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Algebra of Vectorsand Tensors

Whereas heat and mass are scaars, fluid mechanics concerns trangport of momentum, which is a
vector. Heat and mass fluxes are vectors, momentum flux is atensor. Consequently, the mathematical
description of fluid flow tends to be more abstract and subtle than for heat and mass transfer. In an
effort to make the sudent more comfortable with the mathematics, we will start with a review of the
agebra of vectors and an introduction to tensors and dyads. A brief review of vector addition and
multiplication can be found in Greenberg,8 pages 132-139.

Scalar - aquantity having magnitude but no direction (e.g. temperature, densty)

Vector - (ak.a 1 rank tensor) a quantity having magnitude and direction (e.g. velocity, force,
momentum)

(2nd rank) Tensor - a quantity having magnitude and two directions (eg. momentum flux,
stress)

VECTOR MULTIPLICATION

Given two arbitrary vectors a and b, there are three types of vector products
are defined:

Notation Result Definition
Dot Product ab scaar ab cosq

Cross Product ab vector abvang/n

where q isan interior angle (0 £ g £ p) and n is a unit vector which is normd to both a and b. The
sense of n is determined from the "right-hand-rule”

Dyadic Product ab tensor

8 Greenberg, M.D., Foundations Of Applied Mathematics, Prentice-Hall, 1978.

~ The “right-hand rule’: with the fingers of the right hand initidly pointing in the direction of the first
vector, rotate the fingers to point in the direction of the second vector; the thumb then points in the
direction with the correct sense. Of course, the thumb should have been normd to the plane containing
both vectors during the rotation. In the figure above showing a and b, @ b isa vector pointing into the
page, while b” a points out of the page.
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In the above definitions, we denote the magnitude (or length) of vector a by the scalar a. Boldface will
be used to denote vectors and italics will be used to denote scaars. Second-rank tensors will be
denoted with double-underlined boldface; e.g. tensor T.

Definition of Dyadic Product

Reference; Appendix B from Happe & Brenner© The word “dyad” comes from Greek: “dy”
means two while “ad” means adjacent. Thus the name dyad refers to the way in which this product is

denoted: the two vectors are written adjacent to one another with no space or other operator in
between.

Thereis no geometrica picture that | can draw which will explain what adyadic product is. It's best
to think of the dyadic product as a purely mathematica abstraction having some very useful properties:

Dyadic Product ab - that mathematicd entity which satisfies the following properties (where a,
b, v, and w are any four vectors):

1. ab- v=a(b- v) [which hasthe direction of a; note that ba- v = b(a: v) which has the direction of
b. Thusab! ba sncethey don't produce the same result on post-dotting with v.]

2. v-ab=(v- a)b[thusv- ab?t ab- v]

w

ab” v =a(b” v) whichisanother dyad

»

v ab= (v ab

o

ab: vw = (a- w)(b- v) which is sometimes known as the inner-outer product or the double-dot
product.”

6. a(v+w) = av+aw (distributive for addition)
7. (v+tw)a=vatwa

8. (stt)ab = sabt+tab (digributive for scaar multiplication-aso didtributive for dot and cross
product)

9. sab=(sa)b = a(sh)

© Happd, J., & H. Brenner, Low Reynolds Number Hydrodynamics, Noordhoff, 1973.

* Brenner defines this as (a- v)(b- w). Although the two definitions are not equivaent, either can be
used -- as long as you are conggent. In these notes, we will adopt the definition above and ignore
Brenner's definition.
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DECOMPOSITION INTO SCALAR COMPONENTS

Three vectors (say e1, e, and e3) are said to be linearly independent if none can be expressed
as alinear combination of the other two (eg. i, j, and k). Given such a set of three LI vectors, any
vector (beonging to E3) can be expressed as alinear combination of thisbasis

V =V1€eq +Vyoey +Vaes

where the v; are cdled the scalar components of v. Usudly, for convenience, we choose
orthonormal vectors asthe basis:

lifi=j
ei-ej=dij= eiq
Oifil j

dthough this is not necessary. dj; is called the Kronecker delta Just as the familiar dot and cross
products can written in terms of the scalar components, so can the dyadic product:

VW = (V1811V2€5+V3E3) (W1€1+HWoes+W3es)

= (viep(wiep+H(vie)(Woep)+ ..
= VqWqe1e1+HV Woeqest ... (nine terms)

where the e;e; are nine distinct unit dyads. We have applied the definition of dyadic product to
perform these two steps: in particular items 6, 7 and 9 in the list above.

