saw that it is this reso-
nance phenomenon that accounts for the absorption. Thus, absorption
and dispersion are very strongly coupled together. Figure 20.3 shows
that for any material, at whatever frequency of radiation, where there is
an absorption peak, there is a corresponding anomalous dispersion. In
the rest of our discussion in this chapter we limit ourselves to situations
in which absorption of radiation is negligible.

2.  LIGHT AT AN INTERFACE

When light strikes the interface between two different optically transparent media
it is partially reflected and partially transmitted into the second medium. Because
light will travel in straight lines within a uniform material, we can follow its path
by tracing rays that are representative of the light beam. For a plane light wave, the
wavefronts lie in the transverse plane and the rays are all parallel to the propaga-
tion direction. If the light wave is a spherical wave, emanating from a point source,
the wavefronts are spherical and although the rays are still perpendicular to the
wavefronts, they are diverging as shown in Figure 20.4.

If the interface between the two transparent media is a smooth plane surface, an
incident plane wave with parallel rays will undergo specular reflection from the sur-
face with the reflected rays remaining parallel. As shown in Figure 20.5, if the inci-
dent ray makes an angle of incidence 	i with the normal, a line drawn perpendicular
to the surface, then the reflected ray will leave the surface with an angle of reflection
	r equal to the angle of incidence and will lie in the plane defined by the incident ray
and the normal, known as the plane of incidence. This is known as the law of reflec-

tion and was already briefly discussed in Chapter 11 in connection with sound waves.
It can be written as

(20.4)ur � ui,
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n (---) or

absorption

(solid line)

wavelength

FIGURE 20.3 The connection
between anomalous dispersion
(dotted line) and absorption 
(solid line).

FIGURE 20.4 Spherical wavefronts
diverging from a point source with
radially directed rays.

θi

θr

FIGURE 20.5 The
law of reflection at a
plane interface.



with the proviso that the reflected ray lies in the plane of incidence. Note that so far
we’ve neglected the transmitted portion of the light; we return to this below.

If the surface is a rough plane, then the reflected light no longer maintains its spa-
tial regularity and is said to undergo diffuse reflection (Figure 20.6). Whereas specu-
lar reflection occurs from mirrors, windows, or high-gloss surfaces, diffuse reflection
occurs from dull unpolished surfaces. The key distinguishing feature of these two
types of reflections is the formation of an image only on specular reflection.

Imagine first that there is a point source of light in front of a plane mirror as
shown in Figure 20.7. At a particular location of your eye, there will be rays of light
that will reflect from the mirror, reaching your eye, and appearing to diverge from a
point source image located behind the mirror. This type of image is called a virtual

image because the light only gives the illusion of emanating from behind the mirror.
We soon show that a real image is one through which light actually passes and one
for which light could be captured on a viewing screen placed at the image. Using a
simple geometric argument, shown in the figure and based on the law of reflection,
we can determine that the image distance, defined as the distance from the image to
the mirror surface, is equal to the object distance, defined as the distance from the
object to the mirror surface. Thus, the image appears to be behind the mirror the same
distance as the object actually lies from the mirror.

If the source of light is an extended object, either self-luminous such as a real
light bulb or any other object itself reflecting light from its surface, then the same
analysis holds point by point and a virtual image of the object will be created
behind the mirror. For a plane mirror the image will be equal in size to the object,
erect, as far behind the mirror as the object is in front, but will appear left–right
reversed as shown in Figure 20.8. Leonardo da Vinci wrote all his scientific note-
books using a left–right reversal as if in code; they can be clearly read by simply
imaging them in a mirror (Figure 20.9).

Now let’s consider the portion of the light that enters the transparent second
medium if the interface is a plane surface. Figure 20.10 shows a set of rays, with their
associated wavefront, incident on a plane interface, with only the portion of the light
that enters the second medium drawn. Some of the light will also be reflected as
already discussed. If we assume that the second medium has a larger index of refrac-
tion than the first, so that the speed of light in the second medium is slower than in
the first, then the rays will bend toward the normal, as shown in the figure. This is so
because during the time it takes for the wavefront at the ray to the right in the figure
(point B) to reach the interface (point B’), the wavefront at the ray on the left (point A)
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FIGURE 20.6 A diffuse reflec-
tion from a rough surface.

θ

θ

θ θ

FIGURE 20.7 Imaging a point source in a plane mirror.
The insert shows the geometry that proves the object and
virtual image are equal distances from the mirror.

FIGURE 20.8 A person and his
virtual image in a plane mirror.
Note that the flower on the man
is on his left side, and it is on the
right side of the virtual man in the
mirror. What’s wrong with the
perspective of this cartoon?



will travel a shorter distance (to point A
). Because of the slowing of the
rays, when the incident light is at any nonzero incidence angle, it must
bend or refract.

The angle of refraction (the angle between the refracted ray
and the normal to the interface pointing into the second medium) can
be determined from Snell’s law (also simply known as the law of

refraction)
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A general principle in optics, known as
Fermat’s principle, can be used to derive
the laws of reflection and refraction.
Fermat’s principle states that in traveling
between any two points, light will always
take the path that requires the least time.
We now use this principle, together with
Figure 20.11a and b, to derive these two
laws. In both cases, we want light to travel
between points A and B in the shortest
time. Points A and B are fixed at distances
yA and yB from the interface and at an x

separation of L. We wish to find the point
C for which the least time is required for
light to go from A to B.

Using the notation of Figure 22.11a, the
time for light to travel from A to B is given as 

To minimize the time, we take dt/dx and set
it equal to zero, dropping v because it is a
constant,

�
1x2 � yA

2 � 1(L � x)2 � yB
2

 v
.

t �
sA � sB

 v

FIGURE 20.9 Drawing of human skeletons by Leonardo da
Vinci. Note the mirror-image writing throughout.
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FIGURE 20.10 Refraction of a
plane wave at a planar interface.
The second medium has a larger
index of refraction, slowing the
rays and bending them toward the
normal � 	2 � 	1 because n2 
 n1.

FIGURE 20.11 (a) (top) Geometry
for proof of the law of reflection (see
box); (b) (Bottom) Same for law of
refraction.
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(20.5)

where 	1 and 	2 are the angles of incidence and refraction and n1 and n2
are the corresponding indices of refraction of the two media. A proof of
Snell’s law, as well as the law of reflection, is given in the box. As we
argued above, Equation (20.5) predicts that if n2 
 n1 then 	2 � 	1, and
so the refracted ray will bend toward the normal. If n2 � n1, so that the
speed of light in the second media increases, Snell’s law predicts that the
refracted light will bend away from the normal.

n1 sin u1 � n2 sin u2,
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Example 20.1 Find the minimum height of a plane mirror needed
for a person of height H to see her entire self in the mirror.

Solution: In order to see your feet
in the mirror, a raytracing diagram
shows that a ray needs to emanate
from your feet and hit the mirror
at a height midway between your
feet and your eyes, because the
angles of incidence and reflection
are then equal. Similarly to see the
top of your head, the mirror must
extend at least half of the dis-
tance between the top of your
head and your eye level. Adding
these distances together, a mirror
must be half of your height, and positioned as discussed, for
you to be able to see yourself fully, regardless of the
distance you stand from the mirror. Try it by masking off a full
length mirror.

Example 20.2 How far below the surface of a lake will a pebble actually 1 m
below the surface appear to a person viewing it from above?

Solution: A ray of light emanating from
the pebble will be refracted at the water
surface and bend away from the normal as
shown in the figure (because nwater 
 nair),
and the vertical ray will pass through the
surface remaining vertical. Because of the
refraction, the pebble appears closer to
the surface than it really is. The image of
the pebble can be found from the diagram using the small angle approximation
that sin 	 ~ 	 because we are viewing from above at small angles from the
normal. We write the law of refraction in this approximation as nair 	
 � nwater
	, so that from Table 20.1 	 � (1/1.33) 	
. When the refracted ray reaches
the person’s eye, his brain will extrapolate backwards and view the pebble as
lying at point P
. To then calculate the distance AP
 of the image below the
water surface, we use the fact that AB � AP
 tan 	
 � AP tan 	. Using the
small angle approximation tan 	 ~ 	, we have that AP
 � AP (	/	
) � AP
(1/1.33) � 0.75 m.

Using the definitions of sin 	A and sin 	B,
this becomes 

sin 	A � sin 	B or 	A � 	B, 

thus proving the law of reflection.
To prove the law of refraction, we con-

sider Figure 20.11b and write the time for
travel between A and B as 

Writing s1 and s2 in identical ways as
above, but using v1 � c/n1 and v2 � c/n2,
we proceed in the same way to find

,

resulting, after performing the derivatives
just as above, in the law of refraction, 

n1 sin 	1 � n2 sin 	2.

� n21(L � x)2 � yB
2 b � 0

dt

dx
�

1
c 

 
d

dx
an11x2 � yA

2

t �
s1

 v1
�

s2

 v2

dt

dx
�

x1x2 � yA
2

�
(L � x)1(L � x)2 � yB

2
� 0

P
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When light is incident on an interface between two different transparent media, in
general some will be reflected and some refracted, as was mentioned above. Although
we have separately discussed the laws of reflection and refraction, calculating the rel-
ative amounts of the reflected and refracted beam intensities at a boundary requires a
more sophisticated analysis from Maxwell’s equations. The result for a beam at nor-
mal incidence on a plane surface coming from medium 1 to medium 2 is given by the
following relation for the fraction of the incident intensity Io that is reflected

(20.6)

The fraction of the incident intensity that is transmitted is then equal to 1 � Ir/Io, so that
the total fraction adds to 1 (remember that we have neglected any absorption of light).

Using the example of a light beam in air striking a plane piece of glass (with 
n � 1.5) normal to its surface, we find from Equation (20.6) that 4% of the incident
intensity is reflected

Figure 20.12 shows the results of a more difficult calculation of the fraction of
unpolarized light that is reflected from a glass surface as a function of incidence
angle. We discuss the case of polarized light in the next chapter. As the incidence
angle approaches 90°, the reflected intensity approaches the total incident intensity.
We conclude that light striking a plane glass surface at a grazing angle is totally
reflected; thus, at grazing incidence the glass surface acts like a mirror. Try this out
yourself with a window pane or other glass surface!

3.  SPHERICAL MIRRORS

Not all mirrors are plane mirrors discussed in the previous section. The most com-
mon type of curved mirror is the spherical mirror, typically made from a section of a
spherical shell of glass that is polished and coated with a highly reflective metal coat-
ing on the back of the viewing side, to prevent the coating from getting scratched or
damaged. Spherical mirrors come in two types, depending on which side of the
spherical surface faces the light. Concave mirrors are made to reflect light from the
side facing the center of the spherical surface (the “inside” or cave side) whereas
convex mirrors are made to reflect light from the other “outside” surface. Examples
of each are fairly common in our everyday life. Concave mirrors (see Figure 20.13)
are used as makeup or cosmetic mirrors to produce an enlarged image. Convex mir-
rors are used as passenger side-view mirrors in cars, giving a wider viewing range, or
as security mirrors in stores.

Spherical mirrors work in the same fundamental way that plane mirrors do to
produce images based on the law of reflection. As shown in Figure 20.14 for a cross-
section through a concave mirror, consider light that is traveling parallel to the so-
called principal axis (shown in blue), going through the center of curvature C (the
point located an equal distance R—the radius of curvature—from all parts of the mir-
ror surface) and the center of the mirror. All such light rays will reflect from the mir-
ror surface according to the law of reflection and converge at the focal point F of the
mirror, a distance f from its surface along the principal axis, as shown. If the mirror
dimensions are small compared to the radius of curvature, then the convergence of
the reflected light will be “tight” and the light will converge to a focal point. If the
mirror is larger, then the focal point will be smeared out a bit due to light farther from
the principal axis getting focused to a shorter focal length, an effect known as spher-
ical aberration and discussed more in the next chapter for lenses. If the surface of the
mirror were parabolic, rather than spherical, then the reflections would truly focus at

Ir

Io

� a 1.5 � 1

1.5 � 1
b

2
� a 0.5

2.5
b

2
�

1

25
� 4%.

Ir

Io

� a n2 � n1

n2 � n1
b

2
.
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FIGURE 20.12 The fraction of
unpolarized light intensity in air
reflected from a glass (n � 1.5)
surface as a function of the
incidence angle.
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the same focal point no matter how large the mirror. In fact, although more difficult
and therefore more expensive to manufacture, parabolic mirrors are used in a num-
ber of more critical applications, including solar collectors to trap sunlight for energy
conversion, reflecting telescopes, and car headlights (which work by sending light in
a reverse path from the focal point to a beam of light emerging parallel to the princi-
pal axis of the mirror).

Using the geometry shown in Figure 20.14 based on the law of reflection, we
show in the caption that the focal length for a concave spherical mirror is given by

(20.7)

where the focal length is measured from the mirror reflecting surface as shown. Thus,
the radius of curvature directly determines the focal length of the mirror, the key
parameter we show that determines image formation in the mirror.

3.1. IMAGE FORMATION

An object located some finite distance from a spherical concave mirror will produce
an image in the mirror. In order to locate the position and size of the image we can
use a process known as raytracing, in which we follow three special rays that
emanate from the object. Take a look at Figure 20.15 and note the object, represented
by an upright arrow, located at distance do, the object distance, from the mirror sur-
face. If we draw a ray (#1) from the tip of the arrow going parallel to the principal
axis, we know that it will reflect through the focal point as shown in red. A second
ray (#2) from the arrow tip that goes directly through the focal point will reflect from
the mirror parallel to the principal axis (drawn in blue). We know this because it is
just the time-reversed process from ray #1. The intersection of these two rays will be

the location of the image of the arrow tip (or top of the object) in the
mirror. We can confirm this with a third special ray (#3 drawn in green)
that appears to emanate from C, the center of curvature, and which will
reflect directly back on itself because the radial line is perpendicular to
the mirror surface. The three rays cross at a common point, the image
location, a distance di from the mirror. In fact, then, all rays that leave
the arrow tip and reflect from the mirror will converge to the same
image location; our three special rays are simply chosen because of the
ease of this construction to locate the image.

f �
R

2
,
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FIGURE 20.13 (left) Andrea’s inverted image in a large concave mirror; (right) A Victorian
bear and its image, with the bear located closer to the mirror than its focal point (see
below) giving an enlarged upright image.

C

θ

θ

f

R

θ 

R

A

B
F

FIGURE 20.14 Light rays parallel to
the principal axis (in blue) reflecting
from a concave mirror and
converging at the focal point F.
The dotted green line indicates a
radius, normal to the mirror, with
the upper ray reflecting according
to the law of reflection and passing
through the focal point. A similar
construction is implied for the other
rays. Note that the triangle CAF is
isosceles so that CF � AF. In the
case that the angle 	 is small, then
AF � BF and we have that CF �
BF so that Equation (20.7) follows.



3.2.  MIRROR EQUATION

If we examine the diagram shown in Figure 20.16, we can derive a quantitative rela-
tionship between do, di, and f known as the mirror equation. In this figure you can see
the same mirror, object, of height ho, and image, of height hi, shown in Figure 20.15,
together with ray #3 from that figure, as well as an additional ray (let’s call it ray #4,
in purple) which is directed at the point where the principal axis meets the mirror and
reflects making equal angles with the axis to also reach the image location. Ray #4
makes up the hypotenuse of the two colored, dotted, similar triangles, giving us

Ray #3 also forms the hypotenuse of two similar triangles with a common vertex at
point C (one shown in black hatched lines) and with opposite sides given by the
heights of the object and image. From these similar triangles we have that

Setting these two expressions for the transverse magnification, m � hi/ho, equal to
each other we have

If we substitute R � 2f and cross-multiply we have

One more step of simplification gives us

di f � di do � fdo � 0,

(di)(2 f � do ) � (di � 2f )(do).

di

do

�
di � R

R � do

.

hi

ho

�
di � R

R � do

.

hi

ho

�
di

do

.
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do

FIGURE 20.15 Raytracing construction for a concave mirror. From the object at O we can
construct three special rays: (1) a ray parallel to the principal axis reflects through the focal
point; (2) a ray through the focal point reflects parallel to the principal axis; (3) a ray from the
object that appears to have come from the center of curvature C will reflect back on itself.
The common intersection of the reflected rays is the location of the image of the object at I.
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43
ho

do

di

hi

FIGURE 20.16 Geometry used to
derive the mirror equation. The
blue and red dotted triangles are
similar as are the black hatched
triangle and the red triangle with
vertex at C and opposite side at
the image I.



and if we divide by the product (dodi f), we find the mirror equation

(20.8)

We also find from the first relation above that the magnification m � hi/ho is
given by

(20.9)

where the negative sign is inserted according to a convention to indicate that the
image is inverted (upside down). Now that we have the mirror equation, we can deter-
mine the location (and magnification) of the image of an object in a concave mirror.

m � �
di

do

,

1

do

�
1

di

�
1

f
 .
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Example 20.3 A concave mirror has a radius of curvature of 25 cm. A 2 cm tall
object is placed 20 cm from the mirror along its axis. Find the location of the
image and its size.

Solution: Using do � 20 cm and f � R/2 � 12.5 cm and solving the mirror
equation for the image distance gives

The magnification, according to Equation (20.9) is m � hi/ho � �di/do �
�1.67, so that hi, the size of the image, is hi � �1.67 ho � �(1.67)(2 cm) �
�3.33 cm. Here, the minus sign indicates that the image is upside down
(inverted from the upright object). The raytracing diagram would be similar to
that shown in Figure 20.15.

1

di

�
1

f
�

1

do

�
1

12.5
�

1

20
� 0.03 cm�1 so that di � 33.3 cm.

Using the mirror equation to solve for the image distance when we are given the
object distance and focal length, we have that

If we imagine that, for a given f, we change the position of the object do, then clearly
as long as do 
 f, the value for di will be positive. What does it mean when do � f so
that di is infinite or negative? Let’s examine this question using a ray diagram for
such a situation in Figure 20.17.

1

di

�
1

f
�

1

do

�
do � f

fdo

 or di �
fdo

do � f
 .

2

doFC

diR

3

F

1

IO

FIGURE 20.17 Raytracing diagram
for the case when do � f, resulting
in a virtual image.



Raytracing is similar in this case with three special rays drawn: ray (#1) from the
tip of the arrow object going parallel to the principal axis reflects through the focal
point as shown in red; a second ray (#2) from the arrow tip that seems to emanate
from the focal point will reflect from the mirror parallel to the principal axis as shown
in blue; a third ray (#3 drawn in green) that appears to emanate from C, the center of
curvature will reflect directly back on itself. The three rays do not ever cross at a
common point, and so there is no “real” image. Instead, if you were to view the light
from the left side, it would appear to be diverging from an image located a distance
di from the mirror but behind it! Such an image is called a virtual image. You could
not put a piece of paper there to see the light actually form the image on the paper. It
is similar to the virtual image seen in a plane mirror. The image is, in fact, erect (not
inverted) and magnified.

In order to be able to use the mirror equation in this and other cases, we adopt
the set of sign conventions shown in Table 20.2. When used consistently, these allow
us to not only find the location of the image for both concave and convex mirrors, but
also to find the magnification and whether the image is erect or inverted. Another two
examples help us to see how these are applied.
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Table 20.2 Sign Conventions for Mirror Equation

Quantity Positive When Negative When

Focal length, f Concave mirror Convex mirror

Object distance, do Real object (usual case) *Virtual object (rarely)

Image distance, di Real image Virtual image 
(located in front of mirror) (located behind mirror)

Magnification, m Erect Inverted

*In some optical systems, the image from one piece of optics can serve as the object for the
next mirror; in this case the object can sometimes be found located behind the mirror.

Example 20.4 A 1 cm tall object is located 10 cm from a concave mirror with a
radius of curvature of 40 cm. Characterize the image produced by the mirror.

Solution: Because the focal length is R/2 � 20 cm, we use the mirror equation
to find the image distance

so that, on inversion, we have di � �20 cm. The negative sign indicates that
the image is virtual and located behind the mirror. We find a magnification of
m � �di/do � �(�20)/(10) � 2, so that the image is erect and 2 cm tall.

1

di

�
1

f
�

1

do

�
1

20
�

1

10
� �

1

20

Example 20.5 A passenger side-view car mirror is convex with a radius of cur-
vature of 150 cm. If a car that is viewed in the mirror is actually 20 m away,
describe the image in the mirror.

Solution: In our case, we can use the mirror equation with f � �R/2 � �75 cm
and do � 20 m to find that

(Continued)



4.  OPTICAL FIBERS AND THEIR APPLICATIONS 
IN MEDICINE

Consider the law of refraction for an incident beam emanating from medium 1 with
a larger index of refraction (glass, e.g.) and incident on a plane boundary
with medium 2 of lower index of refraction (air, e.g.). In this case the refracted
beam is bent away from the normal as it passes from the glass into the air. Because
sin 	 has a maximum value of 1, and because n1/n2 is larger than 1, we see that
Snell’s law

(20.10)

does not allow the full range of values for 	1, the angle of incidence. The maximum
incidence angle allowed, which we call the critical angle 	c, is given by setting sin 	2
in Equation (20.10) equal to 1 to find that

(20.11)

Larger incidence angles do not allow a solution for an angle of refraction in Snell’s
law. What does this mean?

If we imagine increasing the angle of incidence from 0°, since the refracted
beam is bent away from the normal, just at the critical angle, the angle of refrac-
tion is 90° and the beam does not really enter the air. At larger angles still, there is
no refracted beam. This, of necessity, implies that all of the intensity of the inci-
dent beam is reflected back into the glass in a process known as total internal

reflection (Figure 20.18). For the glass–air interface, the critical angle using 
nglass � 1.5 is 42°.

sin uc �
n2

n1
.

sin u2 �
n1

n2
 sin u1
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Therefore, the image is virtual and has a magnification of m � �di/do �
�(�15.8)/20 � 0.79. Convex lenses are used in side-view car mirrors to get a
wide field of view. As we’ve seen, they will actually make the object appear to
be smaller, which our eyes/brain translate to mean that the car is farther away.
All convex car mirrors have the emblem, “Objects in mirror are closer than they
appear,” written on them and you need to be aware of this fact.

1

di

�
1

f
�

1

do

� �
1

75
�

1

20
� � 0.063 cm�1  thus di � � 15.8 m.

Example 20.6 A fish sees the world above the smooth water surface confined
within a circular viewing disk above it. Calculate the angular spread of this disk.

Solution: Light from above the water surface is refracted toward the normal on
entering the water. A ray that just grazes the water surface at 	 ~ 90° will be
refracted in the water to an angle 	
, given by sin 	
 � sin 90 (1/1.33) � 0.75,
or 	
 � 48.6°. Therefore a fish (or you) looking up at the calm surface of the
water from below will see the entire outside world within a circle of light making
an angle of 48.6° with the normal. Therefore we see that light from the outside



Although there is no energy propagated into the second medium at incident
angles at or above the critical angle, the electromagnetic fields do penetrate some
small distance into the second medium. These fields make up what is called an
evanescent wave, one that rapidly decreases in intensity with increasing depth into
the second medium. One practical application of an evanescent wave is to illuminate
only a thin layer of molecules in solution near an interface (Figure 20.19). In this
way, either by simple microscopy or by fluorescence methods, those molecules near
the interface can be selected for viewing. We return to this technique in Chapter 22.

Consider a solid cylinder of glass, as shown in Figure 20.20, into which a beam
of light has been aimed. As long as the beam strikes the cylinder walls with an angle
of incidence greater than the critical angle, the beam will continue to travel down the
cylinder even if the cylinder is bent. Such a tube is called a light pipe and is able to
bend light around curves although with tubes of macroscopic dimensions, the loss in
intensity of light is substantial and these devices have not had much practical use.

Optical fibers are slender capillaries of glass or plastic material with a solid core,
with diameters as small as about 10 �m, surrounded by a concentric layer of lower
refractive index material, known as the cladding. As shown in Figure 20.21, these
fibers function in the same way as light pipes but are much more efficient at confin-
ing the light intensity. Optical fibers can maintain about 10% of the incident intensity
even after a fiber length of 30 mi. The cladding is used to provide a highly efficient
mechanism for total internal reflection.

Optical fibers are used extensively in telecommunications to carry encoded
light signals for audio for telephone, audio/video for television, and high-
speed information transfer for computers. Optical fibers currently can carry at least
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world visible to the fish will form a cone with an apex angle of 48.6° at the fish.
Light seen by the fish at larger angles will originate from within the water and
consist of reflections from the water surface as shown in the figure.

n1 > n2

n2

FIGURE 20.19 A beam of light incident at an
angle slightly larger than the critical angle, show-
ing evanescent waves entering the second
medium with decreasing intensity. These waves
only penetrate microscopic distances and do not
propagate into the second medium. We show in
Chapter 22 that evanescent waves are useful in
fluorescence microscopy of surface phenomena.

FIGURE 20.18 Incident rays at angles less than, equal to,
or greater (from left to right) than the critical angle.

θ > θc

n1 > n2

n2

θ < θc

θc



1000 times more bits per second of digital information than electrical wires and in
principle can carry orders of magnitude more. Because of this and the huge reduc-
tion in size and cost of such cabling, all new cabling for communications is done
using fiber optics.

The technique known as wavelength division multiplexing (WDM) is used to
increase the information content sent over a fiber optic manyfold. Multiple inde-
pendent lasers using different wavelengths of light are coupled using special optical
devices and the light is sent down a single common fiber optic. Each laser signal is
modulated to produce pulse trains of light containing an enormous amount of infor-
mation and each wavelength propagates down the fiber essentially independently of
the others. Using similar optical devices at the receiving end, each wavelength can
be independently split from the others to have its information decoded.

Although a single fiber cannot generate an image of a source of light, bundling
of many fibers together in a coherent bundle, one that maintains the same relative
positions of the fibers at each end, allows an image to be transmitted. In medicine,
optical fibers are used as tools in two major ways: viewing internal features of the
body and internal laser surgery or therapy. By the insertion of a flexible fiber optic
bundle of many individual fibers, but still with a total diameter comparable to that
of a hypodermic needle, light can be “injected” into remote internal areas of the
human body and the reflected light can be captured in other fibers within the bun-
dle and transmitted out of the body for viewing (Figures 20.22 and 20.23). This
device is called an endoscope and versions exist for viewing within the lungs, GI
tract, or the blood vessels and heart. Indeed these devices have allowed our first
views within a living body. Movies of internal body parts using this technology are
now common on television science programs.

In some small number of medical procedures using fiber optics, laser light can
perform internal surgery. Various types of surgeries have been done on a limited basis,
including the shattering of kidney stones, destruction of tumors, and laser angioplasty
to remove plaque buildup in blood vessels. Many of these surgeries are still under
development and are not without problems, but can sometimes provide a useful alter-
native. Medical and other applications of lasers are discussed in Chapter 25.
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FIGURE 20.21 Glass optical fibers transmitting laser light.FIGURE 20.20 Total internal reflection in a light pipe.
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FIGURE 20.23 View of normal colon using
endoscopy.

CHAPTER SUMMARY
Light travels through the vacuum at speed c, but travels
through a transparent medium at a slower speed, given by

(20.3)

where n is the material’s index of refraction.
When light strikes a boundary between two media

with different indices of refraction, n1 and n2, some of
the light is reflected and the remainder is transmitted.
The laws of reflection and refraction govern the angles
at which the reflected and refracted rays appear:

(20.4)

(20.5)

Spherical mirrors produce an image located at di of
an object located at do according to the mirror equation,

(20.8)

where the focal length f is related to the radius of
curvature of the mirror R by

1

do

�
1

di

�
1

f
,

n1 sin u1 � n2 sin u2 .

ur � ui,

 v �
c

n
,

(20.7)

The magnification of the image is given by

(20.9)

where hi and ho are the heights of the image and object,
respectively. These equations can be used for all spher-
ical mirrors, as long as the sign conventions of Table
20.2 are followed.

In the case of refraction from a larger index
medium n1 to a lower index medium n2, there is a crit-
ical angle 	c above which there is no transmitted light
(all the light is reflected). This is known as total inter-
nal reflection and the critical angle is given by

(20.8)

This is the basis of optical fibers, extremely thin
glass filaments (core) surrounded by a thin glass
layer (cladding) with lower index of refraction.
Optical fiber applications range from communica-
tions, replacing electrical wires, to industrial and
medical methods that have revolutionized our
capabilities.

sin uc �
n2

n1
.

m �
hi

ho

� �
di

do

,

f �
R

2
.

FIGURE 20.22 Elements of an endoscope with a 200 �m
diameter fiber.



QUESTIONS
1. Does the speed of light in fused quartz increase or

decrease as the wavelength of the light increases?
Find the ratio of the speed of light in quartz at 800 nm
to that at 400 nm.

2. Rank the following media in terms of increasing
speed of yellow light through them: crown glass,
water, diamond, and air.

3. Explain why a spherical wavefront emanating from a
point source appears as a plane wave at a distant small
detector.

4. Suppose that light emitted from a long straight wire is
initially in phase as it leaves the wire. What will be
the shape of the wavefront from such a wire?

5. Give a geometric argument to explain why a plane
mirror always produces virtual images of the same
size as the object.

6. In a wonderful demonstration using a plane mirror,
the demonstrator and the observer each put their fore-
head and nose up against opposite edges of a large
free-standing plane mirror. The back of the mirror has
a partition blocking any viewing so that they can only
see each other with their one eye in front of the mir-
rored surface. What will they each see in the mirror
when they look at the other person? Now, for the
trick. The demonstrator wears a hat which he holds
onto with “both” hands. Then he can mysteriously
make the hat rise off his head by lifting it with his
“invisible” hand, the one behind the mirror. Try this
out with a friend.

8. The diagram shows that it is possible to see the sun
after it has set below the horizon. Discuss why this is
so. (Hint: This is related to the fact that the atmos-
phere gets less dense with increasing altitude and so
the index of refraction decreases with increasing alti-
tude as well.)
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7. An analogy that is often qualitatively used to explain
the law of refraction is a formation of soldiers march-
ing in straight lines at a uniform rate that approaches
a stream at an angle. As the first soldiers reach
the stream they slow down, whereas the soldiers on
the ground still maintain their same marching
cadence and speed. Making the analogy of wave-
fronts to rows of soldiers, show that Figure 20.10 and
Equation (20.5) are appropriate (with n � 1/v) and
that the “wavelength” of the formation will scale with
1/v as well.

horizon

sun’s rays

Earth’s surface

9. Example 20.2 showed that the apparent depth of
objects under water is foreshortened, as seen in air.
What do you expect you will see if you view an object
in air from under water? Will its “depth” in air be
foreshortened or lengthened?

10. Noting the fact that 4% of light incident on a
glass–air boundary is reflected, what fraction of the
incident light on an air-spaced double-paned glass
window with no special optical coatings is
reflected?

11. Consider the graph of Figure 20.12 which indicates
the fraction of light reflected from a surface as a
function of incidence angle. Assume that water, ice,
and the surface of mineral rock, or asphalt, all
behave optically like that of glass, at least approxi-
mately. Explain how it is that when looking toward
a distant but approaching automobile at night it
may appear that there is a double set of headlights.
As the car nears, the appearance of doubling goes
away.

12. When the sun sets and the air is particularly uniform
in temperature and humidity it is occasionally possi-
ble to see the “green flash” of the sun just as it sets.
The last bit of sunlight seen on the horizon changes
color from reddish orange to green. Discuss the rea-
son for this in light of the fact that the blue and violet
components of the sunlight have been scattered out of
the light that reaches our eyes. Consider how the
different colors in the light reaching our eyes are
refracted.

13. Is a virtual image formed in a mirror, spherical or
plane, located behind or in front of the mirror?

14. Consider a concave mirror with a focal length f and
the following different ranges of distance for an
object to be imaged. State whether the image is
upright or inverted and whether it is enlarged or
reduced in size: do � f, f � do � 2f, and do 
 2f.

15. A small object is imaged in a large spherical mirror
and the image appears blurred due to spherical aber-
ration. What can be done to improve the quality of the
image?

16. Why is the central core of an optical fiber surrounded
by cladding? What properties should cladding have to
be effective?



MULTIPLE CHOICE QUESTIONS
1. The image formed in a plane mirror is (a) right–left,

up–down and in–out reversed, (b) right–left and in–out
reversed, but up–down not reversed, (c) right–left
reversed but in–out and up–down not reversed, (d) none
of the above.

2. Two plane mirrors are stood vertically making a right
angle between them. How many images of an object
close to and in front of the mirrors can be seen? (Hint:
Raytrace a picture of the situation.) (a) 1, (b) 2, (c) 3,
(d) 4.

3. Headlights from a car illuminate the road and
surroundings for the driver at night due to (a) refrac-
tion, (b) specular reflection, (c) diffuse reflection,
(d) aberrations.

4. If, in the previous question, the road is wet, it will be
harder to see at night because, relative to the situation
with a dry roadway (a) there is more refraction, 
(b) there are more aberrations, (c) there is more spec-
ular reflection, (d) there is more diffuse reflection.

5. When looking down into the smooth surface of a clear
lake you can see underwater fish at small angles of inci-
dence but if you look out at larger angles of incidence,
you will see reflections off the surface. This is because
when you look out at larger angles, (a) the fish are far-
ther away, (b) there is more reflected light, (c) there are
more diffuse reflections, (d) there is less refracted light.

6. A pencil immersed in a glass of water appears to be
bent. If outside the water the pencil makes an angle
of 30° with the normal to the water surface, what is
the apparent “bending angle” of the pencil at the
water surface? (a) 22°, (b) 42°, (c) 12°, (d) 8°.

7. When a laser beam is aimed onto the face of a trans-
parent glass cube, which of the following best illus-
trates the direction of the beam after it emerged from
the cube?
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(a) (d)

out out out out

inininin

(b) (c)

8. A ray of light enters a cube of glass making an angle
of 36° with respect to the normal of the entrance face.
The index of refraction of the glass is 1.52. The ray
emerges from the opposite face with an angle relative
to the normal equal to (a) 23°, (b) 36°, (c) 54°, (d) 67°.

9. Based on Snell’s law and Figure 20.2, if a beam of white
light is refracted by a glass prism as shown, what will be
the order of the “rainbow” of colors starting with the
most refracted? It will be (a) red, yellow, blue, (b) blue,
yellow, red, (c) red, blue, yellow, (d) blue, red, yellow.

10. If a beam of light refracts at a plane boundary
between two different transparent media, what hap-
pens to the angle of refraction as the wavelength
of the incident light increases? It will (a) increase,
(b) decrease, (c) remain the same, (d) it depends on
the incident and transmission media.

11. When light strikes a plane boundary between two
media with different refractive indices which of the
following cannot occur? (a) There is a reflected beam,
but no transmitted beam, (b) there is a transmitted
beam but no reflected beam, (c) there are both trans-
mitted and reflected beams, (d) the speed of the light
increases on entering the second medium.

12. Two identical beams of light traveling through water
strike either crown glass or diamond at normal
incidence. If the incident intensity of each beam is
10 mW, how much more light is reflected from the
diamond? (a) 0.8 mW, (b) 1.9 mW, (c) 0.52 mW,
(d) 2.3 mW.

13. When an object is placed 5 cm from a concave spher-
ical mirror with a radius of curvature of 8 cm, the
image formed will be (a) real and erect, (b) real and
inverted, (c) virtual and erect, (d) virtual and inverted.

14. Where should an object be placed in front of a con-
cave spherical mirror so that the image is at the same
location as the object? At a distance equal to (a) f, 
(b) 2f, (c) 3f, (d) f/2.

15. To produce an image of an object in a concave spher-
ical mirror at infinity, the object should be placed
at (a) the center of curvature, (b) just up against the
mirror on the principal axis, (c) at the focal point,
(d) none of the above choices is correct.

16. Which of the following is a false statement about ray-
tracing in a spherical mirror? (a) A ray from the
object through the focal point will reflect parallel to
the axis, (b) a ray from the object through the center
of curvature will reflect on itself, (c) a ray parallel to
the axis will reflect through the center of curvature,
(d) a ray from the object directed to the point where
the principal axis meets the mirror will reflect at an
equal angle to the axis.

17. When a physician snakes an endoscope down a patient’s
esophagus she is able to see into the patient’s stomach.
Which of the following is most directly related to the
optics of this process? (a) Brewster’s angle, (b) disper-
sion, (c) total internal reflection, (d) diffraction.

18. At the plane boundary between two transparent
media, as a ray of light approaches the boundary,
from the medium of higher refractive index, at
increasingly greater angles from 0° to approaching
the critical angle (a) the reflected light decreases and

white light



the transmitted light increases, (b) both the reflected
and transmitted light decrease, (c) the reflected light
increases and the transmitted light decreases, (d) both
the reflected and transmitted light increase.

PROBLEMS
1. If you set two plane mirrors at a right angle with

respect to each other, as shown, you will see yourself
in three images. Two are direct images in either mirror
and have left–right reversals, but the image in the cor-
ner is just as others see you, without a left–right rever-
sal. Show how this occurs by drawing a ray diagram.

(c) Show also that this ratio is independent of where the
observers are located as long as they are much far-
ther from the mirror than the object height distances.

6. A narrow pencil of light strikes the side of a rectan-
gular fish tank at an angle of 30° below the horizon-
tal as shown.
(a) What angle does the light ray make with the hori-

zontal in the glass, assuming a 1.55 index of
refraction?

(b) What angle does it make in the water?
(c) If the glass wall is 5 mm thick, by what distance is

the exit spot inside the glass wall displaced from
the location at which the incident beam is aimed?

520 G E O M E T R I C A L O P T I C S

scene 

2. Describe how a periscope works (see figure) to
provide an image of a scene just as you would see it
with your eyes if they had a direct view of the scene.

30°

5 mm
object

image 

3. The two plane mirrors of the first problem are rotated
toward one another so that the angle between them is
60°. The images of an object will form symmetric
patterns. This is the basis of a kaleidoscope. If an
object is put along the bisecting line between the mir-
rors, show in a diagram where the images (some are
images of images) are located. Generalize this idea if
the angle between the mirrors is made to be 360°/n,
where n is a small integer.

4. You are standing 2 m from a plane mirror. If your
eyes are 8 cm apart, what angle apart do your eyes
appear to you when you see them in the mirror?

5. Two different observers, standing at different dis-
tances from a plane mirror (and slightly offset so that
they can each see the other), each hold an object in
their hands. The observer 4 m from the mirror carries
a 10 cm tall object and the observer 2 m from the mir-
ror carries a 5 cm tall object.
(a) Find the angle subtended by each object as seen

by each observer.
(b) Show that the ratio of the angle subtended by the

taller object as seen by the nearer observer to that
subtended by the shorter object as seen by the far-
ther observer is the same as the direct ratio of the
object heights.

7. Consider a slab of material with thickness t � 2 cm
with an index of refraction 1.5 and where the upper
and lower surfaces are parallel to each other. If light
is incident at an angle 	 with respect to the normal to
the surface, show that the beam leaves parallel to
itself on the other side of the slab at the same angle.
If 	 � 30°, find the displacement (the perpendicular
distance shifted) of the emerging beam from its inci-
dent direction.

8. In the previous question, if the light has a frequency of
88.3 MHz what is the speed of light in the medium,
the wavelength of light in the air and in the medium,
and how long does it take the wave to traverse the
medium?

9. A concave spherical mirror is used by a dentist to pro-
duce an enlarged image of a tooth. If the radius of
curvature of the mirror is 2.0 cm, how close is the
mirror to the tooth when the image appears triple the
size of the tooth? Is the image erect or inverted? Real
or virtual?

10. A 3.5 cm tall object is placed 20 cm in front of a con-
cave mirror. A real image forms that is 7 cm tall.
Where is the image located? Is it erect or inverted?
What is the radius of curvature of the mirror?

11. A 0.25 m diameter convex mirror is mounted high on
the wall of a store as a security mirror. If a person is
5.0 m away from the mirror which has a radius of cur-
vature of 2.0 m, find the height of the image formed
by the mirror if the person is 1.5 m tall. Will the full
height of the person be visible in the mirror if their
feet are imaged at the mirror’s bottom edge?

12. A concave makeup mirror has a radius of curvature of
25 cm. How close to the mirror should a young
woman’s nose be in order to see an image enlarged by
three times? Draw a ray diagram to illustrate this after
you find the answer.



18. Consider a light ray inside a cylinder of glass of
refractive index n. The glass cylinder is in air. The
direction of the ray is perpendicular to the cylinder
axis. With r2 equal to the distance of the light ray path
from the center of the cylinder,
(a) Show that if r2 � r1/n, the ray will not escape the

glass, but will follow a closed and broken polygonal
path within due to total internal reflection.

(b) Suppose this glass cylinder is a core cylinder, sur-
rounded by a cladding wrapper having a refractive
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θ 

45°

13. A small coin is placed a distance of 3 cm from a con-
cave mirror with a 15 cm radius of curvature.
Describe the image that is formed, finding its loca-
tion, magnification, and whether it is erect or inverted
and real or virtual.

14. A car that is 10 m from a convex side-view car mir-
ror, with a 150 cm radius of curvature, is imaged in
the mirror. Find the image location, magnification,
and whether it is erect or inverted and real or virtual.

15. A small bright light is at the bottom of a large 8 ft
deep swimming pool illuminating the surface of the
pool. Show that the illuminated region, as seen from
above, will be a circle of light and find its radius.

r1

r2

light ray

glass fiber 

air or cladding

outside

16. Where does the image of the box appear to be
located, given the object is located a depth d below
the surface and 	1 is the angle of incidence of the
ray with respect to the normal to the water–air
surface?

index smaller than that of the core. Now show
that the ray within the core is trapped if r2 � r1
(ncladding/ ncore).

nair = 1.00 

nwater = 1.33

d

θ1

What is the apparent depth d
 of the box in terms of the
actual depth d, and the indices of refraction, nwater and
nair. (Hint: Use the fact that for small angles sin 	 ~
tan 	, and use Snell’s law.)

17. What is the angle 	 such that the light rays will be
totally internally reflected assuming that the pipe has
an index of refraction of npipe � 1.30 and is sur-
rounded on all sides by air.

θ

19. The diagram shows a cut lengthwise along an optical
fiber. Such a cut defines a “meridional plane” of the
fiber cylinder and a light ray confined to this plane is
called a meridional ray.
(a) Find the maximum angle that a light ray can

make with the axis of the fiber and still be con-
fined to the fiber via total internal reflection if
the fiber has refractive index of 1.4 and is sur-
rounded by air.

(b) uppose the fiber is composed of core and
cladding, with refractive indices, ncore � 1.400
and ncladding � 1.386, a difference of 1%. Now
find the maximum angle with the axis for a ray
confined to the core.

20. A piece of glass in the shape of a right triangular
prism has a beam of light enter normal to one face as
shown. What is the minimum refractive index of the
glass so that light entering one end will round the
bend via total internal reflection? (There is no mirror
coating on the bevel!)

21. Refractive index is dependent on the wavelength
and hence the color of light, increasing in magni-
tude from red to blue-violet. Typically, the refractive
index given for a particular material refers to a wave-
length value near the middle of the visible spectrum.
(a) Suppose white light is incident on an equilateral

prism made from crown glass as shown. This



means that all colors, and hence all wavelengths
in the incident beam are traveling in the same
direction and strike the prism at the same angle.
If refraction occurs such that yellow light (590
nm) travels along the path exactly parallel to the
bottom face of the prism, determine the directions
of red (630 nm) and blue (490 nm) light within
the prism. (Estimate n values from Figure 20.2.)

(b) Sketch what will happen to these colors at the sec-
ond interface, where the light exits the prism
glass. Specifically, show that the colors do not
recombine but exit in a range of angular direc-
tions, resulting in a “rainbow” of color.

interface, some of which now will make it through the
second interface at the second incidence.)
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air glass air water air water glass

22. A beam of light in air consisting of two fairly pure col-
ors with wavelengths of 400 and 550 nm is incident on
a plane glass surface at an incident angle of 30°. Using
n(400 nm) � 1.53 and n(550 nm) � 1.51, find
(a) The refraction angles of each color
(b) The separation of the two colored beams after

traveling a depth (measured along the normal) of
1 m into the glass

23. At every interface, there is reflection and transmis-
sion according to the amount of change in refractive
index at the boundary. Consider an air–glass inter-
face, an air–water interface, and an air–water–glass
interface. Calculate the percentage of light that makes
it through each interface arrangement for incident
light normal to the surface. (For the case of the
air–water–glass interface, consider only a single pass,
i.e., don’t worry about light that is reflected from the
second interface and then back again from the first

white light 

yellow

24. A major problem with larger diameter fibers is the
difference in travel times of rays along a fiber. In
traveling a distance d, the shortest time is that of the
axial beam t1 � d/v, and the longest time t2 is that 
of a ray bouncing back and forth along the fiber just
at the critical angle. Compute the time difference
between these two rays for a 1.5 index fiber that is
10 km long and 100 �m in diameter, surrounded by
1.49 index cladding. This effectively limits the
frequency of a signal that can be transmitted without
significant degradation in larger diameter fibers.
Small diameter (~10 �m diameter) single-mode
fibers, in which the light travels as a wave and not as
a geometrical ray, overcome this problem.

25. A second major problem in communications with fiber
optics is attenuation of signal along a fiber due to scat-
tering and other losses. Over recent years there has been
a truly tremendous improvement in the transmission of
optical glass fibers of about 100 orders of magnitude.
At near-IR wavelengths the fiber losses can now be
kept very low, at under �0.4 dB/km (look back to
Chapter 11 on sound for a discussion of dB; because this
is a loss in intensity, it will be negative). What percent of
the incident signal is lost after traveling 50 km? Fiber
amplifiers are used to boost the signal periodically for
longer distance communication over fibers.



O P T I C A L L E N S E S 523

J. Newman, Physics of the Life Sciences, DOI: 10.1007/978-0-387-77259-2_21, 
© Springer Science+Business Media, LLC 2008

In the last chapter we learned the fundamental laws that tell us how light behaves when
traveling through a transparent material. Here we apply those to the most important
case of optical lenses, both human-made, for use in optical devices, and naturally
occurring, as in the eye. After learning the basics of imaging using a single simple
lens, we show how the human eye exquisitely functions to allow us to see in color at
extremely high resolution. Two human-made optical devices, the magnifying glass
and the compound microscope, are then examined. These can be fairly well under-
stood with only the tools of geometric optics that we have learned. Understanding the
huge arsenal of new optical microscopies studied in Chapter 23 requires knowledge of
wave optics, presented in the next chapter. There we introduce the wave nature of light
and some of its major consequences.

1.  OPTICAL LENSES

In the previous chapter, after introducing reflection and refraction we focused on the
phenomena of imaging from reflections in spherical mirrors and total internal reflec-
tion. Here we turn to the portion of the light incident on a transparent glass surface
that is transmitted. Lenses are perhaps the most important of optical devices. For a
glass lens, we know that only about 4% of the incident light at near normal incidence
(in the paraxial approximation, with light traveling nearly along the optic axis) will
be reflected at each boundary with air and so most of the light will be transmitted
after being refracted by the curved surfaces. Special optical antireflection coatings
can even increase the transmitted light closer to 100%. Armed with the law of refrac-
tion, we can repeat an analysis similar to that of the last chapter for reflected light to
trace the refracted rays of light and to describe the characteristics of the images
formed by a lens.

Lenses are usually made either of glass or clear plastic and are ground and pol-
ished to have spherical surfaces. Several varieties of two basic forms of lenses exist:
converging lenses, those thicker at the center than at the edges, and diverging lenses,
those thinner at the center than at the edges (Figure 21.1). Occasionally lenses are
made with cylindrical or even other surface contours for special purposes; these are
not discussed here. Many common lenses, especially those in cameras, are not sim-
ple single pieces of glass, but are compound lenses made by cementing many indi-
vidual lenses together with a transparent glue that has a similar index of refraction to
that of the glass. We discuss these later, focusing first on simple lenses, those that
have negligible thickness compared to their diameter. These are known as thin lenses

and the equations we introduce are limited to such lenses.
Let’s first consider a double convex lens shown in Figure 21.2. Incident rays par-

allel to the optic axis will be bent by refraction at both surfaces of the lens toward the
optic axis (Figure 21.2a). For a thin lens there is a common point, the focal point F,

21Optical Lenses and Devices
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at which all these rays cross the optic axis, the straight line passing through the lens
center and traveling perpendicular to both surfaces. The distance f from this point to
the center of the lens is called the focal length of the lens and is the same distance to
either side of the lens. That is, if the lens is rotated 180o about a vertical axis it will
focus light at the same point. The focal length of a thin lens can be shown to be
related to its radii of curvature R1 and R2 on each of its sides and its index of refrac-
tion n by the lens-maker’s equation

(21.1)

Note that this equation defines a single focal length for a lens, regardless of the
side facing the incident light, even if the two radii of curvature are different. In this
equation the radii are taken as positive if the surface is convex and negative if con-
cave (discussed below). Note that a plane surface has an infinite radius of curvature.

1

f
� (n � 1)a 1

R1
�

1

R2
b .

double convex plano-convex

double concave plano-concave 

FIGURE 21.1 Converging (upper)
and diverging (lower) lenses.

Example 21.1 A plano-convex lens of refractive index 1.52 has a radius of cur-
vature of 5 cm. First find its focal length. Suppose that a second plano-convex
lens with the same index of refraction is cemented to the first along their planar
faces. What radius of curvature is needed on this second lens to produce a net
focal length 1/4 the value of the focal length of the first lens?

Solution: According to Equation (21.1) the focal length of the first lens is
[0.52/5]�1 � 9.6 cm. The second lens must have a radius of curvature R, such that
(9.6/4) � [0.52(1/5 � 1/R)]�1. Solving for R, we find that R � 1.7 cm.

For a double convex (or any converging) lens, if an object O is to be imaged in
the lens, we can trace three characteristic rays to locate the image. For the object
shown in Figure 21.3, those three rays from the object arrowhead are: (1) a ray par-
allel to the optic axis that will be focused through the focal point on the far side of
the lens (in red); (2) a ray passing through the focal point on the same side of the lens
that, on passing through the lens, will be refracted to lie parallel to the optic axis
(in blue); and (3) a ray passing through the center of the lens that will continue unde-
viated (this occurs because both sides of the lens are essentially parallel; the negligi-
ble thickness of the lens eliminates any parallel displacement of the ray; shown in
green). The image of the arrow tip representing the object can be determined by the
common point at which these three rays cross (of course, any two of these will cross
at the image point). Then the entire image I is known since the ray along the optic
axis passes straight through and images the tail of the arrow. Note that in this case the
image is upside down, or inverted, and smaller in size.

In place of raytracing we can derive an equation that will allow us to find the
image location as well as its lateral magnification. With the various distances defined
in Figure 21.4, the derivation assumes paraxial optics (with incoming rays making
small angles with the optic axis). There are two sets of similar right triangles. The first
set (shown in green hatched lines) consists of one formed with the object height and

distance as legs (with hypotenuse OC) and the other with the
image height and distance as legs (and hypotenuse IC). From
the similarity of these we have

(21.2)

and a second set of similar triangles (one shown in red hatched
lines and the other having F as a common vertex) yields

h

h¿
�

s

s¿
,

a

F

f
b

FIGURE 21.2 (a) Refraction at
convex lens surfaces tends to
bend light toward the optic axis.
(b) The focal point of a double
convex thin lens.
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(21.3)

Combining the two equations, we have that s/s�� f/(s�� f ), and after
cross-multiplying and dividing both sides by the product (s s� f ) and sim-
plifying the result (try it!), we find the lens equation

(21.4)

We can also invert Equation (21.2) to find an expression for the lateral magnifi-
cation m

(21.5)

where the minus sign was introduced so that an inverted image has a negative mag-
nification, and an erect image has a positive magnification.

In the case worked out above using ray diagrams, the object distance is greater
than the focal length and we can see from Equation (21.4) that then because 1/s �
1/f, the image distance s� is positive, indicating that the image is real and that the
image will be inverted (because m � 0 in that case). If s� � s the image will be mag-
nified, whereas if s� � s the image will be smaller than the object. It is easy to see
that the dividing line occurs when s � 2f, because then s� � 2f as well and the image
will be “life-size,” but still inverted. If s � 2f, then f � s� � 2f and the image will be
smaller, whereas if f � s � 2f, the image will be magnified.

The reciprocal of the focal length for a lens is called its power P, where

(21.6)

Lens power is measured in reciprocal meters which are called diopters
(D). Thus, the shorter the focal length of a lens is, the stronger its power. The
diopter unit is mainly used in coding eyeglass lenses, a topic we return to in the
next section.

At this point, if we generalize Equations (21.4) and (21.5) using a set of sign rules,
these equations are then valid for all thin lenses no matter what the configuration.
These rules are given in Table 21.1. We illustrate their use with a few examples.
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FIGURE 21.3 Raytracing with a thin
converging lens. The image lies at
the intersection of the three num-
bered rays (see text for explanation
of the construction).
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FIGURE 21.4 Geometry to derive
lens equation and magnification
(Equations (21.4) and (21.5)).

Table 21.1 Sign Conventions for Thin Lenses

Quantity Convention

s � If object in front* of lens

� If object behind lens

s� � If image behind lens

� If image in front of lens

h, h� � If erect

� If inverted

R1, R2 � If surface is convex

� If surface is concave

f � If converging

� If diverging

* Front and back are with respect to incident light; that is, the front of the lens faces the
incident light.



First consider the situation in Figure 21.5 where the
object is closer to the lens than one focal length. In this case,
Equation (21.4) predicts that s� will be negative because
1/s � 1/f. What does this mean in terms of the image? The
figure shows raytracing in this case. It is clear that the
focused rays do not converge and that therefore there is no
real image, no place at which a screen can be put to see an
image. On the other hand, a viewer on the far side of the
lens from the object looking back through the lens will see
the rays appear to emanate from a (virtual) image behind

the lens, to be larger than the object, and to be erect. That the image is larger and erect
follows from Equation (21.5) because s� is greater than s and is negative, making
m � �1 (note the agreement with our sign conventions in Table 21.1). As the object
approaches the focal point, the virtual image recedes to larger distances and is magni-
fied to ever greater size. You may recognize this application of a lens as a magnifying
glass (Figure 21.6). We discuss this situation further after we take a look at the eye
in Section 3.

As a second application of the lens equation consider the diverging lens
shown in Figure 21.7. According to the lens-maker equation, because the radii
of curvature are both taken as negative, so is the focal length. Therefore, no mat-
ter where an object is placed on the left of the lens in the figure, according to
the lens equation, the image will always be virtual with the object appearing
smaller and erect. This is so because with 1/s � 0, when subtracted from �1/| f |,
we have that

so that we must always have s� � 0 and |s�| � s. Figure 21.7 shows the raytracing dia-
gram for one such situation.

As a final case, we examine the problem of where to put a converging lens in
order to image an object on a screen when the total object to screen distance is fixed
at a distance L. In that case (s � s�) � L, and we must find the possible lens loca-
tions, or the possible individual s and s� values. Writing the lens equation as

we need to solve for possible s and s� values. Substituting for s� � (L � s)
into the above, we have

Solving the quadratic equation, there are two possible solutions given
by

as long as f � L/4 or L � 4f. To each of these values of s, let’s call them
s� and s�, both of which are positive, there corresponds a value of 
s� (s� � L � s) and a magnification m � �(s�/s). Because the two values
s� and s� add up to L, it is clear that the two solutions are s � s� and
s� � s� on the one hand and s � s� and s� � s� on the other. In the first
case, the lens is closer to the screen than to the object and the magnifica-
tion is less than 1. The image will be inverted and reduced in size and, of
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FI O F

FIGURE 21.5 Raytracing when the
object O is within one focal length
of a converging lens. The image I is
virtual, erect, and magnified.

FIGURE 21.6 A happy magnifying
glass.



Example 21.2 A 0.2 cm tall object lies 10 cm from a 25 cm focal length magni-
fying glass. Find the location, magnification, and size of the image. Is it erect or
inverted? Real or virtual?

Solution: By direct substitution into the lens Equation (21.4), using s � 10 cm
and f � 25 cm, we find that s� � �16.7 cm. Because s� � 0, we know that the
image is on the same side of the lens as the object and therefore a virtual image.
The magnification is given by m � �s�/s � 1.7, so that the object appears to be
(0.2)(1.7) � 0.34 cm tall and erect.
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FIGURE 21.7 Raytracing for a
diverging lens to form the image I
of an object O. Ray 1 is parallel
to the optic axis and diverges as
if it originated at the focal point;
ray 2 is aimed at the focal point
on the other side of the lens and
emerges parallel to the axis; ray
3 passes undeviated through the
lens center. The virtual image is
found at the extrapolated location
where these rays cross.

As was mentioned above, many lenses are compound or thick lenses composed
of multiple lenses cemented together, whereas other optical systems may con-
sist of multiple individual thin lenses. Situations in which there are multiple
thin lenses can be handled using the formalism of this section. One
begins by finding the image of the object in the first lens (closest to
object) and then simply treats this image as the object to be imaged
by the second lens, and so on. Using the same consistent sign con-
vention given in Table 21.1, such problems can be analyzed without
any new concepts. For example, if the two (thin) lenses are in contact,
then we can derive a simple formula for the overall focal length of the
combination as follows. Writing the lens equation for the first lens we
have that

1
s1

�
1

s1¿
�

1

f1
,

FIGURE 21.8 The two solutions to
imaging an object on a screen a
fixed distance away from an object.

course, real because it is actually formed on a screen. In the second case, the lens
is closer to the object and the real image is enlarged but still inverted (Figure 21.8).
With a handheld magnifying glass this is an easy and interesting experiment to try.



with a similar equation for the second lens,

But, using the first image as the object for the second lens means
that so that on adding the two equations together we
find that

This equation can be interpreted as treating the two lenses in contact with each other
as a single lens with a combined focal length f given by

(21.7)

Most lenses in optical devices are, in fact, compound lenses designed to com-
pensate for aberrations and so Equation (21.7) tells how to find the net focal
length of the compound lens. We use this idea to analyze the compound micro-
scope in the next section. But what is the purpose of cementing multiple lenses
together?

All lenses suffer from various defects in the quality of the image they produce.
Collectively these are termed lens aberrations. We can distinguish two classes of
aberrations: monochromatic, those involving a single color, and chromatic, due to
the dispersion of the lens material, refracting different wavelengths (colors) differ-
ently due to a variation in index of refraction. There are five major monochromatic
aberrations, all of which distort the imaging of a single point of the object to a sin-
gle point of the image. One of these, spherical aberration, is simply due to the
spherical lens curvature giving rise to distortion when incident rays are far from the
optic axis. In particular, as shown in Figure 21.9, parallel rays from a distant point
source arriving at different distances from the optic axis will be imaged at slightly
different points on the axis, resulting in a blurred image of the point object.
Limiting the accepted rays to paraxial rays close to the optic axis with a stop, or
aperture, can reduce spherical aberration. The four other monochromatic aberra-
tions have to do with off-axis imaging and examples of their images are shown in
Figure 21.10.

1. Coma with the comet Hyakutake showing its shape.
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FIGURE 21.9 Spherical aberration.
Parallel rays far off-axis will focus at
different distances along the optic
axis (horizontal double-headed
arrow). The image in the paraxial
focal plane, shown by the vertical
line, will therefore be blurred later-
ally (vertical double-headed arrow).
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FIGURE 21.10 Continued



Chromatic aberrations due to the dispersion of glass result in different focal points
for each color (Figure 21.11). The shorter wavelength light (violet end of the visible
spectrum) experiences a larger index of refraction and is therefore refracted more and
brought to a closer focal point. Compound lenses made from a converging and a diverg-
ing lens of different index of refraction glasses are designed to minimize chromatic
aberration and are known as achromatic lenses (Figure 21.12). The longer optical path
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FIGURE 21.10 The four other monochromatic aberrations, other than spherical
aberration, with schematics and example photos.
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2. Distortion with an example of barrel distortion from a wide-angle camera shot of
a brick wall.

3. Curvature of field with the painting “Anna’s Bedroom” by Scott Kahn illustrat-
ing this aberration.

4. Astigmatism with a painting illustrating this aberration.



of the longer wavelength light in the diverging lens seen in the figure compensates for
the smaller index of refraction at these wavelengths and brings the various colors to a
common focus. All good quality cameras are made with achromatic lenses, the better
ones having very thick multiple lenses to minimize other distortions as well.

2.  THE HUMAN EYE

Eyes are our visual window to the world. They are complex structures that are capa-
ble of very high resolution, are extremely sensitive to light, capable even of detect-
ing single photons, can give color and depth perception, and adjust to focus on
objects from as close as 10 cm, in young eyes, to “infinity.” In this section we first
describe the structure of the eye with the aim of relating its anatomy to its function-
ing, as well as to some diseases. Then we focus on the retina and the visual pigment
to describe in some detail the actual transduction of photon energy to an electrical
response in the optic nerve.

A schematic cross-section of the human eye is shown in Figure 21.13. Starting
from the outside, the external covering of the eye consists of three layers. Most of the
outermost layer is the sclera, the white of the eye, a tough fibrous layer containing
nerve endings but no blood vessels. The sclera covers about 85% of the eyeball,
roughly a 2.5 cm sphere, but the front portion consists of a transparent 12 mm diam-
eter cornea with an index of refraction of about 1.38. The cornea is the most refract-
ing surface in the eye, with the largest index transition from n � 1 in air. The next
two inner layers are the choroid, filled with pigments and blood vessels, and the
retina, the site of photon detection. Neither of these layers extends into the cornea
region (see Figure 21.13).

At the front end of the eye behind the cornea is a liquid-filled chamber with the
aqueous humor, which is continually drained and replaced, bounded also by the
lens and the iris. A buildup of pressure in this region can produce a condition
known as glaucoma, which can lead to blindness. The lens is a double convex lens
made from a crystalline array of 25% protein and 10% lipids, having an index of

refraction of about 1.42. It is one of the few parts of our bodies that
are preserved without any turnover of their cells. With age, or dis-
ease, the lens loses its perfect crystallinity and develops defects
that scatter light. These are known as cataracts and, when suffi-
ciently large, can adversely affect vision by “clouding” the eye, or
scattering light just as if you tried to view the world through a thin
layer of milk. The shape of the lens is controlled by ciliary muscles
that can change its focusing ability in a process known as accom-

modation. Normally, without any shape change of the lens, we can
focus on objects from about 20 feet to infinity. This ability is due
to the finite thickness of the photon detection region allowing light
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CHROMATIC ABERRATION 
FIGURE 21.11 Chromatic aberra-
tion, showing the effect of disper-
sion on the focusing of different
colored light in a white light beam.
Shorter wavelengths experience
greater refraction due to the higher
index of refraction.

ACHROMATIC LENS 

FIGURE 21.12 Using an achro-
matic lens (compound lens cor-
rected for chromatic aberration)
there is much less chromatic blur.



to be focused at slightly different distances (see below). To see
objects closer than that distance, the eye cannot remain relaxed,
but the lens must change shape, thickening to give a tighter
focus.

The iris serves as an adjustable aperture and is pigmented, giv-
ing the eye its characteristic coloring. The central opening, known as
the pupil, is the photon entrance path. Filling the eyeball is a gel-like
material, the vitreous humor, which is more or less permanent. Six
pairs of muscles control the movement of the eyeball in its socket,
allowing us to focus images of interest on the highest acuity region
of the retina, the fovea. This region of the retina, also known as the
macula, has only cones, the photon receptor cells responsible for
color vision, with each cone having a direct connection to a differ-
ent optic neuron, or nerve cell. The macula therefore has the highest
spatial resolution on the retina; outside the fovea there are roughly
10 cones per neuron connection or 125 rods, the other type of pho-
ton receptor, per neuron. These neurons collect in the optic disc,
creating a blind spot with no visual pigment, and lead to the optic
nerve bundle.

Before we consider the photon detection process on the retina in more detail,
consider the overall optical arrangement of the eye. As shown in Figure 21.14, par-
allel rays of light (from an object at “infinity”) are focused by the relaxed lens to a
point on the retina some 2 cm behind the lens, in fact at the central fovea which lies
on the visual axis. An object at a large but finite distance is focused onto the retina
as an inverted image. Our brain interprets this inverted image as erect. The total
equivalent lens of the eye is a thick lens system, composed of the cornea, aqueous
humor, and lens, subject to all of the aberrations mentioned in the last section. One
function of the iris is to reduce the aperture size to limit incoming rays to be parax-
ial, thus reducing aberrations.

Often the eyeball is either elongated along the visual axis (myopia, or near-
sightedness) or shortened in that direction (hyperopia, or farsightedness). A third
defect in which the cornea is not spherical, but oval in shape, having different focus-
ing properties along two different orthogonal directions, is known as astigmatism.
All three of these defects can be corrected for by placing lenses in front of the eye
(either as eyeglasses or contact lenses). Figure 21.15 shows ray diagrams for each
of these, together with their corrections through the use of a lens. In myopia (top),
parallel rays are brought to a focus in front of the retina (hence the name near-
sightedness), blurring the image on the retina. By using a diverging lens, the image
can be formed on the retina. The worse the myopia, the greater the power of the cor-
rective lens needed. In hyperopia (middle), parallel rays would be focused behind
the retina (far-sightedness) and so have not yet converged to form a clear image on
the retina. A converging lens will move the focal point onto the retina. Again, the
worse the eye’s vision is, the stronger power corrective lenses needed. Inexpensive
“reading glasses,” simply matched converging plastic lenses, are sold in various
diopter ratings for several dollars and are usually adequate for reading purposes.
Astigmatism (bottom) produces a distortion in imaging so that two perpendicular
lines cannot be both brought into focus. A cylindrical lens that focuses light along
only one axis can correct this defect.
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FIGURE 21.13 The human eye
in cross-section.

Example 21.3 Suppose the focal length of a person’s eye is 3.0 cm when fully
relaxed (looking at a distant object). If the person’s retina is 3.3 cm behind the
eye lens (a nearsighted eye compared to the normal distance of 3.0 cm), what
must be the focal length of the corrective lenses so that this person can see
“objects at infinity?”

FIGURE 21.14 A distant object
imaged on the retina.



Solution: Using the thin lens equation with s � � and we find an
effective focal length of 3.3 cm needed. Because the effective focal length of
such a two-lens system (the lens of the eye and the corrective lenses) is given,
from Equation (21.7), by

we can find the focal length of the needed lens to be

(or in diopters, (1/�.33 m) � �3 D).
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There are some interesting points to be made about nearsightedness. For exam-
ple, if the near point of the normal eye is 25 cm (smin) and the distance to the retina
is 3 cm (s�), then the minimum focal length of the normal eye is 2.7 cm (from

Normal eyes produce an inverted real image on the retina that is 
times as large as the object. Let’s assume the nearsighted person

in Example 21.3 has the same minimum focal length. Then, without corrective lenses,
at closest focus

which leads to smin � 14.9 cm. Nearsighted people can see clearly closer to their eyes
than normal-sighted persons; they have a smaller near point, which is the closest dis-
tance an object can be brought into focus, without corrective glasses. The size of the
real image for this case is 3.3 cm/14.9 cm � 0.22, almost twice as large as that of the
normal-sighted person! Nearsighted people who are stamp or coin collectors have a
great advantage over normal-sighted persons; they often don’t need magnifying
glasses to see fine details.

Unfortunately for the nearsighted, this close vision advantage vanishes when
they put on corrective lenses. Suppose the person above is wearing the �3 D correc-
tive lenses designed for distance vision and is looking at an object 25 cm away. The

�3 D lens turns out to create a virtual image 14 cm in front of the
lens that serves as the object for the eye’s lens, using

But, that is approximately the closest the bare eye lens can focus,
therefore with corrective lenses on, the person can no longer see as
close as without them. (An object 14 cm away would form a vir-
tual image only 10 cm in front of the glasses, too close to be in
focus.) Note also that the virtual image formed by the corrective
lenses is smaller than the object by a factor of 14 cm/25 cm �
0.56. This reduction cancels the magnification advantage the near-
sighted person enjoyed, too. In fact, because the corrective lens is
diverging, it always forms a reduced size virtual image in front of
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Near-sighted eye Near-sighted eye, corrected 

Far-sighted eye Far-sighted eye, corrected 

Astigmatic eye Astigmatic eye, corrected 

FIGURE 21.15 Three common
focusing problems with the eye and
their correction with eyeglasses.



the real object. The eye uses this image as its object and so nearsighted people with
corrective lenses always perceive objects to be both closer to them and smaller, com-
pared with what a normal person sees.

As the eye ages, the lens shape becomes more resistant to change by the cil-
iary muscles and so the eye cannot accommodate as well to bring close objects
into focus. This weakening of accommodation is known as presbyopia. In the young
eye, the near point can be as short as 7 cm. With age, the near point moves farther
away due to presbyopia, having a mean of about 1 m for a 60 year old individual.
Producing a similar effect as hyperopia, this can be corrected with a converging lens.
People with myopia will often see an improvement in their vision with age due to
presbyopia and will often require bifocal lenses with the lower portion made con-
verging for reading or close vision and the upper portion made diverging for dis-
tance vision.

The structure of the retina is shown in cross-section in Figure 21.16. Note the
striking fact that incident light must travel through the network of nerve cells (retinal
ganglion cells) before reaching the photoreceptors, lying partly immersed in a layer
of pigmented cells. Fortunately these cells are transparent, but only about 50% of the
light that strikes the cornea gets to the retina, and only about 20% of that gets to the
light detecting cells. These cells, the rods and cones, permanent and not replaced over
time, are, however, 100% efficient. Light that is not absorbed by the photoreceptors
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FIGURE 21.16 The human retina. (top) Light passes through a network of nerve cells
from the bottom of this drawing before being detected by the rods and cones. (bottom)
Fluorescence microscopy image of the retina.



is subsequently absorbed by a layer of pigmented cells to
prevent stray reflections of light within the retina. There are
about 125 million rods and 7 million cones on the retina dis-
tributed such that only cones are at the central fovea, where
vision is most acute (Figure 21.17). The rods and cones are
named by their shapes, but are somewhat similar in overall
structure (Figure 21.18).

There is an inner segment, filled with mitochondria
to supply the energy needed for the light transduction,
through which the light must also pass. The retina con-
sumes the greatest amount of oxygen per unit weight of
any tissue in the body. Inner and outer segments are con-
nected through a thin cilialike portion containing micro-
tubules. Light transduction takes place in the outer
segments, the rod outer segments having been studied much
more thoroughly than those of the cone. They are each 20
	m long and 2 	m in diameter and contain stacks of rod
discs that are membranes containing the visual pigment
rhodopsin, with about 105 rhodopsin molecules per 	m2 of
surface area.

Rhodopsin consists of two parts: a protein portion with
348 amino acids, known as opsin, and a smaller hydrocar-

bon part C20H28O, a derivative of vitamin A known as retinal, the light-absorbing
portion (Figure 21.19). The structure of retinal is shown in Figure 21.20. There
are two possible sterioisomers, or conformations, of retinal: 11-cis-retinal found
in the dark and all-trans-retinal that nearly instantaneously forms after the absorp-
tion of a single photon. With the advent of femtosecond (10�15 s) laser pulses,
this first step in the vision process, the isomerization of retinal, has been found to
occur within about 500 femtoseconds. Subsequent to this initial conformational
change there is a sequence of conformational steps, discovered using pulsed
laser spectroscopy, and other events that lead to an eventual electrical signal at the
neuron. Each photon absorbed by a rhodopsin leads to the hydrolysis of over
100,000 molecules of cyclic GMP, the crucial signaling molecule in the subsequent
transduction. The reduction in cyclic GMP, needed to keep Na� channels open
in the rod membrane, causes the eventual polarization of the membrane and elec-
trical signal.

The electrical signal that is sent from the retina to the brain over the optic nerve is
not simply the sum of all rod and cone firings. Somehow the activity of the many rod
and cone interconnections “preprocesses” information about the light falling on them

so that a significant part of “seeing” occurs prior to what goes
on in the visual cortex of the brain. It takes time to perform
the preprocessing of visual information in the rod and cone
networks, perhaps 0.1–0.2 s, a time that matches the response
time of our nervous system.

We do not see the instantaneous values of the elec-
tric fields of the EM light waves, which vary about 1015

times per second. Rather we see the effects of electric
fields that have been averaged over many cycles of oscilla-
tion. In fact, the signal sent from the eye to the brain is
not directly related to E fields, but rather to the average
intensity, proportional to E2 averaged over many cycles.
Now, rods and cones may detect EM intensity, but not
equally well at all frequencies. The retinal molecule acts
like a damped oscillator. When driven by the oscillating
E field of the light, these molecules vibrate resonantly at
different driving frequencies. There are three kinds of cone

534 O P T I C A L L E N S E S A N D D E V I C E S

FIGURE 21.17 Hexagonally packed
cone cells at the fovea section of
the retina in a living human eye.
The image is taken at a location
about 300 	m from the foveal cen-
ter (which is equal to about 
1 degree of visual angle) and it is
about 150 	m across. The small
spots are single cone photorecep-
tors which, at this location are sep-
arated by about 5 	m. The dark
shadow is that of a blood vessel
which runs above the photorecep-
tor layer.

FIGURE 21.18 Cone cells of the
human retina.



cells (with three different resonant frequencies close to “red,” “green,” and “blue”)
and one kind of rod cell, with a resonant peak response between “green” and “blue.”

The absorption spectrum of rhodopsin shown in Figure 21.21 indicates that dark-
adapted rods are most sensitive (have their strongest absorption) in the green-blue at
500 nm. In strong light this shifts slightly to 550 nm, but with a single absorption
spectrum rods are not able to distinguish all of the different colors we can see in
bright light. Cones are much less sensitive to light (the figure does not show this
because the absorption peaks are all normalized); in fact the cones effectively “turn
off” in dim light. In dim light there is little distinction between colors; everything
appears gray.

In bright light, the cones take over. They have three different types of visual pig-
ments, each having a maximum absorption at a different visible wavelength, corre-
sponding to a different color. It has long been known that (almost) any light color
can be represented as a sum of three “primary” light colors: red (R), green (G), and
blue (B). The RGB system is the basis for color TV, for example. On a color TV
screen, each pixel is divided into an R, a G, and a B subpixel. Three electron beams
sweep rapidly across the screen lighting each pixel with a certain amount of R, of
G, and of B.

