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Symbols
Variables

a 1, 2, or 3 for planar, cylindrical, spher-
ical geometry

ai acceleration of i-th particle in molecu-
lar dynamics

A cross-sectional area of reactor;
Helmholtz free energy in thermody-
namics

Bi Biot number
Bim Biot number for mass
c concentration
Cp heat capacity at constant pressure
Cs heat capacity of solid
Cv heat capacity at constant volume
Co Courant number
D diffusion coefficient
Da Damköhler number
De effective diffusivity in porous catalyst
E efficiency of tray in distillation column
F molar flow rate into a chemical reactor
G Gibbs free energy in thermodynamics
hp heat transfer coefficient
H enthalpy in thermodynamics
J mass flux
k thermal conductivity; reaction rate con-

stant
ke effective thermal conductivity of

porous catalyst
kg mass transfer coefficient
K chemical equilibrium constant
L thickness of slab; liquid flow rate in dis-

tillation column; length of pipe for flow
in pipe

mi mass of i-th particle in molecular dy-
namics

M holdup on tray of distillation column
n power-law exponent in viscosity for-

mula for polymers
p pressure
Pe Peclet number

q heat flux
Q volumetric flow rate; rate of heat gener-

ation for heat transfer problems
r radial position in cylinder
ri position of i-th particle inmolecular dy-

namics
R radius of reactor or catalyst pellet
Re Reynolds number
S entropy in thermodynamics
Sh Sherwood number
t time
T temperature
u velocity
U internal energyy in thermodynamics
vi velocity of i-th particle inmolecular dy-

namics
V volume of chemical reactor; vapor flow

rate in distillation column; potential en-
ergy in molecular dynamics; specific
volume in thermodynamics

x position
z position from inlet of reactor

Greek symbols
a thermal diffusivity
δ Kronecker delta
∆ sampling rate
ε porosity of catalyst pellet
η viscosity in fluid flow; effectiveness

factor for reaction in a catalyst pellet
η0 zero-shear rate viscosity
φ Thiele modulus
ϕ void fraction of packed bed
λ time constant in polymer flow
ρ density
ρs density of solid
τ shear stress
µ viscosity
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Special symbols
| subject to
: mapping. For example, h :Rn → Rm ,

states that functions h map real num-
bers into m real numbers. There are m
functions h written in terms of n vari-
ables

∈ member of
→ maps into

1. Solution of Equations

Mathematical models of chemical engineering
systems can take many forms: they can be sets
of algebraic equations, differential equations,
and/or integral equations. Mass and energy bal-
ances of chemical processes typically lead to
large sets of algebraic equations:

a11x1+a12x2 = b1
a21x1+a22x2 = b2

Mass balances of stirred tank reactors may lead
to ordinary differential equations:

d y
d t

= f [y (t)]

Radiative heat transfer may lead to integral
equations:

y (x) = g (x)+λ

1∫
0

K (x, s) f (s) d s

Even when the model is a differential equa-
tion or integral equation, the most basic step in
the algorithm is the solution of sets of algebraic
equations. The solution of sets of algebraic equa-
tions is the focus of Chapter 1.
A single linear equation is easy to solve for

either x or y:

y = ax+b

If the equation is nonlinear,

f (x) = 0

it may be more difficult to find the x satisfying
this equation. These problems are compounded
when there are more unknowns, leading to si-
multaneous equations. If the unknowns appear
in a linear fashion, then an important considera-
tion is the structure of thematrix representing the
equations; special methods are presented here

for special structures. They are useful because
they increase the speed of solution. If the un-
knowns appear in a nonlinear fashion, the prob-
lem is much more difficult. Iterative techniques
must be used (i.e., make a guess of the so-
lution and try to improve the guess). An im-
portant question then is whether such an iter-
ative scheme converges. Other important types
of equations are linear difference equations and
eigenvalue problems, which are also discussed.

1.1. Matrix Properties

A matrix is a set of real or complex numbers
arranged in a rectangular array.

A=



a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

...
am1 am2 ... amn




The numbers aij are the elements of the matrix
A, or (A)ij = aij . The transpose of A is (AT ) =
aji .
The determinant of a square matrix A is

A=

∣∣∣∣∣∣∣∣∣∣

a11 a12 ... a1n
a21 a22 ... a2n
...

...
...

...
an1 an2 ... ann

∣∣∣∣∣∣∣∣∣∣
If the i-th row and j-th column are deleted, a
newdeterminant is formed having n−1 rows and
columns. This determinant is called theminor of
aij denoted as Mij . The cofactor A′

ij of the el-
ement aij is the signed minor of aij determined
by

A′
ij=(−1)i+jMij

The value of |A| is given by

|A|=
n∑
j=1

aijA
′
ij or

n∑
i=1

aijA
′
ij

where the elements aij must be taken from a
single row or column of A.
If all determinants formed by striking out

whole rows or whole columns of order greater
than r are zero, but there is at least one determi-
nant of order r which is not zero, the matrix has
rank r.



6 Mathematics in Chemical Engineering

The value of a determinant is not changed if
the rows and columns are interchanged. If the
elements of one row (or one column) of a de-
terminant are all zero, the value of the deter-
minant is zero. If the elements of one row or
column are multiplied by the same constant, the
determinant is the previous value times that con-
stant. If two adjacent rows (or columns) are in-
terchanged, the value of the new determinant is
the negative of the value of the original determi-
nant. If two rows (or columns) are identical, the
determinant is zero. The value of a determinant
is not changed if one row (or column) is multi-
plied by a constant and added to another row (or
column).
A matrix is symmetric if

aij=aji

and it is positive definite if

xTAx=
n∑
i=1

n∑
j=1

aijxixj≥0

for all x and the equality holds only if x= 0.
If the elements of A are complex numbers,A*

denotes the complex conjugate in which (A*)ij
= a*ij . If A=A* the matrix is Hermitian.
The inverse of a matrix can also be used to

solve sets of linear equations. The inverse is a
matrix such that when A is multiplied by its in-
verse the result is the identity matrix, a matrix
with 1.0 along the main diagonal and zero else-
where.

AA−1=I

IfAT=A−1 the matrix is orthogonal.
Matrices are added and subtracted element

by element.

A+B is aij+bij

Two matrices A and B are equal if aij = bij .
Special relations are

(AB)−1=B−1A−1, (AB)T=BTAT(
A−1)T=(AT )−1, (ABC)−1=C−1B−1A−1

Adiagonal matrix is zero except for elements
along the diagonal.

aij=

{
aii, i=j
0, i�=j

A tridiagonal matrix is zero except for elements
along the diagonal and one element to the right
and left of the diagonal.

aij=




0 if j<i−1
aij otherwise
0 if j>i+1

Block diagonal and pentadiagonal matrices also
arise, especiallywhen solving partial differential
equations in two- and three-dimensions.

QR Factorization of a Matrix. If A is an m
× n matrix with m≥ n, there exists an m×m
unitary matrix Q= [q1, q2, . . .qm ] and an m× n
right-triangular matrix R such that A=QR. The
QR factorization is frequently used in the ac-
tual computations when the other transforma-
tions are unstable.

Singular Value Decomposition. If A is an
m× n matrix with m≥ n and rank k ≤ n, con-
sider the two following matrices.

AA∗ andA∗A

An m×m unitary matrix U is formed from the
eigenvectors ui of the first matrix.

U= [u1,u2,. . .um]

An n× n unitary matrix V is formed from the
eigenvectors vi of the second matrix.

V =[v1,v2,. . .,vn]

Then the matrix A can be decomposed into

A=UΣV ∗

whereΣ is a k × k diagonalmatrixwith diagonal
elements dii=σi>0 for 1≤ i≤ k. The eigenval-
ues ofΣ∗Σ are σ2i . The vectors ui for k+1≤ i≤
m and vi for k+1≤ i≤ n are eigenvectors asso-
ciated with the eigenvalue zero; the eigenvalues
for 1≤ i≤ k are σ2i . The values of σi are called
the singular values of the matrix A. If A is real,
thenU and V are real, and hence orthogonal ma-
trices. The value of the singular value decompo-
sition comes when a process is represented by a
linear transformation and the elements of A, aij ,
are the contribution to an output i for a partic-
ular variable as input variable j. The input may
be the size of a disturbance, and the output is
the gain [1]. If the rank is less than n, not all the
variables are independent and they cannot all be
controlled. Furthermore, if the singular values
are widely separated, the process is sensitive to
small changes in the elements of the matrix and
the process will be difficult to control.
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1.2. Linear Algebraic Equations

Consider the n×n linear system

a11 x1+a12 x2+ . . .+a1n xn = f1
a21 x1+a22 x2+ . . .+a2n xn = f2

. . .

an1 x1+an2 x2+ . . .+ann xn = fn

In this equation a11, . . . , ann are known pa-
rameters, f 1, . . . , f n are known, and the un-
knowns are x1, . . . , xn . The values of all un-
knowns that satisfy every equation must be
found. This set of equations can be represented
as follows:
n∑
j=1

aij xj = fj or Ax = f

The most efficient method for solving a set of
linear algebraic equations is to perform a lower
– upper (LU) decomposition of the correspond-
ing matrix A. This decomposition is essentially
a Gaussian elimination, arranged for maximum
efficiency [2, 3].
The LU decomposition writes the matrix as

A=LU

The U is upper triangular; it has zero elements
below the main diagonal and possibly nonzero
values along the main diagonal and above it (see
Fig. 1). TheL is lower triangular. It has the value
1 in each element of the main diagonal, nonzero
values below the diagonal, and zero values above
the diagonal (see Fig. 1). The original problem
can be solved in two steps:

Ly = f ,Ux = y solvesAx = LUx = f

Eachof these steps is straightforward because
the matrices are upper triangular or lower trian-
gular.
When f is changed, the last steps can be

done without recomputing the LU decomposi-
tion. Thus,multiple right-hand sides canbe com-
puted efficiently. The number of multiplications
and divisions necessary to solve form right-hand
sides is:

Operation count =
1
3
n3−1

3
n+mn2

The determinant is given by the product of
the diagonal elements of U. This should be cal-
culated as the LU decomposition is performed.

Figure 1. Structure of L and U matrices

If the value of the determinant is a very large or
very small number, it can be divided or multi-
plied by 10 to retain accuracy in the computer;
the scale factor is then accumulated separately.
The condition number κ can be defined in terms
of the singular value decomposition as the ratio
of the largest dii to the smallest dii (see above).
It can also be expressed in terms of the norm of
the matrix:

κ (A) = ‖A‖‖A−1‖

where the norm is defined as

‖A‖≡supx�=0
‖Ax‖
‖x‖ = maxk

n∑
j=1

∣∣ajk∣∣
If this number is infinite, the set of equations

is singular. If the number is too large, the ma-
trix is said to be ill-conditioned. Calculation of
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the condition number can be lengthy so another
criterion is also useful. Compute the ratio of the
largest to the smallest pivot andmake judgments
on the ill-conditioning based on that.
When a matrix is ill-conditioned the LU

decomposition must be performed by using piv-
oting (or the singular value decomposition de-
scribed above). With pivoting, the order of the
elimination is rearranged. At each stage, one
looks for the largest element (in magnitude);
the next stages if the elimination are on the row
and column containing that largest element. The
largest element can be obtained from only the
diagonal entries (partial pivoting) or from all
the remaining entries. If the matrix is nonsingu-
lar,Gaussian elimination (orLUdecomposition)
could fail if a zero value were to occur along the
diagonal and were to be a pivot. With full pivot-
ing, however, the Gaussian elimination (or LU
decomposition) cannot fail because the matrix
is nonsingular.
The Cholesky decomposition can be used for

real, symmetric, positive definite matrices. This
algorithm saves on storage (divide by about 2)
and reduces the number of multiplications (di-
vide by 2), but adds n square roots.
The linear equations are solved by

x = A−1f

Generally, the inverse is not used in this way
because it requires three times more operations
than solving with an LU decomposition. How-
ever, if an inverse is desired, it is calculatedmost
efficiently by using the LU decomposition and
then solving

Ax(i) = b(i)

b
(i)
j =

{
0
1

j �=i
j = i

Then set

A−1 =
(
x(1)|x(2)|x(3)|···|x(n)

)

Solutions of Special Matrices. Special ma-
trices can be handled even more efficiently. A
tridiagonal matrix is one with nonzero entries
along themain diagonal, and one diagonal above
and below the main one (see Fig. 2). The corre-
sponding set of equations can then be written
as

aixi−1+bixi+cixi+1 = di

The LU decomposition algorithm for solving
this set is

b′1 = b1
for k = 2, n do
a′
k = ak

b′
k−1

, b′k = bk − ak
b′
k−1

ck−1

enddo
d′
1 = d1
for k = 2, n do
d′
k = dk − a′

kd
′
k−1

enddo
xn = d′

n/b
′
n

for k = n− 1, 1do

xk = d′
k − ckxk+1

b′
k

enddo

The number of multiplications and divisions for
a problem with n unknowns and m right-hand
sides is

Operation count = 2 (n−1)+m (3 n−2)

If

|bi|>|ai|+|ci|

no pivoting is necessary. For solving two-point
boundary value problems and partial differential
equations this is often the case.

Figure 2. Structure of tridiagonal matrices

Sparse matrices are ones in which the major-
ity of elements are zero. If the zero entries oc-
cur in special patterns, efficient techniques can
be used to exploit the structure, as was done
above for tridiagonal matrices, block tridiagonal
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matrices, arrow matrices, etc. These structures
typically arise from numerical analysis applied
to solve differential equations. Other problems,
such as modeling chemical processes, lead to
sparsematrices butwithout such a neatly defined
structure—just a lot of zeros in the matrix. For
matrices such as these, special techniques must
be employed: efficient codes are available [4].
These codes usually employ a symbolic factor-
ization, which must be repeated only once for
each structure of the matrix. Then an LU factor-
ization is performed, followed by a solution step
using the triangular matrices. The symbolic fac-
torization step has significant overhead, but this
is rendered small and insignificant if matrices
with exactly the same structure are to be used
over and over [5].
The efficiency of a technique for solving sets

of linear equations obviously depends greatly on
the arrangement of the equations and unknowns
because an efficient arrangement can reduce the
bandwidth, for example. Techniques for renum-
bering the equations and unknowns arising from
elliptic partial differential equations are avail-
able for finite difference methods [6] and for fi-
nite element methods [7].

Solutions with Iterative Methods. Sets of
linear equations can also be solved by using it-
erative methods; these methods have a rich his-
torical background. Some of them are discussed
in Chapter 8 and include Jacobi, Gauss – Sei-
del, and overrelaxation methods. As the speed
of computers increases, direct methods become
preferable for the general case, but for large
three-dimensional problems iterative methods
are often used.
The conjugate gradient method is an itera-

tive method that can solve a set of n linear equa-
tions in n iterations. The method primarily re-
quires multiplying a matrix by a vector, which
can be done very efficiently on parallel comput-
ers: for sparse matrices this is a viable method.
The original method was devised by Hestenes
and Stiefel [8]; however, more recent imple-
mentations use a preconditioned conjugate gra-
dient method because it converges faster, pro-
vided a good “preconditioner” can be found. The
system of n linear equations

Ax = f

where A is symmetric and positive definite, is
to be solved. A preconditioning matrixM is de-
fined in such a way that the problem

Mt = r

is easy to solve exactly (M might be diagonal,
for example). Then the preconditioned conju-
gate gradient method is

Guessx0

Calculate r0 = f −Ax0
SolveMt0 = r0, and set p0 = t0

for k = 1, n (or until convergence)

ak =
rT
k tk

pT
k

Apk

xk+1 = xk+akpk

rk+1 = rk −akApk
SolveMtk+1 = rk+1

bk =
rT
k+1tk+1

rT
k

tk

pk+1 = tk+1+bkpk

test for convergence

enddo

Note that the entire algorithm involves only
matrix multiplications. The generalized mini-
mal residual method (GMRES) is an iterative
method that can be used for nonsymmetric sys-
tems and is based on amodifiedGram–Schmidt
orthonormalization. Additional information, in-
cluding software for a variety of methods, is
available [9 – 13].
In dimensional analysis if the dimensions of

each physical variable Pj (there are n of them)
are expressed in terms of fundamental measure-
ment units mj (such as time, length, mass; there
are m of them):

[Pj ] = m
α1j
1 m

α2j
2 ···mαmj

m

then a matrix can be formed from the αij . If
the rank of this matrix is r, n − r independent
dimensionless groups govern that phenomenon.
In chemical reaction engineering the chemical
reaction stoichiometry can be written as
n∑
i=1

αij Ci = 0, j = 1, 2, . . . , m

where there are n species and m reactions. Then
if a matrix is formed from the coefficients αij ,
which is an n×mmatrix, and the rank of the ma-
trix is r, there are r independent chemical reac-
tions. The other n − r reactions can be deduced
from those r reactions.
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1.3. Nonlinear Algebraic Equations

Consider a single nonlinear equation in one un-
known,

f (x) = 0

In Microsoft Excel, roots are found by using
Goal Seek or Solver. Assign one cell to be x,
put the equation for f (x) in another cell, and let
Goal Seek or Solver find the value of x making
the equation cell zero. In MATLAB, the process
is similar except that a function (m-file) is de-
fined and the command fzero(‘f’,x0) provides
the solution x, starting from the initial guess x0.
Iterative methods applied to single equations

include the successive substitution method

xk+1 = xk+βf
(
xk
)

≡g
(
xk
)

and the Newton –Raphson method.

xk+1 = xk− f
(
xk
)

df/dx
(
xk
)

The former method converges if the derivative
of g(x) is bounded [3]. The latter method∣∣∣∣ dgdx (x)

∣∣∣∣≤µ for |x−α|<h

is based on a Taylor series of the equation about
the k-th iterate:

f
(
xk+1

)
= f

(
xk
)
+
df
dx

|xk

(
xk+1−xk

)
+

d2f
dx2

|xk

1
2

(
xk+1−xk

)2
+···

The second and higher-order terms are neglected
and f (xk+1) = 0 to obtain the method.∣∣∣∣dfdx

∣∣∣∣
x0
>0,

∣∣x1−x0∣∣ =
∣∣∣∣∣ f

(
x0
)

df/dx (x0)

∣∣∣∣∣
x0

≤b,

and

∣∣∣∣d2fdx2

∣∣∣∣≤c
Convergence of the Newton–Raphson method
depends on the properties of the first and second
derivative of f (x) [3, 14]. In practice the method
maynot converge unless the initial guess is good,
or it may converge for some parameters and not
others. Unfortunately, when the method is non-
convergent the results look as though a mistake
occurred in the computer programming; distin-
guishing between these situations is difficult, so
careful programming and testing are required.
If the method converges the difference between

successive iterates is something like 0.1, 0.01,
0.0001, 10−8. The error (when it is known) goes
the same way; the method is said to be quadrati-
cally convergentwhen it converges. If the deriva-
tive is difficult to calculate a numerical approx-
imation may be used.

df
dx

|xk =
f
(
xk+ε

)−f (xk)
ε

In the secant method the same formula is
used as for the Newton – Raphson method, ex-
cept that the derivative is approximated by using
the values from the last two iterates:

df
dx

|xk =
f
(
xk
)−f (xk−1)
xk−xk−1

This is equivalent to drawing a straight line
through the last two iterate values on a plot of f
(x) versus x. The Newton – Raphson method is
equivalent to drawing a straight line tangent to
the curve at the last x. In the method of false po-
sition (or regula falsi), the secant method is used
to obtain xk+1, but the previous value is taken
as either xk−1 or xk . The choice is made so that
the function evaluated for that choice has the
opposite sign to f (xk+1). This method is slower
than the secant method, but it is more robust and
keeps the root between two points at all times. In
all these methods, appropriate strategies are re-
quired for bounds on the function or when df /dx
= 0.Brent’s method combines bracketing, bisec-
tion, and an inverse quadratic interpolation to
provide a method that is fast and guaranteed to
converge, if the root can be bracketed initially
[15, p. 251].
In the method of bisection, if a root lies bet-

ween x1 and x2 because f (x1) < 0 and f (x2) >
0, then the function is evaluated at the center, xc=
0.5 (x1+ x2). If f (xc) > 0, the root lies between
x1 and xc. If f (xc) < 0, the root lies between xc
and x2. The process is then repeated. If f (xc) =
0, the root is xc. If f (x1) > 0 and f (x2) > 0,
more than one root may exist between x1 and x2
(or no roots).
For systemsof equations theNewton – Raph-

son method is widely used, especially for equa-
tions arising from the solution of differential
equations.

fi ({xj}) = 0, 1≤i, j≤n,
where {xj} = (x1, x2,. . ., xn) = x

Then, an expansion in several variables occurs:
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fi

(
xk+1

)
= fi

(
xk
)
+

n∑
j=1

∂fi

∂xj
|xk

(
xk+1j −xkj

)
+···

The Jacobian matrix is defined as

Jkij =
∂fi

∂xj

∣∣∣∣xk

and the Newton – Raphson method is
n∑
j=1

Jkij

(
xk+1−xk

)
= −fi

(
xk
)

For convergence, the norm of the inverse of
the Jacobian must be bounded, the norm of
the function evaluated at the initial guess must
be bounded, and the second derivative must be
bounded [14, p. 115], [3, p. 12].
A review of the usefulness of solution meth-

ods for nonlinear equations is available [16].
This review concludes that the Newton – Raph-
son method may not be the most efficient. Broy-
den’s method approximates the inverse to the Ja-
cobian and is a good all-purpose method, but a
good initial approximation to the Jacobian ma-
trix is required. Furthermore, the rate of con-
vergence deteriorates for large problems, for
which the Newton – Raphson method is better.
Brown’s method [16] is very attractive, whereas
Brent’s is notworth the extra storage and compu-
tation. For large systems of equations, efficient
software is available [11 – 13].

Homotopy methods can be used to ensure
finding the solution when the problem is espe-
cially complicated. Suppose an attempt is made
to solve f (x) = 0, and it fails; however, g (x) =
0 can be solved easily, where g (x) is some func-
tion, perhaps a simplification of f (x). Then, the
two functions can be embedded in a homotopy
by taking

h (x, t) = t f (x)+ (1−t) g (x)

In this equation, h can be a n×n matrix for
problems involving n variables; then x is a vec-
tor of length n. Then h (x, t) = 0 can be solved
for t = 0 and t gradually changes until at t = 1, h
(x, 1) = f (x). If the Jacobian of h with respect
to x is nonsingular on the homotopy path (as
t varies), the method is guaranteed to work. In
classical methods, the interval from t = 0 to t =
1 is broken up intoN subdivisions. Set∆t = 1/N
and solve for t = 0, which is easy by the choice
of g (x). Then set t = ∆t and use the Newton –

Raphson method to solve for x. Since the ini-
tial guess is presumably pretty good, this has a
high chance of being successful. That solution
is then used as the initial guess for t = 2 ∆t and
the process is repeated by moving stepwise to t
= 1. If the Newton – Raphson method does not
converge, then ∆t must be reduced and a new
solution attempted.
Another way of using homotopy is to create

an ordinary differential equation by differentiat-
ing the homotopy equation along the path (where
h = 0).

dh [x (t) ,t]
dt

=
∂h

∂x

dx
dt

+
∂h

∂t
= 0

This can be expressed as an ordinary differential
equation for x (t):

∂h

∂x

dx
dt

= −∂h

∂t

If Euler’s method is used to solve this equation,
a value x0 is used, and dx/dt from the above
equation is solved for. Then

x1,0 = x0+∆t
dx
dt

is used as the initial guess and the homotopy
equation is solved for x1.

∂h

∂x

(
x1,k+1−x1,k

)
= −h

(
x1,k,t

)
Then t is increased by ∆t and the process is re-
peated.
In arc-length parameterization, both x and t

are considered parameterized by a parameter s,
which is thought of as the arc length along a
curve. Then the homotopy equation is written
along with the arc-length equation.

∂h
∂x

dx
ds
+ ∂h
∂t

dt
ds

= 0

dxT

ds
dx
ds+

(
dt
ds

)2
= 1

The initial conditions are

x (0) = x0

t (0) = 0

The advantage of this approach is that it works
even when the Jacobian of h becomes singu-
lar because the full matrix is rarely singular. Il-
lustrations applied to chemical engineering are
available [17]. Software to perform these com-
putations is available (called LOCA) [18].
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1.4. Linear Difference Equations

Difference equations arise in chemical engineer-
ing fromstagedoperations, such as distillationor
extraction, as well as from differential equations
modeling adsorption and chemical reactors. The
value of a variable in the n-th stage is noted by a
subscriptn. For example, if yn,i denotes themole
fraction of the i-th species in the vapor phase on
the n-th stage of a distillation column, xn,i is the
corresponding liquid mole fraction, R the reflux
ratio (ratio of liquid returned to the column to
product removed from the condenser), and Kn,i
the equilibrium constant, then themass balances
about the top of the column give

yn+1,i =
R

R+1
xn,i+

1
R+1

x0,i

and the equilibrium equation gives

yn,i = Kn,ixn,i

If these are combined,

Kn+1,ixn+1,i =
R

R+1
xn,i+

1
R+1

x0,i

is obtained,which is a linear difference equation.
This particular problem is quite complicated,
and the interested reader is referred to [19, Chap.
6]. However, the form of the difference equa-
tion is clear. Several examples are given here for
solving difference equations. More complete in-
formation is available in [20].
An equation in the form

xn+1−xn=fn+1
can be solved by

xn =
n∑
i=1

fi

Usually, difference equations are solved analyt-
ically only for linear problems.When the coeffi-
cients are constant and the equation is linear and
homogeneous, a trial solution of the form

xn = ϕn

is attempted; ϕ is raised to the power n. For ex-
ample, the difference equation

cxn−1+bxn+axn+1 = 0

coupled with the trial solution would lead to the
equation

aϕ2+bϕ+c = 0

This gives

ϕ1,2 =
−b±√

b2−4ac
2a

and the solution to the difference equation is

xn = Aϕn1+Bϕ
n
2

where A and B are constants that must be speci-
fied by boundary conditions of some kind.
When the equation is nonhomogeneous, the

solution is represented by the sum of a particular
solution and a general solution to the homoge-
neous equation.

xn = xn,P+xn,H

The general solution is the one found for the
homogeneous equation, and the particular so-
lution is any solution to the nonhomogeneous
difference equation. This can be found by meth-
ods analogous to those used to solve differential
equations: the method of undetermined coeffi-
cients and the method of variation of parame-
ters. The last method applies to equations with
variable coefficients, too. For a problem such as

xn+1−fnxn = 0
x0 = c

the general solution is

xn=c
n∏
i=1

fi−1

This can then be used in the method of variation
of parameters to solve the equation

xn+1−fnxn = gn

1.5. Eigenvalues

The n×n matrix A has n eigenvalues λi , i = 1, .
. . , n, which satisfy

det (A−λiI) = 0

If this equation is expanded, it can be represented
as

Pn (λ) = (−λ)n+a1(−λ)n−1+a2(−λ)n−2+···
+an−1 (−λ)+an = 0

If the matrix A has real entries then ai are real
numbers, and the eigenvalues either are real
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numbers or occur in pairs as complex numbers
with their complex conjugates (for definition of
complex numbers, see Chap. 3). The Hamilton
– Cayley theorem [19, p. 127] states that thema-
trix A satisfies its own characteristic equation.

Pn (A) = (−A)n+a1(−A)n−1+a2(−A)n−2+···
+an−1 (−A)+anI = 0

A laborious way to find the eigenvalues of
a matrix is to solve the n-th order polynomial
for the λi—far too time consuming. Instead the
matrix is transformed into another form whose
eigenvalues are easier to find. In the Givens
method and the Housholder method the matrix
is transformed into the tridiagonal form; then, in
a fixed number of calculations the eigenvalues
can be found [15]. The Givens method requires
4 n3/3 operations to transform a real symmetric
matrix to tridiagonal form, whereas the House-
holder method requires half that number [14].
Once the tridiagonal form is found, a Sturm se-
quence is applied to determine the eigenvalues.
These methods are especially useful when only
a few eigenvalues of the matrix are desired.
If all the eigenvalues are needed, the Q R al-

gorithm is preferred [21].
The eigenvalues of a certain tridiagonal ma-

trix can be found analytically. If A is a tridiago-
nal matrix with

aii = p, ai,i+1 = q,ai+1,i = r, qr>0

then the eigenvalues of A are [22]

λi = p+2(qr)1/2cos
iπ

n+1
i = 1,2,. . .,n

This result is useful when finite differencemeth-
ods are applied to the diffusion equation.

2. Approximation and Integration

2.1. Introduction

Two types of problems arise frequently:

1) A function is known exactly at a set of points
and an interpolating function is desired. The
interpolantmay be exact at the set of points, or
it may be a “best fit” in some sense. Alterna-
tively it may be desired to represent a function
in some other way.

2) Experimental data must be fit with a math-
ematical model. The data have experimental
error, so some uncertainty exists. The param-
eters in the model as well as the uncertainty in
the determination of those parameters is de-
sired.

These problems are addressed in this chapter.
Section 2.2 gives the properties of polynomi-
als defined over the whole domain and Section
2.3 of polynomials defined on segments of the
domain. In Section 2.4, quadrature methods are
given for evaluating an integral. Least-squares
methods for parameter estimation for both linear
and nonlinear models are given in Sections 2.5.
Fourier transforms to represent discrete data are
described in Section 2.7. The chapter closeswith
extensions to two-dimensional representations.

2.2. Global Polynomial Approximation

A global polynomial Pm (x) is defined over the
entire region of space

Pm (x) =
m∑
j=0

cjx
j

This polynomial is of degree m (highest power
is xm ) and orderm + 1 (m + 1 parameters {cj}).
If a set of m + 1 points is given,

y1 = f (x1) , y2 = f (x2) ,. . ., ym+1 = f (xm+1)

then Lagrange’s formula yields a polynomial of
degree m that goes through the m + 1 points:

Pm (x) =
(x−x2)(x−x3)···(x−xm+1)

(x1−x2)(x1−x3)···(x1−xm+1)
y1+

(x−x1)(x−x3)···(x−xm+1)
(x2−x1)(x2−x3)···(x2−xm+1)

y2+···+
(x−x1)(x−x2)···(x−xm)

(xm+1−x1)(xm+1−x2)···(xm+1−xm)ym+1

Note that each coefficient of yj is a polynomial
of degree m that vanishes at the points {xj} (ex-
cept for one value of j ) and takes the value of
1.0 at that point, i.e.,

Pm (xj) = yj j = 1, 2,. . ., m+1

If the function f (x) is known, the error in the
approximation is [23]

|error (x)| ≤ |xm+1−x1|m+1

(m+1)!

maxx1≤x≤xm+1

∣∣f (m+1) (x)∣∣
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The evaluation of Pm (x) at a point other than
the defining points can be made with Neville’s
algorithm [15]. Let P1 be the value at x of the
unique function passing through the point (x1,
y1); i.e., P1= y1. Let P12 be the value at x of the
unique polynomial passing through the points x1
and x2. Likewise, Pijk ...r is the unique polyno-
mial passing through the points xi , xj , xk , . . . ,
xr . The following scheme is used:

These entries are defined by using

Pi(i+1)···(i+m) =

(x−xi+m)Pi(i+1)···(i+m−1)+(xi−x)P(i+1)(i+2)···(i+m)
xi−xi+m

Consider P1234: the terms on the right-hand side
of the equation involve P123 and P234. The “par-
ents,” P123 and P234, already agree at points
2 and 3. Here i = 1, m = 3; thus, the parents
agree at xi+1, . . . , xi+m−1 already. The for-
mula makes Pi(i+1)...(i+m) agree with the func-
tion at the additional points xi+m and xi . Thus,
Pi(i+1)...(i+m) agreeswith the function at all the
points {xi , xi+1, . . . , xi+m}.

Orthogonal Polynomials. Another form of
the polynomials is obtained by defining them so
that they are orthogonal. It is required that Pm
(x) be orthogonal to Pk (x) for all k = 0, . . . ,
m − 1.

b∫
a
W (x)Pk (x)Pm (x) dx = 0

k = 0,1,2,. . ., m−1

The orthogonality includes a nonnegative
weight function, W (x) ≥ 0 for all a ≤ x ≤ b.
This procedure specifies the set of polynomials
to within multiplicative constants, which can be
set either by requiring the leading coefficient to
be one or by requiring the norm to be one.
b∫
a

W (x)P 2m (x) dx = 1

The polynomialPm (x) hasm roots in the closed
interval a to b.
The polynomial

p (x) = c0P0 (x)+c1P1 (x)+···cm Pm (x)

minimizes

I =

b∫
a

W (x) [f (x)−p (x)]2 dx

when

cj =

b∫
a
W (x) f(x)Pj(x)dx

Wj
,

Wj =
b∫
a
W (x)P 2j (x) dx

Note that each cj is independent of m, the num-
ber of terms retained in the series. Theminimum
value of I is

Imin =

b∫
a

W (x) f2 (x) dx−
m∑
j=0

Wjc
2
j

Such functions are useful for continuous data,
i.e., when f (x) is known for all x.
Typical orthogonal polynomials are given in

Table 1. Chebyshev polynomials are used in
spectral methods (see Chap. 8). The last two
rows of Table 1 are widely used in the orthogo-
nal collocation method in chemical engineering.

Table 1. Orthogonal polynomials [15, 23]

a b W (x) Name Recursion
relation

−1 1 1 Legendre (i+1) Pi+1=(2 i+1)xPi− i Pi−1

−1 1 1√
1−x2

Chebyshev T i+1=2xT i−T i−1

0 1 x q−1 (1−x)p−q Jacobi ( p, q)

−∞ ∞ e−x2
Hermite Hi+1=2xHi−2 i Hi−1

0 ∞ x c e−x Laguerre (c) (i+1) L c
i+1=(−x+2 i+c+1) L c

i −(i+c) L c
i−1

0 1 1 shifted Legendre
0 1 1 shifted Legendre, function of x2



Mathematics in Chemical Engineering 15

The last entry (the shifted Legendre polynomial
as a function of x2) is defined by

1∫
0
W
(
x2
)
Pk
(
x2
)
Pm

(
x2
)
xa−1dx = 0

k = 0,1,. . ., m−1

where a = 1 is for planar, a = 2 for cylindrical,
and a = 3 for spherical geometry. These func-
tions are useful if the solution can be proved to
be an even function of x.

Rational Polynomials. Rational polynomi-
als are ratios of polynomials. A rational poly-
nomial Ri(i+1)...(i+m) passing through m + 1
points

yi = f (xi) , i = 1,. . .,m+1

is

Ri(i+1)···(i+m) =
Pµ(x)
Qν(x)

= p0+p1x+···+pµxµ

q0+q1x+···+qνxν ,

m+1 = µ+ν+1

An alternative condition is to make the rational
polynomial agree with the first m + 1 terms in
the power series, giving a Padé approximation,
i.e.,

dkRi(i+1)···(i+m)
dxk

=
dkf (x)
dxk

k = 0,. . .,m

The Bulirsch – Stoer recursion algorithm can be
used to evaluate the polynomial:

Ri(i+1)···(i+m) = R(i+1)···(i+m)

+
R(i+1)···(i+m)−Ri(i+1)···(i+m−1)

Den

Den =
(

x−xi
x−xi+m

)
(
1− R(i+1)···(i+m)Ri(i+1)···(i+m−1)

R(i+1)···(i+m)−R(i+1)···(i+m−1)

)
−1

Rational polynomials are useful for approximat-
ing functions with poles and singularities, which
occur in Laplace transforms (see Section 4.2).
Fourier series are discussed in Section 4.1.

Representation by sums of exponentials is also
possible [24].
In summary, for discrete data, Legendre poly-

nomials and rational polynomials are used. For
continuous data a variety of orthogonal polyno-
mials and rational polynomials are used. When
the number of conditions (discrete data points)
exceeds the number of parameters, then see Sec-
tion 2.5.

2.3. Piecewise Approximation

Piecewise approximations can be developed
from difference formulas [3]. Consider a case
in which the data points are equally spaced

xn+1−xn = ∆x

yn = y (xn)

forward differences are defined by

∆yn = yn+1−yn
∆2yn = ∆yn+1−∆yn = yn+2−2yn+1+yn

Then, a new variable is defined

α =
xα−x0
∆x

and the finite interpolation formula through the
points y0, y1, . . . , yn is written as follows:

yα = y0+α∆y0+
α(α−1)
2! ∆2y0+···+

α(α−1)···(α−n+1)
n! ∆ny0

(1)

Keeping only the first two terms gives a straight
line through (x0, y0) − (x1, y1); keeping the first
three terms gives a quadratic function of posi-
tion going through those points plus (x2, y2).
The value α = 0 gives x = x0; α = 1 gives x =
x1, etc.

Backward differences are defined by

∇yn = yn−yn−1

∇2yn = ∇yn−∇yn−1 = yn−2yn−1+yn−2

The interpolation polynomial of order n through
the points y0, y−1, y−2, . . . is

yα = y0+α∇y0+
α(α+1)
2! ∇2y0+···+

α(α+1)···(α+n−1)
n! ∇ny0

The value α = 0 gives x = x0; α = − 1 gives x =
x−1. Alternatively, the interpolation polynomial
of order n through the points y1, y0, y−1, . . . is

yα = y1+(α−1)∇y1+
α(α−1)
2! ∇2y1+···+

(α−1)α(α+1)···(α+n−2)
n! ∇ny1

Now α = 1 gives x = x1; α = 0 gives x = x0.
The finite element method can be used for

piecewise approximations [3]. In the finite ele-
ment method the domain a ≤ x ≤ b is divided
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into elements as shown in Figure 3. Each func-
tion N i (x) is zero at all nodes except xi ; N i
(xi ) = 1. Thus, the approximation is

y (x) =
NT∑
i=1

ciNi (x) =
NT∑
i=1

y (xi)Ni (x)

where ci= y (xi ). For convenience, the trial
functions are definedwithin an element by using
new coordinates:

u =
x−xi
∆xi

The ∆xi need not be the same from element
to element. The trial functions are defined as
N i (x) (Fig. 3 A) in the global coordinate sys-
tem andNI (u) (Fig. 3 B) in the local coordinate
system (which also requires specification of the
element). For xi< x < xi+1

Figure 3.Galerkin finite element method – linear functions
A) Global numbering system; B) Local numbering system

y (x) =
NT∑
i=1

ciNi (x) = ciNi (x)+ci+1Ni+1 (x)

because all the other trial functions are zero
there. Thus

y (x) = ciNI=1 (u)+ci+1NI=2 (u) ,

xi<x<xi+1, 0<u<1

Then

NI=1 = 1−u, NI=2 = u

and the expansion is rewritten as

y (x) =
2∑
I=1

ceINI (u) (2)

x in e-th element and ci = ceI within the element
e. Thus, given a set of points (xi , yi ), a finite ele-
ment approximation can be made to go through
them.
Quadratic approximations can also be used

within the element (see Fig. 4). Now the trial
functions are

Figure 4. Finite elements approximation – quadratic ele-
ments
A) Global numbering system; B) Local numbering system

NI=1 = 2 (u−1)
(
u− 1

2

)
NI=2 = 4u (1−u)
NI=3 = 2u

(
u− 1

2

) (3)

The approximation going through an odd num-
ber of points (xi , yi ) is then

y (x) =
3∑
I=1

ceINI (u) x in e−th element

with ceI = y (xi) ,i = (e−1) 2+I
in the e−th element

Hermite cubic polynomials can also be used;
these are continuous and have continuous first
derivatives at the element boundaries [3].

Splines. Splines are functions that match
given values at the points x1, . . . , xNT , shown
in Figure 5, and have continuous derivatives up
to some order at the knots, or the points x2, . . . ,
xNT−1. Cubic splines are most common. In this
case the function is represented by a cubic poly-
nomial within each interval and has continuous
first and second derivatives at the knots.
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Figure 5. Finite elements for cubic splines
A) Notation for spline knots. B) Notation for one element

Consider the points shown in Figure 5 A. The
notation for each interval is shown in Figure 5 B.
Within each interval the function is represented
as a cubic polynomial.

Ci (x) = a0i+a1ix+a2ix2+a3ix3

The interpolating function takes on specified
values at the knots.

Ci−1 (xi) = Ci (xi) = f (xi)

Given the set of values {xi , f (xi )}, the objective
is to pass a smooth curve through those points,
and the curve should have continuous first and
second derivatives at the knots.

C′
i−1 (xi) = C′

i (xi)

C
′′
i−1 (xi) = C

′′
i (xi)

The formulas for the cubic spline are derived
as follows for one region. Since the function is
a cubic function the third derivative is constant
and the second derivative is linear in x. This is
written as

C
′′
i (x) = C

′′
i (xi)+

[
C

′′
i (xi+1)−C′′

i (xi)
] x−xi
∆xi

and integrated once to give

C′
i (x) = C′

i (xi)+C
′′
i (xi) (x−xi)+[

C
′′
i (xi+1)−C′′

i (xi)
]
(x−xi)

2

2∆xi

and once more to give

Ci (x) = Ci (xi)+C′
i (xi) (x−xi)+C′′

i (xi)

(x−xi)
2

2 +
[
C

′′
i (xi+1)−C′′

i (xi)
]
(x−xi)

3

6∆xi

Now

yi = Ci (xi) ,y′
i = C′

i (xi) ,y
′′
i = C

′′
i (xi)

is defined so that

Ci (x) = yi+y′
i (x−xi)+ 1

2y
′′
i (x−xi)2+

1
6∆xi

(
y

′′
i+1−y

′′
i

)
(x−xi)3

A number of algebraic steps make the interpola-
tion easy. These formulas are written for the i-th
element as well as the i − 1-th element. Then
the continuity conditions are applied for the first
and second derivatives, and the values y′

i and
y′

i−1 are eliminated [15]. The result is

y
′′
i−1∆xi−1+y

′′
i 2 (∆xi−1+∆xi)+y

′′
i+1∆xi =

−6
(
yi−yi−1
∆xi−1

− yi+1−yi
∆xi

)
This is a tridiagonal system for the set of {y′′

i}
in terms of the set of {yi}. Since the continu-
ity conditions apply only for i = 2, . . . , NT −
1, only NT − 2 conditions exist for the NT val-
ues of y′′

i . Twoadditional conditions are needed,
and these are usually taken as the value of the
second derivative at each end of the domain, y′′

1 ,
y′′

NT . If these values are zero, the natural cu-
bic splines are obtained; they can also be set to
achieve some other purpose, such as making the
first derivative match some desired condition at
the two ends. With these values taken as zero,
in the natural cubic spline, an NT − 2 system
of tridiagonal equations exists, which is easily
solved. Once the second derivatives are known
at each of the knots, the first derivatives are given
by

y′
i =

yi+1−yi
∆xi

−y′′
i

∆xi
3

−y′′
i+1

∆xi
6

The function itself is then known within each
element.

Orthogonal Collocation on Finite Elements.
In themethod of orthogonal collocation on finite
elements the solution is expanded in a polyno-
mial of order NP = NCOL + 2 within each el-
ement [3]. The choice NCOL = 1 corresponds
to using quadratic polynomials, whereas NCOL
= 2 gives cubic polynomials. The notation is
shown in Figure 6. Set the function to a known
value at the two endpoints

y1 = y (x1)

yNT = y (xNT )

and then at the NCOL interior points to each el-
ement
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Figure 6. Notation for orthogonal collocation on finite elements
• Residual condition; � Boundary conditions; | Element boundary, continuity
NE = total no. of elements.
NT = (NCOL + 1) NE + 1

yei = yi = y (xi) , i = (NCOL+1) e+I

The actual points xi are taken as the roots of the
orthogonal polynomial.

PNCOL (u) = 0 gives u1,u2,. . ., uNCOL

and then

xi = x(e)+∆xeuI≡xeI
The first derivatives must be continuous at the
element boundaries:

dy
dx

|
x=x(2)−

=
dy
dx

|
x=x(2)+

Within each element the interpolation is a poly-
nomial of degree NCOL + 1. Overall the func-
tion is continuous with continuous first deriva-
tives. With the choice NCOL = 2, the same ap-
proximation is achieved as with Hermite cubic
polynomials.

2.4. Quadrature

To calculate the value of an integral, the func-
tion can be approximated by using each of the
methods described in Section 2.3. Using the first
three terms in Equation 1 gives

x0+h∫
x0

y (x) dx =
1∫
0
yαhdα

= h
2 (y0+y1)− 1

12h
3y

′′
0 (ξ) , x0≤ξ≤x0+h

This corresponds to passing a straight line
through the points (x0, y0), (x1, y1) and inte-
grating under the interpolant. For equally spaced
points at a = x0, a + ∆x = x1, a + 2 ∆x = x2, . .
. , a + N ∆x = xN , a + (N + 1) ∆x = b = xn+1,
the trapezoid rule is obtained.

Trapezoid Rule.

b∫
a
y (x) dx = h

2 (y0+2y1+2y2+···+2yN

+yN+1)+O
(
h3
)

The first five terms in Equation 1 are retained
and integrated over two intervals.

x0+2h∫
x0

y (x) dx =
2∫
0
yαhdα = h

3 (y0+4y1+y2)

−h5

90 y
(IV)
0 (ξ) , x0≤ξ≤x0+2h

This corresponds to passing a quadratic func-
tion through three points and integrating. For an
even number of intervals and an odd number of
points, 2 N + 1, with a = x0, a + ∆x = x1, a + 2
∆x = x2, . . . , a + 2 N ∆x = b, Simpson’s rule
is obtained.

Simpson’s Rule.

b∫
a
y (x) dx = h

3 (y0+4y1+2y2+4y3+2y4

+···+2y2N−1+4y2N+y2N+1)+O
(
h5
)
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Within each pair of intervals the interpolant is
continuouswith continuous derivatives, but only
the function is continuous from one pair to an-
other.
If the finite element representation is used

(Eq. 2), the integral is
xi+1∫
xi

y (x) dx =
1∫
0

2∑
I=1

ceINI (u) (xi+1−xi) du

= ∆xi
2∑
I=1

ceI

1∫
0
NI (u) du = ∆xi

(
ce1
1
2+c

e
2
1
2

)
= ∆xi

2 (yi+yi+1)

Since ce1 = yi and ce2 = yi+1, the result is the
same as the trapezoid rule. These formulas can
be added together to give linear elements:

b∫
a

y (x) dx =
∑

e

∆xe
2

(ye1+y
e
2)

If the quadratic expansion is used (Eq. 3), the
endpoints of the element are xi and xi+2, and
xi+1 is the midpoint, here assumed to be equally
spaced between the ends of the element:
xi+2∫
xi

y (x) dx =
1∫
0

3∑
I=1

ceINI (u) (xi+2−xi) du

= ∆xi
3∑
I=1

ceI

1∫
0
NI (u) du

= ∆xe
(
ce1
1
6+c

e
2
2
3+c

e
3
1
6

)
For many elements, with different ∆xe ,
quadratic elements:

b∫
a

y (x) =
∑

e

∆xe
6

(ye1+4y
e
2+y

e
3)

If the element sizes are all the same this gives
Simpson’s rule.
For cubic splines the quadrature rule within

one element is
xi+1∫
xi

Ci (x) dx = 1
2∆xi (yi+yi+1)

− 1
24∆x

3
i

(
y

′′
i +y

′′
i+1

)
For the entire interval the quadrature formula is
xNT∫
x1

y (x) dx = 1
2

NT−1∑
i=1

∆xi(yi+yi+1)

− 1
24

NT−1∑
i=1

∆x3i (y
′′
i +y

′′
i+1)

with y′′
1= 0, y

′′
NT = 0 for natural cubic splines.

When orthogonal polynomials are used, as in
Equation 1, the m roots to Pm (x) = 0 are cho-
sen as quadrature points and called points {xj}.
Then the quadrature is Gaussian:
1∫
0

y (x) dx =
m∑
j=1

Wjy (xj)

The quadrature is exact when y is a polynomial
of degree 2 m − 1 in x. The m weights and m
Gauss points result in 2 m parameters, chosen to
exactly represent a polynomial of degree 2 m −
1, which has 2 m parameters. The Gauss points
and weights are given in Table 2. The weights
can be defined with W (x) in the integrand as
well.

Table 2. Gaussian quadrature points and weights *

N xi W i

1 0.5000000000 0.6666666667
2 0.2113248654 0.5000000000

0.7886751346 0.5000000000
3 0.1127016654 0.2777777778

0.5000000000 0.4444444445
0.8872983346 0.2777777778

4 0.0694318442 0.1739274226
0.3300094783 0.3260725774
0.6699905218 0.3260725774
0.9305681558 0.1739274226

5 0.0469100771 0.1184634425
0.2307653450 0.2393143353
0.5000000000 0.2844444444
0.7692346551 0.2393143353
0.9530899230 0.1184634425

* For a given N the quadrature points x2 , x3 , . . . , xNP−1 are
given above. x1 = 0, xNP = 1. For N = 1, W1 = W3 = 1/6 and for
N≥ 2, W1 = WNP = 0.

For orthogonal collocation on finite elements
the quadrature formula is
1∫
0

y (x) dx =
∑

e
∆xe

NP∑
j=1

Wjy (xeJ )

Each special polynomial has its own quadra-
ture formula. For example, Gauss – Legendre
polynomials give the quadrature formula
∞∫
0

e−xy (x) dx =
n∑
i=1

Wiy (xi)

(points and weights are available in mathe-
matical tables) [23].
For Gauss – Hermite polynomials the

quadrature formula is
∞∫

−∞
e−x2y (x) dx =

n∑
i=1

Wiy (xi)
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(points and weights are available in mathemati-
cal tables) [23].

Romberg’s method uses extrapolation tech-
niques to improve the answer [15]. If I1 is the
value of the integral obtained by using interval
size h = ∆x, I2 the value of I obtained by using
interval size h/2, and I0 the true value of I, then
the error in a method is approximately hm , or

I1≈I0+chm

I2≈I0+c
(
h

2

)m
Replacing the ≈ by an equality (an approxima-
tion) and solving for c and I0 give

I0 =
2mI2−I1
2m−1

This process can also be used to obtain I1, I2, . .
. , by halving h each time, calculating new esti-
mates from each pair, and calling them J1, J2, .
. . (i.e., in the formula above, I0 is replaced with
J1). The formulas are reapplied for each pair of J
’s to obtain K1, K2, . . . . The process continues
until the required tolerance is obtained.
I1 I2 I3 I4

J1 J2 J3
K1 K2

L1

Romberg’s method is most useful for a low-
order method (small m) because significant im-
provement is then possible.
When the integrand has singularities, a va-

riety of techniques can be tried. The integral
may be divided into one part that can be inte-
grated analytically near the singularity and an-
other part that is integrated numerically. Some-
times a change of argument allows analytical
integration. Series expansion might be help-
ful, too. When the domain is infinite, Gauss –
Legendre or Gauss – Hermite quadrature can be
used. Also a transformation can be made [15].
For example, let u = 1/x and then

b∫
a

f (x) dx =

1/a∫
1/b

1
u2

f

(
1
u

)
du a, b>0

2.5. Least Squares

When fitting experimental data to a mathemat-
ical model, it is necessary to recognize that the

experimental measurements contain error; the
goal is to find the set of parameters in the model
that best represents the experimental data. Ref-
erence [23] gives a complete treatment relating
the least-squares procedure to maximum likeli-
hood.
In a least-squares parameter estimation, it is

desired to find parameters thatminimize the sum
of squares of the deviation between the experi-
mental data and the theoretical equation

χ2=
N∑
i=1

[
yi−y(xi;a1,a2,. . .,aM )

σi

]2

where yi is the i-th experimental data point for
the value xi , y(xi;a1,a2,. . .,aM ) the theoreti-
cal equation at xi , σi the standard deviation
of the i-th measurement, and the parameters
{a1,a2,...,aM} are to be determined to mini-
mize χ2. The simplification is made here that
the standard deviations are all the same. Thus,
we minimize the variance of the curve fit.

σ2=
N∑
i=1

[yi−y (xi;a1,a2,. . .,aM )]2

N

Linear Least Squares. When the model is a
straight line, one is minimizing

χ2=
N∑
i=1

[yi−a−bxi]2

The linear correlation coefficient r is defined by

r=

N∑
i=1

(xi−x) (yi−y)√
N∑
i=1

(xi−x)2
√

N∑
i=1

(yi−y)2

and

χ2=
(
1−r2) N∑

i=1

[yi−y]2

where y is the average of yi values. Values of r
near 1 indicate a positive correlation; r near −1
means a negative correlation, and r near zero
means no correlation. These parameters are eas-
ily found by using standard programs, such as
Microsoft Excel.
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Polynomial Regression. In polynomial re-
gression, one expands the function in a poly-
nomial in x.

y (x)=
M∑
j=1

ajx
j−1

The parameters are easily determined using
computer software. In Microsoft Excel, the data
is put into columns A and B and the graph is cre-
ated as for a linear curve fit. Then add a trendline
and choose the degree of polynomial desired.

Multiple Regression. In multiple regres-
sion, any set of functions can be used, not just
polynomials.

y (x)=
M∑
j=1

ajfj (x)

where the set of functions {fj (x)} is known
and specified. Note that the unknown param-
eters {aj} enter the equation linearly. In this
case, the spreadsheet can be expanded to have
a column for x, and then successive columns
for fj (x). In Microsoft Excel, choose Regres-
sion under Tools/Data Analysis, and complete
the form. In addition to the actual correlation,
one gets the expected variance of the unknowns,
which allows one to assess how accurately they
were determined.

Nonlinear Regression. In nonlinear regres-
sion, the same procedure is followed except that
an optimization routine must be used to find the
minimum χ2. See Chapter 10.

