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Abstract: In its modern formulation, the Maximum Entropy Principle was promoted

by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look

for a distribution, consistent with available information, which maximizes the entropy.

However, this principle focuses only on distributions and it appears advantageous to

bring information theoretical thinking more prominently into play by also focusing on

the “observer” and on coding. This view was brought forward by the second named

author in the late seventies and is the view we will follow-up on here. It leads to

the consideration of a certain game, the Code Length Game and, via standard game

theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is

more basic than the Maximum Entropy Principle in the sense that the search for one

type of optimal strategies in the Code Length Game translates directly into the search

for distributions with maximum entropy.

In the present paper we offer a self-contained and comprehensive treatment of funda-

mentals of both principles mentioned, based on a study of the Code Length Game.

Though new concepts and results are presented, the reading should be instructional

and accessible to a rather wide audience, at least if certain mathematical details are

left aside at a first reading.

The most frequently studied instance of entropy maximization pertains to the Mean

Energy Model which involves a moment constraint related to a given function, here
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taken to represent “energy” . This type of application is very well known from the

literature with hundreds of applications pertaining to several different fields and will

also here serve as important illustration of the theory. But our approach reaches further,

especially regarding the study of continuity properties of the entropy function, and this

leads to new results which allow a discussion of models with so-called entropy loss.

These results have tempted us to speculate over the development of natural languages.

In fact, we are able to relate our theoretical findings to the empirically found Zipf’s

law which involves statistical aspects of words in a language. The apparent irregularity

inherent in models with entropy loss turns out to imply desirable stability properties

of languages.

Keywords: Maximum Entropy, Minimum Risk, Game Theoretical Equilibrium, In-

formation Topology, Nash Equilibrium Code, Entropy Loss, Partition Function, Expo-

nential Family, continuity of entropy, hyperbolic distributions, Zipf’s law.
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1 The Maximum Entropy Principle – overview and a generic

example

The Maximum Entropy Principle as conceived in its modern form by Jaynes, cf. [11], [12] and

[13], is easy to formulate: “Given a model of probability distributions, choose the distribution

with highest entropy.” With this choice you single out the most significant distribution, the least

biased one, the one which best represents the “true” distribution. The sensibility of this principle

in a number of situations is well understood and discussed at length by Jaynes, in particular.

The principle is by now well established and has numerous applications in physics, biology,

demography, economy etc. For practically all applications, the key example which is taken as

point of departure – and often the only example discussed – is that of models prescribed by

moment conditions. We refer to Kapur, [14] for a large collection of examples as well as a long

list of references.

In this section we present models defined by just one moment condition. These special models

will later be used to illustrate theoretical points of more technical sections to follow.

Our approach will be based on the introduction of a two-person zero-sum game. The principle

which this leads to, called the principle of Game Theoretical Equilibrium is taken to be even more

basic than the Maximum Entropy Principle. In fact, from this principle you are led directly to the

Maximum Entropy Principle and, besides, new interesting features emerge naturally by focusing

on the interplay between a system and the observer of the system. As such the new principle is

in conformity with views of quantum physics, e.g. we can view the principle of Game Theoretical

Equilibrium as one way of expressing certain sides of the notion of complementarity as advocated

by Niels Bohr in a precise mathematical way.

To be more specific, let us choose the language of physics and assume that on the set of natural

numbers N we have given a function E, the energy function. This function is assumed to be

bounded below. Typically, E will be non-negative. Further, we specify a certain finite energy

level, λ, and take as our model all probability distributions with mean energy λ. We assume that

the energy Ei in “state” i ∈ N goes fast enough to infinity that the entropies of distributions in

the model remain bounded. In particular, this condition is fulfilled if Ei =∞ for all i sufficiently

large – the corresponding states are then “forbidden states” – and in this case the study reduces

to a study of models with finite support.

Once you have accepted the Maximum Entropy Principle, this leads to a search for a maximum

entropy distribution in the model. It is then tempting to introduce Lagrange multipliers and to

solve the constrained optimization problem you are faced with in the standard manner. In fact,

this is what practically all authors do and we shall briefly indicate this approach.

We want to maximize entropy H = −
∑∞

1 pi log pi subject to the moment condition
∑∞

1 piEi =
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λ and subject to the usual constraints pi ≥ 0; i ∈ N and
∑∞

1 pi = 1. Introducing Lagrange

multipliers −β and µ, we are led to search for a solution for which all partial derivatives of the

function H−β
∑∞

1 piEi +µ
∑∞

1 pi vanish. This leads to the suggestion that the solution is of the

form

pi =
exp(−βEi)
Z(β)

; i ≥ 1 (1.1)

for some value of β for which the partition function Z defined by

Z(β) =
∞∑
i=1

exp(−βEi) (1.2)

is finite.

The approach is indeed very expedient. But there are difficulties connected with it. Theoret-

ically, we have to elaborate on the method to be absolutely certain that it leads to the solution,

even in the finite case when Ei = ∞ for i sufficiently large. Worse than this, in the infinite

case there may not be any solution at all. This is connected with the fact that there may be no

distribution of the form (1.1) which satisfies the required moment condition. In such cases it is

not clear what to do.

Another concern is connected with the observation that the method of Lagrange multipliers is

a completely general tool, and this very fact indicates that in any particular situation there may

possibly be other ways forward which better reflect the special structure of the problem at hand.

Thus one could hope to discover new basic features by appealing to more intrinsic methods.

Finally we note that the method of Lagrange multipliers cannot handle all models of interest.

If the model is refined by just adding more moment constraints, this is no great obstacle. Then

the distributions and partition functions that will occur instead of (1.1) and (1.2) will work with

inner products of the form β
′
E
′
i + β

′′
E
′′
i + · · · in place of the simple product βEi. In fact, we

shall look into this later. Also other cases can be handled based on the above analysis, e.g. if we

specify the geometric mean, this really corresponds to a linear constraint by taking logarithms,

and the maximum entropy problem can be solved as above (and leads to interesting distributions

in this case, socalled power laws). But for some problems it may be difficult, or even impossible

to use natural extensions of the standard method or to use suitable transformations which will

reduce the study to the standard set-up. In such cases, new techniques are required in the search

for a maximum entropy distribution. As examples of this difficulty we point to models involving

binomial or empirical distributions, cf. [8] and [22].

After presentation of preliminary material, we introduce in Section 3 the basic concepts related

to the game we shall study. Then follows a section which quickly leads to familiar key results.

The method depends on the information- and game-theoretical point of view. This does not lead
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to complete clarification. For the proper understanding of certain phenomena, a more thorough

theoretical discussion is required and this is taken up in the remaining sections.

New results are related to so-called entropy loss – situations where a maximum entropy distri-

bution does not exist. In the last section, these type of models are related to Zipf’s law regarding

statistical aspects of the semantics of natural languages.

Mathematical justification of all results is provided. Some technical results which we shall need

involve special analytical tools regarding Dirichlet series and are delegated to an appendix.

2 Information theoretical preliminaries

Let A, the alphabet, be a discrete set, either finite or countably infinite and denote by ∼M1
+(A),

respectively M1
+(A) the set of non-negative measures P on A (with the discrete Borel structure)

such that P (A) ≤ 1, respectively P (A) = 1. The elements in A can be thought of in many ways,

e.g. as letters (for purely information theoretical or computer science oriented studies), as pure

states (for applications to quantum physics) or as outcomes (for models of probability theory and

statistics).

For convenience, A will always be taken to be the set N of natural numbers or a finite section

thereof, and elements in A are typically referred to by indices like i, j, · · · .
Measures in M1

+(A) are probability distributions, or just distributions, measures in ∼M1
+(A)

are general distributions and measures in ∼M1
+(A) \ M1

+(A) are incomplete distributions. For

P,Q, · · · ∈ ∼M1
+(A), the point masses are, typically, denoted by pi, qi, · · · .

By ∼K(A), we denote the set of all mappings κ : A→ [0;∞] which satisfy Kraft’s inequality∑
i∈A

exp(−κi) ≤ 1 . (2.3)

Elements in ∼K(A) are general codes. The values of a general code κ are denoted κi. The

terminology is motivated by the fact that if κ ∈ ∼K(A) and if the base for the exponential in

(2.3) is 2, then there exists a binary prefix-free code such that the i’th code word consists of

approximately κi binary digits.

By K(A) we denote the set of mappings κ : A→ [0;∞] which satisfy Kraft’s equality∑
i∈A

exp(−κi) = 1 . (2.4)

This case corresponds to codes without superfluous digits. For further motivation, the reader may

wish to consult [23] or standard textbooks such as [3] and [6].

Elements in K(A) are compact codes, for short just codes.
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For mathematical convenience, we shall work with exponentials and logarithms to the base e.

For κ ∈ ∼K(A) and i ∈ A, κi is the code length associated with i or, closer to the intended

interpretation, we may think of κi as the code length of the code word which we imagine κ

associates with i. There is a natural bijective correspondance between ∼M1
+(A) and ∼K(A),

expressed notationally by writing P ↔ κ or κ↔ P , and defined by the formulas

κi = − log pi , pi = exp(−κi) .

Here the values κi = ∞ and pi = 0 correspond to eachother. When the above formulas hold, we

call (κ, P ) a matching pair and we say that κ is adapted to P or that P is the general distribution

which matches κ. If P ⊆M1
+(A) and κ ∈ K(A), we say that κ is P-adapted if κ is adapted to one

of the distributions in P . Note that the correspondance κ ↔ P also defines a bijection between

M1
+(A) and K(A).

