Analisi dei dati

DATI GREZZI

SINTESI DELLE OSSERVAZIONI

ELABORAZIONE DATI

1

Statistica descrittiva

Si occupa dell'analisi di un certo fenomeno relativo a un certo gruppo di soggetti (popolazione) sulla base della rilevazione completa delle informazioni (censimento).

Tali informazioni vengono sintetizzate tramite opportuni *indici statistici* (es: voto medio all'esame di statistica sulla base dei voti di tutti gli studenti).

Definizioni

- variabile (carattere) caratteristica che viene presa in esame in un certo studio statistico (es: età, sesso, titolo di studio, peso)
- > modalità modo di manifestarsi di una variabile
- unità statistica singola unità elementare su cui vengono osservati i caratteri oggetto di studio (es.: studente, famiglia)
- popolazione insieme di unità statistiche omogenee rispetto a una o più caratteristiche (es: studenti dell'Università di Napoli, residenti nella regione Campania, popolazione delle famiglie italiane)

3

Frequenze assolute e relative

- > frequenza assoluta (n_j) di una modalità x_j , o di una classe di modalità $(x_{j-1};x_j)$ numero di unità statistiche che presentano tale modalità
- > frequenza relativa (f_j) di una modalità x_j , o di una classe di modalità $(x_{j-1};x_j)$ -la frazione o proporzione di u.s. che presentano tale modalità.

$$f_{j} = \frac{n_{j}}{\sum_{j=1}^{j} n_{j}} = \frac{n_{j}}{N}$$
 $j = 1, 2, ..., J$

Proprietà: $0 \le f_{j} \le 1$ $j = 1, 2, ..., J$
 $\sum_{j=1}^{j} f_{j} = 1$

4

Finalità delle frequenze relative

Facilitare la percezione del PESO delle modalità

Sesso	Freq. Assoluta	Freq. Relativa	Freq. Rel.
M	1750	0.583	58.3
F	1250	0.417	41.7
Totale	3000	1	100

Facilitare CONFRONTI tra popolazioni

Sesso	Freq. A	ssoluta	Freq. I	Rel. %
	Pop. A	Pop. B	Pop. A	Pop. B
M	1750	850	58.3	85.0
F	1250	150	41.7	15.0
Totale	3000	1000	100	100

Frequenze cumulate e funzione di ripartizione

> Frequenze cumulate – numero di unità statistiche con valori di

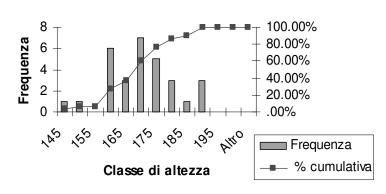
freq.cum.
$$(x_j) = \sum_{k=1}^{j} n_j$$

> Funzione di ripartizione $(F(X_j))$ di una variabile X - proporzione di unità statistiche con valori di

$$F(x_{j}) = \sum_{k=1}^{j} f_{k}$$

Mod.tà	Freq.	Fr. rel.	Freq.cum	F(x)
x_1	n_1	f_1	n_1	f_1
x_2	n_2	f_2	$n_1 + n_2$	f_1 + f_2
•••	•••	•••		
x_{j}	$n_{ m j}$	$f_{ m j}$	$n_1 + n_2 + \ldots + n_j$	$f_1 + f_2 + \ldots + f_j$
•••	•••	•••	•••	•••
x_{J}	$n_{ m J}$	$f_{ m J}$	N	1
Totale	N	1		

Esempio: altezza rilevata su 30 individui


ndividuo n.	00000	altezza

% cumulativa	Frequenza	Classe
36.67%		
60.00%	7.	
76.67%		
86,67%		
90.00%		

Percentuale di individui la cui altezza è minore o uguale di 170 cm.

Numero di individui la cui altezza è compresa fra 166 e 170 cm.

Distribuzione di frequenze

7

Indagine sulla fecondità (INF/2, 1995)

Sottoinsieme delle donne coniugate o conviventi residenti nelle regioni del centro Italia

Alcune delle caratteristiche rilevate

- > Anno di nascita, nella forma aa
- > Titolo di studio alla data dell'intervista
- > Anno di nascita del primo figlio
- > Anno di nascita del secondo figlio
- > Numero totale di figli
- ➤ Ha mai lavorato? (1=no, 2=in passato, 3=attualmente)

9

Matrice dei dati da INF/2 (587 donne)