2.6. Fourier Transforms of Discrete
Data [15]

Suppose a signal y (t) is sampled at equal inter-
vals

yn = y (n∆) ,n = . . .,−2,−1, 0, 1, 2, . . .

∆ = sampling rate

(e.g., number of samples per second)

The Fourier transform and inverse transform are

Y (ω) =
∞∫

−∞
y (t) eiωtdt

y (t) = 1
2π

∞∫
−∞

Y (ω) e−iωtdω

(For definition of i, seeChap. 3.) TheNyquist
critical frequency or critical angular frequency
is

fc =
1
2∆

, ωc =
π

∆

If a function y (t) is bandwidth limited to fre-
quencies smaller than f c, i.e.,

Y (ω) = 0 for ω>ωc

then the function is completely determined by
its samples yn . Thus, the entire information con-
tent of a signal can be recorded by sampling at a
rate∆−1 = 2 f c. If the function is not bandwidth
limited, then aliasing occurs. Once a sample rate
∆ is chosen, information corresponding to fre-
quencies greater than f c is simply aliased into
that range. The way to detect this in a Fourier
transform is to see if the transform approaches
zero at ± f c; if not, aliasing has occurred and a
higher sampling rate is needed.
Next, for N samples, where N is even

yk = y (tk) , tk = k∆, k = 0, 1, 2,. . .,N−1

and the sampling rate is ∆; with only N values
{yk} the complete Fourier transform Y (ω) can-
not be determined. Calculate the value Y (ωn )
at the discrete points

ωn = 2πn
N∆ , n = −N

2 ,. . ., 0,. . .,
N
2

Yn =
N−1∑
k=0

yke2πikn/N

Y (ωn) = ∆Yn

The discrete inverse Fourier transform is

yk =
1
N

N−1∑
k=0

Yne−2πikn/N

The fast Fourier transform (FFT ) is used to
calculate the Fourier transform as well as the
inverse Fourier transform. A discrete Fourier
transform of length N can be written as the
sum of two discrete Fourier transforms, each of
length N /2, and each of these transforms is sep-
arated into two halves, each half as long. This
continues until only one component is left. For
this reason, N is taken as a power of 2, N = 2p.
The vector {yj} is filled with zeroes, if need

be, to make N = 2p for some p. For the com-
puter program, see [15, p. 381]. The standard
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Fourier transform takes N 2 operations to cal-
culate, whereas the fast Fourier transform takes
onlyN log2 N. For largeN the difference is sig-
nificant; at N = 100 it is a factor of 15, but for N
= 1000 it is a factor of 100.
The discrete Fourier transform can also be

used for differentiating a function; this is used
in the spectral method for solving differential
equations. Consider a grid of equidistant points:

xn = n∆x, n = 0,1,2,. . ., 2N−1,∆x =
L

2N

the solution is known at each of these grid points
{Y (xn )}. First, the Fourier transform is taken:

yk =
1
2N

2N−1∑
n=0

Y (xn) e−2ikπxn/L

The inverse transformation is

Y (x) =
1
L

N∑
k=−N

yke2ikπx/L

which is differentiated to obtain

dY
dx

=
1
L

N∑
k=−N

yk
2πik
L

e2ikπx/L

Thus, at the grid points

dY
dx

∣∣∣∣
n

=
1
L

N∑
k=−N

yk
2πik
L

e2ikπxn/L

The process works as follows. From the solu-
tion at all grid points the Fourier transform is
obtained by using FFT {yk}. This is multiplied
by 2 π i k/L to obtain the Fourier transform of
the derivative:

y′
k = yk

2πik
L

The inverse Fourier transform is then taken by
using FFT, to give the value of the derivative at
each of the grid points:

dY
dx

∣∣∣∣
n

=
1
L

N∑
k=−N

y′
ke
2ikπxn/L

Any nonlinear term can be treated in the same
way: evaluate it in real space at N points and take
the Fourier transform. After processing using
this transform to get the transform of a new func-
tion, take the inverse transform to obtain the new
function at N points. This is what is done in di-
rect numerical simulation of turbulence (DNS).

2.7. Two-Dimensional Interpolation and
Quadrature

Bicubic splines can be used to interpolate a set of
values on a regular array, f (xi , yj ). Suppose NX
points occur in the x direction and NY points
occur in the y direction. Press et al. [15] sug-
gest computingNY different cubic splines of size
NX along lines of constant y, for example, and
storing the derivative information. To obtain the
value of f at some point x, y, evaluate each of
these splines for that x. Then do one spline of
size NY in the y direction, doing both the deter-
mination and the evaluation.
Multidimensional integrals can also be bro-

ken down into one-dimensional integrals. For
example,

b∫
a

f2(x)∫
f1(x)

z (x, y) dxdy =
b∫
a
G (x) dx;

G (x) =
f2(x)∫
f1(x)

z (x, y) dx

3. Complex Variables [25 – 31]

3.1. Introduction to the Complex Plane

A complex number is an ordered pair of real
numbers, x and y, that is written as

z = x+iy

The variable i is the imaginary unit which has
the property

i2 = −1

The real and imaginary parts of a complex num-
ber are often referred to:

Re (z) = x, Im (z) = y

A complex number can also be represented
graphically in the complex plane, where the real
part of the complex number is the abscissa and
the imaginary part of the complex number is the
ordinate (see Fig. 7).
Another representation of a complex number

is the polar form, where r is the magnitude and
θ is the argument.

r = |x+i y| =
√
x2+y2, θ = arg (x+i y)
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Figure 7. The complex plane

Write

z = x+i y = r (cosθ+i sinθ)

so that

x = rcos θ, y = rsin θ

and

θ = arctan
y

x

Since the arctangent repeats itself in multiples
of π rather than 2 π, the argument must be de-
fined carefully. For example, the θ given above
could also be the argument of − (x + i y). The
function z = cos θ + i sin θ obeys |z | = |cos θ +
i sin θ | = 1.
The rules of equality, addition, and multipli-

cation are

z1 = x1+i y1, z2 = x2+i y2

Equality :
z1 = z2 if and only if x1 = x2 and y1 = y2
Addition :
z1+z2 = (x1+x2)+i (y1+y2)
Multiplication :
z1z2 = (x1x2−y1y2)+i (x1y2+x2y1)
The last rule can be remembered by using the
standard rules for multiplication, keeping the
imaginary parts separate, and using i2 = − 1. In
the complex plane, addition is illustrated in Fig-
ure 8. In polar form, multiplication is

z1z2 = r1r2 [cos (θ1+θ2)+i sin (θ1+θ2)]

The magnitude of z1+ z2 is bounded by

|z1±z2| ≤ |z1|+ |z2| and |z1| − |z2| ≤ |z1±z2|

as can be seen in Figure 8. The magnitude and
arguments in multiplication obey

|z1z2| = |z1| |z2| ,arg (z1z2) = arg z1+arg z2

The complex conjugate is z* = x − i y when z =
x + i y and |z* | = |z |, arg z* = − arg z

Figure 8. Addition in the complex plane

For complex conjugates then

z∗ z = |z|2

The reciprocal is

1
z
=

z∗

|z|2 =
1
r
(cosθ−i sinθ) , arg

(
1
z

)
= −arg z

Then
z1
z2

= x1+i y1
x2+i y2

= (x1+i y1) x2−i y2
x22+y

2
2

= x1x2+y1y2
x22+y

2
2

+i x2y1−x1y2
x22+y

2
2

and
z1

z2
=

r1

r2
[cos (θ1−θ2)+i sin (θ1−θ2)]

3.2. Elementary Functions

Properties of elementary functions of complex
variables are discussed here [32]. When the po-
lar form is used, the argument must be specified
because the same physical angle can be achieved
with arguments differing by 2 π. A complex
number taken to a real power obeys

u = zn, |zn| = |z|n, arg (zn) = n arg z (mod2π)

u = zn = rn (cos nθ+i sin nθ)
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Roots of a complex number are complicated by
careful accounting of the argument

z = w1/n withw = R (cosΘ+i sinΘ) , 0≤Θ≤2π

then

zk = R1/n{cos
[
Θ
n
+(k−1) 2π

n

]
+i sin

[
Θ
n
+(k−1) 2π

n

]
}

such that

(zk)
n = w for every k

z = r (cos θ+i sin θ)
rn = R, nθ = Θ (mod 2π)

The exponential function is

ez = ex (cos y+i sin y)

Thus,

z = r (cos θ+i sin θ)

can be written

z = reiθ

and

|ez | = ex, argez = y (mod 2π)

The exponential obeys

ez �=0 for every finite z
and is periodic with period 2 π:

ez+2π i = ez

Trigonometric functions can be defined by
using

eiy = cos y+i sin y, and e−iy = cos y−i sin y

Thus,

cos y = ei y+e−i y

2 = cosh i y

sin y = ei y−e−i y

2i = −i sinh i y

The second equation follows from the defini-
tions

cosh z≡ ez+e−z

2
, sinh z≡ ez−e−z

2

The remaining hyperbolic functions are

tanh z≡ sinh z
cosh z , coth z≡ 1

tanh z

sech z≡ 1
cosh z , csch z≡ 1

sinh z

The circular functions with complex argu-
ments are defined

cos z = ei z+e−i z

2 , sin z = ei z−e−i z

2 ,

tan z = sin z
cos z

and satisfy

sin (−z) = −sin z, cos (−z) = cos z

sin (i z) = i sinh z, cos (i z) = −cosh z

All trigonometric identities for real, circular
functions with real arguments can be extended
without change to complex functions of complex
arguments. For example,

sin2z+cos2z = 1,

sin (z1+z2) = sin z1 cos z2+cos z1 sin z2

The same is true of hyperbolic functions. The
absolute boundaries of sin z and cos z are not
bounded for all z.
Trigonometric identities canbedefinedbyus-

ing

eiθ = cos θ+i sin θ

For example,

ei(α+β) = cos (α+β)+i sin (α+β)

= eiαeiβ = (cosα+i sinα)
(cos β+i sin β)
= cosα cos β−sinα sin β
+i (cosα sin β+cos β sinα)

Equating real and imaginary parts gives

cos (α+β) = cosα cos β− sinα sin β

sin (α+β) = cosα sin β+cos β sinα

The logarithm is defined as
ln z = ln |z|+i arg z
and the various determinations differ by multi-
ples of 2 π i. Then,

eln z = z

ln (ez)−z≡0 (mod 2 πi)

Also,

ln (z1 z2)−ln z1−ln z2≡0 (mod 2 πi)

is always true, but

ln (z1 z2) = ln z1+ln z2

holds only for some determinations of the loga-
rithms. The principal determination of the argu-
ment can be defined as − π < arg ≤ π.
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3.3. Analytic Functions of a Complex
Variable

Let f (z) be a single-valued continuous function
of z in a domain D. The function f (z) is differ-
entiable at the point z0 in D if

lim
h→0

f (z0+h)−f (z0)
h

exists as a finite (complex) number and is in-
dependent of the direction in which h tends to
zero. The limit is called the derivative, f ′ (z0).
The derivative now can be calculated with h ap-
proaching zero in the complex plane, i.e., any-
where in a circular region about z0. The function
f (z) is differentiable in D if it is differentiable
at all points of D; then f (z) is said to be an an-
alytic function of z in D. Also, f (z) is analytic
at z0 if it is analytic in some ε neighborhood of
z0. The word analytic is sometimes replaced by
holomorphic or regular.
The Cauchy – Riemann equations can be

used to decide if a function is analytic. Set

f (z) = f (x+i y) = u (x, y)+i v (x, y)

Theorem [30, p. 51]. Suppose that f (z) is
defined and continuous in some neighborhood
of z = z0. A necessary condition for the exis-
tence of f ′ (z0) is that u (x, y) and v (x, y) have
first-order partials and that the Cauchy – Rie-
mann conditions (see below) hold.

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= − ∂v

∂x
at z0

Theorem [30, p. 61]. The function f (z) is
analytic in a domain D if and only if u and v
are continuously differentiable and satisfy the
Cauchy – Riemann conditions there.
If f 1(z) and f 2(z) are analytic in domain D,

then α1f 1(z) + α2f 2(z) is analytic in D for any
(complex) constants α1, α2.

f1 (z)+f2 (z) is analytic in D

f1 (z) /f2 (z) is analytic in D except where f2 (z) = 0

An analytic function of an analytic function is
analytic. If f (z) is analytic, f ′ (z) �= 0 in D, f
(z1) �= f (z2) for z1 �= z2, then the inverse func-
tion g (w) is also analytic and

g′ (w) = 1
f ′(z) wherew = f (z) ,

g (w) = g [f (z)] = z

Analyticity implies continuity but the con-
verse is not true: z* = x − i y is continuous but,
because the Cauchy – Riemann conditions are
not satisfied, it is not analytic. An entire func-
tion is one that is analytic for all finite values of z.
Every polynomial is an entire function. Because
the polynomials are analytic, a ratio of polyno-
mials is analytic except when the denominator
vanishes. The function f (z) = |z2 | is continuous
for all z but satisfies the Cauchy – Riemann con-
ditions only at z = 0. Hence, f ′ (z) exists only
at the origin, and |z |2 is nowhere analytic. The
function f (z) = 1/z is analytic except at z = 0. Its
derivative is − 1/z2, where z �= 0. If ln z = ln |
z | + i arg z in the cut domain − π < arg z ≤ π,
then f (z) = 1/ln z is analytic in the same cut do-
main, except at z = 1, where log z = 0. Because
ez is analytic and± i z are analytic, e±iz is ana-
lytic and linear combinations are analytic. Thus,
the sine and cosine and hyperbolic sine and co-
sine are analytic. Theother functions are analytic
except when the denominator vanishes.
The derivatives of the elementary functions

are

d
dz e

z = ez , ddz z
n = n zn−1

d
dz (ln z) =

1
z
, ddz sin z = cos z,

d
dz cos z = −sin z

In addition,
d
dz (f g) = f dgdz+g

d f
dz

d
dz f [g (z)] = d f

dg
dg
dz

d
dz sinw = cosw dwdz ,

d
dz cosw = −sinw dwdz

Define za = ea ln z for complex constant a. If
the determination is−π < arg z ≤ π, then za is
analytic on the complex plane with a cut on the
negative real axis. If a is an integer n, then e2πin

= 1 and zn has the same limits approaching the
cut from either side. The function can be made
continuous across the cut and the function is an-
alytic there, too. If a = 1/nwhere n is an integer,
then

z1/n = e(ln z)/n = |z|l/nei(arg z)/n

So w = z1/n has n values, depending on the
choice of argument.
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Laplace Equation. If f (z) is analytic, where

f (z) = u (x, y)+i v (x, y)

the Cauchy – Riemann equations are satisfied.
Differentiating the Cauchy – Riemann equa-
tions gives the Laplace equation:

∂2u
∂x2

= ∂2v
∂x∂y

= ∂2v
∂y∂x

= − ∂2u
∂y2

or

∂2u
∂x2

+ ∂2u
∂y2

= 0

Similarly,

∂2v

∂x2
+
∂2v

∂y2
= 0

Thus, general solutions to the Laplace equation
can be obtained from analytic functions [30, p.
60]. For example,

ln
1

|z−z0|
is analytic so that a solution to the Laplace equa-
tion is

ln
[
(x−a)2+(y−b)2

]−1/2
A solution to the Laplace equation is called a
harmonic function. A function is harmonic if,
and only if, it is the real part of an analytic func-
tion. The imaginary part is also harmonic. Given
any harmonic function u, a conjugate harmonic
function v can be constructed such that f = u +
i v is locally analytic [30, p. 290].

Maximum Principle. If f (z) is analytic in a
domainD and continuous in the set consisting of
D and its boundary C, and if | f (z) | ≤ M on C,
then | f (z) | <M in D unless f (z) is a constant
[30, p. 134].

3.4. Integration in the Complex Plane

LetC be a rectifiable curve in the complex plane

C:z = z (t) , 0≤t≤ 1

where z (t) is a continuous function of bounded
variation; C is oriented such that z1= z (t1) pre-
cedes the point z2= z (t2) onC if and only if t1<
t2. Define

∫
C

f (z) dz =

1∫
0

f [z (t)] dz (t)

The integral is linear with respect to the inte-
grand:∫
C

[α1 f1 (z)+α2 f2 (z)] dz

= α1
∫
C

f1 (z) dz+α2
∫
C

f2 (z) dz

The integral is additive with respect to the path.
Let curve C2 begin where curve C1 ends and
C1+ C2 be the path ofC1 followed byC2. Then,∫
C1+C2

f (z) dz =
∫
C1

f (z) dz+
∫
C2

f (z) dz

Reversing the orientation of the path replaces the
integral by its negative:∫
−C

f (z) dz = −
∫
C

f (z) dz

If the path of integration consists of a finite num-
ber of arcs along which z (t) has a continuous
derivative, then

∫
C

f (z) dz =

1∫
0

f [z (t)] z′ (t) dt

Also if s (t) is the arc length on C and l (C ) is
the length of C∣∣∣∣∣∣
∫
C

f (z) dz

∣∣∣∣∣∣≤max
z∈C

|f (z)| l (C)

and∣∣∣∣∣∣
∫
C

f (z) dz

∣∣∣∣∣∣≤
∫
C

|f (z)| |dz| =
1∫
0

|f [z (t)]| ds ( t)

Cauchy’s Theorem [25, 30, p. 111]. Sup-
pose f (z) is an analytic function in a domain
D and C is a simple, closed, rectifiable curve
in D such that f (z) is analytic inside and on C.
Then∮
C

f (z) dz = 0 (4)

If D is simply connected, then Equation 4 holds
for every simple, closed, rectifiable curve C in
D. If D is simply connected and if a and b are
any two points in D, then
b∫
a

f (z) dz

is independent of the rectifiable path joining a
and b in D.
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Cauchy’s Integral. If C is a closed contour
such that f (z) is analytic inside and on C, z0 is
a point inside C, and z traverses C in the coun-
terclockwise direction,

f (z0) = 1
2πi

∮
C

f(z)
z−z0 dz

f ′ (z0) = 1
2πi

∮
C

f(z)
(z−z0)2 dz

Under further restriction on the domain [30, p.
127],

f (m) (z0) =
m!
2πi

∮
C

f (z)

(z−z0)m+1
dz

Power Series. If f (z) is analytic interior to
a circle |z − z0 | < r0, then at each point inside
the circle the series

f (z) = f (z0)+
∞∑
n=1

f (n) (z0)
n!

(z−z0)n

converges to f (z). This result follows from
Cauchy’s integral. As an example, ez is an en-
tire function (analytic everywhere) so that the
MacLaurin series

ez = 1+
∞∑
n=1

zn

n!

represents the function for all z.
Another result of Cauchy’s integral formula

is that if f (z) is analytic in an annulus R, r1< |z
− z0 | < r2, it is represented in R by the Laurent
series

f (z) =
∞∑

n=−∞
An(z−z0)n, r1< |z−z0| ≤r2

where

An = 1
2 π i

∫
C

f(z)
(z−z0)n+1 dz,

n = 0,±1,±2,. . .,

and C is a closed curve counterclockwise in R.

Singular Points and Residues [33, p. 159,
30, p. 180]. If a function in analytic in every
neighborhood of z0, but not at z0 itself, then z0 is
called an isolated singular point of the function.
About an isolated singular point, the function
can be represented by a Laurent series.

f (z) = ···+ A−2
(z−z0)2+

A−1
z−z0+A0

+A1 (z−z0)+···0< |z−z0| ≤r0
(5)

In particular,

A−1 =
1
2πi

∮
C

f (z) dz

where the curve C is a closed, counterclockwise
curve containing z0 and is within the neighbor-
hood where f (z) is analytic. The complex num-
ber A−1 is the residue of f (z) at the isolated
singular point z0; 2 π i A−1 is the value of the
integral in the positive direction around a path
containing no other singular points.
If f (z) is defined and analytic in the exterior

|z − z0 | > R of a circle, and if
v (ζ) = f

(
z0+

1
ζ

)
obtained by ζ =

1
z−z0

has a removable singularity at ζ = 0, f (z) is an-
alytic at infinity. It can then be represented by
a Laurent series with nonpositive powers of z −
z0.
If C is a closed curve within which and on

which f (z) is analytic except for a finite number
of singular points z1, z2, . . . , zn interior to the
region bounded by C, then the residue theorem
states∮
C

f (z) dz = 2πi(?1+?2+···?n)

where �n denotes the residue of f (z) at zn .
The series of negative powers in Equation 5

is called the principal part of f (z). If the princi-
pal part has an infinite number of nonvanishing
terms, the point z0 is an essential singularity.
If A−m �= 0, A−n = 0 for all m < n, then z0 is
called a pole of order m. It is a simple pole if m
= 1. In such a case,

f (z) =
A−1
z−z0

+
∞∑
n=0

An(z−z0)n

If a function is not analytic at z0 but can be made
so by assigning a suitable value, then z0 is a re-
movable singular point.
When f (z) has a pole of order m at z0,

ϕ (z) = (z−z0)m f (z) , 0< |z−z0|<r0
has a removable singularity at z0. If ϕ (z0) =
A−m , then ϕ (z) is analytic at z0. For a simple
pole,

A−1 = ϕ (z0) = lim
z→z0

(z−z0) f (z)
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Also | f (z) | → ∞ as z → z0 when z0 is a pole.
Let the function p (z) and q (z) be analytic at z0,
where p (z0) �= 0. Then

f (z) =
p (z)
q (z)

has a simple pole at z0 if, and only if, q (z0) = 0
and q′ (z0) �= 0. The residue of f (z) at the simple
pole is

A−1 =
p (z0)
q′ (z0)

If q(i−1) (z0) = 0, i = 1, . . . , m, then z0 is a pole
of f (z) of order m.

Branch [33, p. 163]. A branch of a multiple-
valued function f (z) is a single-valued function
that is analytic in some region and whose value
at each point there coincides with the value of f
(z) at the point. A branch cut is a boundary that is
needed to define the branch in the greatest pos-
sible region. The function f (z) is singular along
a branch cut, and the singularity is not isolated.
For example,

z1/2 = f1 (z) =
√
r
(
cos θ2+i sin

θ
2

)
−π<θ<π, r>0

is double valued along the negative real axis. The
function tends to

√
ri when θ → π and to−√

ri
when θ → − π; the function has no limit as z →
− r (r > 0). The ray θ = π is a branch cut.

Analytic Continuation [33, p. 165]. If f 1(z)
is analytic in a domain D1 and domain D con-
tains D1, then an analytic function f (z) may ex-
ist that equals f 1(z) in D1. This function is the
analytic continuation of f 1(z) onto D, and it is
unique. For example,

f1 (z) =
∞∑
n=0

zn, |z|<1

is analytic in the domain D1 : |z | < 1. The se-
ries diverges for other z. Yet the function is the
MacLaurin series in the domain

f1 (z) =
1

1−z , |z|<1

Thus,

f1 (z) =
1

1−z

is the analytic continuation onto the entire z
plane except for z = 1.
An extension of the Cauchy integral formula

is useful with Laplace transforms. Let the curve
C be a straight line parallel to the imaginary axis
and z0 be any point to the right of that (see Fig.
9). A function f (z) is of order zk as |z | → ∞ if
positive numbers M and r0 exist such that∣∣z−k f (z)

∣∣<M when |z|>r0, i.e.,

|f (z)|<M |z|k for |z| sufficiently large

Figure 9. Integration in the complex plane

Theorem [33, p. 167]. Let f (z) be analytic
when R (z) ≥ γ and O (z−k ) as |z | → ∞ in that
half-plane, where γ and k are real constants and
k > 0. Then for any z0 such that R (z0) > γ

f (z0) = − 1
2 π i

lim
β→∞

γ+iβ∫
γ−iβ

f (z)
z−z0

dz,

i.e., integration takes place along the line x = γ.

3.5. Other Results

Theorem [32, p. 84]. Let P (z) be a polyno-
mial of degreenhaving the zeroes z1, z2, . . . , zn
and let π be the least convex polygon containing
the zeroes. Then P ′ (z) cannot vanish anywhere
in the exterior of π.
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If a polynomial has real coefficients, the roots
are either real or form pairs of complex conju-
gate numbers.
The radius of convergence R of the Taylor se-

ries of f (z) about z0 is equal to the distance from
z0 to the nearest singularity of f (z).

Conformal Mapping. Let u (x, y) be a har-
monic function. Introduce the coordinate trans-
formation

x = x̂ (ξ, η) , y = ŷ (ξ, η)

It is desired that

U (ξ, η) = u [x̂ (ξ, η) , ŷ (ξ, η)]

be a harmonic function of ξ and η.
Theorem [30, p. 284]. The transformation

z = f (ζ) (6)

takes all harmonic functions of x and y into har-
monic functions of ξ and η if and only if either
f (ζ) or f * (ζ) is an analytic function of ζ = ξ +
i η.
Equation 6 is a restriction on the transforma-

tion which ensures that

if
∂2u

∂x2
+
∂2u

∂y2
= 0 then

∂2U

∂ζ2
+
∂2U

∂η2
= 0

Such amapping with f (ζ) analytic and f ′ (ζ) �=
0 is a conformal mapping.
If Laplace’s equation is to be solved in the

region exterior to a closed curve, then the point
at infinity is in the domain D. For flow in a long
channel (governed by the Laplace equation) the
inlet and outlet are at infinity. In both cases the
transformation

ζ =
a z+b
z−z0

takes z0 into infinity and hence maps D into a
bounded domain D*.

4. Integral Transforms [34 – 39]

4.1. Fourier Transforms

Fourier Series [40]. Let f (x) be a function
that is periodic on − π < x < π. It can be ex-
panded in a Fourier series

f (x) =
a0

2
+

∞∑
n=1

(an cos n x+bn sin n x)

where

a0 = 1
π

π∫
−π

f (x) dx, an = 1
π

π∫
−π

f (x) cos n x dx,

bn = 1
π

π∫
−π

f (x) sin n x dx

The values {an} and {bn} are called the finite
cosine and sine transform of f, respectively. Be-
cause

cos n x = 1
2

(
einx+e−inx)

and sin n x = 1
2i

(
einx−e−inx)

the Fourier series can be written as

f (x) =
∞∑

n=−∞
cne−inx

where

cn =

{
1
2 (an+i bn) for n≥0
1
2 (a−n−i b−n) for n<0

and

cn =
1
2 π

π∫
−π

f (x) einxdx

If f is real

c−n = c∗n.

If f is continuous and piecewise continuously
differentiable

f ′ (x) =
∞∑

−∞
(−i n) cne−inx

If f is twice continuously differentiable

f
′′
(x) =

∞∑
−∞

(−n2) cne−inx

Inversion. The Fourier series can be used to
solve linear partial differential equations with
constant coefficients. For example, in the prob-
lem

∂T
∂t

= ∂2T
∂x2

T (x, 0) = f (x)

T (−π, t) = T (π, t)
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Let

T =
∞∑

−∞
cn (t) e−inx

Then,
∞∑

−∞

dcn
dt

e−inx =
∞∑

−∞
cn (t)

(−n2) e−inx

Thus, cn (t) satisfies

dcn
dt

= −n2 cn, or cn = cn (0) e−n2t

Let cn (0) be the Fourier coefficients of the ini-
tial conditions:

f (x) =
∞∑

−∞
cn (0) e−inx

The formal solution to the problem is

T =
∞∑

−∞
cn (0) e−n2te−inx

Fourier Transform [40]. When the func-
tion f (x) is defined on the entire real line, the
Fourier transform is defined as

F [f ]≡f̂ (ω) =
∞∫

−∞
f (x) eiωxdx

This integral converges if
∞∫

−∞
|f (x)| dx

does. The inverse transformation is

f (x) =
1
2 π

∞∫
−∞

f̂ (ω) e−iωxdω

If f (x) is continuous andpiecewise continuously
differentiable,
∞∫

−∞
f (x) eiωxdx

converges for each ω, and

lim
x→±∞ f (x) = 0

then

F

[
d f
dx

]
= −iωF [f ]

If f is real F [ f (− ω)] = F [ f (ω)*]. The real
part is an even function of ω and the imaginary
part is an odd function of ω.
A function f (x) is absolutely integrable if the

improper integral
∞∫

−∞
|f (x)| dx

has a finite value. Then the improper integral
∞∫

−∞
f (x) dx

converges. The function is square integrable if
∞∫

−∞
|f (x)|2dx

has a finite value. If f (x) and g (x) are square
integrable, the product f (x) g (x) is absolutely
integrable and satisfies the Schwarz inequality:∣∣∣∣∣

∞∫
−∞

f (x) g (x) dx

∣∣∣∣∣
2

≤
∞∫

−∞
|f (x)|2dx

∞∫
−∞

|g (x)|2dx

The triangle inequality is also satisfied:
{

∞∫
−∞

|f+g|2dx
}1/2

≤
{

∞∫
−∞

|f |2dx
}1/2{ ∞∫

−∞
|g|2dx

}1/2

A sequence of square integrable functions f n
(x) converges in the mean to a square integrable
function f (x) if

lim
n→∞

∞∫
−∞

|f (x)−fn (x)|2dx = 0

The sequence also satisfies the Cauchy criterion

lim
n→∞
m→∞

∞∫
−∞

|fn−fm|2dx = 0

Theorem [40, p. 307]. If a sequence of
square integrable functions f n (x) converges
to a function f (x) uniformly on every finite
interval a ≤ x ≤ b, and if it satisfies Cauchy’s
criterion, then f (x) is square integrable and f n
(x) converges to f (x) in the mean.
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Theorem (Riesz – Fischer) [40, p. 308]. To
every sequence of square integrable functions
f n (x) that satisfy Cauchy’s criterion, there cor-
responds a square integrable function f (x) such
that f n (x) converges to f (x) in the mean. Thus,
the limit in the mean of a sequence of functions
is defined to within a null function.
Square integrable functions satisfy the Parse-

val equation.
∞∫

−∞

∣∣∣f̂ (ω)
∣∣∣2dω = 2 π

∞∫
−∞

|f (x)|2dx

This is also the total power in a signal, which can
be computed in either the time or the frequency
domain. Also
∞∫

−∞
f̂ (ω) ĝ∗ (ω) dω = 2 π

∞∫
−∞

f (x) g∗ (x) dx

Fourier transforms can be used to solve dif-
ferential equations too. Then it is necessary to
find the inverse transformation. If f (x) is square
integrable, the Fourier transform of its Fourier
transform is 2 π f (− x), or

f (x) = F
[
f̂ (ω)

]
= 1
2 π

∞∫
−∞

f̂ (ω) e−iωxdω

= 1
2 π

∞∫
−∞

∞∫
−∞

f (x) eiωxdxe−iωxdω

f (x) = 1
2 πF [F f (−x)] or f (−x) = 1

2 πF [F [f ]]

Properties of Fourier Transforms [40, p.
324], [15].

F
[
d f
dx

]
= −i ω F [f ] = i ωf̂

F [i x f (x)] = d
dωF [f ] = d

dω f̂

F [f (a x−b)] = 1
|a| e

iωb/af̂
(
ω
a

)
F
[
eicxf (x)

]
= f̂ (ω+c)

F [cos ω0x f (x)] = 1
2

[
f̂ (ω+ω0)+f̂ (ω−ω0)

]
F [sin ω0x f (x)] = 1

2i

[
f̂ (ω+ω0)−f̂ (ω−ω0)

]
F
[
e−iω0xf (x)

]
= f̂ (ω−ω0)

If f (x) is real, then f (− ω) = f̂ * (ω). If f (x) is

imaginary, then
∧
f (− ω) = − f̂ * (ω). If f (x) is

even, then
∧
f (ω) is even. If f (x) is odd, then

∧
f

(ω) is odd. If f (x) is real and even, then
∧
f (ω)

is real and even. If f (x) is real and odd, then
∧
f

(ω) is imaginary and odd. If f (x) is imaginary

and even, then
∧
f (ω) is imaginary and even. If f

(x) is imaginary and odd, then
∧
f (ω) is real and

odd.

Convolution [40, p. 326].

f∗h (x0)≡
∞∫

−∞
f (x0−x) h (x ) dx

= 1
2 π

∞∫
−∞

eiωx0 f̂ (−ω) ĥ (ω) dω

Theorem. The product

f̂ (ω) ĥ (ω)

is the Fourier transform of the convolution prod-
uct f * h. The convolution permits finding in-
verse transformations when solving differential
equations. To solve

∂T
∂t

= ∂2T
∂x2

T (x, 0) = f (x) ,−∞<x<∞

T bounded

take the Fourier transform

dT̂
dt +ω

2T̂ = 0

T̂ (ω, 0) = f̂ (ω)

The solution is

T̂ (ω, t) = f̂ (ω) e−ω2t

The inverse transformation is

T (x, t) =
1
2 π

∞∫
−∞

e−iωx f̂ (ω) e−ω2tdω

Because

e−ω2t = F
[

1√
4 π t

e−x2/4t
]

the convolution integral can be used to write the
solution as

T (x, t) =
1√
4 π t

∞∫
−∞

f (y) e−(x−y)2/4tdy
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Finite Fourier Sine and Cosine Transform
[41]. In analogy with finite Fourier transforms
(on− π toπ) and Fourier transforms (on− ∞ to
+∞), finite Fourier sine and cosine transforms
(0 to π) and Fourier sine and cosine transforms
(on 0 to +∞) can be defined.
The finite Fourier sine and cosine transforms

are

fs (n) = Fns [f ] = 2
π

π∫
0
f (x) sin n xdx,

n = 1, 2,. . .,

fc (n) = Fnc [f ] = 2
π

π∫
0
f (x) cos n xdx

n = 0, 1, 2,. . .

f (x) =
∞∑
n=1

fs (n) sin n x,

f (x) = 1
2 fc (0)+

∞∑
n=1

fc (n) cos n x

They obey the operational properties

Fns

[
d2f
dx2

]
= −n2 Fns [f ]

+ 2 n
π

[f (0)− (−1)n f (π)]

f, f ′ are continuous, f ′′ is piecewise continu-
ous on 0 ≤ x ≤ π.

and f 1 is the extension of f, k is a constant

Also,

Fnc

[
d2 f
dx2

]
= −n2Fnc [f ]− 2

π
d f
dx (0)

+(−1)n 2
π
d f
dx (π)

fc (n) cos n k = Fnc
[ 1
2f2 (x−k)+ 1

2 f2 (x+k)
]

fc (n) (−1)n = Fnc [f (π−x)]
and f 2 is the extension of f.

Table 3. Finite sine transforms [41]

fs (n) = F (x) (0<x<π)
π∫
0
F (x) sinnxdx (n = 1,2 ,. . .)

(−1)n+1 f s (n) F (π−x)

1
n

(π−x)
π

(−1)n+1

n
x
π

1−(−1)n

n 1

π
n2 sinn c (0<c<π)

{
(π−c) x (x≤c)
c (π−x) (x≥c)

π
n cosn c (0<c<π)

{ −x (x<c)
π−x (x)

π2(−1)n−1

n − 2[1−(−1)n]
n3 x2

π(−1)n
(

6
n3 − π2

n

)
x3

n
n2+c2

[1−(−1)nec π ] ecx

n
n2+c2

sinh c(π−x)
sinh c π

n
n2−k2 (|k| �=0, 1, 2,. . .) sin k(π−x)

sin k π

0 (n �=m) ; fs (m) = π
2 sin m x (m=1,2, . . . )

n
n2−k2 [1−(−1)ncos k x] cos k x (| k | �=1,2, . . . )

n
n2−m2

[
1−(−1)n+m

]
,

(n �=m) ; fs (m) = 0
cos m x (m=1,2, . . . )

The material is reproduced with permission of McGrawHill, Inc.

Also,

Fns

[
d f
dx

]
= −nFnc [f ]

Fnc

[
d f
dx

]
= nFns [f ]− 2

π
f (0)+(−1)n 2

π
f (π)

When two functions F (x) and G (x) are defined
on the interval − 2 π < x < 2 π, the function

F (x) ∗G (x) =

π∫
−π

f (x−y) g (y) dy

is the convolution on − π < x < π. If F and G
are both even or both odd, the convolution is
even; it is odd if one function is even and the
other odd. If F and G are piecewise continuous
on 0 ≤ x ≤ π, then

fs (n) gs (n) = Fnc
[− 1

2 F1 (x) ∗G1 (x)
]

fs (n) gc (n) = Fns
[ 1
2 F1 (x) ∗G2 (x)

]
fc (n) gc (n) = Fnc

[ 1
2 F2 (x) ∗G2 (x)

]
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where F1 andG1 are odd extensions of F andG,
respectively, and F2 andG2 are even extensions
of F and G, respectively. Finite sine and cosine
transforms are listed in Tables 3 and 4.

Table 4. Finite cosine transforms [41]

fc (n) =
π∫
0
F (x) cosnxdx (n = 0,1,. . .)

F (x) (0<x<π)

(−1)n f c (n) F (π−x)

0 when n=1,2, . . . ; f c (0)=π 1

2
n sinn c; fc (0) = 2 c−π

{
1 (0<x<c)
−1 (c<x<π)

− 1−(−1)n

n2 ; fc (0) = π2
2 x

(−1)n

n2 ; fc (0) = π2
6

x2
2 π

1
n2 ; fc (0) = 0 (π−x)2

2 π − π
6

(−1)necx−1
n2+c2

1
c e

cx

1
n2+c2

cosh c(π−x)
c sinh c π

(−1)ncos k π−1
n2−k2 (|k| �=0,1,. . .) 1

k sin k x

(−1)n+m−1
n2−m2 ; fc (m) = 0 (m = 1,. . .) 1

m sinmx

1
n2−k2 (|k| �=0,1,. . .) − cos k(π−x)

k sin k x

0 (n �=m) ; fc (m) = π
2 (m = 1,2,. . .) cos m x

The material is reproduced with permission of McGrawHill, Inc.

On the semi-infinite domain, 0 < x < ∞, the
Fourier sine and cosine transforms are

Fωs [f ] ≡
∞∫
0
f (x) sin ω x dx,

Fωc [f ] ≡
∞∫
0
f (x) cos ω x dx and

f (x) = 2
π
Fω′
s [Fωs [f ]] , f (x) = 2

π
Fω′
c [Fωc [f ]]

The sine transform is an odd function of ω,
whereas the cosine function is an even function
of ω. Also,

Fωs

[
d2 f
dx2

]
= f (0)ω−ω2Fωs [f ]

Fωc

[
d2 f
dx2

]
= −d f

dx (0)−ω2Fωc [f ]

provided f (x) and f ′ (x)→ 0 as x → ∞. Thus,
the sine transform is useful when f (0) is known
and the cosine transform is useful when f ′ (0)
is known.

Hsu and Dranoff [42] solved a chemical en-
gineering problem by applying finite Fourier

transforms and then using the fast Fourier trans-
form (see Chap. 2).

4.2. Laplace Transforms

Consider a function F (t) defined for t > 0. The
Laplace transform of F (t) is [41]

L [F ] = f (s) =

∞∫
0

e−st F (t) dt

The Laplace transformation is linear, that is,

L [F+G] = L [F ] +L [G]

Thus, the techniques described herein can be ap-
plied only to linear problems. Generally, the as-
sumptions made below are that F (t) is at least
piecewise continuous, that it is continuous in
each finite interval within 0 < t < ∞, and that
it may take a jump between intervals. It is also
of exponential order, meaning e−αt |F (t) | is
bounded for all t > T, for some finite T.
The unit step function is

Sk (t) =

{
0 0≤t<k
1 t>k

and its Laplace transform is

L [Sk (t)] =
e−ks

s

In particular, if k = 0 then

L [1] =
1
s

The Laplace transforms of the first and second
derivatives of F (t) are

L
[
d F
dt

]
= s f (s)−F (0)

L
[
d2 F
dt2

]
= s2 f (s)−s F (0)−d F

dt (0)

More generally,

L
[
dn F
dtn

]
= sn f (s) − sn−1 F (0)

−sn−2 dF
dt (0) − ··· − dn−1F

dtn−1 (0)

The inverse Laplace transformation is

F (t) = L−1 [f (s)] where f (s) = L [F ]

The inverseLaplace transformation is not unique
because functions that are identical except for
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isolated points have the sameLaplace transform.
They are unique to within a null function. Thus,
if

L [F1] = f (s) and L [F2] = f (s)

it must be that

F2 = F1+N (t)

where
T∫
0
(N (t)) dt = 0 for every T

Laplace transforms can be inverted by using Ta-
ble 5, but knowledge of several rules is helpful.

Table 5. Laplace transforms (see [23] for a more complete list)

L [F] F (t)
1
s 1

1
s2

t

1
sn

tn−1
(n−1)!

1√
s

1√
π t

s−3/2 2
√
t/π

Γ (k)
sk

(k>0) tk−1

1
s−a eat

1
(s−a)n (n = 1,2,. . .) 1

(n−1)! t
n−1eat

Γ (k)
(s−a)k

(k>0) tk−1 eat

1
(s−a)(s−b)

1
a−b

(
eat−ebt

)

s
(s−a)(s−b)

1
a−b

(
aeat−bebt

)

1
s2+a2

1
a sin a t

s
s2+a2 cos a t

1
s2−a2

1
a sinh a t

s
s2−a2 cosh a t

s

(s2+a2)2
t

2 a sin a t

s2−a2

(s2+a2)2
t cos a t

1
(s−a)2+b2

1
b e

a t sin b t

s−a

(s−a)2+b2
eat cos b t

Substitution.

f (s−a) = L [eat F (t)
]

This can be used with polynomials. Suppose

f (s) =
1
s
+

1
s+3

=
2 s+3
s (s+3)

Because

L [1] =
1
s

Then

F (t) = 1+e−3t, t≥0

More generally, translation gives the following.

Translation.

f (a s−b) = f
[
a
(
s− b

a

)]
= L

[ 1
a
ebt/a F

(
t
a

)]
,

a>0

The step function

S (t) =



0 0≤t< 1

h

1 1
h

≤t< 2
h

2 2
h

≤t< 3
h

has the Laplace transform

L [S (t)] =
1
s

1
1−e−hs

TheDirac delta function δ (t − t0) (see Equa-
tion 116 in →Mathematical Modeling) has the
property
∞∫
0

δ (t−t0) F (t) dt = F (t0)

Its Laplace transform is

L [δ (t−t0)] = e−st0 , t0≥0, s>0

The square wave function illustrated in Figure
10 has Laplace transform

L [Fc (t)] =
1
s
tanh

c s

2

The triangular wave function illustrated in Fig-
ure 11 has Laplace transform

L [Tc (t)] =
1
s2
tanh

c s

2

Other Laplace transforms are listed in Table 5.
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Figure 10. Square wave function

Figure 11. Triangular wave function

Convolution properties are also satisfied:

F (t) ∗G (t) =

t∫
0

F (τ) G (t−τ) dτ

and

f (s) g (s) = L [F (t) ∗G (t)]

Derivatives of Laplace Transforms. The
Laplace integrals L [F (t)], L [t F (t)], L [t2 F
(t)], . . . are uniformly convergent for s1 ≥ α and

lim
s→∞ f (s) = 0, lim

s→∞L [tn F (t)] = 0, n = 1, 2,. . .

and

dn f
dsn

= L [(−t)n F (t)]

Integration of Laplace Transforms.
∞∫
s

f (ξ) dξ = L
[
F (t)
t

]

If F (t) is a periodic function, F (t) = F (t + a),
then

f (s) = 1
1−e−as

a∫
0
e−stF (t) dt,

whereF (t) = F (t+a)

Partial Fractions [43]. Suppose q (s) hasm
factors

q (s) = (s−a1) (s−a2) ··· (s−am)
All the factors are linear, none are repeated, and
the an are all distinct. If p (s) has a smaller de-
gree than q (s), the Heaviside expansion can be
used to evaluate the inverse transformation:

L−1
[
p (s)
q (s)

]
=

m∑
i=1

p (ai)
q′ (ai)

eait

If the factor (s − a) is repeated m times, then

f (s) = p (s)
q (s) =

Am
(s−a)m+ Am−1

(s−a)m−1+

···+ A1
s−a+h (s)

where

ϕ (s)≡ (s−a)m p (s)
q (s)

Am = ϕ (a) , Ak = 1
(m−k)!

dm−k ϕ (s)
dsm−k |a,

k = 1,. . .,m−1

The term h (s) denotes the sum of partial frac-
tions not under consideration. The inverse trans-
formation is then

F (t) = eat
(
Am

tm−1

(m−1) !
+Am−1

tm−2

(m−2) !
+···

+A2
t

1!
+A1

)
+H (t)

The term in F (t) corresponding to

s−a in q (s) isϕ (a) ea t

(s−a)2 in q (s) is [ϕ′ (a)+ϕ (a) t] ea t

(s−a)3 in q (s) is 12
[
ϕ′′ (a)+2ϕ′ (a) t+ϕ (a) t2

]
ea t

For example, let

f (s) =
1

(s−2) (s−1)2

For the factor s − 2,

ϕ (s) =
1

(s−1)2
, ϕ (2) = 1

For the factor (s − 1)2,

ϕ (s) = 1
s−2 , ϕ

′ (s) = − 1
(s−2)2

ϕ (1) = −1, ϕ′ (1) = −1

The inverse Laplace transform is then

F (t) = e2t+ [−1−t] et
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Quadratic Factors. Let p (s) and q (s) have
real coefficients, and q (s) have the factor

(s−a)2+b2, b>0

where a and b are real numbers. Then define ϕ
(s) and h (s) and real constants A and B such that

f (s) = p (s)
q (s) =

ϕ (s)
(s−a)2+b2

= A s+B
(s−a)2+b2+h (s)

Let ϕ1 and ϕ2 be the real and imaginary parts of
the complex number ϕ (a + i b).

ϕ (a+i b)≡ϕ1+iϕ2
Then

f (s) = 1
b
(s−a)ϕ2+bϕ1
(s−a)2+b2 +h (s)

F (t) = 1
b
eat (ϕ2 cos b t+ϕ1 sin b t)+H (t)

To solve ordinary differential equations by
using these results:

Y
′′
(t) −2Y ′ (t)+Y (t) = e2t

Y (0) = 0, Y ′ (0) = 0

Taking Laplace transforms

L
[
Y

′′
(t)
]

−2L
[
Y ′ (t)

]
+L [Y (t)] =

1
s−2

using the rules

s2 y (s)−s Y (0)−Y ′ (0)−2 [s y (s)−Y (0)]+y (s)

=
1

s−2

and combining terms(
s2−2 s+1

)
y (s) = 1

s−2

y (s) = 1
(s−2)(s−1)2

lead to

Y (t) = e2t− (1+t) et

To solve an integral equation:

Y (t) = a+2

t∫
0

Y (τ) cos (t−τ) dτ

it is written as

Y (t) = a+Y (t) ∗cos t

Then the Laplace transform is used to obtain

y (s) = a
s
+2 y (s) s

s2+1

or y (s) =
a (s2+1)
s (s−1)2

Taking the inverse transformation gives

Y (t) = s
[
1+2tet

]
Next, let the variable s in the Laplace trans-

formbe complex.F (t) is still a real-valued func-
tion of the positive real variable t. The properties
given above are still valid for s complex, but ad-
ditional techniques are available for evaluating
the integrals. The real-valued function isO [exp
(x0t)]:

|F (t)|<Mex0t, z0 = x0+i y0

The Laplace transform

f (s) =

∞∫
0

e−st F (t) dt

is an analytic function of s in the half-plane x >
x0 and is absolutely convergent there; it is uni-
formly convergent on x ≥ x1> x0.
dn f
dsn = L [(−t)n F (t)] n = 1, 2, . . .,x>x0

and f∗ (s) = f (s∗)

The functions | f (s) | and |x f (s) | are bounded
in the half-plane x ≥ x1> x0 and f (s)→ 0 as |
y | → ∞ for each fixed x. Thus,
|f (x+ i y)|<M, |x f (x+ i y)|<M,

x≥x1>x0

lim
y→±∞ f (x+ i y) = 0, x>x0

IfF (t) is continuous,F ′ (t) is piecewise contin-
uous, and both functions are O [exp (x0t)], then
| f (s) | isO (1/s) in each half-plane x ≥ x1> x0.

|s f (s)|<M
If F (t) and F ′ (t) are continuous, F ′′ (t) is
piecewise continuous, and all three functions are
O [exp (x0t)], then∣∣s2f (s)−s F (0)

∣∣<M, x≥x1>x0
The additional constraint F (0) = 0 is necessary
and sufficient for | f (s) | to be O (1/s2).

Inversion Integral [41]. Cauchy’s integral
formula for f (s) analytic and O (s−k ) in a half-
plane x ≥ y, k > 0, is

f (s) =
1
2 πi

lim
β→∞

γ+iβ∫
γ−iβ

f (z)
s−z dz, Re (s)>γ
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Applying the inverse Laplace transformation on
either side of this equation gives

F (t) =
1
2 πi

lim
β→∞

γ+iβ∫
γ−iβ

ezt f (z) dz

If F (t) is of order O [exp (x0t)] and F (t) and
F ′ (t) are piecewise continuous, the inversion
integral exists. At any point t0, where F (t) is
discontinuous, the inversion integral represents
the mean value

F (t0) = lim
ε→∞

1
2
[F (t0+ε)+F (t0−ε)]

When t = 0 the inversion integral represents 0.5
F (O +) and when t < 0, it has the value zero.
If f (s) is a function of the complex variable

s that is analytic and of order O (s−k−m ) on R
(s) ≥ x0, where k > 1 and m is a positive inte-
ger, then the inversion integral converges to F
(t) and

dnF
dtn = 1

2 πi limβ→∞

γ+iβ∫
γ−iβ

eztzn f (z) dz,

n = 1,2,. . ., m

Also F (t) and its n derivatives are continuous
functions of t of order O [exp (x0t)] and they
vanish at t = 0.

F (0) = F ′ (0) = ···F (m) (0) = 0

Series of Residues [41]. Let f (s) be an ana-
lytic function except for a set of isolated singu-
lar points. An isolated singular point is one for
which f (z) is analytic for 0 < |z − z0 | < � but
z0 is a singularity of f (z). An isolated singular
point is either a pole, a removable singularity, or
an essential singularity. If f (z) is not defined in
the neighborhood of z0 but can be made analytic
at z0 simply by defining it at some additional
points, then z0 is a removable singularity. The
function f (z) has a pole of order k ≥ 1 at z0 if
(z − z0)k f (z) has a removable singularity at z0
whereas (z − z0)k−1 f (z) has an unremovable
isolated singularity at z0. Any isolated singular-
ity that is not a pole or a removable singularity
is an essential singularity.
Let the function f (z) be analytic except for

the isolated singular point s1, s2, . . . , sn . Let �n
(t) be the residue of ezt f (z) at z = sn (for defi-
nition of residue, see Section 3.4). Then

F (t) =
∞∑
n=1

?n (t)

When sn is a simple pole

?n (t) = lim
z→sn

(z−sn) ezt f (z)

= esnt lim
z→sn

(z−sn) f (z)

When

f (z) =
p (z)
q (z)

where p (z) and q (z) are analytic at z = sn , p
(sn ) �= 0, then

?n (t) =
p (sn)
q′ (sn)

esnt

If sn is a removable pole of f (s), of order m,
then

ϕn (z) = (z−sn)m f (z)

is analytic at sn and the residue is

?n (t)=
Φn (sn)
(m−1)!

where Φn (z) =
∂m−1

∂zm−1
[
ϕn (z) ezt

]
An important inversion integral is when

f (s) =
1
s
exp

(
−s1/2

)
The inverse transform is

F (t) = 1− erf

(
1

2
√
t

)
= erfc

(
1

2
√
t

)

where erf is the error function and erfc the com-
plementary error function.

4.3. Solution of Partial Differential
Equations by Using Transforms

A common problem facing chemical engineers
is to solve the heat conduction equation or dif-
fusion equation

? Cp
∂T

∂t
= k

∂2T

∂x2
or
∂c

∂t
= D

∂2c

∂x2

The equations can be solved on an infinite do-
main − ∞ < x < ∞, a semi-infinite domain 0
≤ x < ∞, or a finite domain 0 ≤ x ≤ L. At a
boundary, the conditions can be a fixed tem-
perature T (0, t) = T0 (boundary condition of
the first kind, or Dirichlet condition), or a fixed
flux −k ∂T∂x (0,t) = q0 (boundary condition of
the second kind, or Neumann condition), or a
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combination −k ∂T∂x (0,t) = h [T ( 0, t) − T0]
(boundary condition of the third kind, or Robin
condition).
The functions T0 and q0 can be functions of

time. All properties are constant (�, Cp , k, D, h),
so that the problem remains linear. Solutions are
presented on all domains with various boundary
conditions for the heat conduction problem.

∂T

∂t
= α

∂2T

∂x2
, α =

k

?Cp

Problem 1. Infinite domain, on − ∞ < x <
∞.