The support of κ is the set of i ∈ A with κi < ∞. Thus, with obvious notation, supp (κ) =

supp (P ) where P is the distribution matching κ and supp (P ) is the usual support of P .

For expectations – always w.r.t. genuine probability distributions – we use the bracket notation.

Thus, for P ∈M1
+(A) and f : A→ [−∞;∞], we put

〈f, P 〉 =
∑
i∈A

f(i)pi

whenever this is a well-defined extended real number. Mostly, our functions will be non-negative

and then 〈f, P 〉 will of course be a well defined number in [0;∞]. In particular this is the case for

average code length defined for κ ∈ ∼K(A) and P ∈M1
+(A) by

〈κ, P 〉 =
∑
i∈A

κipi.

Entropy and divergence are defined as usual, i.e., for P ∈M1
+(A), the entropy of P is given by

H(P ) = −
∑
i∈A

pi log pi (2.5)

or, equivalently, by H(P ) = 〈κ, P 〉 where κ is the code adapted to P . And for P ∈ M1
+(A) and

Q ∈ ∼M1
+(A) we define the divergence (or relative entropy) between P and Q by

D(P‖Q) =
∑
i∈A

pi log
pi
qi
. (2.6)

Divergence is well defined with 0 ≤ D(P‖Q) ≤ ∞ and D(P‖Q) = 0 if and only if P = Q.

The topological properties which we shall find useful for codes and for distributions do not

quite go in parallel. On the coding side we consider the space ∼K(A) of all general codes and
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remark that this space is a metrizable, compact and convex Hausdorff space. This may be seen by

embedding ∼K(A) in the space [0;∞]A of all functions on A taking values in the compact space

[0;∞]. The topology on ∼K(A) then is the topology of pointwise convergence. This is the only

topology we shall need on ∼K(A).

On the distribution side we shall primarily consider probability distributions but on the corre-

sponding space, M1
+(A), we find it useful to consider two topologies, the usual, pointwise topology

and then a certain stronger non-metrizable topology, the information topology.

As to the usual topology on M1
+(A) we remind the reader that this is a metrizable topology,

indeed it is metrized by total variation defined by

V (P,Q) =
∑
i

|pi − qi|.

We write Pn
V−→ P for convergence and PV , co VP etc. for closure in this topology (the

examples show the closure of P and of the convex hull of P , respectively).

As to the information topology – the second topology which we need on the space M1
+(A) –

this can be described as the strongest topology such that, for (Pn)n≥1 ⊆M1
+(A) and P ∈M1

+(A),

limn→∞D(Pn‖P ) = 0 implies that the sequence (Pn)n≥1 converges to P . Convergence in this

topology is denoted Pn
D→ P . We only need convergence in this topology for sequences, not for

generalized sequences or nets. Likewise, we only need sequential closure and PDσ , co DσP , or

what the case may be denotes sequential closure. Thus PDσ denotes the set of distributions P

for which there exists a sequence (Pn)n≥1 of distributions in P with Pn
D→ P . The necessary and

sufficient condition that Pn
D→ P holds is that D(Pn‖P ) → 0 as n → ∞. We warn the reader

that the corresponding statement for nets (generalized sequences) is wrong – only the sufficiency

part holds generally. For the purposes of this paper, the reader needs only worry about sequences

but it is comforting to know that the sequential notion Pn
D→ P is indeed a topological notion of

convergence. Further details will be in [9].

An important connection between total variation and divergence is expressed by Pinsker’s

inequality:

D(P‖Q) ≥ 1

2
V (P,Q)2 , (2.7)

which shows that convergence in the information topology is stronger than convergence in total

variation.

The functions of relevance to us, entropy and divergence, have important continuity properties:

P y H(P ) is lower semi-continuous on M1
+(A) and (P,Q) y D(P‖Q) is jointly lower semi-

continuous on M1
+(A)×∼M1

+(A). These continuity properties even hold w.r.t. the usual, pointwise

topology. Details may be found in [23].
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3 The Code Length Game, introduction

In this section P is a non-empty subset of M1
+(A), neutrally referred to as the model. In specific

applications it may be more appropriate with other terminology, e.g. the preparation space or the

statistical model. Distributions in P are called consistent distributions.

With P we associate a two-person zero-sum game, called the Code Length Game over P . In

this game, Player I chooses a consistent distribution, and Player II chooses a general code. The

cost-function, seen from the point of view of Player II, is the map P × ∼K(A)→ [0;∞] given by

the average code length:

(P, κ) y 〈κ, P 〉.

This game was introduced in [20], see also [15], [21], [10], [8] and [22]. Player I may be taken

to represent “the system”, “Nature”, “God” or · · · , whereas Player II represents “the observer”,

“the statistician” or · · · .
We can motivate the game introduced in various ways. The personification of the two partic-

ipants in the game is natural as far as Player II is concerned since, in many situations, we can

identify ourselves with that person. Also, the objective of Player II appears well motivated. To

comment on this in more detail, we first remind the reader that we imagine that there is associated

a real code consisting of binary sequences to κ ∈ ∼K(A) and that κ merely tells us what the code

lengths of the various code words are.

We can think of a specific code in at least three different ways: as a representation of the letters

in A, as a means for identification of these letters and – the view we find most fruitful – as a

strategy for making observations from a source generating letters from A. The two last views are

interrelated. In fact, for the strategy of observation which we have in mind, we use the code to

identify the actual outcome by posing a succession of questions, starting with the question “is the

first binary digit in the code word corresponding to the outcome a 1?” , then we ask for the second

binary digit and so on until it is clear to us which letter is the actual outcome from the source.

The number of questions asked is the number of binary digits in the corresponding code word.

The cost function can be interpretated as mean representation time, mean identification time

or mean observation time and it is natural for Player II to attempt to minimize this quantity.

The sense in assuming that Player I has the opposite aim, namely to maximize the cost function

is more dubious. The arguments one can suggest to justify this, thereby motivating the zero-sum

character of the Code Length Game, are partly natural to game theory in general, partly can be

borrowed from Jaynes’ reasoning behind his Maximum Entropy Principle. Without going into

lengthy discussions we give some indications: Though we do not seriously imagine that Player I is

a “real” person with rational behaviour, such thoughts regarding the fictive Player I reflect back

on our own conceptions. With our fictitious assumptions we express our own modelling. If all we
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know is the model P and if, as is natural, all we strive for is minimization of the cost function, we

cannot do better than imagining that Player I is a real person behaving rationally in a way which

is least favourable to us. Any other assumption would, typically, lead to non-sensical results which

would reveal that we actually knew more than first expressed and therefore, as a consequence, we

should change the model in order better to reflect our level of knowledge.

To sum up, we have argued that the observer should be allowed freely to choose the means of

observation, that codes offer an appropriate technical tool for this purpose and that the choice

of a specific code should be dictated by the wish to minimize mean observation time, modelled

adequately by the chosen cost function. Further, the more fictitious views regarding Player I and

the behaviour of that player, really reflect on the adequacy and completeness of our modelling.

If our modelling is precise, the assumptions regarding Player I are sensible and general theory of

two-person zero-sum games can be expected to lead to relevant and useful results.

The overall principle we shall apply, we call the principle of Game Theoretical Equilibrium. It is

obtained from general game theoretical considerations applied to the Code Length Game. No very

rigid formulation of this principle is necessary. It simply dictates that in the study of a model, we

shall investigate standard game theoretical notions such as equilibrium and optimal strategies.

According to our basic principle, Player I should consider, for each possible strategy P ∈ P , the

infimum of 〈κ, P 〉 over κ ∈ ∼K(A). This corresponds to the optimal response of Player II to the

chosen strategy. The infimum in question can easily be identified by appealing to an important

identity which we shall use frequently in the following. The identity connects average code length,

entropy and divergence and states that

〈κ, P 〉 = H(P ) +D(P‖Q), (3.8)

valid for any κ ∈ ∼K(A) and P ∈M1
+(A) with Q the (possibly incomplete) distribution matching

κ. The identity is called the linking identity. As D(P‖Q) ≥ 0 with equality if and only if P = Q,

an immediate consequence of the linking identity is that entropy can be conceived as minimal

average code length:

H(P ) = min
κ∈∼K(A)

〈κ, P 〉 . (3.9)

The minimum is attained for the code adapted to P and, provided H(P ) <∞, for no other code.

Seen from the point of view of Player I, the optimal performance is therefore achieved by

maximizing entropy. The maximum value to strive for is called the maximum entropy value

(Hmax-value) and is given by

Hmax(P) = sup
P∈P

H(P ) . (3.10)
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On the side of Player II – the “coding side” – we consider, analogously, for each κ ∈ ∼K(A)

the associated risk given by

R(κ|P) = sup
P∈P
〈κ, P 〉 (3.11)

and then the minimum risk value (Rmin-value)

Rmin(P) = inf
κ∈∼K(A)

R(κ|P) . (3.12)

This is the value to strive for for Player II.

We have now looked at each side of the game separately. Combining the two sides, we are led to

the usual concepts, well known from the theory of two-person zero-sum games. Thus, the model

P is in equilibrium if Hmax(P) = Rmin(P) <∞, and in this case, Hmax(P) = Rmin(P) is the value

of the game. Note that as a “supinf” is bounded by the corresponding “infsup”, the inequality

Hmax(P) ≤ Rmin(P) (3.13)

always holds.