ID	ANNONASC	TITSTUD	FIGLIO1	FIGLIO2	NFIGLI	MAILAV
4252	59	6	84	87	2	2
4262	46	5	73	74	2	1
4272	53	2	74	75	3	3
4287	47	7	71	76	2	3
4290	51	4	75	76	2	3
4297	58	2	78	79	3	3
4303	66	4	90	•	1	3
4307	50	2	69	•	1	2
4322	56	5	79	•	1	3
4323	61	5	86		1	3

Operazioni di spoglio: dalla matrice dei dati alle tabelle

Numero di figli alla data dell'intervista

			Cumulative	Cumulative
NFIGLI	Frequency	Percent	Frequency	Percent
*****	*****	****	****	*****
0	71	12.10	71	12.10
1	181	30.83	252	42.93
2	264	44.97	516	87.90
3	61	10.39	577	98.30
4	9	1.53	586	99.83
5	1	0.17	587	100.00

11

Anno di nascita della donna

			Cumulative	Cumulative
ANNONASC	Frequency	Percent	Frequency	Percent
*****	*****	******	****	*****
46	33	5.62	33	5.62
47	22	3.75	55	9.37
48	21	3.58	76	12.95
49	21	3.58	97	16.52
50	29	4.94	126	21.47
51	33	5.62	159	27.09
52	26	4.43	185	31.52
53	26	4.43	211	35.95
54	20	3.41	231	39.35
73	1	0.17	586	99.83
75	1	0.17	587	100.00

Per una migliore lettura: definizione delle classi di modalità!

Anno di nascita della donna: raggruppamento in classi

			Cumulative	Cumulative
ANNONASC	Frequency	Percent	Frequency	Percent
*****	*****	*****	*****	*****
46-50	126	21.47	126	21.47
51-55	127	21.64	253	43.10
56-60	125	21.29	378	64.40
61-65	124	21.12	502	85.52
66-70	77	13.12	579	98.64
71-75	8	1.36	587	100.00

13

Titolo di studio alla data dell'intervista

			Cumulative	Cumulative
TITSTUD	Frequency	Percent	Frequency	Percent
******	*****	*****	*****	*****
1	2	0.34	2	0.34
2	105	17.89	107	18.23
3	183	31.18	290	49.40
4	53	9.03	343	58.43
5	177	30.15	520	88.59
6	7	1.19	527	89.78
7	60	10.22	587	100.00

Per una migliore lettura: decodifica delle modalità!

1=licenza elementare; 2=licenza media

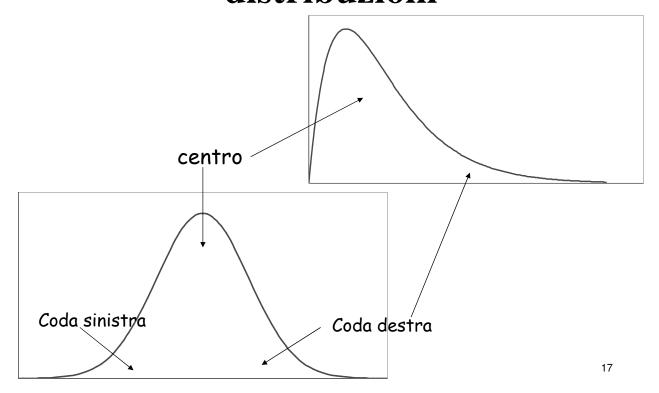
3-5=diploma

6=diploma universitario; 7=laurea

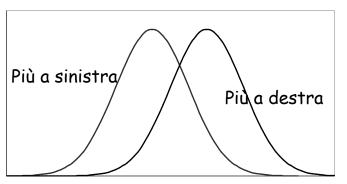
Titolo di studio alla data dell'intervista: decodifica delle modalità

			Cumulative	Cumulative
TITSTUD	Freq	Percent	Frequency	Percent
*******	*****	*****	*****	******
lic. elementare	2	0.34	2	0.34
lic. media	105	17.89	107	18.23
diploma	413	70.36	520	88.59
diploma univ.	7	1.19	527	89.78
laurea	60	10.22	587	100.00

15

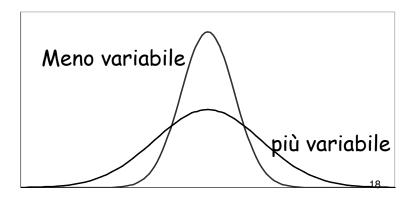

Condizione lavorativa alla data dell'intervista

MAILAV	Frequency	Percent
*****	*****	*****
1	134	22.83
2	163	27.77
3	290	49.40
Totale	587	100.00

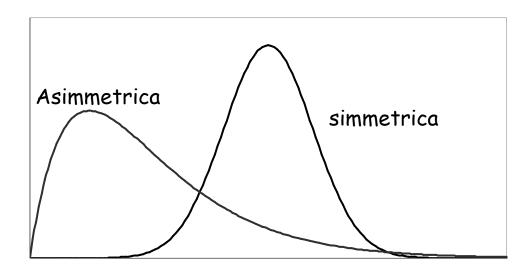

Per una migliore lettura: decodifica delle modalità!