T (x, 0) = f (x) , initial conditions

T (x, t) bounded

Solution is via Fourier transforms

T̂ (ω, t) =

∞∫
−∞

T (x, t) eiωx dx

Applied to the differential equation

F
[
∂2T
∂x2

]
= −ω2 αF [T ]

∂T̂
∂t

+ω2 αT̂ = 0, T̂ (ω, 0) = f̂ (ω)

By solving

T̂ (ω, t) = f̂ (ω) e−ω2αt

the inverse transformation gives [40, p. 328],
[44, p. 58]

T (x, t) =
1
2 π

lim
L→∞

L∫
−L

e−iωx f̂ (ω) e−ω2αtdω

Another solution is via Laplace transforms;
take the Laplace transform of the original differ-
ential equation.

s t (s, x)−f (x) = α
∂2t

∂x2

This equation can be solved with Fourier trans-
forms [40, p. 355]

t (s, x) =
1

2
√
sα

∞∫
−∞

e
{

−
√

s

α
|x−y|

}
f (y) dy

The inverse transformation is [40, p. 357], [44,
p. 53]

T (x, t) =

1
2
√
π α t

∞∫
−∞

e−(x−y)2/4αt f (y) dy

Problem 2. Semi-infinite domain, boundary
condition of the first kind, on 0 ≤ x ≤ ∞
T (x, 0) = T0 = constant

T (0, t) = T1 = constant

The solution is

T (x ,t) = T0+ [T1−T0]
[
1− erf

(
x/

√
4α t

)]
or T (x, t) = T0+(T1−T0) erfc

(
x/

√
4α t

)
Problem 3. Semi-infinite domain, boundary

condition of the first kind, on 0 ≤ x < ∞
T (x, 0) = f (x)

T (0, t) = g (t)

The solution is written as

T (x, t) = T1 (x, t)+T2 (x, t)

where

T1 (x, 0) = f (x) , T2 (x, 0) = 0

T1 (0, t) = 0, T2 (0, t) = g (t)

Then T1 is solved by taking the sine transform

U1 = Fωs [T1]

∂U1

∂t
= − ω2 αU1

U1 (ω, 0) = Fωs [f ]

Thus,

U1 (ω, t) = Fωs [f ] e−ω2αt

and [40, p. 322]

T1 (x, t) =
2
π

∞∫
0

Fωs [f ] e−ω2αtsin ωx dω

Solve for T2 by taking the sine transform

U2 = Fωs [T2]

∂U2
∂t

= −ω2 αU2+α g (t) ω

U2 (ω, 0) = 0

Thus,
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U2 (ω, t) =

t∫
0

e−ω2α(t−τ)αω g (τ) dτ

and [40, p. 435]

T2 (x, t) =
2α
π

∞∫
0

ω sin ωx

t∫
0

e−ω2 α(t−τ) g (τ) dτdω

The solution for T1 can also be obtained by
Laplace transforms.

t1 = L [T1]

Applying this to the differential equation

st1−f (x) = α
∂2 t1

∂x2
, t1 (0, s) = 0

and solving gives

t1 =
1√
s α

x∫
0

e−
√
s/α(x′−x) f

(
x′) dx′

and the inverse transformation is [40, p. 437],
[44, p. 59]

T1 (x, t) = (7)

1√
4 π α t

∞∫
0

[
e−(x−ξ)2/4αt−e−(x+ξ)2/4αt

]
f (ξ) dξ

Problem 4. Semi-infinite domain, boundary
conditions of the second kind, on 0 ≤ x < ∞.

T (x, 0) = 0

−k ∂T
∂x

(0, t) = q0 = constant

Take the Laplace transform

t (x, s) = L [T (x, t)]

s t = α ∂2t
∂x2

−k ∂t
∂x

= q0
s

The solution is

t (x, s) =
q0

√
α

k s3/2
e−x

√
s/α

The inverse transformation is [41, p. 131], [44,
p. 75]

T (x, t) =
q0

k

[
2

√
α t

π
e−x2/4αt −x erfc

(
x√
4α t

)]

Problem 5. Semi-infinite domain, boundary
conditions of the third kind, on 0 ≤ x < ∞

T (x, 0) = f (x)

k
∂T

∂x
(0, t) = h T (0, t)

Take the Laplace transform

s t−f (x) = α ∂2t
∂x2

k ∂t
∂x

(0, s) = h t (0, s)

The solution is

t (x, s) =

∞∫
0

f (ξ) g (x, ξ, s) dξ

where [41, p. 227]

2
√
s/α g (x, ξ, s) = exp

(
− |x−ξ|√s/α

)
+

√
s−h√

α/k√
s+h

√
α/k

exp
[
− (x+ξ)

√
s/α
]

One form of the inverse transformation is [41, p.
228]

T (x, t) = 2
π

∞∫
0
e−β2αtcos [β x−µ (β)]

∞∫
0
f (ξ)

cos [β ξ−µ (β)] dξdβ

µ (β) = arg (β+i h/k)

Another form of the inverse transformation
when f = T0= constant is [41, p. 231], [44, p.
71]

T (x, t) = T0

[
erf

(
x√
4α t

)
+ehx/k eh

2 αt/k2

erfc

(
h
√
αt

k
+

x√
4α t

)]

Problem 6. Finite domain, boundary condi-
tion of the first kind

T (x, 0) = T0 = constant

T (0, t) = T (L, t) = 0

Take the Laplace transform

s t (x, s)−T0 = α
∂2t

∂x2

t (0, s) = t (L, s) = 0

The solution is

t (x, s) = −T0

s

sinh
√

s
α
x

sinh
√

s
α
L

−T0

s

sinh
√

s
α
(L−x)

sinh
√

s
α
L

+
T0

s
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The inverse transformation is [41, p. 220], [44,
p. 96]

T (x, t) =
2
π
T0
∑

n=1,3,5,...

2
n
e−n2π2αt/L2

sin
n π x

L

or (depending on the inversion technique) [40,
pp. 362, 438]

T (x, t) =
T0√
4 π α t

L∫
0

∞∑
n=−∞

[
e−[(x−ξ)+2nL]2/4αt

−e−[(x+ξ)+2nL]2/4αt
]
dξ

Problem 7. Finite domain, boundary condi-
tion of the first kind

T (x, 0) = 0

T (0, t) = 0

T (L, 0) = T0 = constant

Take the Laplace transform

s t (x, s) = α ∂2t
∂x2

t (0, s) = 0, t (L, s) = T0
s

The solution is

t (x, s) =
T0

s

sinh x
L

√
s/α

sinh
√
s/α

and the inverse transformation is [41, p. 201],
[44, p. 313]

T (x, t) = T0

[
x

L
+
2
π

∞∑
n=1

(−1)n

n
e−n2π2αt/L2

sin
n π x

L

]

An alternate transformation is [41, p. 139], [44,
p. 310]

T (x, t) = T0

∞∑
n=0

[
erf

(
(2 n+1) L+x√

4α t

)

−erf
(
(2 n+1) L−x√

4α t

)]

Problem 8. Finite domain, boundary condi-
tion of the second kind

T (x, 0) = T0

∂ T

∂x
(0, t) = 0, T (L, t) = 0

Take the Laplace transform

s t (x, s)−T0 = α ∂
2t
∂x2

∂t
∂x

(0, s) = 0, t (L, s) = 0

The solution is

t (x, s) =
T0

s

[
1− cosh x

√
s/α

coshL
√
s/α

]

Its inverse is [41, p. 138]

T (x, t) = T0−T0
∞∑
n=0

(−1)n
[
erfc

(
(2n+1) L−x√

4α t

)

+erfc
(
(2n+1) L+x√

4α t

)]

5. Vector Analysis

Notation. A scalar is a quantity havingmag-
nitude but no direction (e.g., mass, length, time,
temperature, and concentration). A vector is
a quantity having both magnitude and direc-
tion (e.g., displacement, velocity, acceleration,
force). A second-order dyadic has magnitude
and two directions associated with it, as defined
precisely below. The most common examples
are the stress dyadic (or tensor) and the veloc-
ity gradient (in fluid flow). Vectors are printed
in boldface type and identified in this chap-
ter by lower-case Latin letters. Second-order
dyadics are printed in boldface type and are
identified in this chapter by capital or Greek
letters. Higher order dyadics are not discussed
here. Dyadics can be formed from the compo-
nents of tensors including their directions, and
some of the identities for dyadics are more eas-
ily proved by using tensor analysis, which is not
presented here (see also,→ Transport Phenom-
ena, Chap. 1.1.4). Vectors are also first-order
dyadics.

Vectors. Two vectors u and v are equal if they
have the same magnitude and direction. If they
have the same magnitude but the opposite di-
rection, then u = − v. The sum of two vectors
is identified geometrically by placing the vector
v at the end of the vector u, as shown in Fig-
ure 12. The product of a scalar m and a vector
u is a vector m u in the same direction as u but
with a magnitude that equals the magnitude of
u times the scalar m. Vectors obey commutative
and associative laws.
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u + v = v + u Commutative law for addition
u + (v + w) = (u + v) + w Associative law for addition
m u = u m Commutative law for scalar

multiplication
m (n u) = (m n) u Associative law for scalar

multiplication
(m + n) u = m u + n u Distributive law
m (u + v) = m u + m v Distributive law

The same laws are obeyedbydyadics, aswell.

Figure 12. Addition of vectors

A unit vector is a vector with magnitude 1.0
and some direction. If a vector has some magni-
tude (i.e., not zero magnitude), a unit vector eu
can be formed by

eu =
u

|u|
The original vector can be represented by the
product of the magnitude and the unit vector.

u = |u| eu
In a cartesian coordinate system the three prin-
ciple, orthogonal directions are customarily re-
presented by unit vectors, such as {ex , ey , ez}
or {i, j, k}. Here, the first notation is used (see
Fig. 13). The coordinate system is right handed;
that is, if a right-threaded screw rotated from the
x to the y direction, it would advance in the z di-
rection. A vector can be represented in terms of
its components in these directions, as illustrated
in Figure 14. The vector is then written as

u = uxex+uyey+uzez

The magnitude is

|u| =
√
u2x+u2y+u2z

The position vector is

r = xex+yey+zez

with magnitude

|r| =
√
x2+y2+z2

Figure 13. Cartesian coordinate system

Figure 14. Vector components

Dyadics. The dyadic A is written in compo-
nent form in cartesian coordinates as

A = Axxexex+Axyexey+Axzexez

+Ayxeyex+Ayyeyey+Ayzeyez

+Azxezex+Azyezey+Azzezez

Quantities such as ex ey are called unit dyadics.
They are second-order dyadics and have two di-
rections associated with them, ex and ey ; the
order of the pair is important. The components
Axx , . . . , Azz are the components of the tensor
Aij which here is a 3×3 matrix of numbers that
are transformed in a certain way when variables
undergo a linear transformation. The y x mo-
mentum flux can be defined as the flux of x mo-
mentum across an area with unit normal in the
y direction. Since two directions are involved, a
second-order dyadic (or tensor) is needed to re-
present it, and because the y momentum across
an area with unit normal in the x direction may
not be the same thing, the order of the indices
must be kept straight. The dyadic A is said to be
symmetric if

Aij = Aji
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Here, the indices i and j can take the values x,
y, or z; sometimes (x, 1), (y, 2), (x, 3) are iden-
tified and the indices take the values 1, 2, or 3.
The dyadic A is said to be antisymmetric if

Aij = −Aji
The transpose of A is

ATij = Aji

Any dyadic can be represented as the sum of
a symmetric portion and an antisymmetric por-
tion.

Aij = Bij+Cij ,Bij≡ 1
2 (Aij+Aji) ,

Cij≡ 1
2 (Aij−Aji)

An ordered pair of vectors is a second-order
dyadic.

uv =
∑

i

∑
j
eiejui vj

The transpose of this is

(uv)T = v u

but

uv �=v u

The Kronecker delta is defined as

δij =

{
1 if i = j

0 if i�=j

}

and the unit dyadic is defined as

δ =
∑

i

∑
j
eiej δij

Operations. The dot or scalar product of
two vectors is defined as

u·v = |u| |v| cos θ, 0≤θ≤π

where θ is the angle between u and v. The scalar
product of two vectors is a scalar, not a vector. It
is the magnitude of u multiplied by the projec-
tion of v on u, or vice versa. The scalar product
of uwith itself is just the square of themagnitude
of u.

u·u =
∣∣u2∣∣ = u2

The following laws are valid for scalar products

u · v = v · u Commutative law for scalar
products

u · (v + w) = u · v + u · w Distributive law for scalar
products

ex · ex = ey · ey= ez · ez = 1
ex · ey= ex · ez= ey · ez = 0

If the two vectors u and v are written in com-
ponent notation, the scalar product is

u·v = ux vx+uy vy+uz vz

If u · v = 0 and u and v are not null vectors, then
u and v are perpendicular to each other and θ =
π/2.
The single dot product of two dyadics is

A·B =
∑

i

∑
j
eiej

(∑
k
Aik Bkj

)
The double dot product of two dyadics is

A:B =
∑

i

∑
j
Aij Bji

Because the dyadics may not be symmetric, the
order of indices and which indices are summed
are important. The order is made clearer when
the dyadics are made from vectors.

(uv) · (wx) = u (v·w)x = ux (v·w)

(uv) : (wx) = (u·x) (v·w)
The dot product of a dyadic and a vector is

A·u =
∑

i
ei

(∑
j
Aij uj

)

The cross or vector product is defined by

c = u×v = a |u| |v| sin θ, 0≤θ≤π
where a is a unit vector in the direction of u×v.
The direction of c is perpendicular to the plane
of u and v such that u, v, and c form a right-
handed system. If u = v, or u is parallel to v,
then θ = 0 and u×v = 0. The following laws are
valid for cross products.

u×v =−v×u Commutative law fails for
vector product

u×(v×w) �= (u×v)×w Associative law fails for
vector product

u×(v + w) = u×v + u×w Distributive law for vector
product

ex×ex= ey×ey= ez ×ez = 0
ex×ey= ez , ey×ez= ex , ez ×ex=
ey

u×v = det


 ex ey ez
ux uy uz
vx vy vz




= ex (uy vz−vy uz)+ey (uz vz−ux vz)

+ez (ux vy−uy vx)
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This can also be written as

u×v =
∑

i

∑
j
εkij ui vjek

where

εijk =



1 if i,j,k is an even permutation of 123
−1 if i,j,k is an odd permutation of 123
0 if any two of i,j,k are equal

Thus ε123 = 1, ε132 =- 1, ε312 = 1, ε112 = 0, for
example.
Themagnitude of u×v is the same as the area

of a parallelogram with sides u and v. If u×v =
0 and u and v are not null vectors, then u and v
are parallel. Certain triple products are useful.

(u·v)w �=u (v·w)

u· (v×w) = v· (w×u) = w· (u×v)

u× (v×w) = (u·w) v− (u·v)w

(u×v)×w = (u·w) v− (v·w)u

The cross product of a dyadic and a vector is
defined as

A×u =
∑

i

∑
j
eiej

(∑
k

∑
l
εklj Aik ul

)
The magnitude of a dyadic is

|A| = A =

√
1
2
(A:AT) =

√
1
2

∑
i

∑
j
A2ij

There are three invariants of a dyadic. They
are called invariants because they take the same
value in any coordinate system and are thus an
intrinsic property of the dyadic. They are the
trace of A, A2, A3 [45].

I = trA =
∑
iAii

II = trA2 =
∑
i

∑
jAij Aji

III = trA3 =
∑
i

∑
j

∑
kAij Ajk Aki

The invariants can also be expressed as

I1 = I

I2 = 1
2

(
I2−II)

I3 = 1
6

(
I3−3 I·II+2 III) = detA

Invariants of two dyadics are available [46]. Be-
cause a second-order dyadic has nine compo-
nents, the characteristic equation

det (λ δ−A) = 0

can be formed where λ is an eigenvalue. This
expression is

λ3−I1λ2+I2λ−I3 = 0

An important theorem of Hamilton and Cayley
[47] is that a second-order dyadic satisfies its
own characteristic equation.

A3−I1A2+I2A−I3δ = 0 (7)

Thus A3 can be expressed in terms of δδδ, A, and
A2. Similarly, higher powers of A can be ex-
pressed in terms of δδδ, A, and A2. Decomposi-
tion of a dyadic into a symmetric and an anti-
symmetric part was shown above. The antisym-
metric part has zero trace. The symmetric part
can be decomposed into a part with a trace (the
isotropic part) and a part with zero trace (the
deviatoric part).

A = 1/3δδδδδδ :A + 1/2 [A + AT - 2/3δδδδδδ :A] + 1/2 [A - AT]
Isotropic Deviatoric Antisymmetric

Differentiation. The derivative of a vector is
defined in the same way as the derivative of a
scalar. Suppose the vector u depends on t. Then

du
dt

= lim
∆t→0

u (t+∆t)−u (t)
∆t

If the vector is the position vector r (t), then the
difference expression is a vector in the direction
of ∆ r (see Fig. 15). The derivative

dr
dt

= lim
∆t→0

∆r
∆t

= lim
∆t→0

r (t+∆t)−r (t)
∆t

is the velocity. The derivative operation obeys
the following laws.

d
dt (u+v) =

du
dt +

dv
dt

d
dt (u·v) = du

dt ·v+u·dv
dt

d
dt (u×v) = du

dt ×v+u×dv
dt

d
dt (ϕu) =

dϕ
dt u+ϕ

du
dt

If the vector u depends on more than one vari-
able, such as x, y and z, partial derivatives are
defined in the usual way. For example,

ifu (x, y, z) , then

∂u
∂x

= lim
∆t→0

u(x+∆x, y, z)−u(x, y, z)
∆x
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Rules for differentiation of scalar and vector
products are
∂
∂x

(u·v) = ∂u
∂x

·v+u· ∂v
∂x

∂
∂x

(u×v) = ∂u
∂x

×v+u× ∂v
∂x

Differentials of vectors are

du = duxex+duyey+duzez

d (u·v) = du·v+u·dv

d (u×v) = du×v+u×dv

du = ∂u
∂x

dx+ ∂u
∂y

dy+ ∂u
∂z

dz

Figure 15. Vector differentiation

If a curve is given by r (t), the length of the
curve is [43]

L =

b∫
a

√
dr
dt

·dr
dt

dt

The arc-length function can also be defined:

s (t) =

t∫
a

√
dr
dt∗

· dr
dt∗

dt∗

This gives(
ds
dt

)2
=

dr
dt

·dr
dt

=
(
dx
dt

)2
+
(
dy
dt

)2
+
(
dz
dt

)2
Because

dr = dxex+dyey+dzez

then

ds2 = dr·dr = dx2+dy2+dz2

The derivative dr/dt is tangent to the curve in the
direction of motion

u =
dr
dt∣∣∣drdt
∣∣∣

Also,

u =
dr
ds

Differential Operators. The vector differ-
ential operator (del operator) ∇∇∇ is defined in
cartesian coordinates by

∇∇∇ = ex
∂

∂x
+ey

∂

∂y
+ez

∂

∂z

The gradient of a scalar function is defined

∇∇∇ϕ = ex
∂ϕ

∂x
+ey

∂ϕ

∂y
+ez

∂ϕ

∂z

and is a vector. Ifϕ is height or elevation, the gra-
dient is a vector pointing in the uphill direction.
The steeper the hill, the larger is the magnitude
of the gradient.
The divergence of a vector is defined by

∇∇∇ ·u =
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z

and is a scalar. For a volume element ∆V, the
net outflow of a vector u over the surface of the
element is∫
∆S

u·ndS

This is related to the divergence by [48, p. 411]

∇∇∇·u = lim
∆V→0

1
∆V

∫
∆S

u·ndS

Thus, the divergence is the net outflow per unit
volume.
The curl of a vector is defined by

∇∇∇×u =
(
ex

∂
∂x

+ey ∂
∂y

+ez ∂∂z
)

× (exux+eyuy+ezuz)

= ex
(
∂uz
∂y

− ∂uy

∂z

)
+ey

(
∂ux
∂z

− ∂uz
∂x

)
+ez

(
∂uy

∂x
− ∂ux

∂y

)
and is a vector. It is related to the integral∫
C

u·ds =
∫
C

usds

which is called the circulation of u around path
C. This integral depends on the vector and the
contour C, in general. If the circulation does not
depend on the contour C, the vector is said to be
irrotational; if it does, it is rotational. The rela-
tionship with the curl is [48, p. 419]
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n· (∇∇∇×u) = lim
∆→0

1
∆S

∫
C

u·ds

Thus, the normal component of the curl equals
the net circulation per unit area enclosed by the
contour C.
The gradient, divergence, and curl obey a dis-

tributive law but not a commutative or associa-
tive law.

∇∇∇ (ϕ+ψ) = ∇∇∇ϕ+∇∇∇ψ

∇∇∇· (u+v) = ∇∇∇·u+∇∇∇·v
∇∇∇× (u+v) = ∇∇∇×u+∇∇∇×v
∇∇∇·ϕ �=ϕ∇∇∇
∇∇∇·u�=u·∇∇∇
Useful formulas are [49]

∇∇∇· (ϕu) = ∇∇∇ϕ·u+ϕ∇∇∇·u

∇∇∇× (ϕu) = ∇∇∇ϕ×u+ϕ∇∇∇×u

∇∇∇· (u×v) = v· (∇∇∇×u)−u· (∇∇∇×v)

∇∇∇× (u×v) = v·∇∇∇u−v (∇∇∇·u)−u·∇∇∇v+u (∇∇∇·v)

∇∇∇× (∇∇∇×u) = ∇∇∇ (∇∇∇·u)−∇2u

∇∇∇· (∇∇∇ϕ) = ∇2ϕ = ∂2ϕ
∂x2

+ ∂2ϕ
∂y2

+ ∂2ϕ
∂z2

,where∇2

is called the Laplacian operator. ∇∇∇×(∇∇∇ϕ) = 0.
The curl of the gradient of ϕ is zero.

∇∇∇· (∇∇∇×u) = 0

The divergence of the curl of u is zero. Formulas
useful in fluid mechanics are

∇∇∇·(∇∇∇v)T = ∇∇∇ (∇∇∇·v)

∇∇∇· (τ ·v) = v· (∇∇∇·τ)+τ :∇∇∇v

v·∇∇∇v = 1
2∇∇∇ (v·v)−v× (∇∇∇×v)

If a coordinate system is transformed by a rota-
tion and translation, the coordinates in the new
system (denoted by primes) are given by
 x′

y′

z′


 =


 l11 l12 l13
l21 l22 l23
l31 l32 l33





 x

y

z


 +


 a1
a2
a3




Any function that has the same value in all coor-
dinate systems is an invariant. The gradient of an

invariant scalar field is invariant; the same is true
for the divergence and curl of invariant vectors
fields.
The gradient of a vector field is required in

fluid mechanics because the velocity gradient is
used. It is defined as

∇∇∇v =∑i

∑
jeiej

∂vj
∂xi

and

(∇∇∇v)T =
∑
i

∑
jeiej

∂vi
∂xj

The divergence of dyadics is defined

∇∇∇·τ =
∑
iei

(∑
j
∂τji
∂xj

)
and

∇∇∇· (ϕuv) =∑iei

[∑
j
∂
∂xj

(ϕuj vi)
]

where τττ is any second-order dyadic.
Useful relations involving dyadics are

(ϕ δ :∇∇∇v) = ϕ (∇∇∇·v)

∇∇∇· (ϕ δ) = ∇∇∇ϕ

∇∇∇· (ϕτ ) = ∇∇∇ϕ·τ+ϕ∇∇∇·τ

n t:τ = t·τ ·n = τ :n t

A surface can be represented in the form

f (x, y, z) = c = constant

The normal to the surface is given by

n =
∇∇∇ f

|∇∇∇ f |
provided the gradient is not zero. Operations can
be performed entirely within the surface. Define

δII≡δ−nn,∇∇∇II≡δII·∇∇∇, ∂
∂n

≡n·∇∇∇

vII≡δII·v, vn≡n·v
Then a vector and del operator can be decom-
posed into

v = vII+nvn,∇∇∇ = ∇∇∇II+n
∂

∂n

The velocity gradient can be decomposed into

∇∇∇v = ∇∇∇IIvII+(∇∇∇IIn) vn+n∇∇∇IIvn+n
∂vII

∂n
+nn

∂vn

∂n

The surface gradient of the normal is the nega-
tive of the curvature dyadic of the surface.

∇∇∇IIn = −B
The surface divergence is then

∇∇∇II·v = δII :∇∇∇v = ∇∇∇II·vII−2H vn
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where H is the mean curvature.

H =
1
2
δII :B

The surface curl can be a scalar

∇∇∇II×v = −εII :∇∇∇v = −εII:∇∇∇IIvII = −n· (∇∇∇×v) ,

εII = n·ε
or a vector

∇∇∇II×v≡∇∇∇II×vII = n∇∇∇II×v = nn·∇∇∇×v

Vector Integration [48, pp. 206 – 212]. If u
is a vector, then its integral is also a vector.∫
u (t) dt = ex

∫
ux (t) dt+ey

∫
uy (t) dt

+ez
∫
uz (t) dt

If the vector u is the derivative of another vector,
then

u =
dv
dt

,

∫
u (t) dt =

∫
dv
dt

dt = v+constant

If r (t) is a position vector that defines a curve
C, the line integral is defined by∫
C

u·dr =
∫
C

(uxdx+uydy+uzdz)

Theorems about this line integral can be written
in various forms.

Theorem [43]. If the functions appearing in
the line integral are continuous in a domain D,
then the line integral is independent of the path
C if and only if the line integral is zero on every
simple closed path in D.

Theorem [43]. If u =∇∇∇ϕ where ϕ is single-
valued and has continuous derivatives in D, then
the line integral is independent of the pathC and
the line integral is zero for any closed curve in
D.

Theorem [43]. If f, g, and h are continuous
functions of x, y, and z, and have continuous
first derivatives in a simply connected domain
D, then the line integral∫
C

(f dx+gdy+hdz)

is independent of the path if and only if

∂h

∂y
=

∂g

∂z
,
∂ f

∂z
=

∂h

∂x
,
∂g

∂x
=

∂ f

∂y

or if f, g, and h are regarded as the x, y, and z
components of a vector v:

∇∇∇×v = 0

Consequently, the line integral is independent of
the path (and the value is zero for a closed con-
tour) if the three components in it are regarded
as the three components of a vector and the vec-
tor is derivable from a potential (or zero curl).
The conditions for a vector to be derivable from
a potential are just those in the third theorem. In
two dimensions this reduces to the more usual
theorem.

Theorem [48, p. 207]. IfM and N are contin-
uous functions of x and y that have continuous
first partial derivatives in a simply connected do-
main D, then the necessary and sufficient condi-
tion for the line integral∫
C

(Mdx+Ndy)

to be zero around every closed curve C in D is

∂M

∂y
=

∂N

∂x

If a vector is integrated over a surface with
incremental area d S and normal to the surface
n, then the surface integral can be written as∫ ∫

S

u·dS =
∫ ∫

S

u·ndS

If u is the velocity then this integral represents
the flow rate past the surface S.

Divergence Theorem [48, 49]. If V is a vol-
ume bounded by a closed surface S and u is
a vector function of position with continuous
derivatives, then∫
V

∇∇∇·udV =
∫
S

n·udS =
∫
S

u·ndS =
∫
S

u·dS

where n is the normal pointing outward to S. The
normal can be written as

n = ex cos (x, n)+ey cos (y, n)+ez cos (z, n)

where, for example, cos (x, n) is the cosine of the
angle between the normal n and the x axis. Then
the divergence theorem in component form is∫
V

(
∂ux
∂x

+ ∂uy

∂y
+ ∂uz

∂z

)
dxdydz =

∫
S

[uxcos (x, n)+uycos (y, n)+uzcos (z, n)] dS
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If the divergence theorem is written for an incre-
mental volume

∇∇∇·u = lim
∆V→0

1
∆V

∫
∆S

undS

the divergence of a vector can be called the in-
tegral of that quantity over the area of a closed
volume, divided by the volume. If the vector re-
presents the flow of energy and the divergence is
positive at a point P, then either a source of en-
ergy is present atP or energy is leaving the region
around P so that its temperature is decreasing.
If the vector represents the flow of mass and the
divergence is positive at a point P, then either a
source of mass exists at P or the density is de-
creasing at the point P. For an incompressible
fluid the divergence is zero and the rate at which
fluid is introduced into a volume must equal the
rate at which it is removed.
Various theorems follow from the divergence

theorem.
Theorem. Ifϕ is a solution to Laplace’s equa-

tion

∇2ϕ = 0

in a domain D, and the second partial deriva-
tives of ϕ are continuous in D, then the integral
of the normal derivative of ϕ over any piece-
wise smooth closed orientable surface S in D is
zero. Suppose u = ϕ∇∇∇ψ satisfies the conditions
of the divergence theorem: then Green’s theo-
rem results from use of the divergence theorem
[49].∫
V

(
ϕ∇2 ψ+∇∇∇ϕ·∇∇∇ψ

)
dV =

∫
S

ϕ
∂ψ

∂n
dS

and∫
V

(
ϕ∇2ψ−ψ∇2ϕ) dV =

∫
S

(
ϕ
∂ψ

∂n
−ψ∂ϕ

∂n

)
dS

Also if ϕ satisfies the conditions of the theorem
and is zero on S then ϕ is zero throughout D. If
two functions ϕ and ψ both satisfy the Laplace
equation in domain D, and both take the same
values on the bounding curveC, thenϕ = ψ; i.e.,
the solution to the Laplace equation is unique.
The divergence theorem for dyadics is∫

V

∇∇∇·τdV =
∫
S

n·τ dS

Stokes Theorem [48, 49]. Stokes theorem
says that if S is a surface bounded by a closed,
nonintersecting curveC, and if u has continuous
derivatives then∮
C

u·dr =
∫ ∫

S

(∇∇∇×u) ·ndS =
∫ ∫

S

(∇∇∇×u) ·dS

The integral around the curve is followed in the
counterclockwise direction. In component nota-
tion, this is∮
C

[uxcos (x, s)+uy cos (y, s)+uzcos (z, s)] ds =∫ ∫
S

[(
∂uz
∂y

− ∂uy

∂z

)
cos (x, n)

+
(
∂ux
∂z

− ∂uz
∂x

)
cos (y, n)

+
(
∂uy

∂x
− ∂ux

∂y

)
cos (z, n)

]
dS

Applied in two dimensions, this results in
Green’s theorem in the plane:∮
C

(Mdx+Ndy) =
∫ ∫

S

(
∂N

∂x
−∂M

∂y

)
dxdy

The formula for dyadics is∫ ∫
S

n· (∇∇∇×τ ) dS =
∮
C

τT·dr

Representation. Two theorems give infor-
mation about how to represent vectors that obey
certain properties.

Theorem [ 48, p. 422]. The necessary and
sufficient condition that the curl of a vector van-
ish identically is that the vector be the gradient
of some function.

Theorem [ 48, p. 423]. The necessary and
sufficient condition that the divergence of a vec-
tor vanish identically is that the vector is the curl
of some other vector.

Leibniz Formula. In fluid mechanics and
transport phenomena, an important result is the
derivative of an integral whose limits of inte-
gration are moving. Suppose the region V (t) is
moving with velocity vs . Then Leibniz’s rule
holds:

d
dt

∫ ∫ ∫
V (t)

ϕdV =
∫ ∫ ∫

V (t)

∂ϕ

∂t
dV +

∫ ∫
S

ϕvs·ndS



48 Mathematics in Chemical Engineering

Curvilinear Coordinates. Many of the re-
lations given above are proved most easily by
using tensor analysis rather than dyadics. Once
proven, however, the relations are perfectly gen-
eral in any coordinate system.Displayedhere are
the specific results for cylindrical and spherical
geometries. Results are available for a few other
geometries: parabolic cylindrical, paraboloidal,
elliptic cylindrical, prolate spheroidal, oblate
spheroidal, ellipsoidal, and bipolar coordinates
[45, 50].
For cylindrical coordinates, the geometry is

shown in Figure 16. The coordinates are related
to cartesian coordinates by

Figure 16. Cylindrical coordinate system

x = rcosθ r =
√
x2+y2

y = rsinθ θ = arctan
( y

x

)
z = z z = z

The unit vectors are related by

er = cosθex + sinθey ex = cosθer − sinθeθ
eθ =− sinθex + cosθey ey = sinθer + cosθeθ
ez = ez ez = ez

Derivatives of the unit vectors are

deθ = −erdθ, der = eθdθ, dez = 0

Differential operators are given by [45]

∇∇∇ = er
∂

∂r
+
eθ

r

∂

∂θ
+ez

∂

∂z
,

∇∇∇ϕ = er
∂ϕ

∂r
+
eθ

r

∂ϕ

∂θ
+ez

∂ϕ

∂z

∇∇∇2ϕ = 1
r
∂
∂r

(
r ∂ϕ
∂r

)
+ 1
r2
∂2ϕ
∂θ2

+ ∂2ϕ
∂z2

= ∂2ϕ
∂r2

+ 1
r
∂ϕ
∂r

+ 1
r2
∂2ϕ
∂θ2

+ ∂2ϕ
∂z2

∇∇∇·v = 1
r

∂

∂r
(r vr)+

1
r

∂vθ

∂θ
+
∂vz

∂z

∇∇∇×v = er
(
1
r
∂vz
∂θ

− ∂vθ
∂z

)
+eθ

(
∂vr
∂z

− ∂vz
∂r

)
+ez

[
1
r
∂
∂r

(r vθ)− 1
r
∂vr
∂θ

]
∇∇∇·τ = er

[
1
r
∂
∂r

(rτrr)+ 1
r
∂τθr
∂θ

+ ∂τzr
∂z

− τθθ
r

]
+

+eθ
[
1
r2

∂
∂r

(
r2τrθ

)
+ 1
r
∂τθθ
∂θ

+ ∂τzθ
∂z

+ τθr−τrθ
r

]
+

+ez
[
1
r
∂
∂r

(rτrz)+ 1
r
∂τθz
∂θ

+ ∂τzz
∂z

]
∇∇∇v = erer ∂vr∂r +ereθ

∂vθ
∂r

+erez ∂vz∂r +

+eθer
(
1
r
∂vr
∂θ

− vθ
r

)
+eθeθ

(
1
r
∂vθ
∂θ

+ vr
r

)
+

+eθez 1r
∂vz
∂θ

+ezer ∂vr∂z +ezeθ
∂vθ
∂z

+ezez ∂vz∂z

∇2v = er
[
∂
∂r

(
1
r
∂
∂r

(r vr)
)
+ 1
r2
∂2vr
∂θ2

+ ∂2vr
∂z2

− 2
r2
∂vθ
∂θ

]
+

+eθ
[
∂
∂r

(
1
r
∂
∂r

(r vθ)
)
+ 1
r2
∂2vθ
∂θ2

+ ∂2vθ
∂z2

+ 2
r2
∂vr
∂θ

]
+

+ez
[
1
r
∂
∂r

(
r ∂vz
∂r

)
+ 1
r2
∂2vz
∂θ2

+ ∂2vz
∂z2

]
For spherical coordinates, the geometry is
shown in Figure 17. The coordinates are related
to cartesian coordinates by

Figure 17. Spherical coordinate system
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x = r sinθ cosϕ r =
√
x2+y2+z2

y = r sinθ sinϕ θ = arctan
(√

x2+y2/z
)

z = r cosθ ϕ = arctan
( y

x

)

The unit vectors are related by

er = sin θcosϕex+sin θsinϕey+cos θez

eθ = cos θcosϕex+cos θsinϕey−sin θez

eφ = −sinϕex+cosϕey

ex = sin θcosϕer+cos θcosϕeθ−sinϕeφ

ey = sin θsinϕer+cos θsinϕeθ+cosϕeφ

ez = cos θer−sin θeθ

Derivatives of the unit vectors are

∂er
∂θ

= eθ,
∂eθ
∂θ

= −er
∂er
∂ϕ

= eφ sin θ,
∂eθ
∂ϕ

= eφ cos θ,

∂eφ

∂ϕ
= −er sin θ−eθ cos θ

Others 0
Differential operators are given by [45]

∇∇∇ = er
∂

∂r
+eθ

1
r

∂

∂θ
+eφ

1
r sin θ

∂

∂ϕ
,

∇∇∇ψ = er
∂ψ

∂r
+eθ

1
r

∂ψ

∂θ
+eφ

1
r sin θ

∂ψ

∂ϕ

∇∇∇2ψ = 1
r2

∂
∂r

(
r2 ∂ψ

∂r

)
+ 1
r2 sin θ

∂
∂θ

(
sin θ ∂ψ

∂θ

)
+

+ 1
r2sin2 θ

∂2ψ
∂ϕ2

∇∇∇·v = 1
r2

∂
∂r

(
r2 vr

)
+ 1
r sin θ

∂
∂θ

(vθ sin θ)+

+ 1
r sin θ

∂vφ
∂ϕ

∇∇∇×v = er
[

1
r sin θ

∂
∂θ

(
vφsin θ

)− 1
r sin θ

∂vθ
∂ϕ

]
+

+eθ
[

1
r sin θ

∂vr
∂ϕ

− 1
r
∂
∂r

(
r vφ

)]
+

+eφ
[
1
r
∂
∂r

(r vθ)− 1
r
∂vr
∂θ

]

∇∇∇·τ = er
[
1
r2

∂
∂r

(
r2τrr

)
+ 1
r sin θ

∂
∂θ

(τθrsin θ)+ 1
r sin θ

∂τφr

∂ϕ
− τθθ+τφφ

r

]
+

+eθ
[
1
r3

∂
∂r

(
r3τrθ

)
+ 1
r sin θ

∂
∂θ

(τθθsin θ)+

1
r sin θ

∂τφθ

∂ϕ
+
τθr−τrθ−τφφcotθ

r

]
+

+eφ
[
1
r3

∂
∂r

(
r3τrφ

)
+ 1
r sin θ

∂
∂θ

(
τθφsin θ

)
+

1
r sin θ

∂τφφ

∂ϕ
+
τφr−τrφ+τφθcotθ

r

]

∇∇∇v = erer ∂vr∂r +ereθ
∂vθ
∂r

+ereφ
∂vφ
∂r

+

+eθer
(
1
r
∂vr
∂θ

− vθ
r

)
+eθeθ

(
1
r
∂vθ
∂θ

+ vr
r

)
+

+eθeφ 1r
∂vφ
∂θ

+eφer
(

1
rsinθ

∂vr
∂ϕ

− vφ
r

)
+

+eφeθ
(

1
rsinθ

∂vθ
∂ϕ

− vφ
r
cotθ

)
+

+eφeφ
(

1
rsinθ

∂vφ
∂ϕ

+ vr
r
+ vθ
r
cotθ

)
∇2v = er

[
∂
∂r

(
1
r2

∂
∂r

(
r2 vr

))
+ 1
r2sin θ

∂
∂θ

(
sin θ ∂vr

∂θ

)
+ 1
r2sin2 θ

∂2vr
∂ϕ2 − 2

r2sin θ
∂
∂θ

(vθsin θ)− 2
r2sin θ

∂vφ
∂ϕ

]
+eθ

[
1
r2

∂
∂r

(
r2 ∂vθ

∂r

)
+ 1
r2

∂
∂θ

(
1

sin θ
∂
∂θ

(vθsin θ)
)

+ 1
r2sin2 θ

∂2vθ
∂ϕ2 + 2

r2
∂vr
∂θ

− 2
r2
cot θ
sin θ

∂vφ
∂ϕ

]
+eφ

[
1
r2

∂
∂r

(
r2
∂vφ
∂r

)
+ 1
r2

∂
∂θ

(
1

sin θ
∂
∂θ

(
vφsin θ

))

+ 1
r2sin2 θ

∂2vφ
∂ϕ2 + 2

r2sin θ
∂vr
∂ϕ

+ 2
r2
cot θ
sin θ

∂vθ
∂ϕ

]

6. Ordinary Differential Equations
as Initial Value Problems

A differential equation for a function that de-
pends on only one variable (often time) is called
an ordinary differential equation. The general
solution to the differential equation includes
many possibilities; the boundary or initial con-
ditions are required to specify which of those
are desired. If all conditions are at one point,
the problem is an initial value problem and can
be integrated from that point on. If some of the
conditions are available at one point and others
at another point, the ordinary differential equa-
tions become two-point boundary value prob-
lems,which are treated inChapter 7. Initial value
problems as ordinary differential equations arise
in control of lumped-parameter models, tran-
sient models of stirred tank reactors, polymer-
ization reactions and plug-flow reactors, and
generally in models where no spatial gradients
occur in the unknowns.
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6.1. Solution by Quadrature

When only one equation exists, even if it is non-
linear, solving it by quadrature may be possible.
For
dy
dt = f (y)

y (0) = y0

the problem can be separated

dy
f (y)

= dt

and integrated:
y∫
y0

dy′

f (y′)
=

t∫
0

dt = t

If the quadrature can be performed analytically
then the exact solution has been found.
For example, consider the kinetics problem

with a second-order reaction.

dc
dt

= − kc2, c (0) = c0

To find the function of the concentration versus
time, the variables can be separated and inte-
grated.
dc
c2

= − kdt,

− 1
c
= − kt+D

Application of the initial conditions gives the
solution:

1
c
= kt+

1
c0

For other ordinary differential equations an
integrating factor is useful. Consider the prob-
lem governing a stirred tank with entering fluid
having concentration cin and flow rate F, as
shown in Figure 18. The flow rate out is also
F and the volume of the tank is V. If the tank is
completely mixed, the concentration in the tank
is c and the concentration of the fluid leaving the
tank is also c. The differential equation is then

V
dc
d t

= F (cin−c) , c (0) = c0

Upon rearrangement,

dc
dt
+
F

V
c =

F

V
cin

is obtained. An integrating factor is used to solve
this equation. The integrating factor is a function

that can be used to turn the left-hand side into
an exact differential and can be found by using
Fréchet differentials [51]. In this case,

exp
(
F t

V

)[
dc
dt
+
F

V
c

]
=

d
dt

[
exp

(
F t

V

)
c

]

Thus, the differential equation can be written as

d
dt

[
exp

(
F t

V

)
c

]
= exp

(
F t

V

)[
F

V
cin

]

This can be integrated once to give

exp
(
F t

V

)
c = c (0)+

F

V

t∫
0

exp
(
F t′

V

)
cin
(
t′
)
dt′

or

c (t) = exp
(
−F t
V

)
c0

+F
V

t∫
0
exp

(
−F (t−t′)

V

)
cin (t′) dt′

If the integral on the right-hand side canbe calcu-
lated, the solution can be obtained analytically.
If not, the numerical methods described in the
next sections can be used. Laplace transforms
can also be attempted. However, an analytic so-
lution is so useful that quadrature and an inte-
grating factor should be tried before resorting to
numerical solution.

Figure 18. Stirred tank

6.2. Explicit Methods

Consider the ordinary differential equation
dy
dt

= f (y)

Multiple equations that are still initial value
problems can be handled by using the same tech-
niques discussed here. A higher order differen-
tial equation
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y(n)+F
(
y(n−1), y(n−2),. . ., y′, y

)
= 0

with initial conditions

Gi
(
y(n−1) (0) , y(n−2) (0) ,. . .,y′ (0) , y (0)

)
= 0

i = 1,. . .,n

can be converted into a set of first-order equa-
tions. By using

yi≡y(i−1) = d(i−1) y
dt(i−1)

=
d
dt

y(i−2) =
dyi−1
dt

the higher order equation can be written as a set
of first-order equations:
dy1
dt = y2

dy2
dt = y3

dy3
dt = y4
. . .
dyn
dt = −F (yn−1, yn−2,. . .,y2, y1)

The initial conditions would have to be specified
for variables y1(0), . . . , yn (0), or equivalently y
(0), . . . , y(n−1) (0). The set of equations is then
written as

dy
dt

= f (y, t)

All the methods in this chapter are described for
a single equation; themethods apply to themulti-
ple equations as well. Taking the single equation
in the form

dy
dt

= f (y)

multiplying by dt, and integrating once yields
tn+1∫
tn

dy
dt′

dt′ =
tn+1∑
tn

f
(
y
(
t′
))
dt′

This is

yn+1 = yn+

tn+1∫
tn

dy
dt′

dt′

The last substitution gives a basis for the various
methods. Different interpolation schemes for y
(t) provide different integration schemes; using
low-order interpolation gives low-order integra-
tion schemes [3].

Euler’s method is first order

yn+1 = yn+∆tf (yn)

Adams – Bashforth Methods. The second-
order Adams – Bashforth method is

yn+1 = yn+
∆ t

2

[
3 f (yn) − f

(
yn−1)]

The fourth-order Adams – Bashforth method is

yn+1 = yn+
∆ t

24

[
55 f (yn) − 59 f

(
yn−1)

+37 f
(
yn− 2) − 9 f

(
yn−3)]

Notice that the higher order explicit methods re-
quire knowing the solution (or the right-hand
side) evaluated at times in the past. Because
these were calculated to get to the current time,
this presents no problem except for starting the
evaluation. Then, Euler’smethodmay have to be
used with a very small step size for several steps
to generate starting values at a succession of time
points. The error terms, order of the method,
function evaluations per step, and stability limi-
tations are listed in Table 6. The advantage of the
fourth-order Adams – Bashforth method is that
it uses only one function evaluation per step and
yet achieves high-order accuracy. The disadvan-
tage is the necessity of using another method to
start.

Runge – Kutta Methods. Runge – Kutta
methods are explicit methods that use several
function evaluations for each time step. The
general form of the methods is

yn+1 = yn+
v∑
i=1

wi ki

with

ki = ∆t f


tn+ci∆t, yn +i−1∑

j=1

aij kj




Runge – Kutta methods traditionally have been
writen for f (t, y) and that is done here, too. If
these equations are expanded and comparedwith
a Taylor series, restrictions can be placed on the
parameters of the method to make it first order,
second order, etc. Even so, additional param-
eters can be chosen. A second-order Runge –
Kutta method is

yn+1 = yn+
∆t
2

[fn+f (tn+∆t, yn+∆t f n)]

The midpoint scheme is another second-order
Runge – Kutta method:
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Table 6. Properties of integration methods for ordinary differential equations

Method Error term Order Function evaluations per step Stability limit, λ∆t≤
Explicit methods

Euler h2
2 y

′′
1 1 2.0

Second-order Adams – Bashforth 5
12h

3y′′′ 2 1

Fourth-order Adams – Bashforth 251
720h

5y(5) 4 1 0.3
Second-order Runge – Kutta
(midpoint) 2 2 2.0

Runge – Kutta – Gill 4 4 2.8
Runge – Kutta – Feldberg y n+1−zn+1 5 6 3.0

Predictor – corrector methods
Second-order Runge – Kutta 2 2 2.0
Adams, fourth-order 2 2 1.3

Implicit methods, stability limit ∞
Backward Euler 1 many, iterative ∞ *
Trapezoid rule − 1

12h
3y′′′ 2 many, iterative 2 *

Fourth-order Adams – Moulton 4 many, iterative 3 *

* Oscillation limit, λ∆t ≤.

yn+1 = yn+∆t f
(
tn+

∆t
2
, yn+

∆t
2

f n
)

A popular fourth-order method is the Runge –
Kutta – Gill method with the formulas

k1 = ∆t f (tn, yn)

k2 = ∆t f
(
tn+∆t

2 , yn+ k1
2

)
k3 = ∆t f

(
tn+∆t

2 , yn+a k1+b k2
)

k4 = ∆t f (tn+∆t, yn+c k2+d k3)

yn+1 = yn+ 1
6 (k1+k4)+

1
3 (b k2+d k3)

a =
√
2−1
2 , b = 2−√

2
2 ,

c = −
√
2
2 , d = 1+

√
2
2

Another fourth-order Runge – Kutta method is
given by the Runge – Kutta – Feldberg formu-
las [52]; although the method is fourth-order, it
achieves fifth-order accuracy. The popular inte-
gration packageRKF 45 is basedon thismethod.

k1 = ∆t f (tn, yn)

k2 = ∆t f
(
tn+∆t

4 , yn+ k1
4

)
k3 = ∆t f

(
tn+ 3

8∆t, y
n+ 3

32k1+
9
32k2

)
k4 = ∆tf

(
tn+ 12

13∆t,y
n+ 1932

2197k1− 7200
2197k2+

7296
2197k3

)
k5 = ∆tf

(
tn+∆t, yn+ 439

216k1−8 k2+ 3680
513 k3− 845

4104k4
)

k6 = ∆t f
(
tn+∆t

2 , yn− 8
27k1+2k2− 3544

2565k3

+ 1859
4104k4− 11

40k5
)

yn+1 = yn+ 25
216k1+

1408
2565k3+

2197
4104k4− 1

5k5

zn+1 = yn+ 16
135k1+

6656
12 825 k3

+ 28 561
56 430 k4− 9

50k5+
2
55k6

The value of yn+1 − zn+1 is an estimate of the
error in yn+1 and can be used in step-size control
schemes.
Generally, a high-order method should be

used to achieve high accuracy. The Runge –
Kutta – Gill method is popular because it is high
order and does not require a starting method
(as does the fourth-order Adams – Bashforth
method).However, it requires four function eval-
uations per time step, or four times as many as
the Adams – Bashforth method. For problems
in which the function evaluations are a signif-
icant portion of the calculation time this might
be important. Given the speed of computers and
the widespread availability of desktop comput-
ers, the efficiency of a method is most important
only for very large problems that are going to
be solved many times. For other problems the
most important criterion for choosing a method
is probably the time the user spends setting up
the problem.
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The stability of an integration method is best
estimated by determining the rational polyno-
mial corresponding to the method. Apply this
method to the equation

dy
dt

= − λy, y (0) = 1

and determine the formula for rmn :

yk+1 = rmn (λ∆t) yk

The rational polynomial is defined as

rmn (z) =
pn (z)
qm (z)

≈e−z

and is an approximation to exp (− z), called a
Padé approximation. The stability limits are the
largest positive z for which

|rmn (z)| ≤ 1

The method is A acceptable if the inequality
holds forRe z > 0. It isA (0) acceptable if the in-
equality holds for z real, z > 0 [53]. The method
will not induce oscillations about the true solu-
tion provided

rmn (z) >0

A method is L acceptable if it is A acceptable
and

lim
z→∞rmn (z) = 0

For example, Euler’s method gives

yn+1 = yn−λ∆tyn or yn+1 = (1−λ∆t) yn

or rmn = 1−λ∆t

The stability limit is then

λ∆t≤2

The Euler method will not oscillate provided

λ∆t≤1

The stability limits listed in Table 6 are obtained
in this fashion. The limit for the Euler method
is 2.0; for the Runge – Kutta – Gill method it is
2.785; for the Runge – Kutta – Feldbergmethod
it is 3.020. The rational polynomials for the vari-
ous explicit methods are illustrated in Figure 19.
As can be seen, themethods approximate the ex-
act solution well as λ ∆t approaches zero, and
the higher order methods give a better approxi-
mation at high values of λ ∆t.

Figure 19. Rational approximations for explicit methods
a) Euler; b) Runge – Kutta – 2; c) Runge – Kutta – Gill;
d) Exact curve; e) Runge – Kutta – Feldberg

In solving sets of equations

dy
dt

= Ay+f , y (0) = y0

all the eigenvalues of thematrixAmust be exam-
ined. Finlayson [3] and Amundson [54, p. 197
– 199] both show how to transform these equa-
tions into an orthogonal form so that each equa-
tion becomes one equation in one unknown, for
which single equation analysis applies. For lin-
ear problems the eigenvalues do not change, so
the stability and oscillation limits must be satis-
fied for every eigenvalue of the matrix A. When
solvingnonlinear problems the equations are lin-
earized about the solution at the local time, and
the analysis applies for small changes in time,
after which a new analysis about the new solu-
tionmust bemade. Thus, for nonlinear problems
the eigenvalues keep changing.
Richardson extrapolation can be used to im-

prove the accuracy of a method. Step forward
one step∆t with a p-th order method. Then redo
the problem, this time stepping forward from the
same initial point but in two steps of length∆t/2,
thus ending at the same point. Call the solution
of the one-step calculation y1 and the solution of
the two-step calculation y2. Then an improved
solution at the new time is given by

y =
2p y2−y1
2p−1

This gives a good estimate provided∆t is small
enough that the method is truly convergent with
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order p. This process can also be repeated in
the same way Romberg’s method was used for
quadrature (see Section 2.4).
The accuracy of a numerical calculation de-

pends on the step size used, and this is chosen
automatically by efficient codes. For example, in
the Euler method the local truncation error LTE
is

LTE =
∆t2

2
y

′′
n

Yet the second derivative can be evaluated by
using the difference formulas as

y
′′
n = ∇ (∆t y′

n) = ∆t
(
y′
n − y′

n− 1
)
=

∆t (fn − fn− 1)

Thus, by monitoring the difference between the
right-hand side from one time step to another, an
estimate of the truncation error is obtained. This
error can be reduced by reducing∆t. If the user
specifies a criterion for the largest local error es-
timate, then∆t is reduced to meet that criterion.
Also,∆t is increased to as large a value as pos-
sible, because this shortens computation time. If
the local truncation error has been achieved (and
estimated) by using a step size ∆t1

LTE = c∆tp1

and the desired error is ε, to be achieved using a
step size ∆t2

ε = c∆tp2

then the next step size ∆t2 is taken from

LTE

ε
=
(
∆t1
∆t2

)p

Generally, things should not be changed too of-
ten or too drastically. Thus one may choose not
to increase∆t by more than a factor (such as 2)
or to increase∆t more than once every so many
steps (such as 5) [55]. In the most sophisticated
codes the alternative exists to change the order
of the method as well. In this case, the trunca-
tion error of the orders one higher and one lower
than the current one are estimated, and a choice
is made depending on the expected step size and
work.