The concept of optimal strategies also follows from general considerations. For Player I, this is

a consistent distribution with maximal entropy, i.e. a distribution P ∈ P with H(P ) = Hmax(P).

And for Player II, an optimal strategy is a code κ∗ ∈ ∼K(A) such that R(κ∗|P) = Rmin(P). Such

a code is also called a minimum risk code (Rmin-code).

4 Cost-stable codes, partition functions and exponential

families

The purpose of this section is to establish a certain sufficient condition for equilibrium and to

identify the optimal strategies for each of the players in the Code Length Game. This cannot

always be done but the simple result presented here already covers most applications. Furthermore,

the approach leads to familiar concepts and results. This will enable the reader to judge the merits

of the game theoretical method as compared to a more standard approach via the introduction of

Lagrange multipliers.

As in the previous section, we consider a model P ⊆ M1
+(A). Let κ∗ ∈ K(A) together with

its matching distribution P ∗ be given and assume that P ∗ is consistent. Then we call κ∗ a Nash

equilibrium code for the model P if

〈κ∗, P 〉 ≤ 〈κ∗, P ∗〉 ; P ∈ P (4.14)
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and if H(P ∗) < ∞. The terminology is adapted from mathematical economy, cf. e.g. Aubin [2].

The requirement can be written R(κ∗|P) ≤ H(P ∗) < ∞. Note that here we insist that a Nash

equilibrium code be P-adapted. This condition will later be relaxed.

Theorem 4.1. Let P be a model and assume that there exists a P-adapted Nash equilibrium code

κ∗, say, with matching distribution P ∗. Then P is in equilibrium and both players have optimal

strategies. Indeed, P ∗ is the unique optimal strategy for Player I and κ∗ the unique optimal strategy

for Player II.

Proof. Since R(κ∗|P) ≤ H(P ∗), Rmin(P) ≤ Hmax(P). As the opposite inequality always holds by

(3.13), P is in equilibrium, the value of the Code Length Game associated with P is H(P ∗) and

κ∗ and P ∗ are optimal strategies.

To establish the uniqueness of κ∗, let κ be any code distinct from κ. Let P be the distribution

matching κ. Then, by the linking identity,

R(κ|P) ≥ 〈κ, P ∗〉 = H(P ∗) +D(P ∗‖P ) > H(P ∗) ,

hence κ is not optimal.

For the uniqueness proof of P ∗, let P be a consistent distribution distinct from P ∗. Then, again

by the linking identity,

H(P ) < H(P ) +D(P‖P ∗) = 〈κ∗, P 〉 ≤ H(P ∗) ,

and P cannot be optimal.

As we shall see later, the existence of a Nash equilibrium code is, essentially, also necessary for

the conclusion of the theorem. 1 This does not remove the difficulty of actually finding the Nash

equilibrium code in concrete cases of interest. In many cases it turns out to be helpful to search

for codes with stronger properties. A code κ∗ is a cost-stable code for P if there exists h <∞ such

that 〈κ∗, P 〉 = h for all P ∈ P . Clearly, a cost-stable code with a consistent matching distribution

is a Nash equilibrium code. Therefore, we obtain the following corollary from Theorem 4.1:

Corollary 4.2. If κ∗ is a cost-stable code for P and if the matching distribution P ∗ is consistent,

then P is in equilibrium and κ∗ and P ∗ are the unique optimal strategies pertaining to the Code

Length Game.

1The reader may want to note that it is in fact easy to prove directly that if P is convex, Hmax(P) finite and
P ∗ a consistent distribution with maximum entropy, then the adapted code κ∗ must be a Nash equilibrium code.
To see this, let P0 and P1 be distributions with finite entropy and put Pα = (1−α)P0 +αP1. Then h(α) = H(Pα);
0 ≤ α ≤ 1 is strictly concave and h′(α) = 〈κα, P1〉 − 〈κα, P0〉 with κα the code adapted to Pα. From this it is easy
to derive the stated result. A more complete result is given in Theorem 7.3.
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In order to illustrate the usefulness of this result, consider the case of a model P given by

finitely many linear constraints, say

P = {P ∈M1
+(A) | 〈E1, P 〉 = λ1, . . . , 〈En, P 〉 = λn} (4.15)

with E1, . . . , En real-valued functions bounded from below and λ1, . . . , λn real-valued constants.

Let us search for cost-stable codes κ for P . Clearly, any code of the form

κ = α + β1E1 + · · ·+ βnEn = α + β · E (4.16)

is cost-stable. Here, α and the β’s denote constants, β and E vectors and a dot signifies scalar

products of vectors. For κ defined by (4.16) to define a code we must require that κ ≥ 0 and, more

importantly, that Kraft’s equality (2.4) holds. We are thus forced to assume that the partition

function evaluated at β = (β1, . . . , βn) is finite, i.e. that

Z(β) =
∑
i∈A

exp(−β · Ei) (4.17)

is finite, and that α = logZ(β). When these conditions are fulfilled, κ = κβ defined by

κβ = logZ(β) + β · E (4.18)

defines a cost-stable code with individual code lengths given by

κβi = logZ(β) + β · Ei . (4.19)

The matching distribution P β is given by the point probabilities

P β
i =

exp(−β · Ei)

Z(β)
. (4.20)

In most cases where linear models occur in the applications, one will be able to adjust the

parameters in β such that P β is consistent. By Corollary 4.2, the entropy maximization problem

will then be solved. However, not all cases can be settled in this way as there may not exist a

consistent maximum entropy distribution.

We have seen that the search for cost-stable codes led us to consider the well-known partition

function and also the well-known exponential family consisting of distributions (P β) with β ranging

over all vectors β ∈ Rn for which Z(β) <∞.

From our game theoretical point of view, the family of codes (κβ) with Z(β) <∞ has at least

as striking features as the corresponding family of distributions. We shall therefore focus on both

types of objects and shall call the family of matching pairs (κβ, P β) with β ranging over vectors
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with Z(β) < ∞ for the exponential family associated with the set E = (E1, . . . , En) of functions

on A or associated with the family of models one can define from E by choosing λ = (λ1, . . . , λn)

and considering P given by (4.15).

We stress that the huge literature on exponential families displays other families of discrete

distributions than those that can be derived from the above definition. In spite of this we maintain

the view that an information theoretical definition in terms of codes (or related objects) is more

natural than the usual structural definitions. We shall not pursue this point vigorously here as it

will require the consideration of further games than the simple Code Length Game.

In order to further stress the significance of the class of cost stable codes we mention a simple

continuity result:

Theorem 4.3. If a model P has a cost-stable code, the entropy function H is continuous when

restricted to P.

Proof. Assume that 〈κ∗, P 〉 = h <∞ for all P ∈ P . Then H(P ) +D(P‖P ∗) = h for P ∈ P with

P ∗ the distribution matching κ∗. As the sum of the two lower semi-contimuous functions in this

identity is a constant function, each of the functions, in particular the entropy function, must be

continuous.

As we have already seen, the notion of cost-stable codes is especially well suited to handle

models defined by linear constraints. In section 6 we shall take this up in more detail.

The following sections will be more technical and mathematically abstract. This appears nec-

essary in order to give a comprehensive treatment of all basic aspects related to the Cost Length

Game and to the Maximum Entropy Principle.

5 The Code Length Game, further preparations

In section 3 we introduced a minimum of concepts that enabled us to derive the useful results of

section 4. With that behind us as motivation and background material, we are ready to embark on

a more thorough investigation which will lead to a clarification of certain obscure points, especially

related to the possibility that a consistent distribution with maximal entropy may not exist. In

this section we point out certain results and concepts which will later be useful.

In view of our focus on codes it is natural to look upon divergence in a different way, as

redundancy. Given is a code κ ∈ ∼K(A) and a distribution P ∈ M1
+(A). We imagine that we

use κ to code letters from A generated by a “source” and that P is the “true” distribution of the

letters. The optimal performance is, according to (3.9), represented by the entropy H(P ) whereas

the actual performance is represented by the number 〈κ, P 〉. The difference 〈κ, P 〉−H(P ) is then
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taken as the redundancy. This is well defined if H(P ) <∞ and then coincides with D(P‖Q) where

Q denotes the distribution matching κ. As D(P‖Q) is always well defined, we use this quantity for

our technical definition: The redundancy of κ ∈ ∼K(A) against P ∈ M1
+(A) is denoted D(P‖κ)

and defined by

D(P‖κ) = D(P‖Q) with κ↔ Q .

Thus D(P‖κ) and D(P‖Q) can be used synonymously and reflect different ways of thinking.

Using redundancy rather than divergence, the linking identity takes the following form:

〈κ, P 〉 = H(P ) +D(P‖κ) . (5.21)

We shall often appeal to basic concavity and convexity properties. Clearly, the entropy function

is concave as a minimum of affine functions, cf. (3.9). However, we need a more detailed result

which also implies strict concavity. The desired result is the following identity

H(
∑
ν

ανPν) =
∑
ν

ανH(Pν) +
∑
ν

ανD(Pν‖P ) , (5.22)

where P =
∑

ν ανPν is any finite or countably infinite convex combination of probability distri-

butions. This follows by the linking identity.

A closely related identity involves divergence and states that, with notation as above and with

Q denoting an arbitrary general distribution,

∑
ν

ανD(Pν‖Q) = D

(∑
ν

ανPν‖Q

)
+
∑
ν

ανD(Pν |P ) . (5.23)

The identity shows that divergence D(·‖Q) is strictly convex. A proof can be found in [23].