More generaly any nth rank tensor (in E3) can be expressed as a linear combination of the 3 unit n-
ads. For example, if n=2, 3"=9 and an n-ad isadyad. Thus a generd second-rank tensor can be
decomposed as alinear combination of the 9 unit dyads:.

I =Tyee1tToeiest ... = Si=1 35i=1 3Tij€i€) lensors

Although a dyad (eg. vw) is an example of a second-rank tensor, not al
2nd rank tensors T can be expressed as a dyadic product of two vectors.
To see why, note that a generd second-rank tensor has nine scdar
components which need not be related to one another in any way. By
contrast, the 9 scalar components of dyadic product above involve only gx
digtinct scdars (the 3 components of v plusthe 3 components of w).

After awhile you get tired of writing the summeation signs and limits. So an
abbreviation was adopted whereby repeated gppearance of an index implies summation over the three
dlowable vaues of that index:

I =Tieg

Copyright © 2000 by Dennis C. Prieve
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Thisis sometimes cdled the Cartesian (implied) summation convention.

SCALAR FIELDS

Suppose | have some scalar function of position (X,y,z) which is continuously differentiable, that
is

f=1(x,y,2)

and Tf/x, 1if/qly, and if/fz exig and are continuous throughout some 3-D region in space.  This
function is called a scalar field. Now consider f a a second point which is differentidly close to the
fird. The differencein f between these two points is

cdled thetotal differential of f:

f(x+dx,y+dy,z+dz) - f(x,y,2) © df

For any continuous function f(x,y,2), df islinearly rdaed
to the podtion displacements, dx, dy and dz  That
linear rdation is given by the Chan Rule of
differentiation:

daf = de+ﬂdy+ﬂdz
fix iy iz

Instead of defining position using a particular coordinate
system, we could aso define position using a position vector r:

r=xi+y+z

The scdar field can be expressed as a function of a vector argument, representing position, instead of a
st of three scalars:

f=f(r)

Condder an arbitrary displacement away from the point r, which we denote as dr to emphasize that the
magnitude YdrYz of this displacement is sufficiently smal that f(r) can be linearized as a function of
positionaround r. Then the totd differentia can be written as

Copyright © 2000 by Dennis C. Prieve
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df = f(r+dr)- f(r) J

ar
GRADIENT OF A SCALAR

We are now is a position to define an important vector associated s

with this scaler fidd. The gradient (denoted as Rif) is defined ¢ rHdr
such that the dot product of it and a differentia digplacement
vector givesthe totd differentid:

df © dr- Nf
EXAMPLE: Obtain an explicit formulafor calculaing the gradient in Cartesan* coordinates.
Solution: r=xi+yj+z
r+dr = (x+dx)i + (y+dy)j + (z+dz)k
ubtracting: dr = (dx)i + (dy)j + (d2)k
Nif = (Nf),i + (Nf)yj + (Nf) k

dr- Nf = [(dx)i +...]- [(Nf)i + ...]

df = (Nf),dx + (Nf)ydy + (Nf),dz 1
Using the Chain rule df = (Tf/9x)dx + (Tf/7y)dy + (1f/2)dz 2
According to the definition of the gradient, (1) and (2) areidentical. Equating them and collecting terms.

[(Rif)- (/D) cx + [(RIf)y~ (TATy)Idly + [(Ri) - (TF/12)]dz = 0

Think of dx, dy, and dz as three independent variables which can assume an infinite number of vaues,
even though they must remain smdl. The equdity above must hold for dl vauesof dx, dy, and dz. The
only way this can betrueisif each individua term separately vanishes**

*Named after French philosopher and mathematician René Descartes (1596-1650), pronounced " day-
cart”, who first suggested plotting f(x) on rectangular coordinates

** For any particular choice of dx, dy, and dz, we might obtain zero by cancdlation of postive and
negdtive terems. However asmal change in one of the three without changing the other two would cause
the sum to be nonzero. To ensure a zero-sum for all choices, we must make each term vanish

independently.
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So (Nf)X = qf/9x, (Kh‘)y = f/qly, and (Nf)Z = 1f/9z,
_ ~ af . qf . If

leavi Nf =—i+—j+—k
& X ‘ﬂyJ Iz

Other ways to denote the gradient include:

Nf = gradf = f/qr

Geometric Meaning of the Gradient

Fall, 2000

1) direction: Nf(r) is norma to the f=const surface passing through the point r in the direction of

increesing f. Nf aso pointsin the direction of steepest ascent of f.

