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MAIN TOPICSMAIN TOPICSMAIN TOPICSMAIN TOPICS

II Fl id ElFl id El M iM iI.I. Fluid Element Fluid Element MotionMotion
II.II. Conservation of MassConservation of Mass (Continuity equation) and C(Continuity equation) and Conservation of onservation of 

Linear MomentumLinear Momentum (Navier(Navier Stokes Equation)Stokes Equation)Linear MomentumLinear Momentum (Navier(Navier--Stokes Equation)Stokes Equation)
III.III. Inviscid FlowInviscid Flow (Bernoulli equation) and (Bernoulli equation) and Potential FlowPotential Flow (Stream (Stream 

function)function)function)function)

 IncompressibleIncompressible CompressibleCompressible Incompressible Incompressible –– CompressibleCompressible
 Inviscid Inviscid –– ViscousViscous
 SteadySteady UnsteadyUnsteady Mathematical equation?Mathematical equation?
 Steady Steady –– UnsteadyUnsteady
 Rotational Rotational -- IrrotationalIrrotational
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Motion of a Fluid ElementMotion of a Fluid ElementMotion of a Fluid ElementMotion of a Fluid Element
 1. 1. Fluid Fluid TranslationTranslation: The element moves from one point to another.: The element moves from one point to another.
 3. 3. Fluid Fluid RotationRotation: The element rotates about any or all of the x,y,z : The element rotates about any or all of the x,y,z 

axesaxes..
 Fluid Fluid DeformationDeformation::

4. 4. Angular Deformation:The element’s angles between the sides Angular Deformation:The element’s angles between the sides 
change.change.

2. 2. Linear Deformation:The element’s sides stretch or contract.Linear Deformation:The element’s sides stretch or contract.
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11 FluidFluid TranslationTranslation velocity and accelerationvelocity and acceleration1. 1. Fluid Fluid TranslationTranslation velocity and accelerationvelocity and acceleration

 The velocity of aThe velocity of a fluidfluid particleparticle can be expressedcan be expressed The velocity of a The velocity of a fluidfluid particleparticle can be expressedcan be expressed

 TheThe total accelerationtotal acceleration ofof thethe fluidfluid particleparticle is given byis given by
kwjviu)t,z,y,x(VV
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Physical SignificancePhysical SignificancePhysical SignificancePhysical Significance

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Scalar ComponentScalar Component ((외울필요외울필요없음없음))Scalar ComponentScalar Component ((외울필요외울필요없음없음))
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TranslationTranslationTranslationTranslation

All points in the element have All points in the element have 
the same velocitythe same velocity, then the , then the 
element will simply element will simply translatetranslate
from one position to another.from one position to another.
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22 LinearLinear DeformationDeformation 1/21/22. 2. Linear Linear DeformationDeformation 1/21/2

The shape of the fluid element, described by the angles at The shape of the fluid element, described by the angles at 
its vertices, remains unchanged, since its vertices, remains unchanged, since all right angles all right angles 
continue to be right anglescontinue to be right angles..

A change in the x dimension requires a A change in the x dimension requires a nonzero valuenonzero value of of g qg q

A yA y y/v 
x/u 

A ………… y A ………… y 
A ………… z A ………… z z/w 

y/v 
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Linear DeformationLinear Deformation 2/22/2Linear Deformation Linear Deformation 2/22/2

 The change in length of the sides may produce change in volume The change in length of the sides may produce change in volume 
f h lf h lof the element.of the element.
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Divergence of VDivergence of V
For an For an incompressibleincompressible fluid (constant density), the volumetric dilatation rate is fluid (constant density), the volumetric dilatation rate is zerozero..



33 Angular RotationAngular Rotation 1/41/43. 3. Angular RotationAngular Rotation 1/41/4
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Angular RotationAngular Rotation 2/42/4Angular Rotation Angular Rotation 2/42/4

TheThe rotationrotation of the element about the zof the element about the z--axis is defined as theaxis is defined as theThe The rotationrotation of the element about the zof the element about the z--axis is defined as the axis is defined as the 
average of the angular velocitiesaverage of the angular velocities of the two mutually of the two mutually 
perpendicular lines OA and OBperpendicular lines OA and OB about the zabout the z--axisaxis
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Angular RotationAngular Rotation 3/43/4Angular Rotation Angular Rotation 3/43/4
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Angular RotationAngular Rotation 4/44/4Angular Rotation Angular Rotation 4/44/4
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VorticityVorticityVorticityVorticity