For the remainder of the section we consider a model P ⊆ M1
+(A) and the associated Code

Length Game.

By supp (P) we denote the support of P , i.e. the set of i ∈ A for which there exists P ∈ P
with pi > 0. Thus, supp (P) = ∪P∈Psupp (P ), the union of the usual supports of all consistent

distributions. Often one may restrict attention to models with full support, i.e. to models with

supp (P) = A. However, we shall not make this assumption unless pointed out specifically.

Recall that distributions in P are said to be consistent. Often, it is more appropriate to consider

distributions in Pσ. These distributions are called essentially consistent distributions. Using these

distributions we relax the requirements to a distribution with maximum entropy, previously only

considered for consistent distributions. Accordingly, a distribution P ∗ is called a maximum entropy
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distribution (Hmax-distribution) if P ∗ is essentially consistent and H(P ∗) = Hmax(P). We warn

the reader that the usual definition in the literature insists on the requirement of consistency.

Nevertheless, we find the relaxed requirement of essential consistency more adequate. For one

thing, lower semi-continuity of the entropy function implies that

Hmax(P) = Hmax(Pσ) = Hmax(PV ) (5.24)

and this points to the fact that the models Pσ and PV behave in the same way as P . This view

is further supported by the observation that for any κ ∈ ∼K(A),

R(κ|P) = R(κ|co VP) . (5.25)

This follows as the map P y 〈κ, P 〉 is lower semi-continuous and affine. As a consequence,

Rmin(P) = Rmin(co V ) . (5.26)

It follows that all models with P ⊆ P ′ ⊆ PV behave similarly as far as the Code Length Game is

concerned. The reason why we do not relax further the requirement of a Hmax-distribution from

P ∗ ∈ Pσ to P ∗ ∈ PV is firstly, that we hold the information topology for more relevant for our

investigations than the usual topology. Secondly, we shall see that the property P ∗ ∈ Pσ which

is stronger than P ∗ ∈ PV can in fact be verified in the situations we have in mind (see Theorem

6.2).

The fact that a consistent Hmax-distribution may not exist leads to further important notions.

Firstly, a sequence (Pn)n≥1 of distributions is said to be asymptotically optimal if all the Pn
are consistent and if H(Pn) → Hmax(P) for n → ∞. And, secondly, a distribution P ∗ is the

maximum entropy attractor (Hmax-attractor) if P ∗ is essentially consistent and if Pn
D−→ P ∗ for

every asymptotically optimal sequence (Pn)n≥1.

As an example, consider the (uninteresting!) model of all deterministic distributions. For this

model, the Hmax-attractor does not exist and there is no unique Hmax-distribution. For more

sensible models, the Hmax-attractor P ∗ will exist, but it may not be the Hmax-distribution as

lower semi-continuity only quarantees the inequality H(P ∗) ≤ Hmax(P), not the corresponding

equality.

Having by now refined the concepts related to the distribution side of the Code Length Game,

we turn to the coding side.

It turns out that we need a localized variant of the risk associated with certain codes. The

codes we shall consider are, intuitively, all codes which the observer (Player II) off-hand finds it

worth while to consider. If P ∈ P is the “true” distribution, and the observer knows this, he will

choose the code adapted to P in order to minimize the average code length. As nature (Player
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I) could from time to time change the choice of P ∈ P , essentially any strategy in the closure of

P could be approached. With these remarks in mind we find it natural for the observer only to

consider PDσ -adapted codes in the search for reasonable strategies.

Assume now that the observer decides to choose a PDσ -adapted code κ. Let P ∈ PDσ be the

distribution which matches κ. Imagine that the choice of κ is dictated by a strong belief that the

true distribution is P or some distribution very close to P (in the information topology!). Then

the observer can evaluate the associated risk by calculating the localized risk associated with κ

which is defined by the equation:

Rloc(κ|P) = sup
(Pn)⊆P,Pn

D→P

lim sup
n→∞

〈κ, Pn〉 , (5.27)

where the supremum is over the class of all sequences of consistent distributions which converge in

the information topology to P . Note that we insist on a definition which operates with sequences.

Clearly, the normal “global” risk must be at least as large as localized risk, therefore, for any

PDσ -adapted code,

Rloc(κ|P) ≤ R(κ|P) . (5.28)

A further and quite important inequality is the following:

Rloc(κ|P) ≤ Hmax(P) . (5.29)

This inequality is easily derived from the defining relation (5.27) by writing 〈κ, Pn〉 in the form

H(Pn) + D(Pn‖P ) with κ ↔ P , noting also that Pn
D→ P implies that D(Pn‖P ) → 0. We note

that had we allowed nets in the defining relation (5.27), a different and sometimes strictly larger

quantity would result and (5.29) would not necessarily hold.

As the last preparatory result, we establish pretty obvious properties of an eventual optimal

strategy for the observer, i.e. of an eventual Rmin-code.

Lemma 5.1. Let P ⊆ M1
+(A) with Rmin(P) < ∞ be given. Then the Rmin-code is unique and if

it exists, say R(κ∗|P) = Rmin(P), then κ∗ is compact with supp (κ∗) = supp (P).

Proof. Assume that κ∗ ∈ ∼K(A) is a Rmin-code. As R(κ∗|P) < ∞, supp (P) ⊆ supp (κ∗). Then

consider an a0 ∈ supp (κ∗) and assume, for the purpose of an indirect proof, that a0 ∈ A\supp (P).

Then the code κ obtained from κ∗ by putting κ(a0) = ∞ and keeping all other values fixed, is a

general non-compact code which is not identically +∞. Therefore, there exists ε > 0 such that

κ − ε is a compact code. For any P ∈ P , we use the fact that a0 /∈ supp (P )) to conclude that

〈κ− ε, P 〉 = 〈κ∗ − ε, P 〉, hence R(κ− ε|P) = R(κ∗|P)− ε, contradicting the minimality property
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of κ∗. Thus we conclude that supp (κ∗) = supp (P). Similarly, it is clear that κ∗ must be compact

– since otherwise, κ∗ − ε would be more efficient than κ∗ for some ε > 0.

In order to prove uniqueness, assume that both κ1 and κ2 are Rmin-codes for P . If we assume

that κ1 6= κ2, then κ1(a) 6= κ2(a) holds for some a in the common support of the codes κ1 and κ2

and then, by the geometric/arithmetic inequality, we see that 1
2
(κ1 +κ2) is a general non-compact

code. For some ε > 0, 1
2
(κ1 + κ2)− ε will then also be a code and as this code is seen to be more

efficient than κ1 and κ2, we have arrived at a contradiction. Thus κ1 = κ2, proving the uniqueness

assertion.

6 Models in equilibrium

Let P ⊆ M1
+(A). By definition, the requirement of equilibrium is one which involves the rela-

tionship between both sides of the Code Length Game. The main result of this section shows

that the requirement can be expressed in terms involving only one of the sides of the game, either

distributions or codes.

Theorem 6.1 (conditions for equilibrium). Let P ⊆ M1
+(A) be a model and assume that

Hmax(P) <∞. Then the following conditions are equivalent:

(i) P is in equilibrium,

(ii) Hmax(co P) = Hmax(P),

(iii) there exists a PD-adapted code κ∗ such that

R(κ∗|P) = Rloc(κ
∗|P) .

Proof. (i)⇒ (iii): Here we assume that Hmax(P) = Rmin(P). In particular, Rmin(P) <∞. As the

map κy R(κ|P) is lower semi-continuous on ∼K(A) (as the supremum of the maps κy 〈κ, P 〉;
P ∈ P), and as ∼K(A) is compact, the minimum of κ y R(κ|P) is attained. Thus, there exists

κ∗ ∈ ∼K(A) such that R(κ∗|P) = Rmin(P). As observed in Lemma 5.1, κ∗ is a compact code and

κ∗ is the unique Rmin-code.

For P ∈ P ,

H(P ) +D(P‖κ∗) = 〈κ∗, P 〉 ≤ Rmin(P) = Hmax(P) .

It follows that D(Pn‖κ∗) → 0 for any asymptotically optimal sequence (Pn)n≥1. In other words,

the distribution P ∗ ∈M1
+(A) which matches κ∗ is the Hmax- attractor of the model.
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We can now consider any asymptotically optimal sequence (Pn)n≥1 in order to conclude that

Rloc(κ
∗|P) ≥ lim sup

n→∞
〈κ∗, Pn〉 = lim sup

n→∞
(H(Pn) +D(Pn‖κ∗))

= Hmax(P) ≥ Rmin(P) = R(κ∗|P) .

By (5.28), the assertion of (iii) follows.

(iii) ⇒ (ii): Assuming that (iii) holds, we find from (5.25), (3.13) and (5.29) that

Hmax(co P) ≤ Rmin(co P) = Rmin(P) ≤ R(κ∗|P)

≤ Rloc(κ
∗|P) ≤ Hmax(P)

and the equality of (ii) must hold.

(ii)⇒ (i): For this part of the proof we fix a specific asymptotically optimal sequence (Pn)n≥1 ⊆
P . We assume that (ii) holds. For each n and m we observe that by (5.22) and (2.7), with

M = 1
2
(Pn + Pm),

Hmax(P) = Hmax(coP) ≥ H(
1

2
(Pn + Pm))

=
1

2
H(Pn) +

1

2
H(Pm) +

1

2
D(Pn‖M) +

1

2
D(Pm‖M)

≥ 1

2
H(Pn) +

1

2
H(Pm) +

1

8
V (Pn, Pm)2 .

It follows that (Pn)n≥1 is a Cauchy sequence with respect to total variation, hence there exists

P ∗ ∈M1
+(A) such that Pn

V→ P ∗.