Clearly it is tempting to explain the RGB color system in terms of the three
different cone cells. Undoubtedly, there is some connection between the two, but
the connection must be fairly subtle, and, as yet, is still not worked out. One
reason for this situation is that the “R” cone cells actually have their response
maximum at a frequency that is closer to yellow than to red. A second reason is
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FIGURE 21.19 A rod cell on left
with a model of the seven-helix
rhodopsin with the front two
helices of opsin cut away to
show the retinal molecule at the
active site.

FIGURE 21.20 The chemical
structure of retinal, the
light-sensitive portion of 
rhodopsin.
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that some people only have two of the three cone cells, yet many of them seem to
perceive color about as well as people with the normal distribution of cells.
Somehow, their brains fill in the missing information. Finally, in people who are
red–green color blind, all three cells appear to be present. So, the final word is not
in yet.

3.  OPTICAL DEVICES: THE MAGNIFYING GLASS 
AND OPTICAL MICROSCOPE

Optical devices abound in our technologically oriented world, from the supermarket
optical scanner to the sophisticated digital video camera. Nearly all of these devices
incorporate multiple lenses, except for the simple magnifying glass which we study
just below. As we have seen, to analyze imaging problems with multiple lenses we
straightforwardly treat the image from the first lens as the object for the second lens,
and so on. Similarly the overall magnification is the product of the magnifications
from each lens in the combination. We show an example of this in the optical micro-
scope below.

Recall that the near point is the closest distance that an object can be placed
from the eye and remain in focus. If you want to see an object in more detail, you
must bring it even closer to your eyes. In that way the image of the object on the
retina will be enlarged. This allows more detail to be seen, because the image is
then spread out over more detection sites increasing the spatial resolution on the
retina, limited ultimately by the density of nerve cell connections. The unaided
human eye thus has a limited ability to see detail because the near point limits our
ability to bring objects as close as we might like to increase the size of a focused
image on the retina. Figure 21.22a shows a small object at the near point and the
image formed on the retina. If we take the near point to be 25 cm, a typical value,
then the angle 
 subtended by the object is equal to 
 � h/25 cm as shown in the
diagram.

To increase the image size even further on the retina, but still have the
image in focus, a magnifying glass (convex lens) is needed. The converging
lens increases the focusing ability of the lens of our eye and allows us to
bring the object closer to our eye while still keeping the image in focus. The
angular magnification, or magnifying power, is defined in terms of the
increased angle subtended by the object as compared to that at the near point
of the unaided eye (see Figure 21.22)
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FIGURE 21.21 The absorption
spectrum of the “red,” “green,”
and “blue” cones and of the rods
(shown in black).
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FIGURE 21.22 (a) An object at the
near point of the eye subtending an
angle 
. (b) An object viewed
through a magnifying glass when
placed at its focal point, now
subtending an angle 
�.



Using a magnifying glass with a relaxed eye focused
at infinity and with the eye directly behind the magnifier, a
virtual image at infinity is formed when the object is
placed at the close focal point of the magnifier. Under
these conditions 
� � h/f as shown in the diagram and we
can write the angular magnification as

(21.9)

The smaller the focal length of the lens, the greater is the magnification seen
by the eye. The exact position of the object relative to the focal point of the mag-
nifier turns out to be unimportant, only changing the magnification by a small
amount. The eye accommodates these small changes to make the image clear on
the retina resulting in a small increase in magnification. The maximum magnifi-
cation occurs when the image viewed through the magnifying glass occurs at the
near point of the eye.

To obtain higher magnification still, a compound microscope can be used.
Figure 21.23 shows a schematic drawing of such a microscope with two lenses, an
eyepiece that functions as a magnifying glass and an objective lens that further mag-
nifies the object. The overall magnification is the product of that produced by each
lens. The object is placed just outside the focal point of the objective, s ~ fobj, so that
an inverted real image is formed with a lateral magnification of

from Equation (21.5). This image then acts as the object for the eyepiece, adjusted to
place the final virtual image at infinity, so that the eye can be relaxed as it views
the image. In this case, we can write that where L is the distance
between the lenses, as shown in the diagram. The overall magnification compared to
that at the near point with the unaided eye is then

(21.10)

because feye is generally much smaller than L, where all distances are
given in cm. Usually the short focal length lenses of a microscope are
compound lenses designed to eliminate aberrations. Magnifications of
over 1000� are readily obtained.

Figure 21.24 shows a photo of a basic compound microscope with its
three main features: the built-in light source or condenser, providing a
uniform brightness with the use of lenses; a stage, designed to securely
hold the sample and usually to move it about in the horizontal plane; and
the barrel of the microscope, holding the lenses and usually allowing dif-
ferent objectives with different focal lengths to be used. Microscopy has
developed substantially in the recent past. The use of high-sensitivity
video cameras and electronic image-processing techniques, as well as the
development of several new types of microscopy discussed in Chapter 24,
have broadened the versatility of the microscope in studying fundamental
processes in biology.
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feye

fobj

L

Image at ∞ 

FIGURE 21.23 Optics of a simple
compound microscope. The object
is placed just outside the focal
point of the objective lens so that
an enlarged, inverted real image is
formed just inside the focal point of
the eyepiece lens. Its image is a
further enlarged virtual image
viewed at infinity by a relaxed eye.

Dual eyepieces 

Objective lenses on

rotating mount 

Light source 

x–y moveable stage 

FIGURE 21.24 A basic compound
microscope.



QUESTIONS
1. Distinguish carefully between a converging and

diverging lens, a thin and a thick lens, and a real and
a virtual image. Which combinations do not exist?
For example, is there a thin diverging lens that forms
a real image?

2. Carefully define all the symbols in the lens-maker equa-
tion. In a thin double convex lens made from n � 1.5
glass with both sides having 25 cm radii of curvature,
what is the predicted focal length?

3. Review the raytracing algorithm for finding the image
of a (real) object through a thin lens. Distinguish the
four cases of a converging lens with object closer or
farther than the focal length, and a diverging lens with
the object closer or farther than a focal length. Make a
sketch of an example of each case. Classify each case
according to whether the image is (erect or inverted),
(real or virtual), (magnified more or less than 1�), and
(closer or farther than a focal length from the lens).

4. Consider the object–convex lens–real image configura-
tion. If one places one’s eye at the image location, one
will not see the image; however, if one moves the eye
farther back, away from both the lens and the image
location, the image will become visible. Why is this?
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5. Compare the (real) image of a person formed by a con-
verging lens to the (virtual) image of that person in a
plane mirror. In which is up/down reversed, left/right
reversed, and the magnification possibly changed?

6. In applications where a large light source is to be
focused, such as a lighthouse, stage lighting in a the-
ater, or an overhead projector, both a large diameter
and a thick lens are needed. Fresnel, realizing that the
refraction occurs at the glass surface, designed a lens
(now called a Fresnel lens) that keeps the large cur-
vature and lens size, but collapses the lens down to a
nearly planar lens by removing the glass interior. This
overcomes the problem of weight, bulk, and cost of
such a glass lens. Based on the figure below explain
how this lens works.

CHAPTER SUMMARY
Thin optical lenses have a focal length that is given by
the lens-maker formula

(21.1)

where n is the index of refraction of the lens material
and R1 and R2 are the radii of curvature of the two
faces of the lens. An object located a distance s from
the lens will produce an image through a thin lens
of focal length f at a distance s� given by the lens
equation,

(21.4)

The lateral magnification of the image is

(21.5)

These three equations work under a wide variety of
conditions if one uses the sign conventions of Table 21.1.
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If two thin lenses are placed in contact, the overall focal
length of the pair is given by

(21.7)

The structure, optics, and detection properties of
the eye are discussed in Section 2 of this chapter with
a discussion of some common vision disorders and
their correction with lenses.

A simple magnifying glass of focal length f will
produce a virtual image with a magnification given by

(21.9)

where 25 cm is taken as the near point of the eye.
Similarly, the overall magnification of a compound
microscope, made from an eyepiece and an objective
lens, is given by

(21.10)

where L is the lens separation distance.
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7. What is the physical origin of chromatic aberration in
a thin lens? Of spherical aberration? Which rays are
brought to focus closer to the lens: blue or red? parax-
ial (those parallel to and close to the optic axis) or off-
axis rays?

8. Why does closing down the iris reduce aberrations of
the lens of the eye?

9. One way to correct the eye for myopia is with laser
surgery called photorefractive keratectomy (PRK) in
which the cornea is reshaped so that light from a dis-
tance object focuses on the retina instead of in front
of the retina. What do you think the laser procedure
does to the cornea? This surgery will not correct for
the age-related presbyopia that leads to the need for
reading glasses.

10. Discuss the origin of presbyopia and the need for
reading glasses as one ages.

11. Which photoreceptors, rods or cones, give us our
most acute vision? Our color vision? Our night
vision?

12. Explain in basic terms why the magnification of a
microscope (or any two-lens system) is equal to the
product of the magnifications of the objective and
eyepiece.

MULTIPLE CHOICE QUESTIONS
1. A light-emitting object is 10 cm from a thin lens. An

upright virtual image is formed 20 cm behind the
object. Which of the following is true? The lens has a
focal length of (a) �6.7 cm, (b) �15 cm, (c) �15 cm,
(d) �20 cm.

2. The distance from the eye’s lens to the retina for a
given person is 3.0 cm. This person clearly sees an
object 27 cm in front of his eye. The focal length of
the eye’s lens in this case is (a) �2.7 cm, (b) �3.0 cm,
(c) �3.4 cm, (d) �3.4 cm.

3. A 10 cm tall object 25 cm from a converging lens has
its real image 50 cm from the lens. The object appears
to be (a) 20 cm tall and erect, (b) 5 cm tall and
inverted, (c) 5 cm tall and erect, (d) 20 cm tall and
inverted.

4. A light source with an arrow pointing up is placed at
the zero mark on an optical bench. A convex lens of
unknown focal length is placed with its center at the
30 cm mark on the bench. A focused image appears
on a collector when placed at the 60 cm mark on the
bench and nowhere else. What must be true about the
image? It is (a) real and inverted, (b) real and upright,
(c) virtual and inverted, (d) virtual and upright.

5. The focal length of the lens in the previous ques-
tion must be (a) �15 cm, (b) �15 cm, (c) �30 cm,
(d) �60 cm.

6. Suppose a concave lens is inserted at the 15 cm mark
on the bench in question 4. What would you have
to do to the collector to find a focused image now?
(a) Leave it at 60 cm. (b) Move it to some position
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between the 30 cm mark and the 60 cm mark. (c) Move
it to a position farther out than the 60 cm mark. (d) You
can’t move the collector anywhere to get a focused
image because no real image will be formed by this
arrangement of lenses.

7. In drawing a ray diagram for a converging lens with
an object farther away than a focal length which of
the following is not a correct ray to draw: (a) a ray
parallel to the optic axis deflects at the lens to appear
to come from the near focal point, (b) a ray parallel to
the optic axis deflects at the lens to go through the
focal point on the far side of the lens, (c) a ray going
through the near focal point deflects at the lens and
emerges from the lens parallel to the optic axis, (d) a
ray straight through the lens center.

8. A plano-convex lens of crown glass with a radius
of curvature of 50 cm has a focal length of (a) 1.0 m,
(b) 0.5 m, (c) 2.0 m, (d) �1.0 m.

9. A double concave lens of crown glass with radii
of curvature magnitudes of 25 cm and 50 cm has a
focal length of (a) 0.33 m, (b) �3 m, (c) �0.33 m,
(d) �33 m.

10. Chromatic aberration in lenses is due to (a) disper-
sion, (b) interference, (c) total internal reflection, (d)
varying degrees of absorption of different colors of
light.

11. Which of the following best describes nearsighted-
ness? The lens in the eye produces an image of an
object (a) 5 m away that would form behind the retina,
(b) 5 m away that forms in front of the retina, (c) 10
cm away that would form behind the retina, (d) 10 cm
away that forms in front of the retina.

12. Without corrective lenses a woman can see an object
clearly no closer than 0.5 m from her face. With cor-
rective lenses she can see the object clearly as close
as 0.1 m from her face. When the object is at 0.1 m
her corrective lenses must form a (a) real image 0.5 m
in front of her face, (b) real image 0.1 m in front of
her face, (c) virtual image 0.5 m in front of her face,
(d) virtual image 0.1 m in front of her face.

13. A prescription for corrective lenses reads �5 D for
each lens. These corrective lenses are (a) diverging
with focal length equal to 5 m, (b) diverging with
focal length equal to 0.2 m, (c) converging with focal
length equal to 5 m, (d) converging with focal length
equal to 0.2 m.

14. It is essentially impossible for humans to react to a
visual stimulus in less than 0.1 s. This is because that
is about how long it takes (a) light to pass from the
lens of the eye to the retina, (b) light to make one
complete cycle of oscillation, (c) molecules in the
cones to complete one cycle of vibration when they
are excited by light, (d) firing from the retinal cells to
be processed before being sent to the brain.

15. In very dim light you can see an object better by look-
ing at it out of the corner of your eye than straight on.
That is because (a) cones are more concentrated on



the periphery of the retina than rods and cones func-
tion better in dim light, (b) cones are more concen-
trated on the periphery of the retina than rods and
rods function better in dim light, (c) rods are more
concentrated on the periphery of the retina than cones
and cones function better in dim light, (d) rods are
more concentrated on the periphery of the retina than
cones and rods function better in dim light.

16. Color vision is due to (a) the varying sensitivity of
different rhodopsins to different wavelengths of light,
(b) three different kinds of rod cells, (c) the disper-
sion of the lens of the eye, (d) the pigmented epithe-
lial cells.

17. A magnifying glass produces an image that is (a)
upright and real, (b) inverted and real, (c) upright and
virtual, (d) inverted and virtual.

18. Light entering the eye passes through the following
layers in the order (a) lens, cornea, ganglion cells,
retina, (b) cornea, lens, ganglion cells, retina, (c) lens,
cornea, retina, ganglion cells, (d) cornea, lens, retina,
ganglion cells.

PROBLEMS
1. Sunlight can be focused on the ground by a lens when

it is held 24 cm above the surface. What is the power
of the lens?

2. A �5.0 diopter lens is used to magnify an insect
when held 12 cm away. Describe the type of image,
its position, and lateral magnification. Draw a ray dia-
gram sketch.

3. A pinhole can function as a “lens”. Consider a box
with a very small hole in one side. The hole admits
light from any and all points outside to the inside but
from any one point outside only the ray directed at the
hole can enter the box. Show with a diagram the
image of the object obtained by the light admitted by
the pinhole. What is the magnification? Such boxes
can be used as cameras, provided they are mounted
on a rock-solid surface. Film exposures are typically
many seconds or minutes and the image quality can
be superb.

4. An old-fashioned box camera has a fixed lens and a
depth of 15 cm. Suppose the camera lens is designed
to be optimal for taking photographs of objects 3 m
away. What is the focal length of the lens?
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the lens x, in order that the camera be able to take
sharp photographs of objects positioned anywhere
from 50 cm to infinity, measured from the front sur-
face of the camera body.

camera 

3 m 15 cm 

cheese

5. A camera has a lens with adjustable position. The
camera depth d � 4 cm. Determine the focal length
of the lens and the necessary allowable extension of

50 cm 

x

d

Subject at 
minimum

object distance 

6. How far from its infinity setting must a 35 mm lens
be moved so that it produces a sharp image of an
object 3 m away?

7. Suppose the image of a creature swimming in a dish
of water is projected onto a screen. The distance from
the dish to the lens is 36 cm and the screen is 4.5 m
away from the mirror and lens. (The mirror simply
redirects the light from the lens to the screen. Treat
the distance between the lens and mirror as small
enough so that it can be neglected in the specification
of the image distance. Thus, object distance sv is 36 cm
and image distance sh is 4.5 m.)

sv

sh

(a) What is the focal length of the projection lens?
(b) If the creature swims at 1 cm per second in the

dish, how fast does the image move on the screen?
8. A 35 mm film slide projector has a projection lens

with a focal length of 135 mm.
(a) Where should the slide be placed if the projection

screen is 3 m away from the projection lens?
(b) What is the magnification?
(c) Now for the hard part (judging by the difficulty

that even well-educated lecturers have with this
one in practice). If we want to get a true (upright,
nonreversed) image of the slide on the screen,
how should the slide be placed into the projector?
Should it be flipped upside down? Should it be
reversed left and right? Should the slide be
inserted backwards? (What does “backwards”
mean here?)

9. A quick and easy way to get an approximate determi-
nation of the focal length of a convex lens is to mea-
sure the distance from the lens to an image of a light
or other bright source some distance away. Suppose
one has a lens that in fact has a focal length of 10 cm.



A fluorescent ceiling light with a grill cover is 1.5 m
above the lens and a student is able to see an image of
the lighting fixture grill on the back of his hand. He
declares that the focal length of the lens is equal to the
distance between lens and hand. Calculate the actual
hand–lens separation distance for a sharp image and
show that the error in the value of the focal length
determined this way is less than 10%. Error � [(focal
length � distance measured)/focal length] � 100%.
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(unit magnification). Consider an object for which an
image of the same size is desired, exactly 1 m away.
(a) What is the focal length and the location of the

single lens that will accomplish this?
(b) The image of the object, using one lens, will be

inverted. A relay system using two identical con-
vex lenses will invert the inversion, yielding an
upright image. Design such a system for the same
initial situation as in the previous part.

12. If a certain microscope has an eyepiece with 12�
magnification and it is desired to view a specimen
with an overall magnification of 60�, what is the
power of the objective that must be used?

13. The magnification of a compound microscope can be
slightly improved if the final image is not at infinity
but rather at the near point of the eye. Derive the for-
mula for the magnification under this condition. This
arrangement tends to produce eye strain because the
iris must be under tension to have the lens of the eye
constantly focusing at the near point.

14. Tom Cruise catches a reporter shooting pictures of his
daughter at his home. He claims the reporter was tres-
passing. To prove his point, he gives as evidence the
film the police took from the reporter. His daughter’s
height of 0.62 m is 2.89 mm high on the film, and the
focal length of the camera lens that the police seized
was 210 mm. How far away from the baby was the
reporter standing? Could the reporter be trespassing?

10. Consider a convex lens of focal length 20 cm.
Calculate the image distance for each of the follow-
ing object distances: �, 4 m, 2 m, 1 m, 80 cm, 60 cm,
40 cm, 20 cm.

11. It is often necessary to convey or relay the image of
an object while keeping the image size unchanged
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In our discussions of geometric optics we completely ignored the fact that light can
also behave as an electromagnetic wave. The wave packet picture of photons (intro-
duced in Section 5 of Chapter 19) is compatible with treating light as a collection of
particlelike photons that follow the rules of geometric optics only as long as the
objects with which light interacts (mirrors, lenses, apertures, surfaces, etc.) are large
compared to the wavelength of the light. This justifies our treatment of light thus far
as traveling in straight lines except on refraction or reflection at the boundary between
two media. Under other conditions, the wave packet will change its spatial extent on
interacting with smaller objects and exhibit wavelike properties, some of which are
discussed in this chapter.

We begin this chapter by re-examining, in the context of light waves, some con-
cepts introduced earlier in Chapters 10 and 11 for traveling mechanical or sound
waves. A major idea is the principle of superposition, as applied to waves over-
lapping in space and time, which leads to interference effects. Two waves of equal
amplitude that are in phase will add constructively to produce a net wave with an
amplitude twice as large whereas such waves that are 180° out of phase will add
destructively to completely cancel each other. Another general property of a wave is
diffraction, or bending, that occurs at an obstacle. These effects are studied for a
variety of important geometries and their fundamental implications in limiting res-
olution in optics are discussed. The next chapter discusses a variety of applications
in imaging that stem from these ideas.

1.  DIFFRACTION AND INTERFERENCE OF LIGHT

1.1.  PRELIMINARIES

We have seen that a monochromatic traveling plane light wave can be represented
by a sine wave with a well-defined frequency and amplitude moving with a constant
velocity v equal to c/n. Having defined the frequency, the wavelength is dependent
on the medium and is given by

(22.1)

and the intensity of the wave is proportional to the square of its amplitude. In a plane
wave, all points on the wavefront are in phase and oscillate together (Figure 22.1).
Such idealized plane waves can be fairly well represented by a laser beam, as we show
in Chapter 25.

When light crosses a boundary between two different optical media, its fre-
quency remains the same but its speed changes and therefore the wavelength of the
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light will change. As a consequence of this, light traveling through different media
will be shifted in relative phase leading to some interesting phenomena. As shown
in Figure 22.2, when one beam of light passes through a slab of material with higher
index of refraction its wavelength is shortened and after emerging from the slab with
the original wavelength, its phase has been shifted with respect to a second refer-
ence beam. In traveling some distance d in a particular medium, the number of
wavelengths of light within that distance is given by d/� � nd/�o, where �o is the
vacuum wavelength of the light. Thus for a given �o of light, different beams trav-
eling through different media will be shifted in phase by amounts related to the
product nd for each media. Each beam arriving at the viewer has traveled a differ-
ent optical path, defined as the distance traveled multiplied by the corresponding
index of refraction

(22.2)

where the sum is over the different distances di the beam travels in different media
with indices ni to obtain the net optical path traveled. This optical path will deter-
mine the relative phase of EM waves traveling through different media. In the case
shown in the figure, as long as the two waves originate in phase, their relative phase
at the viewer will be determined solely by differences in optical paths. These dif-
ferences will create optical consequences at the viewer that can be used to learn
something about the media through which the beams have traveled as we show
shortly.

But how can we ensure that the initial beams are in phase? One way is to gener-
ate a plane wave beam of light and then split it into two sources with a beamsplitter
device or simply with two apertures. As shown in Figure 22.3, a real extended source
of light can, with the use of a small aperture, be used to generate light that has a wave-
front that oscillates in phase. Light emanating from the aperture can be imagined to
spread in space according to an idea due to Huygens and known as Huygens’ con-

struction. The method consists of imagining each point on the wavefront as a source
of spherical wavelets that spread out in the forward direction at the speed of the wave;
the new wavefront consists of the envelope, or tangent, to all the wavelets. This con-
struction for the small aperture is shown to generate a spherical wave. At some large
distance from the aperture, the wavefront is approximately plane and this method can
be used to obtain a plane wave. Alternatively, a laser beam can be used because, as
mentioned above, most laser beams behave as plane waves.

Optical Path � ani di,

FIGURE 22.2 Two initially in-phase light
waves traveling to the right, showing the
optical path difference when one wave
passes through a different optical medium
with a larger index of refraction

FIGURE 22.1 (Nearly) plane waves in the Mediterranean
along the Sicilian coast.



D I F F R A C T I O N A N D I N T E R F E R E N C E O F L I G H T 545

1.2.  DIFFRACTION

When a wave meets an obstacle, or hole in an opaque material, and is partially
obstructed, Huygens’ construction can be useful. If the opening is very large compared
to the wavelength of light, the unobstructed portions of a plane wave continue on as a
plane wave, with some bending of the light at the wall edges. This bending is known
as diffraction and occurs with all types of waves. As the opening gets smaller and
comparable to the wavelength, the diffraction increases and the wave is spread much
more. This is shown schematically in Figure 22.4.

Diffraction of sound is obvious to us: we can hear around corners. Sound has a
wavelength comparable to the dimensions of objects around us and thus is easily dif-
fracted through large angles. Visible light, with its wavelength of about 500 nm, is
only diffracted near sharp edges or at small openings with micron-sized dimensions.
As long as diffraction effects are negligible, light can be understood in terms of geo-
metrical optics. In Section 2 we show some of the effects of diffraction on light trans-
mitted through different slits and in Section 3 we consider the fundamental limitations
on resolution due to diffraction.

1.3.  INTERFERENCE

As a first example of interference, consider the situation shown in Figure 22.5 in
which a light beam is incident on a thin film coating a second medium with a differ-
ent index of refraction. To be specific, suppose that the beam is incident from air onto
an organic film (e.g., an oil or gasoline) with index of refraction n and thickness t,
coating the surface of water. At each surface there will be a division of the incident
intensity into a reflected and refracted beam. If the incident light makes a small angle
with the normal then there will be a series of multiple reflections, as shown in the dia-
gram, resulting in the overlap of the reflected beams as seen by a person viewing
from the air (we ignore the transmitted beams in what follows).

If we approximate the beams as normal to the surface then those labeled 1 and 2
have an optical path difference given by O.P.D. � n (2t). What is the effect of this extra
path difference on the relative phase of the two beams at the viewer? If the two beams
that we are comparing were as in the situation in Figure 22.2, the optical path differ-
ence divided by the wavelength of light in air would be the number of wavelengths
shifted between the two beams. If this number were equal to 1 then the two beams
would again be in phase, but if it were equal to 1/2 then the two beams would be exactly
out of phase.

In the case of reflection from a surface there is an additional effect that enters. If
the light is reflecting from a medium with a larger index of refraction, as is the case

FIGURE 22.3 An extended source (light
bulb) and a pinhole aperture used to
generate a plane wave far from the
source.

FIGURE 22.4 Diffraction of a plane wave
at an aperture.

FIGURE 22.5 Multiply reflected and
transmitted light from a thin film.
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from air to the organic film, then there is an additional phase change
of 180°, or � radians. Note that this is the same effect we see when
a wave on a string is reflected from a fixed end (see the discussion
of Figure 10.16). In our thin film example, because the film has a
larger index than the lower water layer and air, only ray 1 will have
the additional � phase shift; the other reflected beams arise from
reflection at the second surface between the film with greater index
of refraction and the water or air, and therefore no additional phase
shift occurs on reflection. When the optical path difference (2nt) is
just equal to an integer number of wavelengths of the light, then with
the additional half-wave shift, the multiply reflected beams will all
be out of phase with ray 1 at the viewer, a condition known as
destructive interference. Using our expression for the optical path
difference, we can write this condition as

(destructive interference), (22.3)

where � is the wavelength of light in the incident medium (air) and
m � 0, 1, 2, . . . is an integer known as the order number. When 
m � 0, even with an extremely thin layer of index n material, there
is still destructive interference (see below). Although the waves will
arrive out of phase, the cancellation will not be complete in general
because the intensities of the multiply reflected beams are not equal.
With two beams of equal intensity 180° out of phase, complete can-
cellation would occur leaving no light at all.

If, on the other hand, the optical path difference is equal to a half-integer multiple of
the wavelength, then with the added half-wave shift on reflection, the two most intense
waves, labeled 1 and 2, will undergo constructive interference

(constructive interference). (22.4)

In the case of an oil film on water or a soap film in air illuminated by white light, the
reflected light reveals a set of brightly colored fringes as shown in Figure 22.6. The
different colors arise from constructive interference at the corresponding wavelengths
due to variations in film thickness.

2nt � am �
1

2
bl.

2nt � ml,
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Example 22.1 White light illuminates a film of 325 nm optical thickness with
index of refraction n � 1.5, corresponding to a real thickness of 217 nm. Which
visible wavelengths will appear intense on reflection and which will be absent?

Solution: According to Equation (22.3), destructive interference will occur for
� � 2nt � 2(325) � 650 nm, corresponding to a shade of red light. This is the
only visible color that will be totally absent; the next wavelength at which there is
total destructive interference is at � � nt � 325 nm which is in the ultraviolet.
According to Equation (22.4), constructive interference will occur for 2nt � 3�/2,
resulting in � � 430 nm and corresponding to violet light, as the only visible
wavelength that will be intensified by constructive interference. Other values of m
in Equation (22.4) do not lead to visible wavelengths. The resulting overall reflec-
tion will make the film appear bluish. Reflected colors can therefore be used as an
indicator of film thickness.

FIGURE 22.6 Huge soap film
showing reflection fringes, used 
to study flow in thin films.

Very thin films (with t � �/10) will appear to be black because there is a
negligible optical path difference and the half-wave shift of the primary reflected



beam tends to cancel all the other reflected light from the second
surface where there is no half-wave shift. Artificial membranes made
from lipids, formed in a manner similar to soap films, appear black
when their thickness corresponds to that of a bilayer and this color
change is used as a signature of film thickness.

The ideas just presented are the basis for reflection-interference

microscopy. This microscope technique can be used to visualize cell-
to-surface contacts. A typical sample (Figure 22.7) is a suspension of
cells covered with a glass cover slip above which lies immersion oil
with an index of refraction matching that of glass. The indices of
refraction of the three media involved, the cover glass, ng, the solvent, ns, and the
cell, nc, satisfy ns � nc � ng, therefore interference on reflection can be used to
discern cell–surface adhesion sites. Remembering that an extra � phase shift
occurs on reflection from a larger index medium, reflection at the solvent–cell
interface produces a phase shift of � radians. In addition to that phase shift, there
will be an optical path difference (2nst) between the reflections at the two surfaces
from the solvent layer of variable thickness t (see Figure 22.7). At sites of cell
attachment where this layer of solvent is vanishingly thin, there is no additional
optical path difference and these sites will appear dark on reflection. In
this method, total internal reflection is used to illuminate a very thin layer of the
sample using the evanescent waves (see the discussion in Chapter 20 concerning
Figure 20.14) and only the attached cells in a very thin surface layer will
then be seen and magnified, often using fluorescent light from attached dyes
(Figure 22.8).

Aside from the beautiful patterns of colorful fringes appearing on reflection from
thin films (Figure 22.9), these films can be used in a number of ways to perform opti-
cal tasks. Thin coatings on lenses can be used to reduce troublesome reflections in
optical systems such as compound lenses with many optical surfaces routinely used
for camera and microscope lenses. Such nonreflective coatings can be detected by the
characteristic faint bluish color of reflected light. Special multilayered coatings on a
glass surface can be used as an interference filter to select a very limited wavelength
(with a range of less than 1 nm) region to be transmitted. Interference filters are par-
ticularly useful in spectroscopy. They are also used in laser safety goggles to block
only the narrow wavelength range of laser light.
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nc
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Adhesion site 

Optical path difference

= 2nst + λ/2  or = ~λ/2

FIGURE 22.7 A cell, solvent, glass
cover slip (from bottom up) sample
in a reflection-interference
microscope.

FIGURE 22.8 (left) Total internal reflection fluorescence microscopy image of a
fluorescently labeled cell surface showing focal contacts (darker regions are closer to
glass slide with lightest imaged regions about 85 nm from glass). (right) Atomic force
microscopy (see Chapter 8) image of the same cell, but the opposite surface seen in the
left image. The cytoskeleton is visible here showing its contacts with the glass surface.
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Path difference = d sin θ
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FIGURE 22.10 Young’s double-slit
experiment. The inset shows the
geometry to calculate the optical
path difference, the extra distance
traveled by the lower beam. Note
that the diffraction angle � shown in
the main diagram is the same angle
shown in the triangle in the insert.

2.  SINGLE-, DOUBLE-, AND MULTIPLE-SLITS
AND INTERFEROMETERS

2.1.  SIMPLE INTERFERENCE WITH A DOUBLE-SLIT

Consider the experiment sketched in Figure 22.10 in which a
light wave is incident on two closely spaced slits, an arrange-
ment known as Young’s double-slit experiment. Light pass-
ing through either slit will be diffracted, spreading out in
waves that overlap on a screen some relatively large distance
away. If the light waves at the two slits begin in phase, when
the two waves arrive and overlap at some point on the screen
their phase difference is simply related to the difference in
the optical paths they traveled from either slit. In this case
because the medium is simply air, the optical paths are the
physical distances traveled and we can calculate the path dif-

ference using the geometry shown in the inset in the figure.
At positions on the screen where the optical path difference (shown in the figure

to be d sin �) is equal to an integral number of wavelengths of light, there will be
constructive interference according to

(constructive interference), (22.5)

where d is the slit separation, � is the angle measured at the slits between the optic axis
and the point on the screen, and m is the integer order number. A value of m � 0 cor-
responds to the point on the optic axis at the screen where clearly, by symmetry, the
path difference is zero and we expect the two arriving waves to be in phase; this is
known as the central maximum. There is also a corresponding condition for destruc-

tive interference given by

(destructive interference). (22.6)

In this case, because the incident intensity at the two slits is equal, the destructive inter-
ference is complete and this equation gives the set of locations that are completely dark.

The light pattern on the screen will consist of a set of alternating bright and dark
fringes (slit-shaped regions) spaced periodically and symmetrically about the optic
axis. The first fringe to either side of the central maximum is known as the first-order
maximum, the second bright fringe to either side is the second-order maximum, and
so on. Because the distance to the screen, D, is very large compared to the slit spac-
ing, then for small angles from the optic axis, the positions y at which bright fringes
occur on the screen measured from the optic axis y � 0 are given by tan � « sin � � y/D

(see Figure 22.11). Substituting from Equation (22.5), the fringes are equally spaced
along the screen at the positions y � m�D/d.

d sin u � am �
1

2
bl.

d sin u � ml,

FIGURE 22.9 Thin film interference
photo from the kitchen sink.

Example 22.2 A double-slit pattern is observed on a screen 5 m away from the
slits, which are separated by 0.05 mm. If the first bright fringe is observed to lie
a distance of 4.6 cm from the optic axis on which the central interference maxi-
mum lies, find the wavelength of the light producing the pattern.

Solution: The angle that the observation point (bright fringe) makes with the
optic axis is given by sin� « tan� � 0.046 m/5 m � 0.0092. Substituting
this expression into Equation (22.5) for interference maxima and choosing m
� 1 for the first-order, we find � � d sin � � 4.6 � 10	7 m � 460 nm, a
blue color.



Let’s consider the light pattern on the screen in a bit more detail. If 
E1 � Eocos (
t) is the oscillating electric field from slit 1 at a point on the
screen, then at a point of constructive interference the electric field from
the second slit will be E2 � Eocos(
 t � m2�) � Eocos(
 t), because the
phase difference must be a multiple of 2�. Furthermore, because the intensity
on the screen is proportional to Enet

2 � (E1 � E2)2, we have

(22.7)

where Io � Eo
2 is the intensity at the screen produced by either slit (this

could be directly measured by covering one of the slits). Similarly, at an
interference minimum where E1 and E2 are 180° out of phase so that Enet �

(E1 	 E2) � 0, we have

(22.8)

Figure 22.11 shows the predicted distribution of the intensity along the screen
produced by interference, given, for small �, by I � 4Io cos2(�dy/D�). Note that
although the maxima have four times the intensity of a single slit, the average value
of the intensity (easily found as the value of I about which the curve is symmetric,
the dashed line in the figure) is just equal to twice the intensity of a single slit or
the total intensity of the incident light passing beyond both slits. This must be the
case according to conservation of energy with the total energy separately passing
through each slit adding up to the total detected at the screen. The effect of
interference is to spatially redistribute the intensity of light in a characteristic inter-
ference pattern of light.

In order to observe this double-slit interference pattern the two incident light beams
must have the same frequency and be in phase at the two slits (or at least have a definite
time-independent phase relation); two such beams are said to be coherent. If two com-
pletely incoherent beams, those with no definite phase relation (see below), were used,
one at each slit, no interference pattern would be observed and the intensity at the screen
would simply be the sum of the individual intensities of each light beam according to

(incoherent light). (22.9)

What determines whether light is coherent or incoherent? Actually there are various
gradations in the coherency (or degree of phase integrity) of light in both time and
space. Light can have a definite phase relation over various spatial distances across the
transverse direction of a beam (leading to a well-defined wavefront and known as spa-
tial coherence) as well as over various periods of time corresponding to definite phase
relations over different distances along its direction of travel (leading to a well-defined
wave shape and known as temporal coherence). For example, light from different por-
tions of the heated filament of an incandescent light bulb has no definite phase rela-
tionship because the electrons generating the light at different locations do not interact
with each other and emit their light in an uncorrelated manner. Incandescent light is
thus incoherent both spatially and also temporally. In contrast, we show that laser light
is an excellent source of (spatially and temporally) coherent light.

Nonlaser light can always be made spatially coherent by using an arrangement simi-
lar to Figure 22.3 to create a point source of such light generating a plane wave as dis-
cussed earlier. Thus, all across a plane wave light will be in phase because it has traveled
the same path length from the point source. However, the longitudinal distance over which
the light is coherent is determined by its temporal coherence, the time during which there
is a definite phase relation. Light emitted by specific electron transitions from excited
states to lower energy states in atoms or molecules (discussed further in Chapter 25) takes
place over a finite “lifetime,” or coherence time �coh, of those electronic states.

The longer the coherence time, the greater the distance along the direction of travel
over which there is a definite phase variation and so we identify this as the coherence

I � I1 � I2.

Idestr � 0.

Iconstr � 4Io,
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FIGURE 22.11 Intensity pattern
and geometry of the double-slit
experiment (ignoring diffraction
effects discussed below).



length, given by (Figure 22.12). Greater coherence lengths correspond
more closely to pure sine waves and a shorter coherence time corresponds to a larger
range of frequencies �f, present with

Incandescent light sources have very broad frequency (color) content and corre-
sponding extremely short coherence lengths. If a colored filter is used to reduce the
range of frequencies present then the coherence length of the light can be increased
somewhat. The purer the color of the light beam is, the longer its coherence time and
length will be. Some lasers generate extremely pure colors of light and have coher-
ence lengths of many kilometers.

Now, to understand the effect of coherence on an interference experiment, first
consider the simple case of two waves that have slightly different frequencies, but
that start in phase. After traveling some distance, they will lose their common phase
because of the frequency difference, as shown in Figure 22.13. In an interference
experiment with light, the phase relations between different beams are of utmost
importance. Light from any real source, such as the filament of an incandescent light
bulb, can be made spatially coherent as we have seen, after focusing down to a point
and using the distant plane wave produced, but it will still have a particular coherence
length due to temporal coherence. If the coherence length is not longer than the dis-
tances involved in the experimental geometry, each beam will itself not have a defi-
nite phase over the entire path, even if both start out in phase together, and it will be
impossible to observe any interference between different beams. Light from an incan-
descent bulb has a very short coherence time of about 10	10 s, corresponding to a
coherence length of a few cm. Unless the optical path length differences are very
small, interference experiments with incandescent bulbs are not generally possible.

2.2.  SINGLE-SLIT DIFFRACTION

So far we have only very loosely defined diffraction to be the bending of light at a
sharp edge or obstacle and have discussed in principle how Huygens’ construction can
be used to determine the angular spread of the diffracted light. One of the early and
most striking demonstrations of diffraction, and the one most responsible for the final
acceptance of a wave picture for light in the early 1800s, is the bending of light around
a small circular obstacle such as a coin. At that time, Newton’s theory of light, treat-
ing light as a particle, still dominated the scientific world. Fresnel’s early wave theory
of light submitted to the French Academy of Sciences in 1818 quickly led Poisson, a
nonbeliever of the wave theory and member of the Academy, to deduce a prediction
of Fresnel’s theory that seemed absurd to him. Poisson claimed that the wave theory
should lead to a central bright spot in the shadow of the object, a prediction that

tcoh r
1

¢f
.

/coh � ctcoh/coh
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FIGURE 22.13 Two waves of slightly different
frequency, or wavelength, starting out in phase at the
left and traveling toward the right will arrive with no
definite phase relation.

FIGURE 22.12 Two waves of the same frequency and
amplitude, but with different coherence lengths, traveling to
the right. The top wave has a longer than the bottom./coh



invalidated the theory as far as he was concerned. Arago then performed the
experiment and, to everyone’s amazement, discovered what is now termed the
Poisson–Arago spot (see Figure 22.14). This dramatic event led to the rapid accep-
tance of the wave theory of light. Rather than analyze this experiment, we consider
the mathematically simpler case of the diffraction of light at a narrow slit.

Figure 22.15 shows the experimental arrangement with a single-slit of width a
illuminated by a plane wave of monochromatic light and the pattern of light exam-
ined on a screen located a distance D from the slit, with D >> a. This is an example
of Fraunhofer diffraction, in which the diffracted light is examined at a large distance
from the slit, in the so-called far-field. If the screen were close to the slit, the dif-
fraction pattern would be more complex as well as more mathematically difficult to
analyze; this near-field diffraction is known as Fresnel diffraction.

The Fraunhofer diffraction pattern from a single-slit consists of a central bright
maximum surrounded by a series of secondary maxima of decreasing intensity known
as fringes (Figure 22.16). Notice in the figure that the central maximum is wider than
the other secondary maxima; its width is inversely related to the slit width. The nar-
rower the slit is, the greater the extent of diffraction and correspondingly the wider the
central maximum. We can determine the locations of the maxima and minima, or
fringe boundaries, in the diffraction pattern, by using a simple argument based on the
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FIGURE 22.16 Single-slit diffraction using a
red He–Ne laser.

FIGURE 22.14 (left) A ball bearing magnetically held in the path of a laser beam; (right)
The Poisson–Arago spot, the bright spot in the center of the geometric shadow of the
ball bearing, seen on a distant screen.
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θ 

FIGURE 22.15 Single-slit Fraunhofer diffraction pattern.



phase relations of the wavelets emitted at the slit when they arrive at the screen. Those
rays that emerge parallel to the optic axis remain in phase and produce a bright cen-
tral maximum. To find the position of the first minimum on either side, consider those
rays that are deviated by an angle � from the optic axis, such that the path difference
between a ray from one edge of the slit is one wavelength � more than that from the
opposite edge as shown in Figure 22.17. Because all these rays are parallel, at this
angular condition the rays will cancel in pairs as can be seen from the following argu-
ment. The ray from the center of the slit will have a path length to the screen of �/2
more than the ray from the bottom of the slit and hence these two rays will destruc-
tively interfere. Using the same argument repeatedly, we can consider neighboring
rays just above each of those in a stepwise fashion, rays that will cancel pairwise
because the path difference will remain at �/2 all the way up the slit, to conclude that
there is no light at this point. At this angle we have, from the insert in the diagram,

(first diffraction minimum), (22.10)

defining the distance along the screen from the optic axis y to the first minimum to
be y � D tan � « D sin � � D�/a.

The next larger angle at which we can have pairwise destructive interference and
thus a diffraction minimum is shown in Figure 22.18. The slit is imagined to be
divided into four equal portions with a total path difference of 2� between the top and
bottom, so that there will again be pairwise cancellation for rays within each separate
half of the slit just as above. For this case we must have that

Continuing this construction, the general condition for a diffraction minimum becomes

(diffraction minima), (22.11)

where m is a nonzero integer. Notice that this equation for the single-slit dark fringes
is very similar to Equation (22.5) for the location of bright interference fringes in the
double-slit experiment and the symbol meanings must be kept carefully in mind.

Equation (22.11) predicts that for a given wavelength of light, the width of the dif-
fraction pattern on a screen is inversely related to the slit width; that is, for small angles
sin � ~ � r 1/a. This means that the smaller the slit width is, the wider the observed
fringe pattern on a distant screen. Conversely, slits that are very wide compared to the
wavelength of light only show a faint fringe pattern near the geometric shadow of the
slit edges, with no other diffraction effects occurring in this geometrical optics limit.
This was the limit that we investigated in the previous two chapters.

a sin u � ml,

1a / 22sin u � l or a sin u � 2l.

sin u �
l

a
,
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FIGURE 22.17 Construction to find
the condition for the first-order
minimum in the single-slit diffraction
pattern, Equation (22.10).



The pattern of intensity variation in the diffraction fringes from a single-slit is
more difficult to derive but is shown graphically in Figure 22.15. The central bright
fringe is twice as wide as the other maxima and is much brighter. The secondary
maxima are less than 5% as intense as the central maximum with the intensity rapidly
decreasing for higher order maxima.

2.3.  DOUBLE-SLIT INTERFERENCE RECONSIDERED

Returning to the double-slit experiment, the intensity profile of the interference fringes
will be governed by diffraction from each slit. Instead of the profile shown earlier in
Figure 22.11 where diffraction effects were ignored, the actual pattern observed, an
example of which is shown in Figure 22.19, is a convolution (productlike combina-
tion) of the interference and diffraction effects and depends on the particular slit
widths and separation. With the individual slit widths small compared to the slit sep-
aration, the bright central diffraction maximum will have many interference minima
where no light falls on the screen in contrast to the diffraction pattern of a single-slit
shown before in Figure 22.16. Light from each slit interferes with that from the other
slit and produces a characteristic fringe pattern with a fringe spacing given in the
small angle approximation by �y � (�/d)D and the diffraction minima are spaced by
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FIGURE 22.18 Construction to find
the second-order minimum location,
Equation (22.11) with m � 2, for the
single-slit diffraction pattern.
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FIGURE 22.19 Intensity pattern for
the double-slit interference experi-
ment shown on the left. The dotted
line shows the overall single-slit
diffraction pattern obtained if either
slit is covered. On the right are the
actual patterns observed with a
red He–Ne laser.



�y � (�/a)D. Because d 
 a the fringe spacing is smaller than the widths of the diffrac-
tion peaks. Fringe intensity from Figure 22.11 is modulated by the single-slit diffraction
patterns from each slit that essentially overlap on the screen.

554 WAV E O P T I C S

Example 22.3 Let’s return to Example 22.2 with two slits separated by 0.05 mm
with a screen 5 m away and examine the problem in more detail, Suppose that the
two slits are identical and each has a width of 0.01 mm. What will the pattern on
the screen look like when illuminated with light at 460 nm?

Solution: In the previous example we were told that the interference fringes
were spaced 4.6 cm apart on the screen. Having learned about diffraction from
slits, we now know that the overall intensity on the screen will be modulated by
the single-slit diffraction pattern. The central diffraction maximum lies within an
angle given by sin � � �/a, where a is the given slit width, so sin � � 460 nm/
0.01 mm � 460 � 10	9 m/1 � 10	5 m � 0.046, corresponding to a distance
along the screen of y L D sin � � (5 m)(0.046) � 23 cm from the optic axis to
the first diffraction minimum. Because according to Example 22.2 each inter-
ference fringe is spaced 4.6 cm from the next, the fifth fringe from the central
one, on either side, actually falls directly on the first diffraction minimum and
therefore will have zero intensity and not be seen. Within the central diffraction
maximum there then will be four fringes visible on either side of the central fringe
on the optic axis, making a total of nine fringes within the central diffraction max-
imum. If we look further off axis, the next minimum in the diffraction pattern
occurs when sin � � 2�/a � 0.092, so that it occurs at a distance of 46 cm
from the optic axis. We find that the (46/4.6) � 10th interference fringe lies at
this location and so is also not visible. Therefore within the second diffraction
maximum on either side there are four interference fringes. The resulting pat-
tern of fringes is somewhat similar to the photo shown in Figure 22.19, but
with different numbers of fringes observed.

2.4.  MULTIPLE SLITS AND DIFFRACTION GRATINGS

As the number of slits with the same width and spacing is increased beyond two, the
patterns of light and dark on a distant screen at first become more complex, with each
slit still creating the same Fraunhofer diffraction pattern as in our single-slit discussions
but with the interference pattern within the diffraction peaks having more detail. The
angular positions of the bright interference fringes are the same as for the double-slit,
Equation (22.5) above, independent of the number of slits, namely

(22.12)

where d is the uniform slit spacing between any adjacent pair of slits and m is the order
number. In fact, the same exact reasoning holds in deriving this equation, because if
light from two neighboring slits has a path difference of m�, then light from any pair
of slits, neighboring or not, will still have a path difference that is a multiple of the
wavelength of light.

On the other hand, the nature of the minima and the width of the maxima both
change with the number of slits. With an increasing number of slits, the secondary max-
ima dramatically decrease in intensity and the central maximum narrows in width.
Figure 22.20 illustrates this sharpening of the central maximum with an increasing num-
ber of slits. The larger number of slits makes the condition for constructive interference
from all the slits that much more stringent. With only two slits, points on the screen near

d sin u � ml,



the central maximum peak have path differences that are only slightly different from an
integer number of wavelengths and so there is only a gradual decrease in intensity away
from the peak. With many slits, even if the rays from two neighboring slits have a path
difference of only a small fraction of a wavelength, the path difference from the 100th
slit away is increased by a factor of 100 and much more destructive interference occurs.
This is the reason for the much sharper central maximum with many slits.

Diffraction gratings are devices that have a very large number of very narrow
slits, separated by distances comparable to the wavelength of the light. The best grat-
ings for visible light have more than 30,000 lines per inch (or spacings of less than
1 �m apart). There are two fundamental types of gratings for optical work: trans-
mission gratings, of the type we have been discussing, and reflection gratings that
have their fine rulings made on a mirrored surface. Diffraction gratings give very
sharp interference peaks, so that with monochromatic light, such as that from a laser,
there will be a series of small spots, one for each order of Equation (22.12).

The real utility of diffraction gratings is their ability to analyze polychromatic light
as “spectrum analyzers,” dispersing all the colors present in a particular light source
(Figures 22.21 and 22.22). Equation (22.12) indicates that for a given slit spacing, or its
inverse, known as the grating constant which is the number of lines per unit distance,
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FIGURE 22.20 (top) Three-slit diffraction showing one minor peak between the major
double-slit pattern peaks; (middle) 4-slit pattern with two minor peaks; (bottom) 23-slit
pattern showing the sharpening of the central maximum.

FIGURE 22.21 Diffraction pattern
observed from a grating in front of
a white light slit source; note the
continuous spectrum of colors
observed in the first-order peak to
the left of the central peak.
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different wavelengths of light will be diffracted at different angles. Gratings can thereby
serve as prisms, dispersing light of different colors to produce a spectrum. According to
Equation (22.12), light of longer wavelengths will be diffracted by larger angles in con-
trast to a prism which refracts light of shorter wavelengths more because of dispersion.
For each order, the grating will produce an entire spectrum, except for the central max-
imum (zeroth order) at which all colors superimpose. In grating spectroscopy, a source
of light is collimated, directed on a grating, and the diffracted light detected. We show
the application of spectroscopy in the study of atomic physics in the next chapter.

2.5.  INTERFEROMETERS

Optical devices known as interferometers split a light beam into two beams that travel
different routes and are then brought together to interfere. One important example,
known as a Michelson interferometer, is shown schematically in Figure 22.23.
The beamsplitter S divides the incident light into two portions, one reflected and
one transmitted at its back surface. These are separately reflected by mirrors M1 and
M2 and the reflected beams are recombined by the beamsplitter and observed by
a detector D. The path differences in the two “arms” of the interferometer must be
shorter than the coherence length of the light in order to observe interference effects
at the detector. Typically one mirror is slowly and precisely moved along its axis and
the fringes shift at a rate of 1 fringe per a path difference equal to the wavelength
of light.

Interferometers can be used for a variety of purposes including, for example, mea-
suring the wavelength of light or accurately measuring optical distances or changes in
optical distances. This can be accomplished simply by counting fringes at the detec-
tor and knowing that each fringe corresponds to an optical path difference of one
wavelength. Interferometers are often useful to check on the quality of optical com-
ponents during and after manufacture. They are also useful to determine refractive
indices of transparent materials by inserting a sample in one branch of the interfer-

ometer, thus increasing the optical path in that branch and measuring its opti-
cal distance compared to its physical distance.

3.  RESOLUTION

In order to distinguish by eye two objects that are very close together, whether
they be microscopic objects or stars in the sky, we can use lenses to magnify
the objects. Aside from lens aberrations that can limit the quality of the
images as discussed in the last chapter, diffraction imposes a fundamental

FIGURE 22.23 A Michelson
interferometer. Typically one mirror
is able to move along its optic axis
parallel to the light beam and the
interference fringes are observed
by the detector.

M1

M2

S

D

FIGURE 22.22 Diffraction pattern
observed in a reflection grating
from a mercury slit lamp; note that
only discrete colors are present.
We study these spectra—known as
line spectra—later in the book.
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limit on our ability to discern two closely spaced objects. Most optical instruments use
circular rather than slit apertures, therefore before discussing such limits on resolution
we first briefly consider the diffraction of light by a circular aperture.

The far-field (Fraunhofer) diffraction pattern from a circular aperture consists of
a central circular maximum, known as the Airy disk, surrounded by a set of circular
fringes (Figure 22.24). A similar, but more complex, derivation to that for a slit shows
that the angular spread of the Airy disk (first-order minimum location) is given by

(22.13)

where d is the diameter of the aperture. Effectively, d/1.22 is the average width of the
equivalent slit representing the circular aperture so that (d/1.22) sin � � m � resem-
bles the single-slit diffraction equation. A photo of the intensity profile of the image
of a circular aperture is somewhat deceiving because the secondary maxima are much
dimmer (�5%) than the Airy disk.

Two closely spaced objects will each produce a diffraction pattern in the image of an
optical system. When the two objects are so close that their Airy disks overlap in the
image, it becomes very difficult to distinguish whether there are actually two objects pre-
sent or just one. The Rayleigh criterion is the accepted condition for the resolution of
two such objects: two objects are just resolved when the central maximum of one is

superimposed on the first diffraction minimum of the other. From
Equation (22.13), the Rayleigh criterion can be written as

(22.14)

where, because the angles are small, �min represents the minimum
angular separation (in radians) of two objects as shown in Figure
22.25 and d is the aperture size. Figure 22.26 shows the diffrac-
tion patterns observed when two distant point sources of light get
progressively closer. As the angle subtended by the point sources
at the aperture gets smaller the images of the two point sources
coalesce and blur, so that eventually they cannot be resolved.
Thus, in order to increase the resolution of an optical system, the
shortest wavelength and the largest aperture possible are desired.

umin �
1.22l

d
,

d sin u � 1.22l,

θmin

d
•
•

FIGURE 22.24 Fraunhofer
diffraction from a circular aperture;
the central spot has saturated the
detector and appears white.

FIGURE 22.25 Light from two
distant point sources of light
subtending a small angle � passes
through a circular aperture of
diameter d. When the central
maximum of one image is at the first
diffraction minimum of the other
image the two are just resolvable
according to Rayleigh’s criterion.



With a microscope it is more common to discuss resolution in terms of the mini-
mum separation distance of two objects under optimal conditions, known as the resolv-

ing power, rather than resolving angle. A straightforward (but omitted) derivation shows
that the resolving power is given by

(22.15)rmin �
0.61l

n sin a
�

0.61l

NA
,
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FIGURE 22.26 Diffraction patterns observed for the situation in Figure 22.25 with
progressively closer objects.

Example 22.4 For the human eye, with a pupil diameter of about 2 mm and
using a wavelength of 500 nm, calculate the minimum angle separating two just
resolvable points. Then find the actual minimum distance between such just
resolvable points as well as the distance between their images on the retina.

Solution: Using Equation (22.14), we find that

corresponding to about 1 min of arc. The minimum spatial separation occurs when
the objects are placed at the near point of the eye (taken as 25 cm). This distance
between two just resolved points is then (0.25 m)(3 � 10	4) � 75 �m, somewhat
less than 1/10 mm. So, thinking of the 1 mm divisions on a ruler, our eyes can
resolve two objects that are apart by about 1/10 of the smallest mm division on the
ruler. The corresponding separation distance between the central maxima of the
two images on the surface of the retina (using a lens–retina distance of 2 cm) is
(0.02 m) (3 � 10	4) � 6 �m. Note that cones have an average spacing in the fovea
of about 2 �m, so that the detector size is three times smaller than the diffraction
limiting image size. To have an effective resolution this high, it appears that at least
one nonactivated cone must lie between two other activated cones. Only in the
fovea do individual cones have 1:1 connections with nerve cells going to the visual
cortex. Our eyes are exquisitely designed to provide the best possible resolution
for the physical dimensions of our eyeball. There would be no improvement in the
visual resolution of our eyes by having smaller cone cells, because diffraction is
the fundamental limit and not the size of the cones.

umin �
(1.22)(500 � 10	9 )

2 � 10	3
� 3 � 10	4 rad,
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where � is the acceptance angle of the light from the objects at the objective lens
(Figure 22.27), �/n is the wavelength of light in the medium between the sample and
lens, 0.61 � 1.22/2, and the product (n sin �) is known as the numerical aperture

(NA) of the lens. For routine microscopy n � 1, whereas for higher magnifications, an
oil-immersion objective is often used to increase the resolving power. In this case a
drop of immersion oil (typical n � 1.5) is placed on the cover slip between the sam-
ple and the lens, increasing the resolving power (by decreasing rmin) by about 50%.
The larger the numerical aperture of a lens, the greater is its resolving power.
Numerical apertures of 1.4 are commonly used at high resolutions with optical micro-
scopes. Equation (22.15) then tells us that the very highest resolution obtainable with
a light microscope is about �/4. Because sin � is limited to a maximum value of 1, the
only way to further improve resolution in a microscope is to decrease the wavelength
of the probing radiation. We show how this is done using an electron microscope in
the next chapter.

FIGURE 22.27 The resolving power
of a microscope is increased with a
larger acceptance angle � using a
very short focal length lens.

α

r

CHAPTER SUMMARY
In discussing the different optical wave phenomena in
this chapter, what is important is not the physical distance
that light travels, but rather the optical path, defined by

(22.2)

where ni and di are the index of refraction and distance
traveled in the ith segment of the path.

Diffraction is the bending of waves around obsta-
cles or the spreading of waves passing through an aper-
ture. Interference is the superposition of waves in space
leading to constructive and destructive interference.
One example is interference in thin films of index n and
thickness t, where light of wavelength � reflected nor-
mally will experience destructive interference if

(destructive interference). (22.3)

This phenomenon is exploited in the reflection-
interference microscope to study a thin surface layer
and in the use of nonreflective glass coatings.

Young’s double-slit interference, in which coherent
light passes through a pair of slits separated by distance
d and is viewed at a distance at an angle �, leads to con-
structive interference at angles such that

(constructive interference). (22.5)

The order number m is an integer. Each of the slits of
width a, in turn, diffracts the light and produces a single-
slit diffraction pattern governed by

d sin u� ml.

2nt�ml.

Optical Path � a ni di ,

(diffraction minima), (22.11)

where � is the angle to the first diffraction minimum.
The overall pattern observed in a double-slit experiment
is the convolution (productlike mix) of both patterns of
intensity of light. A common device, the diffraction
grating, has numerous closely spaced slits, of separation
d, and gives an intensity diffraction pattern of brightness
governed by the grating equation

(22.12)

Resolution is limited by diffraction. Rayleigh’s criterion
for the threshold of resolution, the minimum angular
separation �min of two barely resolvable objects, viewed
through an aperture of size d, is given by

(22.14)

In a microscope, this can be shown to give a resolving
power, or minimum separation of two just resolved
objects, of

(22.15)

where � is the light acceptance angle and NA is the
numerical aperture, defined in the equation.

rmin �
0.61l

n sin a
�

0.61l

NA
,

umin�
1.22l

d
.

d sin u� ml.

a sin u� ml,



is it measured, what is the meaning of d and does a
higher resolution mean a greater or smaller �?

14. Suppose that the density of cones in the macula was
a factor of 10 greater. Would the resolution of the
human eye be increased with no other changes?
Explain.

15. What is the purpose of immersion oil when used at
the objective of a compound microscope? Explain
how it works.

MULTIPLE CHOICE QUESTIONS
Questions 1 and 2 refer to two parallel light rays, initially
in phase and having a 500 nm wavelength, that reach a
detector after one of the rays travels through a 10 cm long
block of glass with an index of refraction of 1.5 as in
Figure 22.2.

1. The optical path difference between the two rays at the
detector is (a) 10 cm, (b) 750 nm, (c) 15 cm, (d) 5 cm.

2. The total number of wavelengths shifted between
the two rays when they reach the detector is (a)
100,000 (b) 200,000, (c) 300,000, (d) 500,000.

3. The equations for double-slit interference and single-slit
diffraction, and respectively,
are very similar. Which of the following is true? (a) m
can take the value zero in the first equation, but not in the
second, (b) m can take the value zero in the second equa-
tion, but not in the first, (c) m can take exactly the same
values in both equations because the two equations
describe exactly the same interference pattern, (d) m is
the mass of the electron in both equations.

For Questions 4 and 5, consider the four patterns shown to
the right. A box corresponds to a bright spot.

ml� a sin u,ml� d sin u
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QUESTIONS
1. Which of the following properties of light do not

depend on the material medium in which the light
travels: speed, frequency, wavelength, optical path,
and index of refraction?

2. A garden hose has an adjustable nozzle which deter-
mines whether the water comes out as a tightly focused
jet of water or as a wide-angled spray. As the nozzle is
adjusted from a jet to a spray is the size of the exit aper-
ture increasing or decreasing?

3. In a concert hall which sound waves bend more on
leaving the hall at the open rear doors, high C or
low C?

4. Why does a thin film of oil or gasoline on water
appear multicolored as in Figure 22.6?

5. Why is the correct thickness of a nonreflective
coating on a glass surface equal to �/4 where � is the
wavelength of the light in the film? Assume the index
of refraction of the coating is less than that of the
glass.

6. Show that the two angles labeled � in Figure 22.10 are
in fact equal so that the path difference can be written
in terms of the diffraction angle.

7. When listening to a weak radio station on your car
radio often the reception will fade in and out while
slowly driving along. What is this due to and can you
use its source as a way to estimate the wavelength and
frequency of the radio waves?

8. Interference is a phenomenon that takes an otherwise
uniform energy density and re-distributes the energy
into maxima and minima with the same total energy.
Discuss this statement.

9. Why does the source of light for Young’s double-slit
experiment need to be coherent? What pattern would
be observed if an ordinary light bulb were used as a
light source right behind the slits?

10. Sketch a picture of the central maximum and first
peak to either side in the intensity pattern seen on a
distant screen in a double slit experiment with slits
of width 1/8 of the slit spacing. Check the angle at
which the minimum in the diffraction pattern occurs
relative to the interference peaks and be sure to draw
the correct number of interference peaks within each
diffraction peak. What does the pattern look like when
one of the two slits is covered?

11. Why is no interference pattern seen when looking at
a car’s headlights from a distance on a road at night?
After all, the light comes from two “point sources”
close together.

12. With regard to a diffraction grating, Equation (22.12) is
called the grating equation. What is the meaning of d in
this equation? What is d for a grating with 10,000 lines
per cm?

13. Discuss the meaning of �min in Equation (22.14). In
particular, where is the angle measured from, to where

a  b 

 c  d 

4. The pattern most likely to have been produced by a
single fairly wide slit is (a) a, (b) b, (c) c, (d) d.

5. The pattern most likely to have been produced by a
diffraction grating is (a) a, (b) b, (c) c, (d) d.

6. The figure below shows an approximate plot of inten-
sity as a function of position for a double-slit inter-
ference pattern. The vertical bars represent where light
is observed. Between the vertical bars are dark spots.
The most likely reason the maximum intensities are
not all the same is (a) the beam isn’t centered properly,
(b) the slit openings have a finite size, (c) that’s what
is predicted for two slits that have infinitesimal open-
ings, (d) there are actually more than two slits.



7. Which of the following best describes the angles at
which dark spots will be observed in a double-slit dif-
fraction pattern, if d is the slit separation, � is the wave-
length of the incident radiation, and m � 0, � 1, � 2,
� 3, . . .? � is measured relative to the incident direc-
tion and its sine equals (a) m�/d, (b) (2m � 1)�/(2d),
(c) md/�, (d) 2md/((2m � 1)�).

8. Near-normal 500 nm light is reflected from a thin
organic film (with n � 1.5) on water. What minimum
thickness results in destructive interference? (a) 83 nm,
(b) 167 nm, (c) 250 nm, (d) 330 nm.

9. If the first-order double-slit diffraction minimum lies
at the same place as the fourth-order interference max-
imum, how many fringes will be visible in the central
diffraction maximum? (a) 3, (b) 5, (c) 6, (d) 7.

10. When two microscope slides are placed together and a
laser beam is passed through the two at near normal
incidence, if the slides are squeezed together, the pat-
tern of reflected light moves. This is best explained by
(a) the gap between the slides is changed by squeezing,
(b) the thickness of the slides is changed by squeezing,
(c) the index of refraction of the air in the gap between
the slides is changed by squeezing, (d) the index of
refraction of glass is changed by squeezing.

11. What is the approximate minimum coherence length
of a 1 cm diameter 500 nm light beam needed to
observe a fringe pattern in a Michelson interferometer
with mirror-to-detector distances of 0.2 m? (a) 1 �m,
(b) 1 cm, (c) 0.5 m, (d) 1 km.

12. When a car is 500 m ahead of you, you see its tail lights
as one long, red light. When the car is 100 m ahead of
you, you see that the tail lights are actually several red
lights placed close to each other. This is because (a) the
pupil of your eye has a finite size, (b) the Doppler effect
for light shifts the frequency of the tail lights, (c) light
disperses in the lens of your eye, (d) light is made up
of photons.

13. When a sheet of paper is 20 cm from your face you can
see two small dots of ink. When the paper is a meter
from your face the dots appear as a single dot. That is
most likely because (a) the pupil of your eye has a finite
size, (b) you are farsighted, (c) light disperses in the
lens of your eye, (d) light from the dots is polarized.

Q U E S T I O N S /P R O B L E M S 561

14. To improve the resolving power of a microscope one
can do all of the following except (a) increase the
wavelength of light, (b) use immersion oil to index
match the glass slide to the glass objective, (c) maxi-
mize the acceptance angle, (d) increase the power of
the objective lens.

15. The maximum resolution of an optical microscope is
about (a) 1 nm, (b) 1 mm, (c) 1 �m, (d) 1 Å.

PROBLEMS
1. A thin film of oil with refractive index 1.5 on a water

puddle is illuminated from directly overhead by white
light. If there is an interference maximum at 600 nm
and a minimum at 450 nm with no other minimum in
between, what is the film thickness, assumed uniform?

2. A soap film with index of refraction 1.33 is sur-
rounded by air and illuminated by white light. If the
film is 265 nm thick, which wavelength in the range
400–750 nm will interfere constructively?

3. If a soap film of refractive index 1.33, surrounded by air,
is illuminated by a red (633 nm) and a green (515 nm)
light, find the minimum film thickness at which the
reflected light will appear red. Repeat to find the thick-
ness at which it will appear green.

4. If a 220 nm thick soap film (n � 1.33) is placed on a
glass slide (n � 1.5) and illuminated with white light,
find the wavelengths that interfere constructively in
the reflected light. (Note: To do this problem you will
need to reanalyze the derivation of Equations (22.3)
and (22.4) when there is an additional � phase shift at
the second interface.)

5. For a reflection-interference microscope, what is the
minimum cell thickness that results in maximum con-
trast between adhesion sites and the cell region when
illuminated with blue light (480 nm)? Take the index
of refraction of the cell to be that of water.

6. In a double-slit experiment with red light (633 nm)
using slits with 0.12 mm separation, what is the fringe
spacing on a screen that is 3.5 m from the slits.

7. If the two slits in a double-slit experiment each have a
width of 0.08 mm and a spacing of 0.24 mm, how many
interference peaks will lie within the central diffraction
maximum using 488 nm light?

8. In a double-slit experiment with 500 nm light, the slits
each have a width of 0.1 mm.
(a) If the interference fringes are 5 mm apart on a

screen which is 4 m from the slits, determine the
separation of the slits.

(b) What is the distance from the center of the pattern
to the first diffraction minimum on one side of the
pattern?

(c) How many interference fringes will be seen within
the central maximum in the diffraction pattern?
Draw a sketch of the pattern.

position 

intensity



9. In a double-slit experiment with two slits of width
1.0 �m spaced 4 �m apart, suppose a beam of elec-
trons is incident on the slits after being accelerated
from rest through a potential difference of 100 V.
(a) We show in Chapter 24 that electrons (and all par-

ticles) have a wavelength given by � � h/p, where
h is Planck’s constant and p is the particle’s
momentum. What is the wavelength of the elec-
trons in this problem?

(b) If the pattern of detected electrons is observed on
a fluorescent screen 20 m from the slits, what is
the width of the central diffraction maximum?

(c) How many interference fringes will be observed
within the central diffraction maximum?

10. In a double-slit experiment, each slit has a width of
0.02 mm and they are spaced 0.14 mm apart. The
pattern of light when a coherent 550 nm beam is
incident on the slits is observed on a screen 4 m
away.
(a) Find the spacing between interference fringes on

the screen.
(b) Find the full width of the central diffraction max-

imum on the screen.
(c) How many fringes are visible within the central

diffraction maximum?
(d) What happens to the pattern if the entire apparatus

is immersed in water? Find new answers to each
of the above parts.

(e) Describe what will happen to the pattern of light if
a different polarizer is placed in front of each slit
with their transmission axes at right angles to each
other (assume the incident light is unpolarized).
Will the intensities change? Will the pattern
change? Give reasons for your answers.

11. Georges Seurat, a post-impressionist French painter,
used a technique of painting with small dots of color
placed close together on a canvas. From sufficiently
far away, the dots cannot be distinguished and the
painting looks normal in appearance.
(a) If the dots on the painting are separated by 1.5

mm and the painting is observed under light of
550 nm wavelength with eyes having a pupil
diameter of 2 mm, find the minimum distance you
must stand from the painting so that the individual
dots cannot be resolved.

(b) Under the conditions of part (a), what would be the
distance between the images of dots on the retina
of the eye, 2.0 cm behind the lens of the eye.

(c) If a small scaled copy of a Seurat painting is made
which is 100-fold smaller in size, the dots would be
expected to be spaced only 0.015 mm, too small to
be resolved with the naked eye. Using a compound

microscope with a 10x eyepiece and 17 cm tube
length, what maximum focal length of objective
lens would be needed to test the scaled copy for
authenticity (meaning that the painting is made
from small dots, rather than continuous color).

12. A person’s eye has a pupil diameter of 0.2 cm and has
a length of about 2.5 cm (from lens to retina). If light
of 550 nm is used, find the following.
(a) The minimum distance between resolved images on

the retina of the eye, ignoring any lens aberration.
(b) The distance apart that two point sources of light

can have at the near point of the eye (N � 25 cm)
and just be resolved.

(c) What microscope magnification would be needed
for the eye to just clearly image these two point
sources of light if they are only 500 nm apart?

(d) With a 10x eyepiece and a tube length of 17.0 cm,
find the objective focal length needed to achieve
the magnification in part c.

13. In a Michelson interferometer when using laser light of
488 nm, how many fringes are scanned at the detector
if one of the mirrors is displaced by 2.4 �m.

14. A Michelson interferometer is used to determine
the wavelength of a monochromatic light source.
If 100 fringes are counted as one of the mirrors is
scanned a distance of 31.7 �m, what is the wave-
length of the light?

15. Given that the resolving power of the eye corresponds
to about 1 minute of arc, how far away can a vehicle
be at night where you can still resolve whether it is a
car (with two headlights separated by 1.8 m) or a
motorcycle?

16. The Hubble space telescope has a resolution of about
0.1 s of arc. If aimed at the moon (3.9 � 105 km
away) what is its resolving power? If aimed at Saturn
(1.3 � 109 km away)? If aimed at the nearest galaxy
(about 2 � 106 light years, where a light year is the
distance light travels in a year)?

17. In a double-slit experiment with two slits of width
1.0 �m spaced 4 �m apart, suppose a beam of pro-
tons is incident on the slits after being accelerated
from rest through a potential difference of 2500 V.
(a) What is the speed of the proton?
(b) What is the wavelength of the proton?
(c) If the pattern of detected protons is observed on a

fluorescent screen 20 m from the slits, what is the
center-to-center spacing between the constructive
interference maxima?

(d) What is the full width of the central diffraction
minimum?

(e) How many interference fringes will be observed
within the central diffraction minimum?
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A number of standard and novel methods to optically image biological and other
materials are discussed in this chapter to give the reader a sense of the large variety
of tools available. We start with a survey of the arsenal of newer light microscopies
available for the study of biological materials, in particular. Another wavelike prop-
erty of light, its polarization, can be used in several optical polarization methods to
study biomolecules. Earlier, we discussed the important imaging technique of MRI
in Chapter 18; this chapter concludes with a discussion of two other wave-related
imaging techniques: electron microscopy and x-ray diffraction/computed tomogra-
phy (CT) imaging with x-rays.

1.  THE NEW LIGHT MICROSCOPIES

Aside from the resolution needed to form an image of a microscopic object, dis-
cussed in the previous chapter for a standard compound microscope, a minimal
amount of contrast is also needed to clearly detect an image. Contrast can be defined
in terms of the visibility of a sample object compared to the background using the
percent contrast,

(23.1)

where the intensities are average values over those portions of the image. Contrast is
determined both by the properties of the object and by those of the microscope. We
can distinguish two fundamental types of contrast: amplitude and phase contrast.

Amplitude contrast is due to direct differences in the wave amplitude of the
imaged sample and background light due to absorption or scattering from the sam-
ple. This is the basis for several types of microscopy including normal or bright-field

microscopy discussed in the previous chapter. In this technique, the background
appears bright white and objects are imaged by their darker or colored appearance
due to absorption or scattering. Because most biological materials do not absorb
much visible light, usually a colored stain that preferentially sticks to the sample and
is washed from the background is used to enhance the contrast. Before defining phase
contrast, we take a look at several microscopy methods that use amplitude contrast
enhancing schemes.

Very small or thin objects are difficult to see in bright-field microscopy because
of the light background and low contrast. If sufficient scattering occurs from an
object, it can be better viewed using a variation known as dark-field microscopy in
which the background light is blocked by a central stop and only the scattered light
from the object is imaged. Figure 23.1 shows this microscope arrangement. A hollow
cone of light from a special annular aperture is focused on the specimen and the

% Contrast �
(Ibkgd � Isample)

Ibkgd
� 100 ,
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collection optics are arranged so that only the scattered light, and not the directly
transmitted cone of light, is collected and focused by the microscope. Figure 23.2
shows an example of a dark-field image.

Fluorescence microscopy is an important variation of amplitude contrast
microscopy. Since most samples are not sufficiently fluorescent, usually fluorescent
dyes are used to bind to specific sites on the sample and only fluorescent light is
imaged in the microscope. To accomplish this, filters must be used to block other
wavelengths of light. Unless a laser is used as a light source of the proper excitation
wavelength, an excitation filter is used to limit the incident light to the shorter wave-
lengths capable of exciting the fluorescent dye. The incident light is used in either a
dark-field microscope arrangement or in the arrangement shown in Figure 23.3 to
direct excitation light onto the sample. Fluorescent light emitted by the sample is then
collected and filtered using a barrier filter that passes only longer wavelength fluo-
rescent light, blocking the incident light. In this way there is no background light
except for a stray unwanted fluorescent signal from imperfections in the optics. In

Figure 23.3, the dichroic mirror is specially coated to reflect only
shorter wavelengths but to transmit only longer wavelengths of light,
thereby acting both as two filters as well as a beamsplitter. Figure 23.4
shows an image of a multiply labeled fluorescent endothelial cell.