6.3. Implicit Methods

By using different interpolation formulas, in-
volving yn+1, implicit integration methods can
be derived. Implicit methods result in a nonlin-
ear equation to be solved for yn+1 so that itera-
tive methods must be used. The backward Euler
method is a first-order method:

yn+1 = yn+∆t f
(
yn+1

)
The trapezoid rule (see Section 2.4) is a second-
order method:

yn+1 = yn+
∆ t

2

[
f (yn)+ f

(
yn+1

)]
When the trapezoid rule is used with the finite
difference method for solving partial differen-
tial equations it is called the Crank – Nicolson
method. Adams methods exist as well, and the
fourth-order Adams – Moulton method is

yn+1 = yn+
∆ t

24

[
9 f

(
yn+1

)
+19 f (yn)

−5 f
(
yn−1)+ f

(
yn−2)]

The properties of these methods are given in Ta-
ble 6. The implicit methods are stable for any
step size but do require the solution of a set of
nonlinear equations, which must be solved it-
eratively. An application to dynamic distillation
problems is given in [56].
All these methods can be written in the form

yn+1 =
k∑
i=1

αi y
n+1−i+∆t

k∑
i=0

βi f
(
yn+1−i

)
or

yn+1 = ∆t β0 f
(
yn+1

)
+wn

where wn represents known information. This
equation (or set of equations for more than one
differential equation) canbe solvedbyusing suc-
cessive substitution:

yn+1, k+1 = ∆t β0f
(
yn+1, k

)
+wn

Here, the superscript k refers to an iteration
counter. The successive substitution method is
guaranteed to converge, provided thefirst deriva-
tive of the function is bounded and a small
enough time step is chosen. Thus, if it has not
converged within a few iterations,∆t can be re-
duced and the iterations begun again. The New-
ton – Raphsonmethod (see Section 1.2) can also
be used.
In many computer codes, iteration is allowed

to proceed only a fixed number of times (e.g.,
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three) before∆t is reduced. Because a good his-
tory of the function is available from previous
time steps, a good initial guess is usually possi-
ble.
The best software packages for stiff equations

(see Section 6.4) use Gear’s backward differ-
ence formulas. The formulas of various orders
are [57].
1: yn+1 = yn+∆t f

(
yn+1

)
2: yn+1 = 4

3 y
n− 1

3 y
n−1+ 2

3 ∆t f
(
yn+1

)
3: yn+1 = 18

11 y
n− 9

11 y
n−1+ 2

11 y
n−2

+ 6
11 ∆t f

(
yn+1

)
4: yn+1 = 48

25 y
n− 36

25 y
n−1+ 16

25 y
n−2− 3

25 y
n−3

+ 12
25 ∆t f

(
yn+1

)
5: yn+1 = 300

137 y
n− 300

137 y
n−1+ 200

137 y
n−2

− 75
137 y

n−3+ 12
137 y

n−4

+ 60
137 ∆t f

(
yn+1

)
The stability properties of these methods are

determined in the sameway as explicit methods.
They are always expected to be stable, no matter
what the value of∆t is, and this is confirmed in
Figure 20.

Figure 20. Rational approximations for implicit methods
a) Backward Euler; b) Exact curve; c) Trapezoid; d) Euler

Predictor – corrector methods can be em-
ployed in which an explicit method is used to
predict the value of yn+1. This value is then used
in an implicit method to evaluate f ( yn+1).

6.4. Stiffness

Why is it desirable to use implicit methods that
lead to sets of algebraic equations that must be
solved iteratively whereas explicit methods lead
to a direct calculation? The reason lies in the sta-
bility limits; to understand their impact, the con-
cept of stiffness is necessary. When modeling a
physical situation, the time constants governing
different phenomena should be examined. Con-
sider flow through a packed bed, as illustrated in
Figure 21.

Figure 21. Flow through packed bed

The superficial velocity u is given by

u =
Q

Aϕ

where Q is the volumetric flow rate, A is the
cross-sectional area, and ϕ is the void fraction.
A time constant for flow through the device is
then

tflow =
L

u
=

ϕAL

Q

where L is the length of the packed bed. If a
chemical reaction occurs, with a reaction rate
given by

Moles

Volume time
= −k c

where k is the rate constant (time−1) and c is the
concentration (moles/volume), the characteris-
tic time for the reaction is

trxn =
1
k

If diffusion occurs inside the catalyst, the time
constant is

tinternal diffusion =
ε R2

De

where ε is the porosity of the catalyst, R is the
catalyst radius, and De is the effective diffusion
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coefficient inside the catalyst. The time constant
for heat transfer is

tinternal heat transfer =
R2

α
=

?sCsR2

ke

where �s is the catalyst density, Cs is the cata-
lyst heat capacity per unit mass, ke is the effec-
tive thermal conductivity of the catalyst, and α
is the thermal diffusivity. The time constants for
diffusion of mass and heat through a boundary
layer surrounding the catalyst are

texternal diffusion = R
kg

texternal heat transfer =
>sCsR
hp

where kg and hp are the mass-transfer and heat-
transfer coefficients, respectively. The impor-
tance of examining these time constants comes
from realization that their orders of magnitude
differ greatly. For example, in the model of an
automobile catalytic converter [58] the time con-
stant for internal diffusion was 0.3 s, for internal
heat transfer 21 s, and for flow through the de-
vice 0.003 s. Flow through the device is so fast
that it might as well be instantaneous. Thus, the
time derivatives could be dropped from themass
balance equations for the flow, leading to a set
of differential-algebraic equations (see below).
If the original equations had to be solved, the
eigenvalues would be roughly proportional to
the inverse of the time constants. The time in-
terval over which to integrate would be a small
number (e.g., five)multiplied by the longest time
constant. Yet the explicit stability limitation ap-
plies to all the eigenvalues, and the largest eigen-
value would determine the largest permissible
time step.Here,λ= 1/0.003 s−1. Very small time
stepswould have to be used, e.g.,∆t≤2× 0.003
s, but a long integration would be required to
reach steady state. Such problems are termed
stiff, and implicit methods are very useful for
them. In that case the stable time constant is not
of any interest, because any time step is stable.
What is of interest is the largest step for which a
solution can be found. If a time step larger than
the smallest time constant is used, then any phe-
nomena represented by that smallest time con-
stant will be overlooked—at least transients in it
will be smeared over. However, the method will
still be stable. Thus, if the very rapid transients
of part of the model are not of interest, they can
be ignored and an implicit method used [59].

The idea of stiffness is best explained by con-
sidering a system of linear equations:

dy
dt

= Ay

Let λi be the eigenvalues of the matrix A. This
system can be converted into a system of n equa-
tions, each of them having only one unknown;
the eigenvalues of the new system are the same
as the eigenvalues of the original system [3, pp.
39 – 42], [54, pp. 197 – 199]. Then the stiffness
ratio SR is defined as [53, p. 32]

SR =
maxi |Re (λi)|
mini |Re (λi)|

SR = 20 is not stiff, SR = 103 is stiff, and SR =
106 is very stiff. If the problem is nonlinear, the
solution is expanded about the current state:

dyi
dt

= fi [y (tn)] +
n∑
j=1

∂fi

∂yj
[yj−yj (tn)]

The question of stiffness then depends on the
eigenvalue of the Jacobian at the current time.
Consequently, for nonlinear problems the prob-
lem can be stiff during one time period and not
stiff during another. Packages have been devel-
oped for problems such as these. Although the
chemical engineermay not actually calculate the
eigenvalues, knowing that they determine the
stability and accuracy of the numerical scheme,
as well as the step size employed, is useful.

6.5. Differential – Algebraic Systems

Sometimes models involve ordinary differential
equations subject to some algebraic constraints.
For example, the equations governing one equi-
librium stage (as in a distillation column) are

M dxn

dt = V n+1 yn+1 −Ln xn − V n yn

+Ln−1 xn−1

xn−1 − xn = En
(
xn−1 − x∗,n)

N∑
i=1

xi = 1

where x and y are the mole fractions in the liquid
and vapor, respectively; L and V are liquid and
vapor flow rates, respectively; M is the holdup;
and the superscript n is the stage number. The
efficiency is E, and the concentration in equilib-
rium with the vapor is x*. The first equation is
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an ordinary differential equation for the mass of
one component on the stage, whereas the third
equation represents a constraint that the mass
fractions add to one. As a second example, the
following kinetics problem can be considered:
dc1
dt = f (c1, c2)

dc2
dt = k1 c1 − k2 c22

The first equation could be the equation for a
stirred tank reactor, for example. Suppose both
k1 and k2 are large. The problem is then stiff,
but the second equation could be taken at equi-
librium. If

c1�2c2

The equilibrium condition is then

c22
c1

=
k1

k2
≡K

Under these conditions the problem becomes
dc1
dt = f (c1, c2)

0 = klc1 − k2c22

Thus, a differential-algebraic system of equa-
tions is obtained. In this case, the second equa-
tion can be solved and substituted into the first to
obtain differential equations, but in the general
case that is not possible.
Differential-algebraic equations can be writ-

ten in the general notation

F

(
t, y,

dy
dt

)
= 0

or the variables and equations may be separated
according to whether they come primarily from
differential [y(t)] or algebraic equations [x(t)]:

dy
dt

= f (t, y,x) , g (t, y,x) = 0

Another form is not strictly a differential-
algebraic set of equations, but the same prin-
ciples apply; this form arises frequently when
the Galerkin finite element is applied:

A
dy
dt

= f (y)

The computer program DASSL [60, 61] can
solve such problems. They can also be solved
by writing the differential equation as

dy

dt
=A−1f (y)

When A is independent of y, the inverse (from
LU decompositions) need be computed only
once.
In actuality, higher order backward-differ-

ence Gear methods are used in the computer
program DASSL [60, 61].
Differential-algebraic systems aremore com-

plicated thandifferential systemsbecause the so-
lution may not always be defined. Pontelides et
al. [62] introduced the term “index” to identify
possible problems. The index is defined as the
minimum number of times the equations must
be differentiated with respect to time to convert
the system to a set ofordinary differential equa-
tions. These higher derivatives may not exist,
and the process places limits on which variables
can be given initial values. Sometimes the ini-
tial values must be constrained by the algebraic
equations [62]. For a differential-algebraic sys-
tem modeling a distillation tower, the index de-
pends on the specification of pressure for the
column [62]. Several chemical engineering ex-
amples of differential-algebraic systems and a
solution for one involving two-phase flow are
given in [63].

6.6. Computer Software

Efficient software packages are widely avail-
able for solving ordinary differential equations
as initial value problems. In each of the pack-
ages the user specifies the differential equation
to be solved and a desired error criterion. The
package then integrates in time and adjusts the
step size to achieve the error criterion, within the
limitations imposed by stability.
A popular explicit Runge – Kutta package is

RKF 45. An estimate of the truncation error at
each step is available. Then the step size can
be reduced until this estimate is below the user-
specified tolerance. The method is thus auto-
matic, and the user is assured of the results.Note,
however, that the tolerance is set on the local
truncation error, namely, from one step to an-
other, whereas the user is generally interested
in the global trunction error, i.e., the error af-
ter several steps. The global error is generally
made smaller by making the tolerance smaller,
but the absolute accuracy is not the same as the
tolerance. If the problem is stiff, then very small
step sizes are used and the computation becomes
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very lengthy. The RKF 45 code discovers this
and returns control to the user with a message
indicating the problem is too hard to solve with
RKF 45.
A popular implicit package is LSODE, a ver-

sion of Gear’s method [57] written by Alan
Hindmarsh at Lawrence Livermore Laboratory.
In this package, the user specifies the differential
equation to be solved and the tolerance desired.
Now the method is implicit and, therefore, sta-
ble for any step size. The accuracy may not be
acceptable, however, and sets of nonlinear equa-
tions must be solved. Thus, in practice, the step
size is limited but not nearly so much as in the
Runge – Kutta methods. In these packages both
the step size and the order of the method are ad-
justed by the package itself. Suppose a k-th or-
der method is being used. The truncation error
is determined by the (k + 1)-th order derivative.
This is estimated by using difference formulas
and the values of the right-hand sides at previ-
ous times. An estimate is also made for the k-th
and (k + 2)-th derivative. Then, the errors in a
(k − 1)-th order method, a k-th order method,
and a (k + 1)-th order method can be estimated.
Furthermore, the step size required to satisfy the
tolerance with each of these methods can be de-
termined. Then the method and step size for the
next step that achieves the biggest step can be
chosen, with appropriate adjustments due to the
differentwork required for each order. The pack-
age generally starts with a very small step size
and a first-order method—the backward Euler
method. Then it integrates along, adjusting the
order up (and later down) depending on the er-
ror estimates. The user is thus assured that the
local truncation error meets the tolerance. A fur-
ther difficulty arises because the set of nonlinear
equations must be solved. Usually a good guess
of the solution is available, because the solution
is evolving in time and past history can be ex-
trapolated. Thus, theNewton – Raphsonmethod
will usually converge. The package protects it-
self, though, by only doing a few (i.e., three)
iterations. If convergence is not reached within
these iterations, the step size is reduced and the
calculation is redone for that time step. The
convergence theorem for the Newton – Raph-
son method (Chap. 1) indicates that the method
will converge if the step size is small enough.
Thus, the method is guaranteed to work. Further
economies are possible. The Jacobian needed in

theNewton – Raphsonmethod can be fixed over
several time steps. Then if the iteration does not
converge, the Jacobian can be reevaluated at the
current time step. If the iteration still does not
converge, then the step size is reduced and a new
Jacobian is evaluated. The successive substitu-
tion method can also be used—wh ich is even
faster, except that it may not converge. How-
ever, it too will converge if the time step is small
enough.
The Runge –Kutta methods give extremely

good accuracy, especially when the step size
is kept small for stability reasons. If the prob-
lem is stiff, though, backward difference implicit
methods must be used. Many chemical reactor
problems are stiff, necessitating the use of im-
plicit methods. In the MATLAB suite of ODE
solvers, ode45 uses a revision of the RKF45
program, while the ode15s program uses an im-
proved backward difference method. Ref. [64]
gives details of the programs in MATLAB. For-
tunately, many packages are available. On the
NIST web page, http://gams.nist.gov/ choose
“problem decision tree”, and then “differen-
tial and integral equations” to find packages
which can be downloaded. On the Netlib web
site, http://www.netlib.org/, choose “ode” to find
packages which can be downloaded. Using Mi-
crosoft Excel to solve ordinary differential equa-
tions is cumbersome, except for the simplest
problems.

6.7. Stability, Bifurcations, Limit Cycles

In this section, bifurcation theory is discussed in
a general way. Some aspects of this subject in-
volve the solution of nonlinear equations; other
aspects involve the integration of ordinary differ-
ential equations; applications include chaos and
fractals as well as unusual operation of some
chemical engineering equipment. An excellent
introduction to the subject and details needed to
apply the methods are given in [65]. For more
details of the algorithms described below and
a concise survey with some chemical engineer-
ing examples, see [66] and [67]. Bifurcation re-
sults are closely connected with stability of the
steady states, which is essentially a transient
phenomenon.
Consider the problem

∂u

∂t
= F (u, λ)
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Figure 22. Limit points and bifurcation – limit points
A) Limit point (or turning point); B) Bifurcation-limit point (or singular turning point or bifurcation point)

The variable u can be a vector, which makes F a
vector, too. Here, F represents a set of equations
that can be solved for the steady state:

F (u, λ) = 0

If the Newton – Raphson method is applied,

F su δ u
s = −F (us, λ)

us+1 = us+δus

is obtained, where

F su =
∂F

∂u
(us)

is the Jacobian. Look at some property of the so-
lution, perhaps the value at a certain point or the
maximum value or an integral of the solution.
This property is plotted versus the parameter λ;
typical plots are shown in Figure 22. At the point
shown in Figure 22 A, the determinant of the Ja-
cobian is zero:

detFu = 0

For the limit point,

∂F

∂λ
�=0

whereas for the bifurcation-limit point

∂F

∂λ
= 0

The stability of the steady solutions is also of
interest. Suppose a steady solution uss; the func-
tion u is written as the sum of the known steady
state and a perturbation u′:

u = uss+u′

This expression is substituted into the original
equation and linearized about the steady-state
value:

∂uss
∂t

+ ∂u′
∂t

= F (uss+u′, λ)

≈F (uss, λ)+ ∂F
∂u

|ussu′+···
The result is

∂u′

∂t
= F ssu u′

A solution of the form

u′ (x, t) = eσtX (x)

gives

σeσtX = F ssu e
σtX

The exponential term can be factored out and

(F ssu − σ δ)X = 0

A solution exists for X if and only if

det |F ssu − σ δ| = 0

The σ are the eigenvalues of the Jacobian.
Now clearly if Re (σ) > 0 then u′ grows with
time, and the steady solution uss is said to be
unstable to small disturbances. If Im (σ) = 0 it
is called stationary instability, and the distur-
bance would grow monotonically, as indicated
in Figure 23 A. If Im (σ) �= 0 then the distur-
bance grows in an oscillatory fashion, as shown
in Figure 23 B, and is called oscillatory insta-
bility. The case in which Re (σ) = 0 is the di-
viding point between stability and instability. If
Re (σ) = 0 and Im (σ) = 0—the point governing
the onset of stationary instability—then σ = 0.
However, this means that σ = 0 is an eigenvalue
of the Jacobian, and the determinant of the Jaco-
bian is zero. Thus, the points at which the deter-
minant of the Jacobian is zero (for limit points
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Figure 23. Stationary and oscillatory instability
A) Stationary instability; B) Oscillatory instability

and bifurcation-limit points) are the points gov-
erning the onset of stationary instability. When
Re (σ) = 0 but Im (σ) �= 0, which is the onset of
oscillatory instability, an even number of eigen-
values pass from the left-hand complex plane to
the right-hand complex plane. The eigenvalues
are complex conjugates of each other (a result of
the original equations being real, with no com-
plex numbers), and this is called a Hopf bifurca-
tion. Numerical methods to study Hopf bifurca-
tion are very computationally intensive and are
not discussed here [65].
To return to the problem of solving for the

steady-state solution: near the limit point or
bifurcation-limit point two solutions exist that
are very close to each other. In solving sets of
equations with thousands of unknowns, the dif-
ficulties in convergence are obvious. For some
dependent variables the approximation may be
converging to one solution, whereas for another
set of dependent variables it may be converging
to the other solution; or the two solutions may
all be mixed up. Thus, solution is difficult near
a bifurcation point, and special methods are re-
quired. These methods are discussed in [66].
The first approach is to use natural continu-

ation (also known as Euler – Newton continua-
tion). Suppose a solution exists for some param-
eter λ. Call the value of the parameter λ0 and
the corresponding solution u0. Then

F (u0 , λ0) = 0

Also, compute uλ as the solution to

F ssu uλ = −Fλ
at this point [λ0, u0]. Then predict the starting
guess for another λ using

u0 = u0+uλ (λ− λ0)

and apply Newton – Raphson with this initial
guess and the new value of λ. This will be a
much better guess of the new solution than just
u0 by itself.
Even this method has difficulties, however.

Near a limit point the determinant of the Jaco-
bian may be zero and the Newton method may
fail. Perhaps no solutions exist at all for the cho-
sen parameter λ near a limit point. Also, the
ability to switch from one solution path to an-
other at a bifurcation-limit point is necessary.
Thus, other methods are needed as well: arc-
length continuation and pseudo-arc-length con-
tinuation [66]. These are described in Chapter 1.

6.8. Sensitivity Analysis

Often, when solving differential equations, the
solution as well as the sensitivity of the solu-
tion to the value of a parameter must be known.
Such information is useful in doing parameter
estimation (to find the best set of parameters for
a model) and in deciding whether a parameter
needs to be measured accurately. The differen-
tial equation for y (t, α) where α is a parameter,
is

dy
dt

= f (y, α) , y (0) = y0

If this equation is differentiated with respect to
α, then because y is a function of t and α

∂

∂α

(
dy
dt

)
=

∂ f

∂y

∂y

∂α
+
∂ f

∂α
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Exchanging the order of differentiation in the
first term leads to the ordinary differential equa-
tion

d
dt

(
∂y

∂α

)
=

∂ f

∂y

∂y

∂α
+
∂ f

∂α

The initial conditions on ∂y/∂α are obtained by
differentiating the initial conditions

∂

∂α
[y (0, α) = y0] , or

∂y

∂α
(0) = 0

Next, let

y1 = y, y2 =
∂y

∂α

and solve the set of ordinary differential equa-
tions
dy1
dt = f (y1, α) y1 (0) = y0

dy2
dt = ∂ f

∂y
(y1, α) y2+ ∂ f

∂α
y2 (0) = 0

Thus, the solution y (t, α) and the derivativewith
respect to α are obtained. To project the impact
of α, the solution for α = α1 can be used:

y (t, α) = y1 (t, α1)+ ∂y
∂α

(t, α1) (α−α1)+···

= y1 (t, α1)+y2 (t, α1) (α−α1)+···

This is a convenient way to determine the sensi-
tivity of the solution to parameters in the prob-
lem.

6.9. Molecular Dynamics
(→Molecular Dynamics Simulations)

Special integration methods have been devel-
oped for molecular dynamics calculations due
to the structure of the equations. A very large
number of equations are to be integrated, with
the following form based on molecular interac-
tions between molecules

mi
d2ri

dt2
=Fi ({r}) ,Fi ({r})=−∇V

where mi is the mass of the i-th particle, ri is
the position of the i-th particle, Fi is the force
acting on the i-th particle, and V is the poten-
tial energy that depends upon the location of all
the particles (but not their velocities). Since the
major part of the calculation is in the evalua-
tion of the forces, or potentials, a method must
be used that minimizes the number of times the

forces are calculated to move from one time to
another time. Rewrite this equation in the form
of an acceleration.

d2ri

dt2
=

1
mi
Fi ({r})≡ai

In the Verlot method, this equation is written us-
ing central finite differences (Eq. 12). Note that
the accelerations do not depend upon the veloc-
ities.

ri (t+∆t)=2ri (t)−ri (t−∆t)+ai (t)∆t2

The calculations are straightforward, and no ex-
plicit velocity is needed. The storage require-
ment is modest, and the precision is modest (it
is a second-order method). Note that one must
start the calculation with values of {r} at time t
and t−∆t.
In the Velocity Verlot method, an equation is

written for the velocity, too.

dvi

dt
=ai

The trapezoid rule (see page 18) is applied to
obtain

vi (t+∆t)=vi (t)+
1
2
[ai (t)+ai (t+∆t)]∆t

The position of the particles is expanded in a
Taylor series.

ri (t+∆t)=ri (t)+vi∆t+
1
2
ai (t)∆t2

Beginning with values of {r} and {v} at time
zero, one calculates the new positions and then
the new velocities. This method is second order
in ∆t, too. For additional details, see [68 – 72].

7. Ordinary Differential Equations
as Boundary Value Problems

Diffusion problems in one dimension lead to
boundary value problems. The boundary con-
ditions are applied at two different spatial loca-
tions: at one side the concentration may be fixed
and at the other side the flux may be fixed. Be-
cause the conditions are specified at two differ-
ent locations the problems are not initial value
in character. To begin at one position and inte-
grate directly is impossible because at least one
of the conditions is specified somewhere else and
not enough conditions are available to begin the
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calculation. Thus, methods have been developed
especially for boundary value problems. Exam-
ples include heat and mass transfer in a slab,
reaction – diffusion problems in a porous cata-
lyst, reactor with axial dispersion, packed beds,
and countercurrent heat transfer.

7.1. Solution by Quadrature

When only one equation exists, even if it is non-
linear, it may possibly be solved by quadrature.
For

dy
dt = f (y)

y (0) = y0

the problem can be separated

dy
f (y)

= dt

and integrated

y∫
y0

dy′

f (y′)
=

t∫
0

dt = t

If the quadrature can be performed analytically,
the exact solution has been found.
As an example, consider the flow of a non-

Newtonian fluid in a pipe, as illustrated in Figure
24. The governing differential equation is [73]

1
r

d
dr

(rτ) = −∆p
L

where r is the radial position from the center of
the pipe, τ is the shear stress, ∆ p is the pres-
sure drop along the pipe, and L is the length over
which the pressure drop occurs. The variables
are separated once

d (rτ) = −∆p
L
rdr

and then integrated to give

rτ = −∆p
L

r2

2
+c1

Proceeding further requires choosing a consti-
tutive relation relating the shear stress and the
velocity gradient as well as a condition specify-
ing the constant. For a Newtonian fluid

τ = −η dv
dr

where v is the velocity and η the viscosity. Then
the variables can be separated again and the re-
sult integrated to give

−ηv = −∆p
L

r2

4
+c1lnr+c2

Now the two unknowns must be specified from
the boundary conditions. This problem is a two-
point boundary value problem because one of
the conditions is usually specified at r = 0 and
the other at r = R, the tube radius. However, the
technique of separating variables and integrating
works quite well.

Figure 24. Flow in pipe

When the fluid is non-Newtonian, it may not
be possible to do the second step analytically.
For example, for the Bird – Carreau fluid [74, p.
171], stress and velocity are related by

τ =
η0[

1+λ
(
dv
dr

)2](1−n)/2

where η0 is the viscosity at v = 0 and λ the time
constant.
Putting this value into the equation for stress

as a function of r gives

η0[
1+λ

(
dv
dr

)2](1−n)/2 = −∆p
L

r

2
+
c1

r

This equation cannot be solved analytically for
dv/dr, except for special values of n. For prob-
lems such as this, numerical methods must be
used.

7.2. Initial Value Methods

An initial value method is one that utilizes the
techniques for initial value problems but al-
lows for an iterative calculation to satisfy all
the boundary conditions. Suppose the nonlinear
boundary value problem
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d2y
dx2

= f

(
x,y,

dy
dx

)

with the boundary conditions

a0 y (0)−a1 dydx (0) = α, ai≥0

b0 y (1)−b1 dydx (1) = β, bi≥0

Convert this second-order equation into two
first-order equations along with the boundary
conditions written to include a parameter s.

du
dx = v

dv
dx = f (x,u,v)

u (0) = a1s−c1α

v (0) = a0s−c0α

The parameters c0 and c1 are specified by the
analyst such that

a1c0−a0c1 = 1

This ensures that the first boundary condition
is satisfied for any value of parameter s. If the
proper value for s is known, u (0) and u′ (0) can
be evaluated and the equation integrated as an
initial value problem. The parameter s should
be chosen iteratively so that the last boundary
condition is satisfied.
The model for a chemical reactor with axial

diffusion is

1
Pe

dc2

dz2 − dc
dz = DaR (c)

− 1
Pe

dc
dz (0)+c (0) = cin,

dc
dz (1) = 0

where Pe is the Péclet number and Da the
Damköhler number.
The boundary conditions are due to Danckw-

erts [75] and toWehner andWilhelm [76]. This
problem can be treated by using initial value
methods also, but the method is highly sensi-
tive to the choice of the parameter s, as out-
lined above. Starting at z = 0 and making small
changes in swill cause large changes in the solu-
tion at the exit, and the boundary condition at the
exit may be impossible to satisfy. By starting at
z = 1, however, and integrating backwards, the
processworks and an iterative scheme converges
in many cases [77]. However, if the problem is
extremely nonlinear the iterations may not con-
verge. In such cases, the methods for boundary
value problems described below must be used.

Packages to solve boundary value problems
are available on the internet. On the NIST web
page, http://gams.nist.gov/ choose “problem de-
cision tree”, and then “differential and integral
equations”, then “ordinary differential equa-
tions”, “multipoint boundary value problems”.
On the Netlib web site, http://www.netlib.org/,
search on “boundary value problem”. Any
spreadsheet that has an iteration capability can
be used with the finite difference method. Some
packages for partial differential equations also
have a capability for solving one-dimensional
boundary value problems [e.g., Comsol Multi-
physics (formerly FEMLAB)].

7.3. Finite Difference Method

To apply the finite difference method, we first
spread grid points through the domain. Figure
25 shows a uniform mesh of n points (nonuni-
form meshes are also possible). The unknown,
here c (x), at a grid point xi is assigned the sym-
bol ci = c (xi ). The finite difference method can
be derived easily by using a Taylor expansion of
the solution about this point.

ci+1 = ci+ dc
dx

∣∣∣
i
∆x+ d2c

dx2

∣∣∣
i

∆x2
2 +. . .

ci−1 = ci− dc
dx

∣∣∣
i
∆x+ d2c

dx2

∣∣∣
i

∆x2
2 −. . .

(8)

These formulas can be rearranged and divided
by ∆x to give

dc
dx

∣∣∣∣
i

=
ci+1−ci
∆x

− d2c
dx2

∣∣∣∣
i

∆x
2
+. . . (9)

dc
dx

∣∣∣∣
i

=
ci−ci−1
∆x

− d2c
dx2

∣∣∣∣
i

∆x
2
+. . . (10)

which are representations of the first deriva-
tive. Alternatively the two equations can be sub-
tracted from each other, rearranged and divided
by ∆x to give

dc
dx

∣∣∣∣
i

=
ci+1−ci−1

2∆x
− d2c
dx3

∣∣∣∣
i

∆x2

3!
(11)

If the terms multiplied by ∆x or ∆x2 are ne-
glected, three representations of the first deriva-
tive are possible. In comparison with the Taylor
series, the truncation error in the first two expres-
sions is proportional to∆x, and the methods are
said to be first order. The truncation error in the
last expression is proportional to ∆x2, and the
method is said to be second order. Usually, the
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last equation is chosen to ensure the best accu-
racy.

Figure 25. Finite difference mesh;∆x uniform

The finite difference representation of the
second derivative can be obtained by adding the
two expressions in Equation 8. Rearrangement
and division by ∆x2 give

d2c
dx2

∣∣∣∣
i

=
ci+1−2ci+ci−1

∆x2
− d4c
dx4

∣∣∣∣
i

∆x2

4!
+. . . (12)

The truncation error is proportional to ∆x2.
To see how to solve a differential equation,

consider the equation for convection, diffusion,
and reaction in a tubular reactor:

1
Pe

d2c
dx2

− dc
dx

= DaR (c)

To evaluate the differential equation at the i-th
grid point, the finite difference representations
of the first and second derivatives can be used to
give

1
Pe

ci+1−2ci+ci−1
∆x2

− ci+1−ci−1
2∆x

= DaR (13)

This equation is written for i = 2 to n − 1 (i.e.,
the internal points). The equations would then
be coupled but would involve the values of c1
and cn , as well. These are determined from the
boundary conditions.
If the boundary condition involves a deriva-

tive, the finite difference representation of it
must be carefully selected; here, three possibili-
ties can be written. Consider a derivative needed
at the point i = 1. First, Equation 9 could be used
to write

dc
dx

∣∣∣∣
1
=

c2−c1
∆x

(14)

Then a second-order expression is obtained that
is one-sided. The Taylor series for the point ci+2
is written:

ci+2 = ci+ dc
dx

∣∣∣
i
2∆x+ d2c

dx2

∣∣∣
i

4∆x2
2!

+ d3c
dx3

∣∣∣
i

8∆x3
3! +. . .

Four times Equation 8 minus this equation, with
rearrangement, gives

dc
dx

∣∣∣∣
i

=
−3ci+4ci+1−ci+2

2∆x
+O

(
∆x2

)
Thus, for the first derivative at point i = 1

dc
dx

∣∣∣∣
i

=
−3ci+4c2−c3

2∆x
(15)

This one-sided difference expression uses only
the points already introduced into the domain.
The third alternative is to add a false point,
outside the domain, as c0= c (x = − ∆x). Then
the centered first derivative, Equation 11, can be
used:

dc
dx

∣∣∣∣
1
=

c2−c0
2∆x

Because this equation introduces a new variable,
another equation is required. This is obtained by
also writing the differential equation (Eq. 13),
for i = 1.
The same approach can be taken at the other

end. As a boundary condition, any of three
choices can be used:

dc
dx

∣∣∣
n
= cn−cn−1

∆x

dc
dx

∣∣∣
n
= cn−2−4cn−1+3cn

2∆x

dc
dx

∣∣∣
n
= cn+1−cn−1

2∆x

The last two are of order ∆x2 and the last one
would require writing the differential equation
(Eq. 13) for i = n, too.
Generally, the first-order expression for the

boundary condition is not used because the er-
ror in the solution would decrease only as ∆x,
and the higher truncation error of the differential
equation (∆x2) would be lost. For this problem
the boundary conditions are

− 1
Pe

dc
dx (0)+c (0) = cin

dc
dx (1) = 0

Thus, the three formulations would give first or-
der in ∆x

− 1
Pe

c2−c1
∆x +c1 = cin

cn−cn−1
∆x = 0

plus Equation 13 at points i = 2 through n − 1;
second order in∆x, by using a three-point one-
sided derivative
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− 1
Pe

−3c1+4c2−c3
2∆x +c1 = cin

cn−2−4cn−1+3cn
2∆x = 0

plus Equation 13 at points i = 2 through n − 1;
second order in ∆x, by using a false boundary
point

− 1
Pe

c2−c0
2∆x +c1 = cin

cn+1−cn−1
2∆x = 0

plus Equation 13 at points i = 1 through n.
The sets of equations can be solved by us-

ing the Newton – Raphson method, as outlined
in Section 1.2.
Frequently, the transport coefficients (e.g.,

diffusion coefficient D or thermal conductivity)
depend on the dependent variable (concentration
or temperature, respectively). Then the differen-
tial equation might look like

d
dx

(
D (c)

dc
dx

)
= 0

This could be written as

−dJ
dx

= 0 (16)

in terms of the mass flux J, where the mass flux
is given by

J = −D (c)
dc
dx

Because the coefficient depends on c the equa-
tions are more complicated. A finite difference
method can be written in terms of the fluxes at
the midpoints, i + 1/2. Thus,

−Ji+1/2−Ji−1/2
∆x

= 0

Then the constitutive equation for the mass flux
can be written as

Ji+1/2 = −D (ci+1/2) ci+1−ci∆x

If these are combined,

D
(
ci+1/2

)
(ci+1−ci)−D (ci−1/2) (ci−ci−1)

∆x2
= 0

This represents a set of nonlinear algebraic equa-
tions that canbe solvedwith theNewton – Raph-
son method. However, in this case a viable iter-
ative strategy is to evaluate the transport coeffi-
cients at the last value and then solve

D
(
ck
i+1/2

)(
ck+1i+1−ck+1i

)
−D

(
ck
i−1/2

)(
ck+1i −ck+1i−1

)
∆x2

= 0

The advantage of this approach is that it is eas-
ier to program than a full Newton – Raphson
method. If the transport coefficients do not vary
radically, the method converges. If the method
does not converge, use of the full Newton –
Raphson method may be necessary.
Three ways are commonly used to evaluate

the transport coefficient at themidpoint. Thefirst
one employs the transport coefficient evaluated
at the average value of the solutions on either
side:

D
(
ci+1/2

)≈D
[
1
2
(ci+1+ci)

]

The second approach uses the average of the
transport coefficients on either side:

D
(
ci+1/2

)≈1
2
[D (ci+1)+D (ci)] (17)

The truncation error of these approaches is also
∆x2 [78, Chap. 14], [3, p. 215]. The third ap-
proach employs an “upstream” transport coeffi-
cient.

D
(
Ci+1/2

)≈D (ci+1) ,whenD (ci+1)>D (ci)

D
(
ci+1/2

)≈ (ci) ,whenD (ci+1)<D (ci)

This approach is used when the transport coef-
ficients vary over several orders of magnitude
and the “upstream” direction is defined as the
one in which the transport coefficient is larger.
The truncation error of this approach is only∆x
[78, Chap. 14] , [3, p. 253], but this approach is
useful if the numerical solutions show unrealis-
tic oscillations [3, 78].
Rigorous error bounds for linear ordinary dif-

ferential equations solved with the finite dif-
ference method are dicussed by Isaacson and
Keller [79, p. 431].

7.4. Orthogonal Collocation

The orthogonal collocation method has found
widespread application in chemical engineer-
ing, particularly for chemical reaction engineer-
ing. In the collocationmethod [3], the dependent
variable is expanded in a series.

y (x) =
N+2∑
i=1

aiyi (x) (18)
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Suppose the differential equation is

N [y] = 0

Then the expansion is put into the differential
equation to form the residual:

Residual = N

[
N+2∑
i=1

aiyi (x)

]

In the collocation method, the residual is set to
zero at a set of points called collocation points:

N

[
N+2∑
i=1

aiyi (xj)

]
= 0, j = 2,. . .,N+1

This provides N equations; two more equa-
tions come from the boundary conditions, giving
N + 2 equations for N + 2 unknowns. This pro-
cedure is especially usefulwhen the expansion is
in a series of orthogonal polynomials, and when
the collocation points are the roots to an orthog-
onal polynomial, as first used by Lanczos [80,
81]. A major improvement was the proposal by
Villadsen and Stewart [82] that the entire so-
lution process be done in terms of the solution at
the collocation points rather than the coefficients
in the expansion. Thus, Equation 18 would be
evaluated at the collocation points

y (xj) =
N+2∑
i=1

aiyi (xj) , j = 1,. . .,N+2

and solved for the coefficients in terms of the
solution at the collocation points:

ai =
N+2∑
j=1

[yi (xj)]−1 y (xj) , i = 1,. . .,N+2

Furthermore, if Equation 18 is differentiated
once and evaluated at all collocation points, the
first derivative can be written in terms of the val-
ues at the collocation points:

dy
dx

(xj) =
N+2∑
i=1

ai
dyi
dx

(xj) , j = 1,. . .,N+2

This can be expressed as

dy
dx

(xj) =

N+2∑
i,k=1

[yi (xk)]
−1 y (xk)

dyi
dx

(xj) , j = 1,. . .,N+2

or shortened to

dy
dx (xj) =

N+2∑
k=1

Ajky (xk) ,

Ajk =
N+2∑
i=1

[yi (xk)]
−1 dyi

dx (xj)

Similar steps can be applied to the secondderiva-
tive to obtain

d2y
dx2 (xj) =

N+2∑
k=1

Bjky (xk) ,

Bjk =
N+2∑
i=1

[yi (xk)]
−1 d2yi

dx2 (xj)

Thismethod is next applied to the differential
equation for reaction in a tubular reactor, after
the equation has been made nondimensional so
that the dimensionless length is 1.0.

1
Pe

d2c
dx2 − dc

dx = DaR (c) ,

− dc
dx (0) = Pe [c (0)−cin] , dcdx (1) = 0

(19)

The differential equation at the collocation
points is

1
Pe

N+2∑
k=1

Bjkc (xk)−
N+2∑
k=1

Ajkc (xk) = DaR (cj) (20)

and the two boundary conditions are

−
N+2∑
k=1

Alkc (xk) = Pe (c1−cin) ,
N+2∑
k=1

AN+2,kc (xk) = 0

(21)

Note that 1 is the first collocation point (x = 0)
and N + 2 is the last one (x = 1). To apply the
method, the matrices Aij and Bij must be found
and the set of algebraic equations solved, per-
haps with the Newton – Raphson method. If or-
thogonal polynomials are used and the colloca-
tion points are the roots to one of the orthogonal
polynomials, the orthogonal collocation method
results.
In the orthogonal collocation method the so-

lution is expanded in a series involving orthog-
onal polynomials, where the polynomials Pi−1
(x) are defined in Section 2.2.

y = a+bx+x (1−x)
N∑
i=1

aiPi−1 (x)

=
N+2∑
i=1

biPi−1 (x)
(22)

which is also

y =
N+2∑
i=1

dix
i−1
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Figure 26. Orthogonal collocation points

The collocation points are shown in Figure 26.
There are N interior points plus one at each end,
and the domain is always transformed to lie on 0
to 1. To define the matrices Aij and Bij this ex-
pression is evaluated at the collocation points; it
is also differentiated and the result is evaluated
at the collocation points.

y (xj) =
N+2∑
i=1

dix
i−1
j

dy
dx (xj) =

N+2∑
i=1

di (i−1)xi−2j

d2y
dx2 (xj) =

N+2∑
i=1

di (i−1) (i−2)xi−3j

These formulas are put inmatrix notation, where
Q, C, and D are N + 2 by N + 2 matrices.

y = Qd,dy
dx = Cd,d

2y
dx2 =Dd

Qji = xi−1j , Cji = (i−1)xi−2j ,

Dji = (i−1) (i−2)xi−3j

In solving the first equation for d, the first and
second derivatives can be written as

d = Q−1y, dy
dx = CQ−1y = Ay,

d2y
dx2 =DQ−1y = By

(23)

Thus the derivative at any collocation point can
be determined in terms of the solution at the col-
location points. The same property is enjoyed by
the finite difference method (and the finite ele-
ment method described below), and this prop-
erty accounts for some of the popularity of the
orthogonal collocation method. In applying the
method to Equation 19, the same result is ob-
tained; Equations 20 and 21, with the matrices
defined in Equation 23. To find the solution at
a point that is not a collocation point, Equation
22 is used; once the solution is known at all col-
location points, d can be found; and once d is
known, the solution for any x can be found.
To use the orthogonal collocationmethod, the

matrices are required. They can be calculated as
shown above for small N (N < 8) and by us-
ing more rigorous techniques, for higher N (see
Chap. 2). However, having the matrices listed
explicitly forN = 1 and 2 is useful; this is shown
in Table 7.
For some reaction diffusion problems, the so-

lution can be an even function of x. For example,
for the problem
d2c
dx2

= kc,
dc
dx

(0) = 0, c (1) = 1 (24)

the solution can be proved to involve only even
powers of x. In such cases, an orthogonal col-
location method, which takes this feature into

Table 7.Matrices for orthogonal collocation
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account, is convenient. This can easily be done
by using expansions that only involve even pow-
ers of x. Thus, the expansion

y
(
x2
)
= y (1)+

(
1−x2) N∑

i=1

aiPi−1
(
x2
)

is equivalent to

y
(
x2
)
=
N+1∑
i=1

biPi−1
(
x2
)
=
N+1∑
i=1

dix
2i−2

The polynomials are defined to be orthogonal
with the weighting function W (x2).

1∫
0
W
(
x2
)
Pk
(
x2
)
Pm

(
x2
)
xa−1dx = 0

k≤m−1

(25)

where the power on xa−1 defines the geometry
as planar or Cartesian (a = 1), cylindrical (a =
2), and spherical (a = 3). An analogous devel-
opment is used to obtain the (N + 1)×(N + 1)
matrices

y (xj) =
N+1∑
i=1

dix
2i−2
j

dy
dx (xj) =

N+1∑
i=1

di (2i−2)x2i−3j

∇2y (xi) =
N+1∑
i=1

di∇2
(
x2i−2

)∣∣∣∣∣
xj

y = Qd,dy
dx = Cd,∇2y =Dd

Qji = x2i−2j , Cji = (2i−2)x2i−3j ,

Dji = ∇2 (x2i−2) |xj

d = Q−1y,dy
dx = CQ−1y = Ay,

∇2y =DQ−1y = By

In addition, the quadrature formula is

WQ = f , W = fQ−1

where

1∫
0
x2i−2xa−1dx =

N+1∑
j=1

Wjx
2i−2
j

= 1
2i−2+a≡fi

As an example, for the problem

1
xa−1

d
dx

(
xa−1 dc

dx

)
= ϕ2R (c)

dc
dx (0) = 0, c (1) = 1

orthogonal collocation is applied at the interior
points

N+1∑
i=1

Bjici = ϕ2R (cj) , j = 1,. . .,N

and the boundary condition solved for is

cN+1 = 1

The boundary condition at x = 0 is satisfied auto-
matically by the trial function. After the solution
has been obtained, the effectiveness factor η is
obtained by calculating

η ≡

1∫
0
R [c (x)]xa−1dx

1∫
0
R [c (1)]xa−1dx

=

N+1∑
i=1

WjR (cj)

N+1∑
i=1

WjR (1)

Note that the effectiveness factor is the average
reaction rate divided by the reaction rate eval-
uated at the external conditions. Error bounds
have been given for linear problems [83, p. 356].
For planar geometry the error is

Error in η =
ϕ2(2N+1)

(2N+1) ! (2N+2) !

This method is very accurate for small N (and
smallϕ2); note that for finite differencemethods
the error goes as 1/N2, which does not decrease
as rapidly withN. If the solution is desired at the
center (a frequent situation because the center
concentration can be the most extreme one), it
is given by

c (0) = d1

N+1∑
i=1

[
Q−1]

1i yi

The collocation points are listed in Table 8.
For small N the results are usually more accu-
rate when the weighting function in Equation
25 is 1 − x2. The matrices for N = 1 and N =
2 are given in Table 9 for the three geometries.
Computer programs to generate matrices and a
program to solve reaction diffusion problems,
OCRXN, are available [3, p. 325, p. 331].
Orthogonal collocation can be applied to dis-

tillation problems. Stewart et al. [84, 85] devel-
oped a method using Hahn polynomials that re-
tains the discrete nature of a plate-to-plate distil-
lation column. Other work treats problems with
multiple liquid phases [86]. Some of the appli-
cations to chemical engineering can be found in
[87 – 90].
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Table 8. Collocation points for orthogonal collocation with symmetric polynomials and W=1

Geometry

N Planar Cylindrical Spherical
1 0.5773502692 0.7071067812 0.7745966692
2 0.3399810436 0.4597008434 0.5384693101

0.8611363116 0.8880738340 0.9061793459
3 0.2386191861 0.3357106870 0.4058451514

0.6612093865 0.7071067812 0.7415311856
0.9324695142 0.9419651451 0.9491079123

4 0.1834346425 0.2634992300 0.3242534234
0.5255324099 0.5744645143 0.6133714327
0.7966664774 0.8185294874 0.8360311073
0.9602898565 0.9646596062 0.9681602395

5 0.1488743390 0.2165873427 0.2695431560
0.4333953941 0.4803804169 0.5190961292
0.6794095683 0.7071067812 0.7301520056
0.8650633667 0.8770602346 0.8870625998
0.9739065285 0.9762632447 0.9782286581

7.5. Orthogonal Collocation on Finite
Elements

In the method of orthogonal collocation on fi-
nite elements, the domain is first divided into
elements, and then within each element orthog-
onal collocation is applied. Figure 27 shows the
domain being divided into NE elements, with
NCOL interior collocation points within each el-
ement, and NP = NCOL + 2 total points per el-
ement, giving NT = NE * (NCOL + 1) + 1 total
number of points. Within each element a local
coordinate is defined

u =
x−x(k)
∆xk

, ∆xk = x(k+1)−x(k)

The reaction – diffusion equation is written as

1
xa−1

d
dx

(
xa−1 dc

dx

)
=

d2c
dx2

+
a−1
x

dc
dx

= ϕ2R (c)

and transformed to give

1
∆x2k

d2

du2
+

a−1
x(k)+u∆xk

1
∆xk

dc
du

= ϕ2R (c)

The boundary conditions are typically

dc
dx

(0) = 0, − dc
dx

(1) = Bim [c (1)−cB ]

where Bim is the Biot number for mass transfer.
These become

1
∆x1

dc
du

(u = 0) = 0,

in the first element;

− 1
∆xN E

dc
du

(u = 1) = Bim [c (u = 1)−cB ] ,

in the last element. The orthogonal collocation
method is applied at each interior collocation
point.

1
∆x2

k

N P∑
J=1

BI JcJ+ a−1
x(k)+uI∆xk

1
∆xk

N P∑
J=1

AI JcJ =

= ϕ2R (cJ ) , I = 2,. . .,N P−1

The local points i = 2, . . . , NP − 1 represent
the interior collocation points. Continuity of the
function and the first derivative between ele-
ments is achieved by taking

1
∆xk−1

N P∑
J=1

AN P,JcJ

∣∣∣∣∣
element k−1

= 1
∆xk

N P∑
J=1

A1,JcJ

∣∣∣∣∣
element k

at the points between elements. Naturally, the
computer code has only one symbol for the so-
lution at a point shared between elements, but
the derivative condition must be imposed. Fi-
nally, the boundary conditions at x = 0 and x =
1 are applied:

1
∆xk

N P∑
J=1

A1,JcJ = 0,

in the first element;

− 1
∆xN E

N P∑
J=1

AN P,JcJ = Bim [cNP−cB ] ,

in the last element.
These equations can be assembled into an

overall matrix problem

AAc = f
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Table 9.Matrices for orthogonal collocation with symmetric polynomials andW=1−x2

The form of these equations is special and is dis-
cussed by Finlayson [3, p. 116], who also gives
the computer code to solve linear equations aris-
ing in such problems. Reaction – diffusion prob-
lems are solvedby the programOCFERXN[3, p.

337]. See also the program COLSYS described
below.
The error bounds of DeBoor [91] give the fol-

lowing results for second-order problems solved
with cubic trial functions on finite elements with
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Figure 27. Grid for orthogonal collocation on finite elements

continuous first derivatives. The error at all po-
sitions is bounded by

‖ di

dxi
(y−yexact) ‖

∞
≤constant|∆x|2

The error at the collocation points is more accu-
rate, giving what is known as superconvergence.∣∣∣∣ didxi (y−yexact)

∣∣∣∣
collocation points

≤constant|∆x|4

7.6. Galerkin Finite Element Method

In the finite element method the domain is di-
vided into elements and an expansion is made
for the solution on each finite element. In the
Galerkin finite element method an additional
idea is introduced: the Galerkin method is used
to solve the equation. The Galerkin method is
explained before the finite element basis set is
introduced.
To solve the problem

1
xa−1

d
dx

(
xa−1 dc

dx

)
= ϕ2 R (c)

dc
dx (0) = 0, − dc

dx (1) = Bim [c (1)−cB ]

the unknown solution is expanded in a series of
known functions {bi (x)}, with unknown coef-
ficients {ai}.

c (x) =
N T∑
i=1

aibi (x)

The series (the trial solution) is inserted into the
differential equation to obtain the residual:

Residual =
N T∑
i=1

ai
1

xa−1
d
dx

(
xa−1 dbi

dx

)

−ϕ2R
[
NT∑
i=1

aibi (x)

]

The residual is then made orthogonal to the set
of basis functions.

1∫
0
bj (x)

{
N T∑
i=1

ai
1

xa−1
d
dx

(
xa−1 dbi

dx

)

−ϕ2R
[
NT∑
i=1

aibi (x)

]}
xa−1dx = 0

j = 1,. . .,N T

This process makes the method a Galerkin
method. The basis for the orthogonality condi-
tion is that a function that is made orthogonal to
each member of a complete set is then zero. The
residual is being made orthogonal, and if the ba-
sis functions are complete, and an infinite num-
ber of them are used, then the residual is zero.
Once the residual is zero the problem is solved.
It is necessary also to allow for the boundary
conditions. This is done by integrating the first
term of Equation 26 by parts and then inserting
the boundary conditions:

1∫
0
bj (x) 1

xa−1
d
dx

(
xa−1 dbi

dx

)
xa−1dx =

1∫
0

d
dx

[
bj (x)xa−1 dbi

dx

]
dx−

1∫
0

dbj
dx

dbi
dx x

a−1dx

=
[
bj (x)xa−1 dbi

dx

]1
0
−
1∫
0

dbj
dx

dbi
dx x

a−1dx

= −
1∫
0

dbj
dx

dbi
dx x

a−1dx−Bimbj (1) [bi (1)−cB ]

(27)

Combining this with Equation 26 gives

−
N T∑
i=1

1∫
0

dbj
dx

dbi
dx x

a−1dxai

−Bimbj (1)
[
N T∑
i=1

aibi (1)−cB
]

= ϕ2
1∫
0
bj (x)

[
N T∑
i=1

aibi (x)

]
xa−1dx

j = 1,. . .,NT

(28)

This equation defines the Galerkin method, and
a solution that satisfies this equation (for all j =
1, . . . ,∞) is called a weak solution. For an ap-
proximate solution the equation is written once
for each member of the trial function, j = 1, . . .
, NT. If the boundary condition is

c (1) = cB



72 Mathematics in Chemical Engineering

then the boundary condition is used (instead of
Eq. 28) for j = NT,

N T∑
i=1

aibi (1) = cB

The Galerkin finite element method results
when the Galerkin method is combined with
a finite element trial function. Both linear and
quadratic finite element approximations are de-
scribed in Chapter 2. The trial functions bi (x)
are then generally written as N i (x).

c (x) =
N T∑
i=1

ciNi (x)

Each N i (x) takes the value 1 at the point xi and
zero at all other grid points (Chap. 2). Thus ci
are the nodal values, c (xi ) = ci . The first deriva-
tive must be transformed to the local coordinate
system, u = 0 to 1 when x goes from xi to xi +
∆x.

dNj
dx

=
1

∆xe

dNJ
du

, dx = ∆xedu

in the e-th element. Then the Galerkin method
is

−∑e
1
∆xe

N P∑
I=1

1∫
0

dNJ
du

dNI
du (xe+u∆xe)a−1duceI

−Bim
∑
eNJ (1)

[
N P∑
I=1

ceINI (1)−c1
]

= ϕ2
∑
e∆xe

1∫
0
NJ (u)R

[
N P∑
I=1

ceINI (u)

]

(xe+u∆xe)a−1du

(29)

The element integrals are defined as

BeJI = − 1
∆xe

1∫
0

dNJ
du

dNI
du (xe+u∆xe)a−1du,

F eJ = ϕ2∆xe
1∫
0
NJ (u)R

[
N P∑
I=1

ceINI (u)

]

(xe+u∆xe)a−1du

whereas the boundary element integrals are

B BeJI = −BimNJ (1)NI (1) ,

F F eJ = −BimNJ (1) c1
Then the entire method can be written in the
compact notation∑

e
BeJIc

e
I+
∑

e
B BeJIc

e
I =

∑
e
F eJ+

∑
e
F F eJ

The matrices for various terms are given in Ta-
ble 10. This equation can also be written in the
form

AAc = f

where thematrixAA is sparse. If linear elements
are used the matrix is tridiagonal. If quadratic
elements are used the matrix is pentadiagonal.
Naturally the linear algebra is most efficiently
carried out if the sparse structure is taken into
account. Once the solution is found the solution
at any point can be recovered from

ce (u) = ceI=1 (1−u)+ceI=2u

for linear elements

ce (u) = ceI=12 (u−1)
(
u− 1

2

)
+ceI=24u (1−u)+ceI=32u

(
u− 1

2

)
for quadratic elements

Table 10. Element matrices for Galerkin method



Mathematics in Chemical Engineering 73

Because the integrals in Equation 28 may be
complicated, they are usually formed by using
Gaussian quadrature. If NG Gauss points are
used, a typical term would be

1∫
0
NJ (u)R

[
NP∑
I=1

ceINI (u)

]
(xe+u∆xe)a−1du

=
NG∑
k=1

WkNJ (uk)R

[
NP∑
I=1

ceINI (uk)

]

(xe+uk∆xe)
a−1

7.7. Cubic B-Splines

Cubic B-splines have cubic approximations
within each element, but first and second deriva-
tives continuous between elements. The func-
tions are the same ones discussed in Chapter 2,
and they can be used to solve differential equa-
tions, too. See Sincovec [92].