2) magnitude [Nf| is the rate of change of f with
distance dong this direction

What do we mean by an "f=congt surface’'? Consider an
example.

Example Suppose the steedy state temperature profile
in some heet conduction problem is given by:

T(X,y,2) =x2+y2+ 72

Perhaps we are interested in NT at the point (3,3,3)
where T=27. NT isnormd to the T=const surface:

X2+y2+72=27

which is a sphere of radius +/27 .8

Proof of 1). Let'susethe definition to show that these geometric meanings are correct.

df = dr- Nf

8 A verticd bar in the left margin denotes materia which (in the interest of time) will be omitted from the

lecture,
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Condder an arbitrary f. A portion of the f=const surface
containing the point r is shown in the figure a right. Choosea
dr which liesentirdly on f=const. In other words, the surface
containsboth r and r+dr, so

f(r) = f(r+dr)
and df = f(r+dr)-f(r)=0

Subgtituting thisinto the definition of gradient:

df =0 =dr- Nf = 6dr6 6 Nfé cosq 0

Since6dré and 6Nfé arein general not zero, we are forced
to the conclusion that cosg=0 or q=90°. This meansthat Nf is norma to dr which liesin the surface.

2) can be proved in asimilar manner: choose dr to be pardlel to Nf. Does Nf point toward higher or
lower vduesof f?
Applications of Gradient

find a vector pointing in the direction of steepest ascent of some scalar fied

determine a normal to some surface (needed to apply b.c.’s like n- v = 0 for a boundary which is
impermegble)

determine the rate of change dong some arbitrary direction: if n isa unit vector pointing aong some
path, then

n- Nf :E
s

istherate of change of f with distance (s) dong this path given by n. if /s is celled the directed
derivative of f.

CURVILINEAR COORDINATES
In principle, dl problems in fluid mechanics and trangport could be solved usng Cartesan
coordinates.  Often, however, we can take advantage of symmetry in a problem by using another

coordinate system. This advantage takes the form of areduction in the number of independent variables
(e.g. PDE becomes ODE). A familiar example of a non-Cartesian coordinate systemiis.
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Cylindrical Coordinates
[ = (22
q = tarr(y/x)

Z=7

X =rcosq
y=rdnq
=7

Vectors are decomposed differently. Instead of

inR.C.CS:

in cylindrica coordinates, we write

in cyl. coords.:

V = Vi + Vyj + VK

V= Vi€ +Vgeq +VE,

Fall, 2000

wheree;, eq, and e, are new unit vectors pointing the r, g and z directions. We aso have a different
set of nine unit dyads for decomposing tensors:

€€, €€q, €€, €€y, ELC

Like the Cartesian unit vectors, the unit vectors in cylindrical coordinates form an orthonormal set of
basis vectors for B3. Unlike Cartesian unit vectors, the orientation of e, and eq depend on position. In

other words;

e = e/(q)

€q=€q (@
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Spherical Coordinates

04 0%
y

08 ]

Spherical coordinates ,q,f ) are defined relative to Cartesan coordinates as suggested in the
figures above (two views of the same thing). The green surface is the xy-plane, the red surface is the
xz-plane, while the blue surface (at least in the left image) isthe yz-plane. These three planes intersect at
the origin (0,0,0), which lies deeper into the page than (1,1,0). The straight red line, drawn from the
origin to the point (r,g,f )8 haslength r, The angle q is the angle the red line makes with the z-axis (the
red circular arc labelled q hasradiusr and is subtended by the angle q). The angle f (mesasured in the
xy-plane) is the angle the second blue plane (actudly it's one quadrant of a disk) makes with the xy-
plane (red). This plane which is a quadrant of adisk isa f =congt surface: dl points on this plane have
the samef coordinate. The second red (circular) arc labdled f is aso subtended by the anglef .