Recent developments of new multicolor fluorescent dyes for use
in microscopy have been partly responsible for a revolution in fluo-
rescent microscopy. Aside from advances in scientists’ ability to label
specific molecules with a dye, many of the newer dyes have their
fluorescence controllable by specific environmental changes. For
example, certain dyes can serve as sensors of local pH, with their
fluorescence properties depending on pH, whereas others can serve to
monitor calcium ions Ca2�, the important messenger and regulating
ion in a cell, because their fluorescence is affected by the binding of

*
source

sample

objective lens

annular aperture/

condenser lens 

optic axis

FIGURE 23.1 Schematic of dark-field micro-
scope optics. An annulus aperture in front 
of the condenser lens (focusing light on the
sample) ensures that none of the unscattered
incident light (smooth red line) passes through
the collection optics. Only light scattered from
the sample (dotted red line) reaches the image
plane (not shown).

filter

sample

dichroic mirror

FIGURE 23.3 Schematic of a
fluorescence microscope without
the imaging optics shown. The
dichroic mirror reflects the shorter
wavelength light, but transmits the
longer wavelength fluorescent light.

FIGURE 23.2 A dark-field image of a mosquito
head.
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calcium. An even newer class of fluorescent dyes can be used as optical biosensors
to detect conformational changes in macromolecules or binding of ligands (small
molecules with specific binding sites) to those molecules. In this way, not only can
the locations of specific macromolecules to which the dyes are bound be monitored,
but so can their physiological state (Figure 23.5).

As already mentioned, most biological samples for microscopy are essentially
completely transparent to visible light, absorbing and scattering very little light,
and therefore having very poor contrast (hence, the use of stains and fluorescent
dyes). However, all such samples do have somewhat different refractive indices
than the surrounding solvent and are therefore called phase objects. These produce
a phase shift in the light waves they transmit relative to those through the back-
ground, more or less as shown in the last chapter in Figure 22.2. If light is simply
allowed to pass through the sample and be imaged, the relative phase shifts will not
change the intensity of the light and the objects will be invisi-
ble. However, encoded phase information in the light passing
through the sample can be used to provide phase contrast in
several types of microscopies. We discuss two major types:
phase contrast and differential-interference-contrast (DIC)
microscopy. In both cases the crux of the technique is to sepa-
rately change the relative phase of the light that interacts with
the sample and the undeviated light so that when they are
recombined, there will be intensity differences in the images
due to interference effects.

Phase contrast microscopy is similar to dark field
microscopy in that a hollow cone of light is focused onto the
sample but now that light is collected by the objective lens
(Figure 23.6). In the absence of a sample, the objective lens pro-
duces an image of the annulus used to produce the cone of light
at a plane known as the “source image plane.” However, light that
interacts with the sample will be diffracted from that path (dotted
lines in Figure 23.6) with a small phase shift from passing
through the more optically dense sample as well. The intensity of
this diffracted light will be much less than that of the undeviated
light and it will be brought to a focus at a different plane (because

FIGURE 23.4 Three-color fluorescence image of an
endothelial cell showing the tubulin (green), nucleus (blue),
and actin cytoskeleton (red).

FIGURE 23.5 A wave of increase in calcium ion concentra-
tion sweeps across an egg cell just after fertilization as
monitored by the green fluorescence from a Ca-sensitive
dye attached to small dextran molecules. The images are
taken 5 s apart and show the Ca wave starting around the
1:30 o’clock position and spreading across the cell.

*
source 

sample 

objective lens 

annular aperture/ 

condenser lens 

optic axis 

phase plate 

in source image plane 

object image plane

FIGURE 23.6 Optics of the phase
contrast microscope. A cone of
light is produced by the annulus
and focused on the sample. The
undeviated beam is focused by the
objective onto a groove in a phase
plate located at the source image
plane. The groove both attenuates
the undeviated beam intensity and
shifts its phase with respect to the
diffracted light, most of which
passes through the rest of the
phase plate and is brought to focus
at the object image plane. This
image is then further magnified by
the eyepiece (not shown).



the object distance is much less than the light source distance from the
objective), known as the “object image plane.”

In the phase contrast microscope a device known as a phase plate is
inserted at the source image plane to improve the contrast. A groove in
the phase plate aligned with the image of the annulus is used to shift the
phase of the undeviated light relative to the diffracted light. An absorp-
tion coating in the groove also decreases the intensity of the undeviated
beam, so that it is closer to matching the intensity of the diffracted light
in order to provide even better contrast. Phase plates are usually built
into objective holders and matched pairs of condenser and objective
lenses are used to ensure proper alignment. The total phase difference
between undeviated and diffracted portions results in intensity variations
in the image that are directly proportional to optical path differences
between the sample and background regions. Depending on whether the
phase plate gives an additional positive or negative phase shift with
respect to the diffracted light, the background can be made dark or bright
(Figure 23.7).

In differential-interference-contrast (DIC) microscopy there is a
complete physical separation of the incident light into two closely
spaced beams that probe adjacent portions of the sample. These beams
are then used to generate an interference pattern that produces inten-
sity differences in the object image plane. Two special prisms, known
as Wollaston prisms, are used both to produce two in-phase beams
from one and to recombine them after passing through the sample into
one final beam with a 180° phase shift introduced between the two
(Figure 23.8). In the absence of a sample and with a uniform back-
ground, the two beams completely cancel after recombination due to

the 180° phase difference. With a sample present in one beam but not the other, the
extra phase differences between the two beams give rise to bright interference light.
In this case the image intensities are not proportional to optical path differences,
but rather, because of the two spatially separated beams, to the rate of change of
optical path transversely (in the direction of the separation of the two beams) across
the object. That’s the reason for the term “differential interference”. Because the
rate of change, rather than the absolute optical path difference, is important in DIC
microscopy, edge contrast is greater and thinner samples can be better imaged
(Figure 23.9).

Wollaston prisms function by spatially separating the two different polarization
components of light. They are able to do this because the calcite crystal of which they
are made has different refractive indices along two different crystal axes as discussed
further in the next section. After the two beams of light travel through the sample this
process is reversed in a second matched prism and the two beams recombine after a
180° phase shift introduced by an asymmetric placement of the second prism. At this
point, even though the beams are out of phase and overlapping, they cannot interfere
with each other because their polarization directions are orthogonal and hence inde-
pendent. A polarizer oriented at a 45° angle between these directions serves to ana-
lyze that portion of each beam and to allow them to subsequently interfere and
produce the image. Thus, the Wollaston prisms are serving solely as a beamsplitter
and recombiner, whereas the polarization properties of the beams are not used to pro-
duce the DIC image. Polarized light can be used in microscopy in the polarization
microscope discussed in the next section.

Most current versions of the above microscopic techniques use modern methods
of digital recording and computers to further increase the resolution and contrast
of images. Developments in detector technology have made use of CCDs (charge-
coupled devices) and image intensifiers very commonplace in microscopy. CCD
video cameras, based on arrays of discrete light-sensitive detectors, allow digital
recording of time-dependent processes in two-dimensional arrays of picture elements,
or pixels. These arrays are now relatively inexpensive and are widely used in digital
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FIGURE 23.7 Phase contrast
micrograph of a paramecium.

polarizer 

Wollaston prism 

condenser lens 

sample 

objective lens 

Wollaston prism 

analyzer 

detector 

FIGURE 23.8 Optics of the differ-
ential interference contrast (DIC)
microscope. The Wollaston prisms
are used to create and recombine
two beams with slightly offset
centers, as well as to introduce a
180° phase shift between the two.
If the relative phase of these two
is shifted by the sample, then
when allowed to interfere after the
analyzer, a high-contrast image is
formed (not shown). Note
magenta � red � blue.



cameras, whose pictures can then be printed out on ordinary computer
printers. Digitally stored video frames from microscopy can be com-
puter-enhanced and manipulated to allow improved resolution, contrast,
and quantitative measurements using special software.

Within the last ten years or so many new microscope techniques
have been developed that use laser illumination, including confocal
microscopy and multiphoton microscopy. Laser-scanning confocal

microscopy focuses a laser beam to an extremely small spot within the
sample and images light only from that spot onto the detector. A pin-
hole in front of the detector serves to eliminate out-of-focus light from
other regions of the sample, only allowing light from the focused spot
to be collected. The spot is then scanned over the sample, by moving
either the microscope stage or laser beam, in a raster pattern to map out
the sample image, having remarkable depth and lifelike appearance
(Figure 23.10).

Multiphoton microscopy uses a pulsed laser to provide an intense beam of
low-energy photons that is scanned across the sample similar to confocal
microscopy. When two (for two-photon microscopy) or more (for three- or multi-
photon microscopy) of these photons with identical energy are simultaneously
absorbed by a fluorescent molecule they can provide the same total energy that a
single photon would in the usual fluorescence microscope. The incident photon
beam is tuned to the proper wavelength so that two or three or more photons, when
combined, give an energy resonant with the fluorescent material, producing sub-
sequent fluorescence emission. Quantum mechanics allows this additive reso-
nance only when the multiple photons are absorbed nearly simultaneously,
requiring very high laser intensities. One important advantage of this method is
that there is virtually no absorption of these lower-energy photons at any other
location in the sample where the beam is not focused and the density of photons
is not sufficient to allow multiphoton absorption. Thus instead of using high-
energy photons that can damage the sample to produce fluorescence, one can use
much lower energy photons and excite the fluorescent molecules through the com-
bined energy of several photons only where the beam is focused. This technique
is sensitive enough to image the intrinsic or autofluorescent light from the amino
acid tryptophan and other fluorescent macromolecular groups within the sample
itself without the addition of fluorescent dyes. High-resolution, high-contrast,
three-dimensional images can be obtained using these methods even with samples
as thick as 0.5 mm (Figure 23.11).
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FIGURE 23.9 DIC image of a deer
tick. Note the sharp edges and high
contrast.

FIGURE 23.10 Laser-scanning confocal
microscopic images of mouse oocytes
showing microtubules in red and actin
filaments in green.

FIGURE 23.11 Confocal microscopic image of
anaphase in a cultured epithelial cell showing
chromosomes (blue), spindle apparatus
(green), and actin (red).



2.  OPTICAL ACTIVITY; APPLICATIONS OF LIGHT
POLARIZATION

In Chapter 19, we introduced the concept of polarization of a light beam and dis-
cussed linearly polarized light as well as the use of Polaroid as a polarizing device to
preferentially absorb light with its electric field oriented along one direction. Here,
we further discuss the notion of circularly and elliptically polarized light and the use
of polarization methods in the study of biomolecules.

Consider two light waves with the same frequency linearly polarized along per-
pendicular directions as shown in Figure 23.12. If the amplitudes and phases of the
two waves are equal, then the superposition of the two waves results in a linearly
polarized wave along the vertical direction in (a). With different amplitudes for the
two waves, the resultant wave will still be linearly polarized so long as the phases are
equal (b). If two waves of equal amplitude are 90° (�/2 rad or �/4) out of phase then
when one component is at a zero the other will be at a maximum or minimum. The
superposition of those two waves will describe a helical path as the tip of the electric
field vector executes circular motion in the transverse wavefront plane itself traveling
along at speed c in a vacuum (c). Depending on the relative phases, the circular polar-
ization can be left- or right-handed. Handedness is defined in terms of an observer
looking back at the source and the light is right-handed if rotates clockwise.

We can make these ideas quantitative by writing out expressions for the two lin-
early polarized electric fields (say, along x- and y-axes) as

(23.2)

where we have assumed that Ex leads Ey by 90° (at time 0, Ex is at a maximum and
Ey is zero; after 1/4 of a period, Ex is now zero and Ey has increased to a maximum,
etc.), and Eox and Eoy are the amplitudes of the fields. By using the trigonometry
identity cos2� � sin2� � 1, we find that the components of the vector E satisfy

(23.3)

which is the equation of an ellipse. If the two amplitudes are
equal (so that Eox � Eoy� Eo) then Equation (23.3) becomes
the equation of a circle ( with radius Eo), the 
case shown in Figure 23.12c. In the transverse plane the tip of

will describe these closed ellipses or circles, but the
light wave is actually propagating at the speed of light along
the z-direction and the tip of actually describes a helical path
in space. The projection of the helix in the x–y plane will be a
circle or an ellipse, depending on the amplitudes of the x- and
y-components of In a similar way one can show that linearly
polarized light can be considered to be the sum of in-phase
right- and left-handed circularly polarized light. For example,
if the left-handed circularly polarized beam shown in Figure
23.12c is added to its mirror image right-handed beam, the
resulting beam has an that is vertically polarized (imagine
the summation in the figure: the horizontal components will
always cancel with the mirror-image beam). This idea is used
below in a discussion of optical activity.

Circularly polarized light can be produced most easily
by sending linearly polarized light through a special device
known as a quarter-wave plate, or �/4 plate. These are made
from a birefringent (double-refracting) material, one having
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FIGURE 23.12 Combining two
orthogonally polarized waves (red
and blue E field vectors) at 45° with
respect to the vertical. (a) Equal
amplitude waves in phase to give a
vertically polarized wave (magenta),
(b) Unequal amplitude waves still in
phase to give a linearly polarized
wave at a fixed angle with the verti-
cal (magenta), and (c) Equal ampli-
tude waves 90° out of phase (red
and blue), so that the tip of the net
E field vector rotates around in a
circle as the wave propagates
(magenta). In this case a left-
handed circularly polarized wave is
shown, handedness defined look-
ing backward at the source.

speed c

speed c

a b

c
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Many biological systems contain components that are anisotropic. These are ordered
structures that look different in different directions; for example, the fibrils within a mus-
cle fiber or the crystal-like proteins of the lens of the eye. Polarized light will interact with
electrons in such a material in different ways depending on relative orientations and can
be used to gain information about such structures. Because of the anisotropy there will be
changes in the polarization of transmitted light. Polarization microscopy is yet another
way to get images of such anisotropic structures. Linearly polarized light is used as a light
source and the imaged light through the objective is passed through a crossed-polarizer.
In the absence of any sample, the background light is completely extinguished by the
crossed-polarizer. Any resolvable structures that produce some depolarization of the inci-
dent light will then produce a bright image (Figure 23.13).
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Example 23.1 Suppose that a vertically polarized beam of 500 nm light is inci-
dent on a birefringent crystal of mica with a mean index of refraction of 1.552
and which has its crystal axes making a 45° angle with respect to the vertical. If
the birefringence of the crystal is 	n � 0.006, find the minimum thickness of the
crystal along the transmission direction of beam so as to produce circularly
polarized light.

Solution: If we call the unknown thickness t, then the optical path difference of
the two equal components of the vertical polarization along the two crystal axes
will be t	n (see Equation (22.2)). In order to produce circularly polarized light,
this difference should be set equal to 1/4 wavelength of the light, so that, as in the
Figure 23.12c, after leaving the crystal there will be two equal components of
electric field that are 90° out of phase, combining to produce a circularly polar-
ized beam. We therefore require t	n � 1/4 (500 nm), so that t � 2.1 � 10�5 m
� 0.021 mm. Mica can be cleaved and polished to produce such quarter-wave
plates designed for different wavelengths.

FIGURE 23.13 Polarization
microscope image of rat skin 
color-coded by the birefringence
retardation (see text) which 
is related to the degree of
depolarization of the transmitted
light.

two crystal axes with different refractive indices, as mentioned in the last section in
connection with a Wollaston prism. When linearly polarized light passes through
such a material, the different polarization components along either axis travel at
different speeds, because v � c/n1 or c/n2, and will develop phase differences.
Furthermore, one beam, called the “ordinary” beam, will be transmitted undeviated,
whereas the other, called the “extraordinary” beam, will be refracted and physically
separated from the ordinary beam (see Figure 23.8). By adjusting the thickness of the
material, a quarter-wave phase difference can be introduced between the two beams,
producing fields governed by Equations (23.2). In general this will produce ellipti-
cally polarized light but if the wave plate is adjusted to have its axis at 45° to the inci-
dent polarization direction then circularly polarized light is produced.



Most individual biological macromolecules are asymmetric,
meaning that they appear different from their mirror image. Most sim-
ple molecules are symmetric. Water, carbon dioxide, and many more
complex molecules look the same as their mirror images. Biopolymers
tend to be formed, at least partially, from helical arrays of molecules,
and these will have a handedness. Handedness is a property that
changes when viewed in a mirror. As shown in Figure 23.14, a right-
handed coiled spring will appear to be a left-handed spring when
viewed in a mirror.

On the other hand, a solution of randomly oriented asymmetric mol-
ecules will not produce an image in a polarization microscope because
the solution as a whole is isotropic. However, asymmetric molecules do
have an effect on the polarization properties of light that can be used to
gain information about the macromolecules. Asymmetric molecules are

said to have optical activity and are characterized by different refractive indices for
left- and right-handed circularly polarized light. Asymmetric molecules will interact
differently with left- and right-handed circularly polarized light because of their
handedness.

A simple example may help to clarify this. Imagine a solution of small left-handed
helical molecules. Because the electric field vector of the light interacts with the elec-
trons of the helical molecule, left-handed circularly polarized light will allow a stronger
interaction with the electrons of a left-handed helical molecule, with the ability to drive
them around the helix, and therefore a larger fraction of such light will be absorbed than
would be the case for right-handed circularly polarized light. This is somewhat similar
to the reason why Polaroid film, with its oriented long polymers, preferentially absorbs
light polarized along the polymers: the electric field can then interact more strongly
with polymer electrons.

Because linearly polarized light can be considered a sum of left and right circu-
larly polarized light, a solution of optically active molecules probed with linearly
polarized light will interact differently with each of these components and affect the
polarization of the transmitted light. If the sample absorbs no light, then the light
remains linearly polarized, but has its direction of polarization rotated due to differ-
ent effective optical paths for each polarization. Molecules that rotate the polariza-
tion in a left-handed sense are called levarotatory (L) and those that rotate the
polarization in a right-handed sense are called dextrorotatory (D). It is a fact that all
proteins and most other biological molecules are found only in the L form in nature.

When linearly polarized light is incident on an optically active solution, there can
be both phase and amplitude changes associated with the equivalent left- and right-
handed circular polarization components making up the incident linear polarization.
These can be characterized by two quantities: the circular birefringence 	n,

(23.4)

for the phase changes, where nL and nR are the refractive indices for left and right cir-
cularly polarized light; and the circular dichroism 	
,

(23.5)

for the amplitude changes, where 
L and 
R are the absorption coefficients for left and
right circularly polarized light. Recall from Chapter 19 (Section 6) that the absorp-
tion coefficient is a measure of the intensity of light absorbed in a unit path length
and per unit concentration of sample.

Both the circular birefringence and dichroism values depend on the wavelength of
light used on a given optically active sample. Spectra showing the wavelength depen-
dence of the birefringence (using the technique known as optical rotary dispersion or
ORD experiments) and of the dichroism (using circular dichroism or CD experiments)
can be used to characterize biological materials. These techniques are used most to
probe the optically active regions of macromolecules, determining their helical content

¢e = eL - eR,

¢n � (nL � nR ),
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FIGURE 23.14 Handedness
changes in a plane mirror; the 
left-handed slinky helix (spiraling
counterclockwise around the
helix axis) changes to right-handed
in a plane mirror image (seen on
the left).



or following relatively slow kinetic changes that can occur
from conformational changes due to environmental factors or
to the binding of small ligands. Figure 23.15 shows an exam-
ple CD spectrum for standards in particular conformations
and for a real protein, myoglobin.

3.  ELECTRON MICROSCOPY

In our discussion of the resolution possible in a microscope,
the resolving power, or closest distance that two distinct
objects can lie and still be distinguished under optimal con-
ditions, was given by Equation (22.15) to be no less than
�/4. For visible light this limits the resolution under the best
conditions to about 200 nm. Any further improvement on
this limit requires that the wavelength of the probing radia-
tion be decreased. Although ultraviolet microscopes have
been developed, the most feasible method for improving
resolution is to use electrons in place of light. We show in
the next chapter that electrons have an associated wave-
length that depends on their momentum (or, in turn, on their
energy). Just as with photons, where higher-energy photons
have a correspondingly shorter wavelength, we show that
higher-energy electrons also have a shorter wavelength.
Exactly what it means for an electron or another elementary
“particle” to have a wavelength is explored further in the
next chapter. For now, we can use the notion of a wave
packet introduced in Chapter 19 (Section 5) to picture an
electron as having wavelike properties.

Electrons accelerated through a potential difference of
50 kV, typical for an electron microscope (EM), have a
wavelength of 0.005 nm, allowing a theoretical improve-
ment in resolution over a light microscope by a factor of
40,000. Unfortunately, other problems limit the practical
resolution of the EM, although using a particular variation
of electron microscopy has allowed resolutions approach-
ing 0.1 nm at which individual atoms can be directly
imaged. The recently developed method of scanning tun-
neling microscopy (STM), described in the next chapter,
allows even higher resolution of surface topography with a
resolution of better than 0.1 nm.

The general plan of an EM is shown in Figure 23.16. An
electron “gun,” or filament and anode combination, is the
source of electrons boiled off a tungsten filament heated to
very high temperature, similar to a light bulb. The electrons
are accelerated through a large potential difference of typi-
cally 40–100 kV reducing the wavelength of the electron as
it gains kinetic energy. The entire microscope column is
evacuated to a fairly high vacuum, reducing energy losses of
the electrons from collisions with air molecules. Because
electrons can be steered in a magnetic field, a “magnetic
condenser lens” is used to focus the electron beam at or near
the sample plane down to a spot size of several microns.
Samples are supported on copper grids with an array of
typically 100 �m � 100 �m square holes coated with a
thin uniform layer of a supporting material, such as carbon,
that is essentially transparent to electrons. Copper is used
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FIGURE 23.15 (top) Molecular model of the protein sperm
whale myoglobin showing helical and coil regions; (middle)
standard CD curves for pure helix, sheet, or coil; (bottom)
CD spectrum of the sperm whale myoglobin, showing the
best fit to the experimental data as a mix of three different
standard components.
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FIGURE 23.16 Schematic diagram
of a transmission electron micro-
scope. The lenses are electromag-
nets; the entire electron beam path
is evacuated. Typical detectors are
fluorescent screens, photographic
film, or image intensifiers to record
digital images.



because it is a good electrical and thermal conductor, carrying away any
heat from the interaction with the beam, and also minimizing the distor-
tion of the focusing magnetic field. The sample is mounted on a movable
stage for positioning it in the focused electron beam.

After interacting with the sample, electrons are collected by a (mag-
netic) objective lens and a magnified image is projected onto a detector
by a system of other lenses. Overall magnifications can range from 1000
to over 300,000 times, limited mainly by aberrations in the magnetic
lenses. The simplest detector is a fluorescent screen that emits light
when struck by the electrons and can be viewed directly by eye or with
some further magnification using optical lenses. Other detectors include
photographic film or image intensifiers that allow digitization and com-
puter enhancement of images.

Three types of EMs can be distinguished: transmission (TEM),
scanning (SEM), and the less common scanning transmission (STEM).
Normal TEM, developed in the 1940s, basically creates a greatly
enlarged shadow of the sample at the detector. Samples must be very
thin for good resolution and thin sections or evaporated deposits of solu-
tions are used. Biological materials are made of smaller atoms (mostly
H, C, O, N, P, S) that do not strongly interact with the electron beam and
so the contrast is very poor. In order to “see” the sample, some contrast
improvement is needed in order to cast a shadow. The usual method is
to deposit a heavy metal with high electron scattering power (such as
osmium, platinum, gold, or uranium) to coat the structures of interest.
This is done in a variety of ways including “shadowing” by direct
deposit of heavy metals on the grid, or by negative staining in which
heavy metal salt solution fills the region immediately around particles of

interest producing a dark background edge around bright images of the transparent
objects of interest. Figure 23.17 shows a TEM image of two virus particles with a
closed loop of its single-stranded DNA.

SEM uses a tightly focused electron beam (spot size of ~10 nm) directed off-
axis at a heavy metal-coated sample as shown schematically in Figure 23.18. The
beam is made to scan along the sample in a raster, or TV-like, pattern by a set of scan-
ning coils that steer the electron beam and are coupled to the detectors. Electrons or
radiation “reflected” from the sample at each scanned point are collected and used to
create an image on a TV screen as the electron beam is scanned across the sample.
The spatial pattern of the scanned beam is reproduced in the spatial pattern displayed
on the TV screen. A variety of different signals from the electron–sample interaction
can be measured using different detectors in the SEM, including backscattered elec-
trons and secondary electrons released from the sample itself, as well as x-rays and
emitted light. Although the resolution of this method is much lower (~10 nm at best)
than the TEM, the depth of focus is extremely large and the images are very three-
dimensional and lifelike (Figure 23.19).

STEM was developed to try to collect not only the “reflected” electrons and radi-
ation as in SEM, but also the transmitted electrons that have interacted with the sam-
ple. These transmitted electrons undergo two basic types of interactions, elastic and
inelastic, aside from the bulk of the electrons that simply pass through without any
interaction at all. Inelastically scattered electrons lose some energy to the sample
through excitation of target atoms, whereas elastically scattered electrons, fewer in
number, are simply deflected from their path through much larger angles by interac-
tion with the nuclei of target atoms without a change in their energy. The ratio of the
intensities of the elastic to inelastic electron scattering is a characteristic of the par-
ticular target atom and increases with the number of protons in the nucleus of the
atom. STEM scans an even more tightly focused electron beam (~0.5 nm) across the
sample simultaneously measuring the elastic and inelastic transmitted electron inten-
sities. Furthermore, the inelastically scattered electrons can be energy-analyzed to
determine their energy loss. STEM pictures are at very high resolution (Figure 23.20)
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FIGURE 23.17 TEM of two fd virus
particles with one single-stranded
DNA from a virus in the lower
center.

sample

electron beam

magnetic
scanning coils

detector

time

FIGURE 23.18 Schematic diagram
of the final portion of the scanning
electron microscope showing the
scanned electron beam, in multiple
images, steered by magnetic scan-
ning coils and the backscattered
electron detector.



and can also determine the elemental composition of the sample from point to point.
Unfortunately, the fundamental limitation of sample degradation in the electron beam
has made STEM less useful in biological imaging than first expected when developed
in the 1970s.

4.  X-RAYS: DIFFRACTION AND COMPUTED 
TOMOGRAPHY (CT)

X-ray photons have wavelengths in the range from about 0.01–10 nm, short enough
to provide atomic resolution according to the equation for resolving power.
Unfortunately, until recently x-rays could not be easily focused and magnified
images, such as have been made with light and electron beams, have not yet been pro-
duced with x-rays. (In 1996 scientists developed a simple and effective way to focus
x-rays; this method is expected to lead to many new applications, particularly in
microelectronics.) Even if we had the ability to focus x-rays, their interaction with
biological tissue is so weak that there would be virtually no contrast seen in normal
thin samples used in microscopy. However, x-rays have two properties that make
them extremely useful in both medicine and science. First, because x-rays are a form
of electromagnetic radiation, they diffract from objects of comparable dimension to
their wavelength, similar to the diffraction of light. Because of their atomic-sized
wavelength, x-ray diffraction effects can be used to probe the atomic structure of mat-
ter and have been used to determine the structure of many complex biological macro-
molecules at atomic resolution. Second, because x-ray energies are high, these
photons are capable of passing through otherwise opaque materials and x-rays can be
used to produce “shadow” pictures of internal structures within thick samples, for
example, the human body.

Crystalline materials have a three-dimensional periodic array of their atoms that
can diffract x-rays and produce a pattern of detected x-rays containing information
about the spatial array of the atoms. In a similar way that a one-dimensional array of
slits gives rise to a diffraction pattern with light, the crystalline array of atoms results
in a more complicated pattern of diffracted x-rays. In this case the x-rays are scat-
tered, or diffracted, in all directions from the crystalline array of atoms and interfer-
ence effects result in a detected pattern of x-ray spots.
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FIGURE 23.19 SEM of the head of a house fly at 200 X
magnification (the bar is 100 �m). The structure on the
right is a multifaceted eye.

FIGURE 23.20 STEM images of a particular
chaperonin, one of a family of large (~106 Da)
complexes involved in the folding of proteins,
under different solvent conditions showing
images used to reconstruct the detailed images
of shape shown in the insets on the right. The
bar represents 20 nm.



Consider a simple cubic crystal made of identical atoms
in a periodic array, or lattice, with separation distance d as
shown in cross-section in Figure 23.21. The atoms form
planes, known as Bragg planes, and the pattern of diffracted
x-rays can be determined by imagining that the x-ray beam
reflects from these planes in a process known as Bragg dif-
fraction. This picture greatly simplifies the analysis but gives
the correct general result. For the x-ray beams shown in the
figure, there will be a path difference for beams reflecting
from neighboring planes. From the figure, we see that this
path difference will depend on the angle � between the ray
and the Bragg plane and is given by 2d sin �. (Note that � is

not the usual angle of reflection between the ray and the normal, but is the angle
between the ray and the line of atoms in the plane of reflection.) Constructive inter-
ference will occur when this path difference is equal to a whole number of wave-
lengths and the Bragg equation,

(23.6)

where m is an integer called the order, defines the location of an interference maxi-
mum. X-rays incident at an angle given by Equation (23.6), known as a Bragg angle,
will produce a diffraction peak, or spot, at some distant detector located at the
“reflected” ray. In a noncubic crystal with three different repeat distances along dif-
ferent directions there will be two additional order numbers for the other directions
and a generalized Bragg equation. In this case, the “unit cell,” or basic repeating
structure, dimensions can be found by the location of the Bragg spots.

ml � 2 d sin u,
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Example 23.2 In an x-ray diffraction experiment on a cubic crystal with � �
0.40 � 10�10 m, find the crystal plane spacing if the first-order maximum
occurs at an angle of 6.4°. At what angle will the third-order maximum be
found?

Solution: Using Equation (23.6) with m � 1, we have that d � �/(2 sin �) �
1.79 � 10�10 m. The third-order maximum will then be found at the angle given
by sin � � 3�/2d � 0.34, so that � � 19.6°.

In the study of macromolecular structure, if a crystal of the macromolecule
can be formed, then x-ray diffraction can often be used to determine the three-
dimensional arrangement of all its atoms. In such a crystal, the individual scatter-

ing centers, or unit cells, may consist of thousands of individual
atoms. In addition to the unit cell dimensions affecting the
observed diffraction pattern, x-ray scattering from the molecules
within the unit cell will affect the pattern due to its “structure
factor.” In general, if there are N atoms per unit cell, there will
be N2 peaks in the diffraction pattern from the atoms within the
unit cell. As N increases for larger molecular crystals, the dif-
fraction patterns become extremely complex and rich with infor-
mation. From detailed studies of such patterns, together with as
much independent information on the macromolecular structure
as possible, the detailed three-dimensional atomic arrangement
has been determined for many macromolecules. Figure 23.22
shows the three-dimensional structure of myoglobin, a subunit
of hemoglobin consisting of 153 amino acids with a total of

FIGURE 23.22 The structure of
myoglobin.

• • • • • • •• •

• • • • • • •• •

• • • • • • •• •

• • • • • • •• •

• • • • • • •• •

• • • • • • •• •

• • • • • • •• •

d

θ

FIGURE 23.21 Cross-section of a
cubic lattice (shown in two dimen-
sions) showing two sets of Bragg
planes with different spacings and
the diffraction of an x-ray beam
from one set with spacing d. The
extra path difference of the lower
beam is shown in red and is equal
to d sin� for each of the triangles
shown, totaling 2d sin�.



1260 atoms. To obtain the current resolution of better than
0.2 nm, more than 9600 diffraction spots were measured and
analyzed. These pictures of the structure conceal the fact that
most macromolecules have extensive flexibility and motion.
Because the x-ray pictures are obtained over relatively long
times, the resulting 3-D structures represent average positions of
the constituent atoms. X-ray diffraction is one of the best meth-
ods we have for determining macromolecular structure at an
atomic resolution.

Not all biological materials can be made to crystallize so that
they can be studied by x-ray diffraction. A large class of filamen-
tous macromolecules can, however, be oriented into fibers and
studied by x-ray diffraction even though they are not in regular
crystalline arrays. Special techniques have been developed 
for helical proteins and nucleic acids that reveal the symmetries present even 
when neighboring oriented helices may not be “in register” along the axial direc-
tion. Such methods first led to the structural determination of the helical nature of
DNA by Watson and Crick and to the basic ideas on how DNA transmits genetic
information.

On the much larger dimensional scale of human organs and internal structures,
x-rays penetrate though skin and other soft tissue and travel in straight lines with-
out diffraction. In this geometrical optics limit, they can be used to produce
shadow images of, for example, bones within the body, based entirely on differ-
ences in absorption of x-rays. In fact, when Roentgen first discovered x-rays in
1895, within a week he had obtained the first x-ray picture of a hand (Figure 23.23).
The depth of penetration of x-rays depends on the density of the material; denser
materials, such as lead, are more effective in absorbing x-rays. Medical technol-
ogy uses x-rays to obtain pictures of such structures as bone and teeth in x-ray
radiography. Softer tissues can be pictured best if a dense material is introduced
to increase the contrast. The gastrointestinal tract can be imaged if it is filled with
a dense barium solution that casts a shadow in an x-ray picture. Similarly water-
soluble organic compounds with iodine are used to give contrast for pictures of the
cardiovascular system, the urinary tract or the brain. Mammography can be done
without a contrast agent using low-energy x-rays because these give the greatest
contrast for soft tissues.

These pictures produce two-dimensional projection images, lacking resolution
along the beam direction because the intensity of the x-rays at the detector is deter-
mined by an integration or sum through the body along the beam. Thus three-
dimensional information is lost on conversion to a two-dimensional picture. Put
another way, there is no depth information in an x-ray picture and doctors must infer
relative depths of neighboring features in these pictures with much care.
Furthermore, it is more difficult to detect small differences in x-ray absorption at
neighboring points because there is no resolution along the beam and therefore many
minor abnormalities in x-ray radiography are not detectable.

To improve this situation, computed tomography (CT; the Greek word tomo

means cut or slice) is able to obtain three-dimensional information from a collec-
tion of x-ray pictures taken at different orientations. The original CT machines
developed in the 1970s used a single x-ray source and detector held in precise reg-
ister on opposite sides of a patient. These were translated across the sample
region, rotated by 1° and scanned across the sample again, and so on, in steps all
around the body, so that a sequence of many pictures was obtained in a few min-
utes that could then be used to reconstruct the depth information in a three-
dimensional image. Today, CT machines use a wide fanlike beam and an array of
several hundreds to a few thousand x-ray detectors to decrease the time required
to a few seconds (Figure 23.24). The newest designed machines have stationary
detector arrays with an x-ray beam made to sweep in a circular pattern around the
patient with no moving parts. We show in Chapter 25 that x-rays are generated by
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FIGURE 23.23 The first x-ray
picture, obtained in 1896, of the
hand of Mrs. Roentgen.
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transitions of outer electrons to inner empty electron shells after
the inner electrons have been ejected by bombardment with
high-speed electrons. In modern CT machines a scanning high-
energy electron beam that generates the x-rays is an integral part
of this design. Projection data can then be obtained in about
50 ms, fast enough to image a beating heart without motion
artifacts.

However the various projection data are recorded, a computer
will have a record of digitized intensities that needs to be
processed to reconstruct the image of a cross-sectional slice in the
body. The image consists of a large number of two-dimensional
spots, or pixels, each having some grayscale level, a digital value
representing the brightness. Grayscale displays are sometimes
converted to false color images where the colors represent the
brightness level but have nothing to do with the color of the origi-
nal tissue being imaged. These brightness scales are normally set
according to the absorption coefficient of the tissue 
, compared to
that of water, 
w, by the CT number

(23.7)

Table 23.1 shows the CT numbers for different tissue and media for 60 keV x-rays.
The absorption coefficients of tissue depend on the x-ray beam energy and correc-
tions usually need to be made for this fact. Note that negative CT numbers indicate
that there is less absorption of x-rays than in water.

CT number � 1000 
e � ew

ew
.

εij

FIGURE 23.25 (left) An N � N grid
of pixels defined by sets of parallel
beams. The transmited (projected)
intensities are used to reconstruct
the absorption coefficients of each
pixel and thus a two-dimensional
image based on x-ray absorption.
(right) A test object with varying
shape and absorption coefficient
(symbolized by shading) probed by
several x-ray beams to do a back-
projection determining the absorp-
tion coefficient 
ij of the overlap
region.

FIGURE 23.24 Modern CT
machine used in hospitals
and medical imaging facilities.

Table 23.1 CT Numbers for Various Materials*

Material CT Number

Water 0

Air �1000

Bone 808

Striated muscle �48

Fat �142

* Using 60 keV x-rays.

We briefly try to give the reader a sense of how projection data can be used to
determine the CT numbers for an array of pixels in order to generate a cross-sectional



picture of the body based on x-ray contrast. In our context, the
absorption coefficient is in the relation

(23.8)

where I and Io are the transmitted and incident intensity on a tis-
sue thickness x and the log is to base e. Each x-ray beam can be
imagined to have traveled through a distance x in the body and
the transmitted intensity detected. We imagine that each of
N such neighboring parallel beams (the rows) is divided into
N intervals of length x/N (the columns), forming a two-
dimensional cross-sectional grid of N rows by N columns, with
N typically in the range 256–1024. In the pixel display of this
slice, the term 
x in Equation (23.8) for the ith row, for example,
is given by the sum

where we have labeled the 
ij values according to the pixel number (ith row and jth
column) and have assumed that the pixel width, 	x � x/N, is the same in any direc-
tion. In the simplest case, imagine that two sets of parallel x-ray beams are used to
define a square grid as shown in Figure 23.25 (left) and that the projected (trans-
mitted) intensity is measured for each beam. Using values for the projected inten-
sities, computer algorithms can determine the 
ij for the N � N pixels, giving a
two-dimensional absorption image.

In general, more complex patterns of beams can be used (Figure 23.25 right).
Because a set of N � N pixels is needed to image a given plane, a minimum of N2

values for 
ij are needed. These can be obtained from at least that many data points
for log Io/I, or 
x, obtained by imaging the same region of the body at many, many
different orientations. Large numbers of equations must be simultaneously solved
on a computer; with N � 256, there are at least N2 � 65,500 equations to solve.
Various computational techniques have been developed to do these calculations
rapidly.

With current technology, multiple cross-sectional images can be rapidly obtained
and computer techniques allow these to be superposed to produce 3-D images
(Figure 23.26). These same tomography methods can be applied to other types of
imaging, including ultrasonic (Chapter 11), magnetic resonance (Chapter 18), and to
such nuclear decay imaging as positron emission tomography (PET; discussed in
Chapter 26). The quality of images from CT and MRI scans are often comparable and
the choice of method depends on the type of tissue to be imaged.

ei x � a
j�1 to  N

eij¢x ,

I = Io e-ex or log
Io

I
= ex,
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FIGURE 23.26 Three-dimensional
rendering of a human heart by CT
imaging.

CHAPTER SUMMARY
Contrast is the other major factor, in addition to resolu-
tion discussed in the previous chapter, that determines
whether an object can be imaged in a microscope. We
can distinguish two types of contrast: amplitude and
phase. Microscopes that use amplitude contrast include
the standard bright-field compound microscope dis-
cussed in the previous chapter, as well as the dark-field

(Continued)

and fluorescence microscopes. Phase contrast and DIC
(differential interference contrast) microscopes use
phase contrast to image objects. Newer microscopies
use laser-scanning methods to do point-by-point imag-
ing. These include confocal and multiphoton micro-
scopies.

Optical activity refers to the effect of anisotropic
molecules on the circular polarization of light. Such



QUESTIONS
1. Compare image contrast with resolution for a bright-

field microscope. How does each enter into producing
an image?

2. What is the function of the dichroic mirror in a fluo-
rescent microscope? (See Figure 23.3.)

3. What are the origins of phase and amplitude contrast?
Are both always present to some extent?

4. Describe the main differences, in your own words,
between phase contrast and differential interference
contrast microscopy.

5. What is the function of the Wollaston polarizing
prisms in DIC optics? Is the fact that the two beams
have different polarizations important in the final
image seen?

6. What are the advantages of multiphoton microscopy
over single-photon methods?

7. Discuss the superposition of two linear polarized
light beams of the same frequency and equal ampli-
tude, one polarized along the x- and one along the
y-axis. What is the result if the two are in phase?
90° out of phase? 180° out of phase?

8. Because a plane mirror reverses left and right, but
does not reverse up and down, if you hold a coiled
right-handed spring and look at its image in a mirror
is there an orientation of the spring that results in a
right-handed image?

9. Simple molecules produced in chemical reactions,
even if they have a handedness, are usually produced
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molecules have a different effective index of refraction
for left- and right-handed circularly polarized light and
are said to have circular birefringence

(23.4)

They also absorb left- and right-handed circularly polar-
ized light differently and produce circular dichroism,

(23.5)

where 
 is the absorption coefficient. This effect can be
measured using the optical technique of circular
dichroism CD, and is an important method to deter-
mine the percent of helix, beta sheet and random coil
composition of macromolecules.

Transmission electron microscopy uses a high-
energy beam of electrons to produce a “shadow” image
of microscopic objects with a resolution approaching
atomic resolution. Scanning electron microscopy (SEM)
is a lower-resolution variation that scans a tightly
focused electron beam over the sample and detects

¢e = eL - eR ,

¢n � (nL - nR).

backscattered, rather than transmitted, electrons. This
method gives a greater depth of focus so that the images
look three-dimensional. A less used method combines
these methods in the high-resolution scanning transmis-
sion EM (STEM).

X-rays can be used to study the structure of crys-
tals, even crystals made from complex macromole-
cules. The basic crystalline array can be determined
using the Bragg equation

(23.6)

where � is the wavelength of the x-ray beam, d is the
spacing between Bragg planes of the crystal, and � is
the diffraction angle (between the Bragg plane and the
incident or exit beam). X-ray beams can be used to pro-
duce shadow images through the body because trans-
mission through bone and types of tissue are different.
The medical imaging technique known as computed
tomography (CT) uses fanlike x-ray beams and multi-
ple detectors to allow images to be reconstructed by
computer of cross-sections through the human body at
a resolution of about 1 mm.

ml� 2 d sin u,

in nearly equal quantities of left- and right-handed
molecules. Biological molecules, on the other hand,
are nearly always found in pure left-handed form.
What benefits might be derived from only having one
form in living materials?

10. A linearly polarized light beam passes through a
birefringent material and two beams emerge. If the
beams are each made to pass through one slit of a
double-slit experiment, will a standard double-slit
interference pattern be produced on a distant
screen?

11. What is the difference between circular birefringence
and circular dichroism?

12. As the accelerating voltage in an electron microscope
is increased, what happens to the theoretical magnifi-
cation? To the sample degradation? To the magnetic
field needed to focus the electron beam?

13. What is the purpose of heavy metal deposition in
TEM? How does it affect resolution?

14. Can you argue why the backscattered electrons in
SEM allow the images to appear much more three-
dimensional than the images transmitted electrons
produce in TEM?

15. Fill in the details in the derivation of the Bragg equa-
tion, Equation (23.6), using Figure 23.21.

16. Why, when you have a dental x-ray taken, are you
covered with a heavy lead-coated gown?

17. Contrast how a CT image is obtained with how you
perceive depth with two eyes.



MULTIPLE CHOICE QUESTIONS
1. In dark-field microscopy (a) the sample images

darker than the background, (b) an annular aperture is
inserted between the sample and the objective lens,
(c) the image contrast is usually better than that of
bright-field, (d) the samples must be stained to show
up.

2. Fluorescent dyes can be used for all but which of the
following? (a) Imaging calcium concentration varia-
tions, (b) imaging pH variations, (c) localizing spe-
cific molecules, (d) high-resolution imaging of
molecules.

3. Which of the microscopic techniques usually
requires that the sample be stained? (a) Phase con-
trast, (b) bright field, (c) DIC, (d) polarizing
microscopy.

4. In DIC microscopy, the edges of microscopic objects
are sharp because (a) that’s where the most stain is,
(b) that’s where there is an extra � phase shift,
(c) that’s where there is the greatest change in index
of refraction, (d) that’s where the greatest polarization
difference occurs.

5. In three-photon microscopy, to excite a fluor at
450 nm the incident wavelength of light should be (a)
150 nm, (b) 450 nm, (c) 900 nm, (d) 1350 nm.

6. In laser-scanning confocal microscopy all of the fol-
lowing are true except (a) the beam is focused to a
very small spot, (b) the beam is moved across the
sample, (c) two or more photons are absorbed at the
same time, (d) the images appear three-dimensional.

7. A circularly polarized beam of light (a) travels in a
spiral around its magnetic field, (b) travels in a spiral
around its propagation direction, (c) has an electric
field vector whose tip rotates in a closed circle, (d) has
an electric field vector whose tip travels in a spiral.

8. Which is not true of a birefringent material? (a) It
must be a solid because it has different indices of
refraction along two different directions, (b) it can
produce two beams of light from one, (c) it can pro-
duce circularly polarized light, (d) light can travel
through it with two different speeds.

9. Which of the following is not true of an optically
active molecule? (a) It produces a circular birefrin-
gence signal, (b) it produces a circular dichroism sig-
nal, (c) it must be asymmetric, (d) a solution of them
can always be imaged in a polarizing microscope.

10. A typical accelerating voltage used in an electron micro-
scope is (a) 100 kV, (b) 1 kV, (c) 10 MV, (d) 100 V.

11. Electron microscope samples must be stained or metal-
coated because (a) the atoms are too small to detect oth-
erwise, (b) the samples are not colored otherwise, (c)
the samples do not interact with electrons otherwise, (d)
the samples would evaporate from the grid otherwise.

12. All of the following are consequences of using high
accelerating voltages and small focused spot sizes
in scanning electron microscopy except (a) higher
resolution, (b) decreased heating of the sample,
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(c) increased backscattered electrons, (d) more
accurate elemental analysis.

13. Which of the following is not true? 60 keV x-rays are
absorbed by (a) water more than fat, (b) water more
than air, (c) bone more than striated muscle, (d) fat
more than striated muscle.

14. The intensity remaining in a beam after traveling
10 cm through a sample with an absorption coefficient
of 0.2 cm�1 is (a) 1%, (b) 1.4%, (c) 14%, (d) 20%.

PROBLEMS
1. With a compound microscope adjusted poorly, the %

contrast for a certain sample is only 5%. If the micro-
scope is adjusted and the sample intensity is reduced
by 10% and the background intensity is increased by
20%, what is the new % contrast?

2. In three-photon microscopy, if the peak in the absorp-
tion band of a fluorescent molecule to be imaged is at
360 nm, what incident frequency of light should be
used?

3. Show that two in-phase linearly polarized beams with
the same frequency but along orthogonal axes (x and
y) superpose to produce a linearly polarized beam
with a polarization direction that depends on the ratio
of their amplitudes. What is this polarization angle if
Eox � Eoy? If Eox � 3Eoy?

4. Show that the tip of the electric field vector produced
by the superposition of equal amplitude electric fields
given in Equation (23.2) rotates in a circle. Viewed
from a location at which the beam is approaching
you, does the E vector rotate clockwise or counter-
clockwise?

5. A birefringent crystal has a birefringence given by
	n � n1 � n2 � 0.01, where n1 and n2 are the indices
of refraction along its two transverse crystal axes at
right angles with each other. Suppose a linearly polar-
ized wave with 550 nm wavelength, is polarized at 45°
to the crystal axes. If the crystal has a thickness of 1 cm,
what will be the path difference between the two waves
polarized along the crystal axes when they exit the crys-
tal? What will be the net phase difference (as a fraction
of 2� rad, or modulo 2� rad) of the two waves?

6. Suppose that the spot size in an SEM is 10 nm and
that the beam is scanned over a region of 100 �m �
100 �m in a raster pattern, producing a single-
scanned image in 10 ms. If the overall region is digi-
tized into a 200 � 200 pixel area,
(a) What sample area is represented by 1 pixel?
(b) How long is the beam exposure in each pixel?

(This determines resolution time of the detector.)
7. X-rays with a 0.12 nm wavelength produce a first-

order diffraction peak at a Bragg angle of 24°. What
crystal spacing gave rise to this diffraction?

8. A cubic crystal with identical atoms separated by
distance d has sets of Bragg planes separated by
distance d. It also has other symmetry planes, as shown,



for example, in Figure 23.21. Using simple trigonome-
try, draw a two-dimensional square lattice projection of
the crystal (as in Figure 23.21) and find two other crys-
tal plane spacings in terms of d.

9. If an x-ray beam is incident on a 1.5 cm thick sample
and 98% of the beam is transmitted what is the average
absorption coefficient of the material in units of m�1?

10. Two samples for an x-ray absorption experiment have
the same thickness. With the same incident intensity
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one has a 95% transmission and the second has an
85% transmission. What is the ratio of their absorp-
tion coefficients?

11. Suppose that an x-ray beam is directed on a tissue
sample and suppose that 99.3% of the beam is trans-
mitted. If a dummy blank sample of water is used
99.5% of the x-rays are transmitted using exactly the
same geometry and beam. What is the CT number of
this sample?
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This and the next chapter bring together a number of fundamental concepts about
matter and radiation, some of which we have anticipated in previous discussions when
needed. The title of this chapter names the two major theories developed in the
20th century that have most revolutionized physics. Relativity and quantum physics are
together sometimes known as modern physics. We begin this chapter with a brief dis-
cussion of some aspects of special relativity, a theory developed by Albert Einstein that
has brought about major changes in our understanding of the world. Thoroughly tested
and consistently found to be correct, special relativity forms a framework on which
modern physics rests. The chapter then continues with an overview of the probabilistic
view of nature demanded by quantum physics, illustrated by a revisiting of the double-
slit experiment. Some of the main features of quantum physics are then discussed,
including the Schrödinger equation and the uncertainty principle. The chapter
concludes with a discussion of the quantum basis of scanning tunneling microscopy,
capable of viewing individual atoms. Our discussion continues in the next chapter with
the quantum physics of atoms and molecules and their study by spectroscopy, includ-
ing the laser which is one of the most important tools in science and medicine today.

1.  SPECIAL RELATIVITY: MASS–ENERGY AND DYNAMICS

Special relativity is concerned with our fundamental notions of time, space, mass,
energy, and motion at constant velocities. Albert Einstein published the theory of spe-
cial relativity in 1905 when he was 26 years old. In that same year he also published
fundamental papers on Brownian motion and on the photoelectric effect, discussed
below, for which he received the Nobel Prize. Twelve years later, in 1917, he pub-
lished the theory of general relativity, which quantitatively shows the equivalence
between accelerated motions and gravity, known as the equivalence principle, replac-
ing the gravitational force with a curvature of space and time. Although Einstein’s
theory of general relativity has been successfully tested and accepted today, those
tests are relatively few in number and its impact on physics is much more limited than
that of special relativity. One important everyday application of general relativity is
a correction needed for the extremely accurate time keeping required for GPS (global
positioning system; Figure 24.1); without general relativity corrections, GPS naviga-
tional errors would be about 10 km per day. Special relativity, on the other hand, has
been thoroughly tested and is completely ingrained in all areas of modern physics.

Relativity is often thought to be mathematically complex, but it is only general rela-
tivity, not discussed here, that involves higher mathematics. Special relativity can be
explained without the use of much mathematics and so can be understood by the nonsci-
entist, but it involves ideas that seem contrary to our intuition. We live in a world of
extremely slow moving objects compared to the speed of light. Relativity (from now on
we omit the word “special” because we limit our discussion to special relativity) deals
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with new phenomena that occur at speeds approaching the speed of light. We have no
intuitive basis for understanding such processes since we never experience motion at such
speeds. Even a plane traveling at 600 mph travels only at about 1 millionth the speed of
light. All of the equations of relativity reduce to equations we have already studied when
the speeds of objects are small compared to the speed of light, as we shall see.

Two fundamental postulates form the basis of relativity theory from which all its
consequences follow. The first, known as the principle of relativity, is that all the laws
of physics are the same in all inertial frames of reference. We have already seen an
example of this principle in mechanics in the form of Newton’s first law. Relative
velocities may be different in two different inertial frames, however, accelerations of
objects and the description of the forces acting to produce motion will be the same in
all inertial reference frames. Einstein’s relativity principle extends this notion to cover
all the laws of physics, not just those of mechanics. The second postulate concerns the
constancy of the speed of light and states that the speed of light in vacuum has the
same value c in all inertial reference frames. It is remarkable that these two postulates
alone lead to the development of such a powerful theory. We limit our discussion here
to those salient features of dynamics that we need later in this book, omitting the fas-
cinating consequences of relativity on our notion of space and time.

Consider a point particle of mass m, moving with a velocity v in the x-direction
as seen by an observer. Classically, the momentum of the particle would be defined
as p � mv � m(�x/�t), where �x is the displacement of the particle in a time inter-
val �t. In place of this, the relativistic momentum is defined as

(24.1)

where the Lorentz factor � is defined by

Although for a stationary particle � � 1, even when the particle moves at 0.1 c, quite
a large velocity, the value for � is only 1.005. Figure 24.2 shows how � varies with
the ratio v/c, confined to lie between 0 and 1; note that � grows very rapidly as v
approaches c. This formula can be directly generalized to three-dimensional motion
by treating p and v as vectors.

Note that for small values of v we can neglect the term v2/c2 in the denomina-
tor of Equation (24.1) so that the expression for momentum reduces to its classical
value. As v approaches c, however, the momentum of the particle, being propor-
tional to �, increases at a much faster rate than the classical linear dependence on v.

g�
111 � v2 /c2

.

p �
mv11 � v2 /c2

� gmv,
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FIGURE 24.1 A handheld GPS only
works with corrections from general
relativity.



Because the momentum increases so rapidly as the particle’s velocity approaches c,
it requires an ever-increasing force, equal to the rate of change of momentum, to
accelerate the particle. If the particle starts from rest, an increase in its velocity by
10% of the speed of light will produce a proportional momentum increase of just
about 10%. However, if the particle is already moving at half the speed of light, the
change in momentum for a 0.1 c increase in velocity (a 20% increase, from 0.5 c to
0.6 c) will be about 30%, whereas if the particle is already moving at 85% of the
speed of light, the corresponding increase in momentum for the same 0.1 c increase
(about a 12% increase from 0.85 c to 0.95 c) will be almost 90%. As the velocity
of the particle approaches c, its momentum increases very rapidly, and therefore the
change in momentum needed to produce the same step increase in its velocity will
also dramatically increase. Because an ever-increasing force is needed to increase
the particle’s momentum, this effect prevents a material particle (one with a
nonzero mass) from ever attaining a velocity equal to the speed of light.

Another important variable of dynamics is the kinetic energy, classically given as
The relativistic kinetic energy expression looks quite different and is

given by

(24.2)

This is indeed an energy that depends on motion because if v � 0, then � � 1 and the
expression clearly reduces to KE � 0. Although it is not apparent that for small veloc-
ities compared to c this reduces to the classical expression, we can show this by
expanding the square root term in Equation (24.2) using the binomial theorem

(24.3)

valid for x << 1 to find that

(24.4)

Therefore, as long as v/c << 1, we see that the relativistic kinetic energy reduces to
our usual classical physics expression. The relativistic expression for kinetic energy
also confirms the idea that it becomes more and more difficult to accelerate a parti-
cle of mass m as its speed approaches c because the kinetic energy also grows very
rapidly, in proportion to �.

KE � mc2a1 �
v2

2c2
b� mc2 �

1

2
 mv2.

(1 � x2)
�

1

2
� 1 �

x2

2
� ...,

KE �
mc211 � v2 /c2

� mc2 � gmc2 � mc2.

KE � 1
2 mv2.
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Now we make a leap in our interpretation of Equation (24.2). 
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Example 24.1 For an electron traveling at v � 0.95 c, find its momentum, total
energy, and kinetic energy and express each of these as multiples of their classical
(nonrelativistic) values.

Solution: An electron has a rest mass of 9.1 � 10�31 kg and, at v � 0.95 c, 

a � value of 

Therefore its momentum is equal to p � �mv � (3.2)(9.1 � 10�31) (0.95)
(3 � 108) � 8.2 � 10�22 kg-m/s, its total energy is equal to �mc2 � 2.6 �
10�13 J, and its kinetic energy is E � mc2 � 1.8 � 10�13 J. Because the classi-
cal momentum is just mv, the relativistic momentum is exactly a factor of
� � 3.2 larger. Classically the total energy and kinetic energy are both equal
(because there are no potential energies for an isolated electron) and equal to 

and thus the total energy and kinetic energy are actually 
larger than this by factors of 7.0 and 4.9, respectively.

1
2 mv2 � 3.7�10�14 J,

g �
111 � (0.95)2

� 3.2.

Einstein’s famous formula E � mc2 is really a relation between the rest energy
and mass of a particle and shows the equivalence of mass and energy. A particle and
its antiparticle, for example, an electron and a positron, each with the same mass, can
annihilate on collision converting all of their mass to pure energy in the form of pho-
tons (as long as all conservation laws are satisfied). In the inverse reaction, known as
pair production, a gamma ray photon with enough energy can create an electron and
positron pair. In this case if the photon has an energy greater than the combined rest
mass of the electron and positron, then these two particles share the remaining energy
in the form of kinetic energy as they fly apart at some appropriate speed.

Nuclear reactions involve small changes in the mass of nuclei with accompany-
ing large changes in energy given by

(24.7)

For example, a mass change of 1 kg leads to an energy release of about 9 �
1016 J, or enough energy for a U.S. city of million people for a year. Even chemi-
cal reactions involve small mass changes of the reacting atoms, although the equiva-
lent energies are much smaller than those of nuclear reactions.

Another way to consider Equations (24.1) and (24.5) for the relativistic momen-
tum and energy of a particle is to consider the term

m11 � v2 /c2
� gm

1
2

¢E � ¢mc2.

We define the total relativistic energy of the particle to be the first 

term in Equation (24.2)

(24.5)

Then, from Equation (24.2), we can rewrite this as

(24.6)

The total relativistic energy of a particle is therefore made up of its 

kinetic energy, the first term, and its rest energy, given by mc2, the energy

remaining when v � 0 or � � 1.

E � KE � mc2.

E �
mc211� v2 /c2

� gmc2.



as a variable, known as the relativistic mass (with m known as the rest mass), that
depends on the speed of the particle. Viewed in this way, the (relativistic) mass of a
particle increases dramatically with speed. This provides an alternative explanation
of why it is impossible to surpass the speed of light. The faster a particle travels, the
more massive it becomes and the more difficult it becomes to keep it accelerating.
Because the relativistic mass grows, unbounded, as the speed approaches c, no finite
force can accelerate the material object to the speed of light.

We conclude this section by showing the connection between energy and
momentum. Classically, kinetic energy and momentum are related by KE � p2/2m.

With some algebra (see Problem 4), we can show that the relativistic momentum and
energy are related by

(24.8)

For a massless particle, such as a photon or neutrino, the rest energy term vanishes
and the energy and momentum are proportional to each other

(if m � 0 or � >> 1). (24.9)

This same expression holds for ultrarelativistic massive particles, whose speeds
approach c so that � >> 1, because the first term on the right in Equation (24.8) dom-
inates and we can neglect the second rest energy term.

The ideas we have developed in this section are used in the remainder of this
book in various discussions of modern physics. Relativity also deals with other con-
cepts related to motion at large constant velocities, including fundamental changes in
our notion of distance and time. These we leave for the interested reader to find in
any one of a large number of popular books that discuss special relativity, including
one by Albert Einstein himself.

2.  OVERVIEW OF QUANTUM THEORY

We now take a veritable quantum leap and begin considering our current under-
standing of the atomic world of nature. Earlier in this book we have seen the notion
of wave-particle duality, that in nature the elementary constituents of matter and radi-
ation can appear to behave as either particles or waves, depending upon the interac-
tions with their environment. For example, photons, the elementary quanta of
radiation, can behave as waves (in interference and diffraction), or, in other situations
as we soon show, photons can behave as particles. The wave packet picture was intro-
duced in Chapter 19 as a way to visualize this duality, with the wave packet capable
of collapsing to be more particlelike or expanding to be more wavelike in space
depending on its interactions. Here we discuss this in more general terms and show
that the picture also applies to all other elementary “particles” and sometimes even to
macroscopic systems. We discuss a series of different experiments that illustrate the
wave–particle duality nature of photons and other elementary “particles” such as
electrons.

The photoelectric effect is a very important process in which light causes the
emission of electrons from a metal surface. This phenomenon is the basis for a
variety of light-detecting devices that produce electric currents in response to
light. Many of the features of the interaction of light with a metal surface
could not be explained on the basis of a wave theory of light and these led
Albert Einstein to propose a theory of the photoelectric effect in 1905 based
on photons.

When light is directed on a metal cathode (negative electrode) within a
vacuum tube, as shown in Figure 24.3, an electric current can be generated at
the anode (positive electrode) when a potential difference is applied across the
electrodes to collect the emitted electrons, even though there is no wire
connected between the two electrodes. According to the wave theory of light,
the intensity of light should be proportional to the beam energy, and for a

E � pc.

E2 � p2c2 � m2c4.
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FIGURE 24.3 The photoelectric
effect. Light incident on the
photocathode electrode in a
vacuum tube causes electrons to
be ejected and attracted to the
anode (by a positive potential) to
make up a current measured by the
external ammeter.



sufficiently intense beam, no matter what the wavelength, one should expect electrons
to be ejected from the metal surface after gaining energy from the light. Indeed, for
shorter wavelength light, the electric current is proportional to the intensity of the
light. However, if the wavelength of the light is long enough, then regardless of the
intensity of the beam or the applied voltage supplied by the battery no electrons
are generated. Classical wave physics is unable to explain the conditions when such
an electric current will appear or will not appear.

Einstein’s explanation of the photoelectric effect is based on light consisting of
individual photons, each with an energy given by (see Chapter 19)

(24.10)

where h is Planck’s constant, h � 6.63 � 10�34 J-s, and we have used the fact that 
c � f�. Photons also carry a momentum, according to Equation (24.9), given by

(24.11)

Equations (24.10) and (24.11) relate the photon energy and momentum, particlelike
properties, to the wavelike properties of wavelength or frequency.

If the wavelength of the light is longer than some threshold value, then the energy
of each photon will be too low to provide the minimum energy necessary to eject an
electron from the metal surface, an energy known as the work function 	. In this case,
no electrons will be ejected.1 When the photon energy exceeds the work function, a
single photon can interact with an atom in the metal surface and eject a single elec-
tron. Those electrons that do escape from the “photocathode” surface can be attracted
to the anode, by applying a positive potential difference between the electrodes, and
make up the detected current. The amount of current is then proportional to the num-
ber of photons per second in the beam, this being proportional to the intensity of the
beam. Beam intensity is defined as the energy per unit time per cross-sectional area
and for a monochromatic beam is determined by the product of the energy of each
photon and the number of such photons per second per cross-sectional area.

Now, depending on the wavelength of the incident light, emitted electrons will
have more or less kinetic energy. In order to measure the kinetic energy of the emit-
ted electrons, the polarity of the applied voltage can be reversed so that the electrons
will be repelled by the anode. When the most energetic electrons are just stopped by
this reversed voltage, known as the stopping potential, we know that

(24.12)

and such a measurement can determine the maximum kinetic energy of the electrons
emitted in the photoelectric effect. Einstein predicted that this maximum kinetic
energy would be given by

(24.13)

so that the excess photon energy above the minimum energy needed to escape from
the surface, the work function, equals the maximum kinetic energy. Electrons requir-
ing more energy to escape from the surface will be left with less kinetic energy.
Because kinetic energy must be positive, this relation implies that there is a minimum

KEmax � hf � £,

KEmax � eVstop,

p �
E

c
�

h

l
.

E � hf �
hc

l
,
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1Strictly speaking, we now know this to be untrue: if the light source is a high-power laser, then
there can be such an enormous number of photons that there is a nonnegligible probability that
a single electron can absorb two or more subthreshold energy photons simultaneously and gain
sufficient energy to escape. This is similar to the basis of multiphoton microscopy discussed at
the end of Section 1 of the previous chapter.



frequency of light that is needed for electrons to just escape from the metal surface
with essentially no kinetic energy given by

(24.14)

Equation (24.13) also correctly predicts that the maximum kinetic energy of the elec-
trons depends only on the frequency and is independent of the intensity of the light.

fmin �
£

h
.
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Example 24.2 Suppose that red light of � � 633 nm or blue light of 488 nm is
directed on a photocathode with a work function of 2.25 eV. If 1012 photons per
second of each color are separately incident on the photocathode, what will be
the detected photocurrent in each case assuming 100% efficiency and all the
emitted photoelectrons are captured by the anode? If the intensity of each light
beam is increased by a factor of 10, what will happen? What is the stopping
potential in each case?

Solution: The energy of the red and blue photons are given by hc/� and are equal
to (after converting to eV) 2.0 and 2.5 eV, respectively. Therefore, given the
work function of 2.25 eV, red photons have insufficient energy to eject electrons
whereas blue photons will each lead to an electron being detected at the anode
(given the assumed 100% efficiencies) leading to a photocurrent corresponding
to 1012 electrons per second or a current of (1012 e/s) (1.6 � 10�19 C/e) �
1.6 � 10�7 A � 0.16 
A. If the intensities are increased by a factor of 10 there
will still be no emitted electrons with the red beam because the individual pho-
ton energy has not changed, and the photocurrent detected using the blue beam
will increase by a factor of 10 to 1.6 
A. The stopping potential for the red beam
experiment is zero because no electrons are detected at all whereas for the blue
beam experiment, because the electrons are emitted with a maximum kinetic
energy of 2.5 � 2.25 � 0.25 eV, the stopping potential will be 0.25 V. Note
carefully the units here.

λ

λ + ∆λ

θ

x-ray 

scattered

x-ray electron

scattered

electron 

FIGURE 24.4 Compton scattering
of an x-ray photon by an electron.
The scattered photon with longer
wavelength and the recoil electron
are shown dotted.

A second experiment that demonstrates the particlelike nature of photons is the
scattering of x-rays, high-energy photons, by the electrons of a material. In the early
1920s Arthur Compton discovered that the wavelength of x-rays gets slightly longer
after scattering from a graphite target. He discovered that the process, now known as
Compton scattering, could be completely explained by assuming that the x-rays
carried energy and momentum given by Equations (24.10) and (24.11) and that the
scattering simply conserved kinetic energy and momentum. Such an elastic collision
is analyzed in a straightforward way using energy and momentum conservation in two
dimensions just as it would be for billiard balls on a frictionless table. The resulting
shift to longer x-ray wavelengths is due to the electron, initially at rest, gaining some
momentum and kinetic energy at the expense of the photon (see Figure 24.4).



A decreased photon momentum or energy has an associated increase in wavelength,
known as the Compton wavelength shift, ��. Using energy and momentum conserva-
tion, Compton derived a formula for the wavelength shift

(24.15)

where � is the scattering angle and �c is the Compton wavelength of the electron, a
fundamental constant given by

where m is the mass of an electron. Thus, the Compton shift vanishes for forward
scattering, where the scattering angle is close to 0° indicating little interaction
between the x-ray and electron, and is a maximum for backscattering when � equals
180° and the x-ray has strongly interacted with the electron. We mention that both
Compton scattering and the photoelectric effect are important in the making of a
medical x-ray, the first in the x-ray/body interaction and the second in the detection
process.

Having just studied two of the important experiments establishing the particlelike
nature of photons under certain conditions, let’s reconsider the double-slit interference
experiment for light discussed earlier in Chapter 22 where we treated light as a wave.
Imagine that we reduce the intensity of the light source so low that only one photon at a
time arrives at the slits. Figure 24.5 shows the experiment. It is found that individual pho-
tons are detected at the screen at localized spots implying that the photon wave packet
“collapses” when detected. However, after many such detections, the pattern of the total
detected intensity is the same as that observed directly at higher light levels. In other
words, even though individual detection events are localized on the screen, no photons
ever arrive at positions on the screen that correspond to destructive interference bands
whereas many more photons than the average arrive at the positions of constructive inter-
ference, according to the path difference equations of Chapter 22. If each individual pho-
ton went through one slit or the other, we would not expect to see an interference pattern
because, with only one photon at a time, there would be no interference occurring. We
must conclude that the individual photons are going through both slits and interfering

with themselves, with their own wave packet. Given our (brief) discussion of wave pack-
ets and the notion of diffraction, it is not impossible to accept this notion. Individual wave
packets, representing each photon, must travel through both slits, diffract at each, and
recombine according to the rules of interference. When subsequently detected at the
detector in the far-field, the wave packets must collapse and interact with the atoms of the
detector as a “particle” getting detected at one particular location.

Amazingly, if the same experiment were to be done with electrons (but using differ-
ent detection equipment), we would observe a similar result. The pattern of detected elec-
trons on a screen far from the double-slits would be that produced by an interference
pattern of waves using a wavelength for the electron given by the same expression as

lc �
h

mc
� 2.43 � 10�12 m,

¢l � lc (1� cos u),
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FIGURE 24.5 The double-slit
experiment at very low light levels
so that individual photons are
detected. A long experiment
detecting many photons will build
up a multiple exposure that is
identical to that detected at higher
light levels. The necessary
conclusion is that individual
photons interfere with themselves
in passing through both slits.



Equation (24.11), � � h/p, known as the de Broglie wavelength of the electron. The elec-
trons could be detected, for example, by having them strike a fluorescent screen emitting
localized flashes of light. The slit separation would need to be made comparable to the de
Broglie wavelength of the electron, but by adjustment of the electron’s momentum this
even can be matched to the same slit size as used for the photon experiment. At high elec-
tron beam intensities, an interference pattern would be directly observed on the screen. At
very low electron beam intensity, with individual electrons arriving at the double-slit, the
same interference pattern would be observed after an extended time exposure, again forc-
ing us to conclude that each electron went through both slits simultaneously and inter-
fered with itself. This seems at first sight to be inconceivable because the electron is
known to be a fundamental “particle” that has no internal structure and is not divisible
into subpieces. Despite our difficulties in accepting this, the electron does indeed behave
as a wave, known as a matter wave. Although proposed much earlier and often used as a
conceptual argument, this double-slit experiment with individual electrons was actually
performed first in 1961 and has been verified in many ways since.

The first experiment to verify the wave nature of the electron was done by
Davisson and Germer in 1927. By studying the diffraction of a beam of electrons
from a crystal and observing ring patterns of maxima and minima, these experiments
were able to verify the correctness of the de Broglie relation for the wavelength of
the electron. Electrons, as well as photons, are said to exhibit wave–particle duality,
sometimes behaving as a wave, as in situations showing diffraction and interference
effects, and sometimes behaving as a particle, as in the detection process where par-
ticle mechanics concepts of momentum and energy “packets” apply.

Our conclusions for electrons also hold for all other elementary particles, each
having its own de Broglie wavelength, depending on its momentum. Such wavelike
effects of matter are not normally observed for macroscopic matter because the de
Broglie wavelengths become extremely tiny. For example, a 1 kg mass traveling at
1 m/s has a de Broglie wavelength of about 10�33 m, much too small to produce any
observable wave effects. But in the world of elementary particles, the masses are tiny,
so that de Broglie wavelengths are large enough to produce dramatic effects. Even
nonrelativistic electrons, accelerated through a potential difference of 1 V, have a
momentum of and a corresponding de Broglie
wavelength of 1.2 nm. This wavelength is large compared to atomic dimensions and
such slow moving electrons can therefore be expected to exhibit diffraction and inter-
ference effects when interacting with a crystalline array of atoms, just as light does
with an array of slits. Figure 24.6 shows an example of an electron diffraction pattern.

In addition to mass and electric charge, each electron carries another intrinsic
property called spin. Just as mass creates gravity and charge creates the electric force,

p � 12mE � 5.4 � 10�25 kg m/s,
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FIGURE 24.6 Electron diffraction
pattern from a thin germanium
crystal.



spin creates an interaction as well, another kind of repulsive force between electrons.
Unlike gravity and the electric force, though, we can’t write down a specific equation
for this interaction. Instead, it is expressed as a rule: no two electrons occupying the

same region of space can be in exactly the same state of motion (or have the same set
of quantum numbers). This rule is called the Pauli exclusion principle, and, among
other things, it is responsible for the great variety of chemical differences we observe
among atoms. We study this further in the next chapter where we show in more detail
that this is responsible for the different known types of atoms. Here we need to point
out that this principle only applies to particles with half-integral spin.

Some macroscopic systems also exhibit quantum mechanical effects; particularly
notable examples are superconductors and superfluids. In some materials at suffi-
ciently low temperature, the conduction electrons pair up so that these “Cooper pairs”
have integral spin and are no longer subject to the Pauli exclusion principle. They are
all able to occupy the same low energy state and not interact with the material 
lattice around them. In this case their electrical resistance is, in fact, equal to zero.
These materials are called superconductors and a variety of different types of materials
have been discovered that become superconductors at sufficiently low temperatures.
Superconducting wires are used in large electromagnets to produce very large
magnetic fields without heating problems when their temperature is sufficiently low,
typically at liquid helium temperatures of about 4 K. For example, these supercon-
ducting magnets are used in MRI facilities in hospitals. Such superconductors
eliminate I2R heating and once a current is established in these materials, it persists
without the need for a continual energy supply such as a battery or power supply. A
major goal of this area of research is to develop materials that are superconducting at
ambient, or near ambient, temperatures and that can be fabricated into wires or other
types of conductors to avoid the costs of maintaining those extremely low temperatures.

An analogous situation can occur in certain fluids when they are cooled to very low
temperatures. For example, when 4He, with paired protons, neutrons, and electrons, is
cooled below 2.18 K, it becomes a superfluid with very unusual properties. Superfluids
have no viscosity, so that a particle traveling through them moves with no friction. Such
superfluids can also flow through microscopic pores and channels that would not be
accessible to normal fluids because of surface tension. 3He can also behave as a super-
fluid at about 1000 times colder temperatures, in a mechanism similar to superconduc-
tors, by forming “Cooper pairs” of 3He which behave as integral spin particles, so that
they are not subject to the Pauli exclusion principle. Superfluidity is very rare and has
only been found in a handful of systems other than helium.