MAILAV	Frequency	Percent
******	*****	*****
1 mai lavorato	134	22.83
2 lavorato in passato	163	27.77
3 lavora attualmente	290	49.40
Totale	587	100.00

Aspetti notevoli delle distribuzioni

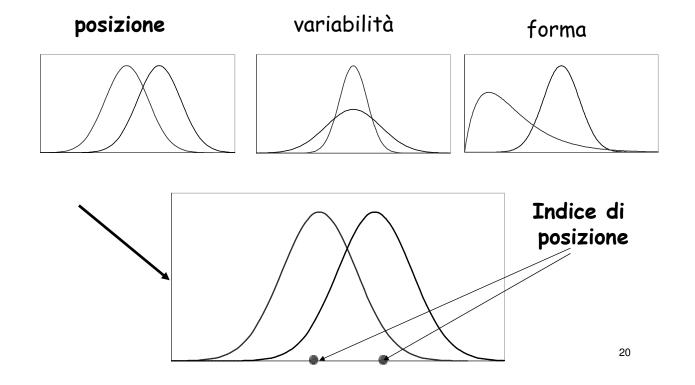


Aspetti caratterizzanti le distribuzioni: posizione e variabilità



Posizione

Variabilità



Aspetti caratterizzanti le distribuzioni: forma

19

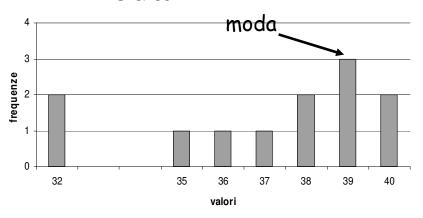
Indici caratteristici delle distribuzioni

Indici di posizione (Misure di tendenza centrale)

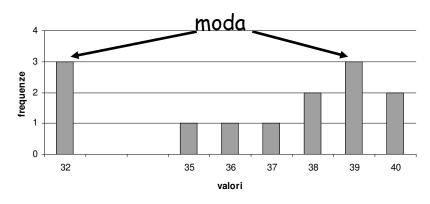

Sintesi della distribuzione attraverso un valore rappresentativo che si posiziona nel "mezzo" della distribuzione

- > MODA
- > MEDIANA
- > MEDIA

21

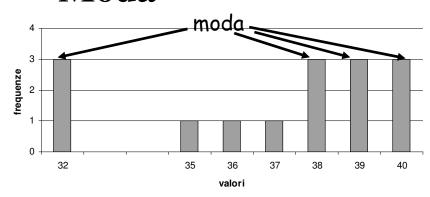

Moda

Modalità a cui corrisponde la frequenza più alta.

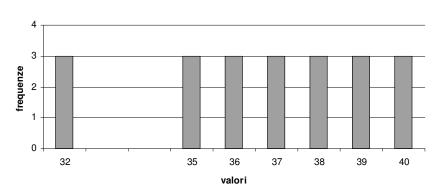


Moda

> unimodale

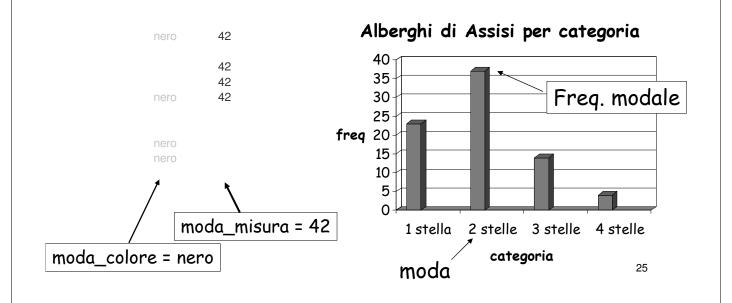


> bimodale

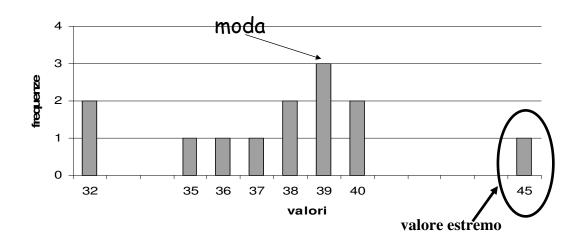


Moda

> multimodale



> no moda


Moda

E' l'unica misura di tendenza centrale che può essere usata con dati qualitativi

Moda

Non è influenzata dai valori estremi

Moda per Classi

Nel caso di distribuzioni di frequenze per classi, la classe cui corrisponde la massima frequenza viene detta classe modale. Bisogna però prestare attenzione nel caso in cui le classi abbiano uguale ampiezza o meno:

- · Nel caso di classi di uguale ampiezza la classe modale è la classe di massima frequenza, e come valore modale si considera di solito il valore centrale della classe ("segno")
- \cdot Nel caso di classi di ampiezza differente, la classe modale si determina attraverso il calcolo della <u>densità di frequenza</u> $d_{\rm i}$

d;=frequenza assoluta/ampiezza della classe;

è classe modale la classe cui corrisponde la massima densità di frequenza, e come valore modale si assume sempre, per brevità, il valore centrale della classe

A seconda degli scopi è preferibile usare l'una o l'altra media. In molti casi, tuttavia, l'impiego congiunto degli stessi è utile per fornire un'informazione più completa sul fenomeno in esame.

27

Mediana

valore che divide la distribuzione, ordinata in senso non decrescente (o non crescente), in due parti con un numero uguale di termini a destra e a sinistra dell'asse mediano

valore che occupa la posizione centrale dei dati una volta che questi siano stati ordinati

Calcolo mediana

> N dispari

$$mediana = X_{(N+1)/2}$$

> N pari

mediana =
$$\frac{X_{N/2} + X_{(N+1)/2}}{2}$$

29

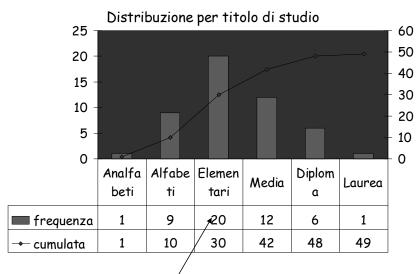
Mediana

38 38 39

Mediana = 38

Mediana = 38.5

Mediana


Non è influenzata da valori estremi

Mediana = 38

31

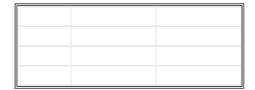
Mediana

Applicabile anche a dati qualitativi ordinabili

médiana

32

Mediana


Rende minima la somma delle distanze rispetto ad essa

$$mediana : \sum_{i=1}^{n} |x_i - mediana| = min$$

33

- •Si supponga di voler suddividere gli studenti in due gruppi di uguale numerosità. Un possibile criterio è quello di considerare, per la popolazione "Studenti" la variabile età, il suo valore mediano e suddividere gli studenti in base a tale valore.
- •Si supponga di voler stabilire, fra due possibili siti A e B di una certa regione, quello che meglio si presti per la localizzazione di un centro commerciale

La scelta di B assicura una locazione particolarmente conveniente per almeno il 50% dei quartieri (nel raggio di 5 km), penalizzando in compenso (alcuni) altri quartieri. La scelta di A è quella complessivamente migliore

Quantili

Si dice quantile p-esimo di una distribuzione quel valore x_p tale che la funzione di ripartizione $F(x_p)=p$

$$p \in (0,1)$$
$$x_p : F(x_p) = p$$

35

Quantili

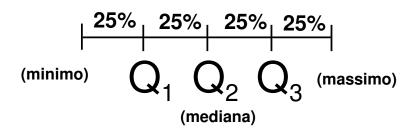
$$p = 0.5$$

mediana

$$p = 0.25, 0.50, 0.75$$

quartili

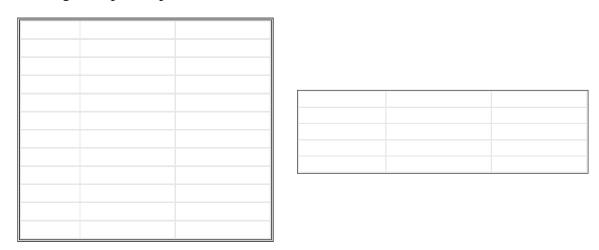
$$p = 0.1, 0.2, ..., 0.8, 0.9$$


decili

$$p=0.01,0.02,...,0.98,0.99$$
 percentili

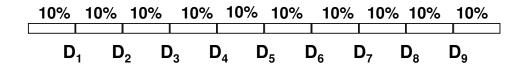
Quartili

 $\mathbf{Q}_1, \ \mathbf{Q}_2, \ \mathbf{Q}_3$


dividono la distribuzione in quattro porzioni ad ugual numerosità

37

Esempio


Si vuole stabilire, fra due possibili siti A e B di una certa regione, quello che meglio si presti per la localizzazione di un centro commerciale

- Circa il 25% dei quartieri ha una distanza da A maggiore o uguale a 7 e minore di 13
- Circa il 50% dei quartieri ha distanza da B maggiore o uguale di 5, mentre circa il 50% dei quartieri ha distanza da A maggiore o uguale di 13.