7.8. Adaptive Mesh Strategies

In many two-point boundary value problems,
the difficulty in the problem is the formation of
a boundary layer region, or a region in which
the solution changes very dramatically. In such
cases small mesh spacing should be used there,
either with the finite difference method or the
finite element method. If the region is known a
priori, small mesh spacings can be assumed at
the boundary layer. If the region is not known
though, other techniques must be used. These
techniques are known as adaptive mesh tech-
niques. The general strategy is to estimate the
error, which depends on the grid size and deriva-
tives of the solution, and refine the mesh where
the error is large.
The adaptive mesh strategy was employed by

Ascher et al. [93] and by Russell and Chris-
tiansen [94]. For a second-order differential
equation and cubic trial functions on finite el-
ements, the error in the i-th element is given by

‖Error‖i = c∆x4i ‖u(4)‖i
Because cubic elements do not have a nonzero
fourth derivative, the third derivative in adjacent
elements is used [3, p. 166]:

ai = 1
∆x3i

d3ci

du3 , ai+1 =
1

∆x3i+1

d3ci+1

du3

‖u(4)‖i≈ 1
2

[
ai−ai−1

1
2 (xi+1−xi−1)

+ ai+1−ai
1
2 (xi+2−xi)

]

Element sizes are then chosen so that the follow-
ing error bounds are satisfied

C∆x4i ‖u(4)‖i≤ε for all i

These features are built into the code COLSYS
(http://www.netlib.org/ode/).
The error expected from a method one order

higher and one order lower can also be defined.
Then a decision about whether to increase or
decrease the order of the method can be made
by taking into account the relative work of the
different orders. This provides a method of ad-
justing both the mesh spacing (∆x, sometimes
called h) and the degree of polynomial (p). Such
methods are called h – p methods.

7.9. Comparison

Whatmethod should be used for any given prob-
lem? Obviously the error decreases with some
power of ∆x, and the power is higher for the
higher order methods, which suggests that the
error is less. For example, with linear elements
the error is

y (∆x) = yexact+c2∆x2

for small enough (and uniform)∆x. A computer
code should be run for varying ∆x to confirm
this. For quadratic elements, the error is

y (∆x) = yexact+c3∆x3

If orthogonal collocation on finite elements is
used with cubic polynomials, then

y (∆x) = yexact+c4∆x4

However, the global methods, not using finite el-
ements, converge even faster [95], for example,

y (N) = yexact+cN

(
1

NCOL

)NCOL
Yet the workload of the methods is also differ-
ent. These considerations are discussed in [3].
Here, only sweeping generalizations are given.
If the problem has a relatively smooth so-

lution, then the orthogonal collocation method
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is preferred. It gives a very accurate solution,
and N can be quite small so the work is small.
If the problem has a steep front in it, the finite
difference method or finite element method is
indicated, and adaptive mesh techniques should
probably be employed. Consider the reaction –
diffusion problem: as the Thiele modulus ϕ in-
creases from a small valuewith no diffusion lim-
itations to a large valuewith significant diffusion
limitations, the solution changes as shown in
Figure 28. The orthogonal collocation method
is initially the method of choice. For interme-
diate values of ϕ, N = 3 – 6 must be used, but
orthogonal collocation still works well (for η
down to approximately 0.01). For largeϕ, use of
the finite difference method, the finite element
method, or an asymptotic expansion for large
ϕ is better. The decision depends entirely on the
type of solution that is obtained. For steep fronts
the finite difference method and finite element
method with adaptive mesh are indicated.

Figure 28. Concentration solution for different values of
Thiele modulus

7.10. Singular Problems and Infinite
Domains

If the solution being sought has a singularity, a
good numerical solution may be hard to find.
Sometimes even the location of the singular-
ity may not be known [96, pp. 230 – 238]. One
method of solving such problems is to refine the

mesh near the singularity, by relying on the bet-
ter approximation due to a smaller∆x. Another
approach is to incorporate the singular trial func-
tion into the approximation. Thus, if the solution
approaches f (x) as x goes to zero, and f (x) be-
comes infinite, an approximation may be taken
as

y (x) = f (x)+
N∑
i=1

aiyi (x)

This function is substituted into the differential
equation, which is solved for ai . Essentially, a
new differential equation is being solved for a
new variable:

u (x)≡y (x)−f (x)

The differential equation is more complicated
but has a better solution near the singularity (see
[97, pp. 189 – 192], [98, p. 611]).
Sometimes the domain is infinite. Boundary

layer flowpast a flat plate is governed by theBla-
sius equation for stream function [99, p. 117].

2 d
3

dη3+f
d2

dη2 = 0

f = df
dη = 0 at η = 0

df
dη = 1 at η→∞

Because one boundary is at infinity using amesh
with a constant size is difficult! One approach is
to transform the domain. For example, let

z = e−η

Then η = 0 becomes z = 1 and η =∞ becomes
z = 0. The derivatives are

dz
dη = −e−η = −z, d2zdη2 = e−η = z

df
dη = df

dz
dz
dη = −z dfdz

d2f
dη2 = d2f

dz2

(
dz
dη

)2
+df
dz

d2z
dη2 = z2 d

2f
dz2 +z

df
dz

The Blasius equation becomes

2
[
−z3 d3fdz3 −3z2 d

2f
dz2 −z dfdz

]
+f
[
z2 d

2

dz2+z
df
dz

]
= 0 for 0≤z≤1.

The differential equation now has variable coef-
ficients, but these are no more difficult to handle
than the original nonlinearities.
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Another approach is to use a variable mesh,
perhaps with the same transformation. For ex-
ample, use z = e−η and a constant mesh size in
z. Then with 101 points distributed uniformly
from z = 0 to z = 1, the following are the nodal
points:

z = 0.,0.01,0.02,. . .,0.99,1.0

η = ∞,4.605,3.912,. . .,0.010,0

∆η = ∞,0.639,. . .,0.01

Still another approach is to solve on a finite
mesh in which the last point is far enough away
that its location does not influence the solution.
A location that is far enough awaymust be found
by trial and error.

8. Partial Differential Equations

Partial differential equations are differential
equations in which the dependent variable is a
function of two or more independent variables.
These can be time and one space dimension, or
time and two or more space dimensions, or two
or more space dimensions alone. Problems in-
volving time are generally either hyperbolic or
parabolic, whereas those involving spatial di-
mensions only are often elliptic. Because the
methods applied to each type of equation are
very different, the equation must first be classi-
fied as to its type. Then the special methods ap-
plicable to each type of equation are described.
For a discussion of all methods, see [100 – 103];
for a discussion oriented more toward chemical
engineering applications, see [104]. Examples
of hyperbolic and parabolic equations include
chemical reactors with radial dispersion, pres-
sure-swing adsorption, dispersion of an efflu-
ent, and boundary value problems with transient
terms added (heat transfer, mass transfer, chem-
ical reaction). Examples of elliptic problems in-
clude heat transfer and mass transfer in two and
three spatial dimensions and steady fluid flow.

8.1. Classification of Equations

A set of differential equations may be hyper-
bolic, elliptic, or parabolic, or it may be ofmixed
type. The type may change for different param-
eters or in different regions of the flow. This can

happen in the case of nonlinear problems; an ex-
ample is a compressible flow problem with both
subsonic and supersonic regions.Characteristic
curves are curves along which a discontinuity
can propagate. For a given set of equations, it
is necessary to determine if characteristics ex-
ist or not, because that determines whether the
equations are hyperbolic, elliptic, or parabolic.

Linear Problems For linear problems, the
theory summarized by Joseph et al. [105] can
be used.

∂

∂t
,
∂

∂xi
,. . .,

∂

∂xn

is replaced with the Fourier variables

iξ0,iξ1,. . .,iξn

If the m-th order differential equation is

P =
∑

|α|=maα∂
α+
∑

|α|<mbα∂
α

where

α = (α0,α1,. . .,αn) , |α| =
n∑
i=0

αi

∂α = ∂|α|
∂tα0∂x

α1
1 ...∂x

αn
n

the characteristic equation for P is defined as∑
|α|=maασ

α = 0, σ = (σ0,σ1,. . .,σn)

σα = σα0
0 σα1

1 . . .σαn
n

(30)

where σ represents coordinates. Thus only the
highest derivatives are used to determine the
type. The surface is defined by this equation plus
a normalization condition:
n∑
k=0

σ2k = 1

The shape of the surface defined by Equation 30
is also related to the type: elliptic equations give
rise to ellipses; parabolic equations give rise to
parabolas; and hyperbolic equations give rise to
hyperbolas.

σ2
1
a2
+σ2

2
b2

= 1, Ellipse

σ0 = aσ21 , Parabola

σ20−aσ21 = 0, Hyperbola

If Equation 30 has no nontrivial real zeroes then
the equation is called elliptic. If all the roots are
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real and distinct (excluding zero) then the oper-
ator is hyperbolic.
This formalism is applied to three basic types

of equations. First consider the equation arising
from steady diffusion in two dimensions:

∂2c

∂x2
+
∂2c

∂y2
= 0

This gives

−ξ21−ξ22 = − (ξ12+ξ22) = 0

Thus,

σ21+σ
2
2 = 1 (normalization)

σ21+σ
2
2 = 0 (equation)

These cannot both be satisfied so the problem is
elliptic. When the equation is

∂2u

∂t2
−∂2u

∂x2
= 0

then

−ξ20+ξ21 = 0

Now real ξ0 can be solved and the equation is
hyperbolic

σ20+σ
2
1 = 1 (normalization)

−σ20+σ21 = 0 (equation)

When the equation is

∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)

then

σ20+σ
2
1+σ

2
2 = 1 (normalization)

σ21+σ
2
2 = 0 (equation)

thus we get

σ20 = 1 (for normalization)

and the characteristic surfaces are hyperplanes
with t = constant. This is a parabolic case.
Consider next the telegrapher’s equation:

∂T

∂t
+β

∂2T

∂t2
=

∂2T

∂x2

Replacing the derivatives with the Fourier vari-
ables gives

iξ0−βξ20+ξ21 = 0

The equation is thus second order and the type
is determined by

−βσ20+σ21 = 0

The normalization condition

σ20+σ
2
1 = 1

is required. Combining these gives

1− (1+β)σ20 = 0

The roots are real and the equation is hyperbolic.
When β = 0

ξ21 = 0

and the equation is parabolic.
First-order quasi-linear problems are written

in the form
n∑
l=0
A1

∂u
∂x1

= f , x = (t,x1. . .,xn)

u = (u1,u2,. . .,uk)
(31)

The matrix entries A1 is a k×k matrix whose
entries depend on u but not on derivatives of u.
Equation 31 is hyperbolic if

A = Aµ

is nonsingular and for any choice of real λ1, l =
0, . . . , n, l �= µ the roots αk of

det



αA−

n∑
l = 0
l �=µ

λ1A1




= 0

are real. If the roots are complex the equation
is elliptic; if some roots are real and some are
complex the equation is of mixed type.
Apply these ideas to the advection equation

∂u

∂t
+F (u)

∂u

∂x
= 0

Thus,

det (αA0−λ1A1) = 0 or det (αA1−λ0A0) = 0

In this case,

n = 1, A0 = 1, A1 = F (u)

Using the first of the above equations gives

det (α−λ1F (u)) = 0, orα = λ1F (u)

Thus, the roots are real and the equation is hy-
perbolic.
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The final example is the heat conduction
problem written as

?Cp
∂T

∂t
= − ∂q

∂x
, q = −k ∂T

∂x

In this formulation the constitutive equation for
heat flux is separated out; the resulting set of
equations is first order and written as

?Cp
∂T
∂t

+ ∂q
∂x

= 0

k ∂T
∂x

= −q

In matrix notation this is[
?Cp 0

0 0

][
∂T
∂t
∂q
∂t

]
+

[
0 1

k 0

][
∂T
∂x
∂q
∂t

]
=

[
0

−q

]

This compares with

A0
∂u

∂x0
+A1

∂u

∂x1
= f

In this case A0 is singular whereas A1 is nonsin-
gular. Thus,

det (αA1−λ0A0) = 0

is considered for any real λ0. This gives∣∣∣∣∣−?Cpλ0 α

kα 0

∣∣∣∣∣ = 0

or

α2k = 0

Thus the α is real, but zero, and the equation is
parabolic.

8.2. Hyperbolic Equations

The most common situation yielding hyperbolic
equations involves unsteady phenomena with
convection. A prototype equation is

∂c

∂t
+
∂F (c)
∂x

= 0

Depending on the interpretation of c and F (c),
this can represent accumulation ofmass and con-
vection. With F (c) = u c, where u is the veloc-
ity, the equation represents a mass balance on
concentration. If diffusive phenomenon are im-
portant, the equation is changed to

∂c

∂t
+
∂F (c)
∂x

= D
∂2c

∂x2
(32)

where D is a diffusion coefficient. Special cases
are the convective diffusive equation

∂c

∂t
+u

∂c

∂x
= D

∂2c

∂x2
(33)

and Burgers viscosity equation

∂u

∂t
+u

∂u

∂x
= ν

∂2u

∂x2
(34)

where u is the velocity and ν is the kinematic vis-
cosity. This is a prototype equation for theNavier
– Stokes equations (→ Fluid Mechanics). For
adsorption phenomena [106, p. 202],

ϕ
∂c

∂t
+ϕu

∂c

∂x
+(1−ϕ) df

dc
∂c

∂t
= 0 (35)

where ϕ is the void fraction and f (c) gives the
equilibrium relation between the concentrations
in the fluid and in the solid phase. In these exam-
ples, if the diffusion coefficient D or the kine-
matic viscosityν is zero, the equations are hyper-
bolic. IfD and ν are small, the phenomenonmay
be essentially hyperbolic even though the equa-
tions are parabolic. Thus the numerical methods
for hyperbolic equations may be useful even for
parabolic equations.
Equations for several methods are given here,

as taken from [107]. If the convective term is
treated with a centered difference expression the
solution exhibits oscillations from node to node,
and these vanish only if a very fine grid is used.
The simplest way to avoid the oscillations with
a hyperbolic equation is to use upstream deriva-
tives. If the flow is from left to right, this would
give the following for Equations (40):

dci
dt

+
F (ci)−F (ci−1)

∆x
= D

ci+1−2ci+ci−1
∆x2

for Equation 34:
dui
dt

+ui
ui−ui−1

∆x
= ν

ui+1−2ui+ui−1
∆x2

and for Equation 35:

ϕ
dci
dt

+ϕui
ci−ci−1
∆x

+(1−ϕ) df
dc

|
i

dci
dt

= 0

If the flow were from right to left, then the for-
mula would be

dci
dt

+
F (ci+1)−F (ci)

∆x
= D

ci+1−2ci+ci−1
∆x2

If the flow could be in either direction, a local
determination must be made at each node i and
the appropriate formula used. The effect of us-
ing upstream derivatives is to add artificial or
numerical diffusion to the model. This can be
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ascertained by taking the finite difference form
of the convective diffusion equation
dci
dt

+u
ci−ci−1
∆x

= D
ci+1−2ci+ci−1

∆x2

and rearranging
dci
dt +u

ci+1−ci−1
2∆x

=
(
D+u∆x

2

)
ci+1−2ci+ci−1

∆x2

Thus the diffusion coefficient has been changed
from

D to D+
u∆x
2

Expressed in terms of the cell Peclet num-
ber, Pe∆=u∆x/D, this is D is changed to
D[1+Pe∆/2]
The cell Peclet number should always be cal-

culated as a guide to the calculations. Using a
large cell Peclet number and upstream deriva-
tives leads to excessive (and artificial) smooth-
ing of the solution profiles.
Another method often used for hyperbolic

equations is the MacCormack method. This
method has two steps; it is written here for Equa-
tion 33.

c∗n+1i = cni −u∆t
∆x

(
cni+1−cni

)
+∆tD
∆x2

(
cni+1−2cni +c

n
i−1
)

cn+1i = 1
2

(
cni +c

∗n+1
i

)
− u∆t
2∆x

(
c∗n+1i −c∗n+1i−1

)
+ ∆tD
2∆x2

(
c∗n+1i+1 −2c∗n+1i +c∗n+1i−1

)
The concentration profile is steeper for theMac-
Cormack method than for the upstream deriva-
tives, but oscillations can still be present. The
flux-corrected transport method can be added to
theMacCormackmethod. A solution is obtained
both with the upstream algorithm and the Mac-
Cormackmethod; then they are combined to add
just enough diffusion to eliminate the oscilla-
tions without smoothing the solution too much.
The algorithm is complicated and lengthy but
well worth the effort [107 – 109].
If finite element methods are used, an explicit

Taylor – Galerkinmethod is appropriate. For the
convective diffusion equation the method is
1
6

(
cn+1i+1 −cni+1

)
+ 2
3

(
cn+1i −cni

)
+ 1
6

(
cn+1i−1 −cni−1

)
= − u∆t

2∆x

(
cni+1−cni−1

)
+
(
∆tD
∆x2 +

u2∆t2

2∆x2

)(
cni+1

−2cni +c
n
i−1
)

Leaving out the u2 ∆t2 terms gives the Galerkin
method. Replacing the left-hand side with

cn+1i −cni
gives the Taylor finite difference method, and
dropping the u2 ∆t2 terms in that gives the
centered finite difference method. This method
might require a small time step if reaction
phenomena are important. Then the implicit
Galerkin method (without the Taylor terms) is
appropriate
A stability diagram for the explicit methods

applied to the convective diffusion equation is
shown in Figure 29. Notice that all the methods
require

Co =
u∆t
∆x

≤1

where Co is the Courant number. Howmuch Co
should be less than one depends on the method
and on r = D ∆t/∆x2, as given in Figure 29.
The MacCormack method with flux correction
requires a smaller time step than the MacCor-
mack method alone (curve a), and the implicit
Galerkinmethod (curve e) is stable for all values
of Co and r shown in Figure 29 (as well as even
larger values).

Figure 29. Stability diagram for convective diffusion equa-
tion (stable below curve)
a) MacCormack; b) Centered finite difference; c) Taylor
finite difference; d) Upstream; e) Galerkin; f) Taylor –
Galerkin

Each of these methods tries to avoid oscil-
lations that would disappear if the mesh were
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fine enough. For the steady convective diffusion
equation these oscillations donot occur provided

u∆x
2D

=
Pe∆

2
< = 1 (36)

For large u, ∆x must be small to meet this con-
dition. An alternative is to use a small ∆x in
regions where the solution changes drastically.
Because these regions change in time, the el-
ements or grid points must move. The crite-
ria to move the grid points can be quite com-
plicated, and typical methods are reviewed in
[107]. The criteria include moving the mesh in
a known way (when the movement is known a
priori), moving the mesh to keep some prop-
erty (e.g., first- or second-derivative measures)
uniform over the domain, using a Galerkin or
weighted residual criterion to move the mesh,
and Euler – Lagrange methods which move part
of the solution exactly by convection and then
add on some diffusion after that.
The final illustration is for adsorption in a

packed bed, or chromatography. Equation 35
can be solved when the adsorption phenomenon
is governed by a Langmuir isotherm.

f (c) =
αc

1+Kc

Similar numerical considerations apply and sim-
ilar methods are available [110 – 112].

8.3. Parabolic Equations in One
Dimension

In this section several methods are applied to
parabolic equations in one dimension: separa-
tion of variables, combination of variables, fi-
nite difference method, finite element method,
and the orthogonal collocation method. Separa-
tion of variables is successful for linear prob-
lems, whereas the other methods work for linear
or nonlinear problems. The finite difference, the
finite element, and the orthogonal collocation
methods are numerical, whereas the separation
or combination of variables can lead to analyti-
cal solutions.

Analytical Solutions. Consider the diffu-
sion equation

∂c

∂t
= D

∂2c

∂x2

with boundary and initial conditions

c(x,0) = 0

c (0,t) = 1, c (L,t) = 0

A solution of the form

c (x,t) = T (t)X (x)

is attempted and substituted into the equation,
with the terms separated to give

1
DT

dT
dt

=
1
X

d2X
dx2

One side of this equation is a function of x alone,
whereas the other side is a function of t alone.
Thus, both sides must be a constant. Otherwise,
if x is changed one side changes, but the other
cannot because it depends on t. Call the constant
− λ and write the separate equations

dT
dt

−λDT , d
2X

dx2
−λX

The first equation is solved easily

T (t) = T (0) e−λDt

and the second equation is written in the form

d2X
dx2

+λX = 0

Next consider the boundary conditions. If
they are written as

c (L,t) = 1 = T (t)X (L)

c (0,t) = 0 = T (t)X (0)

the boundary conditions are difficult to satisfy
because they are not homogeneous, i.e. with a
zero right-hand side. Thus, the problem must be
transformed to make the boundary conditions
homogeneous. The solution iswritten as the sum
of two functions, one of which satisfies the non-
homogeneous boundary conditions, whereas the
other satisfies the homogeneous boundary con-
ditions.

c (x,t) = f (x)+u (x,t)

u (0,t) = 0

u (L,t) = 0

Thus, f (0) = 1 and f (L) = 0 are necessary. Now
the combined function satisfies the boundary
conditions. In this case the function f (x) can
be taken as
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f (x) = L−x
The equation for u is found by substituting for c
in the original equation and noting that the f (x)
drops out for this case; it need not disappear in
the general case:

∂u

∂t
= D

∂2u

∂x2

The boundary conditions for u are

u (0,t) = 0

u (L,t) = 0

The initial conditions for u are found from the
initial condition

u (x,0) = c (x,0)−f (x) = x

L
−1

Separation of variables is now applied to this
equation by writing

u (x,t) = T (t)X (x)

The same equation for T (t) and X (x) is ob-
tained, but with X (0) = X (L) = 0.

d2X
dx2 +λX = 0

X (0) = X (L) = 0

Next X (x) is solved for. The equation is an
eigenvalue problem. The general solution is ob-
tained by using emx and finding that m2 + λ =
0; thusm = ±i

√
λ. The exponential term

e±i√λx

is written in terms of sines and cosines, so that
the general solution is

X = Bcos
√
λx+Esin

√
λx

The boundary conditions are

X (L) = Bcos
√
λL+Esin

√
λL = 0

X (0) = B = 0

If B = 0, then E �= 0 is required to have any so-
lution at all. Thus, λ must satisfy

sin
√
λL = 0

This is true for certain values of λ, called eigen-
values or characteristic values. Here, they are

λn = n2π2/L2

Each eigenvalue has a corresponding eigenfunc-
tion

Xn (x) = Esin n π x/L

The composite solution is then

Xn (x)Tn (t) = E A sin
n π x

L
e−λn Dt

This function satisfies the boundary conditions
and differential equation but not the initial con-
dition. To make the function satisfy the initial
condition, several of these solutions are added
up, each with a different eigenfunction, and E A
is replaced by An .

u (x,t) =
∞∑
n=1

Ansin
n π x

L
e−n2π2 Dt/L2

The constants An are chosen by making u (x, t)
satisfy the initial condition.

u (x,0) =
∞∑
n=1

Ansin
n π x

L
=

x

L
−1

The residual R (x) is defined as the error in the
initial condition:

R (x) =
x

L
−1−

∞∑
n=1

An sin
n π x

L

Next, the Galerkin method is applied, and the
residual is made orthogonal to a complete set of
functions, which are the eigenfunctions.

L∫
0

(
x
L

−1
)
sin mπ x

L
dx

=
∞∑
n=1

An
L∫
0
sin mπ x

L
sin n π x

L
dx = Am

2

TheGalerkin criterion for findingAn is the same
as the least-squares criterion [3, p. 183]. The so-
lution is then

c (x,t) = 1− x

L
+

∞∑
n=1

Ansin
n π x

L
e−n2π2Dt/L2

This is an “exact” solution to the linear prob-
lem. It can be evaluated to any desired accuracy
by taking more and more terms, but if a finite
number of terms are used, some error always oc-
curs. For large times a single term is adequate,
whereas for small times many terms are needed.
For small times the Laplace transform method
is also useful, because it leads to solutions that
converge with fewer terms. For small times, the
method of combination of variablesmay be used
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as well. For nonlinear problems, the method of
separation of variables fails and one of the other
methods must be used.
The method of combination of variables is

useful, particularly when the problem is posed
in a semi-infinite domain. Here, only one exam-
ple is provided; more detail is given in [3, 113,
114]. Themethod is applied here to the nonlinear
problem

∂c

∂t
=

∂

∂x

[
D (c)

∂c

∂x

]
= D (c)

∂2c

∂x2
+
dD (c)
dc

(
∂c

∂x

)2

with boundary and initial conditions

c (x,0) = 0

c (0,t) = 1, c (∞,t) = 0

The transformation combines two variables into
one

c (x,t) = f (η) where η =
x√
4D0t

Theuse of the 4 andD0makes the analysis below
simpler. The equation for c (x, t) is transformed
into an equation for f (η)

∂c
∂t

= df
dη

∂η
∂t
, ∂c
∂x

= df
dη

∂η
∂x

∂2c
∂x2

= d2f
dη2

(
∂η
∂x

)2
+df
dη

∂2η
∂x2

∂η
∂t

= − x/2√
4D0t3

, ∂η
∂x

= 1√
4D0t

, ∂
2η
∂x2

= 0

The result is

d
dη

[
K (c) dfdη

]
+2η dfdη = 0

K (c) = D (c) /D0

The boundary conditions must also combine. In
this case the variable η is infinite when either x is
infinite or t is zero. Note that the boundary con-
ditions on c (x, t) are both zero at those points.
Thus, the boundary conditions can be combined
to give

f (∞) = 0

The other boundary condition is for x = 0 or η =
0,

f (0) = 1

Thus, an ordinary differential equation must be
solved rather than a partial differential equation.
When the diffusivity is constant the solution is
the well-known complementary error function:

c (x,t) = 1−erf η = erfc η

erf η =

η∫
0
e−ξ2dξ

∞∫
0
e−ξ2dξ

This is a tabulated function [23].

Numerical Methods. Numerical methods
are applicable to both linear and nonlinear prob-
lems on finite and semi-infinite domains. The
finite difference method is applied by using the
method of lines [115]. In this method the same
equations are used for the spatial variations of
the function, but the function at a grid point
can vary with time. Thus the linear diffusion
problem is written as

dci
dt

= D
ci+1−2ci+ci−1

∆x2
(37)

This can be written in the general form

dc
dt

= AAc

This set of ordinary differential equations can
be solved by using any of the standard methods.
The stability of explicit schemes is deduced from
the theory presented in Chapter 6. The equations
are written as

dci
dt

= D
ci+1−2ci+ci−1

∆x2
=

D

∆x2

n+1∑
j=1

Bijcj

where the matrix B is tridiagonal. The stability
of the integration of these equations is governed
by the largest eigenvalue of B. If Euler’s method
is used for integration,

∆t
D

∆x2
≤ 2

|λ|max
The largest eigenvalue of B is bounded by the
Gerschgorin theorem [14, p. 135].

|λ|max≤max2<j<n
n∑
i=2

|Bji| = 4

This gives the well-known stability limit

∆t
D

∆x2
≤1
2

If other methods are used to integrate in time,
then the stability limit changes according to
the method. It is interesting to note that the
eigenvalues of Equation 37 range from D π2/L2

(smallest) to 4 D/∆x2 (largest), depending on
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the boundary conditions. Thus the problem be-
comes stiff as ∆x approaches zero [3, p. 263].
Implicit methods can also be used. Write a

finite difference form for the time derivative and
average the right-hand sides, evaluated at the old
and new times:

cn+1
i −cni
∆t = D (1−θ) c

n
i+1−2cni +cni−1

∆x2

+Dθ
cn+1
i+1 −2cn+1

i +cn+1
i−1

∆x2

Now the equations are of the form

−D∆tθ
∆x2 cn+1i+1 +

[
1+2D∆tθ∆x2

]
cn+1i −D∆tθ

∆x2 cn+1i−1

= cni +
D∆t(1−θ)
∆x2

(
cni+1−2cni +c

n
i−1
)

and require solving a set of simultaneous equa-
tions, which have a tridiagonal structure. Using
θ = 0 gives the Euler method (as above); θ = 0.5
gives the Crank – Nicolson method; θ = 1 gives
the backward Euler method. The stability limit
is given by

D∆t
∆x2

≤ 0.5
1−2θ

whereas the oscillation limit is given by

D∆t
∆x2

≤0.25
1−θ

If a time step is chosen between the oscillation
limit and stability limit, the solution will oscil-
late around the exact solution, but the oscilla-
tions remain bounded. For further discussion,
see [3, p. 218].

Finite volume methods are utilized exten-
sively in computational fluid dynamics. In this
method, a mass balance is made over a cell ac-
counting for the change in what is in the cell and
the flow in and out. Figure 30 illustrates the ge-
ometry of the i-th cell. A mass balance made on
this cell (with area A perpendicular to the paper)
is

A∆x(cn+1i −cni ) = ∆tA(Jj−1/2−Ji+1/2)
where J is the flux due to convection and diffu-
sion, positive in the +x direction.

J = uc−D ∂c

∂x
, Ji−1/2 = ui−1/2ci−1/2−D

ci−ci−1/2
∆x

The concentration at the edge of the cell is
taken as

ci−1/2 =
1
2
(ci+ci−1)

Rearrangement for the casewhen the velocity
u is the same for all nodes gives

cn+1i −cni
∆t

+
u(ci+1−ci−1)

2∆x
=

D

∆x2
(ci+1−2ci+ci−1)

This is the same equation as obtained using
the finite difference method. This is not always
true, and the finite volume equations are easy to
derive. In two- and three-dimensions, the mesh
need not be rectangular, as long as it is possi-
ble to compute the velocity normal to an edge of
the cell. The finite volume method is useful for
applications involving filling, such as injection
molding, when only part of the cell is filled with
fluid. Such applications do involve some approx-
imations, since the interface is not tracked pre-
cisely, but they are useful engineering approxi-
mations.

Figure 30.

The finite elementmethod is handled in a sim-
ilar fashion, as an extension of two-point bound-
ary value problems by letting the solution at the
nodes depend on time. For the diffusion equation
the finite element method gives
∑

e

∑
I
CeJI

dceI
dt

=
∑

e

∑
I
BeJI c

e
I

with the mass matrix defined by

CeJI = ∆xe

1∫
0

NJ (u)NI (u) du

This set of equations can be written in matrix
form

CC
dc
dt

= AAc

Now the matrix C C is not diagonal, so that a
set of equations must be solved for each time
step, even when the right-hand side is evaluated
explicitly. This is not as time-consuming as it
seems, however. The explicit scheme is written
as
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CCji
cn+1i −cni

∆t
= AAjic

n
i

and rearranged to give

CCji

(
cn+1i −cni

)
= ∆tAAjicni or

CC
(
cn+1−cn) = ∆tAAc

This is solved with an L U decomposition (see
Section 1.1) that retains the structure of themass
matrix C C. Thus,

CC = LU

At each step, calculate

cn+1−cn = ∆tU−1L−1AAcn

This is quick and easy to do because the inverse
of L and U are simple. Thus the problem is re-
duced to solving one full matrix problem and
then evaluating the solution for multiple right-
hand sides. For implicit methods the same ap-
proach can be used, and the LU decomposition
remains fixed until the time step is changed.
The method of orthogonal collocation uses a

similar extension: the same polynomial of x is
used but now the coefficients depend on time.

∂c

∂t

∣∣∣∣
xj

=
dc (xj ,t)

dt
=

dcj
dt

Thus, for diffusion problems

dcj
dt

=
N+2∑
i=1

Bjici, j = 2,. . .,N+1

This can be integrated by using the standard
methods for ordinary differential equations as
initial value problems. Stability limits for ex-
plicit methods are available [3, p. 204].
The method of orthogonal collocation on fi-

nite elements can also be used, and details are
provided elsewhere [3, pp. 228 – 230].
Themaximum eigenvalue for all the methods

is given by

|λ|max =
LB

∆x2
(38)

where the values of LB are as follows:

Finite difference 4
Galerkin, linear elements, lumped 4
Galerkin, linear elements 12
Galerkin, quadratic elements 60
Orthogonal collocation on finite elements,
cubic

36

Spectral methods employ the discrete Fourier
transform (see 2 and Chebyshev polynomials on
rectangular domains [116]).
In the Chebyshev collocation method, N + 1

collocation points are used

xj = cos
πj

N
, j = 0,1,. . .,N

As an example, consider the equation

∂u

∂t
+f (u)

∂u

∂x
= 0

An explicit method in time can be used

un+1−un
∆t

+f (un)
∂u

∂x

∣∣∣∣n = 0

and evaluated at each collocation point

un+1j −unj
∆t

+f
(
unj
) ∂u
∂x

∣∣∣∣n
j

= 0

The trial function is taken as

uj (t) =
N∑
p=0

ap (t) cos
πpj

N
, unj = uj (tn) (39)

Assume that the values unj exist at some time.
Then invert Equation 39 using the fast Fourier
transform to obtain {ap} for p = 0, 1, . . . , N ;
then calculate Sp

Sp = Sp+2+(p+1) ap+1, 0≤p≤N−1

SN = 0, SN+1 = 0

and finally

a
(1)
p =

2Sp
cp

Thus, the first derivative is given by

∂u

∂x
|
j
=

N∑
p=0

a
(1)
p (t) cos

πpj

N

This is evaluated at the set of collocation points
by using the fast Fourier transform again. Once
the function and the derivative are known at each
collocation point the solution can be advanced
forward to the n + 1-th time level.
The advantage of the spectral method is that

it is very fast and can be adapted quite well to
parallel computers. It is, however, restricted in
the geometries that can be handled.
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8.4. Elliptic Equations

Elliptic equations can be solved with both fi-
nite difference and finite element methods. One-
dimensional elliptic problems are two-point
boundary value problems and are covered in
Chapter 7. Two-dimensional elliptic problems
are often solved with direct methods, and it-
erative methods are usually used for three-
dimensional problems. Thus, two aspects must
be considered: how the equations are discretized
to form sets of algebraic equations and how the
algebraic equations are then solved.
The prototype elliptic problem is steady-state

heat conduction or diffusion,

k

(
∂2T

∂x2
+
∂2T

∂y2

)
= Q

possibly with a heat generation term per unit
volume, Q. The boundary conditions can be

Dirichlet or 1st kind: T = T1 on boundary S1

Neumann or 2nd kind: k ∂T
∂n = q2 on boundary S2

Robin, mixed, or 3rd kind: −k ∂T
∂n = h (T−T3) on

boundary S3

Illustrations are given for constant physical
properties k, h, while T1, q2, T3 are known func-
tions on the boundary andQ is a known function
of position. For clarity, only a two-dimensional
problem is illustrated. The finite difference for-
mulation is given by using the following nomen-
clature

Ti,j = T (i∆x,j∆y)

The finite difference formulation is then

Ti+1,j−2Ti,j+Ti−1,j
∆x2

+Ti,j+1−2Ti,j+Ti,j−1
∆y2 = Qi,j/k

(40)

Ti,j = T1 for i,j on boundary S1

k ∂T
∂n

|
i,j

= q2 for i,j on boundary S2

−k ∂T
∂n

|
i,j

= h (Ti,j−T3) for i,j on boundary S3

If the boundary is parallel to a coordinate axis the
boundary slope is evaluated as in Chapter 7, by
using either a one-sided, centered difference or
a false boundary. If the boundary is more irreg-
ular and not parallel to a coordinate line, more

complicated expressions are needed and the fi-
nite element method may be the better method.
Equation 40 is rewritten in the form

2
(
1+∆x2

∆y2

)
Ti,j = Ti+1,j+Ti−1,j+∆x2

∆y2

(Ti,j+1+Ti,j−1)−∆x2Qi,j

k

And this is converted to the Gauss–Seidel itera-
tive method.

2
(
1+∆x2

∆y2

)
T s+1i,j = T si+1,j+T

s+1
i−1,j

+∆x2

∆y2

(
T si,j+1+T

s+1
i,j−1

)
−∆x2Qi,j

k

Calculations proceed by setting a low i, com-
puting from low to high j, then increasing i and
repeating the procedure. The relaxation method
uses

2
(
1+∆x2

∆y2

)
T ∗
i,j = T si+1,j+T

s+1
i−1,j+

∆x2

∆y2(
T si,j+1−T s+1i,j−1

)
−∆x2Qi,j

k

T s+1i,j = T si,j+β
(
T ∗
i,j−T si,j

)
If β = 1, this is the Gauss – Seidel method. If β
> 1, it is overrelaxation; if β < 1, it is underre-
laxation. The value of β may be chosen empiri-
cally, 0 < β < 2, but it can be selected theoreti-
cally for simple problems like this [117, p. 100],
[3, p. 282]. In particular, the optimal value of the
iteration parameter is given by

−ln (βopt−1)≈R

and the error (in solving the algebraic equation)
is decreased by the factor (1 − R)N for every N
iterations. For the heat conduction problem and
Dirichlet boundary conditions,

R =
π2

2n2

(when there are n points in both x and y direc-
tions). For Neumann boundary conditions, the
value is

R =
π2

2n2
1

1+max [∆x2/∆y2,∆y2/∆x2]

Iterative methods can also be based on lines
(for 2D problems) or planes (for 3D problems).
Preconditioned conjugate gradient methods

have been developed (see Chap. 1). In these
methods a series of matrix multiplications are
done iteration by iteration; and the steps lend
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themselves to the efficiency available in paral-
lel computers. In the multigrid method the prob-
lem is solved on several grids, eachmore refined
than the previous one. In iterating between the
solutions on different grids, one converges to the
solution of the algebraic equations. A chemical
engineering application is given in [118]. Soft-
ware for a variety of these methods is available,
as described below.
The Galerkin finite element method (FEM) is

useful for solving elliptic problems and is partic-
ularly effective when the domain or geometry is
irregular [119 – 125]. As an example, cover the
domain with triangles and define a trial func-
tion on each triangle. The trial function takes
the value 1.0 at one corner and 0.0 at the other
corners, and is linear in between (see Fig. 31).
These trial functions on each triangle are pieced
together to give a trial function on the whole
domain. For the heat conduction problem the
method gives [3]

Figure 31. Finite elements trial function: linear polynomi-
als on triangles

∑
e

∑
J
AeIJT

e
J =

∑
e

∑
J
F eI (41)

where

AeIJ = −∫ k∇NI ·∇NJdA− ∫
C3

h3NINJdC

F eI =
∫
NIQdA+

∫
C2

NIq2dC− ∫
C3

NIh3T3dC

Also, a necessary condition is that

Ti = T1 on C1

In these equations I and J refer to the nodes of
the triangle forming element e and the summa-
tion is made over all elements. These equations

represent a large set of linear equations, which
are solved using matrix techniques (Chap. 1).
If the problem is nonlinear, e.g., with k or Q

a function of temperature, the equations must be
solved iteratively. The integrals are given for a
triangle with nodes I, J, and K in counterclock-
wise order. Within an element,

T = NI (x,y)TI+NJ (x,y)TJ+NK (x,y)TK

NI =
aI+bI x+cI y

2∆

aI = xJ yK−xK yJ

bI = yI−yK
cI = xK−xJ
plus permutation on I,K,J

2∆ = det



1 xI yI

1 xJ yJ

1 xK yK


 = 2 (area of triangle)

aI+aJ+aK = 1

bI+bJ+bK = 0

cI+cJ+cK = 0

AeIJ = − k
4∆ (bI bJ+cI cJ )

F eIJ = Q
2 (aI+bI x+cI y) =

QD
3

x = xI+xJ+xK
3 , y = yI+yJ+yK

3

aI+bI x+cI y = 2
3∆

The trial functions in the finite element
method are not limited to linear ones. Quadratic
functions, and even higher order functions, are
frequently used. The same considerations hold
as for boundary value problems: the higher order
trial functions converge faster but require more
work. It is possible to refine both the mesh (h)
and power of polynomial in the trial function
(p) in an hp method. Some problems have con-
straints on some of the variables. If singularities
exist in the solution, it is possible to include them
in the basis functions and solve for the difference
between the total solution and the singular func-
tion [126 – 129].
When applying the Galerkin finite element

method, one must choose both the shape of the
element and the basis functions. In two dimen-
sions, triangular elements are usually used be-
cause it is easy to cover complicated geometries
and refine parts of the mesh. However, rectan-
gular elements sometimes have advantages, par-
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ticularly when some parts of the solution do not
change very much and the elements can be long.
In three dimensions the same considerations ap-
ply: tetrahedral elements are frequently used, but
brick elements are also possible.While linear el-
ements (in both two and three dimensions) are
usually used, higher accuracy can be obtained by
using quadratic or cubic basis functions within
the element. The reason is that all methods con-
verge according to the mesh size to some power,
and the power is larger when higher order ele-
ments are used. If the solution is discontinuous,
or has discontinuous first derivatives, then the
lowest order basis functions are used because
the convergence is limited by the properties of
the solution, not the finite element approxima-
tion.
One nice feature of the finite element method

is the use of natural boundary conditions. In
this problem the natural boundary conditions are
the Neumann or Robin conditions. When using
Equation 41, the problem can be solved on a do-
main that is shorter than needed to reach some
limiting condition (such as at an outflow bound-
ary). The externally applied flux is still applied
at the shorter domain, and the solution inside
the truncated domain is still valid. Examples are
given in [107] and [131]. The effect of this is to
allow solutions in domains that are smaller, thus
saving computation time and permitting the so-
lution in semi-infinite domains.

8.5. Parabolic Equations in Two or
Three Dimensions

Computations become much more lengthy with
two ormore spatial dimensions, for example, the
unsteady heat conduction equation

?Cp
∂T

∂t
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
−Q

or the unsteady diffusion equation

∂c

∂t
= D

(
∂2T

∂x2
+
∂2c

∂y2

)
−R (c)

In the finite difference method an explicit
technique would evaluate the right-hand side at
the n-th time level:

ρCp
Tn+1
i,j −Tn

i,j

∆t

= k
∆x2

(
Tni+1,j−2Tni−1,j+T

n
i−1,j

)
+ k
∆y2

(
Tni,j+1−2Tni,j+T

n
i,j−1

)
−Q

When Q = 0 and∆x = ∆y, the time step is lim-
ited by

∆t≤∆x2?Cp
4k

or
∆x2

4D

These time steps are smaller than for one-
dimensional problems. For three dimensions,
the limit is

∆t≤∆x2

6D

To avoid such small time steps, which must be
smaller when∆x decreases, an implicit method
could be used. This leads to large sparse matri-
ces, rather than convenient tridiagonal matrices.

8.6. Special Methods for Fluid
Mechanics

The method of operator splitting is also useful
when different terms in the equation are best
evaluated by using different methods or as a
technique for reducing a larger problem to a se-
ries of smaller problems. Here the method is
illustrated by using the Navier – Stokes equa-
tions. In vector notation the equations are

?
∂u

∂t
+?u·∇u = ?f−∇p+µ∇2u

The equation is solved in the following steps

?u∗−un

∆t = −?un·∇un+?f+µ∇2un

∇2pn+1 = 1
∆t∇·u∗

?un+1−u∗
∆t = −∇p

This can be done by using the finite differ-
ence [132, p. 162] or the finite element method
[133 – 135].
In fluid flow problems solved with the finite

element method, the basis functions for pressure
and velocity are often different. This is required
by the LBB condition (named after Ladyshen-
skaya, Brezzi, and Babuska) [134, 135]. Some-
times a discontinuous basis function is used for
pressure to meet this condition. Other times a



Mathematics in Chemical Engineering 87

penalty term is added, or the quadrature is done
using a small number of quadrature points. Thus,
one has to be careful how to apply the finite el-
ement method to the Navier – Stokes equations.
Fortunately, software exists that has taken this
into account.

Level Set Methods. Multiphase problems
are complicated because the terms in the equa-
tions depend on which phase exists at a partic-
ular point, and the phase boundary may move
or be unknown. It is desirable to compute on
a fixed grid, and the level set formulation al-
lows this. Consider a curved line in a two-
dimensional problem or a curved surface in a
three-dimensional problem. One defines a level
set functionφ, which is the signed distance func-
tion giving the distance from some point to the
closest point on the line or surface. It defined
to be negative on one side of the interface and
positive on the other. Then the curve

φ(x,y,z) = 0

represents the location of the interface. For ex-
ample, in flow problems the level set function is
defined as the solution to

∂φ

∂t
+u·∇φ = 0

The physics governing the velocity of the
interface must be defined, and this equation is
solved along with the other equations repre-
senting the problem [130 – 137].

Lattice Boltzmann Methods. Another way
to solve fluid flow problems is based on a mo-
lecular viewpoint and is called the Lattice Boltz-
mann method [138 – 141]. The treatment here
follows [142].A lattice is defined, andone solves
the following equation for fi (x,t), the probabil-
ity of finding amolecule at the point xwith speed
ci .

∂fi

∂t
+ci·∇fi = −fi−f eqi

τ

The right-hand side represents a single time
relaxation for molecular collisions, and τ is re-
lated to the kinematic viscosity. By means of
a simple stepping algorithm, the computational
algorithm is

fi(xxx+ccci∆t,t+∆t) = fi(xxx,t)−∆t
τ
(fi−f eqi )

Consider the lattice shown in Figure 32. The var-
ious velocities are

c1 = (1,0), c3 = (0,1), c5 = (−1,0), c7 = (0,−1)

c2 = (1,1), c4 = (−1,1), c6 = (−1,−1), c8 = (1,−1)

c0 = (0,0)

The density, velocity, and shear stress (for
some k) are given by

ρ =
∑

i
fi(x,t), ρuuu =

∑
i
cifi(x,t),

τ = k
∑

i
cici [fi(x,t)−f eqi (x,t)]

For this formulation, the kinematic viscosity
and speed of sound are given by

ν =
1
3
(τ−1

2
), cs =

1
3

The equilibrium distribution is

f
eq
i = ρwi

[
1+
ci·uuu
c2s

+
(ci·uuu)2
2c4s

−uuu·uuu
2c2s

]

where the weighting functions are

w0 =
4
9
, w1 = w3 = w5 = w7 =

1
9
,

w2 = w4 = w6 = w8 =
1
36

With these conditions, the solution for veloc-
ity is a solution of the Navier—Stokes equation.
These equations lead to a large computational
problem, but it can be solved by parallel pro-
cessing on multiple computers.

Figure 32.
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8.7. Computer Software

A variety of general-purpose computer pro-
grams are available commercially. Mathe-
matica (http://www.wolfram.com/), Maple
(http://www.maplesoft.com/) and Mathcad
(http://www.mathcad.com/) all have the capa-
bility of doing symbolic manipulation so that
algebraic solutions can be obtained. For ex-
ample, Mathematica can solve some ordinary
and partial differential equations analytically;
Maple can make simple graphs and do linear
algebra and simple computations, and Math-
cad can do simple calculations. In this sec-
tion, examples are given for the use of Mat-
lab (http://www.mathworks.com/), which is a
package of numerical analysis tools, some of
which are accessed by simple commands, and
some of which are accessed by writing pro-
grams in C. Spreadsheets can also be used to
solve simple problems. A popular program used
in chemical engineering education is Polymath
(http://www.polymath-software.com/), which
can numerically solve sets of linear or nonlinear
equations, ordinary differential equations as ini-
tial value problems, and perform data analysis
and regression.
The mathematical methods used to solve par-

tial differential equations are described in more
detail in [143 – 148]. Since many computer pro-
grams are available without cost, consider the
following decision points. The first decision is
whether to use an approximate, engineering flow
model, developed from correlations, or to solve
the partial differential equations that govern the
problem. Correlations are quick and easy to ap-
ply, but they may not be appropriate to your
problem, or give the needed detail. When us-
ing a computer package to solve partial differ-
ential equations, the first task is always to gener-
ate a mesh covering the problem domain. This is
not a trivial task, and special methods have been
developed to permit importation of a geometry
from a computer-aided design program. Then,
the mesh must be created automatically. If the
boundary is irregular, the finite element method
is especially well-suited, although special em-
bedding techniques can be used in finite differ-
ence methods (which are designed to be solved
on rectangular meshes). Another capability to
consider is the ability to track free surfaces that
moveduring the computation. This phenomenon

introduces the same complexity that occurs in
problems with a large Peclet number, with the
added difficulty that the free surface moves bet-
ween mesh points, and improper representation
can lead to unphysical oscillations. The method
used to solve the equations is important, and
both explicit and implicit methods (as described
above) can be used. Implicit methods may in-
troduce unacceptable extra diffusion, so the en-
gineer needs to examine the solution carefully.
The methods used to smooth unphysical oscilla-
tions from node to node are also important, and
the engineer needs to verify that the added diffu-
sion or smoothing does not give inaccurate so-
lutions. Since current-day problems are mostly
nonlinear, convergence is always an issue since
the problems are solved iteratively. Robust pro-
grams provide several methods for convergence,
each of which is best in some circumstance or
other. It is wise to have a program that includes
many iterative methods. If the iterative solver
is not very robust, the only recourse to solving
a steady-state problem may be to integrate the
time-dependent problem to steady state. The so-
lution time may be long, and the final result may
be further from convergence than would be the
case if a robust iterative solver were used.
A variety of computer programs is avail-

able on the internet, some of them free. First
consider general-purpose programs. On the
NIST web page, http://gams.nist.gov/ choose
“problem decision tree”, and then “differen-
tial and integral equations”, then “partial dif-
ferential equations”. The programs are orga-
nized by type of problem (elliptic, parabolic,
and hyperbolic) and by the number of spatial
dimensions (one or more than one). On the
Netlib web site, http://www.netlib.org/, search
on “partial differential equation”. The website:
http://software.sandia.gov has a variety of pro-
grams available. Lau [141, 145] provides many
programs in C++ (also see http://www.nr.com/).
Themultiphysics programComsolMultiphysics
(formerly FEMLAB) also solves many standard
equations arising in Mathematical Physics.
Computational fluid dynamics (CFD) (→

Computational Fluid Dynamics) programs are
more specialized, and most of them have been
designed to solve sets of equations that are ap-
propriate to specific industries. They can then in-
clude approximations and correlations for some
features that would be difficult to solve for di-
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rectly. Four widely used major packages are
Fluent (http://www.fluent.com/), CFX (now part
of ANSYS), Comsol Multiphysics (formerly
FEMLAB) (http://www.comsol.com/), and AN-
SYS (http://www.ansys.com/). Of these, Com-
sol Multiphysics is particularly useful because
it has a convenient graphical user interface,
permits easy mesh generation and refinement
(including adaptive mesh refinement), allows
the user to add in phenomena and additional
equations easily, permits solution by continu-
ation methods (thus enhancing convergence),
and has extensive graphical output capabilities.
Other packages are also available (see http://cfd-
online.com/), and these may contain features
and correlations specific to the engineer’s indus-
try. One important point to note is that for tur-
bulent flow, all the programs contain approxima-
tions, using the k-epsilon models of turbulence,
or large eddy simulations; the direct numerical
simulation of turbulence is too slow to apply it to
very big problems, although it does give insight
(independent of any approximations) that is use-
ful for interpreting turbulent phenomena. Thus,
the method used to include those turbulent cor-
relations is important, and the method also may
affect convergence or accuracy.

9. Integral Equations [149 – 155]

If the dependent variable appears under an inte-
gral sign an equation is called an integral equa-
tion; if derivatives of the dependent variable ap-
pear elsewhere in the equation it is called an inte-
grodifferential equation. This chapter describes
the various classes of equations, gives informa-
tion concerning Green’s functions, and presents
numerical methods for solving integral equa-
tions.