3.  WAVE FUNCTIONS; THE SCHRÖDINGER EQUATION

We’ve seen that photons and other elementary particles such as the electron have both
wavelike and particlelike properties that are related to each other. For example, treat-
ing light as made of photons, particles of zero rest mass, its energy E and momentum
p are connected through the relation E � pc. But these quantities are connected with
the wavelike properties of frequency and wavelength through Equations (24.10) and
(24.11). Furthermore, viewing light as an electromagnetic wave, we’ve seen that the
intensity, or energy per unit area per unit time, is proportional to the square of the
electric field. How are these two pictures related to each other?

In our rediscovery of the double-slit experiment for single photons we just saw
that the photon wave packet is a representation of the spatial extent of the photon.
This implies that the square of the electric field must be a measure of where the pho-
ton is located (see below). Knowing that electrons and other elementary particles also
exhibit both particlelike and wavelike behavior, scientists were prompted to look for
a wave theory of matter. But in that case what is it that is waving; whose square is
related to the electron’s whereabouts?

Quantum mechanics, developed in the 1920s, introduces a wave function � that is
dependent on both time and position, and that represents all the possible information
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obtainable about an elementary particle or system of particles under study. Note our
mix of the words particle and wave function in the same description of the system. An
electron, for example, is described completely by its wave function. 
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FIGURE 24.7 A quantum mechanical particle in a one-dimensional box. The first three
wave functions are shown, each having a discrete energy shown on the right (color coded);
the longer wavelengths correspond to lower energy states as discussed in the text.

The square of the wave function for the electron, �2(x, y, z, t), multiplied by the vol-

ume of a small region in space �V located at (x, y, z), represents the probability that

the electron will be found within that volume at that position at the specified time

(24.16)¢V at (x, y, z) at time t.
°2 (x, y, z, t)¢V � Probability to find electron within

According to this definition �2 represents a probability density, or probability per
unit volume. Depending on the dimensionality of a particular problem, we might
replace the volume with the surface area or simply the linear distance. For example,
in our description of the double-slit experiment with an electron, with x the distance
along the screen measured from the central axis, �2(x, t) �x would represent the
probability of finding an electron within a distance �x at position x at time t. This
probability will have the same spatial variation as the interference patterns with light
discussed in the last chapter. Locations of complete destructive interference would
have �2 � 0, and interference maxima would correspond to maxima in �2.

We can make a close analogy between � for matter waves and the electric field
E for photons. We know that for photons, the intensity I, proportional to E2 and rep-
resenting the photon energy per unit area (or photon flux) per unit time, is also pro-
portional to the number of photons N. If the intensity and therefore number of
photons is very small, as in the low-intensity double-slit experiment discussed in the
last section, then we can interpret E2�x, evaluated at some point on the screen, as the
probability that a photon will be detected within �x at that point on the screen.
Similarly for an electron, for example, �2�V, evaluated at a point represents the
probability of finding an electron within the small volume �V at that point.

Because we can interpret �2 �V as the probability of finding the electron within
�V, and it is also clear that the electron must be found somewhere within the confines
of the system boundary (with certainty, or with a probability of 1), we must have that

(24.17)

where the summation is over all the volume available in the system. This is known as
the normalization condition and establishes the scale for quantifying �.

Quantum mechanics provides an equation, the Schrödinger equation, which plays
the same role as Maxwell’s equations play in electromagnetism (see the box below).
Schrödinger’s equation allows one to compute the space- and time-dependence of the
wave function for any quantum system. Only wave functions for simple systems can
be analytically determined; those for complicated systems of many bodies must be
approximated and calculated using computers.

To give a sense of the nature of wave functions, let’s consider the problem of a
particle trapped in a box. We consider a one-dimensional problem, with a particle bounc-
ing back and forth between end walls, only experiencing a force at the walls where we
imagine the potential energy to rise infinitely steeply as shown in Figure 24.7. The

g°2¢V � 1,



fundamental concept invoked here is that the matter wave � must be a standing wave
within the box. Only a standing wave results in nonzero amplitudes and we show that a
standing wave also leads to a discrete set of possible energy levels for the particle. A
matter wave with energy different from one of those discrete energy levels would,
through interference, completely cancel itself on multiple reflection within the box. This
is precisely the same idea as was discussed in connection with standing waves on a string
or in an air column back in Chapters 10 and 11. We also discuss this further in the next
section in connection with the uncertainty principle.

The standing wave expressions for �(x, t) in our one-dimensional box of length
L are found by applying the boundary conditions that for all time there are nodes at
the ends, �(0, t) � �(L, t) � 0. We find that the possible standing wave functions are

(24.18)

independent of time, where An are the amplitudes of the nth harmonic of the wave
(see Equation (10.18)) and are chosen according to the normalization requirement of
Equation (24.17). Equation (24.18) satisfies the boundary conditions (please check
this!) and gives a set of standing waves with wavelengths corresponding to �n �
2L/n, as can be seen by rewriting the argument of the sine function as,

Using the relation between the de Broglie wavelength and the momen-
tum p � h/�, we see that the momentum of the particle is quantized and
must satisfy pn � nh /2L, so that the energy of the (nonrelativistic)
particle must also be quantized (En � pn

2/2m) and given by

(24.19)

Figure 24.7 shows the first few wave functions and the corresponding
energy level diagram for the particle in a one-dimensional box.

The n � 1 state is the ground state for this system and has an energy
given by

(24.20)

It is noteworthy that the particle cannot have zero kinetic energy accord-
ing to our results, but must have at least a minimum energy given by
Equation (24.20), known as the zero-point energy because the particle
will have this same energy even at a temperature of absolute zero.

The particle in a box problem, although perhaps not very realistic, does
illustrate some of the basic ideas of quantum mechanics. Other types of
potentials, shown in Figure 24.8, can be analyzed in a similar manner to give
results applicable to more realistic problems. For example, the “finite square
well” problem (curve a in the figure) or better the “Coulomb potential bar-
rier” (curve b) can be used to model particles within the nucleus as we show
in the next chapter. In this case, because the wall is not infinitely high, we
show that although it is impossible for particles with a small energy to
escape from the “well” classically, quantum mechanics predicts some pos-
sibility to penetrate the wall and escape. This phenomenon can be used to
model radioactive decay of nuclei. Similarly, a particle that meets a “finite
barrier potential” (curve c in the figure) with an energy smaller than the bar-
rier should be totally reflected classically, but quantum mechanics predicts

E1 �
h2

8mL2
.

En � n2 
h2

8mL2
.

a 2px

(2L /n)
b �

2px

ln

.

°n (x, t) � An sin (npx/L),
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A simplified form of Schrödinger’s equation,
valid for a particle of mass m and energy E
moving along the x-axis in a potential energy
PE(x), is a time-independent differential
equation for the wave function �(x):

The potential energy function represents
the total of all the interactions that the
particle experiences, with typical model
forms for PE being square wells, barriers,
Coulomb potentials, harmonic oscillator
potentials, or more realistic functions
representing molecular potentials (see
Figure 24.8).

In a straightforward fashion this equa-
tion can be generalized to three-dimensional
space and applied directly, for example, to
solve for the wave function of the electron
in the hydrogen atom using the Coulomb
potential due to the proton. The wave func-
tions obtained give the probability density
for the electron and give the mean radius
of the ground state of the hydrogen atom.
In solving the Schrödinger equation, with
each wave function there is a corresponding
energy of the electron, so that the values of
E are discrete and form an energy-level
diagram that we have alluded to several
times in this text.

-h2

8p2 m
 a d2°(x)

dx2
b � PE(x)°(x) � E°(x).



that there will be some probability that the particle can “tunnel” through the barrier
and reach the other side. This phenomenon is important in our discussion of the scan-
ning tunneling microscope in the next section. Finally, various potential energy curves
(e.g., curve d) can be used to model the interactions of valence electrons in atoms or
molecules, as discussed in the next chapter.

4.  UNCERTAINTY PRINCIPLE; SCANNING 
TUNNELING MICROSCOPE

We have seen that quantum mechanical particles exhibit wave–particle duality, appear-
ing sometimes to have exclusively wavelike and sometimes exclusively particlelike
properties. Niels Bohr referred to this as the principle of complementarity. Quantum
mechanics takes the view that in order to have definite knowledge of a certain parame-
ter describing a particle, such as its position, momentum, or energy, a measurement must
be performed. In practice, every such measurement will have an associated uncertainty
due to, at the very least, the precision of the measuring instruments and the skill of the
measurer. For example, a measurement of a particle’s position or velocity may be lim-
ited by the precision of the meter stick or of the clock used. No matter how sophisticated
the measurement, there will always be limitations on the precision of the measurement.

In the world of elementary quantum mechanical particles there are fundamental
intrinsic limitations on the accuracy of measurements due to the interaction of the
measuring instrument with the particle. Unlike the usual experimental limits on pre-
cision of a measurement, these more fundamental limitations do not depend on the
precision of measurement instruments or on the skill of the measurer. If we try to
determine both the position and momentum of, say, an electron, then no matter
how “gentle” a measurement we make, there is always an uncertainty in precisely
how the interaction occurs that is intrinsic in nature. For example, suppose we try to
“see” the position of an electron by scattering a photon from it. We know that the
photon has a wavelength that will fundamentally limit the resolution with which we
can “see” due to diffraction effects. In the scattering process, the photon will also
impart some of its energy to the electron. To better locate the position of the electron
we might decrease the wavelength of the photon so that during the scattering event
we may “see” with greater resolution. In so improving the precision of the electron
position measurement, however, the photon’s energy and momentum increase and the
electron will receive an uncertain fraction of the photon’s larger energy leading to a
greater uncertainty in the electron’s momentum. This is a fundamental problem, not
one that can be eliminated by more careful measurement apparatus or skill.

Let’s sketch a semiquantitative analysis of the scattering event. The resolution
uncertainty is comparable to the wavelength of the photon, so that

(24.21)

Because the photon’s momentum is given by p � h/�, and some indeterminate
fraction is imparted to the electron, we also have that

(24.22)¢p L
h

l
.

¢x L l.
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FIGURE 24.8 Various potential
functions commonly used to
represent physical situations: 
(a) finite square well; (b) Coulomb
well; (c) finite barrier; (d) molecular
potential (Lennard–Jones type); 
(e) simple harmonic oscillator.



The uncertainty principle (see Figure 24.9) tells us that if we know the exact
position of a particle, so that �x is zero, then we can have no knowledge at all of the
particle’s momentum (�p ~ 
). According to our experience this principle makes no
sense at first sight. We can measure the position of, say, a marble with very high pre-
cision while it sits quite at rest on a table, so that p � 0 very precisely. To see why
there is no conflict of this example with the uncertainty principle, we need to exam-
ine some numbers. Because h is so very small, 6.6 � 10�34 J-s, the uncertainties
that are implied are extremely small for macroscopic objects. If our marble has a
mass of 10 g, then dividing h/m, the uncertainty principle leads to the product
�x �v Ú 6 � 10�34 m2/s, We can only measure the marble’s location to, at very best,
the dimension of an atom, 0.5 � 10�10 m, so that the uncertainty in speed of the
marble must be at least 10�22 m/s. But a velocity of this magnitude corresponds to
the marble moving one atomic radius in over 15,000 years! So the uncertainty prin-
ciple presents no conflict with macroscopic measurements. On the other hand,
because of its small mass, to know the position of an electron to within the size of
an atom implies an uncertainty in its velocity of over 107 m/s!

Position and momentum are said to be conjugate variables since there is
an uncertainty relation of the form of Equation (24.23) that links them together.
Another important pair of conjugate variables is energy and time, with a similar
minimum uncertainty relation

(24.24)

This uncertainty relation has a number of significant consequences. For example,
atoms in an excited state have a characteristic lifetime, the average time before
emitting a photon and returning to their ground state. This is a statistical process
meaning that in a large collection of such excited atoms, the average decay time
(the lifetime) is a characteristic of that particular transition, but that for any partic-
ular atom undergoing this transition we cannot know the exact transition time.
Because of this uncertainty in time, there is a corresponding uncertainty in the
energy of the atomic transition, given by Equation (24.24) and hence in the energy
of the emitted photon. We can think of this energy uncertainty as arising from a
small characteristic energy width of the excited state itself. Narrower, more sharply
defined, energy levels have longer lifetimes, whereas broader energy levels have
shorter lifetimes.

¢E ¢t L h.
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FIGURE 24.9 The uncertainty in the
x-location of a particle is inversely
related to the uncertainty in its
momentum along the x-direction. The
product of these two uncertainties
must be at least the order of 
h � 6.63 � 10�34 J-s.

The product of uncertainty in position, x, and the uncertainty in momentum

along the x-direction, p, leads to the Heisenberg uncertainty principle

(24.23)

where it is understood that this expression gives the minimum uncertainty

product possible.

¢x ¢p L h,



U N C E RTA I N T Y P R I N C I P L E ;  S C A N N I N G T U N N E L I N G M I C R O S C O P E 595

Example 24.3 Find the spread in frequencies, or linewidth �f, when atoms radi-
ate from an excited state with a lifetime of 2 � 10�9 s. Also find the fractional
spread in frequencies, � f/f, if the emitted photons have a wavelength of 550 nm.

Solution: The lifetime of the transition leads to a spread in energy of the emit-
ted photons. From Equation (24.24) and the fact that, from E � hf we know that
�E � h�f, we can write that �f � �E/h ≈(h/�t)/h � 1/�t. Then because the
transition time is a statistical average, its uncertainty is comparable to its value
and we have that �f ≈1/�t ≈1/(2 � 10�9 s) � 5 � 108 Hz. The photon frequency
is given by f � c/� � 5.5 � 1014 Hz, so the fractional spread in frequencies is
then 5 � 108/5.5 � 1014 � 9 � 10�7. This so-called “intrinsic” linewidth is usu-
ally masked by larger spreads in frequency due to thermal motions of the atoms
producing random Doppler shifts in frequency.

Another consequence of this uncertainty relation is the possibility of multiphoton
spectroscopy, as discussed briefly in Section 1 of Chapter 23 in connection with
microscopy. To excite an atom from its ground state to an excited state requires a specific
energy photon hf, corresponding to the transition energy. If the photon density is large
enough so that the probability for the absorption of two or more photons within a short time
�t is large, then the uncertainty relation allows, for example, N photons, each of energy
hf/N, to cause the overall transition even though there are no intermediate energy levels so
that no transition to such intermediate energies is possible (Figure 24.10). In other words,
as long as the photon absorption occurs within a very short time window, the energy uncer-
tainty that follows from the uncertainty relation is sufficient to allow this process to occur.

Tunneling, mentioned in the last section, is another type of purely quantum
mechanical phenomenon that arises from the uncertainty relation. Imagine an electron
confined within a one-dimensional box by potential walls, or barriers, such as the one
shown in curve c of Figure 24.8, on either side of the box. Classically, if the electron
had an energy less than that of the barrier height, it would forever be trapped within the
box bouncing back and forth. Quantum mechanics agrees with this as well if the poten-
tial barriers are infinitely high and leads to the standing waves studied in the previous
section. If the barriers are finite, however, then there is a small probability that the elec-
tron can escape or “tunnel” through the barrier wall. Tunneling can be related to the
energy–time uncertainty relation. If the time for the electron to pass through the wall is
short enough, then the uncertainty in the electron’s energy during that time interval may
become large enough to allow its energy to exceed the barrier energy. Therefore during
that brief time the electron does not violate conservation of energy and the laws of
physics will not prevent the electron escaping from the box. The probability that the
electron tunnels out of the box is small and depends on the barrier potential height and
wall thickness. As bizarre as this appears, it is a real phenomenon and can be used in
actual pieces of equipment to study materials on an atomic scale.

E1

E2

E1

E2

hf = E1 – E2

hf = (E1 – E2)/2 

hf = (E1 – E2)/2 

FIGURE 24.10 (left) Absorption of a single photon causing a transition to an excited state.
(right) Absorption of two photons each with half the energy needed can occur even though
there is no intermediate energy level, as long as the lifetime of the (virtual) intermediate state
is shorter than the minimum uncertainty dictated by the Heisenberg uncertainty principle.



The scanning tunneling microscope uses this phenomenon to image the surface of
a microscopic object with unprecedented resolution. A sample is coated with a thin layer
of metal to make it electrically conducting. A fine-tipped needle is then placed close to,
but not in contact with, the surface and a small potential difference is applied between
the needle and the sample surface (Figure 24.11). If the tip-to-sample distance is on the
order of 1 nm, then a small electric current can be detected from electrons that have tun-
neled across the air or vacuum insulating layer. As the needle moves along just above the
surface, the gap distance changes and the tunneling current changes as well. Because the
tunneling current is so sensitive to the gap (corresponding to the barrier wall thickness),
extremely high resolution images of surface sample features is possible. Vertical resolu-
tion of better than 10�2 nm and lateral resolution about an order of magnitude less is
possible, easily allowing individual small atoms at the surface to be visualized. Although,
in principle the needles used should have tips with atomic dimensions, it turns out to be
fairly straightforward to fabricate such needles because surfaces tend to be fairly rough
on atomic dimensions anyway. One commonly used mode of operation has a feedback
loop circuit to vary the height of the probe as it is scanned across the sample in order to
maintain a constant height above the surface and thereby a constant sample-to-probe
current. By scanning the sample, a record of the surface topography is recorded, allow-
ing extremely high resolution of surface features (Figure 24.12).
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Servo/computer

metal-coated sample

FIGURE 24.11 Scanning tunneling
microscope schematic and EM
image of a needle tip used for
scanning.

FIGURE 24.12 False color scanning tunneling microscope images. (left) Iron atom array,
produced by manipulating the atoms by the STM needle, on a copper atom support film.
The wavelike appearance in the background is due to electron matter standing waves
that are trapped within the iron atom “corral”; (right) native DNA image in which the
stacked bases are just visible.



4.1.  QUANTUM MECHANICS AND ENERGY LEVELS

In the previous section we saw that a particle trapped in a one-dimensional box has a
nonzero minimum energy, the zero-point energy, given by Equation (24.20). This
agrees with the uncertainty principle, which also requires that a mass (m) confined to
move in a finite region of space (of extent L) must have a smallest speed whose mag-
nitude is approximately given by vQM ~ h/(mL). (Here we use the nonrelativistic
expression for p � mv.) A confined mass, therefore, must have a minimum kinetic
energy, KEQM � (1/2)m(vQM)2 ~ h2/(mL2) (remember, “~” means “order of magni-
tude;” “1/2” has the same order of magnitude as “1”), in qualitative agreement with
Equation (24.20). This minimum, irreducible kinetic energy is also called the mass’s
ground state kinetic energy. Let’s examine this in some further detail.

Suppose we drop a 1 kg mass 10 cm, calculating that it acquires a KE of mgh ~ 1 J.
If we substitute into our KEQM expression m � 1 kg and L � 10 cm (0.1 m), we get a
ground state kinetic energy of about 10�66 J, using h ~ 10�34. Obviously, the 1 J value
quoted above for a 1 kg mass falling 10 cm has nothing to do with the ground state motion
of the 1 kg mass, a point we return to below. The 1 kg mass consists of about 1025 atoms.
Each of these is confined to the same 10 cm as the whole body. Thus for one atom with
m ~ 10�25 kg and L � 0.1 m, we have KEQM ~ 10�41 J. If we multiply the latter kinetic
energy per atom by 1025 atoms we might expect to get the kinetic energy of the whole
1 kg body. What we do get is 10�16 J. Although neither the 10�66 nor the 10�16 values
are macroscopically measurable, and, therefore, are not of much macroscopic conse-
quence, they differ by a factor of 1050! It would be nice to know which is right.

Resolution of this discrepancy revolves around the notion of coherent versus inco-

herent motion as discussed in Chapter 12 (see Figure 12.7). When we use 1 kg for the
mass in the calculation we are tacitly assuming that all 1025 atoms in the body move
together in lock-step fashion, as a coherently synchronized swarm. When we use
10�25 kg for the mass we are tacitly assuming that each atom moves independently of
the rest. Such unsynchronized motion is incoherent motion. In a solid, where all the
atoms are glued together by interatomic forces, the former seems like a reasonable
assumption.

But wait! Each atom in a solid is surrounded by neighboring atoms that also con-
fine its motion. Thus each atom shares the macroscopic confinement of the whole
body, whereas at the same time each has a microscopic confinement. For an atom in a
solid confined by its neighbors, m is about 10�25 kg and L is about 10�11 m (about
10% of the atom’s size). Thus, the ground state speed of the atom (vQM) due to this
confinement is on the order of 102 m/s and its ground state kinetic energy (KEQM) is
about 10�21 J (you should verify these values using the equations at the beginning of
this discussion above). Clearly, this motion has to be incoherent, because if all of the
atoms were moving lock-step together the solid would be careening around at over
100 m/s! Because the motion is incoherent, we can add up the kinetic energies and
conclude that the 1 kg solid sitting at rest has about (10�21 J/atom)(1025 atoms) �
104 J of ground state kinetic energy due to incoherent, microscopic atom motions (far
more than the 1 J you get by dropping all of the atoms coherently a distance of 10 cm).

As each atom jiggles incoherently, it carries its electrons and its nucleus with it.
But the electrons are confined by their interaction with the nucleus so they have addi-
tional motion internal to the atom’s. Use the values m ~ 10�30 kg and L ~ 10�10 m to
find that for each electron vQM ~ 106 m/s and KEQM ~ 10�18 J. As there is an order
of 10 e/atom in a typical solid, the incoherent motion of all electrons yields a ground
state kinetic energy of about 108 J in a 1 kg mass. In addition, the nucleons in each
nucleus are confined by their strong nuclear interaction with each other. For them, you
should find m ~ 10�27 kg and L ~ 10�15–10�14 m, leading to vQM ~ 107 to 108 m/s
(a fair fraction of the speed of light) and KEQM ~ 10�11–10�13 J for each nucleon.
Adding all of this kinetic energy up yields more than 1012 J in a 1 kg mass. In other
words, in each macroscopic body there is a phenomenally large amount of ground
state kinetic energy associated with microscopic, incoherent motion, with the over-
whelming majority being associated with motion inside the atomic nuclei.
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The states of motion allowed by quantum mechanics tend to have different
kinetic energies. The energy differences between these allowed states tend to be
about the same size as the ground state kinetic energy. Thus the allowed states of
nucleon motion tend to differ in energy by about 10�12 J. Electronic states tend to
differ in energy by about 10�18 J, and atomic vibrational states tend to differ in
energy by about 10�21 J (see Figure 24.13). We return to a discussion of energy lev-
els and their study by spectroscopy in the next chapter.

As we have seen in Chapter 12, the average kinetic energy of an atom or mol-
ecule is proportional to the absolute temperature, so that T ~ KEinternal � (1023

K/J), where KEinternal is an internal kinetic energy and T is measured in kelvins, K.
For atomic vibrations, KEinternal is about 10�21 J, so T for atomic vibrations is of
order 102 K (e.g., room temperature). For electronic motion in an atom, KEinternal
is about 10�18 J, so T for electrons is about 105 K. For nucleonic motion in nuclei,
KEinternal is about 10�12 J, so T for nucleons is about 1011 K. Reciprocally, we can
say that if a body has a temperature of a few 100 K it is possible to excite internal
atomic vibrations, but not electronic states and, emphatically, not nucleonic states.
To excite these requires very high temperatures, indeed. In a body at room temper-
ature, all of the excess energy above the ground state is in atomic vibrations. At
room temperature, the body’s electrons and nucleons are “frozen” into their respec-
tive ground states.

Therefore, here’s one of the remarkable secrets of life. In a living cell (whose
temperature is roughly 300 K), there’s a huge amount of nucleonic internal energy,
a much less, but nonetheless significant, amount of electronic internal energy, and,
by comparison, an almost negligible amount of atomic vibrational internal energy.
Even so, atomic vibrations are the only energy source available for the cell to use,
because the other motions are stuck in their ground states. By carefully marshalling
and partitioning its puny supply of internal energy, a cell manages to perform 
all the various tasks of life, including protein replication, locomotion, and cell
division.
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FIGURE 24.13 Typical allowed
quantum states for matter.

CHAPTER SUMMARY
The theory of special relativity is based on two funda-
mental postulates: all the laws of physics are the same
in all inertial frames of reference and the speed of light
in vacuum has the same value c in all inertial reference
frames. This latter postulate seems contrary to our (low-
speed) intuition and leads to a large variety of seem-
ingly bizarre, but experimentally confirmed, effects

having to do with time and space. Here we focus on the
dynamical quantities that we need in the next chapters.

Momentum of a particle of mass m moving at a
velocity v is given by

(24.1)p �
mv11 � v2 /c2

� gmv,
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where

Similarly, the particle’s relativistic energy is given by

(24.5)

which can also be written as the sum of the kinetic
energy KE and the rest energy, as

(24.6)

Small changes in the (rest) mass m, lead to large
changes in energy given by

(24.7)

and this effect has led, for example, to both atomic
bombs and nuclear power plants. Energy and momen-
tum are connected through the equation

(24.8)

For a massless particle, such as the photon, or in the
limit that the velocity approaches c (so that � becomes
very large) this last equation reduces to

(if m � 0 or � >> 1). (24.9)

Historically, several important experiments revealed the
“particlelike” nature of photons and initiated the notion of
“wave–particle duality,” the idea that all elementary parti-
cles exhibit both wave- and particlelike properties depend-
ing on their interactions. The photoelectric effect is the
production of an electric current proportional to the inci-
dent light intensity. But, each incident photon of frequency
f needs a minimum threshold energy, the work function 	,
in order to liberate an electron, and because E � hf for a
photon, with h � Planck’s constant � 6.63 � 10�34 J-s,
there will also be a minimum frequency needed. Einstein
worked out the explanation for this effect and found that
the liberated electrons have a maximum KE given by

(24.13)

obtained simply from conservation of energy in the
individual photon–electron interaction. The Compton

KEmax � hf � £,

E � pc.

E2 � p2c2 � m2c4.

¢E � ¢mc2,

E � KE � mc2.

E �
mc211 � v2 /c2

� gmc2,

g �
111 � v2 /c2

.

effect also treats high-energy x-ray photons as particles
colliding with electrons to successfully analyze the
scattering results. There is also a further discussion in
the chapter of the double-slit interference experiment,
but now for single photons, or for electrons, which have
a deBroglie wavelength given by

This association of a wavelength with a “particlelike”
momentum bridges the wave–particle duality notion.
Electrons can be seen to exhibit wavelike properties in
the phenomenon of electron diffraction, for example.

Quantum mechanics, the theory of the microscopic
world, has a central dogma that all the possible infor-
mation knowable about a system, for example, an
electron, can be described by the wave function �,
whose square is given by

(24.16)

The wave function can be found by solving the
Schrödinger equation, which leads to a set of quantum
numbers that define the possible energy levels, angular
momentum, spin, and so on of the system. A funda-
mental rule is the Pauli exclusion principle, which
states that no two interacting fundamental particles
(e.g., electrons) can have the same set of quantum
numbers.

Another fundamental principle is the Heisenberg
uncertainty principle, which describes a basic limita-
tion in nature on the simultaneous measurement of
pairs of conjugate variables

(24.23)

(24.24)

These limitations have negligible effect in the macro-
scopic world, but can produce major effects in the
microscopic arena. One notable result is the phenome-
non of tunneling and an associated microscopy tech-
nique known as scanning tunneling microscopy, which
gives atomic resolution images.

A quantum mechanical analysis of the ground state
energy contained in matter shows that internal KE from
incoherent electron and nucleon motions is huge, much
larger than typical translational energies of matter. The
different internal energies have corresponding energy
levels that can be explored with spectroscopy.
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QUESTIONS
1. Relativity requires any particle that travels at the

speed of light, such as the photon, to have no rest
mass. Why is this necessary?

2. In a photoelectric effect experiment, if a beam of
green light produces a photocurrent, will a beam of
blue light with the same intensity produce a larger,
smaller, or the same photocurrent?

3. If one shade of yellow photons will produce a pho-
tocurrent, but another shade does not, will red light
produce any photocurrent? Will green light?

4. If when the anode voltage is set to �1.5 V there is
just no photocurrent with a particular green wave-
length of light, when the wavelength is changed to a
blue and the intensity of the blue light is 1/2 that of
the green, what happens to the photocurrent? To the
maximum kinetic energy of the photoelectrons?

5. Note that the Compton wavelength shift is indepen-
dent of the actual wavelength of the x-ray photon.
How does the percent change in the wavelength of a
Compton scattered x-ray photon depend on the wave-
length of the photon?

6. How does the Compton wavelength shift for x-ray scat-
tering from protons compare to that from electrons?

7. Discuss how the interference pattern observed in a
double-slit experiment with electrons depends on the
energy of the electrons.

8. For a particle in a one-dimensional box of length L,
where is the particle most likely to be found when in
the ground state? In the first excited state?

9. Why is it impossible for an object to be exactly at rest?
Discuss this in connection with a car at a stoplight and
with an atom in an “atom trap”. What is the approxi-
mate uncertainty in velocity in each of these cases?

10. Classical physics only allows a photon to be absorbed by
a sample if it has an energy equal to the energy difference
between the final state and the initial state. If there are no
intermediate energy levels between these then no pho-
tons with less energy can be absorbed. On the other hand,
experimentally it is found that if three photons from a
high-intensity laser, each having an energy equal to 1/3
that of that energy difference are absorbed, the sample
can reach the final state. Discuss the energy–time uncer-
tainty relation’s impact on allowing this process to occur.

11. How do you expect the electron tunneling current to
depend on the barrier height? On the barrier thick-
ness? On the electron energy?

12. What is the advantage of false color in representing
image data? Think of your nightly weather Doppler
radar images.

MULTIPLE CHOICE QUESTIONS
1. As a particle’s speed approaches the speed of light, its

energy (a) approaches mc2, where m is the rest mass, 
(b) approaches its kinetic energy, 1/2 mv2, (c) approaches

the product of the particles momentum and the 
speed of light, pc, (d) approaches �m, where � is the
Lorentz factor.

2. Which of the following is not true about the photo-
electric effect? In each case assume that light of a
given color is directed onto the emitter plate and a cur-
rent of electrons is observed to be ejected from the
plate. (a) The maximum kinetic energy of the ejected
electrons is independent of the intensity of the light.
(b) When the intensity of the light is lowered below a
finite critical value that depends on the material of the
emitter plate, the current abruptly stops. (c) It takes the
same very short time to produce a current after turning
the light on when the light has intensity I as when it is
has intensity I/2. (d) The work function of the emitter
plate is independent of the color of the light.

Questions 3 and 4 refer to an intensity I of yellow light
incident on an ideal 100% efficient metal emitter surface
in a phototube producing photoelectrons at a rate of N

photons per second.
3. Shining blue light of intensity I/2 on the same metal

surface in the phototube will (a) not produce any
photons, (b) produce 2N photons/s, (c) produce N/2
photons/s, (d) it is impossible to predict the outcome.

4. Shining red light of intensity 2I on the same metal
surface in the phototube will (a) produce 2N photons/s,
(b) produce N/2 photons/s, (c) not produce any photons,
(d) it is impossible to predict the outcome.

5. The de Broglie wavelength of an electron is associ-
ated with what kind of wave? (a) Electric field, (b)
magnetic field, (c) probability, (d) sound.

6. The ratio of the Compton shift at forward scattering to
that at backward scattering is (a) 2, (b) 1, (c) 0, (d) 1/2.

Questions 7–9 refer to the particle in a box problem,
where the particle is confined between 0 and L.

7. A particle in its first excited state is most likely to be
found at (a) L/2, (b) L/3, (c) L/4, (d) L.

8. A particle in its second excited state will never be
found at (a) L/4, (b) L/3, (c) L/2, (d) it can be found
everywhere in the box at some time.

9. When a particle in a box makes a transition from its
third excited state to its ground state, the emitted
energy equals (a) 9, (b) 5, (c) 8, (d) 2 times its zero-
point energy.

10. In quantum mechanics an electron is viewed as being
described by a wave function. When confined to a
finite region of space, the allowed electron wave
functions are standing waves. This explains (a) the
results of the photoelectric effect, (b) the results of
Compton scattering, (c) why an atom must have a
lowest energy state in which its electrons cannot radi-
ate away energy, (d) why the sky is blue.

11. The principle of complementarity refers most closely
to (a) the uncertainty principle, (b) wave–particle
duality, (c) tunneling, (d) zero-point energy.
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12. Heisenberg’s uncertainty principle (a) only applies
to atomic and subatomic particles, (b) predicts large
uncertainties in the velocities of macroscopic
objects at rest, (c) states that the product of uncer-
tainties in conjugate variables cannot be zero, 
(d) explains experimental uncertainties in all mea-
sured quantities.

13. Tunneling refers to all but which of the following? 
(a) An electron escaping from a potential well, (b) an
electron traveling in a classically inaccessible region
of space for a short time, (c) an electron traveling
down a channel between atoms, or a tunnel, in a mate-
rial, (d) the process used in the STM to image atoms.

14. A scanning tunneling microscope requires all but the
following: (a) a fine-tipped needle, (b) a stable, vibra-
tion-free sample holder, (c) a vacuum pump to put the
sample under vacuum, (d) a stable micromotor to
move the needle or sample about.

15. The ground state kinetic energy of a macroscopic
body consists mostly of (a) coherent motion of the
body as a whole, (b) incoherent motion of the elec-
trons of the atoms, (c) incoherent motions of the
nucleons, (d) coherent motions of the atoms of the
material.

16. When a block slides across a rough horizontal table
surface and stops (a) its coherent center-of-mass
energy is transformed into internal kinetic energy, 
(b) its incoherent atomic energy is transformed into
incoherent nucleon energy, (c) its coherent center-of-
mass energy is transformed into coherent atomic
energy, (d) its coherent center-of-mass energy is
transformed into photon energy.

17. In order of increasing energy, the different types of
energy of a macroscopic body are due to (a) incoherent
nucleon motion, incoherent electron motion, incoher-
ent atomic vibrational motion, coherent center-of-mass
motion, (b) coherent center-of-mass motion, incoher-
ent atomic vibrational motion, incoherent electron
motion, incoherent nucleon motion, (c) incoherent
atomic vibrational motion, incoherent electron motion,
incoherent nucleon motion, coherent center-of-mass
motion, (d) coherent center-of-mass motion, incoherent
nucleon motion, incoherent electron motion, incoherent
atomic vibrational motion.

PROBLEMS
1. Compute the momentum and energy of a 1 kg rest

mass object traveling at v � 0.8 c, 0.9 c, 0.95 c, 0.99 c,
and 0.999 c.

2. Repeat the previous problem for an electron and cal-
culate the energy in MeV.

3. Fill in the steps in the derivation of the classical limit
of Equation (24.2).

4. Derive Equation (24.8), the connection between rela-
tivistic energy and momentum.

5. Calculate the energy of each of the two photons pro-
duced from electron–positron pair annihilation when
the electron and positron were nearly at rest. What is
their wavelength?

6. A 2.5 MeV photon passes near a stationary atom and
produces an electron–positron pair. If all the energy
of the photon goes into creating the pair, what is the
speed of each when produced?

7. What are the momentum, wavelength, and frequency
of a 1.2 MeV photon traveling in space?

8. The work function for cesium is 2.9 eV. Suppose a
vacuum tube with a cesium photocathode is config-
ured for the photoelectric effect.
(a) What is the maximum wavelength photon that will

produce a photocurrent?
(b) If 400 nm photons are used what is the maximum

kinetic energy of the emitted electrons?
(c) If a 1 W beam of 400 nm photons is used, what is

the photocurrent that will be detected assuming
100% efficiency (i.e., assuming all emitted photo-
electrons are collected by the anode)?

(d) What maximum work function is needed to allow
photoelectron emission using green photons of 
500 nm wavelength?

9. Photons of 400 nm wavelength are incident on a pho-
tocathode. As the anode potential is made more neg-
ative, the photocurrent decreases until it reaches zero
when the anode voltage is �0.82 V. Find the work
function of the photocathode.

10. A photoelectric experiment is conducted with a
sodium surface with work function 	 � 2.28 eV.
(a) When the surface is illuminated with light with a

wavelength of 410 nm, what are the speed and
kinetic energy of the emitted electron?

(b) Is the electron relativistic?
(c) What is the minimum frequency needed to detect

a photocurrent?
(d) What is the maximum wavelength of light that can

be used to detect a photocurrent?
(e) What are the speed and kinetic energy of the emit-

ted electron if the incident light is 700 nm on the
same sodium surface?

11. Suppose that 134Cs, a gamma ray emitter, is used in a
Compton effect experiment and the gamma rays are
observed to scatter from electrons in an Al target at a
50° angle. 134Cs is radioactive and decays by produc-
ing a 1.6 MeV gamma ray, which is just like an x-ray
except it has a higher energy. (134Cs also emits � par-
ticles in addition to � rays and has a half-life of about
2.1 years, both of which have nothing to do with the
problem.)
(a) What is the wavelength and momentum of the

incident gamma ray?
(b) Write an expression for the energy of the scattered

photon as a function of incident energy photon
and the scattering angle 	.
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(c) What is the energy of the scattered �-ray photon in
MeV?

(d) What is the kinetic energy (in MeV) of the recoil-
ing electron?

(e) What is the speed of the recoiling electron as a
fraction of c?

12. A 0.012 nm wavelength beam of x-rays is incident on
a foil target.
(a) What is the incident x-ray photon energy in MeV?
(b) What is the wavelength and energy of backscat-

tered Compton x-rays?
(c) How much energy is given to the foil target for

each backscattered x-ray?
13. Find the relativistic energy (in MeV) of an electron

with a de Broglie wavelength of 0.0012 nm.
14. After learning about de Broglie’s hypothesis that par-

ticles of momentum p have wave characteristics with
wavelength � � h/p, a 65 kg student has grown con-
cerned about being diffracted when passing through a
90 cm wide doorway.
(a) If the student is traveling at a whopping 0.5 m/s,

what is the student’s momentum?
(b) What is the de Broglie wavelength of the student?
(c) What would the size of the door need to be in order

for there to be noticeable diffraction of the student?
15. Suppose that a 1 mW He–Ne laser (� � 633 nm)

shines on a screen. How many photons strike the
screen each second? (No wonder we are not aware of
individual photons!)

16. An electron is trapped in a 10 nm one-dimensional
deep potential well. Find the following.
(a) Its ground state energy
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(b) The energy of the second excited state above the
ground state

(c) The minimum quantum number n corresponding
to an energy of at least 100 eV

17. Show that for a particle in a box the difference in
energy between consecutive energy levels increases
in proportion to the quantum number n.

18. An atomic transition from an excited state to the
ground state has a lifetime of 10�8 s. What is the
uncertainty in the energy of the approximately 550 nm
photon emitted? What is the uncertainty in the wave-
length of the photon?

19. What is the minimum velocity of an electron in a
hydrogen atom, confined within a distance of about
0.1 nm?

20. What is the minimum uncertainty in the velocity of a
2000 kg truck waiting at a red light (or its maximum
possible velocity) when its position is measured to an
uncertainty of 1.0 � 10�10 m.

21. An electron travels down a channel between two par-
allel arrays of large atoms along the x-axis separated
by 0.12 nm. What is the minimum uncertainty in the
y-momentum of the electron?

22. Using the uncertainty principle, derive Equation
(24.19) for the zero-point energy of a particle in a
box, apart from a small numerical factor.

23. Alpha decay in radioactive nuclei can be thought of
as the escape of a helium nucleus from the attractive
barrier potential of the larger nucleus. If the nucleus
diameter is 5.5 fm, find the maximum velocity of the
alpha particle in the nucleus.
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We continue our study of quantum mechanics with a detailed historical discussion of
the simplest atom, hydrogen, and the ad hoc explanation by Bohr and others of its
properties. Then we turn to a qualitative discussion of the quantum mechanical theory
of atoms and molecules based on allowed quantum numbers. These numbers follow
from the Schrödinger equation for the atom or molecule, but we do not show those
details here. Some of the spectroscopic implications of our energy level discussions
are given for simple systems. Lasers, now found all around us from the supermar-
ket to the CD player, are discussed in the final section of this chapter. We learn how
they work, what types of lasers there are, and something about many of their most
important applications.

1.  THE SIMPLE HYDROGEN ATOM

An early quantum model for simple atoms was developed by Niels Bohr in 1913.
Although this theory has been superseded by modern quantum mechanics, discussed
further in the next section, it successfully explained the details of the spectra of light
emitted by those atoms when they were heated or otherwise given energy. We discuss
Bohr’s theory because, despite its limitations, it gives some insight into the quantiza-
tion of fundamental quantities such as energy and angular momentum, as we show.

At the time of Bohr’s proposal, atoms were known to consist of a tiny positive
nucleus that had just been discovered by Rutherford, surrounded by orbiting electrons.
In 1910 Rutherford had established, from observations on the scattering of positive
alpha particles, that the positive charges in an atom were localized within a central tiny
nucleus. The alpha particles were generated by nuclear decay reactions and were
known to have an electric charge of �2e; we now know that they are high-energy, dou-
bly ionized positive nuclei of helium atoms. Rutherford found that in directing a beam
of these particles on thin foils of metals, although most of them passed straight
through, some of them were deflected through large angles, and some even directed
backwards. He immediately realized that the only way such large deflections could be
produced was if the positive charges of the atoms in the foil were very concentrated
so that when the positive alpha particles happen to graze by, there would be a strong
electrical repulsion.

In the early 1900s, the stability of atoms was not understandable in terms of the
classical physics of Newton and Maxwell. The simplest atom, hydrogen, was pictured
to consist of an electron orbiting in a circular path about a single proton under the
influence of the electrostatic attractive force. However, according to classical electro-
magnetism, accelerating charges, such as the electron traveling about the nucleus,
should emit radiation at the orbital frequency. Then as the electron would lose this
energy in the form of light, it should keep spiraling in towards the nucleus, emitting a
continuous spectrum of light as the orbital frequency changes. In reality, of course,
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atoms are stable and although they do emit light, they emit a discrete spectrum of light
with only certain particular “lines” or colors for a type of atom. Classical physics
could not explain the simplest atomic or line spectrum.

Bohr proposed a model of the hydrogen atom that was able to predict the wave-
lengths of its discrete line spectrum with an accuracy of about 0.02%. From several
assumed postulates, Bohr was able to derive expressions for the energies and radii of
the hydrogen atom in its ground and excited states. He assumed that the orbiting elec-
tron in hydrogen can exist in any of a set of discrete orbits, each with a corresponding
energy, radius, and angular momentum, known as stationary states. In an ad hoc
assumption, Bohr proposed that when in one of these stationary states, the electron
does not emit any radiation, despite its constant acceleration. Bohr assumed that, aside
from the electron not radiating, classical physics otherwise correctly describes the
motion of the electron in a stationary state, but that the electron could make abrupt
transitions between such states, during which time classical physics is not obeyed.
When transitions occur, the energy difference between the stationary states corre-
sponds to the energy of an absorbed or emitted photon. Thus, only during transitions
between stationary states does an atom emit radiation. Bohr’s final assumption was
that the stationary states are characterized by discrete values of the orbital angular
momentum. These are given by multiples of a fundamental quantum of angular
momentum, h/2�, so that

(25.1)

where n is an integer, n � 1, 2, 3, . . . , h- is short for (h/2�) and is read “h-bar,” and Ln
is the angular momentum of the nth stationary state.

Bohr’s postulate that the angular momentum of the electron in a hydrogen atom
should be quantized can be rationalized by invoking the concept of standing de Broglie
waves. Just as with waves on a string, sound in an air column, or light, matter waves
exhibit interference. If the circumference of the electron orbit matched a nonintegral
number of de Broglie waves, then these waves would average away to zero because of
destructive interference. Each time the wave traveled around the circular orbit it would
arrive at a different phase and this nondefinite phase relation would wash out the mat-
ter wave. Only with an integral number of wavelengths fitting around the circumference
will constructive interference occur, leading to standing matter waves. If an integer
number of de Broglie wavelengths must fit around a circular orbit of the electron then
we must have that n� � 2�r (Figure 25.1). Substituting h/p for � we find that requir-
ing standing waves implies that pr � nh- , but because pr � mvr � L, we recover Bohr’s
angular momentum quantization condition.

From these assumptions we can derive all the information needed to describe the
hydrogen atom. As mentioned above, we assume the electron orbits the stationary proton
in one of a set of discrete circular orbits of radius rn with the centripetal force generated
by the electrostatic attraction. We can then write F � ma for the electron as

(25.2)
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FIGURE 25.1 Two different states
of an orbiting electron: (left) ground
state with a single wavelength (red)
fitting around the circular orbit
(blue); (right) second excited state
(red) with three wavelengths fitting
around the circular orbit (blue).



where vn is the orbital speed also satisfying Equation (25.1), rewritten as

(25.3)

Solving for vn in Equation (25.3),

(25.4)

and substituting this expression into Equation (25.2) to eliminate vn, we find

(25.5)

Solving for the radius of the nth orbit we find that

(25.6)

where the smallest possible orbital radius of the electron, known as the Bohr radius, is
given by

(25.7)

According to Equation (25.6) the orbital radii grow in proportion to n2 so that the
radii are given by r1, 4r1, 9r1, 16r1, . . .with the spacing between orbits increasing
rapidly.

Using our results thus far, we can next calculate the possible total energy of the
electron in the various stationary states. The classical expression for the total energy
is given by E � KE � PE, or in our case

(25.8)

the negative sign arising from the opposite charges of the electron and proton. This can
be rewritten, after substituting for mvn

2 from Equation (25.2) as,

(25.9)

Then, substituting for rn from Equations (25.6) and (25.7), we find that

(25.10)

where

The stationary state corresponding to n � 1 is known as the ground state and is the low-
est energy (most negative) and smallest angular momentum state of the hydrogen atom,
as well as the orbit with the smallest radius. Note that all of the energies given by
Equation (25.10) are negative, with values approaching E � 0 as n increases. In gen-
eral for atomic systems, negative energy values indicate that the electron is bound to the
nucleus, and positive energy values mean that the atom is ionized and that the electron
is free from the nucleus. All the other states, for n � 2, 3, . . .are known as excited

states, with the n � 2 state being the first excited state, and so on, and have larger (but
still negative) energies given by Equation (25.10). We can picture the energy levels of
the hydrogen atom in an energy level diagram shown in Figure 25.2.
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Hydrogen atoms in the ground state cannot radiate energy according to
Bohr’s postulate, and remain in the ground state unless energy is added, for
example, by the absorption of a photon. Our energy level diagram suggests
that only certain photon energies can excite hydrogen atoms from the
ground state; photons must have energies corresponding to the difference
between energies of stationary states

(25.11)

where final and initial correspond to the excited state and the ground state in this case.
In general, transitions can occur between all stationary states with a photon either being
emitted, if the transition corresponds to a decrease in energy of the atom, or absorbed,
if the transition corresponds to an increase in its energy. For the first case, we show the
emission spectrum of hydrogen with a set of discrete energy photons being emitted
from all possible downward transitions, whereas for the second case one can measure
the absorption spectrum of hydrogen with a discrete set of photons being absorbed from
all possible upward transitions.

Figure 25.3 shows an energy level diagram with the emission line spectra for
hydrogen labeled in different series of lines. Each series corresponds to a set of transi-
tions to a particular final lower energy state nf from each of the higher energy states ni.
The photon energies can be written, using Equations (25.10) and (25.11), as

(25.12)

or rewriting this to solve for 1/� after substituting for E1 we find

(25.13)

The value of R, known as the Rydberg constant, is

(25.14)

Equation (25.14) gives excellent predictions of the measured line spectra for
hydrogen. The Balmer series, for example, consists of those transitions ending at
the nf � 2 state. Three of these lines correspond to visible photons as shown in the
emission spectrum of hydrogen in Figure 25.3. The success of Bohr’s theory was
tremendous, although it is clearly an incomplete theory that cannot be used to cal-
culate many measurable quantities. For example, it is impossible to calculate the
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FIGURE 25.2 Energy level diagram
for the hydrogen atom.

FIGURE 25.3 (left) Possible energy transitions for hydrogen grouped into families based
on the final state. Also shown are the three visible lines of the Balmer series (red, blue,
and violet), the only visible emission spectrum lines for hydrogen. Note that black lines are
ultraviolet and dark red lines are infrared. (right) The three visible Balmer lines shown in a
reflection grating used to disperse the spectrum.
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lifetimes of excited states. Simple variations on the calculations gave correct results
for more complex atoms that had been ionized to have just a single outer (valence)
electron. Bohr’s theory has been superceded by quantum mechanics, developed in
the 1920s and 1930s as briefly discussed in the next section.

2.  QUANTUM NUMBERS AND SPIN

Bohr theory, a mix of classical physics and unsupported postulates, leaves much atomic
physics unexplained. The energy levels and Bohr radius of the isolated hydrogen atom
are correctly predicted and the notion that transitions between stationary states are
responsible for line spectra is correct, however, there is no way to calculate how long
an atom will remain in an excited state before emitting a photon (equivalently, the tran-
sition rates) and no way to understand more complex atoms with additional electrons.
Nor does Bohr’s theory allow one to understand the interaction of the hydrogen atom
with electromagnetic fields. Furthermore, as mentioned above, classical physics pre-
dicts that an electron accelerating in a circular orbit should radiate continuously and
Bohr’s theory simply postulates the stability of stationary states.

Quantum mechanics retains the idea of stationary states for an atom and that line
spectra are due to transitions between such states, but the picture of the electron orbit-
ing the nucleus in a classical trajectory, circular or otherwise, is dropped. Bohr’s theory
for hydrogen atoms centered on the postulate of the quantization of angular momentum
in multiples of h- , where the integer multiple n, also defined the energy level and radius
of the circular orbit. Quantum mechanics starts with the Schrödinger equation, men-
tioned in the last chapter, and the form of the Coulomb potential energy of interaction
between the electron and proton in hydrogen to derive the possible energy levels of
the isolated hydrogen atom. The result is the same Equation (25.10), with the inte-
ger n retained as the principal quantum number, but this number now is not related
to the angular momentum of the electron. We show that there are three other quan-
tum numbers that are needed to completely specify the possible wave functions for
the hydrogen atom.

The simple de Broglie picture of fitting integral numbers of wavelengths in
circular orbits does not give the correct angular momentum. The electron’s orbital
angular momentum is not simply related to n, as Bohr postulated, but to another
quantum number O, known as the orbital quantum number by

(25.15)

Here O is an integer that is in the interval from 0 to (n � 1), so that O has the
possible values

(25.16)

Thus for a given principal quantum number, n, the orbital angular momentum can
have n different possible values. For example if n � 2, then O can have two different
values, O � 1 or 0, corresponding to the electron having two possible values of orbital
angular momentum, and L � 0, respectively, according to Equation (25.15).

Although for an isolated hydrogen atom the direction of the orbital angular momen-
tum vector can have no significance, as soon as the hydrogen atom is allowed to interact
with an external field or another atom, the orientation of this vector becomes important. A
third quantum number, the magnetic quantum number mO gives the projection of the orbital
angular momentum along a particular direction in space, usually chosen to be the z-axis,
along which the external field lies. The term “magnetic” is used here because the interac-
tion of a hydrogen atom with a magnetic field led to the introduction of this usage. The
z-component of orbital angular momentum is given by

(25.17)Lz � m/ 
-h,

L �12-h

/ � 0, 1, 2, Á , n � 1.

L �1/(/ � 1) -h.
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where the magnetic quantum number can take on any integer value
between �O; that is,

(25.18)

For any given value of O, there are 2O � 1 different possible orientations
of the orbital angular momentum. Recall that although we are not seeing the
details here, these recipes for n, O, and mO arise directly from solving
Schrödinger’s equation for the H atom. According to this, not only is the mag-
nitude of the angular momentum quantized, according to Equation (25.15),
but so is the orientation of the angular momentum in space according to
Equations (25.17) and (25.18). The angular momentum vector is confined

to one of several discrete angles with respect to the z-axis. Figure 25.4 shows the ori-
entation of orbital angular momentum for the cases of O � 1 and 2. Note that the
angular momentum vectors lie on cones that have projections on the z-axis given by
Equation (25.17). These vectors must have specific projections on the z-axis but can
precess (wobble) around the z-axis so long as they lie on one of these cones.

m/ � �/, �/�1, �/ �2, Á ,0,1,2, Á ,/.
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ℓ = 1 ℓ = 2

FIGURE 25.4 Orbital angular
momenta for two different values
of O. The z-components are given
by Equation (25.17), and the
magnitude of the vectors is given
by Equation (25.15).

Example 25.1 Compute the possible spatial orientations for the orbital angular
momentum of an O � 2 electron, one with 

Solution: As shown in Figure 25.4 for the case of an O � 2 electron, there are
five possible spatial orientations of the orbital angular momentum, characterized
by mO values ranging from �2 to �2. We can find the angles 	 that the orbital
angular momentum vector can make with the z-axis by noting that

With O � 2 and the range of mO values, we find the possible angles to be 	 � 35.3°,
65.9°, 90°, 114.1°, and 144.7°. Note that these define five cones (with the one at 90°
degenerating into a circle) symmetrically arranged about the horizontal plane as
shown in Figure 25.4.

cosu�
Lz

L
�

m/ 
-h1/(/ � 1)-h

.

L �1(2)(3)-h �16-h.

In addition to their orbital angular momentum, electrons also have an intrinsic spin

angular momentum that is an internal property of the electron. Spin angular momentum
S is given by a similar equation to Equation (25.15),

(25.19)

where s � for the electron, so that for the electron S is fixed at

Just as with orbital angular momentum, spin angular momentum is also spatially quantized
in that S can only point in one of two directions (with s � , we have that 2s � 1 � 2 pos-
sible orientations, the same rule as for orbital angular momentum) given by

(25.20)

where the spin quantum number ms is given by � (ms varies from �s to �s, again
with the same rule as for orbital angular momentum). Figure 25.5 shows the possible
orientations of the electron’s spin angular momentum; these orientations are said to

1
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-h,
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2
b a 3

2
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2
-h.

1
2

S �1s(s�1)-h,

FIGURE 25.5 Electron spin has two
possible orientations, loosely
referred to as up and down.



have spins of or � , or are said, very loosely, to have spin up or down, respectively,
although the spins do not point along the z-axis. The Stern–Gerlach experiment, dis-
cussed in Chapter 17, was an important confirmation of the notion of electron spin.
Recall that atoms with no orbital angular momentum when steered through an inhomo-
geneous magnetic field either were deflected upwards or downwards depending on the
spin of their outer electron.

We have now introduced the four quantum numbers, n, O, mO, and ms, that are needed
to fully describe the different possible wave functions (or so-called stationary states) of
the hydrogen atom. The ground state of hydrogen is the n � 1 state with O � mO � 0.
Figure 25.6 shows the wave function for this state to be spherically symmetric with the
greatest density of the electron (position of greatest probability to be found) located at the
Bohr radius. The n � 2 states can have O � 0 or 1, with corresponding values of mO � 0
if O � 0, or mO � 0 or � 1 if O � 1. States with O � 0 are spherically symmetric,
whereas the others are asymmetric; Figure 25.6 also shows some of these states. Note that
all the excited states have regions of zero electron density (probability) located “within”
the atom, indicating nodes of the wave function. These nodes are analogous to those of
the excited states of a one-dimensional wave function for a particle in a box, seen in the
previous chapter. As we show in the next section, the same four quantum numbers can
be used to label the wave functions of all types of atoms, although the expressions for
the energy levels are different than those for hydrogen.

1
2

1
2
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FIGURE 25.6 Color-coded hydrogen atom wave functions in two dimensions: (top)
Spherically symmetric n � 1 ground state; (second row, left to right), [n � 2, O � 0] and
[n � 2 O � 1]; (bottom row, left to right), [n � 3, O � 0], [n � 3, O � 1], [n � 3, O � 2], with
mO � 0 in all cases. Note the “internal” node structure of the excited state wave
functions. Note also that the O 
 0 states are not spherically symmetric, but are more
complex with higher O states.



3.  THE PAULI EXCLUSION PRINCIPLE, THE PERIODIC
TABLE, AND CHEMISTRY

The four quantum numbers described in the last section for the possible stationary states
of the hydrogen atom label a discrete set of such states. Each different combination of
quantum numbers represents a different possible state. For an isolated hydrogen atom,
because the energy of any state depends only on the principal quantum number n, many
different quantum states will have the same energy; these are said to be degenerate

states. In the presence of an external field or a field due to other nearby atoms, this
degeneracy is said to be “split” and the individual states with different values of O, mO,
and ms may have different energy values, depending on the type of interaction. In
general, any quantum mechanical system will have such a set of quantum numbers,
perhaps including additional numbers beyond our four that serve to label a discrete num-
ber of such states. It is the electron configuration of atoms or molecules that determines
all of its physical and chemical properties, with the nuclei playing no direct role in deter-
mining those properties. We discuss the nucleus and its structure and interactions in the
next chapter in connection with radioactivity.

It is natural to ask whether the electrons in a more complex multielectron atom
or molecule, in its ground state, for example, will all occupy the same set of quantum
numbers representing the lowest energy state for this atom. For example, do all three
electrons of lithium occupy the n � 1 state with O and mO both equal to zero? The
answer turns out to be no. New physics is needed to determine the actual quantum
numbers of a multielectron atom or more complicated system. The necessary idea is
contained in the Pauli exclusion principle
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At most a single electron can occupy any quantum state.

A quantum state means a state labeled by a complete specific set of quantum numbers.
For a multielectron atom, the ground state represents the lowest possible energy of the
atom. In the absence of the Pauli exclusion principle, all electrons would occupy the low-
est energy level and all would have the same set of quantum numbers, those representing
the state of lowest energy. The effect of the Pauli exclusion principle in requiring electrons
to have different quantum numbers is to raise the minimum energy of the atom from that
hypothetical situation. For each set of quantum numbers n, O, and mO there are two possi-
ble spin quantum numbers ms, and therefore at most two electrons can have the same set
of values for n, O, mO, as long as one has ms � � , and the other has ms � � , or vice versa.

The elementary particles of nature can be classified according to their intrinsic spin
s as either fermions, those with half-integral spin such as the electron, proton, and neu-
tron each with spin , or as bosons, those with integral spin such as the photon with spin
1 or the pion with spin 0. The Pauli exclusion principle holds only for fermions. We
show here that when applied to electrons in atoms and molecules, this principle leads
to an understanding of their structure and spectra. In the next chapter we show that
when applied to protons and neutrons, the Pauli exclusion principle leads to a set of
nuclear energy levels with transitions between them producing a “photon line spectra”
of high-energy gamma ray photons, very similar to the spectra produced by electron
transitions in atomic and molecular systems. Bosons, on the other hand, do not obey the
Pauli exclusion principle and are not restricted in their occupancy of any state. Thus, it
is possible to have any number of photons simultaneously occupying the same ground
state of a system. This gives rise to many interesting phenomena including superfluids
and superconductors, discussed at the end of Section 2 of the previous chapter, and the
relatively recently discovered phenomenon of Bose–Einstein condensation.

We show that the Pauli exclusion principle can explain the arrangement of all
the elements of nature in the Periodic Table of the Elements (Figure 25.7) in terms
of the electron configurations associated with the atoms. The elements in any column
of the Periodic Table have similar chemical properties. These similarities are due to
the arrangement of the outermost or valence electrons.
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Imagine that we are assembling multielectron atoms from their individual parts. If we
start with the nucleus for an atom with N protons and the appropriate number of neutrons,
and we imagine that we assemble the N electrons to complete the atom in its ground state,
then each added electron will occupy the lowest energy level available to it. If N � 2
(helium), then the two electrons can occupy the state n � 1, O � mO � 0, completing the
n � 1 possible states with paired electron spins, ms � � . These states are labeled using
spectroscopic notation as the 1s2 states, where the first 1 indicates the n value, s (for
“sharp”) indicates that O � 0, and the superscript indicates the number of electrons in that
state. If N � 3 (lithium), then the third electron must occupy the lowest energy state in the
n � 2 level with quantum numbers O � mO � 0 and ms � � or � , because the n � 1
state is filled. Notice that for helium, the two electrons are paired with opposite spins and
that they complete the allowed n � 1 “shell,” known as the K shell. Helium is very sta-
ble and unreactive and is therefore chemically inactive and known as an inert, or rare, gas.
For lithium, the unpaired n � 2 electron is the valence electron and is highly reactive and
available to form a chemical bond with an unpaired electron on another atom. In spectro-
scopic notation the valence electron in ground state lithium is denoted by 2s1 and the
entire atom is given as 1s22s1.

For the n � 2 shell of electrons, known as the L shell, there are a total of 8 possible
electron states shown in Figure 25.8. As we increase N in our assembly line for atoms,
we will fill the L shell when the atom has a total of 10 electrons, 2 in the K shell and 
8 in the L shell. A glance at the Periodic Table will show that this 10-electron atom is
neon, the second inert gas. In spectroscopic notation neon is given by 1s22s22p6, where p
(for “principal”) stands for O � 1; of the 8 electrons in the L shell, 2 are s state and 6 are
p state electrons. The first two rows of the Periodic Table are arranged according to the
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FIGURE 25.7 The Periodic Table of the Elements.

FIGURE 25.8 Electron configuration
for the K and L shells.

L shell:

p- subshell

s-subshell

K shell: ms = +1/2, –1/2

ms = +1/2, –1/2

n = 2 , l = 1, ms = 1, 0, –1 ms = +1/2, –1/2

n = 2, l = 0, ms = 0

n = 1, l  = 0, ms  = 0



principal quantum numbers n � 1 with two elements and the n � 2 with 8 elements. Each
column of the Periodic Table contains elements with similar chemical characteristics
because their outer, or valence, electron configurations are similar. Spectroscopic notation
for heavier atoms continues with the O � 2 state labeled by d (for “diffuse”), O � 3 by f,
with higher O states labeled alphabetically as g, h,. . . . Table 25.1 shows the ground state
configurations, in spectroscopic notation, for the first 20 atoms of the Periodic Table.
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Table 25.1 Some Ground State Electron Configurations

Valence Valence 
Element Electron Spectroscopic Element Electron Spectroscopic 
(Symbol) (n, O) State (Symbol) (n, O) State

Hydrogen (H) (1,0) 1s1 Sodium (Na) (3,0) 1s22s22p63s1

Helium (He) (1,0) 1s2 Magnesium (Mg) (3,0) 1s22s22p63s2

Lithium (Li) (2,0) 1s22s1 Aluminum (Al) (3,1) 1s22s22p63s23p1

Beryllium (Be) (2,0) 1s22s2 Silicon (Si) (3,1) 1s22s22p63s23p2

Boron (B) (2,1) 1s22s22p1 Phosphorus (P) (3,1) 1s22s22p63s23p3

Carbon (C) (2,1) 1s22s22p2 Sulfur (S) (3,1) 1s22s22p63s23p4

Nitrogen (N) (2,1) 1s22s22p3 Chlorine (Cl) (3,1) 1s22s22p63s23p5

Oxygen (O) (2,1) 1s22s22p4 Argon (Ar) (3,1) 1s22s22p63s23p6

Fluorine (F) (2,1) 1s22s22p5 Potassium (K) (4,0) 1s22s22p63s23p64s1

Neon (Ne) (2,1) 1s22s22p6 Calcium (Ca) (4,0) 1s22s22p63s23p64s2

Now, let’s consider the interaction of two electrically neutral atoms. The protons and
electrons in one push and pull on the protons and electrons in the second. If the atoms are
sufficiently far apart—a few nanometers will typically do—these pushes and pulls tend
to cancel out so that there is essentially zero electrical force of one atom on the other. As
the two atoms are brought closer, however, the outer electrons in one tend to push away
the outer electrons in the second (see Figure 25.9) leaving the nucleus of the second
slightly more exposed to the first’s electrons. As this distance of separation decreases, the
electrons in each atom tend to become somewhat synchronized. The net effect is that the
two atoms become (weakly) attracted to each other. On the other hand, if the two atoms
are brought close enough that their electrons begin to interpenetrate, the Pauli exclusion
principle rears its head. Electrons mixing between the atoms may well find themselves in
the same states of motion with spins aligned. Because electrons abhor such a situation,
the atoms at that distance of separation experience a very strong repulsion for each other.
Somewhere between where the atoms first begin to attract each other and where the repul-
sion takes over there is a separation at which the atoms feel no net force due to each other.
This separation, typically a few tenths of a nanometer, is called the equilibrium distance

for the atoms. Because repulsion occurs when the two atoms are closer than the equilib-
rium distance and attraction occurs when they are farther apart, the equilibrium is stable.
The two atoms are said to be bound to each other, forming a stable molecule.

The robustness of the equilibrium between the two atoms depends on how mixed
up the atoms’ electrons can get when the nuclei are at the equilibrium separation.
Three different scenarios are possible. In the first, the electrons on each atom remain
clearly “attached” to their respective nuclei. The electrons on one atom don’t mix with
the electrons on the other. In this case, the bond between the atoms is called a van der
Waals bond and the equilibrium is fairly easy to disrupt. Atoms of the noble gases
(helium, neon, argon, etc.) interact with other atoms in this way. Molecules formed
between such atoms are extremely difficult to make and maintain. Collisions with
other atoms easily cause such molecules to fall apart.

In the second scenario, when the two atoms are separated by the equilibrium distance
an outer electron from one atom is so strongly attracted to the nucleus of the second that
it leaves the first and spends all its time near the second. The atom that loses its electron
becomes effectively positively charged and the atom that gains the electron becomesFIGURE 25.9 Molecular hydrogen.



negatively charged. That is, the two atoms become ions. The force of attraction holding the
two ions together is said to be an ionic bond. Ionic bonds are considerably stronger than
van der Waals bonds, but an ionic molecule is still fairly easy to dissociate. For example,
the molecule made of one hydrogen atom and one chlorine atom, HCl, is ionically bound.
HCl is easily pulled apart when water molecules surround it, producing H� and Cl� ions.

In the third scenario, when the atoms are separated by the equilibrium distance,
electrons from each of the two atoms can get scrambled. The two nuclei then share one
or more of the atomic electrons, in a kind of game of “electronic catch.” Electronic
swapping between nuclei results in what is called a covalent bond. (Di–)oxygen and
(di–)nitrogen are examples of molecules made of two atoms that are covalently bound
as is the C–C bond that forms the backbone of most biological molecules. Covalent
bonds are generally much stronger than van der Waals or ionic bonds. Although HCl
easily dissociates in water at room temperature, O2 and N2 do not. Most of the subject
matter of chemistry is related to the nature and consequences of molecular bonds. In
the next section we consider some of the ways spectroscopy has been used to study
the bonding in biomolecular structures.

4.  SPECTROSCOPY OF BIOMOLECULES REVISITED

In Chapter 19 we briefly discussed several types of spectroscopic tools in the study of
biomolecules. Now that we have a more complete understanding of energy levels in
atoms, let’s reconsider the types of information that one can learn from spectroscopy,
focusing on the study of biomolecules.

In the last section we saw that energy levels in atoms are characterized by a set
of quantum numbers defining the valence electron configuration. For atoms, often
the energy levels are degenerate in that different angular momentum states of the
same principal quantum number have the same energy in the absence of any exter-
nal interactions. In more complex molecular systems, these degeneracies are not
usually present because of the interactions between portions of the molecule and we
can, to good approximation, write the total energy of a molecule as

(25.21)

where the three terms are due to the electronic, vibrational, and rotational contribu-
tions to the energy, respectively. The total energy is quantized and can be labeled by a
set of appropriate quantum numbers with quantized contributions from each term in
Equation (25.21). An order of magnitude discussion of the electronic and vibrational
energies was given at the end of the last chapter. In this discussion we omit the nuclear
contributions which are discussed in the next chapter.

The electronic energy term represents the various configurational energies of the
molecule’s electrons, comparable to the discussion above for atoms, but clearly the
energy levels will be richer because there are more valence electrons that interact with
each other. Vibrational energy arises from relative vibrational motions of the nuclei of the
atoms. We saw early in this book (Chapter 4) that any potential energy function appears
to be springlike (varying as the square of the distance from equilibrium) for small enough
displacements close to equilibrium. Using that, we can picture any chemical bond to be
replaced by a spring so that there will be vibrational energies corresponding to small
oscillations of the atoms attached by springs. An analysis of this problem using quantum
mechanics shows that the vibrational energy levels are given by

(25.22)

where f is the natural frequency of oscillation of the spring, which depends on the details
of the chemical bonding interactions. These vibrational energy levels are equally spaced
with energy differences about 100 times smaller than electronic energy level differences.
Because electronic energy level differences are on the order of eV, corresponding to
ultraviolet or visible photons, vibrational energies correspond to infrared photons.
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In addition to vibrational energy levels, molecules also have overall rotations with
corresponding angular momentum due to this tumbling motion. Because the classical
expression for rotational kinetic energy can be written as

where I is the moment of inertia, � the angular velocity, and L the angular momentum
(recall that L � I�), and using Equation (25.15) for the quantization of L, we can write
that the rotational energy is

(25.23)

Rotational energy levels have energy differences about another 100-fold smaller
than vibrational and transitions between these levels give rise to far-infrared or
microwave photons. Figure 25.10 shows a schematic energy level diagram for a typi-
cal small molecule.
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Example 25.2 The natural frequency of vibration of the NO molecule is 5.63 �
1013 Hz and its moment of inertia is 1.64 � 10�46 kg-m2. Find which rotational
quantum number in the ground vibrational state corresponds to the same energy
as the first vibrational excited state.

Solution: The first excited vibrational state has an energy of E � (3/2)hf � 5.6 �
10�20 J � 0.35 eV. To find which rotational level has this same energy we can set
this energy equal to

and solve for the quantum number O using the given value for I to find that
O(O � 1) � 41.8. If O � 6 these energy levels will match up fairly well.

/1/�12-h2

2I

Spectroscopic techniques that probe the rotational and vibrational energy levels of
molecules by examining absorption or emission spectra can be used to determine mol-
ecular structure and dynamics. Infrared spectra can give “fingerprints” of molecules
because the number and variety of chemical bonds is so large that almost no two
biomolecules have the same vibrational spectrum (Figure 25.11). Using a variety
of calibration frequencies for particular bonds, obtained from measurements on sim-
ple molecules, various peaks in a complex spectrum can be identified. Shifts in the
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FIGURE 25.10 Typical molecular
energy levels. The curves represent
electronic levels (blue) with equally
spaced vibrational (m) levels (green)
indicated. The detail shows
rotational (O) energy levels (red)
within each vibrational level.
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characteristic frequencies of certain bonds can then be measured as the local environ-
ment is changed or as a small ligand molecule binds causing conformational changes.
Although rotational spectra have been useful in determining the bond lengths and
angles for smaller molecules, they have had limited use for larger macromolecules.

Bulk liquids and solids are really giant molecules made of 1020 or more atoms, knit
together by small clumps of atoms interacting with other small clumps in macroscopically
long chains. Often in solids, atoms are arrayed in orderly repeating patterns called a crys-

tal. (See Figure 25.12) The extent of the crystal pattern varies from millions of atoms
(a “crystallite”), say, to the entire bulk body (a “single crystal”). In liquids, the regular
arrangement of atoms only extends to a few tens of atoms. Liquids are held together by
very weak van der Waals type interactions. It is also possible to create a van der Waals
solid, but such solids are extraordinarily fragile and only exist at extremely high external
pressures and/or low temperatures. Ionic solids, such as common table salt (NaCl), easily
dissolve when placed in a surrounding solvent (such as water). Other commonly occurring
solids are structurally more robust. They result from some degree of covalent electron
swapping between their constituent atoms. Such solids are often distinguished by their
electrical properties; in particular, the degree to which electrons can readily travel through-
out the solid. A solid in which the covalently shared electrons swap back and forth over
short distances between only a few atoms are called electrical insulators. Glass and dia-
mond are examples. In solids that are electrical conductors, on the other hand, electrons

FIGURE 25.12 (left) Cubic crystal structural model of sodium chloride; (right) structure of
hemoglobin molecule; in a crystal of hemoglobin, an entire hemoglobin molecule occupies
each of the atomic sites of such a sodium chloride crystal in place of each single atom.

FIGURE 25.11 IR vibrational
spectrum of a small organic
molecule with transmittance
plotted versus wavenumber. IR
spectroscopy uses wavenumber,
defined as 2�/�, instead of �, so that
the wavelength range is from about
1.5 mm to 12 mm in this case.



are shared among many atoms over large distances (essentially the whole solid), and are
thus relatively easy to move around. The metals aluminum, copper, silver, gold, and so
forth are examples of good electrical conductors. Indeed, the particular form of covalency
found in electrical conductors is often said to produce a metallic bond between atoms.

Let’s imagine making a crystalline solid by bringing all N constituent molecules,
where N is on the order of 1023, together from infinitely far away where they do not
interact. Because the molecules initially do not “see” each other, they will all be in the
same ground energy state with the same set of quantum numbers. In this case the Pauli
exclusion principle does not apply because the molecules do not interact at all. As they
are brought together, once the wave functions overlap in space so that the molecules
interact, then the Pauli exclusion principle dictates that no two electrons can have the
same set of quantum numbers. Each individual molecular energy level is perturbed and
caused to shift, removing the degeneracy, the multiple electrons in the same state, so
that in place of a single energy level a huge number of distinct energy levels arise that
form a more or less continuous energy band of different levels (Figure 25.13). In place
of the discrete energy levels in individual atoms when well separated, in solids, where
the molecules are closely spaced and interact, there are bands of possible energy levels
with unallowed energies in gaps between the bands. If we focus on the outermost elec-
tron bands then we can understand some of the fundamental interactions possible in
solids, just as the outermost electron orbital of an atom determines its chemical inter-
actions. The electron configurations of solids explain its electrical (and thermal) prop-
erties. By examining the outermost two bands, we can distinguish three possible classes
of solids: conductors, insulators, and semiconductors (see Figure 25.14).