Let κ∗ be the code adapted to P ∗. In order to evaluate R(κ∗|P) we consider any P ∈ P .

For a suitable sequence (εn)n≥1 of positive numbers converging to zero, we consider the sequence

(Qn)n≥1 ⊆ P given by

Qn = (1− εn)Pn + εnP ; n ≥ 1 .

By (5.22) we find that

Hmax(P) = Hmax(coP) ≥ H(Qn) ≥ (1− εn)H(Pn) + εnH(P ) + εnD(P‖Qn) ,

hence

H(P ) +D(P‖Qn) ≤ H(Pn) +
1

εn
(Hmax(P)−H(Pn)) .

As Qy D(P‖Q) is lower semi-continuous, we conclude from this that

H(P ) +D(P‖P ∗) ≤ Hmax(P) + lim inf
n→∞

1

εn
(Hmax(P)−H(Pn)) .
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Choosing the εn’s appropriately, e.g. εn = (Hmax(P)−H(Pn))
1
2 , it follows that H(P )+D(P‖P ∗) ≤

Hmax(P), i.e. that 〈κ∗, P 〉 ≤ Hmax(P). As this holds for all P ∈ P , R(κ∗|P) ≤ Hmax(P) follows.

Thus Rmin(P) ≤ Hmax(P), hence equality must hold here, and we have proved that P is in

equilibrium, as desired.

It is now easy to derive the basic properties which hold for a system in equilibrium.

Theorem 6.2 (models in equilibrium). Assume that P ⊆ M1
+(A) is a model in equilibrium.

Then the following properties hold:

(i) There exists a unique Hmax-attractor and for this distribution, say P ∗, the inequality

Rmin(P) +D(P ∗‖κ) ≤ R(κ|P) (6.30)

holds for all κ ∈ ∼K(A).

(ii) There exists a unique Rmin-code and for this code, say κ∗, the inequality

H(P ) +D(P‖κ∗) ≤ Hmax(P) (6.31)

holds for every P ∈ P, even for every P ∈ co VP. The Rmin-code is compact.

Proof. The existence of the Rmin-code was established by the compactness argument in the begin-

ning of the proof of Theorem 6.1. The inequality (6.31) for P ∈ P is nothing but an equivalent

form of the inequality R(κ∗|P) ≤ Hmax(P) and this inequality immediately implies that the distri-

bution P ∗ matching κ∗ is the Hmax-attractor. The extension of the validity of (6.31) to P ∈ co VP
follows from (5.26).

To prove (6.30), let (Pn)n≥1 ⊆ P be asymptotically optimal. Then

R(κ|P) ≥ lim sup
n→∞

〈κ, Pn〉

= lim sup
n→∞

(H(Pn) +D(Pn‖κ))

≥ Hmax(P) + lim inf
n→∞

D(Pn‖κ)

≥ Hmax(P) +D(P ∗‖κ) ,

which is the desired conclusion as Hmax(P) = Rmin(P).

If P is a model in equilibrium, we refer to the pair (κ∗, P ∗) from Theorem 6.2 as the optimal

matching pair pair. Thus κ∗ denotes the Rmin-code and P ∗ the Hmax-attractor.

Combining Theorem 6.2 and Theorem 6.1 we realize that, unless R(κ|P) = ∞ for every κ ∈
∼K(A), there exists a unique Rmin-code. The matching distribution is the Hmax-attractor for the
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model co (P). We also note that simple examples (even with A a two-element set) show that P
may have a Hmax-attractor without P being in equilibrium and this attractor may be far away

from the Hmax-attractor for co (P).

Corollary 6.3. For a model P ⊆ M1
+(A) in equilibrium, the Rmin-code and the Hmax-attractor

form a matching pair: κ∗ ↔ P ∗, and for any matching pair (κ, P ) with P ∈ co VP,

V (P, P ∗) ≤ (R(κ|P)−H(P ))
1
2 .

Proof. Combining (6.30) with (6.31) it folows that for κ↔ P with P ∈ co VP ,

D(P‖P ∗) +D(P ∗‖P ) ≤ R(κ|P)−H(P )

and the result follows from Pinskers inequality, (2.7).

Corollary 6.3 may help us to judge the approximate position of the Hmax-attractor P ∗ even

without knowing the value of Hmax(P). Note also that the proof gave the more precise bound

J(P, P ∗) ≤ R(κ|P)−H(P ) with assumptions as in the theorem and with J(· , ·) denoting Jeffrey’s

measure of discrimination, cf. [3] or [16].

Corollary 6.4. Assume that the model P has a cost-stable code κ∗ and let P ∗ be the matching

distribution. Then P is in equilibrium and has (κ∗, P ∗) as optimal matching pair if and only if P ∗

is essentially consistent.

Proof. By definition, an Hmax-attractor is essentially consistent. Therefore, the necessity of the

condition P ∗ ∈ PDσ is trivial. For the proof of sufficiency, assume that 〈κ∗, P 〉 = h for all P ∈ P
with h a finite constant. Clearly then, Hmax(P) ≤ h. Now, let (Pn)n≥1 be a sequence of consistent

distributions with Pn
D→ P . By the linking identity, H(Pn) + D(Pn‖P ∗) = h for all n, and we

see that Hmax(P) ≥ h. Thus Hmax(P) = h and (Pn) is asymptotically optimal. By Theorem 6.2,

the sequence converges in the information topology to the Hmax-attractor which must then be P ∗.

The result follows.

Note that this result is a natural further development of Corollary 4.2.

Corollary 6.5. Assume that P ⊆ M1
+(A) is a model in equilibrium. Then all models P ′ with

P ⊆ P ′ ⊆ co VP are in equilibrium too and they all have the same optimal matching pair.

Proof. If P ⊆ P ′ ⊆ co VP then

Hmax(co P ′) ≤ Hmax(co VP) = Hmax(co P) = Hmax(P) ≤ Hmax(P ′)

and we see that P ′ is in equilibrium. As an asymptotically optimal sequence for P is also asymp-

totically optimal for P ′, it follows that P ′ has the same Hmax-attractor, hence also the same

optimal matching pair, as P .
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Another corollary is the following result which can be used as a basis for proving certain limit

theorems, cf. [22].

Corollary 6.6. Let (A,Pn)n≥1 be a sequence of models and assume that they are all in equilibrium

with supn≥1 Hmax(Pn) <∞ and that they are nested in the sense that co(P1) ⊆ co(P2) ⊆ · · · . Let

there further be given a model P such that⋃
n≥1

Pn ⊆ P ⊆ co V (
⋃
n≥1

Pn).

Then P is in equilibrium too, and the sequence of Hmax-attractors of the Pn’s converges in diver-

gence to the Hmax-attractor of P.

Clearly, the corollaries are related and we leave it to the reader to extend the argument in the

proof of Corollary 6.5 so that it also covers the case of Corollary 6.6.

We end this section by developing some results on models given by linear conditions, thereby

continuing the preliminary results from sections 1 and 4. We start with a general result which

uses the following notion: A distribution P ∗ is algebraically inner in the model P if, for every

P ∈ P there exists Q ∈ P such that P ∗ is a convex combination of P and Q.

Lemma 6.7. If the model P is in equilibrium and has a Hmax-distribution P ∗ which is algebraically

inner in P, then P ∗ is cost-stable.

Proof. Let κ∗ be the code adapted to P ∗. To any P ∈ P we determine Q ∈ P such that P ∗

is a convex combination of these two distributions. Then, as 〈κ∗, P 〉 ≤ Hmax(P) and 〈κ∗, Q〉 ≤
Hmax(P) and as a convex combination gives 〈κ∗, P ∗〉 ≤ Hmax(P) we must conclude that 〈κ∗, P 〉 =

〈κ∗, Q〉 since 〈κ∗, P ∗〉 is in fact equal to Hmax(P). Therefore, κ∗ is cost-stable.

Theorem 6.8. If the alphabet A is finite and the model P affine, then the model is in equilibrium

and the Rmin-code is cost-stable.

Proof. We may assume that P is closed. By Theorem 6.1, the model is in equilibrium and by

continuity of the entropy function, the Hmax-attractor is a Hmax-distribution. For the Rmin-code κ∗,

supp (P ∗) = supp (P) by Lemma 5.1. As A is finite we can then conclude that P ∗ is algebraically

inner and Lemma 6.7 applies.

We can now prove the following result:

Theorem 6.9. Let P be a non-empty model given by finitely many linear constraints as in (4.15):

P = {P ∈M1
+(A) | 〈E1, P 〉 = λ1, . . . , 〈En, P 〉 = λn}.
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Assume that the functions E1, · · · , En, 1 are linearly independent and that Hmax(P) < ∞. Then

the model is in equilibrium and the optimal matching pair (κ∗, P ∗) belongs to the exponential family

defined by (4.18) and (4.20). In particular, κ∗ is cost-stable.

Proof. The model is in equilibrium by Theorem 6.1. Let (κ∗, P ∗) be the corresponding optimal

matching pair. If A is finite the result follows by Theorem 6.8 and some standard linear algebra.