 Defining Defining VorticityVorticity ζ whichζ which is a measurement of the rotation of a measurement of the rotation of a 
fluid elementfluid element as it moves in the flow field:as it moves in the flow field:
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44 Angular DeformationAngular Deformation 1/21/24. 4. Angular DeformationAngular Deformation 1/21/2

 Angular deformationAngular deformation of a particle is given by the of a particle is given by the sum of the two sum of the two 
angular deformationangular deformation
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Angular DeformationAngular Deformation 2/22/2Angular Deformation Angular Deformation 2/22/2

 The rate of angular deformation in xy plane
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Example 6 1 VorticityExample 6 1 VorticityExample 6.1 VorticityExample 6.1 Vorticity

 F iF i di i l fl fi ld hdi i l fl fi ld h l i i i bl i i i b For a certain twoFor a certain two--dimensional flow field thedimensional flow field the velocity is given by   velocity is given by   

j)yx(2ixy4V 22
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Is this flow irrotational?    Is this flow irrotational?    

j)y(y
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Example 6 1Example 6 1 SolutionSolutionExample 6.1 Example 6.1 SolutionSolution
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Conservation EquationsConservation EquationsConservation EquationsConservation Equations
 Continuity equationContinuity equation

 Conservation of MassConservation of Mass
 Momentum equation (NavierMomentum equation (Navier--Stokes Eq.)Stokes Eq.)

 C ti f Li M tC ti f Li M t Conservation of Linear MomentumConservation of Linear Momentum
 Angular momentum equationAngular momentum equation

 Conservation of Angular MomentumConservation of Angular Momentum Conservation of Angular MomentumConservation of Angular Momentum
 Energy equationEnergy equation

 Conservation of EnergyConservation of Energy

 RepresentationRepresentation
 Integral (control volume) representationIntegral (control volume) representation
Differential representationDifferential representation
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Conservation of MassConservation of Mass 1/51/5Conservation of Mass Conservation of Mass 1/51/5

To derive the differential equation for conservation of To derive the differential equation for conservation of 
mass in rectangular and in cylindrical coordinate system.mass in rectangular and in cylindrical coordinate system.

The derivation is carried out by The derivation is carried out by applying conservation of applying conservation of 
mass to a differential control volumemass to a differential control volume..

With the With the control volume representationcontrol volume representation of the conservation of massof the conservation of mass
 0

CS





 dAnVVd
t CV


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ThTh diff i l fdiff i l f f i i i ???f i i i ???The The differential formdifferential form of continuity equation???of continuity equation???
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Conservation of MassConservation of Mass 2/52/5Conservation of Mass Conservation of Mass 2/52/5
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 The CV chosen is an infinitesimal cube with sides of length The CV chosen is an infinitesimal cube with sides of length x, x, y, and y, and z.z.
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Conservation of MassConservation of Mass 3/53/5Conservation of Mass Conservation of Mass 3/53/5

Net rate of massNet rate of massNet rate of mass Net rate of mass 
Outflow in xOutflow in x--directiondirection

     uxuxu         zyx
x
uzy

2
x

x
uuzy

2
x

x
uu 








 








 






Net rate of mass Net rate of mass 
Outflow in yOutflow in y--directiondirection

  zyx
y
v







N fN f
y

Net rate of mass Net rate of mass 
Outflow in zOutflow in z--directiondirection

  zyx
z
w







22



Conservation of MassConservation of Mass 4/54/5Conservation of Mass Conservation of Mass 4/54/5

Net rate of mass      wvu  Net rate of mass 
Outflow
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Conservation of MassConservation of Mass 5/55/5Conservation of Mass Conservation of Mass 5/55/5

Incompressible fluidIncompressible fluid ((density is constant and uniform)density is constant and uniform)
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Example 6 2 Continuity EquationExample 6 2 Continuity EquationExample 6.2 Continuity EquationExample 6.2 Continuity Equation

 Th l i f i i ibl d flTh l i f i i ibl d fl The velocity components for a certain incompressible, steady flow The velocity components for a certain incompressible, steady flow 
field arefield are

zyzxyv
zyxu 222




Determine the form of the z component, w, required to satisfy the Determine the form of the z component, w, required to satisfy the 

?w 

p , , q yp , , q y
continuity equation.continuity equation.
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Example 6 2Example 6 2 SolutionSolutionExample 6.2 Example 6.2 SolutionSolution
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Conservation of Linear MomentumConservation of Linear MomentumConservation of Linear MomentumConservation of Linear Momentum

 Applying Newton’s second law to control volumeApplying Newton’s second law to control volume
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Newton’s 2nd lawDt

For a For a infinitesimal system of mass dminfinitesimal system of mass dm, what’s the , what’s the tthe he 
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Forces Acting on ElementForces Acting on Element 1/21/2Forces Acting on Element Forces Acting on Element 1/21/2

 The forces acting on a fluid element may be classified as body 
forces and surface forces; surface forces include normal forces and normal forces and 
tangentialtangential (shear) forcesforcestangentialtangential (shear) forcesforces.