Insulators, or dielectrics, are characterized by a completely filled outermost band,
known as the valence band, and a large band gap of 6 eV or more with no allowed
states below the next band, known as the conduction band (Figure 25.14). Since there
is no way to add small amounts of energy to an insulator because there are no excited
states for the electrons to reach (recall that room temperature electron thermal ener-
gies, 3/2(kT ), are on the order of 0.025 eV), electrons are normally trapped in the
valence band. In unusual circumstances, large amounts of energy, sufficient to cause
dielectric breakdown, can be added to promote electrons to the conduction band. Thus

616 T H E S T R U C T U R E O F M AT T E R

FIGURE 25.13 Energy level
diagram for a macroscopic system
of molecules showing their identical
discrete energy levels when well-
separated schematically on the right
and the band structure that forms
when they interact (color-coded
only for ease of viewing).

FIGURE 25.14 The three categories
of solids based on their band
structure: insulators, conductors,
and semiconductors.



insulators are normally very poor conductors of electricity since the electrons are
tightly bound to individual atoms, requiring a large energy to jump the band gap and
“detach” from atoms to become conduction, or free electrons. For similar reasons
these materials are also poor thermal conductors. Dielectric breakdown occurs, for
example, during a lightning storm when the air, normally an excellent insulator,
becomes conducting due to its ionization by huge electric fields.

Conductors are characterized by a partially filled outer, or conduction band,
with lots of nearby available states to which the conduction electrons can be excited.
Small additions of energy to the solid are possible with the outermost electrons in
this conduction band able to accept such energies and populate near-lying empty
energy levels within the band. In conductors, the valence electrons are not firmly
attached to specific atoms or sites within the solid, but are termed conduction or free
electrons, able to migrate about in the solid under the influence of electric forces.
Although the solid as a whole is electrically neutral, each individual atom does not
have a permanent complement of electrons. In metals these electrons are said to form
a free electron gas because they distribute themselves uniformly within the confines
of the metal’s boundaries and have some of the characteristics of a gas. Ionic solu-
tions are also an important class of good conductors of electricity, but in this case of
a fluid the conducting species is the ion rather than the individual electron.

A third class of materials has an intermediate behavior between a conductor and
an insulator, having a band structure with a filled valence band like an insulator but
with a much smaller band gap of about 1 eV. These materials are known as semicon-

ductors, with silicon and germanium being the most common, and are extremely
important materials in our technological lives. Semiconductors are characterized by
normally being insulators, but able to become good conductors of electricity by small
controlling signals.

Two types of semiconductors can be distinguished: n-type and p-type. The n-type

semiconductors have free electrons that are in the conduction band, just as in a conduc-
tor, although the conductivities are not as high because there are fewer such conduction
electrons. In contrast, a p-type semiconductor has missing electrons from the valence
band and these positive-like “holes” act as the charge carriers. Semiconductors used in
electronic devices are universally made starting with an intrinsic semiconductor such as
silicon or germanium and adding dopants chosen to enhance the n- or p-type behavior
of the material. Figure 25.15 shows two-dimensional molecular pictures of n- and p-type
doped semiconductors. To add extra free electrons to an n-type semiconductor, a donor
impurity is added that has an extra valence electron compared to the intrinsic atoms.
At the donor site, the extra electron is not needed for local bonding and is then con-
tributed to the free electrons. To dope a p-type semiconductor, an acceptor impurity
with one fewer valence electron is used. In this case the missing electron acts as an
added hole. Even added at a few parts per million, these impurities greatly affect the
electrical characteristics of the semiconductor.

Modern semiconductors are fabricated to allow fine control over their electrical char-
acteristics by doping. The basis for most semiconductor chips is a p–n junction formed
by butting a p- and n-type semiconductor together. At the junction the excess electrons
in the n-type recombine with the holes in the p-type to form a narrow “depletion zone.”
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FIGURE 25.15 (left) A pure intrinsic semiconductor, such as silicon, with each atom having
four valence electrons forming a perfect crystal; (middle) p-type dopant molecule (black), with
only three valence electrons, leaves a “hole” in the crystal; (right) n-type dopant molecule
(black), with five valence electrons, contributes an extra “free” electron. Both the holes and
free electrons migrate about the crystal as charge carriers contributing to its conductivity.



This recombination reaches an equilibrium because the electrons trapped in the holes
build up a layer of charge, as do the excess holes at the other edge of the depletion zone.
The layers of charge at the edges of the zone act as a dynamic capacitor, able to rapidly
respond to external electric fields. The simplest semiconductor device is the diode. If a
voltage is applied to a diode, the relative polarity of the external voltage and diode will
either increase the junction voltage (so-called reverse biased) or decrease its voltage (for-
ward biased) as shown in Figure 25.16. In the reverse biased case, no current will flow
through the (ideal) diode, whereas in the forward biased case, large amounts of current
can freely flow with essentially no voltage across the diode. Thus, a diode can act as a
one-way valve, allowing current to flow in only one direction. Other semiconductor
devices such as transistors and operational amplifiers (op amps) are controlled devices
that also may boost or amplify a signal or act as logic elements in a circuit.

Today, semiconductor “microchips” can be manufactured with specific desired
properties and are being ever more miniaturized. Semiconductors are the fundamental
basis of modern electronics and are found in nearly every device that plugs into an
electrical outlet or runs on batteries.

Throughout this section we have focused on only the valence electrons and have
ignored the inner electron core of an atom. At modest energies the inner electrons
are locked in and unable to interact and so our neglect of them is justified. However,
when sufficient energy is added to an atom to eject an innermost electron, creating a
vacant state through, for example, a collision with an energetic external electron, then
the outer electrons can make transitions to this lower vacant state, creating a spectrum
of high-energy photons in the x-ray region (Figure 25.17). If the ejected electron is an n �
1 (K-shell) electron, then transitions from higher n levels will produce these x-ray photons,
labeled K� (from n � 2), K
 (from n � 3), and so on. Because the innermost electron shell
sees the bare unshielded nucleus, the spectrum of x-ray energies is different for each ele-
ment and is a signature of the atom. These x-rays are known as characteristic x-rays and
can be used to identify the type of atom present. Specially designed x-ray tubes are used
to generate beams of x-rays for x-ray diffraction or CT machines.

5.  LASERS AND THEIR APPLICATIONS IN BIOLOGY 
AND MEDICINE

Lasers have become so widely used that, whether you know it or not, you probably use
one quite often (Figure 25.18). There are hundreds of different types of lasers that
have been discovered with many of them in commercial production. Nonvisible light
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lasers are routinely used in remote controls for TVs or stereo systems, in fiber-optic
telephone communications, and in CD or DVD players to read the encoded informa-
tion from the plastic CD/DVDs. Visible lasers put on multicolor dazzling light show
displays for entertainment or scan barcodes when you check out of a supermarket.
In industry, lasers are used for a large variety of purposes including cutting and pro-
cessing materials, welding, microfabrication of computer “chips,” and even holo-
graphic monitoring and testing of precision parts. Medical applications of lasers are
ever increasing and include external and internal surgery, eye surgery, and various
therapies involving tissue destruction or heating. What are the properties of lasers
that allow them to be so useful in such a large array of applications?

Laser light has several quite distinctive properties. Perhaps the most notable is the
very narrow frequency or wavelength range of the light. Most types of lasers have
extremely pure, or monochromatic, light. For example, the common helium–neon
(or HeNe) laser produces a red beam of light at a wavelength of 632.8 nm. The frequency
of this light is given by f � c/� � 4.7 � 1014 Hz with a bandwidth, or frequency width
of the light, of only about 100 MHz. This range of frequencies corresponds to a purity
level of about 1 part in 5 million or, said another way, the wavelength of the HeNe laser
is 632.8 . . .where the wavelength is known to about 7 digits of precision. Special tech-
niques can be used to stabilize the frequency of the HeNe even further. Different types of
lasers emit radiation in the infrared, visible, or ultraviolet regions of the spectrum.

HeNe lasers can produce up to tens of mW (10�3 W) of power, representing a huge
number of nearly identical photons in the beam. The energy of each 632.8 nm photon is
given by E � hc/� � 3.1 � 10�19 J, so that in a 1 mW beam there are N � (Power)/E �
3 � 1015 photons/s, all with the same wavelength. It is impossible to obtain photons with
the same degree of purity of color from any other source of light.

Although the several mW power level of the HeNe laser is very low compared to a
100 W incandescent light bulb, for example, the light bulb produces white light with a
continuous spectrum of photon energies. Furthermore, light from an incandescent bulb is
emitted in all directions, whereas the HeNe laser produces a narrow, roughly 1 mm diam-
eter, beam of light that can be further focused down to a very fine pencil line of light. The
range of output powers from different types of lasers is very broad, from about 1 �W �
10�6 W to more than 1 TW (terawatt) � 1012 W. The power per unit cross-sectional
area, known as the power density or intensity, of laser beams can be enormous because
they can be focused down to extremely fine diameters. A 1 TW laser beam focused to a
spot size of 10 �m has a power density of about 1 � 1022 W/m2. To give some idea of
the magnitude of this number, consider that the average power consumption in the United
States is roughly 3 � 1012 W so that a continuous TW laser beam would have roughly
the equivalent power to the entire U.S. consumption rate. The flaw in this analogy is that
the TW laser is a pulsed laser, with only a very brief duration, so that the total energy in
the pulse is many orders of magnitude more modest, although still quite large. In general,
lasers are very energy inefficient. They typically require 100–1000 times more input
energy than the beam energy they produce, so that overall efficiencies are typically less
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FIGURE 25.18 Multicolored laser beams.



than a percent. A few lasers are exceptions to this with overall efficiencies of 20–30%;
some of these are used in industry where energy efficiency is particularly important.

Lasers can also be classified according to the nature of their output as either con-
tinuous wave (CW) or pulsed. CW lasers emit a steady beam of light, whether visible
or not. Pulse durations range from relatively long ms (10�3 s) to picosecond pulses
(1 ps � 10�12 s), with special systems even as fast as femtoseconds (1 fs � 10�15 s).
These extremely short duration pulses barely contain a single oscillation of the asso-
ciated electromagnetic wave. Such ultrashort duration pulses have been used for the
study of extremely rapid kinetic processes, such as the initial photon absorption steps
in chlorophyll for photosynthesis or in rhodopsin for vision within the eye.

Another general and important property of all laser light is that it is coherent. The
beam of laser light has a plane wavefront, one that is in phase all across the beam diam-
eter. This property of lasers is important in such applications as holography and various
types of spectroscopy, although it is unimportant in areas such as surgery or industrial
cutting and processing where only the intensity and directional properties are important.

We now take up the basic physics of the laser, using a prototype model to represent a
generic laser. Later we briefly discuss a few specific types of lasers. The acronym LASER
stands for Light Amplification by the Stimulated Emission of Radiation. To understand
how a laser functions, we need to first discuss the stimulated emission process.

Recall from our study of thermodynamics that at equilibrium the relative popula-
tions of two different energy levels are given by the Boltzmann factor, so that

(25.24)

where the N’s and E’s represent the populations and energies of two different levels and
kBT is the thermal energy corresponding to the temperature T. At room temperature,
with a typical electronic energy level difference (E2 � E1) ~ 1 eV, we find that N2/N1
~ 4 � 10�18, so that nearly all the atoms will be in the ground state. To excite atoms,
energy must be added by either heating or by collisions with electrons, other atoms,
or by the absorption of photons. Figure 25.19 shows a simple two-level atomic sys-
tem. On the left, the resonant absorption of a photon with energy equal to the transi-
tion energy is shown. Once an atom is in the upper excited state two processes can
occur: spontaneous emission of a photon returning the atom to the ground state with
no net change (shown in the center), or stimulated emission in which another resonant
photon induces a transition to the ground state with the emission of a second coherent
photon (shown on the right). Einstein first proposed the idea of stimulated emission in
1917; it was experimentally confirmed about 10 years later, but the first proposals for
the invention of a laser did not come until 1957, some 40 years later. In that year
Gordon Gould, then a graduate student at Columbia University, and, independently,
Arthur Schawlow and Charles Townes, then at Bell Laboratories, developed the key
concepts that are required for a laser.

In order to get an amplification of the number of coherent photons in our hypo-
thetical two-level system, there must be more atoms in the excited state than in the
ground state. Otherwise, because the probability that a resonant photon is absorbed is
known to be the same as the probability that a second photon is emitted by stimulated
emission, there will be no net increase in the number of photons (see the cartoon in
Figure 25.20).

N2

N1
� e�(E2�E1)/kB T ,
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FIGURE 25.19 The three possible
types of atomic transitions between
two energy levels.
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What is needed, minimally, to produce a net amplification of photons is a third
atomic energy level that has a very long lifetime, known as a metastable state. Electrons
can be excited from the ground state, ending up in the metastable state for sufficiently
long times so as to provide a source of electrons for the stimulated emission of coherent
photons. This populated metastable state is then said to produce a population inversion,
when there are more electrons there (N2) than in the lower transition state (in this case,
the ground state, with N1; see Figure 25.21). Laser photons are emitted from transitions
between the metastable state and the lower energy state. Excitation of ground state elec-
trons, known as “pumping,” can be by a bright flash of light from a nonlaser source, or
even from another laser, in a process known as optical pumping, by direct electron
collisions using a high electric current flow through the laser medium, by atom–atom
collisions, or by chemical reactions. Different types of lasers use different pumping
mechanisms to produce the necessary population inversion.

Once stimulated photons are generated, there needs to be a mechanism for produc-
ing the fine pencil-like beam of laser light. This is accomplished by using a mirrored, or
resonant, cavity (see Figure 25.22) surrounding the lasing medium, in which the photons
reflect back and forth stimulating photon emission primarily along the axis of the cavity.
As the photons travel along the cavity axis, their numbers are amplified continually as
long as a population inversion is maintained. Those photons that travel in off-axis direc-
tions do not contribute to the lasing and simply leave the container holding the lasing
medium. The laser beam actually is produced by a leakage of on-axis photons through a
front mirror of the cavity designed to be less than 100% reflective. This mirror reflects
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FIGURE 25.20 Cartoon of energy level populations as a function of
time showing that there can be no net amplification of photons because
the probability of absorption and stimulated emission are equal.

N

n

N

n n-1

N+1N

n

N-1

n+1n+1

N-1

n

N

n-1

N+1

n

N

time

rapid

Photon energy = E2-E1

excitation

ground state N1, E1

metastable state N2, E2

excited state N3, E3

stimulated emission

FIGURE 25.21 A three-level laser. To have a population
inversion, so that N2 � N1, more than half the 
atoms must be in the metastable state because N3
is very small.

Example 25.3 Show that at thermal equilibrium there can never be more atoms in an
excited state than in the ground state or than in any lower lying energy excited state.

Solution: According to the Boltzmann distribution, Equation (25.24), which
holds at thermal equilibrium the relative populations of any two states are given
by Equation (25.24),

If state 2 has a higher energy than state 1 then the exponent must be negative and
therefore the ratio of N2/N1 must be less than 1, regardless of the energy differ-
ence or temperature. Thus, in a huge collection of atoms in thermal equilibrium,
the relative populations of energy levels with increasing energies must necessar-
ily decrease; that is, there must be monotonically decreasing numbers of atoms
populating a set of increasing energy states. Because of this it is impossible to
have any net amplification in the number of photons produced by an atomic sys-
tem in thermal equilibrium. The solution to producing a net amplification comes
from producing a nonequilibrium situation.

N2

N1
� e�( E2�E1 )/kB T.



most of the photons, but allows a small (typically �1%) fraction of the photons to be
transmitted and exit the laser to constitute the laser beam.

In a CW laser, the population of the metastable state must be continually replenished
through continual pumping, whether through optical pumping, collisional pumping, or
some other means. In a pulsed laser, after each pulse depopulates the metastable state,
the lasing medium must be pumped again to create a population inversion prior to the
next pulse.

In summary thus far, the essential ingredients for a laser are a metastable state of
the lasing medium, a laser cavity allowing amplification and generating a beam, and a
pumping mechanism for populating the metastable state. Most practical lasers involve
either three or four particular energy levels of a material, with one metastable state. It
is actually easier to produce a population inversion in a four-level laser because the
lasing transition is from the metastable state to a lower energy state that is not the
ground state (see Figure 25.23). Thus, because the population of that intermediate level
is usually relatively small, it is easier to establish and maintain a population inversion
(N3 � N2) than in the three-level laser (where a population inversion requires N2 � N1,
with N1 large because it is the ground state).

One of the most common lasers is the HeNe, a four-level CW laser with an energy
level diagram shown in Figure 25.24. The He atoms are excited through collisions
with electrons. It happens that an excited He state has an energy close to that of a
metastable state of Ne and, via atomic collisions, energy can be transferred to the Ne
electron. A lasing transition occurs in Ne producing photons of 632.8 nm, leading to
a bright red beam. Neon also has other lasing transitions in the IR, green, and at sev-
eral other colors. By using different mirrors, with high reflectivity at a selected wave-
length, HeNe lasers of different colors can be manufactured, although the red HeNe is
most common. These lasers are relatively small, very rugged, long-lived, trouble and
maintenance free, and are relatively inexpensive, so that they are in widespread use.

Lasing materials include gases, liquids, solids, and semiconductor materials. Some
of the more commonly used lasers, aside from the HeNe gas laser, include the argon
and carbon dioxide gas lasers, the liquid dye lasers that can be tuned to give a laser
beam with any color within some range of the particular dye, the neodymium–YAG
(yttrium aluminum garnet) and titanium–sapphire solid-state lasers, as well as a host of
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FIGURE 25.23 A four-level laser. It is easier to reach a population inversion in this case
because the metastable state must have a population N3 � N2 for lasing to occur, and
N2 is relatively small. Thus to reach a population inversion N3 does not need to be very
large and it is correspondingly less costly in energy to achieve. In a three-level laser 
(see Figure 25.21) the metastable state must have a population greater than the ground
state, requiring more input energy.
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FIGURE 25.22 The mirrored (resonant) cavity of a laser with its front mirror on the right
allowing a laser beam to exit. Your imagination is needed to multiply the numbers of
photons shown by a tremendous factor of 1015 or so.
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FIGURE 25.25 Diode laser module
with actual diode shown as LD on
the right. Note the 1 mm bar shown
at the top.

miniature semiconductor lasers that can be made smaller than a
letter on this page (Figure 25.25).

The various interactions of laser light of different wave-
lengths with body tissue give rise to myriad medical applica-
tions. One fundamental interaction is simply the heating of
tissue through the absorption of light. At elevated temperatures
proteins will denature or coagulate just as an egg does when
cooked. Laser-induced denaturation is known as photocoagula-

tion and is of primary importance in laser surgery. Infrared light
is very strongly absorbed by water and is therefore particularly
strongly absorbed by tissue because water is its major compo-
nent. Photocoagulation is used in surgery for the destruction of tumors, retinal surgery,
and in many internal surgeries using fiber optics to gain access without having to open
up the body. A major advantage of laser surgery is the fact that small blood vessels are
cauterized, or made to clot through the photocoagulation process, so that there is a large
reduction in bleeding. Furthermore, high photon powers in short pulses can deliver
large doses of energy to actually vaporize tissue locally, a process known as photova-

porization. Such high-energy doses raise the local temperature above the boiling point
of water for long enough to completely vaporize the tissue, resulting in clean cuts with
no bleeding and very limited damage to neighboring tissue. Usually this results in less
pain, less swelling (edema), and a more rapid recovery from surgery. Laser surgery is
particularly effective in areas of the body that are full of blood vessels and prone to
much bleeding, such as the throat, intestines, or uterus. By regulating the intensity of
the laser and/or the number of pulses, the depth of the vaporization can be controlled.

Another major advantage of laser surgery is the ability to do microscopic internal
(or external) surgery using fiber optics. Figure 25.26 shows the ultrafine surgery possi-
ble with lasers. Visible or near-infrared light can be steered using a fine fiber-optics
catheter to various internal organs through either blood vessels or the gastrointestinal
(GI) tract. These catheters are designed with many fibers, some of which allow imaging
of the location of the fiber tip by collecting reflected light (as discussed in Section 3 of
Chapter 21), whereas others are used to carry the surgical laser beam, and still others
may be designed to suction off waste gases from the vaporization of the tissue. The
wavelength of light used, and therefore the type of laser used, will depend on the tissue
to be destroyed. Strong absorption lines are used to ensure specific destruction of that
type of tissue; for example, blood rich tissue will absorb strongly at 575 nm due to a
strong hemoglobin absorption line. Similarly in retinal surgery, the lens of the eye is
transparent to visible light so that visible laser light can be used to surgically seal leaky
capillaries behind the retina or to reattach a retina by spot-welding it to the back wall of
the eye using coagulated blood. The cornea of the eye can be sculpted using a laser to
ablate, or photovaporize, material in order to change its curvature and thereby its focus-
ing ability. This type of surgery, known as LASIK, is fast becoming very common to
eliminate the need for eyeglasses for certain conditions (Figure 25.27).

We cannot end a discussion of lasers without an introduction to the extremely impor-
tant application of holography. Holography is photography in three dimensions and more!
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FIGURE 25.24 Simplified energy
level diagram for the HeNe laser.
Four of the lasing transitions
possible are indicated by the
arrows and labeled wavelengths;
mirrors that preferentially reflect
each of these can be used to
selectively produce a particular
wavelength HeNe laser.
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FIGURE 25.26 A human hair
sculpted with a laser beam.

FIGURE 25.27 Laser corrective eye
surgery makes the cover of a
national magazine.



It was first proposed and the basic theory developed by Dennis Gabor (1971 Nobel Prize
for this work) in 1947 as a tool to improve the resolution of the electron microscope but
did not really amount to very much until the development of the laser in the 1960s. Gabor
named it from the Greek words for whole (holos) and message (gramma). In 1964
Emmett Leith and Juris Upatnieks of the University of Michigan made the first hologram
(of a train; Figure 25.28), a true three-dimensional image of the original objects.

When photographic film in a standard camera records the intensity of light, all the
phase information contained in the original light reaching the film is lost. The film is
what is known as a “square-law detector,” recording only the intensity of light reach-
ing it, with each grain averaging that intensity over the exposure time. There is no
recording of the relative phases of the different rays arriving at the film.

Holography is a method to record both the amplitude and the phase information
in the light wave that reaches the film from the viewed object. There are a number
of variations of the basic method, but all holography requires laser light (strictly
speaking, light that is coherent over the object to be imaged) in order to construct
the hologram. Some variations of holography do not require a laser to view the holo-
gram whereas others do. The process of holography has two steps: recording the
information on the film (developing the film, just as in normal photography) and
then reconstructing the three-dimensional image with either laser light or with white
light directed at the proper orientation.

Aside from holographic art, most of us have seen and used holography in our daily
lives, probably without knowing it. The scanner used in supermarkets and stores to scan
bar code labeling on packages uses holography at its core. Holographic scanners use a
spinning CD-like disk to diffract a diode laser beam in a patterned path as the disk spins.
The reflected light from the barcode region on the scanned package is detected and ana-
lyzed by a photodiode and the code is deciphered and used for pricing and inventory.

The CD-like disk used in a scanner is actually one type of a class of holographic
optical elements (HOE). These are specifically designed holograms that can be used
as lenses, beamsplitters, spectral filters only passing a narrow range of color, and so
on. Many of these functions can be combined in one by multiply exposing the holo-
graphic film when being made, so that, for example, one type of HOE can act as a col-
ored filter/lens combination, or a focused beamsplitter. They are lightweight and very
thin, but can be made quite large. One example of an application that is becoming
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FIGURE 25.28 A photo of the first
hologram, made in 1964.



cheaper and more widespread is a head-up display used currently in the windshields
of airplanes and high-end cars (Figure 25.29). These displays allow the pilot or driver
to keep focused on the outside world, and clearly see a display of controls with a
relaxed eye, rather than having to focus on the windshield itself to read the meters.
This type of display is finding its way into special glasses for medical surgeons to view
other information while focusing on their surgery. They work by projecting images
onto an HOE in the windshield or surgeon’s face-mask that acts as a narrow band
reflector, transparent except for a narrow color range that is reflected.

In the future holograms will become extremely useful as information storage devices.
In a high-resolution photo, digital (binary, light, or no light) information can be stored at
around 10,000 bits per square mm, about the size of a pinhead. This means that each bit
requires an area of about 10 �m � 10 �m on the film. In a hologram, in principle, one
can store digital information with a resolution of about the wavelength of light—or about
0.5 �m—but information can be stored in three dimensions, not just two, by also storing
information throughout the thickness of the film. This means that in a 1 mm � 1 mm �
1 mm cube one can store about 1010 bits of information, equivalent to about one volume
of the Encyclopedia Britannica, in a 10 cm � 10 cm (about 4� � 4�) hologram. Other
advantages include the fact that surface scratches and dust on the hologram do not
strongly affect reading out the information and also that the information can be read out
in a parallel mode using an array of photodetectors so as to access the information faster.

But how are holograms made? In the simplest scheme for our understanding trans-
mission holography, the first step is the recording of the interference pattern formed
between the sample beam, which diffusely reflects from the object and the reference
beam which is sent directly to the film (Figure 25.30-top). These two beams must be
coherent and are normally obtained from a single laser by splitting its beam. Note that
there is no lens used to form an image of the object from the sample beam, but this
reflected, or scattered, light is directly mixed with the reference beam. The idea behind
this method is to capture the full information present in the light waves of the sample
beam as they arrive at the detector using the reference beam as a way to store not only
the amplitude information, but also the phase information. When the film is developed
(the developed film is called the hologram) and examined directly by eye, it does not
look at all like a normal photograph, but is simply a complex interference pattern of
light and dark bands in complex shapes and bears no direct resemblance to the origi-
nal objects. In order to have the fine detail needed to later form clear detailed 3-D
images, the film must be very high resolution film that allows interference fringes with
spacings of less than one micron, comparable or better than the wavelength of light.

Once the film is developed, the hologram is ready for viewing. For a transmission
hologram, reconstruction is done by “playing back” the reference beam with the same
orientation to the developed hologram as it had when the hologram was made and view-
ing the image as shown in Figure 25.30-bottom. What is seen is a virtual image that
appears three-dimensional. The interference pattern on the film diffracts the reference
beam (known as the reconstruction beam now) to produce a light wave that duplicates
the original beam that was scattered from the real object, complete with all amplitude
and phase information. Furthermore, the developed hologram acts as a window glass
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FIGURE 25.29 Head-up displays on a car windshield are holograms.



so that if you move your eye around and examine different portions of the diffracted
light you will see different views of the virtual image of the object, all in 3-D. So, even
if you were to cut up the hologram into pieces, if you looked through one piece you
would see a view of the entire object from the perspective of that position on the orig-
inal intact hologram and not a view of only a portion of the object.
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(Continued)

CHAPTER SUMMARY
The Bohr model of the hydrogen atom, or single elec-
tron ions, although not based in modern quantum
mechanics, was an early successful model that predicted
the correct energy levels. It is based on quantizing the
orbital angular momentum of the electron according to

(25.3)

where n is a positive integer and The result
gives the radii and energy levels of the different num-
bered orbitals as

(25.6)rn � n2r1 , r1 � 0.53 � 10�10 m

-h � h/2p.

Ln � mvn rn � n-h,

FIGURE 25.30 (top) Recording of a
transmission hologram and
(bottom) reconstruction of the
three-dimensional virtual image.
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(25.10)

Transitions between different energy levels can
occur by the emission or absorption of a photon with an
energy corresponding to the difference in energy levels,

(25.11)

Along with n, the principal quantum number,
modern quantum mechanics of atoms introduces other
quantum numbers: the orbital quantum number O is an
integer in the interval from 0 to (n � 1) that specifies
the orbital angular momentum

Ephoton � hf � Efinal � Einitial.

En �
E1

n2
 E1 � � 13.6 eV.



QUESTIONS
1. Clarify for yourself what the difference between pos-

itive and negative electron energies means.
2. Discuss some of the shortcomings of Bohr’s theory, such

as the ad hoc nature of its assumptions, the incorrect val-
ues for electron angular momentum, and the lack of infor-
mation or methods to calculate lifetimes of excited states.

3. How many different possible electronic states are
there within a subshell with quantum number O?

4. What are degenerate states? How could you “split” this
degeneracy to determine how many states there are?

5. In the absence of an external field, what is the degen-
eracy of the n � 2 state in hydrogen?

6. “Electronic configuration” is a notation that consists of
(number 1)(letter)(number 2). Fill in the following table to
specify the ground state electronic configuration for
manganese (Z � 25). You may not need all of the rows,
or you may add more below the last row, as needed.
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7. Rank order the following contributions to the energy
of a molecule in decreasing order: vibrational, rota-
tional, electronic.

(25.15)

the magnetic quantum number mO, can take on any inte-
ger value between � O and specifies the z-component
of L

(25.17)

The spin quantum number for an electron is s �
and its z-component is specified by

(25.20)

where ms � � . These quantum numbers, together
with the Pauli exclusion principle, stating that at most
a single electron can occupy any quantum state,
allows the electronic configuration of multielectron
atoms to be explained in the Periodic Table of the
Elements.

Molecules form from neutral atoms by molecular
bonds of which there are three types: covalent (strongest
sharing of electrons), ionic (weaker with donor/acceptor
groups), and van der Waals (weakest bond). Molecular
energies can be divided into three main types (in
decreasing energy): electronic, vibrational, and rota-
tional. Electronic levels can be probed by uv-vis spec-
troscopy, and vibrational and rotational energy levels
can be probed by IR spectroscopy. Vibrational energy
levels are given by those of a spring of natural fre-
quency f as

1
2

Sz � ms 
-h

1
2

Lz � m/ 
-h;

L �1/(/ � 1) -h; (25.22)

and rotational energy levels are given by those of an
object with moment of inertia I as

(25.23)

Solids can be distinguished in terms of their electri-
cal properties as conductors, insulators, or semiconduc-
tors. The discrete energy levels of individual atoms
become energy bands in a solid. Conductors have free
electrons in the conduction band whereas insulators
have large band gaps between the filled valence band
and the empty conduction band. Semiconductors have
smaller band gaps and can be doped to have either elec-
trons in n-type or holes in p-type semiconductors.

Lasers work by pumping energy into the lasing mate-
rial so as to build up a population inversion in a metastable
state. Stimulated emission then leads to coherent laser
light in a resonant cavity that amplifies the beam intensity.
Lasers can be CW or pulsed and can produce a pencil-like
beam that can be further focused to extremely high inten-
sities of monochromatic light. Applications include the
areas of communications, including data storage and
retrieval, medicine, as a probe or surgical tool, industry,
and science. Holography is a method to produce three-
dimensional images using interference of laser light in
order to capture all the amplitude and phase information
contained in light scattered from some “scene” or object.

Erot �
/1/ � 12-h2

2I
.   / � 0, 1, 2, Á .

Evib � am �
1

2
bhf   m � 0,1,2, Á ,

Electrons Number 1 Letter Number 2

Lowest energy

Next lowest energy

Next lowest energy

Next lowest energy

Next lowest energy

Next lowest energy

Next lowest energy

Next lowest energy

Next lowest energy

Next lowest energy

Next lowest energy

Next lowest energy



8. Why are good electrical conductors also good con-
ductors of heat?

9. Is the number of free electrons in a conductor related
to any net charge on the conductor?

10. What is the difference between an energy level and an
energy band?

11. Discuss the similarities and differences between a
free positive charge and a hole in a semiconductor.
What would happen if all the holes in a p-type semi-
conductor were replaced by actual protons?

12. Suppose that the band gap in an insulator is 6 eV.
What happens to a beam of photons with 400 nm
wavelength when incident on a thin piece of this mate-
rial? Will the material be transparent or opaque to this
light? What happens if the wavelength is 200 nm?

13. How are x-rays generated from a solid target material?
14. What are the distinctive properties of laser light compared

to other types of light such as incandescent or fluorescent?
15. What are the differences between a three-level and a

four-level laser and why are four-level lasers so much
more widespread?

16. The Boltzmann factor (see Equation (25.24)) predicts
that at thermal equilibrium states with higher energy
will have a smaller population that lower-energy
states. How do you reconcile this with the notion of a
population inversion?

17. Discuss some medical applications of the laser. Do
some further research on one of these applications
and discuss the benefits of using a laser.

18. What is the difference between photocoagulation and
photovaporization? Which occurs at lower photon
energy?

MULTIPLE CHOICE QUESTIONS
1. Which of the sketches to the right most closely resem-

bles the electronic energy levels in atomic hydrogen?
(a) a, (b) b, (c) c, (d) d.

light, (c) light from hydrogen emits a single wave-
length of visible light that is pink, (d) pink light goes
straight through a grating without interacting with its
atoms at all.

3. When you turn the eyepiece of the spectrometer
away from the head-on direction the first color of
hydrogen light you see is (a) red, (b) yellow, (c)
green, (d) blue.

4. The red light emitted by hydrogen results from which of
the following n-state transitions? (a) 2 → 1, (b) 3 → 1,
(c) 3 → 2, (d) 5 → 2.

5. For radiation emitted from excited hydrogen atoms,
there is an empirical formula relating the wavelength
of the radiation to some integers ni and nf: 

The numerical value of the constant RH in this for-
mula is identical to the numerical value (a) of c, (b) of
hc, (c) 13.6 eV, (d) of 13.6 eV/hc.

6. According to Bohr’s theory when a hydrogen atom
makes a transition from an n � 5 to an n � 2 state,
the angular momentum changes by (a) 5-h, (b) 2-h,
(c) 3-h, (d) 3-h.

7. For the same transition as in the previous question the
average radial distance of the electron from 
the nucleus changes by (a) 3r1, (b) 25r1, (c) 21r1, (d) 5r1.

8. If a photon is emitted in the transition of multiple
choice question 6 just above, its energy will be 
(a) 0.21 · 13.6 eV, (b) 21 · 13.6 eV, (c) 0.04 · 13.6 eV,
(d) 25 · 13.6 eV.

9. The energy of a violet photon emitted by hydrogen is
closest to which of the following values? (a) 0.1 eV,
(b) 1 eV, (c) 10 eV, (d) 100 eV.

10. How many electrons could possibly be found in a
multielectron atom with orbital quantum numbers 
n � 3, O � 2, and with spin quantum number “up?”
(a) None, that combination is forbidden. (b) 1, 
(c) 2, (d) 5.

11. The ground state electronic configuration of phospho-
rous (Z � 15) is (a) 1s22s23s24s25s26s27s28s1, 
(b) 1s22s22p63s23p3, (c) 1s22s22p23s23p23d24s24p1,
(d) 1s15.

12. An apparent anomaly occurs in the order of electron
shell filling at Z � 19 (potassium). This anomaly is
(a) 2d fills before 3s, (b) 3s fills before 4d, (c) 4s fills
before 3d, (d) 5s fill before 4d.

13. To excite neon (Z � 10) from its ground state to its
first excited state (next lowest energy to the ground
state) requires transferring one of its electrons from a
(a) 1s state to a 2s state, (b) 1s state to a 3s state, (c)
2p state to a 3s state, (d) 2p state to a 2d state.

14. How many electrons could possibly be found with quan-
tum numbers n � 3, O � 1, mO � �1 in some multi-
electron atom? (a) None, because that combination of
quantum numbers is not allowed, (b) 1, (c) 2, (d) 3.

1

l
� RH (

1

nf
2

�
1

ni
2
).
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a b c d

Questions 2–5 concern the hydrogen spectrum viewed
using a spectrometer.
2. When hydrogen light is viewed in a spectrometer at

a setting of zero degrees (forward direction) it
appears pink. This is due to the fact that (a) a grating
produces an intensity maximum for all wavelengths
of light at zero degrees, (b) a grating produces an
intensity maximum at zero degrees only for pink



15. How many electrons could be found in the n � 4, O � 3
subshell of a multielectron atom? (a) 6, (b) 10, 
(c) 14, (d) 2.

16. The angle between the z-axis and the spin-up electron
spin in the ground state of hydrogen is (a) 54.7°, 
(b) 30°, (c) 45°, (d) 69.3°.

17. If atoms were made of protons, neutrons, and nega-
tive pions instead of electrons, what would be the
ground state pionic configuration of the equivalent 
of lithium with 3 pions? (a) 1s22s1, (b) 1s12s12p1, 
(c) 1s3, (d) 1s22p1.

18. At very low temperature we expect that the rotational
and vibrational energies of a material will be (a) both
zero, (b) both nonzero, (c) zero rotational and
nonzero vibrational, (d) zero vibrational and nonzero
rotational.

19. A material with a large (�6 eV) band gap is a
(a) conductor, (b) p-type semiconductor, (c) n-type
semiconductor, (d) insulator.

20. Which of the following is not necessary to produce a
laser beam? (a) A material with a metastable state, 
(b) spontaneous emission, (c) a pumping mechanism,
(d) a resonant cavity.

21. In a four-level laser, the energy of the emitted photon
corresponds to the energy difference between which
two states? (a) The excited state and the metastable
state, (b) the metastable state and the intermediate
state, (c) the intermediate state and the ground state,
(d) the metastable state and the ground state.

PROBLEMS
1. Go through the details of the derivation of Equation

(25.10), filling in all the details.
2. Repeat the calculation of Equation (25.10) but for a sin-

gle electron atom with Z protons in the nucleus (a pos-
itively charged ion with a single electron) and show that
the energy levels are given by En � �(13.6 eV)Z2/n2.

3. Using Bohr theory and conservation of energy, if a
hydrogen atom in the n � 10 state makes a transition
to the n � 3 state emitting a single photon, find the
energy of the photon.

4. Calculate the possible energy emission spectrum
when a collection of hydrogen atoms in the ground
state absorbs enough energy to populate the n � 5
state; that is, find all possible subsequent emitted
wavelengths of light.

5. By relating the constants making up the Rydberg con-
stant to each other through fundamental equations,
show that the units work out to be m�1 and check the
numerical value.

6. Draw a sketch showing the possible spatial orienta-
tions for an O � 3 electron and compute the allowed
angles that the orbital angular momentum vector can
have with the z-axis.

7. How many electrons can there be in an M shell? List
their mO and ms values.
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8. If the principal quantum number of an electron in a
hydrogen atom is 4, what are the possible quantum
states? Label them using spectroscopic notation.

9. The short-lived � particle has a spin quantum number
s � 3/2. Find all possible angles that the �’s spin can
make with respect to the z-axis. (Note that the rules
for spin angular momentum are similar to those for
orbital angular momentum.)

10. Ten identical spin fermions are trapped in the same
infinite square well potential. Refer back to the previ-
ous chapter and calculate the ratio of the total energy
of the ten fermions to the ground state energy. Be sure
to apply the Pauli exclusion principle.

11. A diatomic molecule of N2 has a moment of inertia of
1.67 � 10�46 kg m2, an effective spring constant of
2300 N/m and an effective mass equal to half the
atomic mass of N (2.32 � 10�26 kg).
(a) Calculate the energies of the first three rotational

and the first two vibrational energy levels of N2.
(b) Construct a simple energy level diagram showing

the six energy levels up through an energy equal
to the sum of Evib,second � Erot,third, labeling the
levels with their quantum numbers.

(c) In making transitions between energy levels there
is no restriction on changes in the principal quan-
tum number n. Quantum mechanics tells us, how-
ever, that transitions in vibrational and rotational
quantum numbers must follow the “selection
rule” that �m � � 1 and �O � � 1. Only those
transitions that satisfy both of these are “allowed”
to occur. (Actually others do occur, but much less
frequently.) Assuming that all of the energy lev-
els in part (a) are populated and that they are the
only levels present, how many different allowed
emitted photon energies are there? List the initial
and final quantum numbers of the transition
states.

(d) Calculate the wavelengths of the emitted photons
from the transitions in part (c).

12. A stream of pulses of laser light from a frequency-dou-
bled Nd–YAG laser each has a wavelength of 530 nm,
an average power of 10 W, a pulse duration of 10�9 s,
and the pulses are repeated at 10 Hz.
(a) What is the total energy delivered by the laser

every second?
(b) How many green photons are emitted every

second?
(c) If the pulses are focused down to a 100 �m diam-

eter spot size, what is the average intensity deliv-
ered to the target?

13. Given the first four energy levels of a material to be
�13 eV, �11 eV, �8 eV (metastable), and �6 eV, if
the material is used as a four-level laser, what is the
wavelength of the beam?

14. The National Ignition Facility, an inertial fusion reac-
tor using the world’s most powerful laser, is under con-
struction at Lawrence Livermore Laboratory in

1
2



Q U E S T I O N S /P R O B L E M S 631

California. The facility will use 192 simultaneous laser
pulses (3 ns duration) focused onto a small BB-sized
fuel pellet from different directions to produce the nec-
essary high density and temperature to cause fusion.
On reaching the target the pulses will be in the ultravi-
olet (350 nm) and each will have a power of about 2.6
� 1012 W for its duration. What is the total energy
delivered to the fuel pellet and how many uv photons
will there be in the combined pulses?

15. A new tabletop laser (mode-locked Titanium-sap-
phire) is able to produce 5 fs pulses each with about
20 mJ of energy.
(a) Calculate the pulse power. Compare this to the

average U.S. electric grid power consumption of

about 0.5 TW (with 1 TW � 1012 W). The power
from this tabletop laser rivals that of the NOVA
laser, the world’s largest (in size) functioning laser.

(b) If the laser light is focused down to a 3 �m diam-
eter spot, calculate the pulse intensity.

(c) To get an idea of the magnitude of this intensity
(although it only lasts for the duration of the laser
pulse), given that the total power generated by the
sun is about 4 � 1026 W, the Earth–sun distance
of 150 � 106 km, and the Earth mean radius of
6400 km, find the area onto which the total solar
power reaching the Earth would need to be
focused to get the same intensity as produced by
this laser.
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In this concluding chapter, we first summarize our knowledge of the atomic nucleus
and discuss the types of nuclear radiation emitted by nuclei and how they can be
detected. The rest of the chapter focuses on a variety of applications of nuclear radi-
ation in science and medicine. We start our discussion of applications by introducing
the half-life and its use in radioactive dating. Then we introduce some important
ideas on dosimetry and the biological effects of radiation, as well as some ideas on
nuclear medicine. Two methods (SPECT and PET) are discussed that use nuclear
radiation to do imaging of the body, known as radiation tomography. The chapter
concludes with the processes of nuclear fission and fusion, two topics that should be
understood at a basic level by everyone in this nuclear age.

1.  NUCLEAR SIZE, STRUCTURE, AND FORCES

The nucleus is an extremely small dense object in an otherwise nearly empty atom.
As we’ve seen, atomic sizes are about 0.1 nm. The nucleus is typically several fm
(10�15 m), or about 100,000 times smaller than the atom. To appreciate these rela-
tive sizes, imagine that we scale the size of an atom up to the size of a football field
(100 yd ~ 100 m). On this scale the nucleus would have a relative size of 100 m/
(100,000) � 1 mm, so that it would be like the head of a pin, not in a haystack,
but on a football field. This is truly astounding because almost all of the mass of
an atom is located inside the nucleus. Matter consists of dense cores in mostly
empty space; the head of a pin located within an empty three-dimensional football
field of space.

Remember that the nucleus contains the protons and neutrons (together known as
nucleons) of the atom, representing nearly its entire mass, because protons and neu-
trons each have more than 1800 times the mass of an electron. Unlike the electron,
which appears to be pointlike, having no measurable size, nucleons have a finite size
of about 1 fm. Neutral atoms have equal numbers of protons and electrons, with this
number known as the atomic number and represented by Z; the number of neutrons
in a nucleus is known as the neutron number and represented by N. The total number
of protons and neutrons in a nucleus added together is known as the mass number A,
where

A � Z � N. (26.1)

The integer mass number is approximately equal to the atomic mass. Remember that
atomic masses are measured in atomic mass units (u), defined as 1/12 the mass of the
carbon-12 atom, or 1 u � 1.66 � 10�27 kg.

26Nuclear Physics 
and Medical Applications
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A particular nuclear species is called a nuclide, and is represented by the
chemical symbol of its neutral atom together with its value of A written as a pre-
superscript. For example, 13C represents the nuclide with 6 protons (because all
carbon atoms have six protons), and N (� A � Z) � 13 � 6 � 7 neutrons.
Sometimes the Z value will be written explicitly as 13

6C although this is unneces-
sary because Z is evident from the chemical symbol. Nuclides with the same num-
ber of protons but different numbers of neutrons are known as isotopes; for
example, the two stable isotopes of carbon are 12C and 13C with 6 or 7 neutrons,
respectively; other isotopes of carbon are radioactive, meaning that they are unsta-
ble and “decay” into other nuclides (see below). Figure 26.1 shows a plot of the
known stable nuclides.

Scientists have learned about the size and shape of nuclei from high-energy scat-
tering experiments. Electrons are accelerated to energies large enough (�200 MeV)
so that their wavelengths become comparable to nuclear dimensions, and are then
directed on targets of various nuclei. Recall that l � h /p where p ≈ E/c for relativis-
tic electrons (in this case m0 can be neglected in the expression E2 � p2c2 � m0

2c4),
so that

For the energies just mentioned, the electron wavelength is below 6 fm, small enough
to probe nuclear dimensions. From such experiments it is known that almost all

l � hc / E �
1.2 � 10�12 m

E (in MeV)
.

FIGURE 26.1 Plot of the stable nuclides. The line drawn is for Z � N and the vertical and
horizontal lines indicate the most stable nuclides (see the discussion of magic numbers
below).
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nuclei are nearly spherical (although many of the rare-earth element nuclei, those
with Z � 57 � 71, are ellipsoidal) with somewhat fuzzy boundaries and effective
radii R that depend on the mass number A according to

R � R0 A1/3, (26.2)

with R0 1.2 fm.
Because the density of the nucleus is given by the ratio of its mass (proportional

to A) to its volume (proportional to R3, and thus, according to Equation (26.2), also to
A), perhaps unexpectedly we see that the density of all nuclei is the same. We can
therefore calculate the nuclear density using A � 1, to find that � � 1.67 � 10�27kg/
[(4�/3)(1.2 � 10�15 m)3] 2 � 1017 kg/m3. This is an extremely high density; note
that the density of common materials, and thus of atoms, is only on the order of 103

kg/m3, so that nuclei are 1014 times denser than atoms! Both the greater mass of a
nucleon compared to the electron and, even more, the tiny size of the nucleus com-
pared to atoms are responsible for this.

Our picture of the nucleus as a dense ball of nucleons that are essentially in con-
tact with one another leads to the striking question of why the nucleus is ever stable.
After all, the protons, all with the same positive charge, are extremely close together
in the nucleus and their electrical repulsive force is huge. Two protons that are 2 fm
apart would experience an electrical repulsive force given by

(26.3)

where e is the proton charge and r is the 2 fm separation distance. This force is almost
equal to 60 N (about 13 lb), a huge force that would instantly rip the nucleus apart if
it were the only force acting.

In fact, the nucleus is held together by the strong nuclear force, one of two very
short-range nuclear forces (the other, known as the weak nuclear force, is involved
in radioactive decay). The strong force between two neighboring protons in a
nucleus provides an attractive force roughly 100 times stronger than the electrical
repulsion between the two. This attractive force is the same for all protons and neu-
trons, independent of their electric charge, so that two neighboring neutrons, pro-
tons, or a neutron and a proton all feel the same attractive force. However, the
strong force rapidly vanishes at distances of even a few fm within the nucleus, and
certainly outside the nucleus. A useful simple picture of the nucleus is the liquid

drop model in which the nucleus is pictured as a tiny drop of liquid. This analogy
is appropriate because both the nucleus and a liquid drop have a uniform density,
are incompressible, and are held together by large forces: surface tension forces in
the case of a liquid, strong forces in the nucleus. This model provides a useful way
to look at the process of nuclear fission later in this chapter as analogous to a drop
of liquid breaking into two smaller drops.

2.  BINDING ENERGY AND NUCLEAR STABILITY

The total energy of the nucleus is the sum of its kinetic and potential energy.
Because the potential energy is negative and larger, in magnitude, than the kinetic
energy, the total energy of the nucleus is negative, just as we have seen it is for a
neutral atom. If the nucleus were disassembled into its constituent protons and neu-
trons, their total energy would be more than that of the nucleus. This is just the
same as the case for atoms where energy is needed to ionize an atom, for example,
in hydrogen to separate the electron and proton, so that the energy of the final sep-
arated electron and proton have greater energy than that of the ground state atom.
This difference is due to the binding energy of the atom or nucleus and, in the case

F �
1

4pe0
 
e2

r2
,

�

�



of the nucleus is a considerable amount of energy. For any nucleus of atomic and
mass numbers Z and A, the (positive amount of) binding energy is given by

Nuclear Binding Energy � Zmpc2 � Nmnc2 � mc2, (26.4)

where mp, mn, and m are the masses of the proton, neutron, and nucleus, respectively.
Because the energy equivalent of 1 atomic mass unit is (1 u)c2 � 931.5 MeV (found
from E � mc2 � (1.6605 � 10�27 kg)(2.9979 � 108 m/s)2(1 eV/1.6022 � 10�19 J) �
9.315 � 108 eV � 931.5 MeV (with energy conversion to eV)), we see that the
nucleons each have an energy equivalent of about 930 MeV, whereas a nucleus of
mass number A has an energy equivalent of about A � 930 MeV. A comparable cal-
culation for an atom shows that the atomic binding energy is only on the order of at
most tens of eV.

636 N U C L E A R P H Y S I C S A N D M E D I C A L A P P L I C AT I O N S

Example 26.1 Calculate the binding energy of 2H, 4He, 197Au, and 238U. Their
nuclear masses are, respectively, m � 2.013552 u, 4.001503 u, 196.923090 u, and
238.000180 u. Also calculate the binding energy per nucleon for each of these.

Solution: Using Equation (26.4), the Z and N values of each isotope, and the val-
ues of mp � 1.00727 u and mn � 1.00867 u, we find for 2H, for example, that
the binding energy B is 

Similarly we find B values for 4He of 28.30 MeV, for 197Au of 1560
MeV, and for 238U of 1802 MeV. On a per nucleon basis, these values are 1.113,
7.075, 7.919, and 7.571 MeV/nucleon.

2.226 MeV.
B � (1 # 1.00727 � 1 # 1.00867 �2.01355) # 931.5 �

The nuclear binding energy is about 8 MeV per nucleon for nearly all but
the smallest nuclides. This implies that the nuclear binding energy represents
about (8 MeV)/(930 MeV) 1% of the total nuclear energy, quite a substantial
amount. If each nucleon interacted with all the others in a nucleus we should expect
the binding energy per nucleon to grow in proportion to A, since each nucleon
would interact with (A�1) others. The binding energy per nucleon remains fairly
constant, thus this implies that each nucleon only interacts with its nearest neigh-
bors agreeing with our discussion above of the very short range of the strong
nuclear force.

Figure 26.2 shows the binding energy per nucleon of some nuclides as a
function of mass number. Note that the larger the binding energy, the more stable
the nucleus is. We show that this figure explains the phenomena of both nuclear
fission and fusion. Many large nuclei are unstable and will spontaneously fission
into two smaller nuclei, each of which has a larger binding energy per nucleon
and is more stable. Similarly, under the proper conditions, two protons or other
very small nuclei can combine, or fuse, together to form a larger nucleus that is
more stable. Both of these reactions liberate substantial amounts of kinetic energy.
Fission and fusion are further discussed in the last section of this chapter.

There have been more than 2500 nuclides identified, with only a small number
of these (about 280) stable. What determines whether a particular nucleus is sta-
ble or unstable? This is a complex issue. Figure 26.1 shows that at small values of
N and Z stable nuclides have equal numbers of protons and neutrons, but that as
these numbers increase, stable nuclides tend to have significantly more neutrons
than protons. We can understand this fact as a consequence of the Pauli exclusion
principle and the proton–proton electric repulsion. Recall that the exclusion prin-
ciple states that interacting identical fermions, those elementary particles with
half-integral spin, must have distinct quantum numbers. Protons and neutrons both
have spin 1⁄2 and therefore must separately satisfy this principle.

�



For a nucleus, just as for an atom, there are discrete energy levels at which
nucleons can reside (discussed further below). If we consider a sequence of
increasing Z ground state nuclides, as more protons are found in the nucleus they
must occupy higher energy levels because only a spin-up and a spin-down proton
can occupy the same otherwise labeled quantum state. An identical situation occurs
for neutrons in a sequence of increasing N ground state nuclides. However, because
protons and neutrons are different particles, they can occupy the same energy level.
This implies that the energy of a nucleus with Z protons and no neutrons will be
greater than the energy of a nucleus with Z/2 protons and Z/2 neutrons, because
these can occupy the same set of the lower half of the energy levels (see Figure 26.3).
Thus, for a given A, those nuclides with roughly equal Z and N numbers will have
the lowest energies based solely on the exclusion principle, and will therefore be
more stable.

As more protons are packed into the nucleus, there is a second consideration. The
repulsive electrical force between the protons begins to destabilize the nucleus and so
there is a tendency for more neutrons than protons to be found in larger stable nuclei.
These additional neutrons do not contribute to the electrical potential energy, but they
do tend to separate the protons, thus stabilizing the nucleus by reducing the Coulomb
interaction energy. This effect explains why the data in Figure 26.1 fall from the Z � N

line at larger values. For Z � 82 (lead) additional neutrons do not eliminate the
destabilization of the nucleus from large numbers of protons and these nuclei are all
unstable.

Although nuclear energy levels are very complex and no complete theory of
the nucleus yet allows their precise calculation, there are some similarities between
atomic and nuclear energy levels. A third factor that affects whether a nucleus is stable
has to do with its energy level structure. When we discussed atoms and the Periodic
Table of the Elements, we saw that the noble gas elements in the right-hand column
all have completed electron shells and are extremely inert and
stable. A similar energy level shell structure exists in the nucleus
and those nuclides with closed shells are particularly stable.
The numbers of nucleons in such closed shells are dubbed the
magic numbers 2, 8, 20, 28, 50, 82, 126, . . . and apply to both the
numbers N and Z (see Figure 26.1). For example, the 4He
nuclide (also known as the alpha particle) is extremely stable
because it has the magic number 2 for both N and Z. This can be
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FIGURE 26.2 The binding energy
per nucleon as a function of A. Note
the absolute maximum at 56Fe and
the minor peak at 4He, as well as
the average value of about 
8.5 MeV/u.

FIGURE 26.3 Schematic energy
level diagram for eight protons (left)
or four protons and four neutrons
(right). The arrows represent
protons (blue) or neutrons (green)
with spin up or down.



seen in Figure 26.2 where 4He has an unusually high binding energy in its region
of the curve.

Nuclei that are not completely stable are called radioactive and come apart at
some point in time. In the next section we discuss properties of radioactivity, and
later sections focus on a variety of applications of nuclear radiation.

3.  TYPES OF RADIATION AND THEIR MEASUREMENT

The science of nuclear physics was born in 1896 when Becquerel, while working
with photographic plates, accidentally discovered that a mineral (containing ura-
nium) was able to expose the plate while in the dark. Shortly after this, the Curies
(Marie and Pierre) isolated two new elements, named polonium and radium, and
characterized the radiation they emit. Rutherford and others found that there are
three distinct classes of nuclear radiation, based on their penetrating power: one
type (named alpha, 	, rays) can be stopped by several sheets of paper; a second
more penetrating type (beta, 
, rays) can be stopped by several mm thickness of
aluminum; and a third most penetrating type (gamma, �, rays) can pass through
several cm of lead or through thick concrete walls. It was subsequently discovered
that 	 rays are helium nuclei (4He), that 
 rays are high-speed electrons, and that
� rays are high-energy photons. These radioactive particles are all emitted from
radioactive nuclei.

We might begin by asking why these three types of particles and no others are
the products of natural radioactivity. The primary requirement for a nucleus to be
radioactive is that it must have more total energy than its products. This requirement
can be written as

Q � (mP � �mi)c
2 � 0, (26.5)

where mP is the mass of the original nucleus, the so-called parent, and the summa-
tion is over the masses of all the products, mi. In 	, 
, or � decay, where in addition
to the nuclear radiation, one of the products has most of the mass, it is called the
daughter. The excess energy Q is known as the decay energy (or simply the Q of the
reaction). Single nucleons are not emitted in nuclear decays because either Q � 0 for
that reaction (the usual case), or, if the reaction is energetically possible, it occurs so
rapidly that the parent nucleus has all decayed away and is not naturally found. An
isolated unstable nucleus will decay by the emission of either 	, 
, or � radiation. We
also study another type of nuclear reaction in which a collision between a nucleus and
another nucleon can result in the splitting of the nucleus into two fission products of
roughly equal size.

Alpha decay is the spontaneous emission of an alpha particle from a
nucleus. Because the alpha particle 4

2He consists of two neutrons and two protons, if
the parent nucleus has Z protons and N neutrons, the daughter nucleus will have Z � 2
protons, N � 2 neutrons, and A � 4 nucleons in total. In alpha decay the original
atom undergoes transmutation, becoming another element: whereA

z E n
A�4
Z�2E¿ � 4

2He,
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E is the parent and E
 the daughter nucleus. The Q for this decay would be given by
Q � (ME � ME
 � MHe)c

2 and, assuming the parent is at rest, Q essentially repre-
sents the kinetic energy of the emitted alpha particle (the daughter will necessarily
recoil—in order to conserve linear momentum—but will carry off only a small frac-
tion of Q; see Problem 7).

Often the daughter nucleus of an alpha decay itself also undergoes alpha decay.
This process defines a radioactive series, whereby each subsequent alpha decay
results in a daughter with 4 fewer nucleons, eventually culminating in a stable
nucleus. There are four possible series for alpha decay, based on whether the starting
nucleus has an A equal to 4n, 4n � 1, 4n � 2, or 4n � 3. For example, one such



series (4n) begins with thorium 232Th and ends with the stable lead nuclide 208Pb (see
Figure 26.4). Of these four possibilities, only three appear on the Earth, because the
longest living element of the 4n � 1 series has completely decayed away to stable
products.

The alpha particle has both charge (�2e) and is relatively massive, therefore
once it is ejected from a nucleus it will interact with matter rather strongly compared
to beta and gamma radiation and has relatively little penetrating power, being stopped
by paper. On the other hand, because of its charge and mass, it tends to be the most
ionizing type of radiation as it passes through matter. This is discussed further in
Section 5.

Beta decay is the spontaneous emission of a high-energy electron (or positron, the
antiparticle to the electron with the same mass and charge magnitude, but positive)
from a nucleus. The electron is not an orbital electron of the atom, but comes directly
from inside the nucleus where it is created just before being ejected. Examples of beta

decay are the transmutation of 14C according to and of 19Ne

according to where � is a neutrino, a neutral, nearly massless

particle that is very difficult to detect (there are several types of neutrinos; we make
no distinctions here). Note carefully that this decay conserves charge as can be seen
by adding up the charges or Z numbers on the right, where the electron e� (positron
e�) is sometimes written as to indicate its charge.

Because there are no electrons e� (or positrons, e�) to be found in the nucleus,
how does this occur? The answer lies in the conversion of one type of nucleon to
another within the nucleus. Either a neutron within the nucleus can spontaneously
convert to a proton according to

(26.6)

or a proton can convert to a neutron according to

(26.7)

Note that both Equations (26.6) and (26.7) conserve electric charge (in Equation
(26.6), both the left and right sides have 0 net charge; in Equation (26.7), both
sides have �1 charge) and conserve the number of nucleons. The new nucleon
will remain in the daughter nucleus; thus, when a nucleus undergoes beta decay,
the mass number A does not change, but the Z will increase (e� emission) or
decrease (e� emission) by 1 with N correspondingly decreasing or increasing. The

p n n � e� � n

n n p � e� � n,

�1
0
 e (1

0
 e)

10
19 Ne n 9

19 F � e� � n,
6
14 C n 7

14 N � e� � n
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FIGURE 26.4 The thorium alpha
decay series. Note that the only
naturally occurring nuclides in this
series are 232Th and 208Pb because
all of the others have relatively
short half-lives. Alpha decays (	)
result in a decrease of the mass
number A by 4 (and Z by 2 deter-
mining the nucleus name) whereas
beta decays (
) produce no change
in mass number A (but a change in
Z of � 1, changing the nucleus
name; see just below).
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ejected beta particle (e� or e�) and neutrino together acquire essentially the total
kinetic energy Q released in the decay (Q � (MParent � MDaughter)c

2, because the
beta particle has negligible mass), so that the electron can have any energy
between essentially 0 and Q, whereas the neutrino gains the balance of Q in
kinetic energy. The beta particle is identical to any electron, but is so named sim-
ply to indicate it originates in a nucleus.

When beta decay was first characterized, the variable energy of the emitted
beta particle was not understood because the neutrino had not been detected. In
addition to an apparent violation of conservation of energy, the laws of conserva-
tion of momentum and angular momentum appeared to be violated as well. In 1934
Enrico Fermi worked out a detailed theory of beta decay, proposing not only the
existence of the neutrino, but a fourth type of fundamental force in nature known
as the weak nuclear force. It was not until 1953 that direct laboratory evidence for
the neutrino was obtained, but it had been accepted long before based on scientists’
belief in the fundamental conservation laws. It is currently thought that neutrinos
are the most ubiquitous of all particles in the universe. In 1998 the first experi-
mental evidence was obtained for a very small, but nonzero, neutrino mass by an
international team of 120 scientists working in Japan. These experiments are very
difficult and still a bit controversial. If nonzero, even if extremely small, the vast
numbers of neutrinos in the universe would contribute substantially toward the total
mass of the universe.
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Example 26.2 Calculate the Q for the following reactions: (i) the alpha decay of
238U to 234Th; and (ii) the 
� decay of 234Th to 234Pa. Use the following data: the
nuclear masses of m(238U) � 238.00018 u, m(4He) � 4.00150 u, m(234Th) �
233.99409 u, and m(234Pa) � 233.99325 u, and m(
) � (9.11 � 10�31/1.66 �
10�27) � 0.00055 u.

Solution: (i) The alpha decay products of 238U are 4He � 234Th. We calculate
the Q for this reaction, to be Q � [m(238U) � m(234Th) � m(4He)]c2 �
(0.00459)(931.5) � 4.28 MeV.

(ii) In this case the reaction is 234Th →
234Pa � 
� � �, where the protactinium

(Pa) nucleus has one more proton formed in the beta decay. Here we can calcu-
late the Q of the reaction ignoring the neutrino produced. Doing this, we find that
Q � (233.99409 � 233.99325 � 0.00055)(931.5) � 0.270 MeV. This is the
maximum kinetic energy the electron can have because otherwise the neutrino
may carry off some energy as well.

Gamma decay, the third type of radioactivity, is the emission of a high-energy
photon from a nucleus. The gamma ray is emitted when a nucleus makes a
downward transition between two nuclear energy levels, just as a photon is emit-
ted from an atom when it makes a downward transition between atomic energy
levels. A major difference is that, because of the much larger energy spacing
between nuclear energy levels, a gamma ray has a much higher energy, about a
million times more than a photon from an atomic transition. This much larger
energy corresponds to a much shorter wavelength for gamma rays, on the order of
10�12 � 10�15 m. Typically, gamma rays are emitted by daughter nuclei that
are left in excited states after 	 or 
 decays as they relax back to their ground
state.

Because gamma rays have no charge, they are the most penetrating of the three
types of radiation. Medical imaging techniques that use radioactive isotopes
require the emitted radiation to escape from the body in order to be detected. These



techniques use gamma emitters because 	 or 
 rays have such short penetrating
distances that they will not escape from the body. This is discussed further in
Section 7 below.

We conclude this section with a discussion of the detection of nuclear radiation.
There are several general methods to detect individual radiation particles as well as
several methods to visualize the trajectory of these particles. One basic class of
detectors is the ion collection detector, consisting of a high Z gas (typically xenon)
filled chamber with a thin window through which radiation enters (Figure 26.5).
Inside are two electrodes (a negative cathode and positive anode) across which a
high voltage is applied. Ionizing radiation that enters the tube interacts with the gas
to create ion pairs that travel to the electrodes and make up a current. If the applied
voltage is high enough, the current generated is proportional to the amount of ion-
izing radiation. Such detectors are called proportional counters. At even higher
applied voltages, a single ionization event will trigger an avalanche of subsequent
ionizations of the gas and under these conditions the detector is called a
Geiger–Muller counter (sometimes a Geiger tube or counter). Geiger counters are
excellent for detecting small amounts of radiation because of the large degree of
amplification. In general, ionization detectors have limited application in nuclear
medicine because they have poor efficiency for gamma rays which are the primary
information-containing decay product, as mentioned above.

A second type of radiation monitor is a scintillation detector, consisting of a
scintillator coupled to a photomultiplier tube (Figure 26.6). The scintillator, or phos-
phor, is a material (typically NaI crystals, plastics, or a liquid) that emits visible light
when excited by radiation. These are dense materials that are very efficiently excited
by radiation, including gamma rays, and have relatively fast response times. The
number of photons produced is proportional to the energy of the incident radiation
and the light produced is then detected by the photomultiplier tube (see the photo-
electric effect discussion in Chapter 24) whose output photocurrent can be analyzed
to determine the energy of the incident radiation.

Semiconductor detectors that use p–n junctions (see Chapter 25) to detect
ionization due to radioactive particles are a third type of detector. Electron–hole pairs
created in the p–n junction by radioactive particles constitute an electric current pro-
portional to the radiation energy.

A number of devices allow one to visualize the path of a single charged particle.
The simplest is a photographic emulsion in which a chemical change along the
particle’s trajectory can be developed to visualize the path. Two other devices, the
cloud chamber and bubble chamber, make use of either a supercooled gas (that is
ready to condense on any ionized particle) or a superheated liquid (that is ready to
boil along the path of an ion), respectively, to visualize the trajectory of a high-
energy ion. Usually a magnetic field within the chamber causes the charged
particles to travel in helical paths. (Do you remember why?) Photographs of the
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FIGURE 26.5 Schematic of a
Geiger counter used to measure
the presence of radiation.
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FIGURE 26.6 A scintillation 
detector, converting radiation to
light in the scintillator, the light then
being detected by a photomultiplier
and converted to an electric 
current signal.



charge track (Figure 26.7) can then be used to measure the
radii of curvature to deduce the momentum and sign of the
charge of the particle.

4.  HALF-LIFE AND RADIOACTIVE DATING

In a macroscopic collection of radioactive nuclei, each
nucleus decays independently of all the others. In fact
because each nucleus is shielded by its atomic electrons,
even environmental conditions of pressure, temperature,
and the like do not affect radioactivity. It is impossible to
predict when any particular nucleus will undergo radioac-
tive decay. The radioactive decay process is a purely ran-
dom one. We can, however, make statistical predictions
about the fraction of nuclei that will decay in a given time
interval based on an assumption that the probability for a
decay is the same in every equal time interval up until the
nucleus actually does decay. Once the parent transmutes to
the daughter nuclide, that particular nucleus cannot repeat
the process. Only if the daughter is itself radioactive can it
decay further, but that process is described by a different
probability.

This statistical notion allows us to write that the decrease
�N in the total number of N nuclei in a sample (�N equal to
the number of radioactive decays) in a short time interval �t

is proportional to the time interval and to the total number of
nuclei in the sample. In symbols we have that

(26.8)

where the proportionality constant � is called the decay constant whose value
depends on the particular radioactive nuclide. Equation (26.8) can be solved for the
number of nuclei N at any time t using calculus (see box) to find

(26.9)

where N0 is the number of nuclei at time t � 0. Equation (26.9), plotted in Figure 26.8
normalized to the fraction remaining, is known as the law of radioactive decay. The
time � � 1/� is known as the lifetime of the decay and represents the time for
the number of parent nuclei to decay to N0/e � N0/2.718, as shown in the figure. The

N(t) � N0 e�lt,

¢N � � lN¢t,
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FIGURE 26.7 Bubble chamber photo showing several 
interaction sites (vertices where tracks meet) and spirals 
indicating long-lived charged particles undergoing 
energy loss.
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number of parent nuclei decreases exponentially with time. In subse-
quent equal time intervals �, the number of parent nuclei will continue
to decrease by the same ratio of 1/e as indicated in the figure, so that
after two lifetimes there will be N0/e 2 nuclei left, after three lifetimes
N0/e3, and so on.

More commonly the rate of decay is specified by the half-life,
defined as the time for the number of parent nuclei to decrease by a fac-
tor of two, rather than a factor of e (see Figure 26.8). Using Equation
(26.9), we can substitute N(t) � N0/2,

and then solve for t1/2 by taking the logarithm of both sides to find that

(26.10)

After one half-life there are N0/2 nuclei remaining, after two half-lives
there are (N0/2)/2 � N0/22 � N0/4 remaining, after three half lives
(N0/4)/2 � N0/23 � N0/8 remaining, and so on. The half-lives of various
radioactive isotopes are listed in Table 26.1. Half-lives in nature vary
from vanishingly short (10�22 s) to nearly everlasting (1021 years).

t1/2 �
loge 2

l
�

0.693

l
.

N0 /2 � N0 e�lt1/2
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Writing the �s in Equation (26.8) as
differentials, we have

Dividing by N and integrating both sides
from time 0 with N0 nuclei to some arbi-
trary time t with N(t) nuclei we have

Remembering that the integral on the left is
the natural logarithm of N, we have

Then, using the definition of the logarithm,
we can rewrite this as Equation (26.9). Also
note that by differentiating Equation (26.9)
we can obtain Equation (26.11) for the
activity,

dN

dt
��N0le

�lt � cdN

dt
d
0
 e�lt,

� �lt.

loge(N(t)) � loge(N0) � logea
N(t)

N0
b

LN0

N(t) dN

N
� �l  L

t

0
dt.

dN ��lNdt.

Table 26.1 Half-Lives of Some Radioactive Nuclides

Isotope Symbol Half-Life Radioactivity

Uranium-238 238U 4.5 � 109 years 	, �

Carbon-14 14C 5730 years 


Radium-226 226Ra 1600 years 	, �

Strontium-90 90Sr 29 years 
, �

Cobolt-60 60Co 5.3 years 
, �

Iodine-131 131I 8 days 
, �

Fluorine-18 18F 1.8 h 


Barium-141 141Ba 18.3 min 
, �

Krypton-92 92Kr 1.8 s 
, �

Polonium-214 214Po 164 �s 	, �

where we have used the first equation in
this box in the second step.

The rate at which radioactive nuclei decay, �N/�t, is called the activity and is
measured in disintegrations/s, or bequerel (Bq), where 1 Bq � 1 disintegration/s. A
more common unit of activity is the curie (Ci), with 1 Ci � 3.7 � 1010 Bq. The curie
is a rather large unit of activity in nuclear medicine and the mCi and �Ci are often
used. Activity can be directly measured by detection of the decay products. Because
the number of decays in a short time interval is proportional to the number N of par-
ent nuclei (see Equation (26.8)), the activity also decays exponentially with time
according to

(26.11)

where the subscript again indicates the zero-time value. This should make intuitive
sense; if after 10 half-lives there are 1/210 fewer radioactive nuclei, then the rate at
which decays occur would also be expected to be smaller by the same factor.

¢N

¢t
� a¢N

¢t
b

0
e�lt,



One application of radioactivity is the dating of ancient materials. A commonly
used method is 14C dating (carbon-14 dating) of the age of once living organisms. All
living plants and animals are carbon-based. There are two stable isotopes of carbon
with 12C representing close to 99% and 13C about 1%. Carbon-14, a beta emitter with
a half-life of 5730 years, is formed in the upper atmosphere by the interaction of cos-
mic rays with nitrogen in the air. The amount of 14C is very small, roughly 1.3 � 10�12

times as much as 12C, but its net amount has remained stable over many thousands of
years due to the balance in its production in the atmosphere and its radioactive decay.
All living material incorporates 14C, ultimately by the absorption of CO2 in the air dur-
ing photosynthesis in plants. Animals incorporate 14C on eating plants or other animals
that have eaten plants earlier in the food chain. However, when an organism dies, no
new 14C is further incorporated so that the ratio of 14C to 12C steadily declines with age
after death, by a factor of two for every 5730 years. Measurement of 14C activity can
thus be used to date the age of the remains of such organisms.

For objects older than about 60,000 years, carbon dating does not work because
there is too little 14C activity left to measure accurately. By using other isotopes with
much longer half-lives, such as 238U, the geological age of rock formations can be
determined in much the same way. A measurement of the parent to daughter ratio can
be used to date materials back billions of years. Dating the oldest rocks found, the
age of the Earth has been measured to be about 4 billion years. The oldest fossils
found date from about 3 billion years ago. Radioactive dating has been critical in a
host of geological and evolutionary studies.
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Example 26.3 Suppose that you wish to authenticate animal skin remains from
one of the earliest known collections of animals, that of Shulgi, a Sumerian ruler
of a territory now in Iraq, dating back to 2094 BC. You take a small sample of
the skin and chemically analyze it for carbon. From a 10 g sample of carbon,
what activity would you expect to measure if the sample is indeed authentic?

Solution: First we need to find the number of carbon nuclei present in the 10 g
sample. We do this by assuming that essentially all the carbon is 12C so that there
are (10 g)(1 mol/12 g)(6.02 � 1023 nuclei/mol) � 5.0 � 1023 nuclei present.
Thus, when alive, the animal would have had about (1.3 � 10�12)(5 � 1023) �
6.5 � 1011 14C nuclei present. In that case, from Equations (26.8) and (26.10)
and the fact that 5730 y � 1.81 � 1011 s, we know the initial activity was �N0 �
(ln 2/�1/2)N0 � (0.693/1.81 � 1011)(6.5 � 1011) � 2.49 Bq. If the animal skin is
indeed authentic, it would be nearly 4100 years old. According to Equation
(26.11) then, the expected count rate would be

Note that this rate would need to be measured very precisely by averaging over
long times to ensure a reliable value because the count rate is so low.

¢N

¢t
� 12.49 Bq21e�4100/57302 � 1.22 Bq.

Our discussion of radioactive decay in this section thus far has been limited to
a single radioactive species decaying away according to Equation (26.9). In a more
typical situation, there are several radioactive nuclides that decay successively
from one to another in a radioactive series such as the thorium decay chain dis-
cussed in the previous section. In this case the parent nuclide will decay according
to Equation (26.9), but each of the other nuclides in the series will be produced by
the preceding decay and so the populations of these nuclides need to be found from
their production rates, shown schematically in Figure 26.9.