9.1. Classification

Volterra integral equations have an integral with
a variable limit, whereas Fredholm integral
equations have a fixed limit. Volterra equations
are usually associatedwith initial value or evolu-
tionary problems, whereas Fredholm equations
are analogous to boundary value problems. The
terms in the integral can be unbounded, but still
yield bounded integrals, and these equations are

said to be weakly singular. A Volterra equation
of the second kind is

y (t) = g (t)+λ

t∫
a

K(t,s)y (s) ds (42)

whereas a Volterra equation of the first kind is

y (t) = λ

t∫
a

K (t,s) y (s) ds

Equations of the first kind are very sensitive to
solution errors so that they present severe nu-
merical problems.
An example of a problem giving rise to a

Volterra equation of the second kind is the fol-
lowing heat conduction problem:

?Cp
∂T
∂t

= k ∂
2T
∂x2

, 0≤x<∞, t>0

T (x,0) = 0, ∂T
∂x

(0,t) = −g (t) ,

lim
x→∞T (x,t) = 0, lim

x→∞
∂T
∂x

= 0

If this is solved by using Fourier transforms the
solution is

T (x,t) =
1√
π

t∫
0

g (s)
1√
t−s e

−x2/4(t−s)ds

Suppose the problem is generalized so that the
boundary condition is one involving the solution
T, which might occur with a radiation boundary
condition or heat-transfer coefficient. Then the
boundary condition is written as

∂T

∂x
= −G (T ,t) , x = 0, t>0

The solution to this problem is

T (x,t) =
1√
π

t∫
0

G (T (0,s) ,s)
1√
t−s e

−x2/4(t−s)ds

If T* (t) is used to represent T (0, t), then

T ∗ (t) =
1√
π

t∫
0

G (T (s) ,s)
1√
t−sds

Thus the behavior of the solution at the bound-
ary is governed by an integral equation. Nagel
and Kluge [156] use a similar approach to solve
for adsorption in a porous catalyst.
The existence and uniqueness of the solution

can be proved [151, p. 30, 32].
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Sometimes the kernel is of the form

K (t,s) = K (t−s)

Equations of this form are called convolution
equations and can be solved by taking the
Laplace transform. For the integral equation

Y (t) = G (t)+λ
t∫
0
K (t−τ)Y (τ) dτ

K (t) ∗Y (t)≡
t∫
0
K (t−τ)Y (τ) dτ

the Laplace transform is

y (s) = g (s)+k (s) y (s)

k (s) y (s) = L [K (t) ∗Y (t)]

Solving this for y (s) gives

y (s) =
g (s)

1−k (s)
If the inverse transform can be found, the inte-
gral equation is solved.
A Fredholm equation of the second kind is

y (x) = g (x)+λ

b∫
a

K (x,s) y (s) ds (43)

whereas a Fredholm equation of the first kind is

b∫
a

K (x,s) y (s) ds = g (x)

The limits of integration are fixed, and these
problems are analogous to boundary value prob-
lems. An eigenvalue problem is a homogeneous
equation of the second kind.

y (x) = λ

b∫
a

K (x,s) y (s) ds (44)

Solutions to this problem occur only for spe-
cific values of λ, the eigenvalues. Usually the
Fredholm equation of the second or first kind
is solved for values of λ different from these,
which are called regular values.
Nonlinear Volterra equations arise naturally

from initial value problems. For the initial value
problem

dy
dt

= F (t,y (t))

both sides can be integrated from 0 to t to obtain

y (t) = y (0)+

t∫
0

F (s,y (s)) ds

which is a nonlinear Volterra equation. The gen-
eral nonlinear Volterra equation is

y (t) = g (t)+

t∫
0

K (t,s,y (s)) ds (45)

Theorem [ 151, p. 55]. If g (t) is continuous,
the kernelK (t, s, y) is continuous in all variables
and satisfies a Lipschitz condition

|K (t,s,y)−K (t,s,z)| ≤L |y−z|
then the nonlinearVolterra equation has a unique
continuous solution.
A successive substitution method for its so-

lution is

yn+1 (t) = g (t)+

t∫
0

K [t,s,yn (s)] ds

Nonlinear Fredholm equations have special
names. The equation

f (x) =

1∫
0

K [x,y,f (y)] dy

is called the Urysohn equation [150 p. 208]. The
special equation

f (x) =

1∫
0

K [x,y]F [y,f (y)] dy

is called the Hammerstein equation [150, p.
209]. Iterative methods can be used to solve
these equations, and these methods are closely
tied to fixed point problems. A fixed point prob-
lem is

x = F (x)

and a successive substitution method is

xn+1 = F (xn)

Local convergence theorems prove the process
convergent if the solution is close enough to
the answer, whereas global convergence theo-
rems are valid for any initial guess [150, p. 229
– 231]. The successive substitution method for
nonlinear Fredholm equations is

yn+1 (x) =

1∫
0

K [x,s,yn (s)] ds

Typical conditions for convergence include that
the function satisfies a Lipschitz condition.
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9.2. Numerical Methods for Volterra
Equations of the Second Kind

Volterra equations of the second kind are anal-
ogous to initial value problems. An initial value
problem can be written as a Volterra equation of
the second kind, although not all Volterra equa-
tions can be written as initial value problems
[151, p. 7]. Here the general nonlinear Volterra
equation of the second kind is treated (Eq. 45).
The simplest numerical method involves replac-
ing the integral by a quadrature using the trape-
zoid rule.

yn≡y (tn) = g (tn)+∆t
{
1
2
K (tn,t0,y0)

+
n−1∑
i=1

K (tn,ti,yi)+
1
2
K (tn,tn,yn)

}

This equation is a nonlinear algebraic equation
for yn . Since y0 is known it can be applied to
solve for y1, y2, . . . in succession. For a single
integral equation, at each step one must solve a
single nonlinear algebraic equation for yn . Typ-
ically, the error in the solution to the integral
equation is proportional to ∆t µ, and the power
µ is the same as the power in the quadrature error
[151, p. 97].
The stability of the method [151, p. 111] can

be examined by considering the equation

y (t) = 1−λ
t∫
0

y (s) ds

whose solution is

y (t) = e−λt

Since the integral equation can be differentiated
to obtain the initial value problem

dy
dt

= −λy, y (0) = 1

the stability results are identical to those for ini-
tial value methods. In particular, using the trape-
zoid rule for integral equations is identical to
using this rule for initial value problems. The
method is A-stable.
Higher order integration methods can also be

used [151, p. 114, 124]. When the kernel is infi-
nite at certain points, i.e., when the problem has
a weak singularity, see [151, p. 71, 151].

9.3. Numerical Methods for Fredholm,
Urysohn, and Hammerstein Equations
of the Second Kind

Whereas Volterra equations could be solved
from one position to the next, like initial value
differential equations, Fredholm equations must
be solved over the entire domain, like bound-
ary value differential equations. Thus, large sets
of equations will be solved and the notation is
designed to emphasize that.
The methods are also based on quadrature

formulas. For the integral

I (ϕ) =

b∫
a

ϕ (y) dy

a quadrature formula is written:

I (ϕ) =
n∑
i=0

wiϕ (yi)

Then the integral Fredholm equation can be
rewritten as

f (x)−λ
n∑
i=0

wiK (x,yi) f (yi) = g (x) ,

a≤x≤b
(46)

If this equation is evaluated at the points x = yj ,

f (yj)−λ
n∑
i=0

wiK (yj ,yi) f (yi) = g (yi)

is obtained, which is a set of linear equations
to be solved for { f ( yj )}. The solution at any
point is then given by Equation 46.
A common type of integral equation has a

singular kernel along x = y. This can be trans-
formed to a less severe singularity by writing

b∫
a
K (x,y) f (y) dy =

b∫
a
K (x,y) [f (y)−f (x)] dy

+
b∫
a
K (x,y) f (x) dy =

b∫
a
K (x,y) [f (y)

−f (x)] dy+f (x)H (x)

where

H (x) =

b∫
a

K (x,y) f (x) dy

is a known function.The integral equation is then
replaced by
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f (x) = g (x)+
n∑
i=0

wiK (x,yi) [f (yi)−f (x)]

+f (x)H (x)

Collocation methods can be applied as well
[149, p. 396]. To solve integral Equation 43 ex-
pand f in the function

f =
n∑
i=0

aiϕi (x)

Substitute f into the equation to form the resid-
ual

n∑
i=0

aiϕi (x)−λ
n∑
i=0

ai

b∫
a

K (x,y)ϕi (y) dy = g (x)

Evaluate the residual at the collocation points

n∑
i=0

aiϕi (xj)−λ
n∑
i=0

ai

b∫
a

K (xj ,y)ϕi (y) dy = g (xj)

The expansion can be in piecewise polynomials,
leading to a collocationfinite elementmethod, or
global polynomials, leading to a global approxi-
mation. If orthogonal polynomials are used then
the quadratures can make use of the accurate
Gaussian quadrature points to calculate the inte-
grals. Galerkin methods are also possible [149,
p. 406]. Mills et al. [157] consider reaction –
diffusion problems and say the choice of tech-
nique cannot be made in general because it is
highly dependent on the kernel.
When the integral equation is nonlinear, iter-

ative methods must be used to solve it. Con-
vergence proofs are available, based on Ba-
nach’s contractive mapping principle. Consider
the Urysohn equation, with g (x) = 0 without
loss of generality:

f (x) =

b∫
a

F [x,y,f (y)] dy

The kernel satisfies the Lipschitz condition

maxa≤x,y≤b |F [x,y,f (y)]−F [x,z,f (z)]| ≤K |y−z|
Theorem [150, p. 214]. If the constantK is<

1 and certain other conditions hold, the succes-
sive substitution method

fn+1 (x) =

b∫
a

F [x,y,fn (y)] dy,n = 0,1. . .

converges to the solution of the integral equa-
tions.

9.4. Numerical Methods for Eigenvalue
Problems

Eigenvalue problems are treated similarly to
Fredholm equations, except that the final equa-
tion is a matrix eigenvalue problem instead of a
set of simultaneous equations. For example,
n∑
i=1

wiK (yi,yi) f (yi) = λf (yj) ,

i = 0,1,. . .,n

leads to the matrix eigenvalue problem

KDf = λf

Where D is a diagonal matrix with Dii =wi .

9.5. Green’s Functions [158 – 160]

Integral equations can arise from the formula-
tion of a problem by using Green’s function.
For example, the equation governing heat con-
duction with a variable heat generation rate is
represented in differential forms as
d2T
dx2

=
Q (x)
k

, T (0) = T (1) = 0

In integral form the same problem is [149, pp.
57 – 60]

T (x) = 1
k

1∫
0
G (x,y)Q (y) dy

G (x,y) =




−x (1−y) x≤y

−y (1−x) y≤x
Green’s functions for typical operators are given
below.
For the Poisson equationwith solution decay-

ing to zero at infinity

∇2ψ = −4π?

the formulation as an integral equation is

ψ (r) =
∫
V

ρ (r0)G (r,r0) dV0

where Green’s function is [50, p. 891]

G (r,r0) = 1
r
in three dimensions

= −2 ln r in two dimensions

where r =
√
(x−x0)2+(y−y0)2+(z−z0)2

in three dimensions

and r =
√
(x−x0)2+(y−x0)2

in two dimensions
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For the problem

∂u
∂t

= D∇2u, u = 0 on S,

with a point source at x0,y0,z0

Green’s function is [44, p. 355]

u = 1
8[πD(t−τ)]3/2

e−[(x−x0)2+(y−y0)2+(z−z0)2]/4D(t−τ)

When the problem is

∂c
∂t

= D∇2c

c = f (x,y,z) in S at t = 0

c = ϕ (x,y,z) on S,t>0

the solution can be represented as [44, p. 353]

c =
∫ ∫ ∫

(u)τ=0f (x,y,z) dxdydz

+D
t∫
0

∫ ∫
ϕ (x,y,z,τ) ∂u

∂n
dSdt

When the problem is two dimensional,

u = 1√
4πD(t−τ) e

−[(x−x0)2+(y−y0)2]/4D(t−τ)

c =
∫ ∫

(u)τ=0f (x,y) dxdy

+D
t∫
0

∫
ϕ (x,y,τ) ∂u

∂n
dCdt

For the following differential equation and
boundary conditions

1
xa−1

d
dx

(
xa−1 dcdx

)
= f [x,c (x)] ,

dc
dx (0) = 0, 2

Sh
dc
dx (1)+c (1) = g

where Sh is the Sherwood number, the problem
can be written as a Hammerstein integral equa-
tion:

c (x) = g−
1∫
0

G (x,y,Sh) f [y,c (y)] ya−1dy

Green’s function for the differential operators
are [163]

a = 1

G (x,y,Sh) =



1+ 2

Sh
−x, y≤x

1+ 2
Sh

−y, x<y

a = 2

G (x,y,Sh) =

{
2
Sh

−lnx, y≤x
2
Sh

−lny, x<y

a = 3

G (x,y,Sh) =

{
2
Sh

+ 1
x

−1, y≤x
2
Sh

+ 1
y
−1, x<y

Green’s functions for the reaction diffusion
problem were used to provide computable error
bounds by Ferguson and Finlayson [163].
If Green’s function has the form

K (x,y) =

{
u (x) v (y) 0≤y≤x
u (y) v (x) x≤y≤1

the problem

f (x) =

1∫
0

K (x,y)F [y,f (y)] dy

may be written as

f (x)−
x∫
0
[u (x) v (y)−u (y) v (x)] ·

f [y,f (y)] dy = αv (x)

where

α =

1∫
0

u (y)F [y,f (y)] dy

Thus, the problem ends up as one directly for-
mulated as a fixed point problem:

f = Φ (f)

When the problem is the diffusion – reaction
one, the form is

c (x) = g−
x∫
0
[u (x) v (y)−u (y) v (x)]

f [y,c (y)] ya−1dy−αv (x)

α =
1∫
0
u (y) f [y,c (y)] ya−1dy

Dixit and Taularidis [164] solved problems
involving Fischer – Tropsch synthesis reactions
in a catalyst pellet using a similar method.
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9.6. Boundary Integral Equations and
Boundary Element Method

The boundary element method utilizes Green’s
theorem and integral equations. Here, the
method is described briefly for the following
boundary value problem in two or three dimen-
sions

∇2ϕ = 0, ϕ = f1 on S1,
∂ϕ

∂n
= f2 on S2

Green’s theorem (see page 46) says that for any
functions sufficiently smooth∫
V

(
ϕ∇2ψ−ψ∇2ϕ) dV =

∫
S

(
ϕ
∂ψ

∂n
−ψ∂ϕ

∂n

)
dS

Suppose the function ψ satisfies the equation

∇2ψ = 0

In two and three dimensions, such a function is

ψ = ln r, r =
√
(x−x0)2+(y−y0)2

in two dimensions

ψ = 1
r
, r =

√
(x−x0)2+(y−y0)2+(z−z0)2

in three dimensions

where {x0, y0} or {x0, y0, z0} is a point in the
domain. The solution ϕ also satisfies

∇2ϕ = 0

so that∫
S

(
ϕ
∂ψ

∂n
−ψ∂ϕ

∂n

)
dS = 0

Consider the two-dimensional case. Since
the function ψ is singular at a point, the inte-
grals must be carefully evaluated. For the region
shown in Figure 33, the domain is S = S1+ S2;
a small circle of radius r0 is placed around the
point P at x0, y0. Then the full integral is∫
S

(
ϕ ∂lnr
∂n

−lnr ∂ϕ
∂n

)
dS

+
θ=2π∫
θ=0

(
ϕ ∂lnr0

∂n
−lnr0 ∂ϕ∂n

)
r0dθ = 0

As r0 approaches 0,

lim
r0→0

r0lnr0 = 0

and

lim
r0→0

θ=2π∫
θ=0

ϕ
∂lnr0
∂n

r0dθ = −ϕ (P ) 2π

Thus for an internal point,

ϕ (P ) =
1
2π

∫
S

(
ϕ
∂lnr
∂n

−lnr
∂ϕ

∂n

)
dS (47)

IfP is on the boundary, the result is [165, p. 464]

ϕ (P ) =
1
π

∫
S

(
ϕ
∂lnr
∂n

−lnr
∂ϕ

∂n

)
dS

Putting in the boundary conditions gives

πϕ (P ) =
∫
S1

(
f1
∂lnr
∂n

−lnr ∂ϕ
∂n

)
dS

+
∫
S2

(
ϕ ∂lnr
∂n

−f2lnr
)
dS

(48)

This is an integral equation for ϕ on the bound-
ary. Note that the order is one less than the orig-
inal differential equation. However, the integral
equation leads to matrices that are dense rather
than banded or sparse, so some of the advan-
tage of lower dimension is lost. Once this inte-
gral equation (Eq. 48) is solved to find ϕ on the
boundary, it can be substituted in Equation 47 to
find ϕ anywhere in the domain.

Figure 33. Domain with singularity at P

In the boundary finite element method, both
the function and its normal derivative along the
boundary are approximated.

ϕ =
N∑
j=1

ϕjNj (ξ) ,
∂ϕ

∂n
=

N∑
j=1

(
∂ϕ

∂n

)
j

Nj (ξ)

One choice of trial functions can be the piece-
wise constant functions shown in Figure 34. The
integral equation then becomes
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Figure 34. Trial function on boundary for boundary finite
element method

πϕi

N∑
j=1


ϕj

∫
sj

∂lnri
∂n

dS−
(
∂ϕj

∂n

)∫
sj

lnri


 ds

The function ϕj is of course known along s1,
whereas the derivative ∂ϕj /∂n is known along
s2. This set of equations is then solved forϕi and
∂ϕi /∂n along the boundary. This constitutes the
boundary integral method applied to the Laplace
equation.
If the problem is Poisson’s equation

∇2ϕ = g (x,y)

Green’s theorem gives∫
S

(
ϕ
∂lnr
∂n

−lnr
∂ϕ

∂n

)
dS+

∫
A

g lnr dA = 0

Thus, for an internal point,

2πϕ (P ) =
∫
S

(
ϕ ∂lnr
∂r

−lnr ∂ϕ
∂n

)
dS

+
∫
A

glnrdA
(49)

and for a boundary point,

πϕ (P ) =
∫
S

(
ϕ ∂lnr
∂n

−lnr ∂ϕ
∂n

)
dS

+
∫
A

glnrdA
(50)

If the region is nonhomogeneous this method
can be used [165, p. 475], and it has been ap-
plied to heat conduction by Hsieh and Shang
[166]. The finite element method can be ap-
plied in one region and the boundary finite ele-
ment method in another region, with appropriate
matching conditions [165, p. 478]. If the prob-
lem is nonlinear, then it is more difficult. For ex-
ample, consider an equation such as Poisson’s
in which the function depends on the solution as
well

∇2ϕ = g (x,y,ϕ)

Then the integral appearing in Equation 50must
be evaluated over the entire domain, and the so-
lution in the interior is given by Equation 49. For
further applications, see [167] and [168].

10. Optimization

We provide a survey of systematic methods for
a broad variety of optimization problems. The
survey begins with a general classification of
mathematical optimization problems involving
continuous and discrete (or integer) variables.
This is followed by a review of solutionmethods
of the major types of optimization problems for
continuous and discrete variable optimization,
particularly nonlinear andmixed-integer nonlin-
ear programming. In addition, we discuss direct
search methods that do not require derivative in-
formation as well as global optimization meth-
ods.We also review extensions of thesemethods
for the optimization of systems described by dif-
ferential and algebraic equations.

10.1. Introduction

Optimization is a key enabling tool for decision
making in chemical engineering [306]. It has
evolved from a methodology of academic in-
terest into a technology that continues to make
significant impact in engineering research and
practice. Optimization algorithms form the core
tools for a) experimental design, parameter esti-
mation,model development, and statistical anal-
ysis; b) process synthesis analysis, design, and
retrofit; c) model predictive control and real-
time optimization; and d) planning, scheduling,
and the integration of process operations into the
supply chain [307, 308].
As shown in Figure 35, optimization prob-

lems that arise in chemical engineering can be
classified in terms of continuous and discrete
variables. For the former, nonlinear program-
ming (NLP) problems form the most general
case, and widely applied specializations include
linear programming (LP) and quadratic pro-
gramming (QP). An important distinction for
NLP iswhether the optimization problem is con-
vex or nonconvex. The latter NLP problem may
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have multiple local optima, and an important
question is whether a global solution is required
for the NLP. Another important distinction is
whether the problem is assumed to be differ-
entiable or not.
Mixed-integer problems also include discrete

variables. These can be written as mixed-integer
nonlinear programs (MINLP) or as mixed-
integer linear programs (MILP) if all variables
appear linearly in the constraint and objective
functions. For the latter an important case oc-
curs when all the variables are integer; this gives
rise to an integer programming (IP) problem. IPs
can be further classified into many special prob-
lems (e.g., assignment, traveling salesman, etc.),
which are not shown in Figure 35. Similarly, the
MINLP problem also gives rise to special prob-
lem classes, although here the main distinction
is whether its relaxation is convex or nonconvex.
The ingredients of formulating optimization

problems include a mathematical model of the
system, an objective function that quantifies a
criterion to be extremized, variables that can
serve as decisions, and, optionally, inequality
constraints on the system. When represented in
algebraic form, the general formulation of dis-
crete/continuous optimization problems can be
written as the followingmixed-integer optimiza-
tion problem:
Min f (x,y)

s.t. h (x,y)=0

g (x,y)≤0

x∈�n,y∈{0,1}t

(51)

where f (x, y) is the objective function (e.g.,
cost, energy consumption, etc.), h(x, y) = 0 are
the equations that describe the performance of
the system (e.g., material balances, production
rates), the inequality constraints g(x, y)≤ 0 can
define process specifications or constraints for
feasible plans and schedules, and s.t. denotes
subject to. Note that the operator Max f (x) is
equivalent to Min−f (x). We define the real n-
vector x to represent the continuous variables
while the t-vector y represents the discrete vari-
ables, which, without loss of generality, are of-
ten restricted to take 0–1 values to define logi-
cal or discrete decisions, such as assignment of
equipment and sequencing of tasks. (These vari-
ables can also be formulated to take on other in-
teger values as well.) Problem 51 corresponds

to a mixed-integer nonlinear program (MINLP)
when any of the functions involved are nonlin-
ear. If all functions are linear it corresponds to
a mixed-integer linear program (MILP). If there
are no 0–1 variables, then problem 51 reduces
to a nonlinear program 52 or linear program 65
depending on whether or not the functions are
linear.

Figure 35.Classes of optimization problems and algorithms

We first start with continuous variable opti-
mization and consider in the next section the so-
lution of NLPs with differentiable objective and
constraint functions. If only local solutions are
required for the NLP, then very efficient large-
scale methods can be considered. This is fol-
lowed by methods that are not based on local
optimality criteria; we consider direct search op-
timization methods that do not require deriva-
tives, as well as deterministic global optimiza-
tion methods. Following this, we consider the
solution of mixed-integer problems and outline
the main characteristics of algorithms for their
solution. Finally, we conclude with a discussion
of optimization modeling software and its im-
plementation in engineering models.

10.2. Gradient-Based Nonlinear
Programming

For continuous variable optimization we con-
sider problem 51 without discrete variables y.
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The general NLP problem 52 is presented be-
low:

Min f (x)

s.t. h (x)=0

g (x)≤0

(52)

and we assume that the functions f (x), h(x), and
g(x) have continuous first and second deriva-
tives. A key characteristic of problem 52 is
whether the problem is convex or not, i.e.,
whether it has a convex objective function and a
convex feasible region. A function φ(x) of x in
some domain X is convex if and only if for all
points x1, x2 ∈ X:

φ [αx1+(1−α)x2]≤αφ (x1)+ (1−α)φ (x2) (53)

holds for all α ∈ (0, 1). If φ(x) is differentiable,
then an equivalent definition is:

φ (x1)+∇φ(x1)T (x−x1)≤φ (x) (54)

Strict convexity requires that the inequalities 53
and 54 be strict. Convex feasible regions require
g(x) to be a convex function and h(x) to be linear.
If 52 is a convex problem, than any local solution
is guaranteed to be a global solution to 52.More-
over, if the objective function is strictly convex,
then this solution x* is unique. On the other
hand, nonconvex problems may have multiple
local solutions, i.e., feasible solutions that min-
imize the objective function within some neigh-
borhood about the solution.
We first consider methods that find only lo-

cal solutions to nonconvex problems, as more
difficult (and expensive) search procedures are
required to find a global solution. Local methods
are currently very efficient and have been devel-
oped to deal with very large NLPs. Moreover,
by considering the structure of convex NLPs
(including LPs and QPs), even more powerful
methods can be applied. To study thesemethods,
we first consider conditions for local optimality.

Local Optimality Conditions – A Kine-
matic Interpretation. Local optimality condi-
tions are generally derived from gradient infor-
mation from the objective and constraint func-
tions. The proof follows by identifying a lo-
cal minimum point that has no feasible descent

direction. Invoking a theorem of the alterna-
tive (e.g., Farkas – Lemma) leads to the cele-
brated Karush – Kuhn – Tucker (KKT) condi-
tions [169]. Instead of a formal development of
these conditions, we present here a more intu-
itive, kinematic illustration. Consider the con-
tour plot of the objective function f (x) given in
Figure 36 as a smooth valley in space of the vari-
ables x1 and x2. For the contour plot of this un-
constrained problem, Min f (x), consider a ball
rolling in this valley to the lowest point of f (x),
denoted by x*. This point is at least a local min-
imum and is defined by a point with zero gra-
dient and at least nonnegative curvature in all
(nonzero) directions p. We use the first deriva-
tive (gradient) vector ∇f (x) and second deriva-
tive (Hessian) matrix ∇xx f (x) to state the nec-
essary first- and second-order conditions for un-
constrained optimality:

∇xf (x∗)=0 pT∇xxf (x∗) p≥0 for all p�=0 (55)

These necessary conditions for local optimality
can be strengthened to sufficient conditions by
making the inequality in the relations 55 strict
(i.e., positive curvature in all directions). Equiv-
alently, the sufficient (necessary) curvature con-
ditions can be stated as: ∇xxf (x∗) has all pos-
itive (nonnegative) eigenvalues and is therefore
defined as a positive (semi-)definite matrix.

Figure 36. Unconstrained minimum

Now consider the imposition of inequality
[g(x)≤ 0] and equality constraints [h(x) = 0] in
Figure 37. Continuing the kinematic interpreta-
tion, the inequality constraints g(x)≤ 0 act as
“fences” in the valley, and equality constraints
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h(x) = 0 as “rails”. Consider now a ball, con-
strained on a rail and within fences, to roll to
its lowest point. This stationary point occurs
when the normal forces exerted by the fences
[−∇g (x∗)] and rails [−∇h (x∗)] on the ball are
balanced by the force of “gravity” [−∇f (x∗)].
This condition can be stated by the following
KKT necessary conditions for constrained opti-
mality:

Figure 37. Constrained minimum

Stationarity Condition: It is convenient to
define the Lagrangian function L(x, λ, ν) =
f (x) + g(x)Tλ+ h(x)Tν along with “weights” or
multipliers λ and ν for the constraints. These
multipliers are also known as “dual variables”
and “shadow prices”. The stationarity condition
(balance of forces acting on the ball) is then
given by:

∇L(x,λ,ν)=∇f (x)+∇h (x)λ+∇g (x) ν=0 (56)

Feasibility: Both inequality and equality con-
straints must be satisfied (ball must lie on the
rail and within the fences):

h (x)=0, g (x)≤0 (57)

Complementarity: Inequality constraints are ei-
ther strictly satisfied (active) or inactive, in
which case they are irrelevant to the solution.
In the latter case the corresponding KKT multi-
plier must be zero. This is written as:

νT g (x)=0, ν≥0 (58)

Constraint Qualification: For a local optimum to
satisfy the KKT conditions, an additional regu-
larity condition or constraint qualification (CQ)

is required. The KKT conditions are derived
from gradient information, and the CQ can be
viewed as a condition on the relative influence of
constraint curvature. In fact, linearly constrained
problems with nonempty feasible regions re-
quire no constraint qualification. On the other
hand, as seen in Figure 38, the problem Min x1,
s.t. x2 ≥ 0, (x1)3 ≥ x2 has aminimumpoint at the
origin but does not satisfy the KKT conditions
because it does not satisfy a CQ.

Figure 38. Failure of KKT conditions at constrained mini-
mum (note linear dependence of constraint gradients)

CQs be defined in several ways. For in-
stance, the linear independence constraint qual-
ification (LICQ) requires that the active con-
straints at x* be linearly independent, i.e., the
matrix [∇h (x∗) |∇gA(x∗)] is full column rank,
where gA is the vector of inequality constraints
with elements that satisfy gA,i (x∗) =0. With
LICQ, theKKTmultipliers (λ, ν) are guaranteed
to be unique at the optimal solution. The weaker
Mangasarian – Fromovitz constraint qualifica-
tion (MFCQ) requires only that∇h(x*) have full
column rank and that a direction p exist that sat-
isfies ∇h(x*)Tp= 0 and ∇gA(x*)Tp> 0. With
MFCQ, the KKT multipliers (λ, ν) are guaran-
teed to be bounded (but not necessarily unique)
at the optimal solution. Additional discussion
can be found in [169].

Second Order Conditions: As with uncon-
strained optimization, nonnegative (positive)
curvature is necessary (sufficient) in all of the
allowable (i.e., constrained) nonzero directions
p. This condition can be stated in several ways.
A typical necessary second-order condition re-
quires a point x* that satisfies LICQ and first-
order conditions 56–58 with multipliers (λ, ν)
to satisfy the additional conditions given by:
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pT∇xxL(x∗,λ,ν)p≥0 for all

p�=0,∇h(x∗)T p=0,

∇gA(x∗)T p=0 (59)

The corresponding sufficient conditions require
that the inequality in 59be strict.Note that for the
example in Figure 36, the allowable directions
p span the entire space for x while in Figure 37,
there are no allowable directions p.

Example: To illustrate the KKT conditions,
consider the following unconstrained NLP:

Min (x1)2−4x1+3/2(x2)2

−7x2+x1x2+9−lnx1−lnx2 (60)

corresponding to the contour plot in Figure 36.
The optimal solution can be found by solving
for the first order conditions 54:

∇f (x)=

[
2x1−4+x2−1/x1
3x2−7+x1−1/x2

]
=0

⇒x∗=

[
1.3475
2.0470

]
(61)

and f (x*) =−2.8742. Checking the second-
order conditions leads to:

∇xxf(x∗)=
[
2+1/

(
x∗
1
)2

1
1

3+1/
(
x∗
2
)2
]

⇒

∇xxf(x∗)=
[
2.5507

1
1

3.2387

]
(positive definite) (62)

Now consider the constrained NLP:

Min (x1)2−4x1+3/2(x1)2−7x2+x1x2
+9−lnx1−lnx2

s.t. 4−x1x2≤0
2x1−x2=0

(63)

that corresponds to the plot in Figure 37. The
optimal solution can be found by applying the
first-order KKT conditions 56–58:

∇L(x,λ,ν)=∇f (x)+∇h (x)λ+∇g (x) ν=


 2x1−4+x2−1/x1

3x2−7+x1−1/x2


+


 2

−1


λ+


−x2

−x1


 ν=0

g (x)=4−x1x2≤0, h (x)=2x1−x2=0

g (x) ν=(4−x1x2)ν, ν≥0

⇓

x∗=

 1.4142
2.8284


 , λ∗=1.036, ν∗=1.068

and f (x*) =−1.8421. Checking the second-
order conditions 59 leads to:

∇xxL(x∗,λ∗,ν∗)=∇xx [f(x∗)+h(x∗)λ∗+g(x∗)ν∗] =

 2+1/(x1)2 1−ν

1−ν 3+1/(x2)2


=


 2.5 0.068

0.068 3.125




[∇h(x∗)|∇gA(x∗)]

p=


 2 −2.8284

−1 −1.4142


 p=0,p�=0

Note that LICQ is satisfied. Moreover, because
[∇h (x∗) |∇gA(x∗)] is square and nonsingular,
there are no nonzero vectors p that satisfy the al-
lowable directions. Hence, the sufficient second-
order conditions (pT∇xxL(x∗,λ∗,ν∗)>0, for all
allowable p) are vacuously satisfied for this
problem.

Convex Cases of NLP. Linear programs and
quadratic programs are special cases of prob-
lem 52 that allow for more efficient solution,
based on application of KKT conditions 56–59.
Because these are convex problems, any locally
optimal solution is a global solution. In partic-
ular, if the objective and constraint functions in
problem 52 are linear then the following linear
program (LP):

Min cT x

s.t. Ax=b
Cx≤d

(65)

can be solved in a finite number of steps, and
the optimal solution lies at a vertex of the poly-
hedron described by the linear constraints. This
is shown in Figure 39, and in so-called primal
degenerate cases, multiple vertices can be alter-
nate optimal solutions with the same values of
the objective function. The standard method to
solve problem 65 is the simplex method, devel-
oped in the late 1940s [170], although, starting
from Karmarkar’s discovery in 1984, interior
point methods have become quite advanced and
competitive for large scale problems [171]. The
simplex method proceeds by moving succes-
sively from vertex to vertex with improved ob-
jective function values. Methods to solve prob-
lem 65 are well implemented and widely used,
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especially in planning and logistical applica-
tions. They also form the basis for MILP meth-
ods (see below). Currently, state-of-the-art LP
solvers can handlemillions of variables and con-
straints and the application of further decom-
position methods leads to the solution of prob-
lems that are two or three orders of magnitude
larger than this [172, 173]. Also, the interior
point method is described below from the per-
spective of more general NLPs.

Figure 39. Contour plots of linear programs

Quadratic programs (QP) represent a slight
modification of problem 65 and can be stated
as:

Min cT x+ 1
2x
TQx

s.t. Ax=b

x≤d
(66)

If the matrix Q is positive semidefinite (posi-
tive definite), when projected into the null space
of the active constraints, then problem 66 is
(strictly) convex and the QP is a global (and
unique) minimum. Otherwise, local solutions
exist for problem 66, and more extensive global
optimization methods are needed to obtain the
global solution. Like LPs, convex QPs can be
solved in a finite number of steps. However, as
seen in Figure 40, these optimal solutions can
lie on a vertex, on a constraint boundary, or in
the interior. A number of active set strategies
have been created that solve the KKT conditions
of the QP and incorporate efficient updates of
active constraints. Popular QP methods include
null space algorithms, range space methods, and
Schur complement methods. As with LPs, QP
problems can also be solved with interior point
methods [171].

Figure 40. Contour plots of convex quadratic programs

Solving the General NLP Problem. Solu-
tion techniques for problem 52 deal with sat-
isfaction of the KKT conditions 56–59. Many
NLP solvers are based on successive quadratic
programming (SQP) as it allows the construction
of a number of NLP algorithms based on the
Newton – Raphson method for equation solv-
ing. SQP solvers have been shown to require
the fewest function evaluations to solve NLPs
[174] and they can be tailored to a broad range
of process engineering problems with different
structure.
The SQP strategy applies the equivalent of a

Newton step to the KKT conditions of the non-
linear programming problem, and this leads to a
fast rate of convergence. By adding slack vari-
ables s the first-order KKT conditions can be
rewritten as:
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∇f (x)+∇h (x)λ+∇g (x) ν=0 (67a)

h (x)=0 (67b)

g (x)+s=0 (67c)

SV e=0 (67d)

(s,ν)≥0 (67e)

where e= [1, 1, . . ., 1]T , S = diag(s) and V =
diag(ν). SQP methods find solutions that sat-
isfy Equations 67a, 67b, 67c, 67d and 67e by
generating Newton-like search directions at it-
eration k. However, equations 67d and active
bounds 67e are dependent and serve to make
the KKT system ill-conditioned near the solu-
tion. SQP algorithms treat these conditions in
two ways. In the active set strategy, discrete de-
cisions are made regarding the active constraint
set, i∈I= {i|gi (x∗) =0}, and Equation 67d is
replaced by si = 0, i ∈ I, and vi = 0, i �∈ I. Deter-
mining the active set is a combinatorial problem,
and a straightforward way to determine an esti-
mate of the active set [and also satisfy 67e] is to
formulate, at a point xk , and solve the following
QP at iteration k:

Min ∇f
(
xk
)T
p+ 1

2p
T∇xxL

(
xk,λk,νk

)
p

s.t. h
(
xk
)
+∇h

(
xk
)T
p=0

g
(
xk
)
+∇g

(
xk
)T
p+s=0, s≥0

(68)

The KKT conditions of 68 are given by:

∇f
(
xk
)
+∇2L

(
xk,λk,νk

)
p

+∇h
(
xk
)
λ+∇g

(
xk
)
ν=0 (69a)

h
(
xk
)
+∇h

(
xk
)T

p=0 (69b)

g
(
xk
)
+∇g

(
xk
)T

p+s=0 (69c)

SV e = 0 (69d)

(s,ν)≥0 (69e)

where the Hessian of the Lagrange function

∇xxL (x,λ,ν) =∇xx

[
f (x) +h(x)Tλ+g(x)T ν

]

is calculated directly or through a quasi-
Newtonian approximation (created by differ-
ences of gradient vectors). It is easy to show
that 69a–69c correspond to a Newton–Raphson

step for 67a–67c applied at iteration k. Also, se-
lection of the active set is now handled at the QP
level by satisfying the conditions 69d, 69e. To
evaluate and change candidate active sets, QP
algorithms apply inexpensive matrix-updating
strategies to the KKTmatrix associated with the
QP 68. Details of this approach can be found in
[175, 176].
As alternatives that avoid the combinatorial

problem of selecting the active set, interior point
(or barrier)methodsmodify theNLPproblem52
to form problem 70

Min f
(
xk
)−µ∑iln si

s.t. h
(
xk
)
=0

g
(
xk
)
+s=0

(70)

where the solution to this problem has s> 0 for
the penalty parameterµ> 0, and decreasingµ to
zero leads to solution of problem 52. The KKT
conditions for this problem can be written as
Equation 71

∇f (x∗)+∇h (x∗)λ+∇g (x∗) ν=0

h (x∗)=0

g (x∗)+s=0
SV e=µe

(71)

and at iteration k the Newton steps to solve 71
are given by:


∇xxL(xk,λk,νk) ∇h (xk) ∇g (xk)
S−1
k Vk I

∇h(xk)
T

∇g(xk)
T I






∆x
∆s
∆λ
∆ν


=−




∇xL(xk,λk,νk)
νk−S−1

k µe

h (xk)
g (xk)+sk


 (72)

A detailed description of this algorithm, called
IPOPT, can be found in [177].
Both active set and interior point methods

have clear trade-offs. Interior pointmethodsmay
require more iterations to solve problem 70 for
various values of µ, while active set methods
require the solution of the more expensive QP
subproblem 68. Thus, if there are few inequality
constraints or an active set is known (say from
a good starting guess, or a known QP solution
from a previous iteration) then solving problem
68 is not expensive and the active set method
is favored. On the other hand, for problems with
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many inequality constraints, interior pointmeth-
ods are often faster as they avoid the combina-
torial problem of selecting the active set. This
is especially the case for large-scale problems
and when a large number of bounds are active.
Examples that demonstrate the performance of
these approaches include the solution of model
predictive control (MPC) problems [178 – 180]
and the solution of large optimal control prob-
lems using barrier NLP solvers. For instance,
IPOPT allows the solution of problems with
more than 106 variables and up to 50 000 de-
grees of freedom [181, 182].

OtherGradient-BasedNLPSolvers. In ad-
dition to SQPmethods, a number ofNLP solvers
have been developed and adapted for large-
scale problems. Generally, these methods re-
quire more function evaluations than SQPmeth-
ods, but they perform very well when interfaced
to optimizationmodelingplatforms,where func-
tion evaluations are cheap. All of these can be
derived from the perspective of applying New-
ton steps to portions of the KKT conditions.
LANCELOT [183] is based on the solution

of bound constrained subproblems. Here an aug-
mented Lagrangian is formed from problem 52
and subproblem 73 is solved.

Min f (x)+λT h (x)
+ν (g (x)+s)+ 1

2ρ‖g (x) ,g (x)+s‖2

s.t. s≥0

(73)

The above subproblem can be solved very ef-
ficiently for fixed values of the multipliers λ
and v and penalty parameter ρ. Here a gradient-
projection, trust-region method is applied. Once
subproblem 73 is solved, the multipliers and
penalty parameter are updated in an outer loop
and the cycle repeats until the KKT conditions
for problem 52 are satisfied. LANCELOTworks
best when exact second derivatives are avail-
able. This promotes a fast convergence rate in
solving each subproblem and allows a bound
constrained trust-regionmethod to exploit direc-
tions of negative curvature in theHessianmatrix.

Reduced gradient methods are active set
strategies that rely on partitioning the variables
and solving Equations 67a, 67b, 67c, 67d and
67e in a nested manner. Without loss of gener-
ality, problem 52 can be rewritten as problem
74.

Min f (z)

s.t. c (z)=0

a≤z≤b
(74)

Variables are partitioned as nonbasic vari-
ables (those fixed to their bounds), basic vari-
ables (those that can be solved from the
equality constraints), and superbasic variables
(those remaining variables between bounds that
serve to drive the optimization); this leads to
zT=

[
zTN ,z

T
S ,z

T
B

]
. This partition is derived from

local information and may change over the
course of the optimization iterations. The cor-
responding KKT conditions can be written as
Equations 75a, 75b, 75c, 75d and 75e

∇Nf (z)+∇Nc (z) γ=βa−βb (75a)

∇Sf (z)+∇Sc (z) γ=0 (75b)

∇Bf (z)+∇Bc (z) γ=0 (75c)

c (z)=0 (75d)

zN,j=aj or bj , βa,j≥0,βb,j=0 or βb,j≥0,βa,j=0 (75e)

where λ and β are the KKT multipliers for
the equality and bound constraints, respectively,
and 75e replaces the complementarity condi-
tions 58. Reduced gradient methods work by
nesting equations 75b, 75d within 75a, 75c. At
iteration k, for fixed values of zkN and zkS , we
can solve for zB using 75d and for λ using 75b.
Moreover, linearization of these equations leads
to constrained derivatives or reduced gradients
(Eq. 76)

df

dzs
=∇fs−∇cs(∇cB)

−1∇fB (76)

which indicate how f (z) (and zB) change with
respect to zS and zN. The algorithm then pro-
ceeds by updating zS using reduced gradients in
a Newton-type iteration to solve equation 75c.
Following this, bound multipliers β are calcu-
lated from 75a. Over the course of the iter-
ations, if the variables zB or zS exceed their
bounds or if some bound multipliers β become
negative, then the variable partition needs to
be changed and the equations 75a, 75b, 75c,
75d and 75e are reconstructed. These reduced
gradient methods are embodied in the popular
GRG2, CONOPT, and SOLVER codes [173].
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The SOLVER code has been incorporated into
Microsoft Excel. CONOPT [184] is an efficient
and widely used code in several optimization
modeling environments.
MINOS[185] is awell-implementedpackage

that offers a variation on reduced gradient strate-
gies. At iteration k, equation 75d is replaced by
its linearization (Eq. 77)

c(zkN,z
k
S ,z

k
B)+∇Bc

(
zk
)T

(zB−zkB)+∇Sc
(
zk
)T

(zS−zkS)=0 (77)

and (75a–75c, 75e) are solved with Equation 77
as a subproblem using concepts from the re-
duced gradient method. At the solution of this
subproblem, the constraints 75d are relinearized
and the cycle repeats until theKKTconditions of
75a, 75b, 75c, 75d and 75e are satisfied. The aug-
mented Lagrangian function 73 is used to penal-
izemovement away from the feasible region. For
problems with few degrees of freedom, the re-
sulting approach leads to an extremely efficient
method even for very large problems. MINOS
has been interfaced to a number of modeling
systems and enjoys widespread use. It performs
especially well on large problems with few non-
linear constraints. However, on highly nonlinear
problems it is usually less reliable than other re-
duced gradient methods.

Algorithmic Details for NLPMethods. All
of the above NLP methods incorporate con-
cepts from the Newton –Raphson Method for
equation solving. Essential features of these
methods are a) providing accurate derivative in-
formation to solve for the KKT conditions,
b) stabilization strategies to promote conver-
gence of the Newton-like method from poor
starting points, and c) regularization of the Ja-
cobian matrix in Newton’s method (the so-
called KKT matrix) if it becomes singular or
ill-conditioned.

a) Providing first and second derivatives: The
KKT conditions require first derivatives to de-
fine stationary points, so accurate first deriva-
tives are essential to determine locally optimal
solutions for differentiable NLPs. Moreover,
Newton–Raphson methods that are applied to
the KKT conditions, as well as the task of
checking second-order KKT conditions, nec-
essarily require information on second deriva-
tives. (Note that second-order conditions are

not checkedbymethods that donot use second
derivatives). With the recent development of
automatic differentiation tools, many model-
ing and simulation platforms can provide ex-
act first and second derivatives for optimiza-
tion. When second derivatives are available
for the objective or constraint functions, they
canbe useddirectly inLANCELOT,SQPand,
less efficiently, in reduced gradient methods.
Otherwise, for problems with few superbasic
variables, reduced gradient methods and re-
duced space variants of SQP can be applied.
Referring to problem 74 with n variables and
m equalities, we can write the QP step from
problem 68 as Equation 78.

Min ∇f
(
zk
)T
p+1

/
2 p

T∇xxL
(
zk,γk

)
p

s.t. c
(
zk
)
+∇c

(
zk
)T
p=0

a≤zk+p≤b

(78)

Defining the search direction as p= ZkpZ +
YkpY , where∇c(xk )TZk = 0 and [Yk |Zk ] is
a nonsingular n× n matrix, allows us to form
the following reduced QP subproblem (with
n−m variables)

Min
[
ZTk ∇f

(
zk
)
+wk

]T
pZ+ 1

2pz
TBkpZ

s.t. a≤zk+ZkpZ+YkpY ≤b
(79)

where pY =−[∇c(zk )TYk ]−1c(zk ). Good
choices of Yk and Zk , which allow sparsity
to be exploited in ∇c(zk ), are: Y T

k = [0|I]
and ZT

k =
[
I|−∇N,Sc

(
zk

) ∇Bc
(
zk

)−1
]
.

Here we define the reduced Hessian
Bk=ZT

z ∇zzL
(
zk,γk

)
Zk and wk =

ZT
k ∇zzL

(
zk, γk

)
YkpY . In the absence of

second-derivative information, Bk can be
approximated using positive definite quasi-
Newton approximations [175]. Also, for the
interior point method, a similar reduced space
decomposition can be applied to the Newton
step given in 72.
Finally, for problems with least-squares func-
tions, as in data reconciliation, parameter es-
timation, and model predictive control, one
can often assume that the values of the objec-
tive function and its gradient at the solution
are vanishingly small.Under these conditions,
one can show that the multipliers (λ, ν) also
vanish and∇xxL(x*, λ, ν) can be substituted
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by ∇xx f (x*). This Gauss – Newton approxi-
mation has been shown to be very efficient for
the solution of least-squares problems [175].

b) Line-search and trust-region methods are
used to promote convergence from poor start-
ing points. These are commonly used with
the search directions calculated from NLP
subproblems such as problem 68. In a trust-
region approach, the constraint, ‖p‖ ≤ ∆ is
added and the iteration step is taken if there
is sufficient reduction of some merit func-
tion (e.g., the objective function weighted
with some measure of the constraint viola-
tions). The size of the trust region ∆ is ad-
justed based on the agreement of the reduc-
tion of the actual merit function compared
to its predicted reduction from the subprob-
lem [183]. Such methods have strong global
convergence properties and are especially ap-
propriate for ill-conditioned NLPs. This ap-
proach has been applied in the KNITRO code
[186]. Line-search methods can be more effi-
cient on problems with reasonably good start-
ing points andwell-conditioned subproblems,
as in real-time optimization. Typically, once
a search direction is calculated from problem
68, or other related subproblem, a step size α
∈ (0, 1] is chosen so that xk +αp leads to a
sufficient decrease of a merit function. As a
recent alternative, a novel filter-stabilization
strategy (for both line-search and trust-region
approaches) has been developed based on a
bicriterion minimization, with the objective
function and constraint infeasibility as com-
peting objectives [187]. This method often

leads to better performance than those based
on merit functions.

c) Regularization of the KKTmatrix for the NLP
subproblem (e.g., in Equation 72) is essen-
tial for good performance of general purpose
algorithms. For instance, to obtain a unique
solution to Eqn. 72, active constraint gradi-
entsmust be full rank, and theHessianmatrix,
when projected into the null space of the ac-
tive constraint gradients, must be positive def-
inite. These properties may not hold far from
the solution, and corrections to the Hessian in
SQP may be necessary [176]. Regularization
methods ensure that subproblems like Eqns.
68 and 72 remain well-conditioned; they in-
clude addition of positive constants to the di-
agonal of the Hessianmatrix to ensure its pos-
itive definiteness, judicious selection of active
constraint gradients to ensure that they are lin-
early independent, and scaling the subprob-
lem to reduce the propagation of numerical er-
rors. Often these strategies are heuristics built
into particular NLP codes. While quite effec-
tive, most of these heuristics do not provide
convergence guarantees for general NLPs.

Table 11 summarizes the characteristics of
a collection of widely used NLP codes. Much
more information on widely available codes
can also be found on the NEOS server (www-
neos.mcs.anl.gov) and the NEOS Software
Guide.

Table 11. Representative NLP solvers

Method Algorithm type Stabilization Second-order information

CONOPT [184] reduced gradient line search exact and quasi-Newton
GRG2 [173] reduced gradient line search quasi-Newton
IPOPT [177] SQP, barrier line search exact
KNITRO [186] SQP, barrier trust region exact and quasi-Newton
LANCELOT [183] aug mented Lagrangian, bound

constrained
trust region exact and quasi-Newton

LOQO [188] SQP, barrier line search exact
MINOS [185] reduced gradient, augmented

Lagrangian
line search quasi-Newton

NPSOL [189] SQP, Active set line search quasi-Newton
SNOPT [190] reduced space SQP, active set line search quasi-Newton
SOCS [191] SQP, active set line search exact
SOLVER [173] reduced gradient line search quasi-Newton
SRQP [192] reduced space SQP, active set line search quasi-Newton



Mathematics in Chemical Engineering 105

10.3. Optimization Methods without
Derivatives

Abroad class of optimization strategies does not
require derivative information. These methods
have the advantage of easy implementation and
little prior knowledge of the optimization prob-
lem. In particular, such methods are well suited
for “quick and dirty” optimization studies that
explore the scope of optimization for new prob-
lems, prior to investing effort for more sophisti-
cated modeling and solution strategies. Most of
these methods are derived from heuristics that
naturally spawn numerous variations. As a re-
sult, a very broad literature describes thesemeth-
ods. Herewe discuss only a few important trends
in this area.

Classical Direct Search Methods. Devel-
oped in the 1960s and 1970s, these methods in-
clude one-at-a-time search and methods based
on experimental designs [193]. At that time,
these direct searchmethods were themost popu-
lar optimization methods in chemical engineer-
ing. Methods that fall into this class include
the pattern search [194], the conjugate direction
method [195], simplex and complex searches
[196], and the adaptive random search methods
[197 – 199]. All of these methods require only
objective function values for unconstrainedmin-
imization. Associated with these methods are
numerous studies on a wide range of process
problems. Moreover, many of these methods in-
clude heuristics that prevent premature termina-
tion (e.g., directional flexibility in the complex
search as well as random restarts and direction
generation). To illustrate these methods, Figure
41 illustrates the performance of a pattern search
method as well as a random search method on
an unconstrained problem.

Simulated Annealing. This strategy is related
to random search methods and derives from a
class of heuristics with analogies to the motion
of molecules in the cooling and solidification
of metals [200]. Here a “temperature” param-
eter θ can be raised or lowered to influence
the probability of accepting points that do not
improve the objective function. The method
starts with a base point x and objective value
f (x). The next point x’ is chosen at random
from a distribution. If f (x’)< f (x), the move is

Figure 41. Examples of optimization methods without
derivatives
A) Pattern search method; B) Random search method
Circles: 1st phase; Triangles: 2nd phase; Stars: 3rd phase

accepted with x’ as the new point. Otherwise,
x’ is accepted with probability p(θ,x’,x). Op-
tions include the Metropolis distribution, p(θ,x,
x’) = exp[−{f (x’)−f (x)}/θ], and the Glauber
distribution, p(θ, x, x’) = exp[−{f (x’)−f (x)}/(1
+ exp[−{f (x’)−f (x)}]/θ)]. The θ parameter is
then reduced and the method continues until no
further progress is made.

Genetic Algorithms. This approach, first pro-
posed in [201], is based on the analogy of im-
proving a population of solutions through mod-
ifying their gene pool. It also has similar perfor-
mance characteristics as random search meth-
ods and simulated annealing. Two forms of ge-
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netic modification, crossover or mutation, are
used and the elements of the optimization vec-
tor x are represented as binary strings. Crossover
deals with random swapping of vector elements
(among parents with highest objective function
values or other rankings of population) or any
linear combinations of two parents. Mutation
dealswith the additionof a randomvariable to el-
ements of the vector. Genetic algorithms (GAs)
have seenwidespread use in process engineering
and a number of codes are available. A related
GA algorithm is described in [173].

Derivative-Free Optimization (DFO). In the
past decade, the availability of parallel com-
puters and faster computing hardware and the
need to incorporate complex simulation models
within optimization studies have led a number of
optimization researchers to reconsider classical
direct search approaches. In particular, Dennis
and Torczon [202] developed a multidimen-
sional search algorithm that extends the simplex
approach [196]. They note that the Nelder–
Mead algorithm fails as the number of variables
increases, even for very simple problems. To
overcome this, their multidimensional pattern-
search approach combines reflection, expansion,
and contraction steps that act as line search algo-
rithms for a number of linear independent search
directions. This approach is easily adapted to
parallel computation and the method can be
tailored to the number of processors available.
Moreover, this approach converges to locally
optimal solutions for unconstrained problems
and exhibits an unexpected performance syn-
ergy when multiple processors are used. The
work of Dennis and Torczon [202] has spawned
considerable research on analysis and code de-
velopment for DFO methods. Moreover, Conn
et al. [203] construct a multivariable DFO al-
gorithm that uses a surrogate model for the
objective function within a trust-region method.
Here points are sampled to obtain a well-defined
quadratic interpolation model, and descent con-
ditions from trust-region methods enforce con-
vergence properties. A number of trust-region
methods that rely on this approach are reviewed
in [203]. Moreover, a number of DFO codes
have been developed that lead to black-box op-
timization implementations for large, complex
simulation models. These include the DAKOTA
package at Sandia National Lab [204],
http://endo.sandia.gov/DAKOTA/software.html

and FOCUS developed at Boeing Corporation
[205].
Direct search methods are easy to apply to

a wide variety of problem types and optimiza-
tion models. Moreover, because their termina-
tion criteria are not based on gradient informa-
tion and stationary points, they are more likely
to favor the search for global rather than locally
optimal solutions. These methods can also be
adapted easily to include integer variables. How-
ever, rigorous convergence properties to glob-
ally optimal solutions have not yet been disco-
vered. Also, these methods are best suited for
unconstrained problems or for problems with
simple bounds. Otherwise, they may have diffi-
culties with constraints, as the only options open
for handling constraints are equality constraint
elimination and addition of penalty functions for
inequality constraints. Both approaches can be
unreliable and may lead to failure of the opti-
mization algorithm. Finally, the performance of
direct search methods scales poorly (and often
exponentially) with the number of decision vari-
ables. While performance can be improved with
the use of parallel computing, these methods are
rarely applied to problems with more than a few
dozen decision variables.

