

# Revealing Student Difficulties in Learning DC Circuits



# Background

- Student conceptual difficulties in learning DC circuits resistant to traditional instruction [1].
- Many PER-based interactive engagement instructional strategies developed to address student conceptual difficulties [2, 3, 4, 5].
- Limited persistent use of PER strategies by non-PER faculty [6].

## Problem

- How to identify student difficulties and determine how to address them.
- How to effectively implement PER-based instructional strategies using reflective teaching to improve implementation.

#### References

- L. C. McDermott and P. S. Shaffer, Am. J. Phys., 60(11), 994-1003 (1992).
- 2. E. Mazur, Peer Instruction, Upper Saddle River, NJ: Prentice Hall, 1997.
- 3. P. W. Laws, Workshop Physics Activity Guide, Hoboken, NJ: John Wiley & Sons, Inc., 2004.
- 4. L. C. McDermott and P. S. Shaffer, Tutorials in Introductory Physics, Upper Saddle River, NJ: Prentice Hall, 2002.
- D. R. Sokoloff and R. K. Thornton, Interactive Lecture Demonstrations, Hoboken, NJ: John Wiley & Sons, Inc., 2004.
   M. H. Dancy and C. Henderson, "Experiences of new faculty implementing research-based instructional strategies," in 2011 Physics Education Research Conference, Omaha, NE, 2012, pp.163-167.
- 7. C. H. Crouch and E. Mazur, Am. J. Phys., 69(9), 970-977 (2001).
- 8. D. M. Desbien, "Modeling Discourse Management Compared to Other Classroom Management Styles in University Physics", Ph.D. Thesis, Arizona State University, 2002, p.25.
- 9. R. R. Hake, Am. J. Phys., 66(1) 64-74 (1998).
- 9. R. R. Hake, Am. J. Phys., 66(1) 64-74 (1998).

  10. S. B. Merriam, Qualitative Research: a Guide to Design and Implementation, San Francisco: John Wiley & Sons, Inc.,
- 2009. 11. L. C. McDermott, "Am. J. Phys., 59(4), 301-315 (1991).

### Methods

#### Context

- Open access regional campus.
- Algebra-based introductory physics course.
- 36 health science students in class.

#### **Data Collection and Analysis**

- 1. Pre/Post-Test Concepts on DC Circuits
  Calculated average normalized gain [9].
- 2. Instructor Journal
  Open coding [10] to allow themes to emerge.
- 3. Student Survey

#### **Instructional Strategies**

**Peer Instruction** (in lecture)

- Multiple choice concept questions presented.
- Think-Pair-Share (1st think, then discuss with peer)
- Students vote.
- Instructor asks for multiple student volunteers to answer and explain their reasoning.

#### **Collaborative Problem Solving** (in recitation)

- Small groups work together on applications.
- Instructor guides thinking by seeding [8] ideas in the small groups

# Classroom Action Research for Improving Instructional Practice



**Problem:** Persistent difficulties with DC circuits **Conduct Research:** Identify Student Difficulties

- Conceptual difficulties
- Reasoning
- Mental Engagement

Take Action: to address difficulties

Inquiry-based Circuits activity addressing current concepts.

Reflect on implementation & Repeat cycle

# 

**Figure 1.** Series Circuit All three resistors are identical, RA = RB = Rc. What is the relationship between iB and ic?



Figure 2. Parallel Circuit

RA is identical to RB and their resistance is half of Rc, RA = RB =  $\frac{1}{2}$ Rc. What is the relationship between iB and ic?

#### **Mental Engagement**



**Figure 3.** Student Perceived Value of Understanding Concepts studying electric circuits.

## Discussion of Findings

#### **Conceptual Difficulty**

- a) Difficulties with concepts related to electric current [1]. [See FIGURE 1]
- Order of resistors matters.

"A resistor resists the current passing through it, therefore  $i_B$  should be  $> i_C$  ... since  $R_B$  is the 2nd resistor...  $i_B = 2i_C$ ."

Current is "used up" in a circuit.

"More current will flow to R<sub>B</sub>, but after it passes over it there will only be ½ of what went in to move to Rc."

b) Failure to recognize that circuit diagrams represent elements, not physical or spatial relationships [1]. [See FIGURE 2]

"Because Rc is farther away and goes through a longer line the current would only travel through RB."

c) Lack of a conceptual model for explaining the behavior of a DC circuit [1]. [See FIGURE 1]

"All three resistors are identical and  $R_A=R_B=R_C$ . For all three to be identical  $I_A=I_B=I_C$ ."

#### Reasoning

• Initially students used conceptual reasoning to explain their thinking, often incorrectly [See FIGURE 2].

"Rc has twice the resistance of RB and they're both getting the same amt. of current from iA, so ic would only have ½ the current iB has."

• Used both algebraic and conceptual reasoning, as they developed greater understanding. [See FIGURE 2].

"Ohm's Law:  $V=IR \rightarrow I=V/R$ . Since  $R_B$  and  $R_C$  are in parallel, they have the same voltage and we know the relationship of their resistors, so plug those into Ohm's Law:

iB=V/RB ic=V/Rc

 $i_B = 2V/Rc$  vs.  $i_C = V/Rc$ 

 $i_B = 2ic.$ "