Using a similar analysis to that above for Equation (26.8), the change in first daugh-
ter population will be given by

(26.12)

where the first term on the right-hand side is the rate at which the population of first
daughters increases from decays of parent nuclides, and the second term on the right
is the rate at which first daughters decrease from its own decay at rate �1. A similar
equation will hold for each subsequent daughter population.

These equations can be solved for a variety of interesting cases, but the most
common situation is one in which the parent decay rate is the slowest. Then over very
long times, the parent population will decrease exponentially, according to Equation
(26.9). But over much shorter times, the parent population N0 will essentially remain
constant and will thus supply the first daughter population at a constant rate. Now
because the first daughter decay rate is much faster, its population N1 will remain
constant at a value controlled by the parent supply of first daughters. Under this con-
dition, after a sufficient equilibrium time, all the N(t) will be constant in time, so that
the left-hand side of Equation (26.12) becomes equal to zero. Then we find that

(26.13)

and we can find the first daughter population to be a constant N1 � (�0/�1)N0 in terms
of the constant parent population N0. The same story will follow for the second and all
other daughter populations in terms of that of the first, or previous, daughter population.

This analysis explains why it is possible to have naturally occurring very short
lifetime alpha emitting nuclei, such as are found in the radioactive series discussed in
the previous section. If you look back at Figure 26.4 you will see, for example, that
polonium-212 decays to lead-208 by alpha emission with a half-life of 0.3 �s. Why
should there be any Po212 left in naturally occurring ores mined on the Earth? The
answer is that Po212 is a daughter in the radioactive series that has thorium-232, with
a 14 billion year lifetime, as parent. The series of nuclei produced from Th232 con-
tinually produce new Po212 at essentially a constant rate.

5.  DOSIMETRY AND BIOLOGICAL EFFECTS OF RADIATION

The interaction of nuclear radiation with matter leads to ionization; in fact, nuclear
radiation (as well as uv and x-ray photons) is sometimes also referred to as ionizing
radiation. Because energies of only tens of electron volts are sufficient to ionize
atoms, 	, 
, and � particles, with energies of MeV, are each able to ionize many
thousands of atoms before losing their energy. It is this ionization that makes nuclear
radiation dangerous to living organisms. Here we introduce various units to measure
exposure, and discuss those doses and the relative biological effects of radiation.

A unit of exposure, the roentgen (R), was first introduced to define the extent of ion-
ization produced by x-rays, but is also used for gamma radiation. Defined as the total
number of ion pairs produced in a volume of 1 cm3 of dry air under standard conditions
(0°C and 1 atmosphere of pressure), one roentgen is given by 1 R � 2.58 � 10�4 C/kg
air. This is a unit of exposure, giving the ionization level in air, but it does not give any
information about absorption of radiation by living tissue or its effects on that tissue.

A measure of the absorbed dose of radiation, the absorbed energy per unit mass, is
the gray (Gy), where 1 Gy � 1 J/kg. An older unit, still commonly used today, is the
rad, where 1 rad � 0.01 Gy. For a given exposure, the absorbed dose will vary greatly
depending on the absorption characteristics of the material and the type of radiation.

N0l0 � N1l1 

¢N1 (t) � [N0 (t)l0 � N1 (t)l1 ]¢t,
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FIGURE 26.9 Schematic for series of radioactive decays, where the
N’s are the populations and the �’s are the decay constants.
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Furthermore, the amount of damage produced by a constant absorbed dose will also
vary depending on the type of radiation. To account for these, another type of quantity
is introduced, the biological dose equivalent, measured in sieverts (Sv), and given by

biological dose equivalent (in Sv) � absorbed dose (in Gy) � RBE,        (26.14)

where RBE is a dimensionless weighting factor, named for relative biological effective-
ness, that depends on the type of radiation. Values for RBE are given in Table 26.2.
These values are obtained by considering the dose of radiation needed to produce the
same effect as a dose of 200 KeV x-rays. Their exact values are somewhat fuzzy, because
the relative effects of radiation on biological tissue depend on the particular choice of
assay. From the table, we see that 
 and � rays produce similar effects to these x-rays and
nucleons or 	 particles produce considerably more damage to biological tissue. Another
unit commonly used for biological dose equivalent is the rem, where 1 rem � 0.01 Sv
(note that the rem is commonly used when the absorbed dose is measured in rads, so that
the biological dose equivalent (in rem) � absorbed dose (in rad) � RBE).

Table 26.2 Relative Biological Effectiveness (RBE) 
of Different Types of Radiation

Type of Radiation RBE

200 KeV x-rays 1

� 1


 1

	 20

Neutrons (fast) 10

Protons 10

Our environment has many sources of natural radioactivity. We are all exposed
to radioactivity from a continual shower of cosmic rays on the Earth (varying with
altitude and latitude), from certain minerals found in building materials, from natu-
rally found radon gas in the Earth that can enter and accumulate in basements, and
even from radioactive elements (notably 14C and 40K) within our bodies. In addition,
radiation is produced by many of the manmade devices in our environment, includ-
ing television and cathode ray tube (CRT) computer monitors (but not liquid crystal
display (LCD) monitors), luminous dial watches, as well as common dental and med-
ical x-rays. To evaluate health risks posed by exposure to radiation, scientists have
measured typical human biological dose equivalents and the U.S. government has
established guidelines for maximum permissible occupational exposure. Table 26.3
shows some typical radiation doses from a variety of sources.

Table 26.3 Typical Human Radiation Doses

Source Annual Dose (Sv)

Cosmic rays 4 � 10�4

Cosmic rays (in high altitude airplane) 7 � 10�6 Sv/h

Radioactive ores (external exposure) 6 � 10�4

Ingested materials (mainly potassium) 2 � 10�4

Inhalation of radon 2 � 10�4

Diagnostic x-rays 7 � 10�4

These doses should be compared to average annual doses that hospital radiologists
receive of about 5 � 10�3 Sv or to the maximum natural exposure to cosmic rays in moun-
tainous areas of Brazil of about 10�2 Sv/year. Studies of these populations show no effects
of these higher doses on mortality statistics. For comparison purposes single whole-body



radiation doses at higher levels do have significant effects at levels over 0.50 Sv. At levels
up to about 2 Sv there is a significant reduction in blood platelet and white cell counts.
Above this level there is severe blood damage, nausea, hair loss, hemorrhage, and short-
term death in many cases. Whole-body doses between 4 and 5 Sv result in death to about
50% of such a population, and doses over 6 Sv result in nearly universal death. Long-term
effects of radiation can be due to short-term high exposure or to accumulated chronic low-
level exposure. Federal standards indicate an individual maximum annual exposure of 5 �
10�3 Sv, excluding medical sources. This is increased a factor of 10 for people who work
with radiation sources, such as radiation technologists.

It is thought that radiation kills cells by damaging their DNA so that the cells can-
not reproduce or by causing sufficient other damage to prevent the cell’s normal repair
mechanisms from working effectively. In medicine, radiation is often used to destroy
cancer cells in a limited area of the body. Of course radiation will also kill healthy cells,
particularly those that turn over rapidly, such as blood platelets and white cells or the
cells lining the intestinal wall. That’s why the typical symptoms of radiation sickness are
GI problems due to effects on the intestinal wall, immunological suppression due to
white cell kill-off, and general weakness due to red cell and platelet kill-off. By giving
radiation over a period of time in repeated smaller doses, it is often possible to minimize
damage to normal cells while still killing tumor cells. The chemical changes induced by
radiation are caused by the formation of free radicals, enhanced by the presence of oxy-
gen. Therefore the oxygen content of a particular tissue or cancer type will affect the suc-
cess of the radiation treatment. In the following two sections we discuss nuclear
medicine further, focusing on the use of radioisotopes for both therapy and diagnostics.

6.  RADIOISOTOPES AND NUCLEAR MEDICINE

The key to understanding the use of radioactive isotopes (radioisotopes) in biological
studies and in medicine is the fact that chemistry and radioactivity are completely inde-
pendent processes. Chemistry is based on valence electron interactions and does not
depend at all on nuclear properties. As an example of this, hydrogen and its isotope deu-
terium (an atom made from a single electron and a nucleus with one neutron in addition
to a single proton) have exactly the same chemistry. The only difference in these two is
their mass difference of nearly a factor of two. Because of this deuterium is often used in
science experiments (in various types of spectroscopy) as an indicator of the location of
hydrogen atoms because they bind in the same way chemically. Incorporation of radioac-
tive isotopes in cells or in the body at very low doses does not directly change the normal
sequence of chemical events that occurs. This fact allows radiolabeling (also known as
tagging or tracer studies) to follow a particular type of molecule in its pathway through
an organism. In this section we discuss several aspects of nuclear medicine, including the
production and types of radioisotopes in use, tracer studies and detection methods in bio-
logical research, and various diagnostic tests in medicine using radioisotopes.

In order to safely use radioisotopes in medicine, not only must the dose be well
controlled, but the half-life of the isotope must be relatively short so that the radioac-
tivity is quickly reduced, causing no long-term problems. The typical dose used in diag-
nostic tests is so low (~10�8 Sv/h) that there is no danger from radiation. Some
commonly used radioisotopes are listed in Table 26.4. Technetium(Tc)-99m is the most
common of these and can be combined with many different molecules to act as a radio-

pharmaceutical. It has a half-life of only 6 h so that in order to have sufficient amounts
available for hospital studies it must be freshly extracted from molybdenum-99, itself
having a 67 h half-life—a useful life span of about a week—and itself usually prepared
in-house in a major hospital as discussed just below. The 99Mo is bound to a solid
matrix in a chromatography column and as the technetium-99m forms by beta decay it
is washed from the column and then can be used directly or as a radiopharmaceutical
when labeling another molecule. Technetium-99m does not emit beta particles and its
gamma emission is at an energy of 140 keV, a relatively low energy so that many escape
the body to be detected. Furthermore, it has a very versatile chemistry and can be
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When radiopharmaceuticals are used in human diagnostic studies, there are two
important characteristic times to consider. First, there is the physical half-life of the par-
ent radioisotope, �1/2, as discussed above, that is due solely to nuclear decay. A second
time constant is also important in these studies, the biological half-life �b equal to the
time for the body to wash out half of the pharmaceutical. This latter time constant is not
of the same well-defined character as the radioactive half-life, but has considerable
variability. These two processes occur simultaneously so that the effective decay rate in
the body is given by the sum of the two different rate constants. This should make sense
since both paths, physical radioactivity and elimination from the body, act to decrease
radioactivity within the body and hence the effective rate constant should be their sum.
The rate constant is the reciprocal of the corresponding time constants, therefore the
overall effective half-life �e is given by a “parallel” combination of time constants (sim-
ilar to the effective resistance of parallel combinations of resistors),

(26.15)

Thus, the effective half-life is shorter than either the physical or biological half-life,
just as the effective net resistance is less than either resistance in parallel. The most
dangerous of environmental sources of radiation are those that are ingested and have
long effective half-lives. An example is strontium-90 that can replace calcium in
bones. It has a long biological half-life (45 years) as well as a long physical half-life
(29 years), with a corresponding effective half-life of over 17 years.

The fact that radioisotopes used in medicine need to have short half-lives means that
they must be constantly replenished for use in hospitals and other medical facilities (they
really have a built-in shelf life!). Major hospitals have special supply arrangements or
even in-house facilities for their production. Two methods are used to produce radioiso-
topes: nuclear reactors or accelerators. In nuclear reactors, either neutron beams are used
to produce radioisotopes with excessive numbers of neutrons that primarily decay by
beta, followed by gamma, emission, or the reactor fission products are isolated and
purified. This latter method is the primary source for 99Mo, the parent nucleus for
technetium-99m, the most often used radioisotope. Cyclotrons (see Problem 21 in
Chapter 17) and linear accelerators with proton beams are used to produce proton-rich
radioisotopes. The production sources of the radioisotopes listed in Table 26.4 are indicated.

Medical research often uses radioactive tracers as an in vitro tool. When used in
test tube studies, radioisotopes provide a variety of methods in cellular and
subcellular work. Some of the earliest uses of tracers were to map out biochemical
pathways. Radioactive tracers can be used to determine rates of metabolic processes,
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Table 26.4 Some Commonly Used Radioisotopes in Medicine

Radioisotope Half-Life Radiation Applications

Technetium-99m *6 h � Most widely used

Iodine-123 13 h � SPECT brain imaging

Carbon-11 20 min e� PET

Iodine-131 *8.1 days 
,� Thyroid disorders

Phosphorus-32 *14 days 
 Large variety of uses in biology 
and medicine

Thallium-201 74 h � Heart imaging

Gallium-67 78 h � Tumor imaging

Chromium-51 *28 days � Red blood cell survival

*Produced in nuclear reactors; otherwise produced in an accelerator.

incorporated into a wide range of biomolecules that can be used to target different
organs or tissues in the body. These are introduced into the body by injection, inges-
tion, or inhalation and then imaged, as discussed in the next section.



predominant pathways for biosynthesis and metabolism reactions, as well as spatial
localization information. These are done by various chemical testing methods com-
bined with measuring radioactivity levels at various stages in separations.

Tracers can also be used in amounts too small for chemical testing. For example,
a radioimmunological assay can determine the amount of an antigen present even in
tiny amounts (~nanograms). In this technique a minute measured amount of radiola-
beled antigen is added to the sample along with a measured small amount of
antibody, small enough that it is all fully bound with antigen (see Figure 26.10). The
antigen will bind to the antibody independent of whether it is labeled. When cen-
trifuged, the antibody–antigen complex can be physically separated from the
unbound antigen and the activity of each fraction can be determined. Therefore the
ratio of labeled-to-unlabeled antigen bound to the antibody will reflect the same ratio
as found in solution. Because the amount of labeled antigen added is known, the
amount of antigen in the original sample can simply be computed from that ratio.
There are radioimmunological tests for literally hundreds of drugs or proteins found
in the blood, urine, and other bodily fluids. These are available in kits that are
commonly used in clinical laboratories.

In radioassays, it is important to record as much of the radioactivity as possible. The
best detector used in biological research is one in which the sample is directly immersed
in the detector itself, in the technique of liquid scintillation counting (Figure 26.11). In
this method, the sample is dissolved or suspended in a mixture of a special solvent and
a fluorescent liquid, together known as a scintillation cocktail. A radioactive particle
emitted from the sample will produce a brief flash of light that is then detected by a sen-
sitive photomultiplier tube, whose output electrical current is then a measure of the
radioactivity. But more than this, if two different radioisotopes are present in the cock-
tail they will result in different amplitude current pulses making up the output electric
current. A so-called pulse-height analysis of the output current of the photomultiplier
tube allows the relative amounts of the two isotopes to be determined.

7.  SPECT AND PET: RADIATION TOMOGRAPHY

In this section we discuss two different imaging methods that are based on radioiso-
topes: single photon emission computer tomography (SPECT) and positron emission
tomography (PET). Both of these methods give time-dependent three-dimensional
images of the location of radioisotopes.

Earlier imaging methods, using gamma ray cameras, give two-dimensional projec-
tions of the locations of radioactive sources within the body. The gamma ray cameras are
plane arrays of scintillator/photomultiplier detectors, each with a lead collimating channel
to only allow radiation directed toward it to be detected. Lead shielding stops all other radi-
ation so that the detected intensity at each photomultiplier is a measure of the net amount
of radioisotope along its axis (see Figure 26.12), giving a projected image of the “object”
or location of radioisotopes within the body. These images are relatively poor compared to
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FIGURE 26.10 Radioimmunological assay to determine the amount
of antigen present. Known amounts of radiolabeled antigen and
unlabeled antibody are combined and spun to separate the
antibody–antigen complex from the antigen. From the ratio of
counts in the pellet to that in the supernatant, the amount of antigen
originally present can be found.

FIGURE 26.11 Liquid scintillation
counting. Radioactive decay
particles produce light in a scintilla-
tion cocktail; the light is collected
and detected by a photomultiplier.



CT or MRI pictures, with resolution limited by multiple scattering of
gamma rays as they leave the body and by limited detector resolution
to about 1 cm at best. On the other hand, by monitoring the time
dependence of the images, information on the metabolism of the
radiopharmaceutical can be obtained. Examples of such uses include
images of the heart, kidneys, lungs, urinary tract, and so on to deter-
mine fluid flow volumes. For imaging, the best radioisotopes are
gamma emitters since these will effectively escape the body to be
detected.

SPECT uses an imaging system similar to that of CT scans. Either multidetector or
rotating gamma ray camera systems are used to capture a series of two-dimensional
images, although each image uses a focused collection arrangement to improve resolu-
tion and contrast (or ratio of the signal-to-noise of the background radiation). Data are
back-projected to reconstruct the three-dimensional image, allowing sequential slices
to be imaged with a spatial resolution of about 5 mm at best, compared to the 1 mm res-
olution of CT scans. Although the resolution is better in CT images, they measure only
x-ray absorption through the body, which then must be interpreted in terms of structure
of internal organs. SPECT examines images of the distribution of radiopharmaceuticals
and the time dependence of the radioactivity signal as well. Because this spatial distrib-
ution is determined by the specific binding of the drug to which the radioisotope is
attached, clearly these images are directly related to function and not simply to structure.

Most major hospitals have facilities to do SPECT and it is increasingly used since
the advent of better detectors and radioisotopes. Some of the organs imaged most often
using SPECT include the brain, heart, circulatory system, bones, and tumors, in gen-
eral. In combination with MRI and CT, this technique offers doctors an excellent tool
in making diagnoses.

Positron emission tomography (or PET) is an important
variation on SPECT that is becoming more common as the asso-
ciated costs decrease. The radiation source in this case is a
positron emitter radioisotope (e.g., fluorine-18 or gallium-68)
that is attached to a pharmaceutical and ingested. These positron
emitters have short half lives and usually require a hospital to
have an accelerator facility to prepare the radioisotopes. An emit-
ted positron is very rapidly annihilated by an electron to form a
pair of gamma rays. The energy and momentum of these gamma
rays must satisfy the laws of conservation of energy and momen-
tum. If both the electron and positron were at rest, then the total
momentum must remain zero (hence the need for two identical
gamma rays traveling in exactly opposite directions) and the total
energy must equal the total rest energy of the electron and
positron. This energy is equivalent to 511 KeV for each gamma
ray. Thus the net result of each decay event is the production of
a pair of 511 KeV gammas that leave the body in opposite direc-
tions. PET detectors 180° apart around the source to be imaged
are set to look for the coincident arrival of 511 KeV gamma rays
(Figure 26.13). These characteristic events are very clearly due to
the positron emission and by projecting the accumulated data
from a large number of scans at different angles, and using sim-
ilar image reconstruction methods to SPECT, high-quality image
slices of typically 5 mm resolution can be obtained. Spatial res-
olution is inherently limited by two facts: the initial kinetic
energy and momentum of both the positron and electron is typi-
cally small but nonzero so that there is some variability in the
180° angle, and also the positron may travel a short (~1 mm) dis-
tance before annihilation. Both of these effects, as well as limits
on detector resolution, tend to smear out the images decreasing
resolution a bit (see the example image in Figure 26.14).
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FIGURE 26.12 A gamma ray
camera for obtaining projected
images of the location of radioiso-
topes through the body. The
channels at each detector are
formed by lead shielding.

FIGURE 26.13 Patient about to have a PET scan,
surrounded by a ring of detectors within the housing to
look for coincident 180° detections of gamma rays.



PET scans of the brain, in particular, have revealed physiological correlates to a
variety of disorders. Some of the most spectacular images recorded with PET have
been brain scans that show brain activity in real-time. By imaging blood flow or glu-
cose or oxygen metabolism and monitoring changes in time as the person is stimu-
lated in various ways (e.g., visually), biochemical events can be directly correlated
with brain activity (Figure 26.15). Studies comparing “normal” brains with those of
people known to have various psychological disorders have begun to reveal a
physiological basis for some of these problems.
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FIGURE 26.14 (left) CT image of a patient with lung cancer that has spread to the lymph
glands as clearly seen in the PET scan (right) of the same patient.

FIGURE 26.15 PET scan of brain
showing the effects of Ritalin
(methylphenidate; a drug
prescribed for millions of young
people with attention deficit hyper-
activity disorder) on the number of
dopamine transporters available
(red � more, blue � less). These
recycle extracellular dopamine, a
molecule that has been noted to
give pleasure, allowing it to
re-enter cells. Thus Ritalin causes
an increase in extracellular
dopamine levels that apparently
correlates well with increased
levels of attention and ability to
concentrate without distraction.



8.  FISSION AND FUSION

In Section 2 we saw in Figure 26.2 that the binding energy of nuclides with A numbers
near iron (56) have more binding energy, and are therefore more stable, than either very
low A or very high A nuclides. In most larger nuclei, such as uranium, the long-range
Coulomb repulsion of the protons is in a precarious balance with the short-range strong
nuclear attractive force between adjacent nucleons. If such a nucleus is perturbed, for
example, through a collision with an external nucleon, a new short-lived “excited” nucleus
forms. The added energy causes the “liquid drop” nucleus to begin to elongate and once
the nucleus becomes sufficiently asymmetric, the Coulomb repulsion of the two portions
causes the nucleus to be unstable and decay by dividing into two roughly equal fission

products. The difference in net binding energy between the higher-energy original nucleus
and the total lower energy of the products is given off as kinetic energy of the fission prod-
ucts. This energy is substantial; for example, uranium has a binding energy per nucleon of
about 7.6 MeV/nucleon (remember that these binding energies are actually negative, so
that a smaller binding energy means a higher energy state), whereas the fission products
have values of close to 8.5 MeV/nucleon. The difference of 0.9 MeV/nucleon amounts to
about 100 MeV of kinetic energy for each of the two fission products.

Fission was first discovered in 1938 by Hahn and Strassmann, who bombarded ura-
nium with a beam of neutrons and found two fission products, barium and krypton. For
each starting nucleus, there are many different pairs of possible fission products, most
of them radioactive. One example of a fission reaction for uranium-235 is the reaction

(26.16)

The fact that there are often additional neutrons emitted, with an average of 2–3 per
fission, caused scientists early on to propose that a chain reaction of neutron-acti-
vated fission could occur. Each fission would lead to two or three neutrons released,
some of which would produce further fissions so that there would be a positive feed-
back and rapid growth in the energy released in fission products. By 1942 Fermi had
demonstrated such a chain reaction in the first nuclear reactor.

The first use of nuclear fission was in the form of two atomic bombs dropped
over Hiroshima and Nagasaki to end World War II with Japan in 1945. War had
united many of Europe’s finest scientists with those of the United States in a secret
effort to develop the atomic bomb at Los Alamos, New Mexico. Although it is gen-
erally agreed that the use of these bombs shortened the war and reduced the total
number of deaths, some of the leading scientists who worked on the development of
the atomic bomb believed, in retrospect, that it was a mistake and spent much of their
subsequent efforts in attempts to bring about nuclear disarmament.

Enrico Fermi’s first nuclear reactor had as its main initial function the production of
plutonium to be used in two atomic bombs. Today there are about 450 nuclear power reac-
tors used to generate electricity in about 30 countries around the world. Although there are
several different designs of these reactors, they all basically use nuclear energy to generate
heat, producing steam then used to drive turbines, thereby generating electricity.

There are several key problems to producing controlled nuclear fission in a nuclear
reactor. The predominant uranium-238 isotope (representing over 99% of naturally occur-
ring U) is relatively stable against fission, whereas uranium-235 (only about 0.7% abun-
dance) undergoes fission very efficiently when slow neutrons are absorbed. Sometimes
uranium ore is processed to enrich the 235U component to a few percent to provide a
“richer” fuel. A minimum amount of fuel, the critical mass, typically on the order of kg,
is needed to have a self-sustaining nuclear reaction. A second problem is that of the two or
three neutrons produced in a single fission, only one is needed to sustain a controlled reac-
tion. If more than one neutron from each fission leads to additional fissions, the reaction
will “run away,” as in a nuclear bomb, whereas if this number is less than 1.0, the reaction
will eventually die out. Only by maintaining this number very near to 1.0, by the escape or
absorption of excess neutrons in a special device known as a control rod, can the reaction
be kept at a steady rate. Control rods are made from materials that very effectively absorb
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neutrons without undergoing fission. Neutron absorption in 235U leading to fission is most
effective for slow thermal neutrons, those that have lost energy often making numerous
collisions in a special purpose material known as a moderator. Moderators are designed to
effectively slow neutrons. Water is commonly used as a moderator in nuclear reactors, with
heavy (deuterated) water sometimes used because it absorbs fewer neutrons eliminating
the need to enrich the uranium.

Despite huge investments in safety features, there have been two significant acci-
dents at nuclear power plants: one at Three Mile Island, in Pennsylvania in 1979
which was contained, and one at Chernobyl in Ukraine in 1986 where 31 people were
initially killed, most from radiation. The Chernobyl accident released about 3–4% of
its radioactive material resulting in about 130,000 people receiving significant radia-
tion doses leading to a sharp increase in thyroid cancer among children in that region,
with other long-term health effects still unclear. Apart from safety issues of nuclear
power plants, there are also literally tons of highly radioactive waste products pro-
duced in these plants that need to be safely and securely isolated from our environ-
ment for thousands of years. Because of these safety and environmental concerns,
alternative sources of electricity other than nuclear fission power are needed. Along
with solar, wind, hydroelectric, and other “green” sources of power, a possible long-
term solution involves a second type of nuclear reaction.

According to Figure 26.2, two very low mass number nuclides with a small bind-
ing energy per nucleon can fuse together to produce a larger nuclide with a much
greater binding energy per nucleon, thus releasing a large amount of energy. This
process, known as nuclear fusion, releases much more energy per nucleon than fission,
as can be seen from the steep initial slope in the binding energy per nucleon curve in
Figure 26.2. In other words, the magnitude of the energy of the larger fused nucleus is
much less than the sum of the energy of the lighter starting nuclei and the difference
is liberated in the fusion reaction. For example, in the fusion of deuterium and tritium,
two isotopes of hydrogen, an alpha particle and a neutron, form according to

(26.17)

Calculating the net difference between the initial and final energies (using the masses
of each and the equivalence of mass and energy; see the example just below) gives a
net energy release of about 17 MeV for each fusion. Because there are only 5 nucle-
ons involved in this reaction, the energy per nucleon is 3.4 MeV/nucleon, much
larger than the 0.9 MeV/nucleon released in fission. On an energy per unit mass
basis, fusion is a much more productive process than fission.

Nuclear fusion occurs naturally in stars, including our sun, at extremely high tem-
peratures. These thermonuclear reactions in stars are believed to have been responsible
for generating all of the larger mass nuclei in the universe starting from hydrogen. We
believe that very early in the history of the universe the temperature was too hot for
atoms to be stable. As the universe expanded and cooled, hydrogen atoms formed and
then condensed locally under gravity to form stars. As stars became more compact due
to the force of gravity, the interior temperatures and pressures increased, providing
an environment in which nuclear fusion could occur. Stellar fusion first uses hydrogen
as a fuel, but as hydrogen is depleted fusion of other light nuclei also occurs. Thus,
all the other elements found on Earth and throughout the universe originated in such
stellar fusion reactions; we ourselves are therefore made of stellar material.

One fusion reaction is the so-called proton–proton cycle:

(26.18)

Net reaction: 41
1 H n 2

4 He � 2e� � 2n� 2g

2
3 H � 2

3 H n 2
4 He � 1

1 H � 1
1 H.

1
1 H � 1

2 H n 2
3 H � photon

1
1 H � 1

1 H n 1
2 H �e�� neutrino

1
2 H � 1

3 H :

2
4 He � 0

1 n.
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The overall result of these reactions is that four protons
have fused to produce one alpha particle plus two each of
positrons, neutrinos, and photons, with a net release of
24.7 MeV. The positrons quickly annihilate with electrons
to form four additional photons, each with 0.51 MeV, so
that the total energy released in the proton–proton cycle
is (24.7 � 4 � 0.51) � 26.7 MeV per helium nucleus
formed. In order for this reaction sequence to occur, pro-
tons must be brought very close together at very high
temperature to overcome their mutual electrostatic repul-
sion and fuse together. Central cores of stars, including our
sun, have temperatures and pressures high enough for
fusion to occur.

To produce fusion on the Earth, where the pressure is
much lower than in the core of a star, even hotter tempera-
tures are required. The first fusion reactions produced were

those of hydrogen bombs in which an atomic (fission) bomb was detonated to pro-
duce the sufficiently hot temperature necessary to initiate fusion in a deuterium
and tritium pellet. Different schemes to produce controlled conditions for nuclear
fusion have been tried, each attempting to heat a deuterium–tritium fuel pellet to
temperatures of 108 K, by either extreme electric currents or particle or laser
beams, forming a plasma (ionized gas) confined in space for long enough so that
fusion can take place. In one scheme, magnetic confinement, the plasma is trapped
by the presence of a very strong magnetic field that exerts magnetic forces on the
moving ions traveling around within a toroidal (doughnut) shaped solenoid.
Figure 26.16 shows the Princeton Tokamak Fusion Test Reactor for magnetic con-
finement. A second alternative scheme, inertial confinement, uses many high-
powered laser pulses that simultaneously strike a deuterium–tritium fuel pellet
from different directions. The beams produce high temperature and pressure so
rapidly that the inertia of the fuel does not allow it to escape and fusion occurs.
Figure 26.17 shows the target chamber of the NOVA Laser Facility at Lawrence
Livermore Laboratory, a facility currently being replaced by an even larger one at
the National Ignition Facility (NIF). Short controlled pulses of energy from fusion
have been produced by both of these schemes, but much work needs to be done
before these become viable commercial sources of energy.

Fusion offers a number of advantages over the current fission nuclear power
plants. Fuel for fusion is much more abundant, cheaper, and yields more energy on a
per mass basis. The oceans are a vast supply of deuterium fuel. Furthermore, unlike
fission, there are no radioactive byproducts, so that there are no long-term storage
problems with radioactive waste. There is also the fact that, unlike fission reactions

654 N U C L E A R P H Y S I C S A N D M E D I C A L A P P L I C AT I O N S

FIGURE 26.16 Inside the Princeton
Tokamak (note the man on the left
to judge the scale).

FIGURE 26.17 (left) The NOVA laser showing some of the arms through which the laser
power is focused on the fuel pellet at the center. (right) View of the artificial ministar
created by inertial confinement fusion in the NOVA.



in which chain reactions can become uncontrolled if there is a malfunction of control
rods producing a melt-down as has happened at Chernobyl and Three Mile Island,
failures in fusion reactors would lead to a shut-down of the fusion reactions them-
selves and no possibility of an out-of-control chain reaction. For these reasons if
commercially produced in a reactor, energy from fusion might be the ultimate cure to
the world’s energy problem.
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CHAPTER SUMMARY
The atomic nucleus contains Z protons and N neutrons
with a total number of nucleons A � Z � N. Nuclei are
very small in size, having radii given by

R � R0A1/3, (26.2)

with R0 � 1.2 fm. A nucleus of mass m has a nuclear
binding energy given by

Nuclear Binding Energy
�Zmpc

2�Nmnc
2�mc2, (26.4)

and is typically about 8 MeV per nucleon in all but the
smallest nuclei.

Three types of nuclear radiation exist known as alpha,
beta, and gamma radiation. Alpha radiation is the emission
of helium-4 nuclei (2 protons � 2 neutrons) from nuclei
through a process of tunneling. Beta emission comes from
the production of electrons or positrons within the nucleus
because of neutron or proton decay, respectively, and these
“beta particles” are emitted from the nucleus along with
neutrinos at high energy. Gamma emission comes from
transitions from excited nuclear states giving rise to high
energy photons. Each of these types of radioactivity are
characterized by their Q, or decay energy,

Q � (mP ��mi)c
2 � 0, (26.5)

where P stands for parent nucleus and the sum is over
all the products.

Radioactive decay is governed by an exponential
decay of the numbers of radioactive nuclei N,

(26.9)

where N0 is the number of such nuclei at time zero and
� is the decay rate for the process. The half-life of the

reaction is the time for 1/2 of the nuclei to decay and is
related to the decay rate by

(26.10)

Measures of exposure to radioactivity include: the
Roentgen (R) which is simply a measure of the number of
decays per unit volume; the Gray (Gy; 1 Gy � 1 J/kg) or
rad (1 rad � 0.01 Gy) which are measures of the absorbed
dose of radiation; or the biological dose equivalent, mea-
sured in sieverts (Sv), or in rem (1 rem � 0.01 Sv),

biological dose equivalent (in Sv)
� absorbed dose (in Gy) � RBE, (26.14)

where RBE (relative biological effectiveness) is a dimen-
sionless weighting factor describing the effectiveness of
different radiation to be absorbed by the body.

Nuclear medicine involves the use of short-lived
radioactive tracers (radiolabeling) to follow the path of
a particular molecule through the body either by in vivo
or in vitro studies. Two imaging methods that use radio-
tracers are SPECT (single photon emission computer
tomography) and PET (positron emission tomography).

Because the binding energy per nucleon for large
nuclei is less in magnitude (~0.9 MeV) than for inter-
mediate-sized nuclei, large nuclei can undergo fission
releasing the excess energy of ~100 MeV for each of the
products, along with several neutrons. Under controlled
conditions this energy can be harnessed in nuclear
power plants, whereas if left uncontrolled, this serves as
the basis for a fission bomb. Fusion is the naturally
occurring process in stars whereby hydrogen nuclei, or
other small nuclei, are compressed and heated until they
fuse to form larger nuclei, releasing large amounts of
binding energy (~3.4 MeV per nucleon) in the process.
Current research is attempting to produce controlled
fusion in the laboratory as a means of generating energy
that would be much cleaner than fission nuclear power
plants. Very high power lasers are being used to attempt
to achieve the very high temperatures and pressures
needed to cause fusion.

t1/2 �
loge 2

l
�

0.693

l
.

N(t) � N0 e�lt,



MULTIPLE CHOICE QUESTIONS
1. The nucleus is about this many times as large as the

atom: (a) 10�2, (b) 10�3, (c) 10�4, (d) 10�5.
2. The nuclide of iron has (a) 30 neutrons, (b) 56

neutrons, (c) 26 electrons, (d) 56 protons.
3. The Nobelium nucleus, a very short-lived (3 min

half-life) manmade nuclide, has an effective radius of
about (a) 1.2 fm, (b) 7.6 fm, (c) 5.6 fm, (d) 0.19 fm.

4. Without the strong nuclear force, carbon-based life
could not exist. This is primarily because the strong
nuclear force (a) permits nuclei to consist of more
than just a single proton, (b) keeps gravity from col-
lapsing all matter into a single point, (c) keeps the
electric force from attracting all electrons into the
nucleus, (d) is responsible for covalent bonds
between carbon atoms.

5. Very large nuclei are radioactive because of all but
the following (a) the electrical repulsive force desta-
bilizes them, (b) the total binding energy of two
fission fragments is smaller than that of the original
nucleus, (c) the excess neutrons do not sufficiently
shield the repulsive force between protons, (d) it is
relatively easy for a proton to escape (tunnel) out of
the nucleus.

6. A nucleus with 20 neutrons is unusually stable
because (a) it has an unusually low binding energy,
(b) it has a closed nuclear shell, (c) it has all spin
paired neutrons, (d) it has an unusually high propen-
sity for 
 decay.

7. The neutrino was first predicted in beta decay
because of missing (a) spin, (b) angular momentum,
(c) energy, (d) charge.

8. In a scintillation detector, incoming X’s are eventu-
ally converted into outgoing Y’s where X and Y could
be (a) gammas and visible photons, (b) electrons and
electrons, (c) electrons and visible photons, (d) visi-
ble photons and electrons.

9. Starting with 1012 radioactive nuclei, after 4 half-lives
about (a) 2.5 � 1011, (b) 1.8 � 1010, (c) 108, (d) 6.3 �
1010 nuclei will remain.

10. In radioactive decay, compared to the activity, the
total number of radioactive nuclei decays (a) expo-
nentially with the same half-life, (b) logarithmically
with the same half-life, (c) exponentially with a
greater half-life, (d) exponentially with a smaller
half-life.

11. Carbon-14 dating relies on all of the following
assumptions except (a) the amount of 14C in the air
has remained constant, (b) no new 14C is taken in
after death, (c) 14C is the only radioactive form of car-
bon with a long half-life, (d) 14C is an alpha emitter
with a 5730 year half-life.

12. One hundred hours of flying time in a high-altitude
jet gives an equivalent radiation dose to a diagnostic
x-ray. This large dose is primarily due to the fact that
(a) there are fewer people at those altitudes to absorb

102
255 No,

26
56 Fe,
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QUESTIONS
1. Carefully distinguish between Z, A, and N. Which of

these change and which remain constant for 	, 
, and
� decay?

2. Why does Equation (26.2) lead to a picture of the
nucleus as a dense-packed ball of nucleons in contact
with each other? (Hint: How does the equation pre-
dict the nuclear mass will vary with radius?)

3. Compare the notion of nuclear binding energy to the
ionization energy of an atom. How is it similar and
how is it different?

4. What three factors determine the stability of
nuclei?

5. Which of the following nuclei have net spin (indicate
whether due to protons or neutrons) in their ground
states: 1H, 12C, 13C, 15N, 31P?

6. What are magic numbers and how are they determined?
7. Compare the 	, 
, and � decay particles in terms of

penetrating power and radiation damage produced.
8. Complete the following nuclear processes by stating

what the nucleon X represents: (a) 

9. Write the complete decay scheme for the 
� decay of
and of 

10. Does it matter at what time a measurement starts in
order to measure the half-life of a radioactive sample?
That is, suppose two experimenters take the same
sample of a radioactive material with a 3 min half-life
and each independently tries to measure the half-life.
Does it matter whether they start their measurements
at the same time?

11. If a radioactive sample starts out with 1020 nuclei,
how many will be left after 10 half-lives? After 10
lifetimes?

12. What are the fortuitous circumstances that allow 14C
dating of once-living organisms?

13. What is the difference between exposure, absorbed
dose, and biological dose equivalent? Which is most
important in determining health risks?

14. Which has the longer effective half-life when used as
a radiopharmaceutical, an isotope with a 45 h half-
life that takes twice as long to wash out of the body
as a second isotope with a 75 h half-life and a 7 day
biological half-life?

15. In the radioimmunological assay, why is the ratio of
the labeled-to-unlabeled antigen bound to the anti-
body the same as that ratio found in the supernatant?

16. In PET, how is it known that a particular detected
gamma came from pair annihilation within the body?

17. In a nuclear fission power plant, what is the purpose
of a control rod? A moderator?

18. Which would liberate more energy: assembling
14 protons and 14 neutrons to make one 28Si nucleus
or two 14N nuclei?

60Co.126Sn

 (c) X n
230Th�4He

60Co n
60Ni �X; (b) X n

234Pa�b�; 



the cosmic rays so each person gets a higher dose,
(b) the Earth’s atmosphere shields us on the ground
from most cosmic rays (c) the plane is that much closer
to the sun, so the dose is higher, (d) cosmic rays inter-
act with the plane’s metal and produce high doses of
secondary radiation.

13. Which of the following is not a desired feature of a
radiopharmaceutical? (a) A relatively short (hours)
half-life, (b) relatively low energy radiation, (c) a
long biological half-life, (d) ability to bind to specific
target tissue.

14. In liquid scintillation counting which of the following
is not true? (a) For each radioactive decay a single
electron is detected, (b) a radioactive decay results in
a photon of visible light, (c) different radioactive
emissions result in different amplitudes of detected
current pulses, (d) the solvent that the sample is dis-
solved or suspended in has a fluorescent component.

15. The detected particles in PET are all but the follow-
ing. (a) They are an electron and positron, (b) they are
measured 180° apart along a line, (c) their energy is
equal to the rest mass of the electron, (d) they are pro-
duced after ingesting a positron emitting source.

16. Essential features of a nuclear fission power plant include
all but the following. (a) Moderators, (b) control rods,
(c) deuterium–tritium fuel pellets, (d) steam turbines.

PROBLEMS
1. The largest stable nucleus has a mass number of 209.

Find the ratio of the radii, surface areas, and volumes
of this largest nucleus to that of a hydrogen nucleus.

2. A neutron star has a diameter of about 20 km and has
a density roughly that of the nucleus. What is its
mass? How many solar masses is this (solar mass �
2 � 1030 kg)? What is the mass number for the neu-
tron star (i.e., how many nucleons does it contain)?

3. If the sun (mass �2 � 1030 kg, radius �7 � 108 m)
collapsed until it had a density equal to that of nuclei,
what would be its radius? (Actually, a star cannot col-
lapse to nuclear densities unless its mass exceeds a
critical mass, known as the Chandrasekhar mass, of
about 1.4 solar masses to overcome the Pauli exclu-
sion repulsion of the electrons.)

4. Using the numbers in Example 26.1 calculate the
binding energy of radium 226 (m �225.97709 u),
radium 228 (m � 227.98275 u), and thorium 232 (m �
231.98864 u). Also find their binding energy per
nucleon.

5. Calculate Q for the 	-decay of using data in the
previous problem and in Example 26.1.

6. Calculate Q for the 
� decay of 24Na given the fol-
lowing data: m(24Na) � 23.98492 u, m(24Mg) �
23.97845 u, m(24Ne) � 23.98812 u, m(
�) � 5.49
� 10�4 u. What is the range of possible energies for
the emitted beta particle?

90
232 Th
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7. Show that in alpha decay from a stationary parent
nuclide that conservation of energy and momentum
lead to a relation between the Q for the nuclear reac-
tion and the kinetic energy gained by the alpha parti-
cle, KE, given by

Then look back at Example 26.2 and calculate the
kinetic energy of the alpha emitted in the decay of 238U.

8. The first successful experiment to detect the neutrino
was done in 1953 by Reines who won the 1995 Nobel
prize for this work. Neutrinos from the Hanford
nuclear reactor were incident on a tank of 200 L of
water in which they very infrequently interacted with
the water protons to produce a neutron and a positron
in the reaction: � � p → n � 
�. The positrons sub-
sequently annihilated producing two signature gam-
mas traveling 180° apart and the neutrons were
captured by cadmium in the form of 40 kg of CdCl2
salt added to the water to produce several additional
gammas. These gammas were detected by three scin-
tillator layers and 110 photomultiplier tubes sur-
rounding the water and Reines and co-workers
carried out numerous checks to ensure that these
gammas did originate from the above reaction and not
from any other source. Although the neutrino flux
was as much as 1013 /cm2-s, they detected on average
only 0.027 events per hour per phototube in the entire
detector. Assuming the cross-sectional dimensions of
the water tank to be 2 m on a side and the neutrino
flux to be uniform over this area, what fraction of the
neutrinos interacted with the water in their detector,
assuming 100% collection efficiency of the gammas?

9. Suppose that the phototube of a scintillation detector
has a gain of 5 � 105, representing the average number
of electrons produced at the anode for each electron
emitted at the photocathode. If a 10 �Ci gamma emit-
ting radioactive source is detected with 5% efficiency,
find the average output current from the phototube.

10. How long does it take for 90% of a 60Co sample orig-
inally present to decay?

11. What mass of 90Sr is needed to have an activity of 1 mCi?
How long will it take for the activity to decrease to
0.25 mCi?

12. Iodine is selectively accumulated in the thyroid gland
where it can build to dangerous levels. When radioac-
tive materials have been released into the atmosphere
from either nuclear power plant accidents, such as the
major one at Chernobyl, or from nuclear testing, these
materials tend to concentrate (through eating of plants
by animals) and show up in food products, such as
milk, a food which is preferentially eaten by children.
Thus, even though the half-life of 131I is relatively

Q � KE £1�
m(2

4 He)

m(daughter)
≥ .



produced, and lead to serious health problems. How
long would it take for all but 0.01% of a sample of
90Sr to decay?

18. Calculate the activity (in Bq) of one gram of radium-
226. (Hint: See Example 26.3; this is the definition of
one curie.)

19. An amateur archeologist finds a bone that he believes
to be from a dinosaur. He sends a chip of it off to a
laboratory for 14C dating. The lab finds that the chip
contains 5 g of carbon and has an activity of 0.5 Bq.
How old is the bone? Could it be from a dinosaur?

20. An 85 kg person was exposed to a gamma source and
received a whole body dose of 0.5 Sv. How much
energy was deposited in the person’s body? Repeat this
calculation if the radiation was from an alpha source.

21. What dose (in Gy) of gammas produces the same bio-
logical effects as a 50 rad dose of alpha particles?

22. What fraction of a 1 g sample of sitting on a table
will remain in 17 years? If the strontium had been
ingested and all initially been absorbed into a person’s
bones, what fraction would remain after 17 years?
(The biological half-life of 90Sr is 45 years.)

23. A small amount of phosphorus-32 was accidentally
ingested and its activity carefully monitored over
time. After 8 days, the activity had halved. The phys-
ical half-life of phosphorus-32 is given in Table 26.4.
Find its biological half-life.

24. In a radioimmunological assay 10 nM of a 125I
labeled antigen and 1 nM of antibody were added to
an unlabeled sample of the antigen. The solution was
centrifuged and the activity of the supernatant and
pellet were measured and found to be in the ratio of
5.4:1. How much antigen was originally present in
the solution?

25. Calculate the net energy released in each step of the
proton–proton cycle shown in Equation (26.18). Then
add up the net release for one step in the cycle being
sure to use a balanced net reaction; recall that the mass
of the neutrino and photon are zero. Check your result
by a direct calculation of the energy released in the net
overall reaction. Use the following masses: m(1H) �
1.00728 u; m(2H) �2.01355 u; m(e�) � 5.49 � 10�4 u;
m(3H) �3.01550 u; m(4He) �4.00151 u.

90Sr
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short, this isotope has caused thyroid cancer in many
children in affected areas. Some children received up
to 1000 rem from 131I release at Chernobyl. By what
factor is this above the maximum annual exposure rec-
ommended? How long would it have taken for the
radiation level to have decreased so that for the same
consumption of milk the exposure would have been at
0.1 times the maximum annual recommendation?

13. After the sudden release of radioactivity from the
Chernobyl nuclear reactor accident in 1986, the
radioactivity of milk in Poland rose to 2000 Bq/L due
to iodine-131 present in the grass eaten by dairy cat-
tle. Radioactive iodine, with a half-life 8.0 days, is
particularly hazardous because the thyroid gland con-
centrates iodine.
(a) What is the decay constant that characterizes the

decay of 131I if it has a half-life of 8 days?
(b) What is the storage time needed to decrease the 131I

content of cheese produced from these cows’ milk
to 15% of the original level?

14. A bone fragment is found in the desert. If it has a
mass of carbon (due to only 14C and 12C) of 200 g,
how old is it if it has an activity of 15 decays per sec-
ond? The ratio of 14C to 12C is 1.3 � 10�12.

15. To destroy a cancerous tumor, a dose of gamma radi-
ation totaling an energy of 2.12 J is to be delivered in
30.0 days from implanted sealed capsules containing
palladium-103. Assuming that this isotope has a half-
life of 17.0 days and emits gamma rays of energy
21.0 keV, which are entirely absorbed within the
tumor, what is the initial activity of the set of cap-
sules, and what total mass of radioactive palladium
should these “seeds” contain?

16. 238U decays by the emission of an alpha particle.
(a) What is the decay sequence?
(b) What is the daughter nucleus?
(c) What is the energy of the alpha particle (its mass

is 4.0026 u)?
(d) What is the velocity of the 	 particle?
(e) Is the alpha particle relativistic?

17. Strontium is chemically similar to calcium and can
replace calcium in bones. The radiation from 90Sr
can damage the bone marrow where blood cells are
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1.  SCIENTIFIC NOTATION AND SIGNIFICANT FIGURES

When large or small numbers are written out in decimal form they are often
very cumbersome and difficult to read at a glance. For example, writing out the
electric charge on the electron in decimal form would mean writing 18 zeroes after
the decimal point followed by the digits 1602 in units of coulombs 
(C): 0.0000000000000000001602 C. Scientific notation is the particular form in
which numbers are written with the powers of 10 extracted as an exponent factor.
The electron’s charge is written in the simpler and more quickly grasped form as
1.602 � 10�19 C.

To understand this notation you need to remember that positive powers of 10 are
given by:

100 � 1

101 � 10 � 1 � 10

102 � 10 � 10 � 100

103 � 10 � 10 � 10 � 1000, . . . ,

and negative powers of 10 are given by

In scientific notation numbers are always written in a form with a single nonzero
digit to the left of the decimal point according to D1

. D2D3D4 � 10 where the
Di (i � an integer) are decimal digits. The number of digits written out in the deci-
mal prefactor number (D1 through D4 in the above example, and so 4 digits) is called
the number of significant figures.

What determines how many significant figures to include in a number? If it is a
number that is obtained from a measurement, such as the charge on the electron given
above, then the number of significant figures depends on the uncertainty in the mea-
surement. When written in its most precise form, the number should include digits out
to the level of uncertainty, so that, for example, if a measurement of the electric charge
were done with an uncertainty of �0.02 � 10�19 C, then the number for the charge
should include 3 significant digits 1.60 � 10�19 C, because the last digit, 0, has the
uncertainty of �2 units in its place. Higher-precision measurements include more sig-
nificant figures.

If the number is derived from other numbers, say by combining other given num-
bers, each with some number of significant figures, you should be careful about how
many significant digits you include in your result. When you enter numbers in your

;D5 D6,

10�3 �
1

10
�

1

10
�

1

10
� 0.001, Á .

10�2 �
1

10
�

1

10
� 0.01

10�1 �
1

10
� 0.1

Appendix I
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calculator and compute some result, the calculator display fills with digits, but not all
of them are significant. You should retain only as many digits as the least significant
number in the calculation. Of course whole number and mathematical values such as
� or e have a huge number of significant digits and do not restrict your precision.
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Example A.1 Given these values, x � 2.38 and y � 6.45, compute each of
following: z � x � y, A � xy, and B � x1/2y1/2.

Solution: In each case first simply compute the values (probably using a calculator).
We find z � 8.83, A � 15.351, and B � 3.9180352. Both x and y have 3 significant
digits, therefore we round off our final results to be z � 8.83, A � 15.4, B � 3.92.

2.  ALGEBRA

In this section we review basic algebra through the rules for manipulating equations.
An equation represents a statement of the equality of both sides. As such, the quan-
tities on both sides must have the same units.

Remember the basic rules for multiplication, division, and addition or subtrac-
tion of fractions and working with exponents:

Process Rule Example

Addition or subtraction

Multiplication

Division

Exponents

and

(23) 1/2 � 1 8x1/n �
n1x

(23)2 � 26 � 64(xm);n � x;mn

23 # 22

24
� 23�2�4 � 21 � 2

xm # xn

xp
� xm # xn # x�p � xm�n�p

1

2
,

3

5
�

1

2
�

5

3
�

5

6

a

b
,

c

d
�

a a

b
b

a c

d
b

� a a

b
b � ad

c
b �

ad

bc

1

2
�

3

5
�

3

10

a

b
�

c

d
�

ac

bd

1

2
�

3

5
�

(1)(5) � (2)(3)

10
��

1

10

a

b
;

c

d
�

ad ; bc

bd

Also remember that any operation applied to one side of the equation must be done
on the other side as well to preserve the equality. You can add, subtract, multiply, or divide
both sides of the equation by equal numbers or quantities (with the obvious exception of
dividing by zero). Examples of these operations should help you to recall this.

Example A.2 (a) Given the equation solve for x; (b) Given the

equation solve for v.

Solutions: (a) We first add �7 to both sides:
and then divide both sides by 2 to find

2x
2 � 8

2 or x � 4.
2x � 7 � 7 � 15 � 7 or 2x � 8

P �
1

2
r1v2 � v0

22 � rgh,

2x � 7 � 15,



Occasionally you will need to solve a quadratic equation. Remember that if
you rewrite the quadratic equation in the form ax2 � bx � c � 0, the solution is
given by

Often in a physics problem only one of the two roots, the mathematical solutions, will
be the correct answer to the physics problem, and some thought as to the conse-
quences of each answer can usually let you make the correct choice.

3.  GEOMETRY

In this section we summarize a number of geometric relationships.
The distance between two points labeled in Cartesian coordinates as (x1, y1) and

(x2, y2) is given by

Some useful equations representing different geometrical shapes include:

straight line of slope m and y – intercept b

circle, centered at the origin, of radius R

ellipse, centered at the origin, of semimajor axis a and semiminor
axis b (with a � b)

x2

a2
�

y2

b2
� 1

x2 � y2 � R2

y � mx � b

d � 11x2 � x122 � 1y2 � y122.

x �
�b ; 1b2 � 4ac

2a
.
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(b) We first subtract 	gh from both sides to find ; we
then multiply both sides by 2/	 to find

;

next, add v0
2 to both sides to get

;

finally, we take the square root of both sides with the result

v � A c 2r1P � rgh2 d � v0
2.

c 2
r
1P � rgh2 d � v0

2 � 1v2 � v0
22 � v0

2 � v2

2
r
1P � rgh2 � a 2

r
b1

2
r1v2 � v0

22 � 1v2 � v0
22

P � rgh � 1
2 r1v2 � v0

22

x

y

x

y

x

y

R

a
bb

m = slope



Some useful formulae for the areas and volumes of regular solids are given in the
following table.
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4.  EXPONENTIALS AND LOGARITHMS

Recall that the logarithm of a quantity x, whether it be a number or a variable, with
respect to the base b, written y � logb(x), means that x � antilogb(y) � by, where y is
the exponent to which the base b must be raised to equal x. The two most used bases
are base 10, common logarithms, and base e, natural logarithms. Explicitly, these are

y � log10(x) or x � 10y,

and

y � loge(x) � ln(x) or x � ey.

Natural logarithms arise directly from calculus, whereas common logarithms are sin-
gled out because of the decimal number system we use. We often omit the base when
writing logarithms: log implies base 10, and ln is reserved for natural logarithms.

Logarithms have the following general properties:

log(xy) � log(x) � log(y)

log(x/y) � log(x) � log(y)

log(xn) � n log(x)

log(1) � 0

These four expressions are true no matter what the base. Other specific examples for
base 10 and e include:

log(10) � 1

log(10n) � n

ln(e) � 1

ln(en) � n.

Shape Area or Volume

Rectangle Area = L × w

Circle Area = πR2

Triangle Area = 1/2 bh

Sphere Surface Area = 4πR2

Volume = 4/3 π R3

Cylinder
Surface Area = 2πRL

(plus area of
circular end caps)

Volume = πR2L

b

h

R

L

w

R

R

L



5.  TRIGONOMETRY

Angles can be measured in a variety of units including degrees and radians, those
used in this book. Radian measure is defined through the equation

s � r
,

as


 ,

where s is the arc length of a circular arc of radius r. Whatever units are used for s
and r, 
 is dimensionless. In a full circle we have s � 2�r and so there are 2� radi-
ans corresponding to 360°.

Note that when using a calculator, care must be taken to set the mode in which
angles are obtained—degrees or radians—to be sure that your answers, when given
as angles are correctly understood. For example, if you enter 1.0 and ask for the
inverse tangent you will find 45 if you calculator is set for degrees, but 0.785 if set
for radians. Both are correct but you need to know which units for angle the calcula-
tor is reporting.

Trigonometry deals with the special properties of right triangles, those with a 90°
angle. Because the three angles of a triangle must add to 180° in Euclidean geome-
try, special relationships arise between the sides and angles in a right triangle. Using
the right triangle labeled below, we remind you of the basic definitions of the trigono-
metric functions (summarized in the famous mnemonic SOH CAH TOA):

Less common are the trigonometric functions for the inverse of these:

The other important relationship between the sides of the right triangle is given by
the Pythagorean theorem:

From the above relations a whole host of trigonometric identities can be derived; the
most important are listed in the table below.

Trigonometric Identities

sin (�u) � �sin u
cos (A ; B) � cos A cos B < sin A sin B
sin (A ; B) � sin A cos B ; cos A sin B
cos 2u � cos2 u � sin2 u

sin 2u � 2sin u cos u
sin2 u � cos2 u � 1

a2 � b2 � c2.

csc u �
1

sin u
; sec u �

1

cos u
; cot u �

1

tan u

tan u �
opposite side

adjacent side
�

sin u

cos u
�

a

b

cos u�
adjacent side

hypotenuse
�

b

c

sin u�
opposite side

hypotenuse
�

a

c

�
s

r
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θ

a
c

b

cos (�u) � cos u
cos u � sin (90° � u)
sin u � cos (90° � u)

cos2u

2
�

1

2
11 � cos u2

sin2u

2
�

1

2
11 � cos u2
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Appendix II
Table of the Elements

Element Symbol Number Discovery

Actinium Ac 89 1899

Aluminum Al 13 1825

Americium Am 95 1945

Antimony Sb 51 *

Argon Ar 18 1894

Arsenic As 33 *

Astatine At 85 1940

Barium Ba 56 1808

Berkelium Bk 97 1949

Beryllium Be 4 1798

Bismuth Bi 83 *

Bohrium Bh 107 1976

Boron B 5 1808

Bromine Br 35 1826

Cadmium Cd 48 1817

Calcium Ca 20 1808

Californium Cf 98 1950

Carbon C 6 *

Cerium Ce 58 1803

Cesium Cs 55 1860

Chlorine Cl 17 1774

Chromium Cr 24 1797

Cobalt Co 27 1737

Copper Cu 29 *

Curium Cm 96 1944

Darmstadtium Ds 110 1994

Dubnium Db 105 1970

Dysprosium Dy 66 1886

Einsteinium Es 99 1952

Erbium Er 68 1843

Europium Eu 63 1901

Fermium Fm 100 1953

Fluorine F 9 1886

Francium Fr 87 1939
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Gadolinium Gd 64 1880

Gallium Ga 31 1875

Germanium Ge 32 1886

Gold Au 79 *

Hafnium Hf 72 1923

Hassium Hs 108 1984

Helium He 2 1895

Holmium Ho 67 1878

Hydrogen H 1 1766

Indium In 49 1863

Iodine I 53 1804

Iridium Ir 77 1804

Iron Fe 26 *

Krypton Kr 36 1898

Lanthanum La 57 1839

Lawrencium Lr 103 1961

Lead Pb 82 *

Lithium Li 3 1817

Lutetium Lu 71 1907

Magnesium Mg 12 1808

Manganese Mn 25 1774

Meitnerium Mt 109 1982

Mendelevium Md 101 1955

Mercury Hg 80 *

Molybdenum Mo 42 1778

Neodymium Nd 60 1925

Neon Ne 10 1898

Neptunium Np 93 1940

Nickel Ni 28 1751

Niobium Nb 41 1801

Nitrogen N 7 1772

Nobelium No 102 1957

Osmium Os 76 1804

Oxygen O 8 1774

Palladium Pd 46 1803

Phosphorus P 15 1669

Platinum Pt 78 1735

Plutonium Pu 94 1940

Polonium Po 84 1898

Potassium K 19 1807

Praseodymium Pr 59 1885

Promethium Pm 61 1945

Protactinium Pa 91 1917

Radium Ra 88 1898

Radon Rn 86 1898

Rhenium Re 75 1925

Rhodium Rh 45 1803

Roentgenium Rg 111 1994

Rubidium Rb 37 1861

Ruthenium Ru 44 1844

Rutherfordium Rf 104 1969
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*Known to Ancient Civilization 

Samarium Sm 62 1879

Scandium Sc 21 1879

Seaborgium Sg 106 1974

Selenium Se 34 1817

Silicon Si 14 1823

Silver Ag 47 *

Sodium Na 11 1807

Strontium Sr 38 1790

Sulfur S 16 *

Tantalum Ta 73 1802

Technetium Tc 43 1937

Tellurium Te 52 1782

Terbium Tb 65 1843

Thallium Tl 81 1861

Thorium Th 90 1828

Thulium Tm 69 1879

Tin Sn 50 *

Titanium Ti 22 1791

Tungsten W 74 1783

Uranium U 92 1789

Vanadium V 23 1830

Xenon Xe 54 1898

Ytterbium Yb 70 1878

Yttrium Y 39 1794

Zinc Zn 30 1746

Zirconium Zr 40 1789

Color Group

1

2

3–12

13

14

15

16

17

18

Series
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Chapter 1

MC

1. D
3. D
5. B

P

1. (a) 6.7 � 10�27 kg; (b) 2.7 � 10�26 kg; (c) 2.4 � 10�26 kg; (d) 5.2 � 10�26 kg
3. 2.7 � 10�10 m
5. (a) 1.9 � 10�5 �g/�m3; (b) 1.9 � 10�8 pg/nm3

7. (a) 5 � 10�18 kg; (b) 5 � 10�16 kg

Chapter 2

MC

1. A
3. B
5. D
7. D
9. A

11. A
13. A
15. C
17. D
19. B
21. C
23. B
25. C
27. D
29. C
31. E

P

1.

Appendix III
Answers to Odd-Numbered

Multiple Choice and Problems

a (m/s2)

5 1510

1

3

1

3

t (s)



3. 12.3 s
5. (a) v � 2.5, 10, 7.5, 2.5 �m/s; a � 1.5, �0.5, �1.0 �m/s2; (b) v � 5, 5, 7, 5, 6

�m/s; a � 0, 0.5, �0.3 �m/s2; (c) v � 5, 5, 5, 5, �2.5, �2.5, �2.5, �2.5, �2.5
�m/s; a � 0, 0, 0, �0.5, 0, 0, 0, 0 �m/s2

7. (a) 6.7 m/s, 13.4 m/s, 6.7 m/s, 11.9 m/s � 26.5 mi/h; (b) 33.6 m, 483 m, 40.2 m,
556.8 m; (c) 0 m/s2

9. (a) t � 12 s (b) 360 m � 848.5 m so yes.
11. (a) 49 m/s down; (b) 9.8 m/s2 up; (c) 19.6 N
13. (a) x � 300 m from the police car’s starting position; (b) t � 20 s from when the

police car started moving.
15. 4730 m/s
17. 4.88 � 1016 N
19. 35.3 N/m2

21. (a) 0.167 m/s2; (b) 0.143 m/s2; (c) 0.167 m/s and 0.143 m/s; (d) 60.5 s and 70.5 s
23. (a) 0.67 m/s2; (b) 13.3 N; (c) 13.3 N; (d) Newton’s 3rd law; (e) same
25. (a) 139,000 h, or never, convection will undoubtedly play a role here; (b)

0.45 �m
27. (a) 7.5 � 10�7 m/s; (b) 1.33 � 104 turns/min

Chapter 3

MC

1. A
3. B
5. C
7. B
9. C

11. C
13. C
15. A
17. D
19. B

P

1. (a) 73 min; (b) 32.7 km/h
3. 25.9 km/h
5. 0.98 m/s2

7. 32.7 s
9. (a) 75.4 m; (b) 14 m/s

11. (a) 16.1 m/s; (b) 0.83 s; (c) 5.1 m
13. (a) 3.5 s; (b) 9.8 m/s2 down; 34.3 m/s down
15. No – his speed is 39.5 mph
17. 9 m/s2

19. (a) 15 m/s; (b) 2 m/s2 to right; (c) 2.86 N to right, source is 5 kg block
21. (a) 80.5 m; (b) 40.1 m/s
23. 2530 m/s2 � 258 g’s
25. 51.5 m/s
27. (a) 0.58; (b) 1.7; (c) 1.7; (d) 3; (e) 1
29. (a) 7.9 N/m; (b) x � (0.1 m) cos(3.14t); at t � 1 s, x � 0.1 m; at t � 2 s, x �

�0.1 m; at t � 1.5 s, x � 0; at t � 1.25 s, x � 0.07 m; (c) v � (0.314
m/s)sin(3.14t); at t � 1 s, v � 0; at t � 2 s, v � 0; at t � 1.5 s, v � �0.314 m/s;
at t � 1.25 s, v � �0.22 m/s

31. (a) 208 m; (b) 3.81 � 104 N; (c) 55.5 X
33. (a) 35.1 N/m; (b) 1.75 m/s2 at amplitude; (c) 0.15 m/s at equilibrium
35. (a) From the graph below, the slope represents the spring constant and its value

is 123.9 N/m.
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(b) F � 126.4 N up
37. 0.098 N
39. 2.2 � 10�4 m
41. (a) 
L � 9.6 �m; (b) k � 1.31 � 109 N/m; (c) T � 6.2 ms
43. 6200 N

Chapter 4

MC

1. B
3. A
5. D
7. A
9. C

11. B
13. B

P

1. (a) 3.15 � 104 J; (b) ~27
3. (a) 330 J; (b) �300 J; (c) 300 J; (d) 2.4 m/s
5. (a) 22.3 m/s; (b) 1.76 s; (c) 2.79 s; 22.3 m/s
7. 8.01 m/s
9. (a) �127 kJ; (b) 31.8%

11. (a) 1400 J; �1200 J; (b) 1.8 m/s; (c) 0.17 m; 0.18 s; (d) 1480 J
13. 0.24 m/s
15. (a) 0.1 kg; (b) 0.1 J; (c) 1.41 m/s at equilibrium (5 cm below initial unstretched

spring position)
17. 1.0 � 104 W
19. (a) assuming to the right is �x, vJ � 6 m/s to the right, vS � 6 m/s to the right;

(b) aS � 0.6 m/s2 to the left; (c) FS � 30 N to the left; (d) W � �900 J

Chapter 5

MC

1. C
3. A
5. A
7. C
9. B

11. A
13. D
15. C
17. D
19. E
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Force versus stretch for a spring.

y = 123.92x
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21. C
23. C
25. D
27. C
29. A
31. A
33. C
35. C
37. C
39. B

P

1. From square1 to square2 � (0,1); from square2 to square3 � (2,0); from
square3 to square4 � (0,2); from square4 to square5 � (3,0); from square5 to
square6 � (�4,0); from square6 to square7 � (0,4); The displacements are the
same for both boards regardless of the labeling schemes.

3. (a) 135 N vs 75 N; 125 NW vs 125 NW; 85 S vs 101 NE; (b) 400 and 75 N along
with 375 and 125 SW; (c) NYC → BGM and KGN → SYR

5. (a) due to current downstream; (b) 35.7° upstream; (c) 1.5 min
7. (a) ; ; ; ; ; ; (b) (5,0); (0.5);

(5,0); (5,5)
9. (a) A � (3,2); B � (7,7); C � (8,3); (b) 6.4; 4.1; 5.1; (c) (10,9); (15,10); (18, 12);

(30,20); (d) (�5,�5)
13. (a) 29.8 m/s at 47.9° below the horizontal; (b) 2.3 s; (c) 45.2 m; (d) 9.8 m/s2 down
15. (a) ~14 km; (b) directly above the bomb
17. (a) 90.4 m; (b) t � 4.52 s
19. a � 9.0 m/s2

21. (a) 1.17 s; (b) 9.58 m; (c) 4.79 m horizontally; (d) 10 m/s at �35°; (e) 8.97 m/s
at �24.0°

23. 2.15 � 106 ft/min2

25. (a) 0.11 m/s; (b) 0.055 m/s2; (c) 12 s/rev
27. 329 N; (b) 3.29 � 105 J
29. (a) FT1 � 11300 N; FT2 � 5660 N; (b) vmax � 3.24 m/s; (c) ~2 s
31. (a) a � 1.26 m/s2 � 4.16 ft/s2; (b) t � 68.9 s; (c) F � 4.1 � 106 N
33. (b) 5.23 m/s2; (c) because the block has no acceleration in part (a); (d) 4.7 kg
35. (a) 4.32 m/s; (b) 4.85 m/s; (c) 0.313 m
37. (a) 17.2 m/s; (b) 25.1 m; (c) 23.5 m
39. (a) 4.15 m/s2; (b) 4.1 m/s
41. 5.5 cm
43. (a) Wpush � 60 J; Wgrav � �29.4 J; Wfrict � �30.6 J; Wnet � 0 J
45. (a) 0 N; (b) mg � F sin 
; (c) 117.7 N; (e) yes
47. (a) 0 J; (b) 1.03 J ; (c) 1.03 J
49. (b) 3.92 N; (c) 5.23 m/s2; (d) 4.67 kg
51. 3.0 � 1013 N
53. 26.6°, order does not matter
55. Blocks do not move
57. 5.1 m/s, independent of m
59. (a) 1.02 � 103 m/s; (b) 2.72 � 10�3 m/s2 toward Earth
61. (a) 0.03 m/s2; (b) 0.49 m/s2 and 1.99 m/s2

63. 17.1 m/s and 13.7 rpm
65. (b) 5.4 m/s; (c) travels vertically 1.5 m from release point
67. 491 N at 86.2° from the horizontal
69. 5.76 � 107 N
71. (a) v � 3.79 m/s; (b) vb � 17.6 m/s; (c) D � 12 m; (d) W � �58.8 kJ; (e) v �

1.62 m/s

B1 � A2A1 � B2B1 � B2A1 � A2A2 7  B2A1 7  B1
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Chapter 6

MC

1. C
3. B
5. A
7. D
9. C

P

1. (a) 0 cm; (b) 8 cm; (c) (3.33, 3.33); (d) (3, 2)
3. (a/2, a/3)
5. (1,1)
7. (m1/m3)x1
9. 7.7R

11. (1.5, 1)
13. (a) 1 kgm/s; (b) 200 N; (c) yes, but insignificantly
15. 31.0 m/s at 33.3° below the horizontal in the opposite direction to the 3m fragment
17. (a) 21.4 m/s; (b) 11%; (c) 98,800 N; (d) 2.56 � 106 J
19. (a) vf2 � 0.65 m/s at 38.1° from the initial direction, on the side opposite from

the deflected puck; (b) 26.2%

21. (a) ; 

(b) 

;

(c) 

(d) 83%

23. vblock � 0.28 m/s at � � 23.1° from the incident direction, on the side opposite
to the deflected bullet

25. (a) ; (b) � � 
 � 45°

Chapter 7

MC

1. B
3. D
5. D
7. B
9. C

11. D
13. D
15. C
17. D
19. B
21. A
23. Y, Y, N, Y
25. A
27. B
29. B

v �
vix1 2

‹ V
B

� 4.84 m/s in the � x � direction;

 V �
1m � M2

m
12gRcm11� cos u2 � 4.84 m/s

1Rcm � Rcmcosu2 n Vafter collision � 12gRcm11 � cosu2

1

2
1m � M2Vafter collision

2 � 1m � M2g¢hcm � 1m � M2g

mV � 1m � M2Vafter collision n V �
1m � M2

m
Vafter collision
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P

1. (a) 51.7 m/s; (b) 8.1 � 10�6 rad/s
3. 5.48 � 106 J
5. (a) 4.1 � 107 rev; (b) 111 rad/s
7. 1.75 � 10�5 m/s
9. 5.0 m/s

11. (a) 89.8 rad/s2; (b) 22.6 kgm2/s
13. 5 rad/s; 10 rad/s
15. (a) 0.8 rad/s2; (b) 57.3 rev (c) tang: 0.2 m/s2, radial: 144 m/s2; (d) 7.2 N
17. 1.16 Nm (CCW)
19. (a) 5 rad; (b) � � 5.92 rad/s; (c) v � 11.8 m/s
21. 54°
23. (a) 14 m/s; (b) 0.7 rad/s; (c) 3.5 � 107 kgm2/s; (d) 0.088 rad/s; (e) 0.15 m/s2

25. (a) 1.91 rad/s; (b) KEi � 2.53 J, KEf � 6.46 J
27. (a) 15.7 rad/s; (b) 0.63 Nm, 3.1 N; (c) 3.18 s; (d) 49.3 J
29. (a) 1.67 � 103 rad/s2; (b) 5.03 s; (c) 83.8 s; (d) 59,200 rev
31. 31.4 kg
33. 275 N (right end) and 575 N (left end)
35. 0.25 m
37. 498 N; 493 N
39. (a) 24.5 Nm; (b) 19.6 rad/s2; (c) 6.3 rad/s; (d) 7.83 kgm2/s
41. (a) Fw � 8 N; (b) Fmin � Fw / 2
43. L � 0.20 kgm2/s
45. (a) Fw � 600 N; (b) FA � 150 N, FB � 1050 N
47. (a) FT � 113.2 N; (b) � � 2.36 rad /s2

49. F � 220 N
51. (b) 
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(c) and ; (d) 
 � 81.1°

Chapter 8

MC

1. B
3. D
5. A
7. A
9. C

11. D
13. A
15. C
17. A
19. A
21. A

FN, floor � mL g � mpFN,wall � Ffr � ms FN, floor



P

1. 0.015 m
3. 5.1 kg/m3

5. 1.25 � 105 Pa
7. 10.2 m
9. 1.1 � 108 Pa

11. 1.63 m
13. (a) 1.53 cm/s, 9.55 cm/s; (b) 4.4 Pa; (c) 4.1 � 10�8 N
15. 2/3
17. 0.33 m/s
19. (a) v � 0.074 m/s; (b) 1.47 � 10�4 m3/s; (c) 0.49 m2; (d) ~16 billion; 

(e) KEAorta /V � 47.25 J/m3, KEarteries /V � 2.84 J/m3, KEcap /V � 4.73 � 10�5

J/m3; (f) 2.5 s
21. v � 9.9 m/s
23. 0.33 mm/s
25. 41 N
27. (a) Area � 4964.7 m2; (b) waterline area smaller than flight deck by about 75%
29. 5
31. 1.29 � 109 W
33. 110 mph

Chapter 9

MC

1. A
3. D
5. C
7. B
9. B

11. C
13. B
15. C

P

1. F � 19.6 mN
3. 
P � 16,800 Pa; 171 cm H2O
5. R � 1115
7. �unknown � 1.071 � 10�3 Pa-s
9. (a) �spheres � 1.164 � 10�3 Pa-s; (b) 0.001 Pa-s

11. (a) h � 14.9 cm (b) h � 12.9 cm
13. (a) Pressure higher in smaller bubble. (b) When valve is opened air will rush

from the high-pressure bubble into the low-pressure bubble. Thus the pressure
decreases and surface tension will tend to collapse the smaller bubble, whereas
the larger bubble will grow.

15. r � 0.026 mm � 62 �m
17. � � 0.024 N/m
19. L � 0.11 mm

Chapter 10

MC

1. B
3. A
5. D
7. B
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9. C
11. A
13. D
15. D
17. B
19. D
21. C
23. A

P

1. y(t) � 0.1 e�0.069tcos(5.7t) (in m)
3. (a) 0.503 Hz; (b) 1.99 s; (c) 11.5 s; (d) 5.8; (e) 1%
5.