FFF BS




Surface forces acting on a fluid Surface forces acting on a fluid 
element can be described in terms element can be described in terms 
of normal and shear stressesof normal and shear stresses

kFjFiF szsysx



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of normal and shear stresses.of normal and shear stresses.
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 2
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Forces Acting on ElementForces Acting on Element 2/22/2Forces Acting on Element Forces Acting on Element 2/22/2
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Double Subscript Notation for StressesDouble Subscript Notation for StressesDouble Subscript Notation for StressesDouble Subscript Notation for Stresses

 The The directiondirection of the stressof the stress

xy

The direction of the The direction of the 
normal to thenormal to the planeplanenormal to the normal to the planeplane
on which the stress on which the stress 
actsacts
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Equation of MotionEquation of MotionEquation of MotionEquation of Motion
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These are the differential equations of motion for anyThese are the differential equations of motion for any fluid.fluid. How to solve u,v,w ?How to solve u,v,w ?
--> > These can’t be solved because of more variables than equations, These can’t be solved because of more variables than equations, 
which requires more equations which requires more equations called “constitutive equations” called “constitutive equations” 
to solve the equations in the case of “Newtonian fluids”to solve the equations in the case of “Newtonian fluids” 
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StressStress--Deformation RelationshipDeformation Relationship::
constitutive equations 1/21/2

 The stresses must be expressed The stresses must be expressed 
in terms of the velocity and in terms of the velocity and 
pressure fieldpressure field 
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StressStress--Deformation RelationshipDeformation Relationship::
constitutive equations 22/2/2

 The stresses must be expressed The stresses must be expressed 
in terms of the velocity and in terms of the velocity and 
pressure fieldpressure field 
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The NavierThe Navier Stokes EquationsStokes Equations 11//22The NavierThe Navier--Stokes Equations Stokes Equations 11//22

These obtained equations of motion are called the NavierThese obtained equations of motion are called the Navier--qq
Stokes Equations.Stokes Equations.

UnderUnder incompressibleincompressible NewtonianNewtonian flfluidsuids the Navierthe Navier--UnderUnder incompressible incompressible Newtonian Newtonian flfluidsuids, , the Navierthe Navier
Stokes equations are reduced to:Stokes equations are reduced to:
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The NavierThe Navier Stokes EquationsStokes Equations 22//22The NavierThe Navier--Stokes Equations Stokes Equations 22//22

The NavierThe Navier--Stokes equations apply to Stokes equations apply to both laminar and both laminar and 
turbulent flowturbulent flow, but , but for turbulent flowfor turbulent flow each velocity each velocity 
component fluctuates randomly with respect to time and component fluctuates randomly with respect to time and 
this added complication makes an analytical solution this added complication makes an analytical solution 
intractable.intractable.

The exact solutions referred to are for laminar flows in The exact solutions referred to are for laminar flows in 
which the velocity is either independent of time (steady which the velocity is either independent of time (steady 
flow) or dependent on time (unsteady flow) in a wellflow) or dependent on time (unsteady flow) in a well--
defined manner.defined manner.
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Laminar or Turbulent FlowLaminar or Turbulent Flow 1/21/2Laminar or Turbulent Flow Laminar or Turbulent Flow 1/21/2

The flow of a fluid in a pipe may be The flow of a fluid in a pipe may be Laminar ? Or Laminar ? Or 
Turbulent ?Turbulent ?

Osborne ReynoldsOsborne Reynolds, a British scientist and mathematician, , a British scientist and mathematician, 
was the first to distinguish the difference between these was the first to distinguish the difference between these gg
classification of flow by using a classification of flow by using a simple apparatussimple apparatus as as 
shown.shown.
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Laminar or Turbulent FlowLaminar or Turbulent Flow 2/22/2Laminar or Turbulent Flow Laminar or Turbulent Flow 2/22/2

For “For “small enough flowratesmall enough flowrate” the dye streak will remain as a ” the dye streak will remain as a 
wellwell--defined linedefined line as it flows along, with only slight blurring due as it flows along, with only slight blurring due 
t l l diff i f th d i t th di tt l l diff i f th d i t th di tto molecular diffusion of the dye into the surrounding water.to molecular diffusion of the dye into the surrounding water.