Assume now that A is infinite. Choose an asymptotically optimal sequence (Pn)n≥1. Let A0 be

a finite subset of A, chosen sufficiently large (see below), and denote by Pn the convex model of

all P ∈ P for which pi = Pn,i for all i ∈ A\A0. Let P ∗n be the Hmax-attractor for Pn and κ∗n the

adapted code. Then this code is cost-stable for Pn and of the form

κ∗n,i = αn +
n∑
ν=1

βn,ν · Eν(i) ; i ∈ A0.

If the set A0 is sufficiently large, the constants appearing here are uniquely determined. We

find that (P ∗n)n≥1 is asymptotically optimal for P , and therefore, P ∗n
D→ P ∗. It follows that the

constants βn,ν and αn converge to some constants βν and α and that

κ∗i = α +
n∑
ν=1

βν · Eν(i) ; i ∈ A0

As A0 can be chosen arbitrarily large, the constants α and βν must be independent of A0 with

i ∈ A0 and the above equation must hold for all i ∈ A.

Remark. Extensions of the result just proved may well be possible, but care has to be taken. For

instance, if we consider models obtained by infinitely many linear constraints, the result does not

hold. As a simple instance of this, the reader may consider the case where the model is a “line” ,

viz. the affine hull generated by the two distributions P,Q on A = N given by pi = 2−i; i ≥ 1

and qi = (ζ(3) · i3)−1; i ≥ 1. This model is in equilibrium with P as Hmax-distribution, but the

adapted code is not cost-stable. These facts can be established quite easily via the results quoted

in the footnote following the proof of Theorem 4.1.

7 Entropy-continuous models

In the sequel we shall only discuss models in equilibrium. Such models can be quite different

regarding the behaviour of the entropy function near the maximum. We start with a simple

observation.

Lemma 7.1. If P is in equilibrium and the Hmax-value Hmax(P) is attained on PV , it is only

attained for the Hmax-attractor.
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Proof. Assume that P ∈ PV and that H(P ) = Hmax(P). Choose a sequence (Pn)n≥1 ⊆ P which

converges to P in total variation. By lower semi-continuity and as H(P ) = Hmax(P) we see that

(Pn) is asymptotically optimal. Therefore, for the Hmax-attractor P ∗, Pn
D−→ P ∗, hence also

Pn
V−→ P ∗. It follows that P = P ∗.

Lemma 7.2. For a model P in equilibrium and with Hmax-attractor P ∗ the following conditions

are equivalent:

(i) H : PV → R+ is continuous at P ∗ in the topology of total variation,

(ii) H : Pσ → R+ is sequentially continuous at P ∗ in the information topology,

(iii) H(P ∗) = Hmax(P).

Proof. Clearly, (i) implies (ii).

Assume that (ii) holds and let (Pn)n≥1 ⊆ P be asymptotically optimal. Then Pn
D−→ P ∗. By

assumption, H(Pn)→ H(P ∗) and (iii) follows since H(Pn)→ Hmax(P) also holds.

Finally, assume that (iii) holds and let (Pn)n≥1 ⊆ P
V

satisfy Pn
V−→ P ∗. By lower semi-

continuity,

Hmax(P) = H(P ∗) ≤ lim inf
n→∞

H(Pn) ≤ lim sup
n→∞

H(Pn) ≤ Hmax(PV ) = Hmax(P)

and H(Pn)→ H(P ∗) follows. Thus (i) holds.

A model P in equilibrium is entropy-continuous if H(P ∗) = Hmax(P) with P ∗ the Hmax-

attractor. In the opposite case we say that there is an entropy loss.

We now discuss entropy-continuous models. As we shall see, the previously introduced notion

of Nash equilibrium code, cf. Section 4, is of central importance in this connection. We need this

concept for any PDσ -adapted code. Thus, by definition, a code κ∗ is a Nash equilibrium code if κ∗

is PDσ -adapted and if

R(κ∗|P) ≤ H(P ∗) <∞ . (7.32)

We stress that the definition is used for any model P (whether or not it is known beforehand

that the model is in equilibrium). We shall see below that a Nash equilibrium code is unique.

Theorem 7.3 (entropy-continuous models). Let P ⊆M1
+(A) be a model. The following con-

ditions are equivalent:

(i) P is in equilibrium and entropy-continuous,
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(ii) P is in equilibrium and has a maximum entropy distribution,

(iii) P has a Nash equilibrium code.

If these conditions are fulfilled, the Hmax-distribution is unique and coincides with the Hmax-

attractor. Likewise, the Nash equilibrium code is unique and it coincides with the Rmin-code.

Proof. (i) ⇒ (ii): This is clear since, assuming that (i) holds, the Hmax-attractor must be a

Hmax-distribution.

(ii) ⇒ (iii): Assume that P is in equilibrium and that P0 ∈ P
Dσ

is a Hmax-distribution. Let

(κ∗, P ∗) be the optimal matching pair pair. Applying Theorem 6.2, (6.31) with P = P0, we

conclude that D(P0‖P ∗) = 0, hence P0 = P ∗. Then we find that

R(κ∗|P) = Rmin(P) = Hmax(P) = H(P0) = H(P ∗)

and we see that κ∗ is a Nash equilibrium code.

(iii) ⇒ (i): If κ∗ is a Nash equilibrium code for P , then

Rmin(P) ≤ R(κ∗|P) ≤ H(P ∗) ≤ Hmax(P) ≤ Rmin(P)

and we conclude that P is in equilibrium and that κ∗ is the minimum risk code.

In establishing the equivalence of (i)–(iii) we also established the uniqueness assertions claimed.

The theorem generalizes the previous result, Theorem 4.1. We refer to section 4 for results

which point to the great applicability of results like Theorem 7.3.

8 Loss of entropy

We shall study a model P in equilibrium. By previous results we realize that for many purposes

we may assume that P is a closed, convex subset of M1
+(A) with Hmax(P) <∞. Henceforth, these

assumptions are in force.

Denote by (κ∗, P ∗) the optimal matching pair associated with P . By the disection of P we

understand the decomposition of P consisting of all non-empty sets of the form

Px = {P ∈ P | 〈κ∗, P 〉 = x} . (8.33)

Let ∆ denote the set of x ∈ R with Px 6= ∅. As R(κ∗|P) = Rmin(P) = Hmax(P), and as P is convex

with P ∗ ∈ P , ∆ is a subinterval of [0;Hmax(P)] which contains the interval [H(P ∗), Hmax(P)[.
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Clearly, κ∗ is a cost-stable code for all models Px;x ∈ ∆. Hence, by Theorem 4.3 the entropy

function is continuous on each of the sets Px; x ∈ ∆.

Each set Px; x ∈ ∆ is a sub-model of P and as each Px is convex with Hmax(Px) < ∞, these

sub-models are all in equilibrium. The linking identity shows that for all P ∈ Px,

H(P ) +D(P‖P ∗) = x . (8.34)

This implies that Hmax(Px) ≤ x, a sharpening of the trivial inequality Hmax(Px) ≤ Hmax(P).

From (8.34) it also follows that maximizing entropy H(·) over Px amounts to the same thing as

minimizing divergence D(·‖P ∗) over Px. In other words, the Hmax-attractor of Px may, alterna-

tively, be characterized as the I-projection of P ∗ on Px, i.e. as the unique distribution Px for

which Qn
D−→ Px for every sequence (Qn) ⊆ Px for which D(Qn‖P ∗) converges to the infimum of

D(Q‖P ∗) with Q ∈ Px.∗

Further basic results are collected below:

Theorem 8.1 (disection of models). Let P be a convex model in equilibrium with optimal

matching pair (κ∗, P ∗) and assume that P ∗ ∈ P. Then the following properties hold for the

disection (Px)x∈∆ defined by (8.33):

(i) The set ∆ is an interval with sup ∆ = Hmax(P). A necessary and sufficient condition that

Hmax(P) ∈ ∆ is that P is entropy-continuous. If P has entropy loss, ∆ contains the non-

degenerate interval [H(P ∗), Hmax(P)[.

(ii) The entropy function is continuous on each sub-model Px; x ∈ ∆,

(iii) Each sub-model Px; x ∈ ∆ is in equilibrium and the Hmax-attractor for Px is the I-projection

of P ∗ on Px,

(iv) For x ∈ ∆, Hmax(Px) ≤ x and the following bi-implications hold, where P ∗x denotes the

Hmax-attractor of Px:

Hmax(Px) = x ⇐⇒ P ∗x = P ∗ ⇐⇒ x ≥ H(P ∗) . (8.35)

Proof. (i)–(ii) as well as the inequality Hmax(Px) ≤ x of (iii) were proved above.

For the proof of (iv) we consider an x ∈ ∆ and let (Pn) ⊆ Px be an asymptotically optimal

sequence for Px. Then the condition Hmax(Px) = x is equivalent with the condition H(Pn) → x,

∗Terminology is close to that adopted by Csiszár, cf. [4], [5], who first developed the concept for closed models.
This was later extended, using a different terminology, in Topsøe [20]. In this paper we refrain from a closer study
of I-projections and refer the reader to sources just cited.
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and the condition P ∗x = P ∗ is equivalent with the condition Pn
D−→ P ∗. In view of the equality

x = H(Pn)+D(Pn‖P ∗) we now realize that the first bi-implication of (8.35) holds. For the second

bi-implication we first remark that as x ≥ H(P ∗x ) holds generally, if P ∗x = P ∗ then x ≥ H(P ∗)

must hold.