676 A N S W E R S T O O D D -N U M B E R E D M U LT I P L E C H O I C E A N D P R O B L E M S

Resonance curve for mass attached to a spring with
external driving force of variable frequency.
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7. (a) 16.7 m/s; (b) 4.18 m; (c) y(x,t) � 0.05 sin(1.5x � 25.1t) (in m, s)
9. y(x,t) � 0.05 sin(25.1x � 628t) (in m,s); (b) 25 m/s; (c) 0.016 kg/m

11. (a) 19.8 m/s; (b) 2.83 Hz; (c) 1.75 m
13. 1.31A; � and f unchanged; y(x,t) � 1.31A sin(2�x/� � 2�ft � �/4)
15. � � 0.5 m; n � 6
17. 16.5 Hz

Chapter 11

MC

1. C
3. B
5. D
7. C
9. C

11. B
13. B
15. D
17. E
19. C
21. D

P

1. (a) 0.71 s; (b) 0.16 s
3. v � v0 � 0.6(T � 20°), where v0 � 343 m/s and T in °C
5. 17.2 m and 1.7 cm
7. Open: 8.6 m and 8.6 mm; closed: 4.3 m and 4.3 mm
9. 0.5 J/s

11. 0.0013 N
13. 1715 m



15.

17. Steel wound with copper at 55 mil diameter
19. 191 �s
21. 0.148 mm in water or 0.157 mm in body tissue
23. (a) 1090 N; (b) 4; (c) 0.52 m; (d) by 1.5% or 0.008 m ; (e) closed
25. 58.3 kHz

Chapter 12

MC

1. A
3. B
5. A
7. D
9. A

11. D
13. A
15. C
17. A
19. C
21. A
23. B
25. A
27. A
29. C

P

1. Tc � �40°C
3. L � 5640 mm3; 0.58%
5. 
l � 2.7 � 10�5 m
7. voxy � 478 m/s
9. P � 46.5 atm

11. 55.3 mol/L; 3.33 � 1025 H2O molecules
13. 426 three meter flights of stairs
15. mice � 150 g
17. Pathlete � 330 W
19. Pevaporation � 970 W

Chapter 13

MC

1. D
3. D
5. A

Note Freq., Hz String Length, m

C 262 0.67

D 294 0.6

E 330 0.53

F 349 0.5

G 392 0.45

A 440 0.4

B 494 0.35

C 523 0.34
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P

1. 
S � 27.7 � 103 J/K
3.

5. Plotting the given equation, the slope is proportional to 
H and the intercept is
proportional to 
S.

7.

Chapter 14

MC

1. C
3. C
5. C
7. B
9. C

11. A
13. C
15. C
17. A

P

1. 6.25 � 1018e� and 5.69 � 10�12 kg
3. 0.19 m
5. 2.2 � 106 m/s
7. Q � 1.8 �C and FT � 0.226 N
9. ; Fnet2 � 0N; 

11. Fnet � 0N; Fnet 1 charge removed � kQ2/L2 toward the removed charge; L � length
of side of hexagon.

13. (a) F � 3.6 � 10�3 N; (b) q2 � 8 � 10�7C
15. F � kQq/4R2

17. E � 1.62 � 106 N/C directed to the midpoint of the side with two �10 �C
charges

19. Enet � 2.65 � 104 N/C directed perpendicular to and away from the plane con-
taining the lines of charge.

21. E � 1.13 � 108 N/C
23. For MNa � 3.89 � 10�26 kg aNa � 4.11 � 1013 m/s2

25. R � 26.5 mm

Fnet3 � 1.13NiNFnet1� �1.13NiN

Macrostate # Microstates

(2,0,0,0,0,0,1) 3

(0,0,3,0,0,0,0) 3

(1,0,2,0,0,0,0) 6

(1,1,0,0,0,1,0) 6

(1,0,1,0,1,0,0) 6

(0,2,0,0,1,0,0) 6

(0,1,1,1,0,0,0) 6

Total microstates 36

6
Heads

5
Heads

4
Heads

3
Heads

2
Heads

1 
Head

0
Heads

# Outcomes � 64
# Ways 1 6 15 20 15 6 1 64

Prob (%) �
(#Ways/64)*100 1.5625 9.375 23.4375 31.25 23.4375 9.375 1.5625 Total 100



27. (a) E � 0; (b) ; (c) E � 0

29. E � �/�0 toward the negatively charged sheet

Chapter 15

MC

1. C
3. C
5. B
7. D
9. B

11. C
13. D
15. C
17. D
19. B

P

1. PE � 1.08 � 106 J
3. (a) V � 0; (b) E � �1.8 � 107 N/C î; (c) W � 0; (d) V � 1.8 � 106 V; (e) E � 0

N/C; (f) W � 18 J

5. (a) 0.36 N/C ; (b) V � 1.8V; (c) �0.18 N/C ; d) V � 0 V

7. � � 6.78 � 105 Nm
9.

jNjN

E �
l

2pe0 r
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The equilibrium points are at 0°, 180°, and 360°. 0° and 360° (same physical situ-
ation) are stable equilibrium points whereas 180° is an unstable equilibrium point.

11. 6 � 106 V
13. (a) q � 2 � 10�4 C; (b) 4 � 10�4 C
15. (a) C � 88.5 pF; (b) q � 8.85 � 10�10 C; (c) E � 1 � 104 N/C; (d) F � 8.9 �

10�6 N
17. (a) C � 3 �F; (b) Cnew � 14.1 �F; (c) q � 169 �C
19. C/A � 6.4 � 10�2 F/m2

21. 20 mV
23. 4470 V

Chapter 16

MC

1. C
3. C
5. A
7. C
9. C

11. C



13. B
15. A
17. B

P

1. I � 96.3 A
3. Iavg � 0.8 nA
5. R � 6.44 �
7. (a) I � 10 A; (b) R � 10 �
9. (a) 5.02 � 105 J; (b) 278.9 W; (c) 23.2 A; (d) 0.52 �

11. (a) Req � 1730 W; (b) I � 6.9 mA
13. 10% increase
15. I10 k� � 0.68 mA
17. t1/2 � 0.693RC

19. (a) 0.5 M�; (b) � � 100 s; (c) � � 25 s
21. (a) 5.5 � 105 V; (b) 0.91 F; (c) 273.3 s; (d) 20,000; (e) 0.52 h; (f) 0.9 million

Chapter 17

MC

1. A
3. B
5. B
7. C
9. A

11. D
13. D
15. A
17. D
19. A

P

1. v � 6.25 � 105 m/s
3. v � 1.15 � 107 m/s
5. B � 6.75 � 10�4 T
7. (a) v � 8.4 � 106 m/s; (b) B � 0.64 mT; (c) 1.1 � 108s�1; (d) f � 1.8 � 107 Hz

and T � 5.6 � 10�8 s
9.

(1)

and (2)

Squaring (1) and substituting (2) gives:

11. �max � 1.96 � 10�3 Nm; �min � 0 Nm
13. � � 2.51 Am2

15. (a) B � 8 � 10�7 T North; (b) 4 � 10�7 T East
17.

m �
q

2V
1r2 B22

qV �
1

2
mv2

n v2 �
2qV

m

FB � qvB � m
v2

r
n m �

qrB

v
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y



Assuming that blue represents currents flowing up out of the page and red rep-
resents current flowing down into the page, we have B � 6.9 � 10�4 T at
� � �60° below the �x-axis.

19. (b) m � 160 mg
23. (a) B � 6.9 � 10�4 T vertically down; (b) F � 7.2 � 10�3 N to the right in the

horizontal plane of the rail gun; (c) a � 1.45 m/s2; (d) v � 1.7 m/s; (e) I � 1500 A

25. a. b. 

27. Using the same figure as for Problem 17 above, we have B � 7.59 � 10�6 T at
� � �60° below the positive x-axis

Chapter 18

MC

1. B
3. A
5. B
7. A
9. D

11. D
13. C
15. D

P

1. � � �1.57 � 10�13 V
3. � (t) � 30.2 V sin (120�t); �max � 30.2 V
5. � ~ 1 � 10�14 V
7. v � 750 m/s ~ 1690 mph ~ Mach 2
9. � � 115 kV, I � 10550 A

11. E � 2.4 N/C
13. � � 5.31 rad/s
15. n- � 1.00073 n�
17. For protons fres � 52 MHz; for 13C fres � 13 MHz

Chapter 19

MC

1. D
3. C
5. D
7. B
9. C

11. C
13. A
15. B
17. A
19. C

P

1. E � 60 N/C
3. I � 29.8 W/m2

5. If the force doubles then the intensity must double
7. (a) S � 0.5 S0; (b) 12.5% of S0 transmitted

B � a m0 I

2pR2
br; r 6 RB �

m0 I

2pr
; r Ú R
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9. As the electric field vector sweeps around at a constant rate, the intensity will be
a maximum (equal to I0) when the electric field vector is parallel to the trans-
mission axis of the polarizer and a minimum (equal to 0) when the electric field
vector is perpendicular to the transmission axis. Thus the intensity fluctuates in
a periodic way as the electric field sweeps around.

11. Pdetector � 2.24 � 10�4 W
13. 4 � 1016 m
15. 5.5 � 1014 Hz
17. (a) Number of photons � 1.33 � 1020; (b) 5 � 109 W; (c) 50 W
19. � � (432 � 19) � 10�9 m
21. (a) Ephoton � 3.74 � 10�19 J; p � 1.25 � 10�27 kgm/s; (b) Number of photons �

1.34 � 1019; (c) F � 16.7 N
23. c � 3.30 � 10�4 M and 89% of the light is transmitted
25. 22% increase

Chapter 20

MC

1. C
3. C
5. B
7. C
9. B

11. B
13. B
15. C
17. C

P

1.

3.

For n a small integer, there are n � 1 images formed.
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5. (a) 
1 � 0.72° 
2 � 0.72°; (b) h01/h02 � 2 and 
1’/
2’ � 2; (c) From the geometry
and because the angles involved are small, 
1�/
2� � h02/h01 independent of the
distances involved.

7. n1sin 
1 � n2sin 
2 � n1sin 
3 or 
1 � 
3; d � 0.39 cm
9. d0 � 0.67 cm and the image is real and inverted

11. hi � 0.25 m and yes
13. di � �5 cm, M � 1.66 and the image is virtual and erect
15. r � 9.1 feet
17. 
 � 56.2°
19. (a) 
 � 44.4°; (b) 
 � 8.1°
21. (a) 
2blue � 29.8° and 
2red � 30.2°; (b) when the light exits the prism it will

bend away from the normal resulting in a rainbow of colors with blue refracted
the most and red the least.

23. (a) 96% transmitted; (b) 98% transmitted; (c) 97.6% transmitted
25. 99% lost

Chapter 21

MC

1. B
3. D
5. B
7. A
9. B

11. B
13. B
15. D
17. C

P

1. P � 4.2 diopters
3.
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hi

di

do

ho

The image is inverted with respect to the original object. The magnification is the
ratio of the image to object distances, hi/h0 � di/d0.

5. (a) f � 4 cm; (b) x � 3.5 mm
7. (a) f � 0.33 m; (b) vscreen � 12.5 cm/s
9. (a) di � 0.107 m; (b) error � 7%

11. (a) f � 0.25 m and d0 � 0.50 m; (b) The relay system is shown below where all
distances are in meters.

L = 1

d = ½

do1 = ¼ di1 = ¼ do2 = ¼ di2 = ¼ 

8
1=fc

8
=fc

8
1 1=fc8

1=fc



13.

Chapter 22

MC

1. D
3. A
5. B
7. B
9. D

11. C
13. A
15. C

P

1. 300 nm
3. (a) tred � 119 nm; (b) tgreen � 96.8 nm
5. t � 180.5 nm
7. 5 fringes visible
9. (a) l � 1.22 � 10�10 m; (b) width � 4.8 mm; (c) 7 fringes

11. (a) L � 4.47 m; (b) hi � 6.71 �m; (c) fobj � 17 mm
13. 5 fringes
15. distance � 6190 m
17. (a) v � 6.9 � 105 m/s; (b) � � 5.7 � 10�13 m; (c) 
ym � 2.87 �m; 

(d) 
ym� � 11.4 �m; (e) 7

Chapter 23

MC

1. B
3. B
5. D
7. D
9. D

11. C
13. D

P

1. %new � 28.8%
3. (a) 
 � tan�1(Eoy/Eox) from x-axis; (b) 45°; (c) 18.4°
5. path difference � 0.01 cm; 0.94 rad
7. d � 0.148 nm
9. � � 1.34 m�1

11. CT # � 400

Chapter 24

MC

1. C
3. C
5. C
7. C
9. A

11. B
13. C

M � cL � fe

f0
d c N

N � fe
d ' 25 cm L

f0 (25 cm � fe )
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15. C
17. B

P

1. (a) � � 1.67; p � 4 � 108 kgm/s; E � 1.5 � 1017 J; (b) � � 2.29; p � 6.19 �
108 kgm/s; E � 2.07 � 1017 J; (c) � � 3.20; p � 9.13 � 108 kgm/s; E � 2.88 �
1017 J; (d) � � 7.09; p � 2.11 � 109 kgm/s; E � 6.38 � 1017 J; (e) � � 22.4; 
p � 6.70 � 109 kgm/s; E � 2.0 � 1018 J

3. Starting from KE � �mc2 � mc2 and using the binomial expansion on � for 
v �� c leads to (1/2)mv2

5. (a) E � 8.20 � 10�14 J � 0.51 MeV; (b) � � 0.0024 nm
7. (a) p � 6.4 � 10�22 kgm/s; (b) � � 1.04 � 10�12 m; (c) f � 2.90 � 1020 Hz
9. � � 2.29 eV

11. (a) � � 7.7 � 10�13 m; p � 8.53 � 10�22 kgm/s; (b) ; 
(c) E� � 0.755 MeV; (d) 0.845 MeV; (e) v � 0.926c

13. E � 0.104 MeV
15. #/s � 3.2 � 1015

17.

19. vmin � 7.28 � 106 m/s
21. 
py � 5.53 � 10�24 kgm/s
23. vmax � 1.79 � 107 m/s

Chapter 25

MC

1. A
3. A
5. D
7. C
9. B

11. B
13. C
15. C
17. C
19. D
21. B

P

3. E � 2.20 � 10�19 J � 1.38 eV
5. Units of R are given as m�1 and, substituting in the known values, R � 1.09 � 107 m�1

7. For an M shell there can be 18 total electrons. ms can take the values �1/2 and
m

�
can take the values of {0} for � � 0, {�1,0,1} for � � 1, and {�2,�1,0,1,2)

for � � 2
9. The angles (in degrees) are; 39.2; 75; 105; 140.8

11. (a) Erot1 � 0; Erot2 � 6.67 � 10�23 J; Erot3 � 2.00 � 10�22 J; Evib1 � 1.66 �
10�20 J; Evib2 � 4.98 � 10�20 J; (b) for (�,m) where � � 0, 1, 2 and m � 0, 1
we get the following energies for the states:

¢E � 12n � 12 h2

8mL2
.

1

E
œ �

1

E
�
11 � cosf2

me c
2

(l,m) E (eV)

0,1 0.104
0,2 0.311
1,1 0.108
1,2 0.317
2,1 0.496
2,2 0.704
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(c), (d) The allowed transitions and wavelengths are given by:

transition 
E (eV) � (�m)

(2,2) to (1,1) 0.596 2.09

(2,1) to (1,2) 0.179 6.94

(1,2) to (0,1) 0.213 5.84

(0,2) to (1,1) 0.203 6.12

13. � � 4.1 � 10�7 m � 410 nm
15. (a) Power � 4.0 � 1012 W � 4 TW; (b) Intensity � 5.66 � 1023 W/m2; (c) Area �

0.322 � 10�6 m2

Chapter 26

MC

1. D
3. B
5. D
7. C
9. D

11. D
13. C
15. A

P

1. (a) rlA/rH � 5.92; (b) SAlA/SAH � 35.1; (c) VlA/VH � 208
3. r � 13.4 km
5. Q � 4.09 MeV
7. Let m� � mass of helium nucleus; md � mass of daughter atom; mp � mass of

parent atom. From conservation of momentum we have 0 � �mdvd � m�v�.
Whereas from conservation of energy we get mpc2 � mdc2 � m�c2 � 1/2 mdvd

2 �
1/2 m�v�

2. Solving for vd from conservation of momentum and substituting into the
equation for conservation of energy produces the desired result. For the decay of
uranium we find the kinetic energy of the alpha particle to be 4.21 MeV.

9. Iphotocurrent � 1 nA
11. m � 7.09 �g; 58 years
13. (a) 0.0866 days�1; (b) 22 days
15. (a) 4.22 � 108 Bq; (b) m � 0.153 �g
17. 383.4 years
19. 2.39 � 1011 s � 7460 years; the time is too short to be a dinosaur bone.
21. 0.5 Gy
23. �B � 18.7 days
25. 0.429 MeV � 4.965 MeV � 5.394 MeV � 13.907 MeV � Q � 24.7 MeV
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A
Aberration, 509, 528–531, 556, 572

astigmatism, 529, 531
chromatic, 528–530
of eye, 532
of lenses, 528–529
monochromatic, 528–529
spherical, 509, 528–529

Absolute temperature scale, 187, 306, 361, 598
Absolute zero, 298, 304–305, 592
Absorbance, 493–494
Absorbed dose, 645–646
Absorption

coefficient, 288, 570, 576
and dispersion, 505
spectroscopy, 493–494, 505
spectrum, 535–536

Accelerators, 43, 648
Acceptor impurity, 617
AC circuits, 489
Accomodation of eye, 530
Accomodation, in nerve, 421
AC generator, 456–457
Acceleration, 15–17, 20–25, 27–33, 43–45, 52,

55–58, 68, 77, 80–97, 102–118, 120–123, 150,
163–166, 174–180, 231, 283–284, 374–402,
433, 471–472, 477–478, 482, 604

angular, 80, 163–164, 284
average, 20–21, 44
centrifuge, 123–124
centripetal, 105–106, 118, 120–122, 433
graphical interpretation, 44
of gravity, 44, 47
in g’s, 29
instantaneous, 21
motion at constant, 43–47, 68, 80, 105, 604
radial, 105
relationship with force, 4, 28–31, 43, 52, 55,

68, 117–118, 123–140, 144, 150–151, 161,
174, 179, 189, 305, 433, 471

of simple harmonic, 55, 58
tangential, 121–122, 163, 166, 174
uniform (constant), 43–47, 68, 80, 105, 604

Achromatic lens, 529–530
Acoustic impedance, 289–290
Acoustics, 269
Actin, 10, 66, 496
Action at a distance, 353, 375
Action potential, 383, 417, 420–421
Action-reaction (Newton’s third law), 31–32
Activation energy, 340–341
Active site, 341, 386

Activity, 2, 317, 321, 394–397, 421, 459–460,
472, 534, 568–570, 577, 643–644, 649, 651,
656–658

Activity of nuclear radiation, 2, 321,
394–396, 421, 459–460, 534, 568–570,
643–644, 649, 651

Adenosine triphosphate, see ATP
Adhesion, 243, 547, 561
Adiabatic process, 310
ADP, 87, 179, 340–341
Aerodynamic, 51, 210, 235, 280
AFM, see Atomic force microscopy
Air

buoyancy of, 221
pollution, 325

Airy disk, 557
Algebra, review of, see Appendix 1
All-or-nothing response, 420
Alpha decay, 638–640, 657
Alpha helix, in protein structure, 343
Alpha particles (or rays), 158, 400, 603, 658
Alternating current (AC), 7, 456–457, 480–481,

499, 660
Alveoli, 242–243
Ammeter, 406–407, 458
Ampere’s law, 444
Ampere (unit), 401
Amperian loop, 444
Amplification, 208, 282–283, 462,

620–622, 641
Amplitude, 55–59, 68, 86, 249–254, 256–263,

271–272, 275–278, 283, 285–286, 307, 419,
478, 487, 490, 543, 549–564, 568, 570,
625–626, 628, 649

Amplitude of vibration or oscillation, 55–59, 68,
71–73, 75–76, 86, 88, 249–254, 256–268,
271–272, 275–278, 283, 285–286, 292, 294,
307, 419, 465, 478, 481, 487, 490, 497, 500,
543, 549–550, 563–564, 568, 570, 577–579,
625–626, 649

Amplitude of wave, 258, 260, 272, 285, 563
Analyzer (of polarized light), 487
Anemia, sickle cell, 237
Aneurysm, 214–215
Angle

critical, 352, 432, 573
incidence, 393, 395
phase, 497, 565
radian measure of, 551, 552, 553–554, 555,

556, 557, 559, 573–574, 589
of reflection, 97, 636
of refraction, 191

Index



Angstrom unit, 382
Angular

acceleration, 163, 174, 284
displacement, 393
frequency, 59–60, 249, 251–253, 256–257,

262, 264, 277
magnification, 536–537
quantities, 162–163, 172
separation, 557

Angular momentum, 492
conservation law of, 255–256
quantization, 607

Angular velocity, 59, 162–167, 169–173,
180–184, 187, 189, 210, 456, 614

average, 59
linear velocity and, 163, 166

Annihilation, 349, 584, 650, 654
Annular aperture, 563–565
Anode, 571, 585–586, 641, 657
Anomalous dispersion, 505
Antenna, 489, 503
Antibody, 649, 656, 658
Antigen, 649
Antineutrino, 348
Antinodes, 270, 280
Antiparticle, 349, 584, 639
Antiproton, 349
Aorta, 238–240
Aperture, 145, 528, 531, 544–545, 557,

559–565
Apparent weightlessness, 27, 242
Aqueous humor, 530–531
Arago, 551
Archimedes’ principle, 220
Areas and volumes, see Appendix 1
Arteriovenous shunt, 240
Artery, clogged, 233
Ashkin, 482
Astigmatism, 529, 531
Asymmetric molecules, 570
Atherosclerosis, 215
Atmosphere, scattering of light by, 495
Atmosphere (unit), 223
Atmospheric pressure, 12, 216, 218, 222–224,

270, 280, 286, 318–319
Atomic

bomb, 652
mass, 9, 11, 28, 434, 633, 636
mass unit, 9, 28, 633, 636
number, 633
pacing, 11–12
resolution, 185, 573, 575
size, 11
spectra, 606

Atomic force microscope (AFM), 185–186
A (atomic mass number), 633–634, 635, 636
Atomic spectra, 606–607
Atomic structure

Bohr model of, 627
of complex atoms, 610, 612, 616
early models of, 627
of hydrogen atoms, 627
quantum mechanics of, 334, 590, 603, 607,

609–613, 616, 636
shells and subshells, 611

Atomic theory, see Atom; Atomic structure;
Kinetic theory

Atomic weight, 12, 450

Atom
angular momentum in, 604
binding energy, 605
Bohr model of, 627
complex, 607
composite structure, 6–7, 11–12, 16, 64, 460
distance between, 11–12
early models, 603
energy levels in, 333–335, 340, 344–346, 375,

423, 461, 463, 489, 491–492, 594–595,
597–605, 607, 609–610, 613–614, 616–618,
620–622, 637, 640

hydrogen, 7, 11, 66, 87, 179, 185, 304,
307, 337, 344–348, 382, 439, 460–461,
463–465, 592, 603–607, 609–610,
612–613, 627–635, 647, 653–654

neutral, 348, 383, 612, 628, 633,
635, 643

packing of, 11–12
planetary (nuclear) model of, 604
probability distributions in, 609
quantum theory of, 334, 590, 603, 607,

609–613, 616, 636
shells and subshells in, 167, 168
stability, 603
stationary states in, 604–607, 609–610
see also Atomic structure; Kinetic theory

ATP, 64, 87, 178–179, 331, 340–342, 469
ATP hydrolysis, 331, 340–342
ATP synthase, 87
Atrioventricular node, 394
Attention deficient hyperativity disorder, 651
Atwood machine, 74, 196, 197
Audible range, 224, 261, 271, 288
Auditory nerve, 283–284
Average acceleration, 20–21, 44
Average angular acceleration, 163
Average angular velocity, 162
Average density, 10, 221–222
Average speed, 18, 23, 290
Avogadro’s number, 307, 414
Axis of lens, 509–511, 513
Axis of rotation, 63, 161–163, 167, 169, 173–176,

180, 189, 437
Axon, 415–421

B
Back-projected, 650
Bacteria, 4–6, 50, 53, 236, 325, 431, 442, 447, 484

see also E coli
Balance, 9, 53, 116, 145, 148–149, 217, 222, 242,

258, 282, 284, 300, 303, 320, 325, 414, 482,
484, 640, 644, 652

Balance point, and center of mass, 145, 148–149
Ballistic pendulum, 158
Balmer series, 606
Band

energy, 616
gap, 616–617
theory, 616–617

Banking of curves, 120–122
Bar codes, 625
Barium solution, 575
Barometer, 222–223
Barrier filter, 564
Barrier potential, 90, 592, 595
Basal metabolic rate, 321
Basilar membrane, 284–285
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Battery, 389–391, 402, 404–411, 414, 415, 417,
453, 454, 455, 470, 481, 586, 590

Battery symbol, 389
Beam splitter, 544, 556, 564, 566, 625–626
Beat frequency, 261, 277
Beats, 238–239, 260–261, 277, 292, 296
Becquerel, 638
Becquerel (unit), 643
Beer-Lambert law, 493, 498
Bees, 378
Bell, 203, 272, 482, 484, 620
Bel (unit), 272
Bernoulli’s equation, 214–216, 231, 239
Beta decay, 348
Beta particle, or ray, 638, 639

see also Electron
Beta pleated sheet, in protein structure, 66
Biased, reverse and forward, 618
Bifocals, 533
Bilayer, phospholipid, 188, 207, 242, 317, 337,

386–387, 412, 547
Billiard balls, 382, 587
Bimetallic-strip thermometer, 299, 302–303
Binding energy, 635–638, 652–653

in atoms, 636
of nuclei, 636
per nucleon, 636–637, 652–653

Binnig, 185
Binomial theorem, 356, 381, 583
Biological dose equivalent, 646
Biological half-life, 648
Biology

impact of physics on, 2
as a science, 1–5, 16, 34, 51, 61, 231–232,

243, 297, 319, 331, 338, 340–341, 378,
392, 493, 503, 537, 618–619, 621, 623,
625, 648

Biomaterials, 60, 63–65, 207
Biophysics, 3
Biosensors, 565
Biostructural motifs, 342
Birefringence, 569–570, 578
Black, thin film, 547
Blood flow, 6, 210, 214–215, 233, 238, 240

clot formation, 210
Doppler blood-flow meter, 291
Doppler, ultrasonic imaging, 291
TIAs and, 215

Blood pressure, measuring, 219, 224,
239, 320

Blue sky, 494–495
BMI, 221
Body

heat loss from, 322
parts, CM of, 157
rigid, 161–162, 165, 167, 172–173, 175,

177, 211
temperature, 323

Bohr, 593, 603–607, 609
Bohr model, 627
Bohr radius, 605, 607, 609
Bohr theory, 607
Boiling, 298–299, 314, 318–319, 623
Boiling point, 298–299, 314, 318–319, 623
Boiling point increase, 319
Boltzmann factor, 340, 423, 462, 465, 620
Boltzmann’s constant, 4, 306, 361
Bolus flow, 240

Bonds
covalent, 342, 613
hydrogen, 66, 87, 304, 337
ionic, 613
metallic, 616
molecular, 116, 118, 613
in solids, 236, 269–270, 303, 616–617, 626
van der Waals, 344, 386, 612–613, 615

Bone elasticity, 61
Bose-Einstein condensation, 610
Bosons, 610
Boundary layer, 49, 231, 233–234
Bragg angle, 574
Bragg diffraction, 574
Bragg equation, 574
Bragg planes, 574
Brain activity, 459, 651
Brain waves 
, 
, �, �, 389–390
Bridge collapse, 254–255
Bright-field microscopy, 563
Broglie, see de Broglie
Brown, 33
Brownian motion, 33–34, 53, 67, 581
Btu (unit), 312
Bubble chamber, 349, 641–642
Buckling, 301
Bulk modulus, 63, 167, 270
Buoyant force, 49, 52–53, 122–123

C
Cable network, 418–420
Calcite crystal, 566
Calorie food, 312
Calorie (unit), 312, 382
Calorimeter, 316
Calorimetry, 316–317
Camera, 484, 529, 536, 547, 625, 650
Cantilever, 185–186
Capacitance

equivalent, 411
equivalent, 411–412, 424
specific, 391, 412–413
stray, 412
units, 388

Capacitance, 387–392, 396–400, 418
Capacitor, 386–392, 411–413, 415, 427–429,

470–471, 618
Capacitor charge and voltage on, 388, 401
Capacitor, discharge of, 401, 412
Capacitor energy stored in, 388
Capacitor parallel-plate, 387–390, 392, 471
Capacitor in RC circuit, 412
Capacitor uses of, 413
Capillaries, blood, 241–244
Capillarity, 205, 231, 241, 243
Capillary action, 243–244
Capillary tube, fluid flow and, 232–234, 417
Carbon dating, 644
Carbon dioxide, in global warming, 325
Cardiovascular system, 224, 321, 575
Car forces on a curve, 120
Carrier frequency, 465, 467
Car skidding, 121
Catalysis, 341
Cataracts, 530
Catheters, 623
Cathode, 585, 641, 646
Cathode rays, see Electron
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Cathode-ray tube (CRT), 646
CAT scan, see CT scan
Cauterization, 623
Cavitation, 289
CCD, 484, 566
CCD camera, 484, 566
CD player, 603, 619
Cell membrane dynamics, 187
Cell, motility, 109
Cells, size, 12
Celsius temperature scale, 298–299
Center of curvature, 509–511, 513
Center of gravity, 189
Center of mass, 16, 139, 145–151, 153, 161–162,

169, 179, 187, 189, 213
for Earth-moon system, 146
for human body, 157
and translational motion, 150–151, 153
for water molecule, 188

Centigrade, see Celsius temperature scale
Central bright maximum, 548, 551
Central stop, 563
Centrifugal (pseudo) force, 121
Centrifuge, 123–124
Centripetal

acceleration, 105, 118, 163, 433
force, 166, 174, 433, 604

Chain reaction, 652, 655
Challenger shuttle, 300–301
Change of phase (or state), 313–315, 326,

546, 570
Channels, membrane, 3, 188, 284, 373, 386,

392–393, 401, 412–415, 417, 421–423, 534,
590, 650

Channels, potassium, 393
Characteristic rays, 524
Charge carriers, 361, 436, 617
Charge-to-mass ratio, 433
Charge, see Electric charge
Chemical

energy, 34, 87, 311, 342, 402, 405, 455
potential, 331, 338–339
reactions, 7, 311, 315, 338, 341, 584, 621
shift, 463–464, 468

Chemistry, subject matter of, 613
Chemotaxis, 33, 53, 431
Chernobyl, 653
Chlorophyll, 342, 620
Cholesterol, 215
Chromatic aberration, 528–530
Chromophore, 496
Chromosome, see DNA
Circuit, see Electric circuit
Circular

aperture, 557
birefringence, 570
dichroism, 570, 578
motion, 97, 104–105, 118–119, 121–122,

162–163, 165–166, 173, 568
motion nonuniform, 121, 163, 166, 174
motion uniform, 104–105, 118, 121,

162–163, 166
polarization, 568, 570, 577–578

Circulation of magnetic field, 23, 237
Cladding, 515
Classical mechanics, as a branch of

physics, 2–3
Clock, pendulum, 56, 250, 252, 263

Closed system, 150–151, 300, 305, 309, 311,
334–335, 337

Closed tube, 281
Cloud chamber, 641
Cluster, 337, 393
Coating of lenses, optical, 547
Cochlea, 208, 264, 282–285
Cochlear implant, 283
Coefficient, see name of
Coherence

spatial, 278, 549–550
temporal, 549–550

Coherence length, 550, 556
Coherence time, 549–550
Coherent source of light, 6, 161, 278, 304, 516,

549–550, 597, 620–621, 625–626
Cohesion, 243
Coil-to-helix transition, 344
Collagen, 63–64, 66
Colligative properties, 297, 317, 319
Collisional pumping, 622
Collisions

elastic, 153
inelastic, 153

Collisions in two or three dimensions, 153
Collision time, 403
Colloids, 207
Color, 7, 17, 287, 291, 298, 322, 324, 376, 382,

386, 460, 468, 472, 482, 490, 492, 495–496,
523, 528–531, 535–536, 546, 550, 565, 569,
576, 591, 596, 609, 616, 619, 622, 625–626

Color
related to wavelength, 453, 472, 477, 488
of sky, 494–495
vision, 535

Coma, 528
Comet Shoemaker-Levy, 9, 30
Common intermediate, 341
Communications, fiber optics, 515–516
Compass, magnetic, 431–432, 440–442
Complementarity, principle of, 593
Complex atoms, 607
Complex fluid, 6, 162, 209, 236
Components of vector, 99
Compound lenses, 527
Compound microscope, 503, 523, 528, 537, 563
Compressible gas, 205, 271
Compression (longitudinal wave), 54, 55, 56,

224, 270, 655
Compressive stress, 62, 64
Compton, 587–588
Compton scattering, 587–588
Compton wavelength, 588
Computed tomography (CT), 291, 478, 563, 573,

575–578, 580, 618, 651
Computers, 2, 20, 68, 276, 324, 359, 386, 393,

395, 413, 470, 515, 566, 591
Concave mirror, 509–513
Condensation, 313, 314
Condenser, in microscope, 537
Condenser, see Capacitor
Conductance, 403–404, 415, 420, 423
Conductance, single membrane 

channel, 423
Conduction, 3, 284, 321, 324, 332, 352, 392, 394,

421, 590, 616–617
band, 616–617
electric, 352
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heat, 322
nerve, 3, 284, 392, 394, 421

Conductivity, 385, 403
electrical, units for, 404
thermal, 322–323

Conductors, 387, 404, 418–419, 590
electrical, 352, 359, 615–616
heat, 321–322, 352, 572, 617

Cones, 534–536, 558
Configurations, electron, 610, 612, 616
Confocal microscopy, 567
Conformation, of macromolecules, 66–67, 337,

342–343, 494, 496
Conjugate variables, 594
Conservation laws

of angular momentum, 179–180
electric charge, 348–349, 408
of energy, 84, 88
of energy, for ideal fluid, 212
of linear momentum, 139, 142–143, 150, 179,

211, 482, 640
of mass, 211–213, 215, 231

Conservation laws, 211–217
Conservative force, 87–88, 170
Constant

acceleration, 47, 68, 80, 105, 604
angular acceleration, 163–164
force, 30, 32, 43, 45, 47, 78, 91, 102,

110–111, 185
force mode, of AFM, 185

Constants, fundamental, see Inside front cover
Constructive interference, 259, 278, 546,

548–549, 554, 574, 588, 604
Contact angle, 243
Contact force, 24, 32, 37, 114, 142, 185–186, 353
Contact lenses, 531
Continuity, equation of, 212, 215, 231, 239
Continuous laser, 620
Continuous spectrum, 555, 603, 619
Contrast

amplitude, 563–564
edge, 566
in microscope images, 16, 18, 52, 140, 232,

254, 257, 289, 291, 348, 384, 467–468,
485–486, 549, 553, 556, 563–567,
572–573, 575, 617, 650

phase, 485, 563, 565–566
Control rods, 652–653
Convection, 321, 323–324, 361
Conventions, sign, 513, 517, 525
Converging lens, 523, 525–526, 531, 533, 536
Conversion factors, see Inside front cover
Convex mirror, 509, 513
Convolution, 553
Cooling, 66, 240, 317, 323–324, 332

by evaporation, 322
by radiation, 324, 326

Cooperative transition, 344
Cooper pair, 590
Core, of fiber optic, 515
Core, of star, 654
Cornea, 530–531, 533, 623
Corrective lenses, 531
Cosmetic mirror, 509
Couette flow, 210
Coulomb force, 349, 354, 373–374, 382, 470
Coulomb’s law, 349–354, 373–374, 382, 470
Coulomb (unit), 347

Countercurrent heat exchange, 323
Counterions, 361
Couple, 142, 283, 289, 384, 437
Coupled reactions, 87, 340–341
Covalent bond, 342, 613
Creep, 64–65, 201
Crick, 342, 575
Critical angle, 514–515
Critical mass, 652
Cross-bridges, of muscle, 64
Crossed Polaroids, 569
CRT, 646
Crystal lattice, 574–575, 578
Crystallite, 615
Crystals, liquid, 8, 207
CT number, 576, 580
CT scan, 291, 478, 563, 573, 575, 618, 650–651
Curies, Marie and Pierre, 638
Curie temperature, 443
Curie (unit), 643
Current loop, 437–438, 441–443
Current, see Electric current
Curvature

center of, 509–511, 513
of field, 529
of space, 581

Cycle, 65, 224, 238–239, 253, 394, 479, 653–654
Cyclic motion, see Periodic motion
Cyclotron, 648
Cytoplasm, 5–6, 8, 64, 236, 362, 404, 414, 484

D
D2O, 464, 494
Dalton, 28
Damped harmonic motion, 251
Damped oscillator, 251, 534
Damping constant, 250, 252
Dark-field microscopy, 563
Dark reactions, in photosynthesis, 342
Dashpot, 65–66
Dating, radioactive, 644
Daughter nucleus, 638–639
Da Vinci, 506–507
Davisson, 589
DB (unit), 272–273
Dc circuits, 254, 406–407, 410–411, 412, 413,

421, 424, 437, 489
D (diffuse) atomic subshell, 611–612
Dead spots, acoustic, 279
de Broglie, 589, 592, 604, 607
de Broglie, standing waves, 604
de Broglie wavelength, 589, 592, 604
Debye length, 361
Decay, 348, 577, 592, 594, 603, 634–635,

638–645, 647–650, 652
alpha, 638
beta, 348
constant, 642, 645
energy, 638
gamma, 640
rate of, 645, 648
series, 639
types of radioactive, 592, 635, 642,

644–645, 649
Deceleration, 122, 184
Decibel (Db unit), 272–273
Decomposition, vector, 99
Degrees of freedom, 307
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Dendrite, 416–417
De novo protein design, 386
Density, 10, 221–222

and floating, 27, 220–222, 241, 255, 304
gradient, 467–468
mass (table), 10
water and freezing, 304

Depletion zone, 617–618
Depolarization, membrane, 387, 394, 417, 421,

423, 569
Depth of focus, 572
Derived units, 25
Destructive interference, 259, 262, 278–279, 546,

548, 552, 555, 588, 591, 604
Detectors of particles and radiation, 283–284,

324, 460, 481, 491, 566, 571–572, 575, 641,
649–650

Detergents, 495
Deuterium, 464, 647, 653–654
Dextrorotatory, 570
Dialysis, 319–321
Diamagnetism, 463
Diastolic pressure, 224
Diathermy, 288
IC, 565–567
Dichroic mirror, 564
Dielectric

breakdown, 353, 616–617
constant, 385–386, 390, 503

Dielectrics, 352, 367, 616
Dielectrics molecular description of, 384
Dielectric strength, 361
Difference equations in molecular dynamics,

68, 588
Differential-interfernece-contrast microscopy,

565–566
Diffraction, 68, 273, 275, 295, 465, 519, 543,

545, 547, 563, 573–575, 585, 588–589,
593, 618

by circular apertures, 557
of electrons, 589
far-field, 551, 557, 588
Fraunhofer, 551, 554, 557
Fresnel, 551
grating, 554–555
of light, 545
as limit to resolution, 27, 65, 68, 162,

185–186, 288, 291, 391, 453, 464–465,
467–468, 481, 484, 523, 530–531,
536, 543, 545, 556, 563, 566–567,
571–573, 575, 593, 596–597,
625–626, 650

limit, for resolution, 558
of matter, 589
near-field, 551
pattern of circular opening, 557
pattern of electrons, 589
pattern of single slit, 550–554, 557, 560
pattern X-ray, 68, 465, 563, 573–575, 618
by single slit, 550–554, 557, 560
of sound, 545
spot, 575
X-ray, 68, 465, 563, 573–575, 618

Diffuse reflection, 506
Diffusion, 8, 15–16, 33, 53, 67, 162, 187–189,

207, 320, 340, 414
constant, 34–35, 187–188, 194
controlled, 340

limited, 340
rotational, 187–188

Digital synthesizers, 276
Dimerization, 344
Diodes, 403, 405, 618, 623, 625
Diopter, 525, 531
Dipole, 379, 384, 394, 437–443, 453, 460–462,

465–466
approximation, 356–357
electric, 358, 378–381, 383, 385, 394,

437–439
induced dipole bonds, 379, 383–384
magnetic, 437–443, 453, 460–463,

465–466, 489
permanent, 379–380, 383–384

Dipole moment, 379–384, 394, 437–443, 453,
460–462, 465–466

Direct current (DC), see Electric current
Discharging a capacitor, 401, 412, 424
Disorder and order, 331
Dispersion, 555–556
Dispersion interaction, 383
Displacement, 18, 23, 34, 54–55, 58, 80,

83, 97–98, 105, 110–111, 115, 162–163,
173, 185, 205, 255–256, 258–259, 262,
270, 280, 285–286, 374, 436, 484,
524, 582

Displacement
angular, 162–163
mean square, 34–35

Distance
traveled, 18, 23, 28, 163, 362, 544, 548
units, 17, 419

Distortion (lenses), 528–529, 531, 537, 556, 572
Distributed-parameter network, 418
Diverging lens, 523, 526–527, 529–531
DNA, 5–6, 12, 30, 186, 236, 341–342, 344, 362,

484, 493–494, 572, 575, 596, 647
melting of DNA, 494
plasmid, 6, 186

Domains, magnetic, 66, 88, 189, 297, 442–443, 446
Donor impurity, 617
Dopamine, 651
Doping, of semiconductors, 353, 367, 617
Doppler effect, 269, 286–288

for sound, 286–287
Dose, absorbed, 645–647
Dosimetry, 633, 645
Double-slit experiment, 548–549, 552–555, 581,

588–591
or electrons, 588
for light, 548–549, 552, 553, 559, 581,

588–589, 590–591
Drag force, 49–52, 211, 231, 360, 484

see also Frictional force
Drift velocity, 123
Driving frequency, 252–253, 256–257, 263
Drum, circular, 281
Dry ice, 299, 313–314
Duality, wave-particle, 585
Dye lasers, 622
Dynamical equations, 181
Dynamics, 2, 6, 20, 23, 29, 43, 66, 97,

106–107, 109, 118–119, 121, 139, 161,
165, 172–173, 175, 177, 187–188, 205,
209, 211, 213, 215, 239, 362, 373, 460,
465, 581–583, 614

Dynamics rotational, 165, 172–173, 175, 177
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E
E � mc2, 584–585
Ear

human, 208, 249, 264, 269–273, 282–291
human sensitivity of, 286
middle ear, 208, 282–283
inner, 283–285
cochlea, 208, 264, 282–285
outer, 282, 284
oval window, 208, 282–283

Earth
age of, 644
magnetic field, 432, 447, 458

Earthquakes, 254–255
ECG (electrocardiography), 394
E coli, 4

chemotaxis, 33, 53, 431
flagella, 5, 33, 53, 484

Eddies, in fluid flow, 235, 239–240
Edema, 240, 320, 623
Edge contrast, 566
EEG (electroencephalopgraphy), 238, 373,

394–395
Effective dose, 645–647, 653, 655
Effective half-life, 648
Efflux velocity, 216
Einstein, Albert, 235, 354, 462, 470, 490,

581–582, 584–586, 610, 620
Elastic

collisions, 305, 587
deformation, 61
limit, 62
modulus, 65, 270
potential energy, 85, 88, 93, 373–374
scattering, 494

Elasticity of solids, 61
Electrical conductor, 352, 359, 615–616
Electrical properties of matter, 347, 353, 360,

361, 366
Electrical shielding, 361, 385, 649–650
Electric battery, 4, 28, 376, 389–391, 402,

404–411, 414–415, 417, 438, 451, 453–455,
470, 481, 586, 590

Electric charge, 298, 347–349, 352, 354, 357–359,
361–363, 366–368, 370–371, 373, 377–378,
382, 387, 389, 397, 401–402, 408, 425, 429,
431–432, 434, 436, 439–441, 444, 447, 455,
460, 470, 473, 488–489, 497, 590, 603, 635,
639, 659

accelerating, gives rise to EM, 477
conservation of, 348–349, 408, 425
continuous distribution of, 357
dipole interactions, 383, 396
of electron, 347
elementary, 347
induced, 348, 360, 385, 391
interaction, 340, 382, 386
motion of in magnetic field, 434
point, 349–359, 363–364, 373–380,

382, 386
quantization of, 347
test, 354, 432, 440
unit, 347

Electric circuit, 402, 489
containing capacitors, 411
containing resistors, 409
Kirchhoff ’s rules, 407–408, 410
time constants of, 413, 442

Electric current, 352–353, 361, 400–406, 408,
410, 412–414, 416, 418–422, 430–432, 436,
444, 455, 458, 470, 489, 585–586, 596, 621,
641, 649, 654

conduction, 352
induced, 454–458
leakage, 420
magnetic field, 440, 457
magnetic force on, 436
measuring, 406–407, 418, 458, 585
membrane channel, 422–423
microscopic view of, 402
and Ohm’s law, 401, 403–407, 413
produced by changing magnetic field, 470
produces magnetic field, 440, 457
units for, 401

Electric dipole, 356–358, 378–381, 383, 385, 394,
437–439

in electric field, 384, 438
induced, 358, 360
interactions, 383, 396

Electric energy storage of, 390
Electric field

changing, 470
and conductors, 359
Coulomb’s law to determine, 349–354,

373–374, 382, 470
in dielectric, 390
dipole in, 384, 438
in EM wave, 471
energy stored in, 480
and equipotential lines, 378
field produced by changing magnetic 

field, 471
Gauss’s law to determine, 363–366, 444,

454, 470
lines of, 358, 363–364, 378, 402, 440–441,

444, 470
lines, field, 358, 363–364, 378, 402, 440–441,

444, 470
magnetic field produced by, 470
mapping, 357, 376–378
produced by accelerating charges, 455
relation to electric potential, then the electric

field, 377
of symmetric charge configurations, 357
units, 377

Electric flux, 363–365, 454, 470
Electric force, 30, 347–367, 373–376, 396, 414,

436, 471, 590, 612, 617, 637
Coulomb’s law for, 349–354, 373–374,

382, 470
Electric generator, 353, 456–458
Electricity, 2–3, 229, 322, 347, 352–353, 363, 376,

385, 393, 401, 439–440, 470, 503, 617, 652–653
Gauss’s law, 363, 366, 444, 454, 470
static, 347

Electric meter, 406
Electric polarization, 379, 383
Electric potential

of dipole, 356–358, 378–381, 383, 385, 394,
437–439

energy, 373–377, 382, 386–387, 401–402, 405
of single point charge, 376
unit, 375
see also Potential difference

Electric power, 91, 405
Electric waves, 489
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Electrocardiogram (ECG or EKG), 238
Electrode, 394, 404, 417–419, 585, 641
Electromagnet, 443
Electromagnetic

induction, 453–460, 462, 464, 466, 468, 470
pumping, 621–622
radiation, 249, 263, 288, 324, 453, 455,

470–471, 473, 477, 479, 488–489, 491,
503, 573

spectrum, 453, 472, 477, 488
Electromagnetic (EM) waves, 472

momentum transfer and, 483
radiation pressure, 482–483

Electromagnetic field, 440, 503, 515, 607
Electromagnetism, 3–4, 290, 347, 364, 390, 440,

453, 455, 470–472, 477, 591, 603
Electromotive force, see Emf
Electron, 6–7, 12, 30, 90, 347–348, 350, 366,

375–376, 382, 402, 433, 438–439, 441, 446
band theory, 616–617
charge on, 347
configuration, 610, 612, 616
degeneracy, 610
diffraction, 589
in double slit experiment, 588–589
free, 352–353, 359, 361, 401–403, 424, 436,

617, 628
mass of, 350
in pair production, 584
relativistic, 589, 634
spin, 2, 254, 438–439, 441, 446, 453, 465,

489, 491, 608, 611
valence, 491–492, 494–495, 593, 610–611,

613, 617–618, 647
volt (unit), 376, 645
wave nature, 571

Electronic energy, 598, 613, 620
Electron microscopes, 563, 571–573
Electron microscope scanning (SEM),

572–573, 578
Electron microscope scanning transmission 

electron microsocpe (STEM), 572–573, 578
Electron microscope transmission (TEM), 572
Electron paramagnetic resonance EPR,

see Electron spin resonance
Electron spin resonance (ESR), 2, 254, 453,

465–467, 489, 491
Electrophoresis, 3, 360–363
Electrophoretic mobility, 360, 362
Electrostatic charge, 359, 365, 367, 378, 384, 386,

401–402, 455, 470, 477, 480, 603, 604, 654
Electrostatic equilibrium, 359, 384
Elementary particles, 347–348, 376, 442,

589–590, 610, 636
Elements, 7, 9, 65, 167, 217, 220, 256–257, 307,

352, 403, 407, 612, 618, 635, 638–639
Elements periodic table of, 7, 9–10, 610–612, 637
Elements transmutation of, 638–639
Elliptical polarization, 488
Emf

of generator, 457
induced, 454–458, 472
source, 402, 454–458, 472

EMG (electromyography), 373, 394
Emission spectrum, 606
Emission tomography, 291, 577, 633, 648–651
Emissivity, 324

EM waves, see Electromagnetic (EM) waves
Encyclopedia Britannica, 626
Endoscope, 516–517
Endothermic reaction, 315–317, 340
Energy

activation, 340–341
bands, 616, 628
binding, 635–638, 652–653
bond, 315
conservation, 84, 88
conservation, ideal fluid, 212
decay, 638
density in EM wave, 390
distinguished from heat and temperature, 309
in electric field, 390
electric, see Electric energy
in EM waves, 390, 480
equipartition of, 307
feel 1 Joule, 80
and first law of, 297, 308–309, 311, 315
gap, 391
ground state, 597–598
internal, 304–305, 598
ionization, 656
kinetic, 77–78, 80–84, 86, 88–89, 91,

110–113, 115, 140, 143, 151–153,
165–167, 169–170, 172–173, 213–214,
239, 257, 304–307, 331, 361, 374–375,
389, 402, 405, 433, 436, 480, 571,
583–587, 592, 597, 598, 614, 635–636,
638, 640, 650, 652

in magnetic field, 480
magnetic, see Magnetic energy
mass and, 584, 653
mechanical, 84–88, 112–113, 115, 151, 170,

205, 214, 231, 305, 331, 335, 374, 438
molecular rotational and vibrational,

492, 614
momentum and, 585
nuclear, 77, 453, 463, 598, 610, 636–637,

640, 652
of photon, 342, 494, 530, 586–587, 591,

621–622
potential, 82, 91, 111–113, 115, 126, 169–171,

183, 213–214, 250, 257, 305, 312, 331,
373–377, 382–384, 386–391, 401–402, 405,
411, 438, 480, 591–593, 607, 613, 635, 637

producing forces, 87, 89
quantization of, 333, 603–604, 607, 613,

614, 627
related to work, 80–81, 84–85, 110–112, 115,

173, 213, 436
relativistic, 584
rest, 584–585, 650
rotational, 165, 167, 169, 171, 492, 614
in simple harmonic motion, 85
solar, 87
stored in electric field, 388, 391
stored in magnetic field, 480
surface, 241
thermal, 85, 88, 91, 187, 297–298, 300, 302,

304, 306, 308, 310–312, 314, 316, 318, 320,
322–323, 335, 340, 342, 402, 405–406,
465, 620

thermodynamics, 2–3, 6, 34, 77, 162, 207,
231, 297–298, 300, 305, 307–309, 311, 315,
331–343, 405, 423, 620
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threshold, 586–587
total mechanical energy, 84–85, 88, 151, 170
transfer, heat as, 309
and uncertainty principle, 594
units of, 78
used by human body, 87
vibrational, 491, 598, 613–614
of waves, 258
well, 90
zero-point, 592, 597

Energy density
in electric field, 353–365, 373, 375–379,

382, 384–385, 387–388, 390–393,
396–400, 401, 402, 405, 432, 436–441,
444, 453, 455, 470, 472, 477, 478, 479,
481–482, 485–487, 534, 549, 568–570,
590–591, 617–618

in EM wave, 353–365, 373, 375–379, 382,
384–385, 387–388, 390–393, 396–400, 401,
402, 405, 432, 436–441, 444, 453, 455, 470,
472, 477, 478, 479, 480, 481–482, 485–487,
534, 549, 568–570, 590–591, 617–618

in magnetic field, 480
surface, 241

Energy levels, 333–335, 340, 375, 423, 461, 463,
475, 489, 491–492, 592, 594–595, 597–598,
605, 607, 609–610, 613–614, 616–618,
620–622, 637, 640

atomic, 333–335, 340, 344–346, 375, 423,
461, 463, 489, 491–492, 594–595, 597–605,
607, 609–610, 613–614, 616–618, 620–622,
637, 640

diagrams of, 333, 461, 491, 492, 592,
605–606, 614, 616, 622, 623, 637

fluorescence, 496
ground state, 597–598
for lasers, 333, 461, 491–492, 592, 605–606,

614, 616, 622–623, 637
in molecules, 613
nuclear, 343
in solids, 616–617

Enthalpy, 315–316, 337
Entropy, 304, 331, 333, 338, 343, 344

in life processes, 337
second law of, 311, 331, 333–336
statistics and, 336

Environmental pollution, 325
Equation of continuity, 212, 215–216, 225, 231,

239–240
Equation of state for an ideal gas, 306, 308,

310–311, 319
Equilibrium

conditions for, 189–193
constant, 339–340
distance, 612–613
dynamic, 189, 238, 336
hydrostatic, 207–209, 217, 220
position, 60, 88–90
stable, unstable, neutral, 89–91, 384
thermal, 297–300, 305, 308–309, 313, 325,

338, 341, 462, 621
Equipartition therorem, 307
Equipotential surfaces, 377–378, 382, 384, 389
Equivalence principle, 581
Equivalent

capacitance, 411
resistance, 407–409, 411–412

Erythrocytes, see Red blood cells
Escherichia coli, see E coli
Estimating, 9
Eustachian tube, 282–283
Evanescent wave, 515, 547
Evaporation, 240, 244, 313, 315, 317–318, 322
Excitable cells, 392
Excitation filter, 212
Excited state, 333, 472–473, 549, 594–595,

604–607, 609, 614, 616, 620–622, 640
of atom, 595

Exclusion principle, 590, 610–612, 616,
636–637

Exothermic reaction, 315–316, 339–340
Expansion

binomial, 356, 381, 583
joints, 302
rarefaction, 270
thermal, 297, 299–303, 337

Exponential decay, 655
Exponential notation, see Appendix, 1
Exponents and exponential notation, see

Appendix, 1
External force diagram, 106, 108–109, 115–120,

190–191, 193
External forces, 15, 61, 106, 122, 142, 144,

150–151, 161, 167, 173, 177, 206–207, 217,
264, 376

Extinction coefficient, 493
Eye, 208, 364, 394, 454, 459, 481, 484, 489, 503,

506, 508, 523, 526, 530–537, 556, 558, 569,
572–573, 619–620, 623–624, 626–627

accommodation of, 421, 530, 533
cornea, 530–531, 533, 623
far and near points of, 532–533, 536, 558
lens, 530
optic nerve, 208, 530–531, 534
resolution of, with a pupil diameter, 558
retina, 530–534, 536–537, 558, 623
structure of, 530

Eyeglass lenses, 503, 531–532, 623
Eyepiece, 484, 537, 565

F
F1-ATPase, see ATP synthase
Fahrenheit temperature scale, 298–299
False color, 291, 460, 468, 576, 596
Faraday, 414, 453–455, 457–459, 462, 470,

472–473, 476
Faraday constant, 414
Faraday’s law, 453–455, 458, 462, 470
Farad (unit), 388
Farsighted eye, 531
Feedback loop, negative, 185–186, 285, 325, 418,

456, 596, 652
Feedback, positive, 456, 652
Femtosecond laser pulses, 534, 620
Fermat’s principle, 507
Fermi, Enrico, 610, 630, 636
Fermions, 610, 636
Ferris wheel, 118–119
Ferromagnetism, 442–443, 465
FET (Field effect transistor), 422
Feynman, 300–301
Fiber diffraction, 575
Fiber optics, 503, 514–516, 517, 623
Fictitious (inertial) force, 22
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Field, 1, 7, 24–27, 32, 349, 354–366, 375–379,
381–382, 384–385, 387–388, 390–393, 396,
401, 402, 405, 422, 431–445, 453–459,
461–468, 470–472, 482, 485–488, 514, 529,
534, 549, 551, 557, 563–565, 568–572, 588,
590–591, 607, 609–610, 633, 641, 654

scalar, 357–358, 367, 369, 376
vector, 358, 363, 367
see also Electric field; Gravitational field;

Magnetic field
Field force, 24
Figure skating, 32, 106, 143, 180–181
Film, 161, 241, 459, 486, 545–548, 570–572, 596,

625–627
Fingerprint, of molecule, 493, 614
Finite square well potential, 592–593, 630
Fireflies, 496
First harmonic, 262–263, 279–280
First law of thermodynamics, 297, 308–309,

311, 315
in isobaric and isochoric processes, 310, 311,

315, 338, 339
in isothermal processes, 310–311,

338–339, 345
First order interference maximum, 548
First overtone, 262
Fission, 242, 633, 635–636, 638, 648, 652–654

forces, 347, 348, 635–636, 640
fusion, 313–314, 633, 636, 652–655
lifetime, 642
magnetic resonance, 2, 68, 254, 263, 453, 458,

460, 472, 489
medicine, 3, 633, 641, 643, 647, 655
nuclear power, 599, 652–655
physics, 3, 633–655
radius, 635, 655
reactions, 638
reactors, 648, 653
shells, 637
spin, 460–463, 467–469, 472
structure, 633

Fission products, 638, 648, 652
Floating objects, and density, 27, 220–222, 241
Flow of

electric charge, 389, 401–402
fluids, 6, 50, 51, 205, 208–215, 225, 231–233,

244, 320, 358, 650
Flow of fluids

laminar, 51, 210, 212, 231, 234–235
pulsatile, 240
steady, 209–211, 226, 358
streamlines, 209–210, 358
in tubes, 233–234, 244
turbulent, 209–210

Flow rate, 211, 213, 215, 217, 233–234, 239–240
Fluid

complex, 6, 162, 209, 236
dynamics, 205, 209, 211, 213, 215, 239
ideal, 205–225, 231
Mosaic model, of membrane, 188
Newtonian, 232, 236–237
Non-Newtonian, 232, 236
viscous, 49, 51, 65, 205, 209, 211, 231–232,

234, 236, 238, 240, 242
see also Gases, 3, 8, 49–51, 53, 65–66, 71, 162,

205–212, 214, 216, 218, 220, 222, 224, 231,
232, 234, 235, 236, 238, 240–242, 320, 323,
590, 649

Fluor, 579
Fluorescence, 2, 495–497, 515, 533, 547,

564–565, 567
emission, 567
intrinsic, 496
microscope, 564, 567
spectroscopy, 496

Fluorescent
brighteners in clothing, 495
dyes, 564–565, 567

Flux, 363–367, 444, 454–458, 470, 476, 591
electric, 363–365, 454, 470
magnetic, 454–458, 470

FM, 7, 26, 191–192, 432–434, 436, 633–635
Radio, 488–489

Focal length, 509–510, 512–513, 524–528,
531–532, 537, 559

combined, two lenses, 528
Focal point, 509–511, 513, 523–524, 526–527,

529, 531, 536–537
Focus, 2, 4, 9, 189, 213, 305, 340, 392, 472,

482–483, 491, 509, 524, 528–533, 536, 565,
567, 571–573, 616, 626, 638

Football in projectile motion, 103
Forbidden energy

band gap, 616–617
Force, 43–46, 49–52, 53, 60–63, 87–90, 97–124,

347–367, 633–635
contact, 114
and currents, 436
diagram, 118
drag, 49–52, 211, 231, 360, 484
elastic, 484
electric, 347–367
in equilibrium, 189–193
fictitious, 22
frictional, 43, 49–53, 65, 78, 85, 88, 113–118,

120–122, 138–139, 144, 187, 231, 235,
250, 360

inertial, 22, 24, 28–29, 582, 598
in magnetic fields on charges, 61, 122, 279,

347, 402, 431–434, 436–437, 440, 450,
471, 654

nonconservative, 88, 170
relation of momentum to, 140
relationship to energy, 87
types of in nature, 347
weak, 635, 640
work done by, 78, 81, 92
of gravity, 24–25, 29, 49, 52–55, 59–61,

77–78, 83, 87, 123, 145, 189, 217–222, 236,
243, 320, 334, 336, 341, 343, 362–363, 482,
494, 534

long-range, 142, 349, 353–354
net, 24, 27–31, 43, 52, 55, 68, 77–78, 80, 83,

106, 116–140, 144, 172–173, 207, 217, 220,
241, 250, 252, 309–310, 349–350, 359–360,
377, 437–439, 483, 612

in Newton’s laws, 4, 28–31, 33, 43, 52, 55, 68,
106, 118, 123, 139–140, 144, 150, 161, 174,
179, 189, 305, 433, 471

normal, 55, 110, 114, 116, 207–208, 214
relationship to acceleration, 4, 28–31, 33, 43,

52, 55, 68, 106, 118, 123, 139–140, 144, 150,
161, 174, 179, 189, 305, 433, 471

restoring, 54, 58, 62, 89, 249, 269, 483
units of, 29
see also Electric force; Gravitational force
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Forced convection, 324
Force van der Waals, 386, 612–613, 615
Fossil fuels, 87, 325
Fossils, 644
Fourier series, 275
Fourier ’s theorem, 275
Fourier Transform NMR, 464
Four-level laser, 622
Fovea, 531, 534
Fracture, 62–63
Free-body diagram, 106
Freedom, degrees of, 344
Free electrons, 352–353, 359, 361, 401–403,

436, 617
Free fall, 44, 47
Free radical, 467, 647
Free space, permittivity of, 350, 382, 503–504
Freezing point, 298–300, 304, 313–314, 317,

319, 337
depression, 319

Frequency, 58, 65, 249–254, 256, 263, 271,
274–280, 282, 285–288, 290–291, 303,
395, 457, 462–465, 467–468, 472, 479,
481–482, 488–493, 504–505, 520, 535,
543, 549–550, 568, 586–587, 590, 603,
613, 619

Frequency, 58, 65, 249–254, 256, 263, 271,
274–280, 282, 285–288, 290–291, 303, 395,
457, 462–465, 467–468, 472, 479, 481–482,
488–493, 504–505, 520, 535, 543, 549–550,
568, 586–587, 590, 603, 613, 619

of audible sound, 261, 271, 288
beat, 261, 277
carrier, 465, 467
fundamental, 262, 279–280
infrasonic, 271
of light, 472, 587
natural, 250, 252–254, 613
resonant, 262, 464, 468, 493
of rotation, 628
ultrasonic, 271, 288–291

Fresnel, 551
Friction, 22, 52, 85, 88, 113–118, 121, 170, 187,

234, 331, 347, 353, 362, 590
coefficients of, 52
kinetic, 114
rotational coefficient, 187
static, 116

Frictional
constant, 250
force, 43
torque, 187

Fringes, interference, 546–548, 551–554,
556–557, 626

Frostbite, 322
Fundamental frequency, 275
Fuse, 636, 653–654, 655
Fusion

heat of, 313, 633, 636, 652–655
nuclear in stars, 653

G
Gabor, 625
Galileo, 22, 28
Gamma camera, 649–650
Gamma emitters, 641, 650
Gamma rays, 488–489, 492, 640–641, 650
Gap junctions, 417

Gas
constant, 308, 414
laws, 306, 308, 310, 319

Gases, 11, 205
change of phase, 313–314, 546, 570
definition, 205–207
ideal, 205, 270, 305–311, 317, 319
work done by, 310

Gauge pressure, 218, 224
Gauss, 363–367
Gaussian surface, 364–366, 444
Gauss’s Law, for electric field, 363, 444, 454, 470
Gauss’s law, for magnetic field, 444
Geiger counter, 641
Gel, 8, 207, 274, 290, 361–363, 367, 531
Gel electrophoresis, 361–362

two-dimensional, 362–363
General theory of relativity, 354, 470
Generator, electric, 456
Geological time scale dating, 644
Geometrical optics, 503–517, 523, 543
Gerlach, 438–439, 461, 609
Germanium, 353, 589, 617
Germer, 589
Gibbs free energy, 331, 337–339
Gigaseal, 421–422
Glare, 486–487
Glasses, eye, 503, 531, 623
Glaucoma, 208, 530
Global positioning system (GPS), 581
Global warming, 87, 325
Glomerulus, 320
Glucose, 341–342, 651
Glutamine, 341–342
Gould, 620
Gradient

density, 467, 468
thermal, 322, 325

Gradiometers, 459
Graphical analysis

of linear motion, 20–21, 44
for work F, 79

Graphical interpretation of acceleration, 44
Grating

constant, 555
diffraction, 555
spectroscopy, 556

Gravitational
equivalence with inertial mass, 28
field, 25–28
force, 24–25, 29, 49, 52–55, 60–61, 76–78, 83,

87, 93, 123, 145, 189, 217–222, 236, 243,
320, 334, 336, 341, 343, 362–363, 482,
494, 534

mass, 27–28
potential energy, 82, 84–88, 213–214,

374, 376
Gravitation, universal law of, 26, 38

constant, 26, 324
Gravity

center of, 189
specific, 206

Gravity, 3, 22, 24–25, 27–29, 44, 47, 52–54,
82–85, 87–88, 102, 111, 122, 142, 189, 207,
213–214, 216–217, 220, 242, 347, 374, 402,
482, 581, 590, 653

Gray scale, 291, 468, 576
Gray (unit), 645
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Grazing angle, 509
Greenhouse gases, 325
Grids, for electron microscopy, 571
Ground state kinetic energy, 597–598
Gyromagnetic ratio, 460, 466

H
Hahn, 652
Hair cells, 284–285
Hair cells, in cochlea, 284–285
Half-integral spin, 590, 610, 636
Half-life, 633, 642–645, 647–648
Handedness, 568, 570
Hard sphere repulsion, 308
Harmonic motion, 56, 58–59, 249–251, 253, 261,

263–266
damped, 251, 253, 264
motion simple, 56, 58–59, 75, 249–251, 253,

261, 263
number, 262, 281

Harmonics, 249–254, 256–258, 261–264, 275,
280–281, 592, 593

H-bar (h), 460, 586
Headlights, in car, 503, 510
Head-up display, 626
Hearing, 271–273, 282–283, 285–286, 460

cochlea, 208, 264, 282–285
frequency response, 285
intensity effects, 286
pain threshold, 270
threshold of, 272, 286

Heart, 1–2, 6, 20, 208, 210, 215, 224, 237–240,
291, 320, 323, 373, 393–395, 516, 576, 648, 650

atria, 6, 238–239, 394
blood flow, 6, 91, 210, 215, 238–240
ECG, 394
ECG pacemakers, 6, 238, 394
murmur, 239
power supplied by, 239
ventricles, 6, 238–240, 394

Heartbeats, 6, 238–239, 394
Heat, 91, 143, 231, 240, 288, 297–298, 301, 306,

309–318, 321–325, 331–332, 334–338, 341,
343, 352, 361, 402, 405, 493, 495, 572, 652, 654

chemical reaction, 315
compared to work, 309
conduction, convection, 322, 326
distinguished from internal energy and 

temperature, 309
in first law of, 297, 308–309, 311
as flow of energy, 297–298, 306, 309, 312,

318, 337
of fusion, 313–314
latent, 313–314
lost by body, 321
mechanical equivalent of, 312
radiation, 321, 324
specific, 312
specific, of water, 313
thermodynamics, 2–3, 6, 34, 77, 162, 207,

231, 297–298, 300, 305, 307–309, 311,
331–340, 405, 423, 620

transformation, 313
of vaporization, 313

Heat transfer, 322–324
Heavy water, 464
Heisenberg uncertainty principle, 594–595
Heliium–3, 590

Helium–4, 590, 636–638
Helium-neon laser, 551, 553, 612, 619, 623
Helium nuclei, 393, 603, 637–639, 645, 653–654
Helix-to-coil transition, 344
Hematocrit, 232, 236–237, 244
Hemodialysis, 321
Hemoglobin, 34, 66–67, 236, 342–343, 466, 574,

615, 623
Hertz (unit), 58
High-energy intermediate, 342
High jump, 81
Hiroshima, 652
Hodgkin-Huxley, 378, 392, 415, 420, 424
Holes (in semi conductor), 10, 19, 21–22, 26,

289, 303, 571, 617–618
Hologram and holography, 620, 623,

625–626, 628
Holographic optical element (HOE), 220,

625–626
Hooke’s law, 54, 58
House wiring, 406
Human body

balance and, 282, 284
center of mass for
temperature, 323, 369

Human body, 393, 395
Human ear, 208, 249, 264, 269–273, 282–286
Huygens, 544–545, 550
Huygens’ construction, 544–545, 550
Hyaline membrane disease, 243
Hydraulic brakes, 208
Hydraulic devices, 208
Hydraulic lift, 208
Hydrodynamic interactions, 235
Hydrodynamics, 205
Hydroelectric power, 211
Hydrogen atom

Bohr theory of, 627
quantum mechanics, 609
spectrum of, 606

Hydrogen atom, 7, 11, 60, 185, 337, 370, 439,
460, 592, 603–606, 607, 609, 613, 627, 647, 653

Hydrogen atom ground state and excited,
604–609, 610

Hydrogen bond, 66, 87, 304, 337
Hydrogen molecule, 60, 307, 612
Hydrolysis, 64, 331, 340–342, 534
Hydrophilic, 188, 243
Hydrophobic, 188, 242–243, 337, 344
Hydrostatic equilibrium, 207–208, 217, 220
Hydrostatics, 207, 218, 231
Hyperopia, 531, 533
Hypertension, 224
Hypodermic needle, fluid flow in, 516
Hypotonic, 319
Hysteresis, 65

I
Ice, 31, 113, 220, 298, 304, 312–314, 338
Ice skaters

angular momentum, 180
collision, 143

Ice skating, action-reaction pair in, 32
Ideal fluid, 162, 205–214, 231
Ideal gas, 205, 270, 304–311, 317, 319, 325–327,

329, 345
internal energy of, 304–305, 307

Ideal gas law, 227, 306, 308, 310–311, 319
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Image
contrast, 468
distance, 506, 512, 525
formation, 510
intensifier, 566, 571–572

Image plane source, object, 565–566
Images, 185–186, 291, 386, 467–469, 473, 484,

485, 496, 509, 518, 523, 524, 528, 531,
556–558, 565–567, 569, 570–573, 575–577,
596, 626, 649–651

CT scan, 291, 563, 573, 575–577, 618, 650
erect, 513
fiber optic, 516–517
formed by lens, 524
formed by plane mirror, 506
formed by spherical mirror, 510
inverted, 510, 512, 525, 531
MRI, 3, 254, 263, 291, 432, 443, 453, 460,

467–470, 489, 563, 577, 590, 650
PET and SPECT, 633, 649–651
real, 506, 513, 526, 527, 532, 537
tomographic, 563, 575, 577, 633, 649–651
virtual, 506, 512–513, 526, 527, 532, 537,

626, 627
X-ray, 575

Imaging, 563–577
medical, 288, 453, 467, 640
thermography, 324
ultrasound, 269, 274, 290–291

Immersion oil, 547, 559
Impedance, acoustic, 289–290
Impulse, 142–143, 285, 417
Incandescent light bulb, 549–550, 619
Incidence, angle of, 274, 505, 514–515
Incident wave, 258, 274, 290, 486, 492
Inclines, motion on, 112
Incoherent sources of light, 161–162, 304,

549, 597
Incompressible, 207, 211, 284, 635
Index of refraction, 504, 506, 507, 514, 515, 517,

523, 524, 528–530, 538, 544, 545, 546, 547,
556, 565, 566, 569, 570, 578

Induced electric charge, 360, 385, 391
Induced electric current, 453–459, 462–463
Induced emf, 454–457

in generator, 456
Induction

electromagnetic, 453–455, 470, 472
Faraday’s law of, 453–455, 458, 462, 470

Inelastic collisions, 153, 572–573
Inertia, 22, 27, 161, 165, 180, 471, 614, 654

moment of, 161, 165, 180, 614
Inertial confinement, 28, 654
Inertial mass, 28

equivalence with gravitational mass, 28
Inertial reference frame, 22–23, 582, 598
Information storage, in holograms, 626
Infrared photons, 613
Infrared radiation, 324, 325, 489
Infrared spectroscopy, 493, 614
Infrasonic waves, 271
Instantaneous

acceleration, 21
angular acceleration, 163
angular velocity, 163
velocity, 19–21

slope of tangent line, 20–21, 44
Instruments musical, 280

Insulators, 352–353, 367, 384, 385, 386, 390, 392,
401, 404, 412, 418, 615–617, 628

electrical, 352, 615
of EM waves, 478
intensity, 9, 271–273, 276–279, 285–286, 288,

467, 478, 481–484, 486–487, 490–491,
493–496, 504, 509, 514–515, 534, 543,
545–546, 548–549, 551, 553–555, 557,
565–566, 570, 575, 577, 585–591, 618–620,
623, 625, 649

of light, 515, 549, 559, 570, 585–586, 625
of sound, 272–273, 286
thermal, 352

Intensity level, 272–273, 286, 288–289, 291, 295
6–12 interaction, 383
Interactions, 2–4, 6, 8, 15, 22–24, 28, 53,

67–68, 81–82, 106, 114, 139, 142, 162,
167, 186, 208, 235, 241–242, 249, 258,
263–264, 288, 297, 300, 305, 308, 313, 335,
337, 340, 344, 347, 352, 361, 373, 375,
382–383, 386, 440, 442, 484, 489–492, 494,
503–504, 572, 585, 592–593, 610, 613,
615–616, 623, 647