For a somewhat larger “For a somewhat larger “intermediate flowrateintermediate flowrate” the dye ” the dye 
fl i i d d i i b f i lfl i i d d i i b f i lfluctuates in time and space, and intermittent bursts of irregular fluctuates in time and space, and intermittent bursts of irregular 
behavior appear along the streak.behavior appear along the streak.

F “F “l h fl tl h fl t ” h d k l” h d k lFor “For “large enough flowratelarge enough flowrate” the dye streak almost ” the dye streak almost 
immediately become blurred and spreads across the entire pipe in immediately become blurred and spreads across the entire pipe in 
aa randomrandom fashionfashiona a randomrandom fashion.fashion.
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Time Dependence of Time Dependence of 
Fluid Velocity at a PointFluid Velocity at a Point
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Indication of Indication of 
Laminar or Turbulent FlowLaminar or Turbulent Flow
 ThTh fl tfl t h ld bh ld b l d b R ldl d b R ld The term The term flowrateflowrate should be should be replaced by Reynolds replaced by Reynolds 

numbernumber,                         ,where ,                         ,where VV is the average velocity in the pipe, is the average velocity in the pipe, 
and and L L is the characteristic dimension of a flow. is the characteristic dimension of a flow. LL is usually is usually D D 

 /VLRe 
yy

(diameter)(diameter) in a pipe flow. in a pipe flow. --> a measure of inertial force to the > a measure of inertial force to the 
viscous force.viscous force.

 I iI i l h fl id l il h fl id l i h d i h h f hh d i h h f h It is It is not only the fluid velocitynot only the fluid velocity that determines the character of the that determines the character of the 
flow flow –– its density, viscosity, and the pipe size are of equal its density, viscosity, and the pipe size are of equal 
importance.importance.pp

 For general engineering purpose, the flow in a For general engineering purpose, the flow in a round piperound pipe
LaminarLaminar 2100R e 
TransitionalTransitional
TurbulentTurbulent

2100R e 

4000＞R e
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Some Simple Solutions for Viscous, Some Simple Solutions for Viscous, 
Incompressible FluidsIncompressible Fluids
A principal difficulty in solving the NavierA principal difficulty in solving the Navier--Stokes Stokes 

equations is because of their equations is because of their nonlinearitynonlinearity arising from the arising from the 
convective acceleration termsconvective acceleration terms..

There are no general analytical schemes for solving There are no general analytical schemes for solving g y gg y g
nonlinear partial differential equations.nonlinear partial differential equations.

There are aThere are a few special cases for which the convectivefew special cases for which the convectiveThere are a There are a few special cases for which the convective few special cases for which the convective 
acceleration vanishes. In these cases exact solution are acceleration vanishes. In these cases exact solution are 
often possible.often possible.often possible.often possible.
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Steady, Laminar Flow between Fixed Steady, Laminar Flow between Fixed 
Parallel Plates Parallel Plates 1/1/44

1.1. Schematic:Schematic:
2.2. Assumptions: Incompressible, Newtonian, Steady, One dimensional flowAssumptions: Incompressible, Newtonian, Steady, One dimensional flowp p , , y,p p , , y,
3.3. Continuity equationContinuity equation
4.4. The NavierThe Navier--Stokes equations Stokes equations 
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Steady, Laminar Flow between Fixed Steady, Laminar Flow between Fixed 
Parallel Plates Parallel Plates 2/2/44

55 Boundary conditions (B C )Boundary conditions (B C ) u=0 at y=u=0 at y= h u=0 at y=hh u=0 at y=h (no(no slipslip



5.5. Boundary conditions (B.C.)  Boundary conditions (B.C.)  u=0  at y=u=0  at y=--h    u=0 at y=hh    u=0 at y=h (no(no--slip slip 
boundary condition)boundary condition)

6.6. Solve the equations with B.C.Solve the equations with B.C.
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Steady, Laminar Flow between Fixed Steady, Laminar Flow between Fixed 
Parallel Plates Parallel Plates 33//44