10.4. Global Optimization

Deterministic optimization methods are avail-
able for nonconvex nonlinear programming
problems of the form problem 52 that guaran-
tee convergence to the global optimum. More
specifically, one can show undermild conditions
that they converge to an ε distance to the global
optimum on a finite number of steps. These
methods are generallymore expensive than local
NLP methods, and they require the exploitation
of the structure of the nonlinear program.
Global optimization of nonconvex programs

has received increased attention due to their
practical importance. Most of the deterministic
global optimization algorithms are based on spa-
tial branch-and-bound algorithm [206], which
divides the feasible region of continuous vari-
ables and compares lower bound and upper
bound for fathoming each subregion. The one
that contains the optimal solution is found by
eliminating subregions that are proved not to
contain the optimal solution.



Mathematics in Chemical Engineering 107

For nonconvex NLP problems, Quesada and
Grossmann [207] proposed a spatial branch-
and-bound algorithm for concave separable, lin-
ear fractional, and bilinear programs using lin-
ear and nonlinear underestimating functions
[208]. For nonconvexMINLP, Ryoo and Sahini-
dis [209] and later Tawarmalani and Sahini-
dis [210] developed BARON, which branches
on the continuous and discrete variables with
bounds reduction method. Adjiman et al. [211,
212] proposed the SMIN-αBB and GMIN-αBB
algorithms for twice-differentiable nonconvex
MINLPs. Using a valid convex underestima-
tion of general functions as well as for special
functions, Adjiman et al. [213] developed the
αBB method, which branches on both the con-
tinuous and discrete variables according to spe-
cific options. The branch-and-contract method
[214] has bilinear, linear fractional, and concave
separable functions in the continuous variables
and binary variables, uses bound contraction,
and applies the outer-approximation (OA) algo-
rithm at each node of the tree. Smith and Pan-
telides [215] proposed a reformulation method
combined with a spatial branch-and-bound al-
gorithm for nonconvex MINLP and NLP.

Figure 42. Convex underestimator for nonconvex function

Because in global optimization one cannot
exploit optimality conditions like the KKT con-
ditions for a local optimum, these methods work
by first partitioning the problem domain (i.e.,

containing the feasible region) into subregions
(see Fig. 42). Upper bounds on the objective
function are computed over all subregions of
the problem. In addition, lower bounds can be
derived from convex underestimators of the ob-
jective function and constraints for each subre-
gion. The algorithm then proceeds to eliminate
all subregions that have lower bounds that are
greater than the least upper bound. After this, the
remaining regions are further partitioned to cre-
ate new subregions and the cycle continues until
the upper and lower bounds converge. Below
we illustrate the specific steps of the algorithm
for nonlinear programs that involve bilinear, lin-
ear fractional, and concave separable terms [207,
214].

Nonconvex NLP with Bilinear, Linear
Fractional, and Concave Separable Terms.
Consider the following specific nonconvex NLP
problem,

Min
x

f (x)=
∑
(i,j)∈BL0

aij xixj+
∑
(i,j)∈LF0

bij
xi
xj

+
∑
i∈C0

gi (xi)+h (x)

subject to

fk (x)=
∑
(i,j)∈BLk

aijkxixj+
∑
(i,j)∈LFk

bijk
xi
xj

+
∑
i∈Ck

gi,k (xi)+hk (x)≤0 k∈K

x∈S∩Ω0⊂Rn

(80)

where aij , aijk , bij , bijk are scalars with
i∈I={1,2,· · ·,n}, j∈J={1,2,· · ·,n}, and
k∈K= {1,2,· · ·,m}. BL0, BLk, LF0, LFk are
(i, j)-index sets, with i�=j, that define the bi-
linear and linear fractional terms present in the
problem. The functions h (x) , hk (x) are con-
vex, and twice continuously differentiable. C0
and Ck are index sets for the univariate twice
continuously differentiable concave functions
gi (xi) ,gi,k (xi). The set S⊂Rn is convex, and
ω0⊂Rn is an n-dimensional hyperrectangle de-
fined in terms of the initial variable bounds xL,in

and xU,in:

Ω0={x∈Rn :0≤xL,in≤x≤xU,in, xL,inj >0

if (i,j)∈LF0∪LFk, i∈I, j∈J, k∈K}

The feasible region of problem 80 is denoted
by D. Note that a nonlinear equality constraint
of the form fk (x) =0 can be accommodated in



108 Mathematics in Chemical Engineering

problem 51 through the representation by the in-
equalities fk (x)≤0 and −fk (x)≤0, provided
hk (x) is separable.
To obtain a lower bound LB (Ω) for the

global minimum of problem 80 over D∩Ω,
where Ω={x∈Rn :xL≤x≤xU}⊆Ω0, the fol-
lowing problem is proposed:

Min
(x,y,z)

f̂ (x,y,z)=
∑
(i,j)∈BL0

aij yij

+
∑
(i,j)∈LF0

bijzij+
∑
i∈C0

ĝi (xi)+h (x)

subject to

f̂k (x,y,z)=
∑
(i,j)∈BLk

aijkyij+
∑
(i,j)∈LFk

bijkzij

+
∑
i∈Ck

ĝi,k (xi)+hk (x)≤0 k∈K

(x,y,z)∈T (Ω)⊂Rn×Rn1×Rn2

x∈S∩Ω⊂Rn, y∈Rn1
+ , z∈Rn2

+ , (81)

where the functions and sets are defined as fol-
lows:

a) ĝi (xi) and ĝi,k (xi) are the convex envelopes
for the univariate functions over the domain
xi∈[xLi ,x

U
i ] [216]:

ĝi (xi) =

gi

(
xLi

)
+

(
gi
(
xUi
)−gi

(
xLi
)

xUi −xLi

)(
xi−xLi

)
≤gi (xi) (82)

ĝi,k (xi)=

gi,k

(
xLi

)
+

(
gi,k

(
xUi
)−gi,k

(
xLi
)

xUi −xLi

)(
xi−xLi

)
≤gi,k (xi) (83)

where ĝi (xi) =gi (xi) at xi=xLi , and xi=xUi ;
likewise, ĝi,k (xi) =gi,k (xi) at xi=xLi , and
xi=xUi .

b) y= {yij} is a vector of additional variables for
relaxing the bilinear terms in 80, and is used
in the following inequalities which determine
the convex and concave envelopes of bilinear
terms:

yij≥xLj xi+xLi xj−xLi xLj (i,j)∈BL+
yij≥xUj xi+xUi xj−xUi xUj (i,j)∈BL+ (84)

yij≤xLj xi+xUi xj−xUi xLj (i,j)∈BL−

yij≤xUj xi+xLi xj−xLi xUj (i,j)∈BL− (85)

where

BL+= {(i,j):(i,j)∈BL0∪BLk, aij>0
or aijk>0, k∈K}

BL−= {(i,j):(i,j)∈BL0∪BLk, aij<0
or aijk<0, k∈K}

The inequalities 84 were first derived by Mc-
Cormick [208], and alongwith the inequalities
85 theoretically characterized byAl-Khayyal
and Falk [217, 218].

c) z= {zij} is a vector of additional variables for
relaxing the linear fractional terms in problem
80; these variables are used in the following
inequalities:

zij≥ xi

xLj
+xUi

(
1
xj

− 1
xLj

)
(i,j)∈LF+

zij≥ xi

xUj
+xLi

(
1
xj

− 1
xUj

)
(i,j)∈LF+

(86)

zij≥ 1
xj


 xi+

√
xLi x

U
i√

xLi +
√
xUi



2

(i,j)∈LF+ (87)

zij≤ 1
xLj x

U
j

(
xUj xi−xLi xj+xLi xLj

)
(i,j)∈LF−

zij≤ 1
xLj x

U
j

(
xLj xi−xUi xj+xUi xUj

)
(i,j)∈LF−

(88)

where

LF+= {(i,j):(i,j)∈LF0∪LFk, bij>0
or bijk>0, k∈K}

LF−= {(i,j):(i,j)∈LF0∪LFk, bij<0
or bijk<0, k∈K}

The inequalities 86 and 87, 88 are convex un-
derestimators due toQuesada and Grossmann
[207, 219] and Zamora and Grossmann [214],
respectively.

d) T (Ω) = {(x,y,z)∈Rn×Rn1×Rn2 : 82– 87
are satisfied with xL,xU as in Ω}. The fea-
sible region, and the solution of problem 52
are denoted byM (Ω), and (x̂,ŷ,ẑ)Ω , respec-
tively.We define the approximation gap ε (Ω)
at a branch-and-bound node as

ε (Ω)=




∞
−LB (Ω)

(OUB−LB(Ω))
|OUB|

if OUB=∞
if OUB=0
otherwise

(89)

where the overall upper bound (OUB) is the
value of f (x) at the best available feasible
point x∈D; if no feasible point is available,
then OUB=∞.
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Note that the underestimating problem 81 is
a linear program if LF+=∅. During the ex-
ecution of the spatial branch-and-bound algo-
rithm, problem (NBNC) is solved initially over
M (Ω0) (root node of the branch-and-bound
tree). If a better approximation is required,
M (Ω0) is refined by partitioning Ω0 into two
smaller hyperrectangles Ω01 and Ω02, and two
children nodes are created with relaxed feasible
regions given byM (Ω01) andM (Ω02). Prob-
lem 81 might be regarded as a basic underesti-
mating program for the general problem 80. In
some cases, however, it is possible to develop ad-
ditional convex estimators that might strengthen
the underestimating problem. See, for instance,
the projections proposed byQuesada and Gross-
mann [207], the reformulation–linearization
technique by Sherali and Alameddine [220],
and the reformulation–convexification approach
by Sherali and Tuncbilek [221].

The Set of Branching Variables. A set of
branching variables, characterized by the index
set BV (Ω) defined below, is determined by con-
sidering the optimal solution (x̂,ŷ,ẑ)Ω of the un-
derestimating problem:

BV (Ω)={i,j: |ŷij−x̂ix̂j |=ζl or |ẑij−x̂i/x̂j |=ζl
or gi (x̂i)−ĝi (x̂i)=ζl or gi,k (x̂i)−ĝi,k (x̂i)=ζl,
for i∈I, j∈J, k∈K, l∈L} (90)

where, for a prespecified number ln,
L={1,2,. . .,ln} and ζ1 is the magnitude of the
largest approximation error for a nonconvex
term in problem 80 evaluated at (x̂,ŷ,ẑ)Ω :

ξ1=Max [|ŷij−x̂ix̂j | , |ẑij−x̂i/x̂j | , gi (x̂i)−ĝi (x̂i) ,

gi,k (x̂i)−ĝi,k (x̂i)
]

i∈I,j∈J,k∈K

Similarly, we define ξl<ξl−1 with l∈L\ {1} as
the l-th largest magnitude for an approximation
error; for instance, ξ2<ξ1 is the second largest
magnitude for an approximation error. Note that
in some cases it might be convenient to intro-
duce weights in the determination of BV (Ω)
in order to scale differences in the approxima-
tion errors or to induce preferential branching
schemes. This might be particularly useful in
applications where specific information can be
exploited by imposing an order of precedence
on the set of complicating variables.

This basic concept in spatial branch-and-
bound for global optimization is as follows.
Bounds are related to the calculation of upper
and lower bounds. For the former, any feasi-
ble point or, preferably, a locally optimal point
in the subregion, can be used. For the lower
bound, convex relaxations of the objective and
constraint function are derived such as in prob-
lem81.The refining step dealswith the construc-
tion of partitions in the domain and further parti-
tioning them during the search process. Finally,
the selection step decides on the order of ex-
ploring the open subregions. Thus, the feasible
region and the objective function are replaced
by convex envelopes to form relaxed problems.
Solving these convex relaxed problems leads to
global solutions that are lower bounds to the
NLP in the particular subregion. Finally, we see
that gradient-based NLP solvers play an impor-
tant role in global optimization algorithms, as
they often yield the lower and upper bounds for
the subregions. The following spatial branch-
and-bound global optimization algorithm can
therefore be given by the following steps:

0. Initialize algorithm: calculate upper bound by
obtaining a local solution to problem 80. Cal-
culate a lower bound solving problem 81 over
the entire (relaxed) feasible region Ω0.

For iteration k with a set of partitions Ωk,j

and bounds in each subregion OLBj and OUBj :

1) Bound: Define best upper bound: OUB=
Minj OUBj and delete (fathom) all subre-
gions j with lower bounds OLBj ≥OUB. If
OLBj ≥OUB− ε, stop.

2) Refine: Divide the remaining active subre-
gions into partitiions Ωk,j1 and Ωk,j2. (Sev-
eral branching rules are available for this
step.)

3) Select: Solve the convex NLP 81 in the new
partitions to obtainOLBj1 andOLBj2. Delete
partition if no feasible solution.

4) Update: Obtain upper bounds, OUBj1 and
OUBj2 to new partitions if present. Set k =
k + 1, update partition sets and go to step 1.

Example: To illustrate the spatial branch-
and-bound algorithm, consider the global solu-
tion of:

Min f (x)=5/2 x4−20 x3+55 x2−57 x

s.t. 0.5≤x≤2.5
(91)
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Figure 43. Global optimization example with partitions

As seen in Figure 43, this problem has local so-
lutions at x* = 2.5 and at x* = 0.8749. The latter
is also the global solution with f (x*) =−19.7.
To find the global solution we note that all but
the −20 x3 term in problem 91 are convex, so
we replace this term by a new variable and a lin-
ear underestimatorwithin a particular subregion,
i.e.:
Min fL (x)=5/2 x4−20w+55 x2−57 x

s.t. x1≤x≤xu
w=(xl)

3 (xu−x)
(xu−xl)

+(xu)3
(x−xl)
(xu−xl)

(92)

In Figure 43 we also propose subregions that are
created by simple bisection partitioning rules,
and we use a “loose” bounding tolerance of
ε=0.2. In each partition the lower bound, f L is
determined by problem 92 and the upper bound
fU is determinedby the local solution of the orig-
inal problem in the subregion. Figure 44 shows
the progress of the spatial branch-and-bound
algorithm as the partitions are refined and the
bounds are updated. In Figure 43, note the defi-
nitions of the partitions for the nodes, and the se-
quence numbers in each node that show the order
inwhich the partitions are processed. The grayed
partitions correspond to the deleted subregions
and at termination of the algorithm we see that
f Lj ≥ fU − ε (i.e., −19.85≥ −19.7−0.2), with
the gray subregions in Figure 43 still active. Fur-
ther partitioning in these subregions will allow
the lower and upper bounds to converge to a
tighter tolerance.
A number of improvements can be made to

the bounding, refinement, and selection strate-
gies in the algorithm that accelerate the con-
vergence of this method. A comprehensive dis-

cussion of all of these options can be found
in [222 – 224]. Also, a number of efficient
global optimization codes have recently been
developed, including αBB, BARON, LGO, and
OQNLP. An interesting numerical comparison
of these and other codes can be found in [225].

10.5. Mixed Integer Programming

Mixed integer programming deals with both dis-
crete and continuous decisionvariables. For sim-
plicity in the presentation we consider the most
common case where the discrete decisions are
binary variables, i.e., yi = 0 or 1, and we con-
sider the mixed integer problem 51. Unlike lo-
cal optimization methods, there are no optimal-
ity conditions, like the KKT conditions, that can
be applied directly.

Mixed IntegerLinearProgramming. If the
objective and constraint functions are all lin-
ear in problem 51, and we assume 0–1 binary
variables for the discrete variables, then this
gives rise to amixed integer linear programming
(MILP) problem given by Equation 93.

Min Z=aT x+cT y

s.t.Ax+By≤b
x≥0, y∈{0,1}t

(93)

As is well known, the (MILP) problem is NP-
hard. Nevertheless, an interesting theoretical re-
sult is that it is possible to transform it into an LP
with the convexification procedures proposed by
Lovacz and Schrijver [226], Sherali andAdams
[227], and Balas et al. [228]. These procedures
consist of sequentially lifting the original re-
laxed x− y space into higher dimension and pro-
jecting it back to the original space so as to yield,
after a finite number of steps, the integer convex
hull. Since the transformations have exponential
complexity, they are only of theoretical interest,
although they can be used as a basis for deriving
cutting planes (e.g. lift and project method by
[228]).
As for the solution of problem (MILP), it

should be noted that this problem becomes an
LP problem when the binary variables are re-
laxed as continuous variables 0≤ y≤ 1. The
most common solution algorithms for problem
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Figure 44. Spatial branch-and-bound sequence for global optimization example

(MILP) are LP-based branch-and-bound meth-
ods, which are enumeration methods that solve
LP subproblems at each node of the search tree.
This technique was initially conceived by Land
and Doig [229], Balas [230], and later formal-
ized by Dakin, [231]. Cutting-plane techniques,
which were initially proposed by Gomory [232],
and consist of successively generating valid in-
equalities that are added to the relaxed LP, have
received renewed interest through the works of
Crowder et al. [233], vanRoy andWolsey [234],
and especially the lift-and-project method of
Balas et al. [228]. A recent review of branch-
and-cut methods can be found in [235]. Finally,
Benders decomposition [236] is another tech-
nique for solvingMILPs in which the problem is
successively decomposed into LP subproblems
for fixed 0–1 and a master problem for updating
the binary variables.

LP-Based Branch and BoundMethod. We
briefly outline in this section the basic ideas
behind the branch-and-bound method for solv-
ing MILP problems. Note that if we relax the
t binary variables by the inequalities 0≤ y≤
1 then 93 becomes a linear program with a
(global) solution that is a lower bound to the
MILP 93. There are specific MILP classes in
which the LP relaxation of 93 has the same
solution as the MILP. Among these problems
is the well-known assignment problem. Other

MILPs that can be solved with efficient special-
purpose methods are the knapsack problem, the
set-covering and set-partitioning problems, and
the traveling salesman problem. See [237] for a
detailed treatment of these problems.
The branch-and-bound algorithm for solv-

ing MILP problems [231] is similar to the spa-
tial branch-and-bound method of the previous
section that explores the search space. As seen
in Figure 45, binary variables are successively
fixed to define the search tree and a number of
bounding properties are exploited in order to
fathom nodes in to avoid exhaustive enumera-
tion of all the nodes in the tree.

Figure 45. Branch and bound sequence for MILP example

The basic idea in the search is as follows. The
top, or root node, in the tree is the solution to the
linear programming relaxation of 93. If all the
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y variables take on 0–1 values, the MILP prob-
lem is solved, and no further search is required.
If at least one of the binary variables yields a
fractional value, the solution of the LP relax-
ation yields a lower bound to problem 93. The
search then consists of branching on that node
by fixing a particular binary variable to 0 or 1,
and the corresponding restricted LP relaxations
are solved that in turn yield a lower bound for
any of their descendant nodes. In particular, the
following properties are exploited in the branch-
and-bound search:

• Anynode (initial, intermediate, leaf node) that
leads to feasible LP solution corresponds to a
valid upper bound to the solution of theMILP
problem 93.

• Any intermediate node with an infeasible LP
solution has infeasible leaf nodes and can be
fathomed (i.e., all remaining children of this
node can be eliminated).

• If the LP solution at an intermediate node is
not less than an existing integer solution, then
the node can be fathomed.

These properties lead to pruning of the nodes
in the search tree. Branching then continues in
the tree until the upper and lower bounds con-
verge.
The basic concepts outlined above lead to a

branch-and-bound algorithm with the following
features. LP solutions at intermediate nodes are
relatively easy to calculate since they can be ef-
fectively updated with the dual simplex method.
The selection of binary variables for branching,
known as the branching rule, is based on a num-
ber of different possible criteria; for instance,
choosing the fractional variable closest to 0.5, or
the one involving the largest of the smallest pseu-
docosts for each fractional variable. Branching
strategies to navigate the tree take a number of
forms. More common depth-first strategies ex-
pand themost recent node to a leaf node or infea-
sible node and then backtrack to other branches
in the tree. These strategies are simple to pro-
gram and require little storage of past nodes. On
the other hand, breadth-first strategies expand
all the nodes at each level of the tree, select the
nodewith the lowest objective function, and then
proceed until the leaf nodes are reached. Here,
more storage is required, but generally fewer
nodes are evaluated than in depth-first search.
In practice, a combination of both strategies is

commonly used: branch on the dichotomy 0–1
at each node (i.e., like breadth-first), but expand
as in depth-first. Additional description of these
strategies can be found in [237].

Example:To illustrate the branch-and-bound
approach, we consider the MILP:

Min Z=x+y1+2y2+3y3

s.t.−x+3y1+y2+2y3≤0

−4y1−8y2−3y3≤−10

x≥0,y1,y2,y3={0,1}

(94)

The solution to problem94 is given by x = 4, y1 =
1, y2 = 1, y3 = 0, and Z = 7. Here we use a depth-
first strategy and branch on the variables closest
to zero or one. Figure 45 shows the progress of
the branch-and-bound algorithm as the binary
variables are selected and the bounds are up-
dated. The sequence numbers for each node in
Figure 45 show the order in which they are pro-
cessed. The grayed partitions correspond to the
deleted nodes and at termination of the algo-
rithm we see that Z = 7 and an integer solution
is obtained at an intermediate node where coin-
cidentally y3 = 0.
Mixed integer linear programming (MILP)

methods and codes have been available and
applied to many practical problems for more
than twenty years (e.g., [237]. The LP-based
branch-and-bound method [231] has been im-
plemented in powerful codes such as OSL,
CPLEX, and XPRESS. Recent trends in MILP
include the development of branch-and-price
[238] and branch-and-cut methods such as the
lift-and-project method [228] in which cutting
planes are generated as part of the branch-and-
bound enumeration. See also [235] for a recent
review on MILP. A description of several MILP
solvers can also be found in the NEOS Software
Guide.

Mixed Integer Nonlinear Programming The
most basic form of an MINLP problem when
represented in algebraic form is as follows:

min z=f (x,y)

s.t. gj (x,y)≤0 j∈J
x∈X, y∈Y

(P1) (95)

where f (·), g(·) are convex, differentiable func-
tions, J is the index set of inequalities, and
x and y are the continuous and discrete
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variables, respectively. The set X is com-
monly assumed to be a convex compact set,
e.g., X=

{
x|x∈RRRn, Dx≤d, xL≤x≤xU

}
; the

discrete set Y corresponds to a polyhedral
set of integer points, Y = {y|x∈Zm, Ay≤a},
which in most applications is restricted to
0–1 values, y∈ {0,1}m . In most applications
of interest the objective and constraint func-
tions f (·), g(·) are linear in y (e.g., fixed
cost charges and mixed-logic constraints):
f (x,y) =cT y+r (x) , g (x,y) =By+h (x).
Methods that have addressed the solu-

tion of problem 95 include the branch-
and-bound method (BB) [239 – 243], gener-
alized Benders decomposition (GBD) [244],
outer-approximation (OA) [245 – 247], LP/NLP
based branch-and-bound [248], and extended
cutting plane method (ECP) [249].
There are three basic NLP subproblems that

can be considered for problem 95:

a) NLP relaxation

MinZkLB=f (x,y)

s.t. gj (x.y)≤0 j∈J
x∈X, y∈YR
yi≤αki i∈IkFL
yi≥βki i∈IkFU

(NLP1) (96)

where YR is the continuous relaxation of
the set Y, and IkFL, I

k
FU are index sub-

sets of the integer variables yi , i∈ I which
are restricted to lower and upper bounds
αki , β

k
i at the k-th step of a branch-

and-bound enumeration procedure. Note
that αki =�yli�,βki =�ymi �, l<k, m<k, where
yli,y

m
i are noninteger values at a previous step,

and �·�, �·� are the floor and ceiling functions,
respectively.
Also note that if IkFU=IkFL=∅ (k=0), prob-
lem 96 corresponds to the continuous NLP
relaxation of problem 95. Except for few
and special cases, the solution to this prob-
lem yields in general a noninteger vector for
the discrete variables. Problem 96 also corre-
sponds to the k-th step in a branch-and-bound
search. The optimal objective function Zo

LB
provides an absolute lower bound to prob-
lem 95; for m≥ k, the bound is only valid for
IkFL⊂ImFL, I

k
FU⊂ImFL.

b) NLP subproblem for fixed yk :
Min ZkU = f(x,yk)

s.t. gj(x,yk)≤ 0 j∈J
x∈X

(97)

which yields an upper bound Zk
U to problem

95 provided problem 97 has a feasible solu-
tion. When this is not the case, we consider
the next subproblem:

c) Feasibility subproblem for fixed yk:
Min u

s.t. gj(x,yk)≤u j∈J
x∈X, u∈R1

(98)

which can be interpreted as the minimization
of the infinity-norm measure of infeasibility
of the corresponding NLP subproblem. Note
that for an infeasible subproblem the solution
of problem 98 yields a strictly positive value
of the scalar variable u.

Figure 46. Geometrical interpretation of linearizations in
master problem 99
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The convexity of the nonlinear functions is
exploited by replacing themwith supporting hy-
perplanes, which are generally, but not necessar-
ily, derived at the solution of the NLP subprob-
lems. In particular, the new values yK (or (xK ,
yK ) are obtained from a cutting-plane MILP
problem that is based on the K points (xk , yk ), k
= 1. . .K, generated at the K previous steps:

MinZKL =α
st α≥f(xk,yk)

+∇f(xk,yk)T

 x−xk

y−yk




gj(xk,yk)

+∇gj(xk,yk)
T


 x−xk

y−yk


≤0 j∈Jk




k=1,. . .K

x∈X, y∈Y
(99)

where Jk ⊆ J. When only a subset of lineariza-
tions is included, these commonly correspond
to violated constraints in problem 95. Alterna-
tively, it is possible to include all linearizations
in problem 99. The solution of 99 yields a valid
lower bound Zk

L to problem 95. This bound is
nondecreasing with the number of linearization
pointsK. Note that since the functions f (x,y) and
g(x,y) are convex, the linearizations in problem
99 correspond to outer approximations of the
nonlinear feasible region in problem 95. A ge-
ometrical interpretation is shown in Figure 46,
where it can be seen that the convex objective
function is being underestimated, and the con-
vex feasible region overestimated with these lin-
earizations.

Algorithms. The different methods can be
classified according to their use of the subprob-
lems 96–98, and the specific specialization of
the MILP problem 99, as seen in Figure 47. In
theGBD andOAmethods (case b), as well in the
LP/NLP-based branch-and-bound mehod (case
d), problem 98 is solved if infeasible subprob-
lems are found. Each of themethods is explained
next in terms of the basic subproblems.

Branch and Bound. While the earlier work
in branch and bound (BB) was aimed at lin-
ear problems [231] this method can also be ap-
plied to nonlinear problems [239 – 243]. The

BB method starts by solving first the continu-
ous NLP relaxation. If all discrete variables take
integer values the search is stopped. Otherwise,
a tree search is performed in the space of the
integer variables yi , i∈I. These are successively
fixed at the corresponding nodes of the tree, giv-
ing rise to relaxed NLP subproblems of the form
(NLP1) which yield lower bounds for the sub-
problems in the descendant nodes. Fathoming of
nodes occurs when the lower bound exceeds the
current upper bound, when the subproblem is in-
feasible, or when all integer variables yi take on
discrete values. The last-named condition yields
an upper bound to the original problem.

Figure 47.Major steps in the different algorithms

The BBmethod is generally only attractive if
the NLP subproblems are relatively inexpensive
to solve, or when only few of them need to be
solved. This could be either because of the low
dimensionality of the discrete variables, or be-
cause the integrality gap of the continuous NLP
relaxation of 95 is small.

Outer Approximation [245 – 247]. The
OA method arises when NLP subproblems 97
and MILP master problems 99 with Jk = J are
solved successively in a cycle of iterations to
generate the points (xk , yk ). Since the master
problem 99 requires the solution of all feasi-
ble discrete variables yk , the following MILP
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relaxation is considered, assuming that the so-
lution of K different NLP subproblems (K =
|KFS∪KIS|), where KFS is a set of solutions
from problem 97, and KIS set of solutions from
problem 98 is available:

MinZKL =α

st α≥f(xk,yk)

+∇f(xk,yk)T

 x−xk

y−yk




gj(xk,yk)

+∇gj(xk,yk)
T


 x−xk

y−yk


≤0 j∈J




k=1,. . .K

x∈X, y∈Y
(100)

Given the assumption on convexity of the func-
tions f (x,y) and g(x,y), it can be proved that the
solution of problem 100 Zk

L corresponds to a
lower bound of the solution of problem 95. Note
that this property can be verified in Figure 46.
Also, since function linearizations are accumu-
lated as iterations proceed, the master problems
100 yield a nondecreasing sequence of lower
boundsZ1

L. . .≤Zk
L. . .Z

k
L since linearizations are

accumulated as iterations k proceed.
The OA algorithm as proposed byDuran and

Grossmann consists of performing a cycle ofma-
jor iterations, k = 1,..K, in which problem 97 is
solved for the corresponding yK , and the relaxed
MILPmaster problem 100 is updated and solved
with the corresponding function linearizations
at the point (xk ,yk ) for which the correspond-
ing subproblem NLP2 is solved. If feasible, the
solution to that problem is used to construct the
first MILP master problem; otherwise a feasi-
bility problem 98 is solved to generate the cor-
responding continuous point [247]. The initial
MILP master problem 100 then generates a new
vector of discrete variables. The subproblems
97 yield an upper bound that is used to define
the best current solution, UBk=min

k

{
Zk
U

}
. The

cycle of iterations is continued until this upper
bound and the lower bound of the relaxed mas-
ter problem Zk

L are within a specified tolerance.
Oneway to avoid solving the feasibility problem
98 in the OA algorithm when the discrete vari-
ables in problem 95 are 0–1, is to introduce the
following integer cut whose objective is to make

infeasible the choice of the previous 0–1 values
generated at the K previous iterations [245]:∑

i∈Bk
yi−

∑
i∈Nk

yi≤
∣∣∣Bk∣∣∣−1 k=1,. . .K (101)

where Bk=
{
i|yki =1

}
, Nk=

{
i|yki =0

}
, k=1,

. . .K. This cut becomes veryweak as the dimen-
sionality of the 0–1 variables increases. How-
ever, it has the useful feature of ensuring that
new 0–1 values are generated at each major it-
eration. In this way the algorithm will not return
to a previous integer point when convergence is
achieved. Using the above integer cut the termi-
nation takes place as soon as ZK

L ≥UBK .
The OA algorithm trivially converges in one

iteration if f (x,y) and g(x,y) are linear. This prop-
erty simply follows from the fact that if f (x,y)
and g(x,y) are linear in x and y the MILP master
problem 100 is identical to the original problem
95. It is also important to note that the MILP
master problem need not be solved to optimal-
ity.

Generalized Benders Decomposition
(GBD) [244]. The GBD method [250] is
similar to the outer-approximation method.
The difference arises in the definition of
the MILP master problem 99. In the GBD
method only active inequalities are considered
Jk= {j| gj(xk, yk)=0} and the set x∈X is
disregarded. In particular, consider an outer-
approximation given at a given point (xk , yk )

α≥f (xk,yk)+∇f
(
xk,yk

)T  x−xk

y−yk




g
(
xk,yk

)
+∇g

(
xk,yk

)T  x−xk

y−yk


≤0

(102)

where for a fixed yk the point xk corresponds
to the optimal solution to problem 97. Making
use of the Karush – Kuhn – Tucker conditions
and eliminating the continuous variables x, the
inequalities in 102 can be reduced as follows
[248]:

α≥f
(
xk,yk

)
+∇yf

(
xk,yk

)T (
y−yk

)
+(

µk
)T [

g
(
xk,yk

)
+∇yg

(
xk,yk

)T (
y−yk

)]
(103)

which is the Lagrangian cut projected in the y-
space. This can be interpreted as a surrogate con-
straint of the equations in 102, because it is ob-
tained as a linear combination of these.
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For the case when there is no feasible solu-
tion to problem 97, then if the point xk is ob-
tained from the feasibility subproblem (NLPF),
the following feasibility cut projected in y can
be obtained using a similar procedure.(
λk
)T [

g
(
xk,yk

)
+∇yg

(
xk,yk

)T(
y−yk

)]
≤0

(104)

In this way, problem 99 reduces to a problem
projected in the y-space:

Min ZKL =α

stα≥ f
(
xk,yk

)
+∇yf

(
xk,yk

)T (
y−yk)+

(
µk
)T [

g
(
xk,yk

)
+∇yg

(
xk,yk

)T (
y−yk)]

k∈KFS

(105)

(
λk
)T [

g
(
xk,yk

)
+∇yg

(
xk,yk

)T (
y−yk)]≤0

k∈KIS

x∈X, α∈R1

where KFS is the set of feasible subproblems
97, and KIS the set of infeasible subproblems
whose solution is given by problem 98. Also
|KFS∪KIS|=K. Since master problem 105 can
be derived frommaster problem 100, in the con-
text of problem 95, GBD can be regarded as a
particular case of the outer-approximation al-
gorithm. In fact one can prove that given the
same set of K subproblems, the lower bound
predicted by the relaxed master problem 100 is
greater than or equal to that predicted by the re-
laxed master problem 105 [245]. This proof fol-
lows from the fact that the Lagrangian and fea-
sibility cuts 103 and 104 are surrogates of the
outer-approximations 102. Given the fact that
the lower bounds of GBD are generally weaker,
this method commonly requires a larger num-
ber of cycles or major iterations. As the num-
ber of 0–1 variables increases this difference
becomes more pronounced. This is to be ex-
pected since only one new cut is generated per
iteration. Therefore, user-supplied constraints
must often be added to the master problem to
strengthen the bounds.Also, it is sometimes pos-
sible to generate multiple cuts from the solution
of an NLP subproblem in order to strengthen the
lower bound [251]. As for the OA algorithm,
the trade-off is that while it generally predicts
stronger lower bounds than GBD, the computa-
tional cost for solving the master problem (M-
OA) is greater, since the number of constraints

added per iteration is equal to the number of non-
linear constraints plus the nonlinear objective.
If problem 95 has zero integrality gap, the

GBD algorithm converges in one iteration once
the optimal (x*, y*) is found [252]. This prop-
erty implies that the only case in which one can
expect the GBDmethod to terminate in one iter-
ation is that in which the initial discrete vector is
the optimum, andwhen the objective value of the
NLP relaxation of problem 95 is the same as the
objective of the optimal mixed-integer solution.

Extended Cutting Plane (ECP) [249]. The
ECP method, which is an extension of Kelley’s
cutting-plane algorithm for convex NLP [253],
does not rely on the use of NLP subproblems
and algorithms. It relies only on the iterative so-
lution of problem 99 by successively adding a
linearization of the most violated constraint at
the predicted point (xk , yk ):

Jk=
{
ĵ∈arg

{
max
j∈J

gj

(
xk,yk

)}}

Convergence is achieved when the maximum
constraint violation lies within the specified tol-
erance. The optimal objective value of problem
99 yields a nondecreasing sequence of lower
bounds. It is of course also possible to either
add to problem 99 linearizatons of all the vio-
lated constraints in the set Jk , or linearizations
of all the nonlinear constraints j∈ J. In the ECP
method the objective must be defined as a linear
function, which can easily be accomplished by
introducing a new variable to transfer nonlinear-
ities in the objective as an inequality.
Note that since the discrete and continuous

variables are converged simultaneously, theECP
method may require a large number of itera-
tions. However, this method shares with the OA
method Property 2 for the limiting case when all
the functions are linear.

LP/NLP-Based Branch and Bound [248].
This method is similar in spirit to a branch-and-
cut method, and avoids the complete solution of
theMILPmaster problem (M-OA) at eachmajor
iteration. The method starts by solving an initial
NLP subproblem, which is linearized as in (M-
OA). The basic idea consists then of performing
an LP-based branch-and-bound method for (M-
OA) in which NLP subproblems 97 are solved at
those nodes in which feasible integer solutions
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are found. By updating the representation of the
master problem in the current open nodes of the
tree with the addition of the corresponding lin-
earizations, the need to restart the tree search is
avoided.
This method can also be applied to the GBD

and ECP methods. The LP/NLP method com-
monly reduces quite significantly the number of
nodes to be enumerated. The trade-off, however,
is that the number of NLP subproblems may in-
crease. Computational experience has indicated
that often the number of NLP subproblems re-
mains unchanged. Therefore, this method is bet-
ter suited for problems in which the bottleneck
corresponds to the solution of the MILP master
problem. Leyffer [254] has reported substantial
savings with this method.

Example: Consider the following MINLP
problem, whose objective function and con-
straints contain nonlinear convex terms

MinZ=y1+1.5y2+0.5y3+x21+x
2
2

s.t. (x1−2)2−x2≤0

x1−2y1≥0

x1−x2−4 (1−y2)≥0

x2−y2≥0

x1+x2≥3y3

y1+y2+y3≥1

0≤x1≤4,0≤x2≤4

y1,y2,y3=0,1

(106)

The optimal solution of this problem is given by
y1 = 0, y2 = 1, y3 = 0, x1 = 1, x2 = 1, Z = 3.5. Fig-
ure 48 shows the progress of the iterations with
the OA and GBD methods, while the table lists
the number of NLP and MILP subproblems that
are solvedwith each of themethods. For the case
of the MILP problems the total number of LPs
solved at the branch-and-bound nodes are also
reported.

Extensions of MINLP Methods. Exten-
sions of the methods described above include
a quadratic approximation to (RM-OAF) [247]
using an approximation of the Hessian matrix.
The quadratic approximations can help to re-
duce the number of major iterations, since an
improved representation of the continuous space

is obtained. This, however, comes at the price
of having to solve an MIQP instead of an MILP
at each iteration.

Figure 48. Progress of iterations with OA and GBD meth-
ods, and number of subproblems for the BB, OA, GBD, and
ECP methods.

The master problem 100 can involve a rather
large number of constraints, due to the accumu-
lation of linearizations. One option is to keep
only the last linearization point, but this can
lead to nonconvergence even in convex prob-
lems, since then the monotonic increase of the
lower bound is not guaranteed. As shown [248],
linear approximations to the nonlinear objective
and constraints can be aggregated with anMILP
master problem that is a hybrid of the GBD and
OA methods.
For the casewhen linear equalities of the form

h(x, y) = 0 are added to problem 95 there is no
major difficulty, since these are invariant to the
linearization points. If the equations are nonlin-
ear, however, there are two difficulties. First, it
is not possible to enforce the linearized equali-
ties atK points. Second, the nonlinear equations
may generally introduce nonconvexities, unless
they relax as convex inequalities [255]. Kocis
and Grossmann [256] proposed an equality re-
laxation strategy in which the nonlinear equali-
ties are replaced by the inequalities

Tk∇h
(
xk,yk

)T  x−xk

y−yk


≤0 (107)
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where T k=
{
tkii

}
, and tkii=sign

(
λki

)
sign in

whichλki is themultiplier associated to the equa-
tionhi (x, y) = 0.Note that if these equations relax
as the inequalities h(x, y)≤ 0 for all y and h(x,
y) is convex, this is a rigorous procedure. Other-
wise, nonvalid supports may be generated. Also,
in the master problem 105 of GBD, no special
provision is required to handle equations, since
these are simply included in theLagrangian cuts.
However, similar difficulties as in OA arise if the
equations do not relax as convex inequalities.
When f (x,y) and g(x,y) are nonconvex in

problem 95, or when nonlinear equalities h(x,
y) = 0 are present, two difficulties arise. First,
the NLP subproblems 96 – 98 may not have a
unique local optimumsolution. Second, themas-
ter problem (M-MIP) and its variants (e.g., M-
MIPF, M-GBD, M-MIQP) do not guarantee a
valid lower boundZK

L or a valid bounding repre-
sentationwithwhich the global optimummay be
cut off.
Rigorous global optimization approaches for

addressing nonconvexities in MINLP problems
can be developed when special structures are
assumed in the continuous terms (e.g. bilinear,
linear fractional, concave separable). Specifi-
cally, the idea is to use convex envelopes or un-
derestimators to formulate lower-bounding con-
vexMINLP problems. These are then combined
with global optimization techniques for contin-
uous variables [206, 207, 209, 214, 216, 222,
257], which usually take the form of spatial
branch-and-bound methods. The lower bound-
ing MINLP problem has the general form,

MinZ=f (x,y)

s.t. gj (x,y)≤0 j∈J
x∈X, y∈Y

(108)

where f, g are valid convex underestimators
such that f (x,y)≤f (x,y) and the inequalities
g (x,y)≤0 are satisfied if g (x,y)≤0. A typical
example of convex underestimators are the con-
vex envelopes for bilinear terms [208].
Examples of global optimization methods

for MINLP problems include the branch-and-
reduce method [209, 210], the α-BB method
[212], the reformulation/spatial branch-and-
bound search method [258], the branch-and-cut
method [259], and the disjunctive branch-and-
bound method [260]. All these methods rely on
a branch-and-bound procedure. The difference

lies in how to perform the branching on the dis-
crete and continuous variables. Some methods
perform the spatial tree enumeration on both
the discrete and continuous variables of prob-
lem108.Othermethods performa spatial branch
and bound on the continuous variables and solve
the corresponding MINLP problem 108 at each
node using any of the methods reviewed above.
Finally, other methods branch on the discrete
variables of problem 108, and switch to a spa-
tial branch and bound on nodes where a fea-
sible value for the discrete variables is found.
Themethods also rely on procedures for tighten-
ing the lower and upper bounds of the variables,
since these have a great effect on the quality of
the underestimators. Since the tree searches are
not finite (except for ε convergence), thesemeth-
ods can be computationally expensive.However,
their major advantage is that they can rigorously
find the global optimum. Specific cases of non-
convexMINLPproblems have been handled.An
example is the work of Pörn and Westerlund
[261], who addressed the solution of MINLP
problems with pseudoconvex objective function
and convex inequalities through an extension of
the ECP method.
The other option for handling nonconvexities

is to apply a heuristic strategy to try to reduce
asmuch as possible the effect of nonconvexities.
While not being rigorous, this requiresmuch less
computational effort. We describe here an ap-
proach for reducing the effect of nonconvexities
at the level of the MILP master problem.

Viswanathan andGrossmann [262] proposed
to introduce slacks in the MILP master prob-
lem to reduce the likelihood of cutting off feasi-
ble solutions. This master problem (augmented
penalty/equality relaxation) has the form:

minZK=α+
K∑
k=1

wkp p
k+wkq qk

s.t. α≥f (xk, yk)
+∇f

(
xk, yk

)
T


 x − xk

y − yk




Tk∇h
(
xk, yk

)T

 x− xk

y − yk


≤pk

g
(
xk, yk

)
+∇g

(
xk, yk

)T  x− xk

y − yk




≤qk




k=1,. . .K

(109)
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∑

i∈Bk
yi−

∑
i∈Nk

yi≤
∣∣∣Bk∣∣∣−1 k=1,. . .K

x∈X,y∈Y , α∈R1, pk,qk≥0

where wk
p , w

k
q are weights that are chosen suffi-

ciently large (e.g., 1000 times the magnitude of
the Lagrange multiplier). Note that if the func-
tions are convex then the MILP master problem
109 predicts rigorous lower bounds to problem
95 since all the slacks are set to zero.

Computer Codes for MINLP. Computer
codes for solving MINLP problems include the
following. The program DICOPT [262] is an
MINLP solver that is available in the modeling
system GAMS [263]. The code is based on the
master problem 109 and the NLP subproblems
97. This code also uses relaxed 96 to generate the
first linearization for the above master problem,
with which the user need not specify an initial
integer value. Also, since bounding properties of
problem 109 cannot be guaranteed, the search
for nonconvex problems is terminated when
there is no further improvement in the feasible
NLP subproblems. This is a heuristic that works
reasonably well in many problems. Codes that
implement the branch-and-bound method using
subproblems 96 include the code MINLP BB,
which is based on an SQP algorithm [243] and
is available in AMPL, the code BARON [264],
which also implements global optimization ca-
pabilities, and the code SBB, which is available
in GAMS [263]. The code a-ECP implements
the extended cutting-plane method [249], in-
cluding the extension by Pörn and Westerlund
[261]. Finally, the codeMINOPT [265] also im-
plements the OA andGBDmethods, and applies
them to mixed-integer dynamic optimization
problems. It is difficult to derive general con-
clusions on the efficiency and reliability of all
these codes and their corresponding methods,
since no systematic comparison has been made.
However, one might anticipate that branch-and-
bound codes are likely to perform better if the
relaxation of the MINLP is tight. Decomposi-
tion methods based on OA are likely to perform
better if the NLP subproblems are relatively ex-
pensive to solve, while GBD can perform with
some efficiency if the MINLP is tight and there
are many discrete variables. ECP methods tend
to perform well on mostly linear problems.

Logic-Based Optimization. Given difficul-
ties in the modeling and solution of mixed in-
teger problems, the following major approaches
based on logic-based techniques have emerged:
generalized disjunctive programming 110 [266],
mixed-logic linear programming (MLLP) [267],
and constraint programming (CP) [268]. The
motivations for this logic-based modeling has
been to facilitate the modeling, reduce the com-
binatorial search effort, and improve the han-
dling of nonlinearities. In this section we mostly
concentrate on generalized disjunctive program-
ming and provide a brief reference to constraint
programming. A general review of logic-based
optimization can be found in [269, 309].
Generalized disjunctive programming in 110

[266] is an extension of disjunctive program-
ming [270] that provides an alternative way of
modelingMILP andMINLPproblems. The gen-
eral formulation 110 is as follows:

MinZ=
∑
k∈Kck+f (x)

s.t. g (x)≤0

∨
j∈Jk




Yjk

hjk (x)≤0

ck=γjk


 , k∈K

Ω (Y )=True

x∈Rn, c∈Rm, Y ∈{true, false}m

(110)

where Y jk are the Boolean variables that decide
whether a term j in a disjunction k ∈K is true or
false, and x are continuous variables. The objec-
tive function involves the term f (x) for the con-
tinuous variables and the charges ck that depend
on the discrete choices in each disjunction k ∈K.
The constraints g(x)≤ 0 hold regardless of the
discrete choice, and hjk (x)≤ 0 are conditional
constraints that hold when Y jk is true in the j-th
term of the k-th disjunction. The cost variables
ck correspond to the fixed charges, and are equal
to γjk if the Boolean variable Y jk is true. Ω(Y )
are logical relations for the Boolean variables
expressed as propositional logic.
Problem 110 can be reformulated as an

MINLP problem by replacing the Boolean vari-
ables by binary variables yjk ,
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MinZ=
∑
k∈K

∑
j∈Jkγjkyjk+f (x)

s.t. g (x)≤0

hjk (x)≤Mjk

(
1−yjk

)
, j∈Jk, k∈K (BM)∑

j∈Jkyjk=1, k∈K
Ay≤a
0≤x≤xU , yjk∈ {0,1} , j∈Jk, k∈K

(111)

where the disjunctions are replaced by “Big-
M” constraints which involve a parameter Mjk
and binary variables yjk . The propositional logic
statements Ω(Y ) = True are replaced by the lin-
ear constraints Ay≤ a [271] and [272]. Here we
assume that x is a nonnegative variable with
finite upper bound xU. An important issue in
model 111 is how to specify a valid value for the
Big-M parameterMjk . If the value is too small,
then feasible points may be cut off. IfMjk is too
large, then the continuous relaxation might be
too loose and yield poor lower bounds. There-
fore, finding the smallest valid value for Mjk
is desired. For linear constraints, one can use
the upper and lower bound of the variable x to
calculate the maximum value of each constraint,
which then can be used to calculate a valid value
ofMjk . For nonlinear constraints one can in prin-
ciple maximize each constraint over the feasible
region, which is a nontrivial calculation.

Lee and Grossmann [273] have derived the
convex hull relaxation of problem 110. The ba-
sic idea is as follows. Consider a disjunction k
∈K that has convex constraints

∨
j∈Jk


 Yjk
hjk (x)≤0
c=γjk




0≤x≤xU ,c≥0

(112)

where hjk (x) are assumed to be convex and
bounded over x. The convex hull relaxation of
disjunction 112 [242] is given as follows:

x=
∑
j∈Jkv

jk, c=
∑
j∈Jλjkγjk

0≤vjk≤λjkxUjk, j∈Jk∑
j∈Jkλjk=1, 0≤λjk≤1, j∈Jk (CH)

λjkhjk
(
vjk/λjk

)≤0, j∈Jk
x,c,vjk≥0, j∈Jk

(113)

where vjk are disaggregated variables that are as-
signed to each term of the disjunction k ∈K, and

λjk are the weight factors that determine the fea-
sibility of the disjunctive term. Note that when
λjk is 1, then the j-th term in the k-th disjunc-
tion is enforced and the other terms are ignored.
The constraints λjkhjk

(
vjk/λjk

)
are convex if

hjk (x) is convex [274, p. 160]. A formal proof
can be found in [242]. Note that the convex hull
113 reduces to the result by Balas [275] if the
constraints are linear. Based on the convex hull
relaxation 113, Lee and Grossmann [273] pro-
posed the following convex relaxation program
of problem 110.

MinZL=
∑
k∈K

∑
j∈Jkγjkλjk+f (x)

s.t. g (x)≤0

x=
∑
j∈Jkv

jk,
∑
j∈Jkλjk=1, k∈K (CRP)

0≤x, vjk≤xU, 0≤λjk≤1, j∈Jk, k∈K
λjkhjk

(
vjk/λjk

)≤0, j∈Jk, k∈K
Aλ≤a
0≤x, vjk≤xU, 0≤λjk≤1, j∈Jk, k∈K

(114)

where xU is a valid upper bound for x and v. Note
that the number of constraints and variables in-
creases in problem 114 compared with problem
110. Problem 114 has a unique optimal solution
and it yields a valid lower bound to the optimal
solution of problem 110 [273]. Grossmann and
Lee [276] proved that problem 114 has the use-
ful property that the lower bound is greater than
or equal to the lower bound predicted from the
relaxation of problem 111.
Further description of algorithms for disjunc-

tive programming can be found in [277].

Constraint Programming. Constraint pro-
gramming (CP) [268, 269] is a relatively new
modeling and solution paradigm that was orig-
inally developed to solve feasibility problems,
but it has been extended to solve optimiza-
tion problems as well. Constraint programming
is very expressive, as continuous, integer, and
Boolean variables are permitted and, moreover,
variables canbe indexedbyother variables.Con-
straints can be expressed in algebraic form (e.g.,
h(x)≤ 0), as disjunctions (e.g., [A1x≤ b1]∨A2x
≤ b2]), or as conditional logic statements (e.g., If
g(x)≤ 0 then r(x)≤ 0). In addition, the language
can support special implicit functions such as
the all-different (x1, x2, . . .xn ) constraint for
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assigning different values to the integer vari-
ables x1, x2, . . .xn . The language consists of
C ++ procedures, although the recent trend has
been to provide higher level languages such as
OPL. Other commercial CP software packages
include ILOG Solver [278], CHIP [279], and
ECLiPSe [280].

10.6. Dynamic Optimization

Interest in dynamic simulation and optimiza-
tion of chemical processes has increased sig-
nificantly during the last two decades. Chem-
ical processes are modeled dynamically using
differential-algebraic equations (DAEs), con-
sisting of differential equations that describe the
dynamic behavior of the system, such as mass
and energy balances, and algebraic equations
that ensure physical and thermodynamic rela-
tions. Typical applications include control and
scheduling of batch processes; startup, upset,
shut-down, and transient analysis; safety stud-
ies; and the evaluation of control schemes. We
state a general differential-algebraic optimiza-
tion problem 115 as follows:

Min Φ (z (tf) ;y (tf) ;u (tf) ;tf ;p)

s.t. F (dz/dt; z (t) ; u (t) ; t; p)=0, z (0)=z0

Gs [z (ts) ; y (ts) ; u (ts) ; ts; p)] =0

zL≤z (t)≤xU

yL≤y (t)≤yU

uL≤u (t)≤yU

pL≤p≤pU

ttf≤tf≤tUf

(115)

where Φ is a scalar objective function at final
time tf , andF areDAEconstraints,Gs additional
point conditions at times ts, z(t) differential state
profile vectors, y(t) algebraic state profile vec-
tors, u(t) control state profile vectors, and p is a
time-independent parameter vector.
We assume, without loss of generality, that

the index of the DAE system is one, consistent
initial conditions are available, and the objective
function is in the above Mayer form. Otherwise,
it is easy to reformulate problems to this form.
Problem 115 can be solved either by the vari-
ational approach or by applying some level of

discretization that converts the original continu-
ous time problem into a discrete problem. Early
solution strategies, known as indirect methods,
were focused on solving the classical variational
conditions for optimality. On the other hand,
methods that discretize the original continuous
time formulation can be divided into two cate-
gories, according to the level of discretization.
Here we distinguish between the methods that
discretize only the control profiles (partial dis-
cretization) and those that discretize the state and
control profiles (full discretization). Basically,
the partially discretized problem can be solved
either bydynamic programmingor by applying a
nonlinear programming (NLP) strategy (direct-
sequential). A basic characteristic of thesemeth-
ods is that a feasible solution of theDAE system,
for given control values, is obtained by integra-
tion at every iteration of the NLP solver. The
main advantage of these approaches is that, for
the NLP solver, they generate smaller discrete
problems than full discretization methods.
Methods that fully discretize the continuous

time problem also apply NLP strategies to solve
the discrete system and are known as direct-
simultaneous methods. These methods can use
different NLP and discretization techniques, but
the basic characteristic is that they solve theDAE
system only once, at the optimum. In addition,
they have better stability properties than partial
discretization methods, especially in the pres-
ence of unstable dynamic modes. On the other
hand, the discretized optimization problem is
larger and requires large-scaleNLP solvers, such
as SOCS, CONOPT, or IPOPT.
With this classification we take into account

the degree of discretization used by the differ-
ent methods. Below we briefly present the de-
scription of the variational methods, followed
by methods that partially discretize the dynamic
optimization problem, and finally we consider
full discretization methods for problem 115.