Interface
air-solution, 319
between media, 505

Interference, 258–262, 278–279, 459, 543,
545–550, 552–556, 565–566, 573–574, 585,
588–589, 591–592, 604, 626

constructive, 259, 278, 546, 548–549, 554,
574, 588, 604

destructive, 259, 262, 278–279, 546, 548, 552,
555, 588, 591, 604

in time, 275–277
of electrons, 589, 592, 604
of light waves, 548
of sound waves, 278
of waves on a string, 259
thin film, 459, 545–548

Interferometer, 556
Internal energy, 162, 304–312, 322, 324, 331,

333–337, 361, 493, 598
Internal forces, 15, 150–151, 167, 264
Internal reflection, 514, 523, 547
Internal resistance, 407
Intrinsic

angular momentum, 438, 608, 610
fluorescence, 496
semiconductor, 353, 617
see also spin

Inverted microscope, 483
Inverted population, 621–622
Ion, 5, 6, 234, 319, 348, 352, 353, 360–361, 386,

392–393, 414–415, 420, 422, 433–434, 446,
465, 564, 613, 627, 654

Ion channels, 284, 401, 417, 421
Ionic bonds, 613
Ionic solid, 615
Ionic strength, 361, 386
Ionizing radiation, 492, 498, 639, 641, 645
Iris, 530–531
Iron atom “corral”, 596
Iron core, in electromagnet, 443
IR radiation, 7, 403, 407, 412–413, 484, 493–494,

509, 615, 622
IR spectroscopy, 493, 615, 628
Isobaric process, 310, 315, 338–339
Isochoric (isovolumetric) process, 310
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Isoelectric
focusing, 362–363
point, 360, 362–363

Isolated system, 82, 151, 152, 155, 180, 250, 309,
331, 344, 348, 366

Isothermal process, 310–311, 338–339
Isotopes, 7, 9, 434, 634, 640, 643–644, 647,

649, 653
in medicine, 647–650

Isotropic, 62, 307, 494, 503, 570
Iterative technique in molecular dynamics, 70

J
Jar lid, opening, 300
Jellyfish, swimming, 53, 144–145, 496
Jet propulsion, 144
Joule heating, 406, 443
Joule, James Prescott, 312
Joule (unit), 78
Junction rule, see Kirchhoff ’s rules, 408
Junction voltage, 618
Jupiter, 30

K
Kelvin temperature scale, 298, 305, 327
Kelvin (unit), 7, 9, 27, 54–55, 58–60, 62,

79, 85–86, 91, 114, 116, 187, 249, 251–252,
255–257, 278, 298–299, 306–308, 312,
322, 324, 337, 340, 344, 349–350, 385,
390, 392–394, 409, 415, 420, 423, 443,
459, 479, 590, 598, 611–612, 618, 654

Kelvin–Voigt model, 66
Kidney dialysis, 319
Kidneys, 34, 238, 319–320, 650
Kidney stones, 289, 516
Kilocalorie (unit), 312, 314, 316, 321, 323, 337,

340–342, 344, 382
Kilogram (unit), 28
Kilowatt-hour (unit), 91
Kinematic equations, 23, 29, 77, 80, 97, 101, 103,

105, 161–163, 165
Kinematics, 23, 29, 77, 80, 97, 101, 103, 105,

161–163, 165
1-dimensional, 68–69
Motion kinematics of, 23, 29, 77, 80, 97,

101, 103, 105, 112, 122, 161–163, 165,
172, 184, 212

for rotational motion, 181
translational motion, 23, 29, 77, 80, 97, 101,

103, 105, 161–163, 165
for uniform circular motion, 104–106

Kinesin, 484
Kinetic energy, 77–78, 80, 88–89, 91, 110,

140, 143, 151, 165–167, 169–170, 173,
213–214, 239, 257, 304–307, 331, 361,
374, 389, 402, 405, 433, 436, 480, 571,
583–587, 592, 597, 614, 635–636, 638,
640, 650, 652

Kinetic energy
mean, 306–307
relativistic, 583
rotational, 165–166, 169, 173, 614
translational, 80, 166, 169–170, 307

Kinetic friction, 114
Kirchhoff ’s junction rule, 408
Kirchhoff ’s loop equation, 407, 410
Korotkoff sounds, 224
K shell, 611

L
Ladder, in equilibrium, 203
Laminar flow, 51, 210, 231, 234–235
Laplace’s law, 242
Larynx, 269–270
Laser angioplasty, 516
Lasers, 179, 185, 186, 286, 342, 350, 462, 477,

482–484, 485, 487, 490, 491, 498, 503, 504,
516, 534, 543, 544, 547, 549, 550, 551, 555,
564, 567, 577, 581, 586, 603, 618–627, 628,
654, 655

argon, 622
carbon dioxide, 622
dye, 622
neodymium, 622
semiconductor or diode, 623, 625

Laser-scanning confocal microscopy, 567
Laser tweezers, 179, 350, 477, 482–485
LASIK, 623
Latent heats, 313–314
Latent heat of sublimation, 313
Lattice, 352, 386, 468, 574, 590
LCD screen, 646
Lead, 639
Leakage current, 401, 415, 420
Left-right reversal, 506
Leith, 625
Length standard of, 16–17
Lennard-Jones potential, 383, 593
Lens, 523–538

achromatic, 529–530
coating of, 523
color-corrected, 529–530
compound, 523, 528, 529, 530, 537, 547
contact, 531
converging, 523–526, 531, 533, 536
corrective, 503, 531–532, 623
cylindrical, 523
diverging, 523, 526, 527, 529, 530, 531
of eye, 531, 532, 569, 623
eyeglass, 503, 531–532, 623
eyepiece, 484, 537, 565
focal length of, 524, 537
magnetic, 572
magnification of, 524–525, 537
objective, 537, 559, 564–566, 571–572
positive and negative, 523–526, 527, 529, 530,

531, 533, 536
power of (diopters), 525, 532
thin (defn), 523–525, 527
used in combination, 528

Lens aberrations, 528, 556
Lens equation, 525–527
Lens-maker’s equation, 524
Lenz’s law, 455–456, 463
Leonardo da Vinci, 506–507
Leukocytes, see White blood cells
Levarotatory, 570
Lever, 176
Lever arm, 176
Life under ice, 304
Lifetimes, see also Half-life, 549, 594–595, 607,

621, 642, 645
Ligand-gating, 392, 417
Light

coherent and incoherent, 549
color of, and wavelength, 489
diffraction of, 550
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dispersion of, 504
as electromagnetic wave, 489
infrared (IR), 628
interference of, 543, 545, 547
monochromatic, 551, 555, 619, 628
photon theory of, 324, 342, 416, 462, 464,

466, 468, 473, 477, 489–496, 498, 530, 531,
534, 543, 567, 571, 573, 577, 584–591,
593–595, 599, 604, 606, 607, 610, 613, 614,
618–623, 627, 638, 640, 645, 649, 653, 655

polarized, 568
ray model of, 504, 523, 543
reactions, in photosynthesis, 342
refraction of, 482, 483, 504–509
scattering of, 309
spectrum of visible, 489
speed of, 477–478
ultraviolet, 494
unpolarized, 486
visible, 6, 249, 255, 481, 484, 488–489, 492,

495, 504, 545, 555, 563, 565, 571, 618,
623, 641

wavelengths of, 489
wave-particle duality of, 585
white, 472, 504, 522, 530, 546, 555, 619, 625

Light, 2–3, 6, 9, 16, 28, 91, 145, 174, 179, 186,
241, 249–250, 255, 258, 264, 272, 274, 279,
287, 309, 324–325, 342, 347, 354, 376, 385,
427, 431, 438, 453, 471, 474, 477–478,
480–484, 486–496, 503–510, 513, 525,
529–531, 533–535, 537, 543–557, 559, 573,
582–583, 585–591, 597, 604, 618–621, 623,
625, 641, 649, 653, 657

Light bulb, 91, 258, 376, 477, 486, 506, 545,
549–550, 571, 619

incandescent, 549–550, 619
Lightning, 347–348, 353, 617
Light pipe, 515–516
Likelihood of events, 332
Line

of action, of force, 176
shape, in NMR, 462
spectrum, 556, 604, 606, 607, 610

Linear
accelerator, 648
cable model, 418
expansion, coefficient of, 301

Linearly polarized light, 479, 485–488, 568–570
Linear momentum, see Momentum
Lines of force, 358
Linewidth, 595
Lipid bilayer, 188, 242, 317, 386–387, 412
Lipids, 186, 188, 242, 314, 337, 391, 530, 547
Liquid, 7, 8, 11–12, 34, 49, 51, 68, 205–207, 215,

222, 231–234, 241–244, 271, 299, 300, 301,
302, 304, 313, 314, 317–319, 322, 353, 459,
467, 530, 590, 615, 622, 635, 641, 646, 649, 652

Liquid crystal display (LCD), 646
Liquid crystals, 8, 207
Liquid-drop model, 635
Liquid helium, 459, 467, 590
Liquid scintillation counting, 649
Load resistor, 408
Longitudinal wave, 255, 258, 266, 270
Long-range force, 142, 349, 353–354
Loop rule, see Kirchhoff ’s rules, 407, 410
Lorentz factor, 582
Los Alamos, 652

Loudness level of, 272, 273
Loudness, 261, 269, 271, 277

see also Intensity
Loudspeaker, 224, 279, 289
L shell, 167–168, 210, 272, 509, 611, 637
Luciferase, 496
Lumped-parameter model, 418
Lungs, 6, 221–222, 238–239, 242, 289, 516, 650
Lyman series, 606

M
Mach number, 271
Macromolecules, 3–6, 8, 30, 43, 66–68, 122–123,

127, 162, 187, 189, 194, 207, 231, 236,
319–320, 337, 341–342, 344, 353, 360–362,
367–368, 385–386, 392, 463–467, 477, 485,
493–496, 498, 565, 570, 573–575, 578, 615

Macrostate, 333–334
Macula, 531
Magic numbers, 634, 637
Magnet, 431–432, 442–443, 453–455, 464,

467–468, 470
confinement, 654
dipole, 437–443, 453, 460–463, 465–466, 489
domains of, 66, 189, 442–443
domains, 66, 189, 442–443
electro, 443
permanent, 431, 432, 440, 441, 442, 446,

453, 454
Magnetic energy, 480
Magnetic field, 2, 349, 396, 431, 453–468, 470,

479, 485, 489, 503, 515, 571–572, 590, 607,
609, 641, 654

of circular loop, 441
of Earth, 431–432, 458
electric current, when in, 436
electric field, 440
in EM wave, 480
energy stored in, 480
field electric current produces, 440
force on moving electric charge, 432
induces emf when changing, 453–455, 458,

462, 470
lines of, 432, 435, 440–442, 454, 470
motion of charged particles in, 434
non-uniform, 438–439, 446
produced by changing electric field, 470
produced by electric current, 440–441
produces electric field, 440
of solenoid, 445
time varying, 453, 455, 458, 460
torque on current loop, 437
unit of, 432
force on current loop, 437
gradient, 467–468
lines, 440
motion of charged particles in, 434
measuring with search coil, 458, 462

Magnetic flux, 444, 454–458, 470, 472
changing, produces electric, 453–455, 458,

462, 470
Magnetic force on

current loop, 437
electric current, 436
moving electric charge, 432

Magnetic lens, 571
Magnetic moment, 439, 442, 453, 460, 462,

465, 475
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Magnetic monopole, 439, 470
Magnetic permeability, 320, 414, 440, 503–504
Magnetic poles, 467
Magnetic poles single, 439, 470
Magnetic potential energy, 438
Magnetic quantum number, 607–608
Magnetic resonance imaging, 3, 254, 263, 453,

460, 467, 473, 489
Magnetic torque, on current loop, 437
Magnetism, induced, 443
Magnetism, 2–3, 439–440, 443, 465, 470, 503

see also Electromagnetism
Magnetite, 432, 442
Magnetosomes, 432
Magnetotactic bacteria, 431, 442
Magnification

angular, 536–537
of lens, 524–525, 537
of magnifying glass, 536–537
of microscope, 537
of spherical mirror, 511

Magnification, 511, 524, 532, 562, 572–573
Magnifying glass, 503, 523, 526–527, 532, 536
Major highway collapse, 254
Malus’ law, 487, 498
Mammography, 575
Manometer, 223–224
Mass, 2, 8–12, 16, 25–30, 33, 36, 43, 53–62,

69–71, 79–82, 85–86, 88–90, 97, 106, 108–112,
115–116, 119, 123, 139–141, 143–155,
161–162, 166–167, 169–172, 174–175,
177–180, 182–183, 187, 189–192, 205–206,
211–215, 220, 222, 231, 235–236, 240,
249–250, 252, 257–258, 263–264, 270, 280,
289, 298, 300, 304–305, 307–308, 311–314,
321, 337, 348, 350, 362, 374, 376, 402, 406,
433–434, 446, 471, 490, 494, 581–585,
588–590, 592, 594, 597–599, 633, 635–636,
638–640, 645, 647, 652–655

atomic, 307
center of, 16, 60, 82, 139, 145–155, 161–162,

169–172, 178–179, 187, 189–192, 213, 304
conservation of, 211–213, 215, 231
critical, 652
and energy, 584, 653
inertial, 28
relativistic, 585
rest, 584–585, 590, 599
of universe, 640

Mass energy transformation, 584
Mass increase, 585
Mass number, 9, 633, 635–636, 639, 653
Mass spectrograph, 434
Mass spectrometer (spectrograph),

9, 433–434, 446
Mass on a spring, 54, 56, 58, 89, 249–250, 257
Mass units of, 9
Mathematics, in science, 1, 3, 21, 34, 63, 77,

86, 149, 275, 358, 364, 418, 581, 659–663
Matter

composite structure, 6–7, 11–12, 16, 64,
109, 460

states of, 8, 12
waves, 3, 279, 589, 591–592, 604

Maximum permissible occupational exposure, 646
Maxwell, James Clerk, 4, 66, 307, 347, 364, 367,

444, 446, 453, 470–471, 473, 480, 489, 509,
591, 603

Maxwell model, 66
Maxwell’s equations, 347
Mean kinetic energy, 306–307
Mean square displacement, 34–35
Mean square velocity, 306
Mechanical advantage, 208
Mechanical energy, 84–88, 93, 112–113, 115,

151–152, 170, 205, 214, 231, 305, 331, 335,
374, 438

Mechanical energy conservation of, 84, 88
Mechanical equivalent of heat, 312
Mechanical waves, 254–255, 270
Mechanics, 2–3, 6, 43, 113, 191, 205, 207, 211,

279, 305, 307, 312, 331–333, 335, 347–350,
373–374, 382, 433, 439, 460–461, 490, 567, 582,
589, 591–593, 595, 597–599, 603, 607, 613, 627

Medical imaging, 288, 453, 467, 576, 578, 640
MEG (magnetoencephalography), 396,

459–460, 472
Melting points, 328

see also Change of phase (or state)
Melting transition, 313, 344–345
Membrane

cell, and dynamics, 188
channels, 3, 188, 284, 373, 386, 392–393,

397, 401, 412–415, 417, 421–423, 428,
534, 590, 650

charge density on, 391
electric field in, 392

Membrane tympanic, 208, 282–284, 286
Meniscus, 243–244, 246
Mercury barometer, 222–223
Mercury thermometer, 299
Merry-go-round, 128, 166, 183
Metabolism, human, 240, 311, 321, 325, 469,

648, 649, 650, 651
Metal foil, 387, 603
Metallic bond, 616
Metastable state, 621–622, 628
Meters (electrical), 406–407, 409
Meter (unit), 10
Methyl quartet, 464, 466
Metric prefixes (multipliers), 9
Metric system, 9
Mica, 185–186, 569
Micelles, 242
Michelson interferometer, 556
Microelectrodes, 417
Microscope

compound, 503, 523, 528, 537–538, 563, 577
differential interference, 565–567, 577
fluorescence, 564, 567
inverted, 483
Microscope electron, 4, 285, 431, 559,

571–572, 625
Microscope magnification of, 537

Microscope phase-contrast, 565
Microscope resolving power of, 558–559,

571, 573
Microstate, 333, 344
Microtubule, 63, 484, 485, 497, 534, 567
Microwaves, 453, 486, 489
Microwelds, 118
Miniature end-plate potential, 420
Mirror, 15, 23, 55, 506–514, 517, 556, 564, 568,

570, 621–622
concave and convex, 509–513
equation, 511–513, 517
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focal length of, 510
magnification, 511
parabolic, 510
plane, 506, 508–509, 513, 570
side-view in cars, 509
spherical, 503, 509–511, 513, 517, 523

Mirror-image writing, 507
MKS system of units, 9
Mm Hg (unit), 219, 223, 238–239
Models, 1–3, 12, 17–18, 56, 65, 67–68, 147, 250,

280, 387, 393, 401, 423–425
Moderator, 653
Modern physics, 581, 585
Modulus, elastic, 65, 270
Molar gas constant, 308, 414
Mole, 66–71
Molecular

bonds, 116, 118, 374, 613, 628
mass, 307–308
mass and molecular weight, 235, 308, 320,

361–363, 367, 465, 494
spectra, 493, 615, 628
speeds, 306–308
speeds distribution of, 307
vibration, 493, 615, 628
weight, of proteins, 362

Molecules
bonding in, 116, 118, 374, 613, 628
spectra, 493, 615, 628

Molecules, 5, 11–12, 16, 17, 34, 35, 60, 66, 68,
70, 87, 90, 105, 109–110, 122, 146, 147, 179,
186, 187–188, 235, 236, 270, 297, 305–307,
315–316, 326, 333, 337, 340–342, 344, 350,
360, 379, 380, 382–383, 385, 393, 423, 473,
484, 489, 491, 492, 495–496, 498, 534, 567,
570, 598, 603, 610, 612–615, 617, 647,
651, 655

Molybdenum, 647
Moment arm, 176
Moment of a force, 173
Moment of inertia, 161, 165–175, 178, 180–184,

193, 614, 628
Moment of inertia of various symmetrical

objects, 168
Moment, magnetic dipole, 437–443, 446, 453,

460–462, 465–466
Momentum, 139–155, 161, 179–184, 189, 193,

207–208, 211, 269, 305, 348, 354, 439, 446,
460, 465, 477, 482–483, 490, 498, 571,
582–590, 592–594, 598–599, 603–609,
613–614, 627, 638, 640, 642, 650

angular, 161, 179–184, 189, 193–194, 348,
354, 439, 446, 460, 465, 599, 603–605,
607–609, 613–614, 627, 640

conservation of, 142–144, 153, 155,
180, 184

energy and, 585
kinetic energy in terms of, 151
of photon, 585
relation of force to, 140
relativistic, 585
total, of systems of particles, 151

Momentum, Monochromatic, 492, 494,
528–529, 543, 551, 555, 586, 619, 628

Moon, 23, 27, 29, 146
Motility, 6, 33, 53, 109, 165, 431, 484
Motility assay, 15, 16, 31, 43–71, 97–112,

161–193, 271, 484

Motion
circular, 97, 104–106, 118–122, 162–163,

165–166, 173, 435, 568
coherent, 161, 304, 597
at constant acceleration, 41, 43–49, 68, 71,

80, 105, 604
damped harmonic, 251
description of (kinematics), 23, 29, 77, 80,

97, 101, 103, 105, 112, 122, 161–163, 165,
172, 184, 212

dynamics of, 2, 6, 20, 23, 29, 43, 66–70, 97,
106–110, 118–122, 139, 161, 165, 172–179,
188, 205, 209–216, 225, 239, 362, 373, 460,
465, 581–585, 614

graphical analysis of linear, 20–21, 44
incoherent, 304, 597
rolling, 169, 255

Motor rotary, 5, 53, 178–179
MRI, 3, 254, 263, 291, 432, 443, 453, 460,

467–470, 473, 489, 563, 577, 590, 650
Multi-dimensional NMR, 465
Multi-loop circuit, 408, 410
Multimeter, 406–407, 409
Multi-photon microscopy, 567, 586
Multiple reflections, 290, 545
Multiple sclerosis, 421
Multiple slits, 548–550, 554–556
Muscle, biceps, 176–177
Muscle cells, 6, 392
Muscle, composite structure, 6, 63–64, 109,

176–177, 191, 210, 221–222, 238–239, 289,
300, 350, 387, 392–395, 415, 417, 419, 449,
468, 569, 576

Musical instruments, 249, 254, 263, 269–270,
276–277, 280

Musical sounds, 275
Myelin sheath, 416, 421
Myelinated axons, 416, 421
Myoglobin, 571, 574
Myopia, 531, 533
Myosin, 63–64, 66, 109–110, 186, 350,

484, 497

N
n, principal quantum number, 621
n-type semiconductor, 617, 628
Nagasaki, 652
Natural frequency, 250, 252–254, 264,

613–614, 628
Near field, 551
Near point of eye, 532–533, 536–538, 558
Nearsighted eye, 531–533
Negative staining, 572
Nephrons, 320
Nernst equation, 415, 425
Nernst potential, 415
Nerve impulse, 285, 417, 425
Nerves and nerve conduction, 284, 393,

416–417, 472, 533, 558
Nervous system, human, 416
Net force, 24, 27–32, 36, 43, 52, 55, 68, 77–78,

80, 83, 106–109, 116–119, 124, 140, 144, 151,
172–173, 177–178, 182, 194, 207, 217,
219–220, 241, 243, 250, 252, 309–310,
349–352, 359–360, 377, 396, 437–439, 446,
483, 612

Network, 337
Neuromuscular disease, 421
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Neuron, 285, 392, 393–394, 395, 401, 415–419,
421, 432, 475, 531, 534

Neurotransmitter, 284, 417
Neutral atom, 348
Neutral equilibrium, 89, 94
Neutrino mass, 640
Neutrinos, 349, 585, 639–640, 653
Neutron, 2, 6, 7, 9, 12, 28, 347–349, 434, 460,

464, 489, 590, 610, 611, 633–639, 647, 648,
652–653, 655

in nuclear reactions, 652–653
role in fission, 652

Neutron decay, 348
Neutron number, 633
Newton, 4, 15–36, 43–71, 77, 80, 83, 97, 106–109,

112, 115, 117–118, 121, 123–124, 139–140, 142,
144, 150–155, 161–162, 174, 179, 182, 189, 193,
204, 208, 217, 232, 248, 297, 305, 349–350, 405,
433, 452, 470–471, 550, 582, 603

Newton (unit), 25
Newtonian fluid, 232, 236–237, 244
Newton’s First Law, 21–23, 28, 36, 83, 121,

140, 582
Newton’s laws of, 15, 20–22, 27, 31, 43, 77, 80,

97, 106, 109, 112, 121, 124, 135, 139, 142, 162,
217, 297, 405, 470

of waves, see Wave motion
Newton’s laws of motion, 15–36, 43–71,

106, 297
for rotational motion, 161

Newton’s law of universal gravitation, 26
Newton’s Second Law of Motion, 28–30

strategy for problem solving, 106
Newton’s second law for a system, 150, 179
Newton’s Third Law of Motion, 31
Newton (unit), 25
NIF, 654
Night vision detectors, 324
NMR, 2, 68, 254, 263, 279, 453, 460–469,

472–473, 489, 491
multi-dimensional, 465
one-dimensional, 465
Fourier Transform, 465

Noble gases, 611, 612, 637
Nodes, 256, 270, 279–280, 421, 592, 609
Nodes of Ranvier, 421
Nodes, of wavefunction, 609
Noise, 224, 275–277, 279, 422, 458–459,

464–465, 468, 650
Nonconductor, 390
Nonconservative force, 88, 170
Non-equilibrium system, 300
Noninertial reference frame, 22–23, 121
Non-ionizing radiation, 492, 498
Nonlinear or nonohmic device, 405
Non-polar dielectric, 384–385
Non-reflective coating, 547
Normal force, 55, 108, 110, 114, 116–117,

119–120, 190, 192–193, 203, 207–209, 214,
225, 243

Normalization condition, 591
North pole, 431, 443
NOVA laser, 654
N, principal quantum number, 621
N-type semiconductor, 617, 628
Nuclear

binding energy, 635–637, 652–653, 655
decay constant, 642

density, 635
disarmament, 652
energy, 77, 453, 463, 598, 610, 636–637,

640, 652
energy levels, 463, 598, 610, 637, 640
fission, 242, 633, 635–636, 638, 648,

652–655
forces, 347, 348, 635–636, 640
fusion, 653–654
lifetime, 642
magnetic resonance, 2, 68, 254, 263, 453, 458,

460, 472, 489
medicine, 3, 633, 641, 643, 647, 655
physics, 3, 633–655
power, 599, 652–655
radiation see Radiation, nuclear
radius, 635, 655
reactions, 638
reactors, 648, 653
shells, 637
spin, 460–463, 467–469, 472
structure, 633

Nucleon, 633–635
Nucleus, 5, 7, 347–348, 352, 382–383, 416,

439, 447, 460–464, 475, 478, 489, 491,
497, 565, 572, 592, 597, 603, 605, 607,
610–612, 618, 633, 635–640, 642,
647–648, 652–655

daughter and parent, 644–645
half-lives of, 601, 633, 642–645,

647–648, 655
radioactive decay of, 592, 635, 642, 644–645,

649, 655–657
size of, 635
structure and properties of, 633–635

Nuclides, 634, 637, 639, 642, 644, 653
Numerical aperture, 559

O
Object distance, 506, 510, 512–513, 525, 565
Object, extended, 139, 145, 148, 150–151, 155,

163, 169, 189, 352, 506
Objective lens, 537–538, 559, 564–566,

571–572
Occupation numbers, 333–334, 336, 344
Oceans, height of, 325
Oersted, 440
Ohmmeter, 406, 409
Ohm’s law, 401, 403–407, 413, 424
Ohm (unit), 404
Oil-immersion objective, 559
Open system, 300, 337–338, 345
Operational amplifier, 405, 618
Opsin, 534–535
Optical activity, 568–571, 577
Optical biosensors, 565
Optical cells, 493
Optical coating, 523
Optical density, 493
Optical fiber, 514–517
Optical lever, 185
Optical path, 529, 544–548, 550, 556, 559, 566,

569–570
Optical properties of matter, 503–505
Optical pumping, 621–622
Optical rotary dispersion (ORD), 570
Optical scanner, 536
Optic nerve, 208, 530–531, 534
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Optics, 2–3, 274–275, 347, 472, 477, 486,
503–504, 506–508, 510, 512–514, 516,
523–524, 537–538, 543–546, 548, 550, 552,
554, 556, 558, 560, 563–578, 623

see also Light
Orbital quantum number, 607, 627
Ordered pair, vector, 99–100, 351, 379
Order (interference or diffraction pattern), 546,

548, 554, 559, 574
Order of magnitude and rapid estimating, 9
Organ pipe, 280
O-rings, 300
Oscillations, 43, 55–56

see also Vibrations
Oscillator, 249–253, 256, 264, 368, 534, 592–593
Oscillatory motion, 43, 55–56
Osmosis, 319–320
Osmosis, 319–320
Osmotic pressure, 317–321, 326
Osmotic shock, 319
Outcomes, 1, 143, 332–334
Overtones, 262, 276

P
p (principal) atomic subshell, 611
p-type semiconductor, 617
Pacemaker, 6, 238, 394
Pain, threshold of, 272–273, 286
Pair production, 584
Parabolic mirror, 510
Parallel circuits, 389
Parallel-plate capacitor, 365, 387–390, 392, 471
Paramagnetism, 465
Paraxial rays, 523–524, 528, 531
Parent nucleus (defn), 638, 648, 655
Particle accelerators, 43, 648
Particle detectors, 641
Particle trapped in a box, 591
Pascal’s principle, 208, 223, 225
Pascal (unit), 61, 207
Paschen series, 606
Patch-clamp, 418, 421–422, 425
Pauli exclusion principle, 590, 599, 610–612,

616, 628, 636
Pendulum

ballistic, 158
simple, 250

Penetrating power, of radiation, 638–639
Period, 7, 56–59, 71, 142, 238, 249, 251–253,

255–257, 261, 287, 298, 305, 319–321, 420,
450, 478–481, 487, 568, 647

Periodic, 7, 9–10, 56, 210, 252, 254–255,
261–262, 264, 270, 275, 472, 573–574,
610–612, 628, 637

motion, 56
projectile, 102
rotational, 97, 139, 149, 155, 159, 161–194,

344, 496
simple harmonic, 56, 58–59, 249–251, 261,

263–264
table, 7, 9–10, 610–612, 628, 637
translational, 106, 139, 145, 150, 155,

161–162, 170, 181, 187, 257
uniform circular, 104–105, 118, 121,

162–163, 166
uniformly accelerated, 231
vibrational, 60, 67, 155, 254, 307, 361, 489,

491–493, 598, 613–615

Period, T, which are related, 249
Permanent magnet, 431, 440–443, 446
Permeability, magnetic, 320, 414, 440, 446,

503–504
Permittivity, 350, 366, 382, 503–504
Perrin, 187
PET, 291, 577, 633, 648–651, 655
PH, 188, 340, 360–363, 367, 494, 496, 564
PH gradient, 362
Phase angle, 253, 259–261, 271, 273, 278,

479–480, 487–488, 543–545, 548–550, 552,
568, 620

Phase changes of
in light wave, on reflection, 546
in matter, 313

Phase contrast, 485, 563, 565–566
Phase contrast microscopy, 565
Phase equilibrium, 338
Phase of matter, 313
Phase object, 565
Phase plate, 565–566
Phase shift, in harmonic oscillator, 253, 547
Phase of waves, 253, 259–261, 271, 273, 278,

479–480, 487–488, 543–545, 548–550, 552,
568, 620

Phospholipids, 8, 188, 412
Phosphor, 496
Photocathode, 585
Photocoagulation, 623
Photocurrent, 641
Photodetection, 491
Photoelectric effect, 491, 581, 585–586, 588, 641
Photoelectrons, 587
Photographic film, 571–572, 625
Photomultiplier tube, 641, 649
Photon, 324, 342, 416, 462, 464, 466, 468, 473,

477, 489–496, 498, 530, 531, 534, 543, 567,
571, 573, 577, 584–591, 593–595, 599, 604,
606, 607, 610, 613, 614, 618–623, 627, 638,
640, 645, 649, 653, 655

Photon absorption of, 620
Photon energy, mass, and momentum of, 490
Photosynthesis, 331, 341–342, 620, 644
Photovaporization, 623
Physics, as a science, 1
Picoseconds, 68, 337, 620
Piezoelectric, 224, 289
Pion, 349
Pitch, of a sound, 269, 271, 286
Pixel, 535, 576–577
Planck’s constant, 460, 462, 490, 586, 599
Plane waves, 271, 273–274, 478–481, 505, 507,

518, 543–545, 549–550, 551, 620
Plaque, 215
Plasma, blood, 236
Plasma, ionized gas, 353
Plastic deformation, 61
Plastic regime, 62
Platelets, blood, 210, 236, 647
Pn junction, 618
Pn junction diode, 618
Pn junction laser, 623, 625
Point charge, 349, 359, 363, 373–380, 382, 386

field of, 354–355
potential, 376–378

Point particle, 16, 29, 68, 139, 141–142, 145,
162, 582

Poiseuille, 233–234
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Poiseuille’s law, 233–234
Poise (unit), 232
Poisson-Arago spot, 551
Polar dielectrics, 384–385
Polarity, 348, 455–456, 586, 618
Polarization, 2, 379, 383–384, 485–488, 496, 534,

563, 566, 568–570
direction of, 485–486, 498, 566, 569
elliptical, 498, 568, 569

Polarization microscope, 566, 569–570
Polarized light, 486–488, 496, 509, 566, 568–570
Polarizer, 486–487, 566, 569
Polarizers, crossed, 487, 569
Polar molecules, 348
Polaroid, 486–487, 568, 570
Polaroid sunglasses, 486
Poles, magnetic, 442, 467
Pollen, 34, 53, 378
Pollution, 325
Polonium, 638–639, 645
Polyelectrolyte, 360, 362
Population center, 145
Population inversion, 621–622
Position, 16
Position instantaneous, 18
Positive holes, 10, 19, 21–22, 26, 289, 303, 571,

617–618
Positron, 577, 584, 639, 649–650, 654, 655
Positron emission tomography, 577,

649–650, 655
Potential difference, 376–377, 386, 390, 394,

403, 405, 407, 423, 425, 433, 571, 585–586,
589, 596

Potential drop, 407
Potential-energy diagrams, 87–90, 373
Potential-energy diagrams for molecules, 614
Potential-energy diagrams for nucleus, 383
Potential energy, 312, 331, 373–377, 382–384,

386, 401–402, 405, 411, 438, 480, 591–593,
607, 613, 635, 637

electric, 373–377, 382, 386–387,
401–402, 405

gravitational, 82, 84, 88, 115, 213–214,
374, 376

see also Nuclear energy
Potential, gravitational, 82, 84, 88, 213–214,

374, 376
Potential hill, 374, 377, 405
Potential map, 382, 393
Potential, stopping, 586
Potential well, 592–593
Power

density, 271, 619
of lens, 525
supply, 362, 402, 414, 417, 453–455, 590

Powers of ten, 9
Power (unit), 91
Power, 9, 43, 70, 91, 111, 142–143, 152, 205, 239,

255, 271–272, 286, 320, 347, 362, 364, 402,
405, 414, 417, 453–455, 457–459, 464, 478,
494, 525, 531, 536, 558–559, 571–573, 586,
590, 619, 638–639, 652

see also Electric power
Poynting vector, 481
P (principal) atomic subshell, 611
Precession, 608
Prefixes, unit (table), 9
Presbyopia, 533

Pressure
absolute, 217–218
atmospheric, 12, 206, 209, 216, 218, 222–226,

270, 280, 286, 318–319
blood, 224, 238
in fluids, 207, 217, 223, 225
in a gas (in terms of molecules), 306, 309,

310, 317
gauge, 218, 224–225, 233
head, 218, 233, 240
hydraulic, 283
measurement, 222–224, 238
negative, 216
structure of proteins, 66
systolic and diastolic, 224
units of, 223
vapor, 317–319

Pressure, 12, 23, 50, 63, 71, 122–123, 205–209,
213–220, 222–225, 231, 233–234, 238–240,
242–244, 255, 269–272, 280, 282–284, 286,
289, 292, 305–306, 308–311, 315, 317–321,
325–326, 331, 334, 338, 345, 482–483, 530,
615, 642, 645, 653, 654–655

Pressure cooker, 318
Pressure head, 218, 233, 240
Pressure waves, 270
Principal axis, 509–511, 513
Principal quantum number, 607, 610,

612–613, 627
Principia Mathematica, 22
Principle of

complementarity, 593
equipartition of energy, 307
relativity, 582
superposition, 260, 264, 441, 543

Prism, 556, 566, 569
Probability, 34, 332–334, 423–424, 462, 586,

591–593, 595, 599, 609, 620–621, 642
Probability density, 591–592
Projected area, 242–243, 454
Projectile motion, 102–104
Projection, in tomography, 568, 575–576, 580,

607–608, 649
Proportional counter, 641
Protein design, 386
Proteins

folding problem, 67
integral, 188
peripheral, 188

Proton
Proton-proton cycle, 653–654
Proton-proton repulsion, in nucleus,

652, 654
P-type semiconductor, 617
Pulley, 116, 135, 170–171, 182
Pulsatile flow, 240
Pulse, 240, 254, 257–259, 261, 290–292, 402,

419–420, 422–423, 425, 454, 465, 467–469,
496, 516, 619–620, 622, 641, 649

Pulsed laser, 342, 534, 567, 619, 622
Pulse-echo technique, 290
Pulse-height analysis, 649
Pumping, in lasers, 91, 239, 317, 394,

621–622, 628
Pupil, 531, 558
Pure energy, 349, 584
PV diagrams, 311
Pythagorean theorem, 99
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Q
Q, of a nuclear reaction, 638, 640
Quality of sound, 269
Quantization, 603–604, 607, 614

angular momentum, 604
of electric charge, 347
of energy, 614

Quantum condition, 607–613, 616, 627, 628, 636
Quantum of energy, 592
Quantum energy separation, 333
Quantum mechanics, 2, 279, 307, 312, 333, 335,

347, 349, 382, 439, 460–461, 490, 567,
591–593, 595, 597–600, 603, 607, 613, 627, 630

Quantum mechanics of molecules and 
solids, 613

Quantum mechanics of atom, 334, 590, 603,
607, 609–613, 616, 636

Quantum numbers, 607–613, 616, 627, 628, 636
Quantum theory, 2, 279, 307, 312, 333, 335, 347,

349, 382, 439, 460–461, 490, 567, 591–593,
595, 597–599, 603, 607, 613, 627

Quantum theory early, 607
Quantum yield, 496
Quarks, 6–7
Quasi-static process, 310, 334
Quaternary structure of proteins, 66

R
Rad (unit), 645
Radar, 16, 288, 489
Radial acceleration, see Centripetal acceleration
Radian, 162, 663
Radiation, –463, 249, 263, 288, 321, 324–325,

326, 332, 347, 434, 453–455, 462, 465,
470–472, 476–479, 481, 482–483, 486,
488–493, 496, 497–498, 503–505, 559,
571–573, 581, 585, 603–604, 619–620, 633,
638–641, 645–647, 648, 649–651, 653, 655

damage, 646–647, 653
dosimetry for, 633, 644–647
electromagnetic, 249, 263, 288, 324, 453,

455, 470–473, 477, 479, 488–489, 491,
497, 503, 573

exposure, 588–589, 625, 645–647, 655
from hot bodies, 321, 324
from Sun, 325
gamma, 489, 639, 645, 655
infrared, 324–325, 489
ionizing (defn), 492, 641, 645
measurement of, 641
medical uses of, 3, 633, 641, 643,

647–649, 655
microwave, 489, 491
nuclear, 324, 347, 453, 633, 638, 641,

645, 655
pressure, 482–483
sickness, 647
sun, 325
thermal, 321, 324
types of, 638–642
UV, 328, 489
therapy, 647

activity, 2, 317, 321, 394–397, 421, 459–460,
472, 534, 568–570, 577, 643–644, 649, 651,
656–658

Radiation nuclear
alpha, 653, 654, 655
beta, 639, 640, 647, 648, 655

damage by, 647
measurement of, 641
medical uses of, 3, 633, 641, 643,

647–649, 655
types of, 639, 640, 645, 647, 648, 653–655

Radio, 199, 249, 254–255, 263, 288, 291, 453,
462, 474, 477, 488–489, 491, 500, 503, 560

refraction of, 249, 273–274, 292, 482–483,
504–509, 514, 517–524, 528–530, 538,
543–547, 559–561, 569, 578–579

waves, 477
Radio, 249, 254–255, 263, 288, 291, 453, 462,

477, 488–489, 491, 503
Radio waves transmission of, 477
Radioactive

dating, 644
decay, 592, 635, 642, 644–645, 649, 655
decay constant, 642, 645
decay law, 642
decay series, 638, 644–645
nuclei, 638, 642–643
tracers, 648–649, 655

Radioactivity, 610, 638, 640, 642–644,
646–650, 655

Radioactivity natural, 638, 646
Radio frequency, RF, radiation, 462, 489
Radioimmunological assay, 649
Radioisotopes, 647–649, 650
Radiolabeling, 647, 655
Radionuclide, 634, 636–637, 639, 642–645,

652–653
Radiopharmaceutical, 647, 648, 650
Radio waves, 255, 263, 288, 291, 453, 488–489
Radio waves transmission of, 477
Radium, 638–639, 643
Radius, Bohr, 605, 607, 609
Radius of curvature, 359, 509–510, 512–513,

517, 524
Radon, 223, 639, 646
Rad (unit), 645
Random coil, 67, 342–343, 362, 578
Randomness, 334
Random walk and diffusion, 34, 402
Raoult’s law, 318
Rare-earth nuclei, 635
Rarefaction (expansion), 270
Raster pattern, 185, 567, 572
Rate of decay, 2, 317, 321, 394–396, 421,

459–460, 472, 534, 568–570, 577, 643–644,
649, 651, 655

Rate limiting, 340
Rate of strain, 232, 234, 236
Ray, 482, 483, 488–489, 492, 503–507, 509,

510–511, 515, 517, 518, 523–528, 552, 555,
563, 566, 570, 572–576, 587, 618, 625, 638,
640, 644, 646, 650

Ray diagram, 512, 525, 531
Rayleigh, 494, 557
Rayleigh criterion, 557
Ray tracing, 508, 510–512, 524–527
RBE, 646, 655
RC circuit, 412
RC series circuit, 412
RC time constant, 413
Reactions, nuclear, 584–585, 655
Reactor, 648, 652–653
Real image, 506, 513, 526–527, 532, 537
Recoil, 143, 587, 638

I N D E X 711



Reconstruction beam, in holography, 626–627
Red blood cells, 34, 66, 232, 236–237, 240, 648
Reference beam, in holography, 544, 626–627
Reference frames, 22–24, 161–162, 582, 598

accelerating, 22–23
inertial, 28
noninertial, 34, 66, 232, 236–237, 240, 648

Reflection, 249, 259, 261, 273–274, 289–291,
505–510, 514–517, 523, 543, 545–547,
555–556, 574, 592, 606

law of, 274, 505–510
of light, 249, 259, 261, 273–275, 289–291,

505–510, 514–517, 523, 543, 545–547,
555–556, 574, 592, 606

phase changes during, 570
Reflection angle of (defn), 274, 505, 574
from thin films, 548
total internal, 514–517, 519, 523, 547
of waves on a string, 259

Reflection grating, 556, 606
Reflection intensity fraction, 289, 509
Reflection-interference microscopy, 547
Reflection of sound, 273–275
Reflex, nerve, 417
Refraction

angle of, 274, 507, 514
index of, 504–507, 514, 517, 523–524,

528–530, 538, 544–547, 559,
569, 578

law of, 274, 292, 507–508, 514, 523
of light, 507–508, 514
by thin lenses, 524

Refraction, 274, 292
Refractory period, 420
Relative biological effectiveness (RBE), 646, 655
Relativistic

energy, 584, 599
kinetic energy, 583
momentum, 582, 584–585

Relativity
general theory of, 581–582
principle of, 582
special theory of, 490, 581–598

Relativity, 2, 354, 470, 490, 581–582, 585, 598
Relaxation mechanism, in NMR, 464
Rem (unit), 394, 646, 655
Renal dialysis, 320–321
Repolarization, 387, 394
Resistance, 47, 103, 143, 207, 231, 233, 299, 401,

403–409, 411–413, 415, 417–418, 421, 424,
438, 443, 457, 590, 648

internal, 407
Resistivity, 403–404, 412–413, 425

units for, 404
Resistors, 404–405, 407–412, 415, 424, 648
Resistors with capacitor, 42, 412–413, 415, 419
Resistors and Kirchhoff ’s rules, 407–408,

410, 424
Resistors in series and parallel, 407, 410, 424
Resolution, 27, 65, 68, 162, 185–186, 288, 291,

391, 453, 464–465, 467–468, 473, 481, 484,
523, 530–531, 536, 543, 545, 556–559, 563,
566–567, 571–573, 575, 577, 593, 596–597,
599, 625–626, 650

atomic, 185, 573, 575, 578, 599
of electron microscope, 572
of eye, 558
limits of, 557–558

sub-atomic, of AFM, 185
wavelength as limit, 571

Resolving power, 558–559, 571, 573
Resonance, 2–3, 68, 214, 249–264, 279, 282, 432,

438, 453, 458, 460–469, 472–473, 489, 505,
567, 577

Resonant
absorption, 620
cavity, 279, 621, 628
collapse, 254
frequency, 254, 262, 464, 468, 493

Rest energy, 584–585, 599, 650
Resting potential, 387, 414–415, 419
Rest mass, 584–585, 590
Resultant vector, 98–101, 106, 259, 261, 355,

488, 568
Retina, 530–534, 536–537, 558, 623
Retinal, 416, 533–535, 623
Retina, reattachment, 623
Reversible process, 334, 338, 345, 405
Reynolds number, 49–50, 52, 234–236
RF, 7, 174, 176, 181, 193, 462–465, 467–468, 489
RGB system, 535
Rheology, 236
Rheometer, 236
Rhodopsin, 186, 534–535, 620
Right-hand rules, 432–433, 436–437, 441,

446, 479
Rigid body, 161–162, 165, 167, 172–173, 175,

177, 211
Ritalin, 651
Rms velocity Speed rms Speed supersonic, 271
Rocket of mass M explodes, 152
Rods, 535
Roentgen (unit), 645, 655
Roller coaster, 112–113, 121, 376
Rolling, 169, 255
Root-mean-square, 35, 306
Root-mean-square (rms) displacement, 35
Root-mean-square (rms) velocity, 306
Rotary motor, 5, 53, 178–179
Rotational

angular momentum quantum number, 492,
614, 628

constant angular, 163–164, 175
diffusion, 187–188, 194
diffusion coefficient, 187–188, 194
dynamics, 165, 172–179
frictional coefficient, 187
kinetic energy, 165–166, 169, 172–173, 193,

196, 614
motion, 97, 139, 149, 155, 159, 161–166,

168, 170, 172–174, 176, 178–182, 184,
186–188, 190, 192, 194, 196, 198, 200,
202, 344, 491, 496

motion acceleration, 174–175
motion torque, 161, 172–180, 182, 184–185,

187, 189–190, 191–194, 384, 396, 432,
437–438, 440–441, 443, 446, 453

Rotational relaxation time, 187
Rotational transitions, 492, 614, 628
Rouleaux, 237
Rutherford, 603, 638
Rydberg constant, 606

S
s (sharp) atomic subshell, 611
Saltatory conduction, 421
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Saturated vapor pressure, 318
Scalar field, 357–358, 369, 376
Scalar quantities, 23, 87, 110, 207, 298, 378
Scalars, 97–98
Scanner, optical, 572
Scanning coils, 572
Scanning electron microscope, 4, 572
Scanning tunneling electron microscope,

572–573
Scattering of light, 494
Schrodinger equation, 590–593
Schawlow, 620
Schwann Cells, 421
Science nature of, 1
Scientific notation, see appendix 1
Scintillation counter, 649
Scintillation cocktail, 649
Scintillatior, 641, 649
Screening length, 361
SDS gel electrophoresis, 361
Search coil, 458, 462
Second law, Newton’s, 29
Second law of thermodynamics, 311

entropy and, 331–337
statistical interpretation of, 334, 336, 343, 344

Second (unit), 17
Secondary structure in proteins, 66, 362
Sedimentation, 123
Sedimentation coefficient, 123
Self-organizing, 337
Semiconductor, 623, 625
Semiconductor doping, 353, 617
Semipermeable membrane, 319, 320
Series circuits, 412
Shadowing, 572
Shadows, 503
Shear modulus, 63
Shear strain, 63
Shear stress, 62, 63, 205, 231, 232, 236
Shielding, electrical, 361
Shivering, 322
SHM, see Simple harmonic motion
Shock waves, 271
Shoemaker-B456Levy 9, comet, 30
Shulgi, 644
SI units, 9
Sickle cell anemia, 66, 237
Siemens, 404
Sievert (unit), 646, 655
Sign conventions (optics), 525
Signal averaging, 464, 468
Signal-to-noise, 465, 468, 650
Significant figures, see Appendix 1
Silicon, 10, 185, 353, 367, 404, 612, 617
Simple harmonic motion, 56, 58–59, 75,

249–251, 253, 261, 263
Simple harmonic oscillator, 249–250, 593
Simple harmonic oscillator period of, 58, 251,

261, 478, 487
Simple harmonic oscillator total energy of, 85
Simple pendulum, 250
Single photon emission computer tomography

(SPECT), 633, 648–650, 655
Single-slit diffraction, 550–554, 557, 560
Sinoatrial node, 394
Skater, rotating, 180
Skidding of car, 121
Sky, color of, 494–495

Skydivers, 51–52
Slits, 548–550, 554–556
Sliope, 20–21, 44
Slow-neutron reaction, 652–653
Snell’s law, 507–508, 514
Soap film, 241, 546
Soccer action-reaction, 31
Sodium channels, 393, 422, 424
Sodium chloride, 320, 615
Sodium-Iodide crystal, 641
Solar energy, 87
Solar flares, 435
Solar heating, 325
Solenoid, 445
Solids

band theory of, 616–617
bonding in, 616
energy levels in, 616–617

Sonar, 16, 290
Sound and sound waves, 273–275, 278
Sound barrier, 271
Sound Doppler shift of, 286–287
Sound intensity of, 271–273
Sound interference of, 278
Sound quality of, 279
Sound speed of, 270–271, 274, 277, 281, 288,

290, 292, 294–295, 329
Sound ultrasonic, 271, 288–291
Sound barrier, 271
Sound spectrum, 276
Source, 31, 36, 68, 77, 87, 255, 269–272, 275,

282, 286–288, 290, 301, 313, 322, 324, 338,
341–342, 344, 354, 369, 402, 406, 409, 414,
418, 433, 453, 455–456, 462, 468, 470,
477–479, 484, 486, 505–506, 516, 528, 537,
544–545, 549–550, 555–556, 564–566,
568–569, 571, 575, 586, 588, 598, 619, 621,
646, 648, 650

Space-clamped, 418, 420
Space constant, 419, 421
Spatial superposition, 277–278
Special theory of relativity, 354, 470
Special theory of relativity postulates of, 582, 598
Specific capacitance, 391, 412–413
Specific gravity, 206
Specific heat, 312
Specific resistance, 413
Spectrometer, 492, 634
Spectrometer mass, 9, 433–434, 446
Spectroscopic notation, 611–612
Spectroscopy, 342, 465, 491–496, 498, 505,

534, 547, 556, 581, 595, 598, 613–618, 620,
628, 647

Spectrum, 275–277, 453, 462–466, 468, 472, 474,
477, 488–489, 491–492, 494, 498, 529, 535–536,
555–556, 571, 603–604, 606, 614–615, 618–619

absorption, 493
analyzer, 555
atomic, 556, 606–607, 610
continuous, 555, 603, 619
electromagnetic, 453, 472, 477, 488–489, 498
line, 556, 606, 607, 610
molecular, 615
X-ray, 618

Specular reflections, 505–506
Speed average, 18, 23, 290
Speed of EM waves, 354, 477, 488
Speed mean, of molecules, 306, 307–308
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Speed of wave, 257, 279, 471–472, 480
Speed, 16, 18, 22–23, 28, 30, 46–51, 55, 70,

83–84, 86, 89, 91–92, 103–105, 108, 111–113,
118, 120–123, 140–141, 143, 152–153,
162–164, 170, 172, 175, 179, 186, 211–212,
216, 255, 257, 264, 270–271, 274, 277, 279,
281, 287–288, 290, 307, 318, 324, 341, 348,
354, 367, 402, 413, 420, 433–435, 470–473,
477–481, 488, 503–504, 506, 508, 517,
543–544, 568, 576, 582–585, 594, 597–598,
605, 638

see also Velocity
Spherical aberration, 509, 528–529
Spherical mirror, 503, 509–514, 517, 523
Spherical symmetry, 352, 355, 364, 380, 609
Spherical wave, 478
Sphygmomanometer, 224, 238
Spin effect splittings, 464
Spin, electron, 2, 254, 438–439, 441, 446,

608, 611
Spin, flip, 263, 462, 468, 491
Spin label, 467
Spin-lattice relaxation time, 468
Spin, proton, 460–463, 467–469, 472
Spin quantum number, 608, 610, 628
Spin-spin relaxation time, 468
Spin up, spin down, 123, 461, 609, 637
Spontaneity, of reactions, 338
Spontaneous emission, 620, 638–639
Spring constant, 54, 56, 58–60, 62, 71, 85,

185–186, 252, 264, 493
Spring equation, 53–54, 56, 58, 62, 71, 79,

86, 186
Springs, 24–25, 27, 43, 53, 61, 65–66, 71, 87–90,

167, 185, 224, 250–251, 264, 312, 374, 493, 613
Spring scale, 24, 220
Square-law detector, 625
Square well potential, 592–593
SQUID, 2, 144, 417, 421, 459–460, 472
S, (sharp) atomic subshell, 611
Stable equilibrium, 89–91, 384
Standing high jump, 81–82
Standing waves, 249, 261–264, 279–280, 592,

595, 596, 604
Standing waves, de Broglie, 604
State

changes of, 313
equilibrium, 53–56, 58–60, 62, 67, 69, 85–86,

88–91, 162, 178, 189–194, 205, 207–209,
217, 220, 225, 238, 242, 247, 252, 254–255,
258, 262, 264, 297–300, 305, 308–309, 313,
317, 319, 322, 325, 333–334, 336, 338–341,
345, 359–360, 367, 383–384, 414–415, 423,
462, 468, 472, 612–613, 618, 620–621, 645

of matter, 8, 12
State variables, 305, 315, 334
Static

electricity, 347
equilibrium problem solving, 191
friction, 116–117, 190, 192

Statics, 177, 189, 205, 225
Stationary states in atom, 604–607, 609, 610
Statistical

mechanics, 332–333
predictions, 642
weight, 334, 336, 343–344

Steady-state, 231, 253, 300, 325, 341
Stefan-Boltzmann constant, 324, 326

Stefan-Boltzmann law (or equation), 324
Stellar fusion, 653
Sterioisomers, 534
Stern and Gerlach, 438
Stimulated emission, 620–621, 628
Stokes’ law, 52, 235
Stokes’ law, 52, 76, 235
Stopping potential, 586–587
Strain, 30–31, 61–65, 232, 234, 236, 244,

270, 302
Strain rate, 65, 232, 234, 236, 244
Strassmann, 652
Stray capacitance, 412
Streamline flow, 51–52, 209–210, 235, 358
Stress, 61–66, 71, 205, 207, 231–232, 234, 236,

241, 244, 300–304, 395
compressive, sheer, tensile, 61–66, 71, 205, 207,

231–232, 234, 236, 241, 244, 300–304, 395
relaxation, 65
strain relations, 63, 65, 232
thermal, 302

Stringed instruments, 263, 279
Strings, 258–259, 261, 280, 471–472
Strings, vibrating, 255, 279
Strong nuclear force, 348, 635–636, 640
Strontium, 643, 648
Structure factor, 574
Sublimation, latent heat of, 313–314
Sun, 23, 43, 56, 87, 299, 324–325, 342, 435, 486,

495, 504, 653–654
Sunburn, 324, 489
Sun energy source of, 87
Sun radiation from, 325
Sunset, color of, 495, 498
Superconducting at ambient, 590
Superconducting magnet, 443, 464, 467, 590
Superconductivity, 459
Supercooled, 641
Superfluidity, 590, 610
Superheated, 641
Superposition

principle of, 259, 349–350, 363, 482
spatial, 277–279
temporal, 275–277

Supersonic speed, 271
Surface

charge, 359, 366, 384–385, 391–392, 414
energy density, 214, 241, 390, 480–481
tension, 205, 231, 241–244, 422, 590, 635
topography, and AFM, 162, 185, 571, 596

Surfactants, 243
Surroundings, 305
Suspension, viscosity of, 235, 244
Sweating, 239, 317, 321
Swim bladder, of fish, and buoyancy, 221
Symmetry, 48, 56, 148, 165, 167–169, 175, 219,

243, 355, 357–359, 364–365, 380, 382,
439–440, 444, 446, 470, 548

arguments, 358, 369
azimuthal, 358
spherical, 364

Synapse, 417
Synthesizers, digital, 276
System, 305

closed, 150–151, 300, 305, 309, 311, 334–335,
337, 345

isolated, 82, 151–152, 155, 180, 250, 309, 331,
344, 348, 366
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open, 300, 337–338, 345
of units, 7, 9–12, 16–17, 25–27, 29, 78, 187,

232, 347, 375, 401, 404–405, 432, 612
Systolic pressure, 224

T
Tagging, see Tracers
Tangential acceleration, 121–122, 163, 166, 174
Technetium, 647–648
Telecommunication, 515
Telescope reflecting, 510
Television, color, 30, 535
Temperature

bath, 324
body, 300, 311, 321, 323
celsius (orcentigrade), 298
chemical reaction, 315
Curie, 443
distinguished from heat and internal 

energy, 309
Fahrenheit, 298–299
human body, 323, 369
Kelvin, 298, 305, 307
molecular interpretation of, 306, 309,

310, 317
Temporal superposition, 275–277
Tension and tensile stress, 61, 63, 64
Terminal, of battery, 389, 405, 407, 417
Terminal endings in nerve, 421
Terminal velocity, 52–53
Terminal voltage, 405
Tertiary structure in protien, 66
Tesla (unit), 432
Test charge, 432, 440
Test compass, 431–432, 440–442
Theories (in general), 1
Theory of relativity, see Relativity
Thermal

conductivity, 322–323
conductor, 321–322, 352, 367, 572, 617
contact, 322, 326
contraction, 300–304
energy, 85, 88, 91, 187, 297–298, 300, 302,

304, 306, 308, 310–312, 314, 316, 318, 320,
322–323, 335, 340, 342, 402, 405–406,
465, 620

equilibrium, 297–300, 305, 308–309, 313,
325, 338, 341, 462, 621

expansion, 297, 299–303, 337
Thermal expansion

coefficients of, 301, 325
in structures, 300–304
of water, 304

Thermal gradient, 322, 325
Thermal insulation, 322, 352
Thermal pollution, 325
Thermal stress, 302
Thermodynamics, 2–3, 6, 34, 77, 162, 207, 231,

297–298, 300, 305, 307–309, 311, 331–340,
405, 423, 620

first law of, 297, 308–309, 311
second law of, 331–337
zeroth law of, 298

Thermogram, 324
Thermography, 324
Thermometers, 298–299, 302, 304
Thermonuclear reactions, 653
Thermos bottle, 298, 309, 313, 317, 322

Thermostat, 303
Thin lens coating, 547
Thin lens equation, 532
Thin lenses, 523, 525, 527, 538

see also Lens
Thin film interferences, 459, 545–548
Thorium 232, decay chain, 639
Three level laser, 621–622
Three Mile Island, 653, 655
Threshhold of hearing, 272, 286
Threshhold of pain, 270
Thrust, 53, 144–145
Transient Ischemic Attack (TIA), 215
Timbre, 269
Time

standard of, 28
constants, 413, 442

Tire pressure gauge, 218, 224
Total internal reflection, 514–517, 519, 521, 523,

539, 547
Total internal reflection fluorescence 

microscopy, 547
Total mechanical energy, 84–85, 88, 93, 151,

170, 196
Townes, 620
Tracers, 648–649, 655
Transducers, 224, 284, 290
Transient ischemic attack (TIA), 215
Transistors, 405, 618
Translational kinetic energy, 80, 166, 169–170,

172, 307, 344
Translational motion, 106, 139, 145, 150, 155,

161–162, 170, 181, 187, 257
Translation, rigid, 16, 29
Transmembrane potential, 415
Transmission, 491
Transmission electron microscope, 572, 578
Transmission grating, 555
Transmission hologram, 626–627
Transmutation of elements, 638–639
Transpiration, 244, 246
Transverse wave, 478
Traveling waves, 249, 256–258, 260, 262, 264,

266–268, 270, 284–285, 479, 488
Trigonometric functions, see Appendix 1
Trigonometric identities, see Appendix 1
Triple point, 298–299
Tritium, 653–654, 657
Tryptophan, 494, 496, 567
Tube open at both ends, 280–281
Tubes, flow in, 42, 217, 232–234, 245, 417, 428
Tumors, 289, 516, 623, 647, 648, 650
Tungsten filament, 571
Tunneling, 2, 185, 189, 571, 581, 593, 595–597,

599, 655
Turbines, 652, 657
Turbulent flow, 50–52, 210–211, 214, 224, 232,

234–235
Turning point, of motion, 20, 40, 88–90
Tweezers, optical, 482–484
Twiddling, and E coli, 33, 164
Tympanic membrane, 208, 282–284, 286, 294
Tyrosine, 494

U
Ultimate strength, 62, 72, 302
Ultracentrifuge, 105, 123–124, 131, 175
Ultra-relativistic, 585
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Ultrasonic frequency, 290–291
Ultrasonic waves, 65, 269, 271, 274, 288–291,

293, 296, 499, 577
Ultrasound, 2, 224, 269, 279, 288–293, 295–296

medical imaging, 269, 274, 290–291, 293
Ultraviolet (UV) light, 493, 495
Ultraviolet-visible spectroscopy, 494
Uncertainty, in measurements, 593
Uncertainty principle, 581, 592–595, 597,

599–602
lifetime-mass width, 594

Unified atomic mass unit, 9
Uniform circular motion, 104–105, 118, 121,

127, 130, 162–163, 166
dynamics of, 37, 118–125, 127–129, 137–138,

158, 166, 174, 433, 435, 604
kinematics of, 104

Uniformly accelerated motion, 41, 43–47, 68, 71,
73–75, 80, 105, 604

Unit cell, 574
Units (table), 9
Unit vector, 349, 354, 366
Universal law of gravitation, 35
Universe, expansion, 653
Unpolarized light, 479, 486–487, 498–500,

509, 562
Unstable equilibrium, 89–90, 384, 399
Upatnieks, 625
Uranium, 10–11, 572, 638, 643, 652–653
Uranium

in dating, 644
enriched, 652
in reactors, 648, 652–653, 657–658

UV, 494

V
Vacuum pump, 223, 317, 601
Vacuum tube, 585, 601
Valence band, 616–617, 628
Valence electron, 352, 494, 593, 610, 613,

617–618
Van der Waals bonds and forces, 344, 386,

612–613, 615, 628
Van der Waals solid, 615
Van’t Hoff law, 319
Vaporization, heat of, 313, 328
Vapor pressure, 317–319, 328
Vasoconstriction, 240, 246, 323
Vasodilation, 323
Vector equality, 98
Vector field, 358, 363, 367
Vector quantities, 23, 97–98, 110
Vectors, 23–24, 97–102, 104–107, 111, 125,

127–128, 131–133, 140, 142, 153, 209, 219,
221, 349, 355, 358, 377, 379, 432–434,
477–478, 568, 583, 608

analytical addition of, 100
components of, 99
graphical addition of, 99
ordered pair notation, 99–100, 127, 133,

351, 379
resultant (defn), 98
subtraction, 141

Vector sum
see also Resultant vector, 24, 98, 110, 142,

151, 482
Velocity, 15–24, 29, 35–53, 55–60, 66, 69, 71–78,

80–81, 83, 85–88, 91–98, 102–106, 108,

111–115, 119, 121–123, 125, 127–131,
133–136, 138–141, 143–145, 151, 153, 156,
158–159, 161–167, 169–173, 180–184, 187,
189, 193–201, 209–213, 215–217, 225–236,
239–240, 245, 250, 253, 255–258, 262–265,
268, 270–271, 282, 287–289, 291, 295–296,
305–308, 310, 326, 329, 352, 358, 360, 369,
374–375, 402–403, 405, 424–425, 432–436,
446–451, 455–456, 471, 476, 480–481,
484–485, 500, 543, 582–583, 593–594,
598–600, 602, 614, 658

angular, 59, 162–167, 169–173, 180–184,
187, 189, 194, 197, 199–201, 210, 450,
456, 476, 614

average, 18–20, 36–38, 41, 44–45, 72–73, 125,
211, 228, 306–307, 326, 402, 425, 448–449

constant, 15, 21–24, 35, 39, 42, 46, 52–53, 76,
83, 94–96, 106, 125, 130, 136, 140, 144, 161,
231–232, 287, 310, 360, 436, 449, 455,
484, 543

drift, 122, 352, 403, 405, 424
efflux, 216–217, 225, 229
equilibrium distribution in molecular

dynamics, 69
instantaneous, 19–21, 37, 125, 128
of light, 28, 255, 295, 354, 367, 471, 473,

477–478, 480, 488, 503–504, 506, 508, 518,
520, 568, 582–583, 585, 597–598, 600

relative, 582
rms, 306
of simple harmonic, 56
of sound, 270–271, 282, 288–289, 296
supersonic, 271
terminal, 37, 52–53, 71, 73, 75, 227
of waves, 257, 262–263, 271, 481, 485

Venturi meter, 215
Venturi tube, 215, 228
Vesicles, 242, 417
Vibrational energy levels, 491, 598, 613–614, 628
Vibrational quantum number, 613–614
Vibrational transition, 492, 499, 614
Vibrations, 7, 28, 37, 76, 161, 208, 254–255, 263,

265, 279–280, 283–285, 289–290, 491, 598
of air columns, 279
forced, 253
molecular, 491, 598, 613–614, 628
of strings, 255, 279

Video, 16, 27, 161, 515, 536–537, 566–567
Video camera, 536–537, 566
Virtual image, 506, 512–513, 518, 526–527, 532,

537–539, 626–627
Viscoelasticity, 43, 60, 64–65, 236, 250
Viscometer, capillary, 234, 236, 245–246
Viscometry, 232
Viscosity, 34, 49–50, 52, 65, 71–73, 187, 207, 209,

216–217, 225, 228, 231–237, 244–246, 484, 590
Viscosity units for, 232, 235
Viscous fluid, motion in a, 49, 51, 65, 205, 209,

211, 231–232, 234, 236, 238, 240, 242, 244–246
Visible light, wavelengths of, 6, 249, 255, 293,

301, 309, 324, 431, 453, 480–481, 484–485,
488–495, 499–501, 504, 515, 520–521, 529,
535, 538, 545–547, 554–555, 561–563, 565,
571, 596, 606, 613, 619–620, 623, 629, 641,
656–657

Visible spectrum, 494, 628
Visual cortex, 534, 558
Visual pigment, 530–531, 534–535
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Vitreous humor, 208, 531
Vocal chords, 269–270
Voltage, 265, 378, 389–393, 395–396, 398–400,

402–403, 405–409, 411–413, 415, 417–429,
451, 457, 476, 500, 578–579, 586, 600–601,
618, 641

Voltage
clamp, 418, 423, 425
gating, 392
measuring, 403
stopping, 586–587

Voltmeter, 398, 406–408, 417, 426–428, 457
Volt (unit), 376
Volume expansion, coefficient of, 303–304,

327–328
Volume flow rate, 211, 213, 228, 233, 239, 245
Volume fraction, 235, 237, 244
Vortices, 73, 210–212, 226, 234–235, 239

W
Wake, fluid flow, 50, 235
Water, 5, 11–13, 37, 42, 50–53, 63, 68, 71–76, 95,

110, 123, 127–128, 131–132, 137–138,
143–147, 170–171, 187–188, 199, 202,
205–207, 210, 212, 216–218, 220–223,
225–232, 235–237, 241–247, 249, 254–255,
258, 263, 271, 275, 279, 282, 284, 288–290,
294–295, 298–301, 304–312–304–314,
316–319, 321, 323–329, 337–338, 341–342,
344–346, 348, 353, 360–361, 369, 371,
379–380, 385, 392–393, 396, 402, 404–406,
425, 428, 463–464, 468, 476, 482, 493,
499–500, 504, 508, 514–515, 518–522, 540,
545–546, 560–562, 570, 576, 579–580, 613,
615, 623, 653, 657

barometer, 222–223
cohesion of, 243
as an electric insulator, 353
expansion of, 304
heavy, 464
molecule of, 146–147, 188, 317, 337, 341,

379–380, 393, 396, 613
polar nature of, 380
saturated vapor pressure of, 318
specific heat of, 312–313, 315, 321, 326,

328, 406
strider, 241, 247
triple point of, 298–299

Watson-Crick double helix, 342
Watt, 91, 405
Wave

amplitude, 258, 260, 272, 285, 563
crest, 254, 258, 259, 287, 480
function, 249, 590–592, 599–600, 607,

609, 616
motion, 271
nature of light, 3, 258, 274, 504, 534,

543–544, 548, 565, 568, 626
nature of matter, 3, 279, 589, 591–592, 604
number, 255, 257, 264
packet, 490, 499, 501, 543, 571, 585, 588, 590
pulse, 254, 261, 265

Waveform, 254, 256–257, 259, 262, 275–276, 394
Wavefront, 258, 271–273, 287, 480, 505–506

spherical, 258, 272, 287, 505, 518
Wavelength, 254–257, 259–266, 268, 271,

274–275, 277–282, 287–288, 293–295, 472,
479, 482, 484, 486, 488–495, 498–501,

503–505, 516, 518–521, 529–530, 535–536,
543–548, 550, 552, 554–562, 564, 567,
569–571, 573, 578–579, 586–590, 592–593,
595, 599–602, 604, 615, 618–619, 622–623,
626, 629–630, 634, 640

Compton, 588, 600
de Broglie, 589, 592, 600, 602, 604, 607
index of refraction and, 543
as limit to resolution, 557
visible light, 248, 255

Wavelength Division Multiplexing (WDM), 516
Wavelets, 544, 552
Wave-particle duality, 585
Waves, 3, 208, 210, 249–250, 252, 254–275,

277–280, 283–285, 287–289, 291–295,
394–395, 453, 472, 477–490, 492, 494,
496–500, 503–505, 515, 534, 543–548, 550,
559–560, 565, 568, 579, 585, 589, 591–592,
595–596, 600, 604, 626

amplitude of, 258, 260, 272, 285, 563
continuous, 462, 465, 620
diffraction of, 68, 273, 275, 295, 465, 519,

543, 545, 547–563, 573–575, 578–579, 585,
588–589, 593, 599, 602, 618

electromagnetic, 3, 254–255, 472, 477–482,
484–486, 488–490, 492, 494, 496, 498–500

energy transported, 257
harmonic, 255, 257–258, 266
incident, 258, 261, 274, 290, 486, 492, 579
intensity of, 9, 265, 271–273, 276–279,

285–286, 288–295, 467, 478, 481–484,
486–487, 490–491, 493–496, 498–501, 504,
509, 514–515, 519, 522, 534, 543, 545–546,
548–549, 551, 553–555, 557, 559–561,
565–566, 570, 575, 577, 579–580, 585–591,
599–600, 618–620, 623, 625, 628–631, 649

interference of, 2, 201, 258–262, 264–265,
278–279, 292, 450, 459, 472, 539, 543,
545–550, 552–556, 559–562, 565–566,
573–574, 577–578, 585, 588–589, 591–592,
599–600, 604, 626, 628

light, 3, 258, 274, 504, 534, 543, 544, 548,
565, 568, 626

longitudinal, 255, 258
mathematical representation, 249, 256–258,

260, 262, 264, 266–268, 270, 284–285,
479, 488

matter, 3, 279, 591, 604
periodic, 255, 257–258, 264, 472
plane, 271, 273–274, 478–481, 499–500, 505,

507, 518, 543–545, 549–551, 620
pressure, 255, 272, 282, 292
reflection of, 258–259, 261, 273–274,

288, 482
shock, 271
sound, 208, 254–255, 258, 261, 270–271,

273, 275, 277–280, 283–284, 292–294, 505,
543, 560

speed of, 255, 257, 262, 263, 271, 279,
471–472, 480, 481, 485

spherical, 258, 272, 287, 505, 518
standing, 261–264
transmitted, 258, 273–274, 289
transverse, 231–232, 236, 249, 254–255, 257,

259, 262, 265–268, 274, 290, 294, 358, 369,
413, 418, 436, 440, 451, 468, 473, 475,
478–480, 483–489, 498, 505, 511, 549,
568, 579
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Waves (Continued)
traveling, 249, 256–258, 260, 262, 264,

266–268, 270, 284–285, 479, 488
ultrasonic, 274, 288
velocity of, 255, 257
water, 249, 254–255, 275, 279

Wave theory, of light, 3, 258, 274, 504, 534,
543–544, 548, 565, 568, 626

Wave troughs, 254, 259
velocity, 257, 263, 271, 481, 485

Weak nuclear force, 635, 640
Weight, 12–13, 24–25, 29, 32–33, 36–39, 42, 49,

52–55, 59–62, 71–73, 75–78, 80, 82–83, 85–87,
93, 95, 107–108, 112, 117, 119–120, 123,
125–131, 134–138, 145, 152, 176–177,
182–183, 189, 191–193, 195–197, 200–202,
206, 209, 217–222, 225–229, 235–236, 243,
247, 267–268, 308, 320, 329, 334, 336, 341,
343–344, 346, 362–363, 367–368, 370, 450,
482, 494, 534, 538

apparent, 226, 229
buoyancy of air and, 123, 217, 219–221
effective, 123, 217, 219–221

Weightlessness, 27, 37, 242
Wetting, surface, 243, 245
White blood cells, 236
Whole-body dose, 647
Wind instruments, 280
Windmill, 91
Windows heat loss through, 324
Wind power, 91
Wing, lift on, 229
Wiring, house, 406
Wollaston prism, 566
Work, 3, 8, 22, 26, 61, 72, 77–88, 90–98, 106,

110–112, 115, 124–126, 129–130, 133–136,
138, 140, 154, 158, 167, 169–170, 173–174,
179, 193, 197, 199, 213–214, 216, 228, 231,
241, 289–290, 294, 298, 309–312, 315,
320–321, 326–329, 331, 334–336, 338–339,
345–346, 352, 354, 357, 373–374, 376–377,
384, 387–389, 391, 396–397, 399–400, 407,
409, 417, 419, 424, 436, 438, 447–448, 450,
465, 494, 499, 509–510, 538, 555, 586–587,
599–601, 603, 625–626, 628, 630, 644,
647–648, 654, 657

defined in one dimension, 78
in first law of thermodynamics, 297,

308–309, 311, 315, 326
general definition, 79, 110–111, 173,

373–374, 436
graphical interpretation, 79
by gravity, 82–84, 87, 94–95, 112, 126, 129,

136, 213
related to energy, 80–82, 85, 110, 111–112
by spring, 79, 94
by torque, 173
units of, 78
Work by expanding gas, 309

Work function, 586–587, 599–601
Work-energy theorem, 80–81, 84–85, 110–112,

115, 140, 173, 213, 436

X
X-ray diffraction, 68, 465, 563, 573–575, 618
X-ray images, 291, 478, 563, 573, 575–578, 580,

618, 650–651
X-ray radiography, 575
X-rays, 573–577
X-ray scattering, 587
X-rays characteristic, 618
X-rays in EM spectrum, 489
X-ray spots, 573
Xylem, 244

Y
Young’s double-slit experiment, 548, 559–560
Young’s modulus, 61–62, 71, 76, 167, 302

Z
Z (atomic number), 636
Zero, absolute, of temperature, 298, 299,

304, 592
Zero-point energy, 592, 597, 600, 602
Zeroth law of thermodynamics, 298, 346
Zwitterion, 360
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