Decili

 $D_1,\,D_2,\,D_3,\,D_4,\,D_5,\,D_6,\,D_7,\,D_8,\,D_9$ dividono la distribuzione in dieci porzioni ad ugual numerosità

39

Media aritmetica

- è la più semplice tra le varie analisi univariate (compiute su di una sola variabile)
- fornisce informazioni sull'ordine di grandezza di una variabile statistica

Media

Si definisce media aritmetica di una variabile statistica quantitativa la seguente quantità:

$$E(X) = \mu_X = \overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 — Nel caso di dati grezzi

$$E(X) = \mu_X = \overline{x} = \frac{1}{N} \sum_{i=1}^J x_i n_i = \sum_{i=1}^J x_i f_i$$
 — Nel caso di tabelle di frequenza

41

Esempio:

Cinetica di acidificazione (pH) di latte pastorizzato inoculato al 4% con ceppi appartenenti al genere Leuconostoc incubati a 35°C

6,4525 6,415 6,4175 6,42 6,4525 6,4325 6,43875

Esempio 1

32 32 35 36 37 38 38 39 39 39 40 40 42 **45**

$$\overline{X} = 38$$

Esempio 2

32 32 35 36 37 38 38 39 39 39 40 40 42 **55**

$$\overline{X} = 38.71$$

43

Proprietà della media

$$1. \qquad \sum_{i=1}^{n} x_i = n\overline{x}$$

è il numero che sostituito ai singoli x_i osservati ne lascia invariata la somma

$$x_1 + x_2 + \cdots + x_n = \overline{x} + \overline{x} + \cdots + \overline{x} = n \cdot \overline{x}$$

Proprietà della media

$$\sum_{i=1}^{n} \left(x_i - \overline{x} \right) = 0$$

3.
$$\sum_{i=1}^{n} (x_i - c)^2 \quad \text{è minimo per} \quad c = \overline{x}$$

4. se ad ogni termine della distribuzione viene applicata la trasformazione aX+b, allora la media sarà pari a

$$a\bar{x} + b$$

45

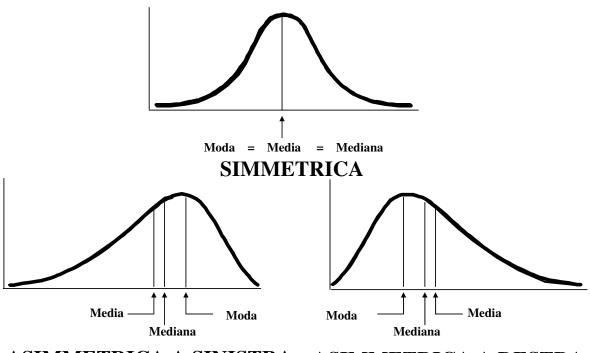
Media

se abbiamo una variabile statistica X, dette $x_1, x_2, ..., x_k$ le sue modalità distinte e $n_1, n_2, ..., n_k$ le rispettive frequenze assolute invece di calcolare la media aritmetica

$$\overline{x} = \frac{(x_1 + \dots + x_1) + \dots + (x_k + \dots + x_k)}{N}$$

$$\text{si può scrivere } \overline{x} = \frac{x_1 \cdot n_1 + x_2 \cdot n_2 + \dots + x_k \cdot n_k}{n_1 + n_2 + \dots + n_k} = \frac{\sum_{i=1}^k x_i \cdot n_i}{N} \tag{MP}$$

I coefficienti n_i dei k valori distinti di X, sono detti **pesi** di tali valori, in quanto ne rappresentano, per così dire il *peso* che dà diversa *importanza* ai singoli valori della distribuzione statistica.

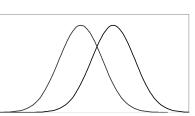

La (MP) prende il nome di **media aritmetica ponderata** dei k valori x_i , di pesi n_i .