For the final part of the proof of (iv), we assume that x ≥ H(P ∗). The equality Hmax(Px) = x

is evident if x = H(P ∗). We may therefore assume that H(P ∗) < x < Hmax(P). We now

let (Pn) denote an asymptotically optimal sequence for the full model P such that H(Pn) ≥ x;

n ≥ 1. As 〈κ∗, P ∗〉 ≤ x ≤ 〈κ∗, Pn〉 for all n, we can find a sequence (Qn)n≥1 of distributions

in Px such that each Qn is a convex combination of the form Qn = αnP
∗ + βnPn. By (5.23),

D(Qn‖P ∗) ≤ βnD(Pn‖P ∗)→ 0. Thus P ∗ is essentially consistent for Px and as the code adapted

to P ∗ is cost-stable for this model, Corollary 6.4 implies that the model has P ∗ as its Hmax-

attractor.

A distribution P ∗ is said to have potential entropy loss if the distribution is the Hmax-attractor

of a model in equilibrium with entropy loss. As we shall see, this amounts to a very special

behaviour of the point probabilities. The definition we need at this point we first formulate quite

generally for an arbitrary distribution P . With P we consider the density function Ω associated

with the adapted code, cf. the appendix. In terms of P this function is given by:

Ω(t) = #{i ∈ A | pi ≥ exp(−t)} (8.36)

(# = “number of elements in”). We can now define a hyperbolic distribution as a distribution P

such that

lim sup
t→∞

log Ω(t)

t
= 1 . (8.37)

Clearly, Ω(t) ≤ exp(t) for each t so that the equality in the defining relation may just as well be

replaced by the inequality “≥” .

We note that zero point probabilities do not really enter into the definition, therefore we may

assume without any essential loss of generality that all point probabilities are positive. And then,

we may as well assume that the point probabilities are ordered: p∗1 ≥ p∗2 ≥ · · · . In this case, it is

easy to see that (8.37) is equivalent with the requirement

lim inf
i→∞

log p∗i
log 1

i

= 1 . (8.38)

In the sequel we shall typically work with distributions which are ordered in the above sense. The

terminology regarding hyperbolic distributions is inspired by [19] but goes back further, cf. [24].

In these references the reader will find remarks and results pertaining to this and related types
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of distributions and their discovery from empirical studies which we will also comment on in the

next section.

We note that in (8.38) the inequality “≤” is trivial as pi ≤ 1
i

for every i ∈ A. Therefore, in

more detail, a distribution with ordered point probabilities is hyperbolic if and only if, for every

a > 1,

p∗i ≥
1

ia
(8.39)

for infinitely many indices.

Theorem 8.2. Every distribution with infinite entropy is hyperbolic.

Proof. Assume that P is not hyperbolic and that the point probabilities are ordered. Then

there exists a > 1 such that pi ≥ i−a for all sufficiently large i. As the distribution with point

probabilities equal to i−a, properly normalized, has finite entropy, the result follows.

With every model P in equilibrium we associate a partition function and an exponential family,

simply by considering the corresponding objects associated with the Rmin-code for the model in

question. This then follows the definition given in Section 4, but for the simple case where there

is only one “energy function” with the Rmin-code playing the role of the energy function.

Theorem 8.3 (maximal models). Let P ⊆ M1
+(A) be given and assume that there exists a

model P ′ such that P ′ ⊇ P, P ′ is in equilibrium and Hmax(P ′) = Hmax(P). Then P itself must be

in equilibrium. Furthermore, there exists a largest model Pmax with the stated properties, namely

the model

Pmax = {P ∈M1
+(A) | 〈κ∗, P 〉 ≤ Hmax(P)} , (8.40)

where κ∗ denotes the minimum risk code of P. Finally, any model P ′ with P ⊆ P ′ ⊆ Pmax is in

equilibrium and has the same optimal matching pair as P.

Proof. Choose P ′ with the stated properties. By Theorem 6.1,

Hmax(co P) ≤ Hmax(co P ′) = Hmax(P ′) = Hmax(P) ,

hence P is in equilibrium. Let κ∗ be the Rmin-code of P in accordance with Theorem 6.2 and

consider Pmax defined by (8.40).

Now let P ′ ⊇ P be an equilibrium model with Hmax(P ′) = Hmax(P). As an asymptotically

optimal sequence for P is also asymptotically optimal for P ′, we realize that P ′ has the same Hmax-

attractor, hence also the same Rmin-code as P . Thus R(κ∗|P ′) = Rmin(P ′) = Hmax(P ′) = Hmax(P)

and it follows that P ′ ⊆ Pmax.



Entropy, 2001, 3 218

Clearly, Pmax is convex and Hmax(Pmax) = Hmax(P) < ∞, hence Pmax is in equilibrium by

Theorem 6.1.

The final assertion of the theorem follows by one more application of Theorem 6.1.

The models which can arise as in Theorem 8.3 via (8.40) are called maximal models.

Let κ∗ ∈ K(A) and 0 ≤ h <∞. Put

Pκ∗,h = {P ∈M1
+(A) | 〈κ∗, P 〉 ≤ h} . (8.41)

We know that any maximal model must be of this form. Naturally, the converse does not hold.

An obvious necessary condition is that the entropy of the matching distribution be finite. But we

must require more. Clearly, the models in (8.41) are in equilibrium but it is not clear that they

have κ∗ as Rmin-code and h as Hmax-value.

Theorem 8.4. A distribution P ∗ ∈ M1
+(N) with finite entropy has potential entropy loss if and

only if it is hyperbolic.

Proof. We may assume that the point probabilities of P are ordered.

Assume first that P ∗ is not hyperbolic and that P ∗ is the attractor for some model. Consider

the corresponding maximal models Pκ∗,h and consider a value of h with H(P ∗) ≤ h ≤ Hmax(P).

Let γ be the abscissa of convergence associated with κ∗ and let Φ be defined as in the appendix.

As γ < 1, we can choose β > γ such that Φ(β) = h. Now both P ∗ and Qβ given by

Qβ =
exp(−βκi)
Z(β)

are attractors for Pκ∗,h and hence equal. It follows that h = H(P ∗). Next we show that a

hyperbolic distribution has potential entropy loss.

Consider the maximal models Pκ∗,h. Each one of these models is given by a single linear

constraint. Therefore, the attractor is element in the corresponding exponential family. The

abscissa of convergence is 1 and, therefore, the range of the map Φ : [1;∞[→ R is ]κ∗1;H(P ∗)]. For

h ∈]κ∗1;H(P ∗)], there exists a consistent maximum entropy distribution. Assume that h0 > H(P ∗)

and that the attractor equals

Qβ =
exp(−βκi)
Z(β)

.

By Theorem 8.1, Qβ must be attractor for all Pκ∗,h with h ∈ [Φ(β);h0]. Especially, this holds

for h = H(P ∗). This shows that P ∗ = Qβ. By Theorem 8.1 the conclusion is now clear.
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9 Zipf’s law

Zipf’s law is an empirically discovered relationship for the relative frequencies of the words of a

natural language. The law states that

log(fi) ≈ a log(
1

i
) + b

where fi is the relative frequency of the i’th most common word in the language, and where a and

b denote constants. For large values of i we then have

a ≈ log fi
log 1

i

The constants a and b depend on the language, but for many languages a ≈ 1, see [24].

Now consider an ideal language where the frequencies of words is described by a hyperbolic

probability distribution P ∗. Assume that the entropy of the distribution is finite. We shall

discribe in qualitative terms the consequences of these assumptions as they can be derived from

the developed theory, especially Theorem 8.4. We shall see that our asumption introduces a kind

of stability of the language which is desirable in most situations.

Small children with a limited vocabulary will use the few words they know with relative frequen-

cies very different from the probabilities described by P ∗. They will only form simple sentences,

and at this stage the number of bits per word will be small in the sense that the entropy of the

childs probability distribution is small. Therefore the parents will often be able to understand

the child even though the pronounciation is poor. The parents will, typically, talk to their chil-

dren with a lower bit rate than they normally use, but with a higher bit rate than their children.

Thereby new words and grammatical structures will be presented to the child, and, adopting ele-

ments of this structure, the child will be able to increase its bit rate. At a certain stage the child

will be able to communicate at a reasonably high rate (about H(P ∗)). Now the child knows all

the basic words and structures of the language.

The child is still able to increase its bit rate, but from now on this will make no significant

change in the relative frequencies of the words. Bit rates higher than H(P ∗) are from now on

obtained by the introduction of specialized words, which occur seldom in the language as a whole.

The introduction of new specialized words can be continued during the rest of the life. Therefore

one is able to express even complicated ideas without changing the basic structure of the language,

indeed there is no limit, theoretically, to the bit rate at which one can communicate without change

of basic structure.

We realize that in view of our theoretical results, specifically Theorem 8.4, the features of a

natural language as just discussed are only possible if the language obeys Zipf’s law. Thus we
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have the striking phenomenon that the apparent “irregular” behaviour of models with entropy

loss (or just potential entropy loss) is actually the key to desirable stability, the fact that for such

models you can increase the bit rate, the level of communication, and maintain the basic features

of the language. One could even speculate that modelling based on entropy loss lies behind the

phenomenon that many will realize as a fact, viz. that “we can talk without thinking” . We just

start talking using basic structure of the language (and rather common words) and then from

time to time stick in more informative words and phrases in order to give our talk more semantic

content, but in doing so, we use relatively infrequent words and structures, thus not violating basic

principles – hence still speaking recognizably danish, english or what the case may be, so that also

the receiver or listener feels at ease and recognizes our talk as unmistakenly danish, english or ...