Shear stress distributionShear stress distributionShear stress distributionShear stress distribution

y
x
p

y
u

yx 













 

Volume flow rate Volume flow rate per unit depth (z direction)per unit depth (z direction)
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Steady, Laminar Flow between Fixed Steady, Laminar Flow between Fixed 
Parallel Plates Parallel Plates 44//44

Average velocityAverage velocity per unit depthper unit depth
2 phqV 

Point of maximum velocityPoint of maximum velocity
32
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h
qVaverage 
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Couette FlowCouette Flow 1/31/3 (HW)(HW)Couette Flow Couette Flow 1/31/3 (HW)(HW)

Since only theSince only the boundary conditions have changedboundary conditions have changed, , there there 
isis no need to repeat the entire analysisno need to repeat the entire analysis of the “both of the “both 
plates stationary” case.plates stationary” case.
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Couette FlowCouette Flow 2/32/3Couette Flow Couette Flow 2/32/3

 The boundary conditions for the moving plate case areThe boundary conditions for the moving plate case are
u=0  at y=0u=0  at y=0
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Couette FlowCouette Flow 3/33/3Couette Flow Couette Flow 3/33/3

ii rrbrU  
 Simplest type of Couette flow

yp
)/( ioi

ioi

rrr
rrbrU

 


b
yUu0

x
p





This flow can be approximated by 
the flow between closely spaced 
concentric cylinder is fixed and 
the other cylinder rotates with a 
constant angular velocityconstant angular velocity.

Flow in the narrow gap 
of a journal bearing.
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Steady, Laminar Flow Steady, Laminar Flow (Hagen(Hagen--Poiseuille Poiseuille 
Flow) Flow) in Circular Tubes in Circular Tubes 1/51/5

1.1. Schematic:Schematic:
2.2. Assumptions: Incompressible, Newtonian, Steady, Laminar, One dimensional Assumptions: Incompressible, Newtonian, Steady, Laminar, One dimensional 

flowflowflowflow

0,0,0  zr vvv 

3.3. Continuity equationContinuity equation

44 Th N iTh N i S k iS k i

 rvv
z
v

zz
z 


 0

4.4. The NavierThe Navier--Stokes equations Stokes equations 
5.5. Boundary Conditions: Boundary Conditions: At r=0, the velocity vAt r=0, the velocity vzz is finite. At r=R, the velocity vis finite. At r=R, the velocity vzz is is 

zero.zero.

48
6.6. Solve the equation with B.C.Solve the equation with B.C.



From the NavierFrom the Navier--Stokes EquationsStokes Equations in in 
Cylindrical coordinatesCylindrical coordinates
 General motion of an General motion of an incompressible Newtonian fluidincompressible Newtonian fluid is governed by the is governed by the 

continuity equation and the momentum equationcontinuity equation and the momentum equation

Mass conservation

Navier-Stokes Equation 
in a cylindrical coordinatein a cylindrical coordinate

Acceleration
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Steady Laminar Flow in Circular TubesSteady Laminar Flow in Circular Tubes 2/52/5Steady, Laminar Flow in Circular TubesSteady, Laminar Flow in Circular Tubes 2/52/5

NavierNavier –– Stokes equation reduced toStokes equation reduced toNavier Navier –– Stokes  equation  reduced to Stokes  equation  reduced to 
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Steady Laminar Flow in Circular TubesSteady Laminar Flow in Circular Tubes 3/53/5Steady, Laminar Flow in Circular TubesSteady, Laminar Flow in Circular Tubes 3/53/5

At r 0 the elocitAt r 0 the elocit is finite At r R the elocitis finite At r R the elocitAt r=0, the velocity vAt r=0, the velocity vzz is finite. At r=R, the velocity vis finite. At r=R, the velocity vzz
is zero.is zero.
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Steady Laminar Flow in Circular TubesSteady Laminar Flow in Circular Tubes 4/54/5Steady, Laminar Flow in Circular Tubes Steady, Laminar Flow in Circular Tubes 4/54/5

The shear stress distributionThe shear stress distribution
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Steady Laminar Flow in Circular TubesSteady Laminar Flow in Circular Tubes 5/55/5Steady, Laminar Flow in Circular Tubes Steady, Laminar Flow in Circular Tubes 5/55/5

Average velocityAverage velocity
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Steady, Axial, Laminar Flow in an Annulus Steady, Axial, Laminar Flow in an Annulus 1/21/2

(HW)(HW)