Relazione empirica tra media, moda e mediana

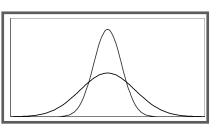
media - moda = 3(media - mediana)

47

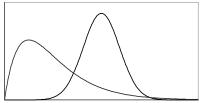
Relazione empirica tra media, moda e mediana



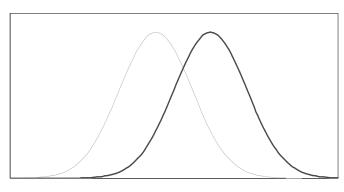
ASIMMETRICA A SINISTRA (negativa)


ASIMMETRICA A DESTRA (positiva)

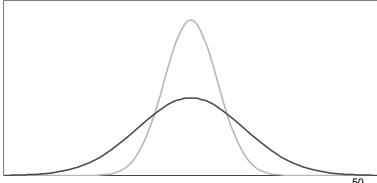
Indici caratteristici delle distribuzioni


posizione

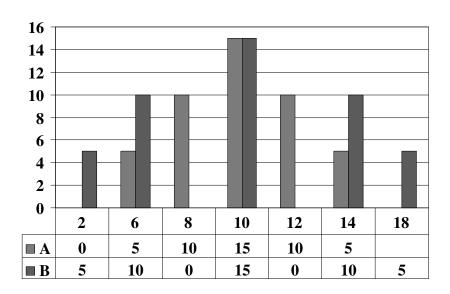
variabilità



forma

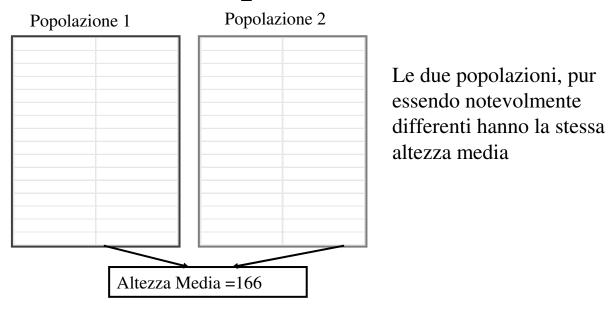

49

Variabilità



media diversa, stessa variabilità

stessa media, variabilità diversa



Esempio variabilità

51

Esempio variabilità

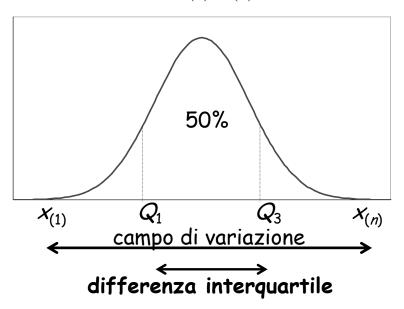
La media offre un valore "rappresentativo" dei dati, ma non della loro variabilità intorno a tale valore.

Indice di variabilità

esprime la tendenza di un carattere ad assumere modalità differenti

- non assume valori *negativi*
- il valore 0 è associato alla variabilità *nulla*
- assume valori via via crescenti quanto più le modalità differiscono tra loro

53


Indici di variabilità (o dispersione) (misure di variazione) > indici assoluti:

- campo di variazione (range)
- scarto semplice medio
- varianza
- deviazione standard (scarto quadratico medio)
- > indici relativi:
 - coefficiente di variazione

Campo di variazione (range)

Valore Valore più alto – più basso

$$R = x_{(1)} - x_{(n)}$$

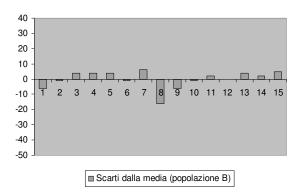
55

alimento %proteine Q_1 R = 12.3 - 0.2 = 12.1 $Q_{1} = \frac{0.8 + 1}{2} = 0.9$ $Q_{3} = \frac{7 + 8.1}{2} = 7.55$ $Q_{3} \qquad DI = Q_{3} - Q_{1} = 6.65$

Calcolo di R e DI

$$Q_1 = \frac{0.8 + 1}{2} = 0.9$$


$$Q_3 = \frac{7+8.1}{2} = 7.55$$


$$DI = Q_3 - Q_1 = 6.65$$

Scarto *i*-mo = x_i - \overline{x}

La alli dale ca	- 14	Scarto dalla
Individuo	altezza	media

		Scarto dalla
Individuo	altezza	media

scarto semplice medio media degli scarti assoluti

$$S_{M} = \frac{|x_{1} - \overline{x}| + |x_{2} - \overline{x}| + \ldots + |x_{N} - \overline{x}|}{N}$$

$$S_M = \frac{|x_1 - \overline{x}| \ n_1 + |x_2 - \overline{x}| \ n_2 + \dots + |x_k - \overline{x}| \ n_k}{n_1 + n_2 + \dots + n_k}$$

$$S_M = 22.93$$

 $S_M = 4.13$

Varianza

Devianza

(somma degli scarti al quadrato)

$$D = \sum (x_i - \overline{x})^2$$

Varianza

(media degli scarti al quadrato)