Variational Methods. These methods are
based on the solution of the first-order necessary
conditions for optimality that are obtained from
Pontryagin’s maximum principle [281, 282]. If
we consider a version of problem 115 without
bounds, the optimality conditions are formulated
as a set of DAEs:
∂F (z,y,u,p,t)

∂z′ λ′=
∂H

∂z
=
∂F (z,y,u,p,t)

∂z
λ (116a)
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F (z,y,u,p,t)=0 (116b)

Gf
(
z,y,u,p,tf

)
=0 (116c)

Gs (z,y,u,p,ts)=0 (116d)

∂H

∂y
=
∂F (z,y,u,p,t)

∂y
λ=0 (116e)

∂H

∂u
=
∂F (z,y,u,p,t)

∂u
λ=0 (116f)

tf∫
0

∂F (z,y,u,p,t)
∂p

λ dt=0 (116g)

where the Hamiltonian H is a scalar function of
the formH(t) =F(z, y, u, p, y)Tλ(t) and λ(t) is a
vector of adjoint variables. Boundary and jump
conditions for the adjoint variables are given by:

∂F
∂z′ λ (tf)+ ∂Φ

∂z
+ ∂Gf

∂z
vf=0

∂F
∂z′ λ

(
t−s
)
+ ∂Gs

∂z
vs= ∂F

∂z′λ
(
t+s

) (117)

where vf , vs are the multipliers associated with
the final time and point constraints, respectively.
The most expensive step lies in obtaining a solu-
tion to this boundary value problem. Normally,
the state variables are given as initial condi-
tions, and the adjoint variables as final condi-
tions. This formulation leads to boundary value
problems (BVPs) that can be solved by a num-
ber of standard methods including single shoot-
ing, invariant embedding, multiple shooting, or
some discretization method such as collocation
on finite elements or finite differences. Also the
point conditions lead to an additional calcula-
tion loop to determine the multipliers vf and vs.
On the other hand, when bound constraints are
considered, the above conditions are augmented
with additional multipliers and associated com-
plementarity conditions. Solving the resulting
system leads to a combinatorial problem that is
prohibitively expensive except for small prob-
lems.

Partial Discretization. With partial dis-
cretization methods (also called sequential
methods or control vector parametrization), only
the control variables are discretized. Given the
initial conditions and a given set of control
parameters, the DAE system is solved with a
differential algebraic equation solver at each

iteration. This produces the value of the ob-
jective function, which is used by a nonlinear
programming solver to find the optimal pa-
rameters in the control parametrization ν. The
sequential method is reliable when the system
contains only stable modes. If this is not the
case, finding a feasible solution for a given set
of control parameters can be very difficult. The
time horizon is divided into time stages and at
each stage the control variables are represented
with a piecewise constant, a piecewise linear,
or a polynomial approximation [283, 284]. A
common practice is to represent the controls as
a set of Lagrange interpolation polynomials.
For the NLP solver, gradients of the objec-

tive and constraint functions with respect to the
control parameters can be calculated with the
sensitivity equations of the DAE system, given
by:

∂F

∂z′
T

sk′+
∂F

∂z

T

sk+
∂F

∂y

T

wk+
∂F

∂qk

T

=0,

sk (0)=
∂z (0)
∂qk

k=1,. . .Nq (118)

where sk (t) =∂z(t)
∂qk

, wk (t) =∂y(t)
∂qk

, and qT =

[pT , νT]. As can be inferred from Equation 118,
the cost of obtaining these sensitivities is directly
proportional to Nq, the number of decision vari-
ables in the NLP. Alternately, gradients can be
obtained by integration of the adjoint Equations
116a, 116e, 116g [282, 285, 286] at a cost in-
dependent of the number of input variables and
proportional to the number of constraints in the
NLP.
Methods that are based on this approach can-

not treat directly the bounds on state variables,
because the state variables are not included in
the nonlinear programming problem. Instead,
most of the techniques for dealing with inequal-
ity path constraints rely on defining a measure
of the constraint violation over the entire hori-
zon, and then penalizing it in the objective func-
tion, or forcing it directly to zero through an
end-point constraint [287]. Other techniques ap-
proximate the constraint satisfaction (constraint
aggregation methods) by introducing an exact
penalty function [286, 288] or a Kreisselmeier–
Steinhauser function [288] into the problem.
Finally, initial value solvers that handle path

constraints directly have been developed [284].
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The main idea is to use an algorithm for con-
strained dynamic simulation, so that any admis-
sible combination of the control parameters pro-
duces an initial value problem that is feasible
with respect to the path constraints. The algo-
rithm proceeds by detecting activation and de-
activation of the constraints during the solution,
and solving the resulting high-index DAE sys-
tem and their related sensitivities.

Full Discretization. Full discretization
methods explicitly discretize all the variables
of the DAE system and generate a large-scale
nonlinear programming problem that is usually
solvedwith a successive quadratic programming
(SQP) algorithm. Thesemethods follow a simul-
taneous approach (or infeasible path approach);
that is, the DAE system is not solved at each iter-
ation; it is only solved at the optimum point. Be-
cause of the size of the problem, special decom-
position strategies are used to solve the NLP ef-
ficiently. Despite this characteristic, the simul-
taneous approach has advantages for problems
with state variable (or path) constraints and for
systems where instabilities occur for a range of
inputs. In addition, the simultaneous approach
can avoid intermediate solutions that may not
exist, are difficult to obtain, or require excessive
computational effort. There are mainly two dif-
ferent approaches to discretize the state variables
explicitly, multiple shooting [289, 290] and col-
location on finite elements [181, 191, 291].
With multiple shooting, time is discretized

into P stages and control variables are
parametrized using afinite set of control parame-
ters in each stage, as with partial discretization.
The DAE system is solved on each stage, i =
1,. . .P and the values of the state variables z(ti )
are chosen as additional unknowns. In this way a
set of relaxed, decoupled initial value problems
(IVP) is obtained:

F (dz/dt; z (t) ; y (t) ; νi; p)=0,

t∈ [ti−1, ti] , z (ti−1)=zi

zi+1−z (ti; zi; νi; p)=0, i=1, . . .P−1

(119)

Note that continuity among stages is treated
through equality constraints, so that the final so-
lution satisfies the DAE system. With this ap-
proach, inequality constraints for states and con-
trols can be imposed directly at the grid points,

but path constraints for the states may not be
satisfied between grid points. This problem can
be avoided by applying penalty techniques to
enforce feasibility, like the ones used in the se-
quential methods.
The resulting NLP is solved using SQP-type

methods, as described above. At each SQP iter-
ation, the DAEs are integrated in each stage and
objective and constraint gradientswith respect to
p, zi , and νi are obtained using sensitivity equa-
tions, as in problem 118. Compared to sequen-
tial methods, the NLP contains many more vari-
ables, but efficient decompositions have been
proposed [290] and many of these calculations
can be performed in parallel.
In collocation methods, the continuous time

problem is transformed into an NLP by ap-
proximating the profiles as a family of poly-
nomials on finite elements. Various polynomial
representations are used in the literature, in-
cluding Lagrange interpolation polynomials for
the differential and algebraic profiles [291]. In
[191] a Hermite–Simpson collocation form is
used, while Cuthrell and Biegler [292] and
Tanartkit and Biegler [293] use a monomial
basis for the differential profiles. All of these re-
presentations stem from implicit Runge–Kutta
formulae, and the monomial representation is
recommended because of smaller condition
numbers and smaller rounding errors. Control
and algebraic profiles, on the other hand, are ap-
proximated using Lagrange polynomials.
Discretizations of problem115using colloca-

tion formulations lead to the largest NLP prob-
lems, but these can be solved efficiently using
large-scale NLP solvers such as IPOPT and by
exploiting the structure of the collocation equa-
tions. Biegler et al. [181] provide a review of
dynamic optimizationmethods using simultane-
ous methods. These methods offer a number of
advantages for challenging dynamic optimiza-
tion problems, which include:

• Control variables can be discretized at the
same level of accuracy as the differential and
algebraic state variables. TheKKT conditions
of the discretized problem can be shown to be
consistent with the variational conditions of
problem 115. Finite elements allow for dis-
continuities in control profiles.

• Collocation formulations allow problems
with unstable modes to be handled in an
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efficient and well-conditioned manner. The
NLP formulation inherits stability properties
of boundary value solvers. Moreover, an ele-
mentwise decomposition has been developed
that pins down unstable modes in problem
115.

• Collocation formulations have been proposed
with moving finite elements. This allows
the placement of elements both for accurate
breakpoint locations of control profiles aswell
as accurate DAE solutions.

Dynamic optimization by collocation meth-
ods has been used for a wide variety of pro-
cess applications including batch process opti-
mization, batch distillation, crystallization, dy-
namic data reconciliation and parameter estima-
tion, nonlinear model predictive control, poly-
mer grade transitions and process changeovers,
and reactor design and synthesis. A review of
this approach can be found in [294].

10.7. Development of Optimization
Models

The most important aspect of a successful op-
timization study is the formulation of the op-
timization model. These models must reflect
the real-world problem so that meaningful op-
timization results are obtained, and they also
must satisfy the properties of the problem class.
For instance, NLPs addressed by gradient-based
methods require functions that are defined in the
variable domain and have bounded and continu-
ous first and second derivatives. Inmixed integer
problems, proper formulations are also needed
to yield good lower bounds for efficient search.
With increased understanding of optimization
methods and the development of efficient and
reliable optimization codes, optimization prac-
titioners now focus on the formulation of opti-
mization models that are realistic, well-posed,
and inexpensive to solve. Finally, convergence
properties of NLP, MILP, and MINLP solvers
require accurate first (and often second) deriva-
tives from the optimization model. If these con-
tain numerical errors (say, through finite differ-
ence approximations) then performance of these
solvers can deteriorate considerably. As a result
of these characteristics, modeling platforms are
essential for the formulation task. These are clas-

sified into two broad areas: optimization mod-
eling platforms and simulation platforms with
optimization.

Optimization modeling platforms provide
general purpose interfaces for optimization al-
gorithms and remove the need for the user to
interface to the solver directly. These platforms
allow the general formulation for all problem
classes discussed above with direct interfaces
to state of the art optimization codes. Three re-
presentative platforms are GAMS (General Al-
gebraic Modeling Systems), AMPL (A Mathe-
matical Programming Language), and AIMMS
(Advanced IntegratedMultidimensionalModel-
ing Software). All three require problem-model
input via a declarative modeling language and
provide exact gradient and Hessian information
through automatic differentiation strategies. Al-
though possible, these platforms were not de-
signed to handle externally added procedural
models. As a result, these platforms are best ap-
plied on optimization models that can be devel-
oped entirely within their modeling framework.
Nevertheless, these platforms are widely used
for large-scale research and industrial applica-
tions. In addition, theMATLABplatform allows
the flexible formulation of optimization models
aswell, although it currently has only limited ca-
pabilities for automatic differentiation and lim-
ited optimization solvers. More information on
these and othermodeling platforms can be found
on the NEOS server www-neos.mcs.anl.gov

Simulation platforms with optimization are
often dedicated, application-specific modeling
tools to which optimization solvers have been
interfaced. These lead to very useful optimiza-
tion studies, but because theywere not originally
designed for optimization models, they need to
be used with some caution. In particular, most of
these platforms do not provide exact derivatives
to the optimization solver; often they are approx-
imated through finite difference. In addition, the
models themselves are constructed and calcu-
lated through numerical procedures, instead of
through an open declarative language. Examples
of these include widely used process simulators
such as Aspen/Plus, PRO/II, and Hysys. More
recent platforms such as Aspen Custom Mod-
eler and gPROMS include declarative models
and exact derivatives.
For optimization tools linked to procedural

models, reliable and efficient automatic differ-
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entiation tools are available that link to models
written, say, in FORTRAN and C, and calcu-
late exact first (and often second) derivatives.
Examples of these include ADIFOR, ADOL-
C, GRESS, Odyssee, and PADRE. When used
with care, these can be applied to existing
procedural models and, when linked to mod-
ern NLP and MINLP algorithms, can lead to
powerful optimization capabilities. More infor-
mation on these and other automatic differ-
entiation tools can be found on: http://www-
unix.mcs.anl.gov/autodiff/AD Tools/.
Finally, the availability of automatic differ-

entiation and related sensitivity tools for differ-
ential equation models allows for considerable
flexibility in the formulation of optimization
models. In [295] a seven-level modeling hierar-
chy is proposed that matches optimization algo-
rithms with models that range from completely
open (fully declarative model) to fully closed
(entirely proceduralwithout sensitivities).At the
lowest, fully procedural level, only derivative-
free optimizationmethods are applied, while the
highest, declarative level allows the application
of an efficient large-scale solver that uses first
and second derivatives. Depending on the mod-
eling level, optimization solver performance can
vary by several orders of magnitude.

11. Probability and Statistics
[15, 296 – 303]

The models treated thus far have been determin-
istic, that is, if the parameters are known the
outcome is determined. In many situations, all
the factors cannot be controlled and the outcome
may vary randomly about some average value.
Then a range of outcomes has a certain proba-
bility of occurring, and statistical methods must
be used. This is especially true in quality control
of production processes and experimental mea-
surements. This chapter presents standard sta-
tistical concepts, sampling theory and statistical
decisions, and factorial design of experiments
or analysis of variances. Multivariant linear and
nonlinear regression is treated in Chapter 2.

11.1. Concepts

Suppose N values of a variable y, called y1, y2, .
. . , yN , might represent N measurements of the
same quantity. The arithmetic mean E (y) is

E (y) =

N∑
i=1

yi

N

The median is the middle value (or average of
the two middle values) when the set of numbers
is arranged in increasing (or decreasing) order.
The geometric mean ȳG is

yG = (y1y2. . .yN )
1/N

The root-mean-square or quadratic mean is

Root−mean−square =
√
E (y2) =

√√√√ N∑
i=1

y2i /N

The rangeof a set of numbers is the difference
between the largest and the smallest members in
the set. The mean deviation is the mean of the
deviation from the mean.

Mean−deviation =

N∑
i=1

|yi−E (y)|

N

The variance is

var (y) = σ2 =

N∑
i=1

(yi−E (y))2

N

and the standard deviation σ is the square root
of the variance.

σ =

√√√√√ N∑
i=1

(yi−E (y))2

N

If the set of numbers {yi} is a small sample
from a larger set, then the sample average

y =

n∑
i=1

yi

n

is used in calculating the sample variance

s2 =

n∑
i=1

(yi−y)2

n−1

and the sample standard deviation

s =

√√√√√
n∑
i=1

(yi−y)2

n−1



126 Mathematics in Chemical Engineering

The value n − 1 is used in the denominator be-
cause the deviations from the sample average
must total zero:
n∑
i=1

(yi−y) = 0

Thus, knowing n − 1 values of yi− ȳ and the
fact that there are n values automatically gives
the n-th value. Thus, only n − 1 degrees of free-
dom ν exist. This occurs because the unknown
mean E ( y) is replaced by the sample mean y
derived from the data.
If data are taken consecutively, running totals

can be kept to permit calculation of themean and
variance without retaining all the data:
n∑
i=1

(yi−y)2 =
n∑
i=1

y21−2y
n∑
i=1

yi+(y)2

y =
n∑
i=1

yi/n

Thus,

n,
n∑
i=1

y21 , and
n∑
i=1

yi

are retained, and themean and variance are com-
puted when needed.
Repeated observations that differ because of

experimental error often vary about some cen-
tral value in a roughly symmetrical distribution
in which small deviations occur more frequently
than large deviations. In plotting the number of
times a discrete event occurs, a typical curve is
obtained, which is shown in Figure 49. Then the
probability p of an event (score) occurring can
be thought of as the ratio of the number of times
it was observed divided by the total number of
events. A continuous representation of this prob-
ability density function is given by the normal
distribution

p (y) =
1

σ
√
2π

e−[y−E(y)]2/2σ2
. (120)

This is called a normal probability distribution
function. It is important because many results
are insensitive to deviations from a normal dis-
tribution. Also, the central limit theorem says
that if an overall error is a linear combination of
component errors, then the distribution of errors
tends to be normal as the number of components
increases, almost regardless of the distributionof
the component errors (i.e., they need not be nor-
mally distributed). Naturally, several sources of

error must be present and one error cannot pre-
dominate (unless it is normally distributed). The
normal distribution function is calculated eas-
ily; of more value are integrals of the function,
which are given in Table 12; the region of inter-
est is illustrated in Figure 50.

Figure 49. Frequency of occurrence of different scores

Figure 50. Area under normal curve

For a small sample, the variance can only
be estimated with the sample variance s2. Thus,
the normal distribution cannot be used because
σ is not known. In such cases Student’s t-
distribution, shown in Figure 51 [303, p. 70],
is used:

p (y) =
y0(

1+ t2

n−1
)n/2 , t = y−E (y)

s/
√
n

and y0 is chosen such that the area under the
curve is one. The number ν = n − 1 is the de-
grees of freedom, and as ν increases, Student’s t-
distribution approaches the normal distribution.
The normal distribution is adequate (rather than
the t-distribution) when ν > 15, except for the
tails of the curve which require larger ν. Inte-
grals of the t-distribution are given in Table 13,
the region of interest is shown in Figure 52.
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Table 12. Area under normal curve *

F (z) = 1√
2π

z∫
0
e−z2/2dz

z F (z)′′ z F (z)′′

0.0 0.0000 1.5 0.4332
0.1 0.0398 1.6 0.4452
0.2 0.0793 1.7 0.4554
0.3 0.1179 1.8 0.4641
0.4 0.1554 1.9 0.4713
0.5 0.1915 2.0 0.4772
0.6 0.2257 2.1 0.4821
0.7 0.2580 2.2 0.4861
0.8 0.2881 2.3 0.4893
0.9 0.3159 2.4 0.4918
1.0 0.3413 2.5 0.4938
1.1 0.3643 2.7 0.4965
1.2 0.3849 3.0 0.4987
1.3 0.4032 4.0 0.499968
1.4 0.4192 5.0 0.4999997

* Table gives the probability F that a random variable will fall in the shaded region of Figure 50. For a more complete table (in slightly
different form), see [23, Table 26.1]. This table is obtained in Microsoft Excel with the function NORMDIST(z,0,1,1)-0.5.

Table 13. Percentage points of area under Students t-distribution *

ν α=0.10 α=0.05 α=0.01 α=0.001
1 6.314 12.706 63.657 636.619
2 2.920 4.303 9.925 31.598
3 2.353 3.182 5.841 12.941
4 2.132 2.776 4.604 8.610
5 2.015 2.571 4.032 6.859
6 1.943 2.447 3.707 5.959
7 1.895 2.365 3.499 5.408
8 1.860 2.306 3.355 5.041
9 1.833 2.262 3.250 4.781
10 1.812 2.228 3.169 4.587
15 1.753 2.131 2.947 4.073
20 1.725 2.086 2.845 3.850
25 1.708 2.060 2.787 3.725
30 1.697 2.042 2.750 3.646
∞ 1.645 1.960 2.576 3.291

* Table gives t values such that a random variable will fall in the shaded region of Figure 52 with probability α. For a one-sided test the
confidence limits are obtained for α/2. For a more complet table (in slightly different form), see [23, Table 26.10]. This table is obtained in
Microsoft Excel with the function TINV(α,ν).

Other probability distribution functions are
useful.Anydistribution functionmust satisfy the
following conditions:

0≤F (x)≤1

F (−∞) = 0,F (+∞) = 1

F (x)≤F (y) when x≤y
The probability density function is

p (x) =
dF (x)
dx

where

dF = pdx

is the probability of x being between x and x +
dx. The probability density function satisfies

p (x)≥0

∞∫
−∞

p (x) dx = 1

The Bernoulli distribution applies when the
outcome can take only two values, such as heads
or tails, or 0 or 1. The probability distribution
function is

p (x = k) = pk(1−p)1−k, k = 0 or 1

and the mean of a function g (x) depending on x
is

E [g (x)] = g (1) p+g (0) (1−p)
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Figure 51. Student’s t-distribution.
For explanation of ν see text

Figure 52. Percentage points of area under Student’s
t-distribution

The binomial distribution function applies when
there are n trials of a Bernoulli event; it gives the
probability of k occurrences of the event, which
occurs with probability p on each trial

p (x = k) =
n!

k (n−k) !p
k(1−p)n−k

The mean and variance are
E (x) = np

var (x) = np (1−p)
The hypergeometric distribution function ap-
plieswhen there areN objects, ofwhichM are of

one kind and N − M are of another kind. Then
the objects are drawn one by one, without re-
placing the last draw. If the last draw had been
replaced the distribution would be the binomial
distribution. If x is the number of objects of type
M drawn in a sample of size n, then the proba-
bility of x = k is

p (x = k) =

M !(N−M)!n!(N−n)!
k!(M−k)!(n−k)!(N−M−n+k)!N !

The mean and variance are

E (x) = nM
N

var (x) = np (1−p) N−n
N−1

The Poisson distribution is

p (x = k) = e−λ λk

k!

with a parameter λ. The mean and variance are

E (x) = λ

var (x) = λ

The simplest continuous distribution is the
uniform distribution. The probability density
function is
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p =

{
1
b−a a<x<b

0 x<a, x>b

and the probability distribution function is

F (x) =



0 x<a
x−a
b−a a<x<b

1 b<x

The mean and variance are

E (x) = a+b
2

var (x) = (b−a)2
12

The normal distribution is given by Equation
120 with variance σ2.
The log normal probability density function

is

p (x) =
1

xσ
√
2π

exp

[
− (logx−µ)2

2σ2

]

and the mean and variance are [305, p. 89]

E (x) = exp
(
µ+σ2

2

)
var (x) = exp

(
σ2−1

)
exp

(
2µ+σ2

)

11.2. Sampling and Statistical Decisions

Two variables can be statistically dependent or
independent. For example, the height and diam-
eter of all distillation towers are statistically in-
dependent, because the distribution of diameters
of all columns 10 m high is different from that
of columns 30 m high. If yB is the diameter and
yA the height, the distribution is written as

p (yB|yA = constant) , or here

p (yB|yA = 10) �=p (yB|yA = 30)

A third variable yC, could be the age of the oper-
ator on the third shift. This variable is probably
unrelated to the diameter of the column, and for
the distribution of ages is

p (yC|yA) = p (yC)

Thus, variables yA and yC are distributed inde-
pendently. The joint distribution for two vari-
ables is

p (yA,yB) = p (yA) p (yB|yA)

if they are statistically dependent, and

p
(
yA,yB

)
= p (yA) p (yB)

if they are statistically independent. If a set of
variables yA, yB, . . . is independent and identi-
cally distributed,

p (yA,yB,. . .) = p (yA) p (yB) . . .

Conditional probabilities are used in hazard
analysis of chemical plants.
A measure of the linear dependence between

variables is given by the covariance

Cov (yA,yB) = E {[yA−E (yA)] [(yB−E (yB))]}

=

N∑
i=1

[yAi−E(yA)][yBi−E(yB)]
N

The correlation coefficient � is

? (yA,yB) =
Cov (yA,yB)

σAσB

If yA and yB are independent, then Cov ( yA,
yB) = 0. If yA tends to increase when yB de-
creases thenCov ( yA, yB) < 0. The sample cor-
relation coefficient is [15, p. 484]

r (yA,yB) =

n∑
i=1

(yAi−yA) (yBi−yB)

(n−1) sAsB

If measurements are for independent, identi-
cally distributed observations, the errors are in-
dependent and uncorrelated. Then y varies about
E ( y) with variance σ2/n, where n is the number
of observations in y. Thus if something is mea-
sured several times today and every day, and the
measurements have the same distribution, the
variance of the means decreases with the num-
ber of samples in each day’s measurement n. Of
course, other factors (weather, weekends) may
cause the observations on different days to be
distributed nonidentically.
Suppose Y, which is the sum or difference of

two variables, is of interest:

Y = yA±yB
Then the mean value of Y is

E (Y ) = E (yA)±E (yB)

and the variance of Y is

σ2 (Y ) = σ2 (yA)+σ2 (yB)
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More generally, consider the random variables
y1, y2, . . . with means E ( y1), E ( y2), . . . and
variances σ2 ( y1), σ2 ( y2), . . . and correlation
coefficients �ij . The variable

Y = α1y1+α2y2+. . .

has a mean

E (Y ) = α1E (y1)+α2E (y2)+. . .

and variance [303, p. 87]

σ2 (Y ) =
n∑
i=1

α2i σ
2 (yi)

+2
n∑
i=1

n∑
j=i+1

αiαjσ (yi)σ (yj) ?ij

or

σ2 (Y ) =
n∑
i=1

α2i σ
2 (yi)

+2
n∑
i=1

n∑
j=i+1

αiαjCov (yi,yj)
(120)

If the variables are uncorrelated and have the
same variance, then

σ2 (Y ) =

(
n∑
i=1

α2i

)
σ2

This fact can be used to obtain more accu-
rate cost estimates for the purchased cost of a
chemical plant than is true for any one piece of
equipment. Suppose the plant is composed of
a number of heat exchangers, pumps, towers,
etc., and that the cost estimate of each device is
± 40% of its cost (the sample standard devia-
tion is 20% of its cost). In this case the αi are
the numbers of each type of unit. Under special
conditions, such as equal numbers of all types
of units and comparable cost, the standard devi-
ation of the plant costs is

σ (Y ) =
σ√
n

and is then± (40/
√
n) %. Thus the standard de-

viation of the cost for the entire plant is the stan-
dard deviation of each piece of equipment di-
vided by the square root of the number of units.
Under less restrictive conditions the actual num-
bers change according to the above equations,
but the principle is the same.
Suppose modifications are introduced into

the manufacturing process. To determine if the
modification causes a significant change, the

mean of some property could be measured be-
fore and after the change; if these differ, does
it mean the process modification caused it, or
could the changehavehappenedby chance?This
is a statistical decision. A hypothesis H0 is de-
fined; if it is true, action A must be taken. The
reverse hypothesis is H1; if this is true, action
B must be taken. A correct decision is made if
action A is taken when H0 is true or action B
is taken when H1 is true. Taking action B when
H0 is true is called a type I error, whereas taking
action AwhenH1 is true is called a type II error.
The following test of hypothesis or test of

significance must be defined to determine if the
hypothesis is true. The level of significance is
the maximum probability that an error would be
accepted in the decision (i.e., rejecting the hy-
pothesis when it is actually true). Common lev-
els of significance are 0.05 and 0.01, and the test
of significance can be either one or two sided. If
a sampled distribution is normal, then the prob-
ability that the z score

z =
y−y
sy

Figure 53. Two-sided statistical decision

is in the unshaded region is 0.95. Because a two-
sided test is desired, F = 0.95/2 = 0.475. The
value given in Table 12 forF = 0.475 is z = 1.96.
If the test was one-sided, at the 5% level of
significance, 0.95 = 0.5 (for negative z) + F (for
positive z). Thus, F = 0.45 or z = 1.645. In the
two-sided test (see Fig. 53), if a single sample
is chosen and z <− 1.96 or z > 1.96, then this
could happen with probability 0.05 if the hy-
pothesis were true. This zwould be significantly
different from the expected value (based on the
chosen level of significance) and the tendency
would be to reject the hypothesis. If the value of
z was between − 1.96 and 1.96, the hypothesis
would be accepted.
The same type of decisions can be made for

other distributions. Consider Student’s t-distri-
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bution. At a 95% level of confidence, with ν =
10 degrees of freedom, the t values are± 2.228.
Thus, the sample mean would be expected to be
between

y±tc s√
n

with 95% confidence. If the mean were outside
this interval, the hypothesis would be rejected.
The chi-square distribution is useful for ex-

amining the variance or standard deviation. The
statistic is defined as

χ2 = ns2

σ2

= (y1−y)2+(y2−y)2+...+(yn−y)2
σ2

and the chi-square distribution is

p (y) = y0χ
ν−2e−χ2/2

ν = n − 1 is the number of degrees of free-
dom and y0 is chosen so that the integral of p (
y) over all y is 1. The probability of a deviation
larger than χ2 is given in Table 14; the area in
question, in Figure 54. For example, for 10 de-
grees of freedom and a 95% confidence level,
the critical values of χ2 are 0.025 and 0.975.
Then

s
√
n

χ0.975
<σ<

s
√
n

χ0.025

or

s
√
n

20.5
<σ<

s
√
n

3.25

with 95% confidence.
Tests are available to decide if two distribu-

tions that have the same variance have differ-
ent means [15, p. 465]. Let one distribution be
called x, withN1 samples, and the other be called
y, with N2 samples. First, compute the standard
error of the difference of the means:

Figure 54. Percentage points of area under chi-squared
distribution with ν degrees of freedom

sD =

√√√√√√
N1∑
i=1

(xi−x)2+
N2∑
i=1

(yi−y)2

N1+N2−2

(
1
N1

+
1
N2

)

Next, compute the value of t

t =
x−y
sD

and evaluate the significance of t using Student’s
t-distribution for N1+ N2− 2 degrees of free-
dom.
If the samples have different variances, the

relevant statistic for the t-test is

t =
x−y√

var (x) /N1+var (y) /N2

The number of degrees of freedom is now taken
approximately as

ν =

(
var(x)
N1

+ var(y)
N2

)2
[var(x)/N1]2

N1−1 + [var(y)/N2]2

N2−1

There is also an F-test to decide if two dis-
tributions have significantly different variances.
In this case, the ratio of variances is calculated:

F =
var (x)
var (y)

where the variance of x is assumed to be larger.
Then, a table of values is used to determine the
significance of the ratio. The table [23, Table
26.9] is derived from the formula [15, p. 169]

Q (F |ν1,ν2) = Iν2/(ν2+ν1F )

(ν2
2
,
ν1

2

)
where the right-hand side is an incomplete beta
function. The F table is given by the Microsoft
Excel function FINV(fraction, νx , νy ), where
fraction is the fractional value (≤ 1) representing
the upper percentage and νx and νy are the de-
grees of freedom of the numerator and denomi-
nator, respectively.

Example. For two sample varianceswith 8de-
grees of freedom each, what limits will bracket
their ratio with a midarea probability of 90 %?
FINV(0.95,8,8) = 3.44. The 0.95 is used to get
both sides to toal 10 %. Then

P [1/3.44≤var (x) /var (y)≤3.44] = 0.90.
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Table 14. Percentage points of area under chi-square distribution with ν degrees of freedom *

ν α=0.995 α=0.99 α=0.975 α=0.95 α=0.5 α=0.05 α=0.025 α=0.01 α=0.005
1 7.88 6.63 5.02 3.84 0.455 0.0039 0.0010 0.0002 0.00004
2 10.6 9.21 7.38 5.99 1.39 0.103 0.0506 0.0201 0.0100
3 12.8 11.3 9.35 7.81 2.37 0.352 0.216 0.115 0.072
4 14.9 13.3 11.1 9.49 3.36 0.711 0.484 0.297 0.207
5 16.7 15.1 12.8 11.1 4.35 1.15 0.831 0.554 0.412
6 18.5 16.8 14.4 12.6 5.35 1.64 1.24 0.872 0.676
7 20.3 18.5 16.0 14.1 6.35 2.17 1.69 1.24 0.989
8 22.0 20.1 17.5 15.5 7.34 2.73 2.18 1.65 1.34
9 23.6 21.7 19.0 16.9 8.34 3.33 2.70 2.09 1.73
10 25.2 23.2 20.5 18.3 9.34 3.94 3.25 2.56 2.16
12 28.3 26.2 23.3 21.0 11.3 5.23 4.40 3.57 3.07
15 32.8 30.6 27.5 25.0 14.3 7.26 6.26 5.23 4.60
17 35.7 33.4 30.2 27.6 16.3 8.67 7.56 6.41 5.70
20 40.0 37.6 34.2 31.4 19.3 10.9 9.59 8.26 7.43
25 46.9 44.3 40.6 37.7 24.3 14.6 13.1 11.5 10.5
30 53.7 50.9 47.0 43.8 29.3 18.5 16.8 15.0 13.8
40 66.8 63.7 59.3 55.8 39.3 26.5 24.4 22.2 20.7
50 79.5 76.2 71.4 67.5 49.3 34.8 32.4 29.7 28.0
60 92.0 88.4 83.3 79.1 59.3 43.2 40.5 37.5 35.5
70 104.2 100.4 95.0 90.5 69.3 51.7 48.8 45.4 43.3
80 116.3 112.3 106.6 101.9 79.3 60.4 57.2 53.5 51.2
90 128.3 124.1 118.1 113.1 89.3 69.1 65.6 61.8 59.2
100 140.2 135.8 129.6 124.3 99.3 77.9 74.2 70.1 67.3

* Table value is χ2
α; χ

2 < χ2
α with probability α. For a more complete table (in slightly different form), see [23, Table 26.8]. The

Microsoft Excel function CHIINV(1-α,ν) gives the table value.

11.3. Error Analysis in Experiments

Suppose a measurement of several quantities is
made and a formula or mathematical model is
used to deduce some property of interest. For
example, to measure the thermal conductivity
of a solid k, the heat flux q, the thickness of the
sample d, and the temperature difference across
the sample ∆T must be measured. Each mea-
surement has some error. The heat flux qmay be
the rate of electrical heat input

.

Q divided by the
areaA, and both quantities aremeasured to some
tolerance. The thickness of the sample is mea-
sured with some accuracy, and the temperatures
are probably measured with a thermocouple, to
some accuracy. These measurements are com-
bined, however, to obtain the thermal conduc-
tivity, and the error in the thermal conductivity
must be determined. The formula is

k =
d

A∆T

.
Q

If each measured quantity has some variance,
what is the variance in the thermal conductiv-
ity?
Suppose a model for Y depends on various

measurable quantities, y1, y2, . . . Suppose sev-
eral measurements are made of y1, y2, . . . under

seemingly identical conditions and several dif-
ferent values are obtained, with means E (y1), E
(y2), . . . and variances σ21 , σ

2
2 , . . . Next suppose

the errors are small and independent of one an-
other. Then a change in Y is related to changes
in yi by

dY =
∂Y

∂y1
dy1+

∂Y

∂y2
dy2+. . .

If the changes are indeed small, the partial
derivatives are constant among all the samples.
Then the expected value of the change is

E (dY ) =
N∑
i=1

(
∂Y

∂yi

)
E (dyi)

Naturally E (dyi ) = 0 by definition so that E (dY
) = 0, too. However, since the errors are indepen-
dent of each other and the partial derivatives are
assumed constant because the errors are small,
the variances are given by Equation 121 [296, p.
550]

σ2 (dY ) =
N∑
i=1

(
∂Y

∂yi

)2
σ2i (121)

Thus, the variance of the desired quantity Y can
be found. This gives an independent estimate
of the errors in measuring the quantity Y from
the errors in measuring each variable it depends
upon.
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11.4. Factorial Design of Experiments
and Analysis of Variance

Statistically designed experiments consider, of
course, the effect of primary variables, but they
also consider the effect of extraneous variables,
the interactions among variables, and a measure
of the random error. Primary variables are those
whose effect must be determined. These vari-
ables can be quantitative or qualitative. Quanti-
tative variables are ones thatmaybefit to amodel
to determine themodel parameters. Curve fitting
of this type is discused in Chapter 2. Qualita-
tive variables are ones whose effect needs to be
known; no attempt is made to quantify that ef-
fect other than to assign possible errors or mag-
nitudes. Qualitative variables can be further sub-
divided into type I variables, whose effect is de-
termined directly, and type II variables, which
contribute to performance variability, andwhose
effect is averaged out. For example, in studying
the effect of several catalysts on yield in a chem-
ical reactor, each different type of catalyst would
be a type I variable, because its effect should be
known. However, each time the catalyst is pre-
pared, the results are slightly different, because
of random variations; thus, several batches may
exist of what purports to be the same catalyst.
The variability between batches is a type II vari-
able. Because the ultimate use will require us-
ing different batches, the overall effect including
that variation should be known, because know-
ing the results from one batch of one catalyst
precisely might not be representative of the re-
sults obtained from all batches of the same cat-
alyst. A randomized block design, incomplete
block design, or Latin square design, for exam-
ple, all keep the effect of experimental error in
the blocked variables from influencing the ef-
fect of the primary variables. Other uncontrolled
variables are accounted for by introducing ran-
domization in parts of the experimental design.
To study all variables and their interaction re-
quires a factorial design, involving all possible
combinations of each variable, or a fractional
factorial design, involving only a selected set.
Statistical techniques are then used to determine
the important variables, the important interac-
tions and the error in estimating these effects.
The discussion here is a brief overview of [303].
If only two methods exist for preparing some

product, to see which treatment is best, the sam-

pling analysis discussed in Section 11.2 can be
used to deduce if themeans of the two treatments
differ significantly. With more treatments, the
analysis is more detailed. Suppose the experi-
mental results are arranged as shown inTable 15,
i.e., several measurements for each treatment.
The objective is to see if the treatments differ sig-
nificantly from each other, that is, whether their
means are different. The samples are assumed to
have the same variance. The hypothesis is that
the treatments are all the same, and the null hy-
pothesis is that they are different. Deducing the
statistical validity of the hypothesis is done by
an analysis of variance.

Table 15. Estimating the effect of four treatments

Treatment 1 2 3 4

− − − −
− − − −
− − − −

− − −
− −

−

Treatment average, yt − − − −
Grand average, y

−

The data for k = 4 treatments are arranged in
Table 15. Each treatment has nt experiments,
and the outcome of the i-th experiment with
treatment t is called yti . The treatment average
is

yt =

nt∑
i=1

yti

nt

and the grand average is

y =

k∑
t=1

ntyt

N
, N =

k∑
t=1

nt

Next, the sum of squares of deviations is com-
puted from the average within the t-th treatment

St =
nt∑
i=1

(yti−yt)2

Since each treatment has nt experiments, the
number of degrees of freedom is nt − 1. Then
the sample variances are

s2t =
St

nt−1
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The within-treatment sum of squares is

SR =
k∑
t=1

St

and the within-treatment sample variance is

s2R =
SR

N−k
Now, if no difference exists between treatments,
a second estimate of σ2 could be obtained by
calculating the variation of the treatment aver-
ages about the grand average.Thus, the between-
treatment mean square is computed:

s2T =
ST

k−1
, ST =

k∑
t=1

nt(yt−y)2

Basically the test for whether the hypothesis is
true or not hinges on a comparison between the
within-treatment estimate s2R (with νR= N − k
degrees of freedom) and the between-treatment
estimate s2T (with νT= k − 1 degrees of free-
dom). The test is made based on the F distri-
bution for νR and νT degrees of freedom [23,
Table 26.9], [303, p. 636].

Table 16. Block design with four treatments and five blocks

Treatment 1 2 3 4 Block
average

Block 1 − − − − −
Block 2 − − − − −
Block 3 − − − − −
Block 4 − − − − −
Block 5 − − − − −

Treatment − − − − grand
average average

Next consider the case in which randomized
blocking is used to eliminate the effect of some
variable whose effect is of no interest, such as
the batch-to-batch variation of the catalysts in
the chemical reactor example.With k treatments
and n experiments in each treatment, the results
from n k experiments can be arranged as shown
in Table 16; within each block, various treat-
ments are applied in a random order. The block
average, the treatment average, and the grand
average are computed as before. The following
quantities are also computed for the analysis of
variance table:

Name Formula Degrees of
freedom

Average SA = nky2 1

Blocks SB = k
n∑

i=1
(yt−y)2 n-1

Treatments ST = n
k∑

t=1
(yt−y)2 k-1

Residuals SR =
k∑

t=1

n∑
i=1

(yti−yi−yt+y)
2 (n-1)(k-1)

Total S =
k∑

t=1

n∑
i=1

y2
ti N = n k

The key test is again a statistical one, based
on the value of
s2T /s

2
R, where s

2
T = ST

k−1

and s2R = SR
(n−1)(k−1)

and the F distribution for νR and νT degrees of
freedom [303, p. 636]. The assumption behind
the analysis is that the variations are linear [303,
p. 218]. Ways to test this assumption as well as
transformations to make if it is not true are pro-
vided in [303],where an example is given of how
the observations are broken down into a grand
average, a blockdeviation, a treatment deviation,
and a residual. For two-way factorial design, in
which the second variable is a real one rather
than one you would like to block out, see [303,
p. 228].

Table 17. Two-level factorial design with three variables

Run Variable
1

Variable
2

Variable
3

1 − − −
2 + − −
3 − + −
4 + + −
5 − − +
6 + − +
7 − + +
8 + + +

Tomeasure the effects of variables on a single
outcome, a factorial design is appropriate. In a
two-level factorial design, each variable is con-
sidered at two levels only, a high and low value,
often designated as a + and a −. The two-level
factorial design is useful for indicating trends
and showing interactions; it is also the basis for
a fractional factorial design.As an example, con-
sider a 23 factorial design, with 3 variables and
2 levels for each. The experiments are indicated
in Table 17. The main effects are calculated by
determining the difference between results from
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all high values of a variable and all low values of
a variable; the result is divided by the number of
experiments at each level. For example, for the
first variable, calculate

Effect of variable 1 = [(y2+y4+y6+y8)

− [(y1+y3+y5+y7)]] /4

Note that all observations are being used to sup-
ply information on each of the main effects and
each effect is determined with the precision of a
fourfold replicated difference. The advantage of
a one-at-a-time experiment is the gain in preci-
sion if the variables are additive and the measure
of nonadditivity if it occurs [303, p. 313].
Interaction effects between variables 1 and 2

are obtained by comparing the difference bet-
ween the results obtained with the high and low
value of 1 at the low value of 2 with the differ-
ence between the results obtained with the high
and low value 1 at the high value of 2. The 12-
interaction is

12 interaction = [(y4−y3+y8−y7)
− [(y2−y1+y6−y5)]] /2

The key step is to determine the errors associ-
ated with the effect of each variable and each
interaction so that the significance can be de-
termined. Thus, standard errors need to be as-
signed. This can be done by repeating the exper-
iments, but it can also be done by using higher
order interactions (such as 123 interactions in a
24 factorial design). These are assumed negligi-
ble in their effect on the mean but can be used
to estimate the standard error [303, pp. 319 –
328]. Then calculated effects that are large com-
pared to the standard error are considered impor-
tant, whereas those that are small compared to
the standard error are considered due to random
variations and are unimportant.
In a fractional factorial design, only part of

the possible experiments is performed. With k
variables, a factorial design requires 2k exper-
iments. When k is large, the number of exper-
iments can be large; for k = 5, 25 = 32. For k
this large, Box et al. [296, p. 235] do a frac-
tional factorial design. In the fractional factorial
design with k = 5, only 8 experiments are cho-
sen. Cropley [298] gives an example of how to
combine heuristics and statistical arguments in
application to kinetics mechanisms in chemical
engineering.

12. Multivariable Calculus Applied
to Thermodynamics

Many of the functional relationships required
in thermodynamics are direct applications of
the rules of multivariable calculus. In this short
chapter, those rules are reviewed in the context
of the needs of thermodynamics. These ideas
were expounded in one of the classic books on
chemical engineering thermodynamics [299].

12.1. State Functions

State functions depend only on the state of the
system, not on its past history or how one got
there. If z is a function of two variables x and
y, then z (x, y) is a state function, because z is
known once x and y are specified. The differen-
tial of z is

dz =Mdx+Ndy

The line integral∫
C

(Mdx+Ndy)

is independent of the path in x – y space if and
only if

∂M

∂y
=

∂N

∂x
(122)

Because the total differential can be written as

dz =
(
∂z

∂x

)
y

dx+
(
∂z

∂y

)
x

dy (123)

for path independence

∂

∂y

(
∂z

∂x

)
y

=
∂

∂x

(
∂z

∂y

)
x

or

∂2z

∂y∂x
=

∂2z

∂x∂y
(124)

is needed.
Various relationships can be derived from

Equation 123. If z is constant,[
0 =

(
∂z

∂x

)
y

dx+
(
∂z

∂y

)
x

dy

]
z

Rearrangement gives
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(
∂z

∂x

)
y

= −
(
∂y

∂x

)
z

(
∂z

∂y

)
x

= − (∂y/∂x)z
(∂y/∂z)x

(125)

Alternatively, if Equation 123 is divided by dy
while some other variable w is held constant,(
∂z

∂y

)
w

=
(
∂z

∂x

)
y

(
∂x

∂y

)
w

+
(
∂z

∂y

)
x

(126)

Dividing both the numerator and the denomina-
tor of a partial derivative by dw while holding a
variable y constant yields(
∂z

∂x

)
y

=
(∂z/∂w)y
(∂x/∂w)y

=
(
∂z

∂w

)
y

(
∂w

∂x

)
y

(127)

In thermodynamics the state functions in-
clude the internal energy U, the enthalpy H, and
the Helmholtz and Gibbs free energies A and G,
respectively, which are defined as follows:

H = U+pV

A = U−TS

G = H−TS = U+pV−TS = A+pV

where S is the entropy, T the absolute temper-
ature, p the pressure, and V the volume. These
are also state functions, in that the entropy is
specified once two variables (e.g., T and p) are
specified. Likewise V is specified once T and p
are specified, and so forth.

12.2. Applications to Thermodynamics

All of the following applications are for closed
systems with constant mass. If a process is re-
versible and only p – V work is done, one form
of the first law states that changes in the internal
energy are given by the following expression

dU = TdS−pdV (128)

If the internal energy is considered a function of
S and V, then

dU =
(
∂U

∂S

)
V

dS+
(
∂U

∂V

)
S

dV

This is the equivalent of Equation 123 and

T =
(
∂U

∂S

)
V

, p = −
(
∂U

∂V

)
S

Because the internal energy is a state function,
Equation 124 is required:

∂2U

∂V ∂S
=

∂2U

∂S∂V

which here is(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

(129)

This is one of the Maxwell relations and is
merely an expression of Equation 124.
The differentials of the other energies are

dH = T dS+V dp (130)

dA = −SdT−pdV (131)

dG = −S dT+V dp (132)

From these differentials, other Maxwell rela-
tions can be derived in a similar fashion by ap-
plying Equation 124.(
∂T

∂p

)
S

=
(
∂V

∂S

)
p

(133)

(
∂S

∂V

)
T

=
(
∂p

∂T

)
V

(134)

(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

(135)

The heat capacity at constant pressure is de-
fined as

Cp =
(
∂H

∂T

)
p

If entropy and enthalpy are taken as functions of
T and p, the total differentials are

dS =
(
∂S

∂T

)
p

dT+
(
∂S

∂p

)
T

dp

dH =
(
∂H

∂T

)
p

dT+
(
∂H

∂p

)
T

dp

= CpdT+
(
∂H

∂p

)
T

dp

If the pressure is constant,

dS =
(
∂S

∂T

)
p

dT and dH = CpdT

When enthalpy is considered a function of S and
p, the total differential is

dH = T dS+V dp

When the pressure is constant, this is

dH = TdS
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Thus, at constant pressure

dH = CpdT = TdS = T

(
∂S

∂T

)
p

dT

which gives(
∂S

∂T

)
p

=
Cp

T

When p is not constant, using the last Maxwell
relation gives

dS =
Cp

T
dT−

(
∂V

∂T

)
p

dp (136)

Then the total differential for H is

dH = TdS+V dp = CpdT−T
(
∂V

∂T

)
p

dp+V dp

Rearranging this, when H (T, p), yields

dH = CpdT+

[
V−T

(
∂V

∂T

)
p

]
dp (137)

This equation can be used to evaluate enthalpy
differences by using information on the equation
of state and the heat capacity:

H (T2,p2)−H (T1,p1) =
T2∫
T1

Cp (T ,p1) dT

+
p2∫
p1

[
V−T

(
∂V
∂T

)
p

]
|T2,pdp

(138)

The same manipulations can be done for in-
ternal energy:(
∂S

∂T

)
V

=
Cv

T
(139)

dS = −
[
(∂V/∂T )p
(∂V/∂p)T

]
dV+

Cv

T
dT (140)

dU = CvdT−
[
p+T

(∂V/∂T )p
(∂V/∂p)T

]
dV

12.3. Partial Derivatives of All
Thermodynamic Functions

The various partial derivatives of the thermody-
namic functions can be classified into six groups.
In the general formulas below, the variables U,
H, A, G, or S are denoted by Greek letters,
whereas the variables V, T, or p are denoted by
Latin letters.

Type 1 (3 possibilities plus reciprocals).

General:
(
∂a

∂b

)
c

, Specific:
(
∂p

∂T

)
V

Equation 125 yields(
∂p

∂T

)
V

= −
(
∂V

∂T

)
p

(
∂p

∂V

)
T

= − (∂V/∂T )p
(∂V/∂p)T

(141)

This relates all three partial derivatives of this
type.

Type 2 (30 possibilities plus reciprocals).

General:
(
∂α

∂b

)
c
, Specific:

(
∂G

∂T

)
V

Using Equation 132 gives(
∂G

∂T

)
V

= −S+V
(
∂p

∂T

)
V

Using the other equations forU, H, A, or S gives
the other possibilities.

Type 3 (15 possibilities plus reciprocals).

General:
(
∂a

∂b

)
α

, Specific:
(
∂V

∂T

)
S

First the derivative is expanded by using Equa-
tion 125, which is called expansion without in-
troducing a new variable:(
∂V

∂T

)
S

= −
(
∂S

∂T

)
V

(
∂V

∂S

)
T

= − (∂S/∂T )V
(∂S/∂V )T

Then the numerator and denominator are evalu-
ated as type 2 derivatives, or by using Equations
(99) and (100):(
∂V

∂T

)
S

= − Cv/T

−(∂V/∂T )p(∂p/∂V )T

=
Cv

T

(
∂V
∂p

)
T(

∂V
∂T

)
p

(142)

These derivatives are important for reversible,
adiabatic processes (e.g., in an ideal turbine or
compressor) because the entropy is constant.
Similar derivatives can be obtained for isen-
thalpic processes, such as a pressure reduction
at a valve. In that case, the Joule – Thomson co-
efficient is obtained for constant H:(
∂T

∂p

)
H

=
1
Cp

[
−V+T

(
∂V

∂T

)
p

]
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Type 4 (30 possibilities plus reciprocals).

General:
(
∂α

∂β

)
c
, Specific:

(
∂G

∂A

)
p

Now, expand through the introduction of a new
variable using Equation 127:(
∂G

∂A

)
p

=
(
∂G

∂T

)
p

(
∂T

∂A

)
p

=
(∂G/∂T )p
(∂A/∂T )p

This operation has created two type 2 deriva-
tives. Substitution yields(
∂G

∂A

)
p

=
S

S+p(∂V/∂T )p

Type 5 (60 possibilities plus reciprocals).

General:
(
∂α

∂b

)
β

, Specific:
(
∂G

∂p

)
A

Starting from Equation 132 for dG gives(
∂G

∂p

)
A

= −S
(
∂T

∂p

)
A

+V

The derivative is a type 3 derivative and can be
evaluated by using Equation 125.(
∂G

∂p

)
A

= S
(∂A/∂p)T
(∂A/∂T )p

+V

The two type 2 derivatives are then evaluated:(
∂G

∂p

)
A

=
Sp(∂V/∂p)T
S+p(∂V/∂T )p

+V

These derivatives are also of interest for free ex-
pansions or isentropic changes.

Type 6 (30 possibilities plus reciprocals).

General:
(
∂α

∂β

)
γ

, Specific:
(
∂G

∂A

)
H

Equation 127 is used to obtain two type 5 deriva-
tives.(
∂G

∂A

)
H

=
(∂G/∂T )H
(∂A/∂T )H

These can then be evaluated by using the proce-
dures for type 5 derivatives.
The difference in molar heat capacities (Cp–

Cv ) can be derived in similar fashion. Using
Equation 139 for Cv yields

Cv = T

(
∂S

∂T

)
V

To evaluate the derivative, Equation 126 is used
to express dS in terms of p and T :(
∂S

∂T

)
V

= −
(
∂V

∂T

)
p

(
∂p

∂T

)
V

+
Cp

T

Substitution for (∂p/∂T )V and rearrangement
give

Cp−Cv = T

(
∂V

∂T

)
p

(
∂p

∂T

)
V

= −T
(
∂V

∂T

)2
p

(
∂p

∂V

)
T

Use of this equation permits the rearrangement
of Equation 142 into
(
∂V

∂T

)
S

=
(∂V/∂T )2p+

Cp

T
(∂V/∂p)T

(∂V/∂T )p

The ratio of heat capacities is

Cp

Cv
=

T (∂S/∂T )p
T (∂S/∂T )V

Expansion by using Equation 125 gives

Cp

Cv
=

−(∂p/∂T )S(∂S/∂p)T
−(∂V/∂T )S(∂S/∂V )T

and the ratios are then

Cp

Cv
=
(
∂p

∂V

)
S

(
∂V

∂p

)
T

Using Equation 125 gives

Cp

Cv
= −

(
∂p

∂V

)
S

(
∂T

∂p

)
V

(
∂V

∂T

)
p

Entropy is a variable in at least one of the partial
derivatives.
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