Boundary conditionsBoundary conditions

For steady, laminar flow in For steady, laminar flow in annularannular tubestubes

Boundary conditionsBoundary conditions
vvzz =  0  ,  at  r = r=  0  ,  at  r = roo
vv = 0 at r = r= 0 at r = rvvzz =  0  ,  at  r = r=  0  ,  at  r = rii
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Steady Axial Laminar Flow in an AnnulusSteady Axial Laminar Flow in an Annulus 2/22/2Steady, Axial, Laminar Flow in an Annulus Steady, Axial, Laminar Flow in an Annulus 2/22/2
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Inviscid FlowInviscid FlowInviscid FlowInviscid Flow

 Shear stresses developShear stresses develop in a moving fluid in a moving fluid because of the viscositybecause of the viscosity of of 
the fluid.the fluid.

 F fl id h iF fl id h i th i it i llth i it i ll dd For some common fluid, such as air, For some common fluid, such as air, the viscosity is smallthe viscosity is small, and , and 
therefore it therefore it seems reasonable to assume that under some seems reasonable to assume that under some 
circumstances we may be able to simply neglect the effect ofcircumstances we may be able to simply neglect the effect ofcircumstances we may be able to simply neglect the effect of circumstances we may be able to simply neglect the effect of 
viscosityviscosity..

 Flow fields in which the shear stresses are assumed to be negligible Flow fields in which the shear stresses are assumed to be negligible g gg g
are said to be inviscid, or frictionlessare said to be inviscid, or frictionless..

D fi th th ti f th l tD fi th th ti f th l t

zzyyxxp  
Define the pressure, p, as the negative of the normal stressDefine the pressure, p, as the negative of the normal stress
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Euler’s Equation of MotionEuler’s Equation of MotionEuler s Equation of MotionEuler s Equation of Motion

UnderUnder inviscid flows: frictionless conditioninviscid flows: frictionless condition, , the the 
equations of motion are reduced toequations of motion are reduced to Euler’s EquationEuler’s Equation::
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Bernoulli EquationBernoulli Equation 1/31/3Bernoulli Equation Bernoulli Equation 1/31/3

Euler’s equation for Euler’s equation for steadysteady flowflow along a streamlinealong a streamline isis

V)V(pg


 V)V(pg 
Selecting the coordinate system with the zSelecting the coordinate system with the z--axis vertical so that axis vertical so that 

zgg 


the acceleration of gravity vector can be expressed asthe acceleration of gravity vector can be expressed as
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Bernoulli EquationBernoulli Equation 2/32/3Bernoulli Equation Bernoulli Equation 2/32/3
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1

1d

  0
2
1 2 

 sdzgsdVsdp 
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

constant
2
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 gzVdp


Integrating …Integrating …
2 

For For steadysteady,, inviscid, incompressible fluidinviscid, incompressible fluid (commonly called ideal (commonly called ideal 
fluids)fluids) along a streamlinealong a streamline Bernoulli equation is given byBernoulli equation is given by

constant
2

 gzVp

fluids) fluids) along a streamlinealong a streamline Bernoulli equation is given byBernoulli equation is given by

Bernoulli equationBernoulli equation
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Irrotational FlowIrrotational Flow 1/1/22Irrotational Flow Irrotational Flow 1/1/22

Irrotation ? The irrotational condition is

0V


In rectangular coordinates system

0V 
In rectangular coordinates system
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In cylindrical coordinates system
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Irrotational FlowIrrotational Flow 2/2/22Irrotational Flow Irrotational Flow 2/2/22

A general flow field would not be irrotational flow.A general flow field would not be irrotational flow.
A special uniform flow field is an example of an A special uniform flow field is an example of an p pp p

irrotationirrotationalal flowflow
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Bernoulli Equation for Irrotational FlowBernoulli Equation for Irrotational Flow 1/31/3Bernoulli Equation for Irrotational Flow Bernoulli Equation for Irrotational Flow 1/31/3

 The Bernoulli equation forThe Bernoulli equation for steady, incompressible, and inviscid steady, incompressible, and inviscid 
flowflow isis

2Vp

 Th i b li d bTh i b li d b i hi h

constant
2

 gzVp


 The equation can be applied betweenThe equation can be applied between any two points on the same any two points on the same 
streamlinestreamline. . In general,In general, the value of the constant will vary from the value of the constant will vary from 
streamline to streamlinestreamline to streamlinestreamline to streamlinestreamline to streamline..