$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

59

Calcolo della varianza

	xi-M	(xi-M)^2
Totale	0.00	35349.50

$$\bar{x} = 366.25$$

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = 4418.69$$

Deviazione standard (scarto quadratico medio)

Deviazione standard (scarto quadratico medio)

$$\sigma = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$$

61

Calcolo della deviazione standard

	xi-M	(xi-M)^2
Totale	0.00	35349.50

$$\bar{x} = 366.25$$
 $\sigma^2 = 4418.69$

$$\sigma = \sqrt{4418.69} = 66.47$$

Proprietà

- 1. gli indici S_M , D, σ^2 e σ sono sempre non negativi e assumo il valore minimo (0) se e solo se tutte le modalità della distribuzione sono uguali tra loro
- 2. la devianza può essere calcolata come (formula semplificata)

$$D = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$

63

Proprietà

se ad ogni termine della distribuzione viene applicata la trasformazione aX+b, allora gli indici di variabilità cambieranno nel modo seguente

Devianza $\longrightarrow a^2D$ Varianza $\longrightarrow a^2\sigma^2$ Deviazione standard $\longrightarrow a\sigma$

Indici relativi di variabilità

dispersione relativa =
$$\frac{\text{dispersione assoluta}}{\text{media}}$$

- > sono dei numeri puri
- > consentono di confrontare la dispersione di variabili con differenti unità di misura

65

Coefficiente di variazione

$$V = \frac{\sigma}{\overline{\chi}}$$

$$V\% = \frac{\sigma}{\bar{x}} \times 100$$

Esempio

Valori di VES (velocità di elettrosedimentazione, mm/ora) misurati su due gruppi di 7 pazienti

- > stessa media $\overline{A} = 10 = \overline{B}$
- > in {A} i valori sono più dispersi che in {B}
 - in {A} i valori sono inclusi tra 4 e 35
 - in {B} i valori sono inclusi tra 7 e 17

67

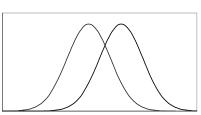
Esempio

{A}:

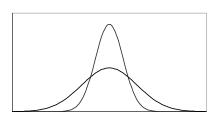
$$D = 8^{2} + 5^{2} + ... 4^{2} - (8 + 5 + ... 4)^{2} / 7 = 1440 - 700 = 740$$

$$\sigma^{2} = 740 / 6 = 123.33 \qquad \sigma = 11.1$$

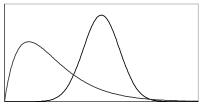
$$V\% = 100(11.1/10) = 111\%$$
{B}:


$$D = 11^{2} + 8^{2} + ... 7^{2} - (11 + 8 + ... 7)^{2} / 7 = 768 - 700 = 68$$

$$s2 = 68 / 6 = 11.33 \qquad \sigma = 3.4$$


$$V\% = 100(3.4/10) = 34\%$$

Indici caratteristici delle distribuzioni


posizione

variabilità

forma

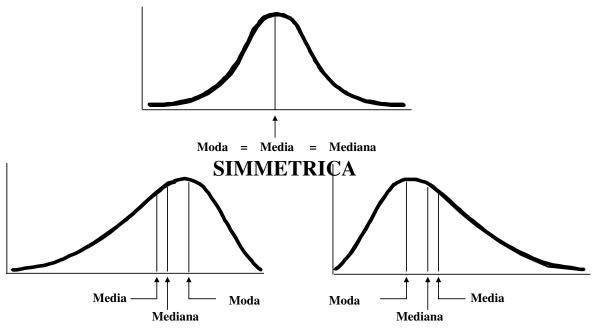
69

Indici di forma

- > coefficiente di asimmetria
- > coefficiente di curtosi

Asimmetria

> Simmetrica


I dati sono distribuiti in modo simmetrico se la parte sinistra e destra dell'istogramma sono pressoché speculari