We see that very informative speeking can be obtained by use of infrequent expressions. There-

fore a conversation between, say 2 physicists may use English supplied with specialized words like

electron and magnetic flux. We recognize their language as English because the basic words and

grammer is the same in all English. The specialists only have to know special words, not a special

grammer. In this sense the languages are stable. If the entropy of our distribution is infinite the

language will behave in just about the same manner as described above. In fact one would not

feel any difference between a language with finite entropy and a language with infinite entropy.

We see that it is convienient that a language follows a Zipf’s law, but the information theoretic

methods also gives some explanation of how the language may have evolved into a state which

obeys Zipf’s law. The set of hyperbolic distributions is convex. Therefore if 2 information sources

both follows Zipf’s law then so do their mixture, and if 2 information sources both approximately

follows Zipf’s law their mixture will do this even more. The information sources may be from

different languages, but it is more interesting to consider a small child learning the language. The

child gets input from different sources: the mother, father, other children ect. trying to imitate

their language the child will use the words with frequences which are closer to Zipf’s law the the

sources. As the language develops during the centuries the frequences will converge to a hyperbolic

distribution.

Here we have discussed entropy as bit per word and not bit per letter. The letters give an

encoding of the words which should primarilly be understood by others, and therefore the encoding

cannot just be changed to obtain a better data compression. To stress the difference between bit

per word and bit per letter we remark the the words are the basic semantic structure in the

language. Therefore we may have an internal representation of the words which has very little to

do with their length when spoken, which could explain that it is often much easier to remember a

long word in a language you understand than a short word in a language you do not understand.

It would be interesting to compare these ideas with empirical measurements of the entropy here

considered but, precisely in the regime where Zipf’s law holds, such a study is very difficult as
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convergence of estimators of the entropy is very slow, cf. [1].

A The partition function

In this appendix we collect some basic facts about partition functions associated with one linear

constraint.

The point of departure is a code κ ∈ K(A). With κ we associate the partition function Z = Zκ
which maps R into ]0,∞], given by

Z(β) =
∑
i∈I

e−βκi . (A.42)

Here we adopt the convention that e−βκi = 0 if β = 0 and κi = ∞. Clearly, Z is decreasing on

[1;∞[ and Z(β) → 0 for β → ∞ (note that, given K, e−βκi ≤ e−Ke−κi for all i when β is large

enough).

The series defining Z is a Dirichlet-series, cf. Hardy and Riesz [7] or Mandelbrojt [17]. The

abscissa of convergence we denote by γ. Thus, by definition, Z(β) <∞ for β > γ and Z(β) =∞
for β < γ. As Z(1) = 1, γ ≤ 1. If supp (κ) is infinite, Z(β) = ∞ for β ≤ 0, hence γ ≥ 0. If

supp (κ) is finite, Z(β) <∞ for all β ∈ R and we then find that γ = −∞. Mostly, we shall have

the case when supp (κ) is infinite in mind.

We shall characterize γ analytically. This is only a problem when supp (κ) is infinite. So assume

that this is the case and also assume, for the sake of convenience, that κ has full support and that

the indexing set I is the set of natural numbers: I = N, and that κ1 ≤ κ2 ≤ · · · .

Lemma A.1. With assumptions as just introduced,

γ = lim sup
i→∞

log i

κi
. (A.43)

Proof. First assume that β > γ with γ defined by (A.43). Then, for some α > 1, α log i/κi ≤ β

for all sufficiently large values of i. For these values of i, e−βκi ≤ i−α and we conclude that

Z(β) <∞. Conversely, assume that, for some value of β, Z(β) <∞. Then β > 0 and

Remark. If no special ordering on A is given, the abscissa of convergence can be expressed

analytically via the density function Ω : R→ N0 (N0 = N ∪ {0}) which is defined by

Ω(t) = #{a ∈ A | κ(a) ≤ t} (A.44)

(# = “number of elements in”). In fact, as follows easily from (A.43),

γ = lim sup
t→∞

log Ω(t)

t
. (A.45)
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We can now introduce the exponential family associated with the model κ. It is the family of

distributions (Qβ) with β ranging over all values with Z(β) <∞ which is defined by

Qβ(ai) =
e−βκi

Z(β)
; i ∈ I . (A.46)

The family of adapted codes, denoted (ρβ), is also of significance. These codes are given by

ρβ(ai) = logZ(β) + βκi ; i ∈ I . (A.47)

We also need certain approximations to Z, Qβ and ρβ. For convenience we stick to the assump-

tion I = N, κ1 ≤ κ2 ≤ . . . . We then define Zn, Qn,β and ρn,β by

Zn(β) =
n∑
i=1

e−βκi ; β ∈ R , (A.48)

Qn,β(ai) =
e−βκi

Zn(β)
; i ≤ n , (A.49)

ρn,β(ai) = log Zn(β) + βκi ; i ≤ n , (A.50)

it being understood that supp (Qn,β) = supp (ρn,β) = {1, 2, . . . , n}. Formally, the approximating

quantities could be obtained from (non-compact) codes obtained from κ by replacing κi by the

value ∞ for i > n.

We are particularly interested in the mean values 〈κ,Qβ〉 and 〈κ,Qn,β〉, and define functions Φ

and Φn; n ≥ 1 by

Φ(β) = 〈κ,Qβ〉 ; Z(β) <∞ , (A.51)

Φn(β) = 〈κ,Qn,β〉 ; β ∈ R . (A.52)

Note that Φ(1) = H(P ) and that

Φ(β) = −Z ′(β)/Z(β) = − d

dβ
log Z(β) , (A.53)

Φn(β) = −Z ′n(β)/Zn(β) = − d

dβ
log Zn(β) . (A.54)

Furthermore, −Z ′ is a Dirichlet series with the same abscissa of convergence as Z, hence Φ(β) is

well defined and finite for all β > γ.

Lemma A.2. With assumptions and notation as above, the following properties hold:

(i) Φ1 ≤ Φ2 ≤ . . . ,
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(ii) Φn is strictly decreasing on R (except if κ1 = · · · = κn),

(iii) lim
β→∞

Φn(β) = κ1, lim
β→−∞

Φn(β) = κn,

(iv) Φ is strictly decreasing on ]γ,∞[,

(v) lim
β→∞

Φ(β) = κ1,

(vi) Φ(γ) is infinite if and only if −Z ′(γ) =∞,

(vii) If −Z ′(β0) <∞, then Φn → Φ, uniformly on [β0,∞[,

(viii) lim
n→∞

Φn(γ) = Φ(γ+), the limit from the right at γ,

(ix) for every β < γ, lim
n→∞

Φn(β) =∞.

Proof. (i) follows from

Φn+1(β)− Φn(β) =
e−βκn+1

Zn+1(β)Zn(β)

n∑
i=1

(κn+1 − κi)e−βκi ,

(ii) from

Φ′n(β) = − 1

Zn(β)2

∑
n≥i>j

(κi − κj)2e−β(κi+κj)

and (iv) from an obvious extension of this formula. Writing Φn in the form

Φn(β) =
n∑
i=1

κi∑n
j=1 e

β(κi−κj)
,

we derive the limiting behaviour of (iii) and, with a little care, the limit relation of (v) follows in

a similar way.

(vii) follows from (A.53) and (A.54) since the convergences Zn(x)→ Z(x) and Z ′n(x)→ Z ′(x)

hold uniformly on [β0,∞[ when −Z ′(β0) <∞. Actually, the uniform convergence is first derived

only for intervals of the form [β0, K]. By (i) and (v) it is easy to extend the uniform convergence

to [β0,∞[.

It is now clear that for n ≥ 1 and x > γ, Φn(x) ≤ Φ(x) ≤ Φ(γ+), hence limn→∞Φn(γ) ≤ Φ(γ+).

On the other hand, for x > γ, limn→∞Φn(γ) ≥ limn→∞Φn(x) = Φ(x). We conclude that (viii)

holds.
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If −Z ′(γ) <∞, then Z(γ) <∞ and limn→∞Φn(γ) = −Z ′(γ)/Z(γ) <∞. By (viii), this shows

that Φ(γ+) <∞. Now assume that −Z ′(γ) =∞. If Z(γ) <∞, it is easy to see that Φ(γ+) =∞.

If also Z(γ) =∞, we choose to N ≥ 1, n0 > N such that

Qn,γ({1, 2, . . . , N}) ≤
1

2
for n ≥ n0 .

Then, for n ≥ n0,

Φn(γ) =
n∑
i=1

κiQn,γ(i) ≥ κNQn,γ({N + 1, . . . , n}) ≥ 1

2
κN .

This shows that Φn(γ)→∞, hence Φ(γ+) =∞. We have now proved (vi).

In order to prove (ix), let β < γ and choose, to a given K, n0 such that κi ≥ K for i ≥ n0.

Then, for n ≥ n0,

Φn(β) ≥
K

n∑
i=n0

e−βκi

n∑
i=1

e−βκi
≥ K

1 +

n0−1∑
i=1

e−βκi

n∑
i=n0

e−βκi


−1

.

As
∑∞

n0
e−βκi =∞, we see that for n sufficiently large, Φn(β) ≥ K/2 and (ix) follows.

Remark. The formula for Φ′n and Φ′ can be interpreted more probabilistically. Consider Φ′ and

remark first that when we consider κ as a random variable defined on the discrete probability space

(A, Qβ) = (N, Qβ), then Φ(β) is the expectation of this random variable. A simple calculation

shows that Φ′(β) is the variance of this random variable.
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