 Under additionalUnder additional irrotational conditionirrotational condition, , the Bernoulli equation ?the Bernoulli equation ?
Starting with Euler’s equation in vector formStarting with Euler’s equation in vector form
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Bernoulli Equation for Irrotational FlowBernoulli Equation for Irrotational Flow 2/32/3Bernoulli Equation for Irrotational Flow Bernoulli Equation for Irrotational Flow 2/32/3

With irrotaionalirrotaional condition 0V 
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Integrating for incompressible flowIntegrating for incompressible flow
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 gzVp
contant
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 gzVdp

Thi i i lid bThi i i lid b i i di i d
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

This equation is valid between This equation is valid between any two points in a steady, any two points in a steady, 
incompressible, inviscid, and irrotational flowincompressible, inviscid, and irrotational flow irrespective of irrespective of 
streamlinesstreamlinesstreamlinesstreamlines..
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Stream FunctionStream Function 1/61/6Stream Function Stream Function 1/61/6

 StreamlinesStreamlines:: Lines tangent to the instantaneous velocity vectors at Lines tangent to the instantaneous velocity vectors at 
every point.every point.

 St f ti ΨSt f ti Ψ( )( ) [P i] ? U d t t th l it[P i] ? U d t t th l it Stream function ΨStream function Ψ(x,y)(x,y) [Psi]  ? Used to represent the velocity [Psi]  ? Used to represent the velocity 
component u(x,y,t) and v(x,y,t) of a component u(x,y,t) and v(x,y,t) of a ““twotwo--dimensionaldimensional
incompressibleincompressible”” flowflowincompressibleincompressible flow.flow.

 Define a function ΨDefine a function Ψ(x,y), called the stream function, which relates (x,y), called the stream function, which relates 
the velocities shown by the figure in the margin asthe velocities shown by the figure in the margin asy g gy g g

x
v

y
u


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
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Stream FunctionStream Function 2/62/6Stream Function Stream Function 2/62/6

 The stream function ΨThe stream function Ψ(x,y) (x,y) satisfies the twosatisfies the two--dimensional form of dimensional form of 
the incompressible continuity equationthe incompressible continuity equation
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xyyx

0
y
v

x
u 22








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


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 ΨΨ(x,y) (x,y) isis sstill unknown for a particular problem, but at least we have till unknown for a particular problem, but at least we have 
i lif th l ii lif th l i b h i t d t ib h i t d t i l kl ksimplify the analysissimplify the analysis by having to determine by having to determine only one unknownonly one unknown, , 
ΨΨ(x,y)(x,y) , rather than the two , rather than the two unknown unknown function u(x,y) and v(x,y).function u(x,y) and v(x,y).
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Stream FunctionStream Function 3/63/6Stream Function Stream Function 3/63/6

 Another advantage of using stream function is related to the fact that Another advantage of using stream function is related to the fact that 
line along which line along which ΨΨ(x,y) =constant(x,y) =constant are streamlines.are streamlines.

 H t ? F th d fi iti f th t li th t th lH t ? F th d fi iti f th t li th t th l How to prove ? From the definition of the streamline that the slope How to prove ? From the definition of the streamline that the slope 
at any point along a streamline is given byat any point along a streamline is given by

u
v

dx
dy

streamline





streamline

Velocity and velocity component along a streamlineVelocity and velocity component along a streamline
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Stream FunctionStream Function 4/64/6Stream Function Stream Function 4/64/6

The change of ΨThe change of Ψ(x,y)  as we  move from one point (x,y) to (x,y)  as we  move from one point (x,y) to 
a nearly point (x+dx,y+dy) is given bya nearly point (x+dx,y+dy) is given by

udyvdxdy
y

dx
x

d 








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d 

Along a line of constant ΨAlong a line of constant Ψ

u
v

dx
dy

streamline





This is the definition for a streamline. Thus, This is the definition for a streamline. Thus, if we know the if we know the stream stream functionfunction Ψ(x,y)  we Ψ(x,y)  we 
can can plot lines of constantplot lines of constant Ψto provide the family of Ψto provide the family of streamlines that are helpful in streamlines that are helpful in 
visualizing the pattern of flowvisualizing the pattern of flow. There are an infinite number of streamlines that make up a . There are an infinite number of streamlines that make up a 
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particular flow field, since for each constant value assigned to Ψa streamline can be drawn.particular flow field, since for each constant value assigned to Ψa streamline can be drawn.