> Asimmetrica

Se la distribuzione non è simmetrica, e si estende di più in una direzione

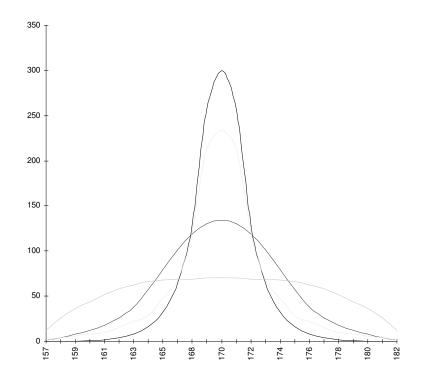
71

Asimmetria (per distribuzioni unimodali)

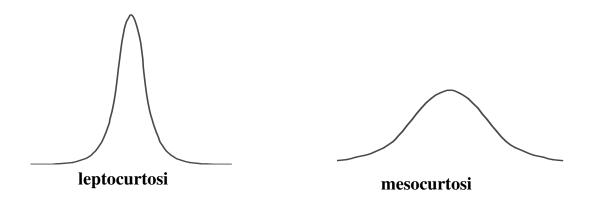
ASIMMETRICA A SINISTRA ASIMMETI (negativa)

ASIMMETRICA A DESTRA (positiva)

Indici di asimmetria


asimmetria =
$$\frac{\overline{x} - \text{moda}}{\sigma}$$

asimmetria =
$$\frac{3(\bar{x} - \text{mediana})}{\sigma}$$


$$\gamma_1 = \frac{\sum (x_i - \overline{x})^3}{n\sigma^3} \qquad \beta_{1=} \gamma_1^2$$

73

Indici di curtosi

Indici di curtosi

platicurtosi

Indici di curtosi

$$\gamma_2 = \frac{\sum (x_i - \overline{x})^4}{n\sigma^4} - 3$$

Esempio

Ceppi	t=0h	t=3h	t=4h	t=5h	t=6h	t=7h	t=8h	t=9h	PH medio	Deviazione
										standard
	0	3	4	5	6	7	8	9		
L100	6,66	6,53	6,52	6,43	6,42	6,39	6,35	6,32	6,4525	0,1115796
L102	6,63	6,49	6,46	6,41	6,4	6,36	6,3	6,27	6,415	0,1142679
L103	6,65	6,49	6,48	6,42	6,41	6,35	6,29	6,25	6,4175	0,1265758
L104	6,64	6,49	6,46	6,42	6,42	6,36	6,3	6,27	6,42	0,1167415
76G	6,71	6,49	6,47	6,46	6,41	6,38	6,37	6,33	6,4525	0,1176860
67	6,64	6,52	6,48	6,43	6,42	6,37	6,33	6,27	6,4325	0,1158509
53P	6,67	6,52	6,46	6,43	6,42	6,38	6,36	6,27	6,43875	0,1189763

77

CAMPIONE	232nm	262nm	268nm	270nm	274nm	assorbanza
strutto	0,922	0,157	0,157	0,158	0,146	ossidazione primaria
	0,916	0,160	0,163	0,162	0,150	ossidazione secondaria
Indici spettrofotometrici	0,884	0,126	0,131	0,131	0,119	(4)
·	0,884	0,126	0,130	0,129	0,117	(C)
	0,968	0,182	0,189	0,189	0,177	7
media	0,915	0,150	0,154	0,154	0,142	
dev std	0,035	0,024	0,025	0,025	e 0.025	
impasto (grasso)	1,159	0,364	0,346	0,343	0,320	
· ·	1,308	0,517	0,497	0,494	0,472	
	1,290	0,491	0,471	0,468	0,445	
	1,208	0,384	0,373	6 373 C	0,353	
media	1,241	0,439	0,422	0,420	0,397	
dev std	0,070	0,076	0.073	0,073	0,072	
tarallo	1,086	0,308	0,294	0,293	0,272	
(1a cottura, tcott=30min)	1,143	0,341	0,325	0,322	0,301	
	1,212	0,379	0,362	0,360	0,337	
	1,100	√(0,327 €)	0,312	0,310	0,289	
	1,151 🚓	0,327	0,312	0,309	0,288	
media	1,138	0,336	0,321	0,319	0,297	
dev std	0,849	0,027	0,025	0,025	0,024	
tarallo	(40)	0,350	0,335	0,332	0,310	
(2a cottura, tcott=40min)	1,147	0,349	0,333	0,331	0,309	
(O)	1,196	0,381	0,330	0,369	0,348	
	1,206	0,414	0,406	0,406	0,385	
18	1,187	0,390	0,374	0,372	0,350	
media	1,175	0,377	0,356	0,362	0,340	
dev std	0,030	0,028	0,033	0,031	0,032	
						78