Stream FunctionStream Function 5/65/6Stream Function Stream Function 5/65/6

 The actual numerical value associated with a particular streamline is  The actual numerical value associated with a particular streamline is  
not of particular significance, but the change in the value of Ψnot of particular significance, but the change in the value of Ψ is is 
related to the volume rate of flowrelated to the volume rate of flowrelated to the volume rate of flow.related to the volume rate of flow.

 dq : dq : volume rate of flow passing between the two streamlinesvolume rate of flow passing between the two streamlines. Flow . Flow 
never crosses streamlines by definitionnever crosses streamlines by definitionnever crosses streamlines by definition. never crosses streamlines by definition. 
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Stream FunctionStream Function 6/66/6Stream Function Stream Function 6/66/6

 Thus the Thus the volume flow ratevolume flow rate between any two streamlines can be between any two streamlines can be 
written as written as the difference between the constant values of Ψthe difference between the constant values of Ψ defining defining 
two streamlinestwo streamlinestwo streamlines.two streamlines.

 The velocity will be relatively high wherever the streamlines are The velocity will be relatively high wherever the streamlines are 
close together and relatively low wherever the streamlines are farclose together and relatively low wherever the streamlines are farclose together, and relatively low wherever the streamlines are far close together, and relatively low wherever the streamlines are far 
apart.apart.
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Example 6 3 Stream FunctionExample 6 3 Stream FunctionExample 6.3 Stream FunctionExample 6.3 Stream Function

 Th l i i d i iblTh l i i d i ibl The velocity component in a steady, incompressible, two The velocity component in a steady, incompressible, two 
dimensional flow field aredimensional flow field are

Determine the corresponding stream function and show on a sketchDetermine the corresponding stream function and show on a sketch

4xv2yu 

Determine the corresponding stream function and show on a sketch Determine the corresponding stream function and show on a sketch 
several streamlines. Indicate the direction of glow along the several streamlines. Indicate the direction of glow along the 
streamlines.streamlines.
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Example 6 3Example 6 3 SolutionSolutionExample 6.3 Example 6.3 SolutionSolution
From the definition of the stream functionFrom the definition of the stream functionFrom the definition of the stream functionFrom the definition of the stream function
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For simplicity, we set C=0For simplicity, we set C=0

ΨΨ≠≠001xy 22


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Velocity PotentialVelocity Potential Φ(Φ(x y z t)x y z t) 1/1/33Velocity Potential Velocity Potential Φ(Φ(x,y,z,t)x,y,z,t) 1/1/33

Th f i fTh f i f di i l i ibldi i l i iblThe stream function for The stream function for twotwo--dimensional incompressible dimensional incompressible 
flowflow isis ΨΨ(x,y) (x,y) 

F i i l fl h l i bF i i l fl h l i bFor an irrotational flow, the velocity components can be For an irrotational flow, the velocity components can be 
expressed in terms of a scalar function expressed in terms of a scalar function Φ(Φ(x,y,z,t)x,y,z,t) asas
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where where Φ(Φ(x,y,z,t)x,y,z,t) is called the is called the velocity potentialvelocity potential..

zyx 

 VV


0

74



Velocity PotentialVelocity Potential Φ(Φ(x y z t)x y z t) 2/2/33Velocity Potential Velocity Potential Φ(Φ(x,y,z,t)x,y,z,t) 2/2/33

In vector formIn vector form
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

For an incompressible flow For an incompressible flow 
V

0V
 Also Also called a called a potential flowpotential flow
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For For incompressible, irrotational flowincompressible, irrotational flow

zyx 222 
Laplace’s equation

75Laplacian operatorLaplacian operator



Velocity PotentialVelocity Potential Φ(Φ(x y z t)x y z t) 3/3/33Velocity Potential Velocity Potential Φ(Φ(x,y,z,t)x,y,z,t) 3/3/33

Inviscid, incompressible, irrotational fields are governed Inviscid, incompressible, irrotational fields are governed 
by Laplace’s equationby Laplace’s equation..

This type flow is commonly called This type flow is commonly called a potential flowa potential flow..
To complete the mathematical formulation of a givenTo complete the mathematical formulation of a givenTo complete the mathematical formulation of a given To complete the mathematical formulation of a given 

problem, boundary conditions have to be specified. These problem, boundary conditions have to be specified. These 
are usually velocities specified on the boundaries of theare usually velocities specified on the boundaries of theare usually velocities specified on the boundaries of the are usually velocities specified on the boundaries of the 
flow field of interest.flow field of interest.
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