8 Thisparticular figurewasdrawnusingr =1, g = p/4andf = p/3.
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A number of other f=const planes are
shown in the figure a right, dong with a
sphere of radius r=1. All these planes

intersect dong the z-axis, which also passes >
through the center of the sphere. 1]
X =rsinqcosf r=+yx2+y2 +22 03]
y =rsingsinf q:tan'lgex2 +y? 3 0'_
0.5
Z=rcos(q f =tan"(y/x)
_14
The position vector in spherical coordinates '1'5_'1 : 2
is given by Tl s A
05 7 0
y 15 X

r =xi+yj+zk =r er(q,f)

In this case dl three unit vectors depend on
position:

€ = el‘(qlf )v eq = eq(q1f )! and € = ef(f )

where ey is the unit vector pointing the direction of incressing r, holding q and f fixed; e, is the unit
vector pointing the direction of increasing g, holding r and f fixed; and e; is the unit vector pointing the
direction of increasing f , holding r and q fixed.

These unit vectors are shown in the figure a right.

Notice that the surface f =cong is a plane containing the g g \/ e
point r itsdlf, the projection of the point onto the xy-plane r{—% ———————
p

and the origin. Theunit vectorsey and g, lieinthisplane | g /ﬂ‘ « S N -
as wdl as the Catesan unit vector k (sometimes | —k>—>
denoted e,). /
= ¥

If wetilt thisf =congt plane

< into the plane of the page (as in the sketch at |eft), we can more easly see
e the relationship between these three unit vectors.
unit circle on = - (s
PRI e, = (cosq)e - (sing)ey
surface

Thisis obtained by determined from the geometry of the right triangle in
the figure at left. When any of the unit vectors is position dependent, we
say the coordinates are:
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curvilinear - a least one of the basis vectors is position dependent
This will have some profound consegquences which we will get to shortly. But first, we need to take
“time-out” to define:
DIFFERENTIATION OF VECTORSW.R.T. SCALARS
Suppose we have avector v which depends on the scalar parameter t:
v =V(t)

For example, the velocity of a satellite depends on time. What do we mean by the “derivative’ of a
vector with respect to a scdar. As in the Fundamenta Theorem of Caculus, we define the derivative
as.

dv _ lim {v(t +Dt) -v(t)}
dt D® 0 Dt

Note that dv/dt isaso avector.

EXAMPLE: Compute de,/dq in cylindrical coordinates.

Solution: From the definition of the derivetive:

de; _ lim {er<q+Dq)-er<q)}: lim {De}
Dq

dg Dg® 0o Dg Dq® 0

Since the location of the tail of a vector is not part
of the definition of a vector, let's move both
vectors to the origin (keeping the orientation
fixed). Usng the pardleogram law, we obtain the

difference vector. Its magnitudeis: sin{Af 2)

ler (4 +Da)- e (q)] = 2sinS
Its direction is paralel to e4(q+Dag/2), so:
e (q+Da) - & () = 2siney(q+ )

Recaling that Snx tendsto x as x® 0, we have
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im fe, (4D - & (@)} = Deg(c)

Dividing thisby Dg, we obtain the derivative:
de,/dq = e
Smilaly, dey/dqg = -&;

One important gpplication of “differentiation with respect to a
scda” isthe caculaion of veocity, given position as a function of
time. In generd, if the pogtion vector is known, then the velocity
can be caculated as the rate of change in position:

trajectory

r=r() Xi#)
v = dr/dt 0

Smilarly, the acceeration vector a can be cdculated as the
derivative of the velocity vector v:

a = dv/dt >

C-
EXAMPLE: Given the trgectory of an object in S~ A
cylindrical coordinates ~o

r=r(t), q=q(t), and z= zt) r
Find the velocity of the object.

Solution: First, we need to express r in in terms of the A N
unit vectors in cylindricd coordinates. Using the figureat
right, we note by inspection that™ X

r(r,q,z) = rer(q) + ZeZ

Now we can gpply the Chain Rule;

*Recdling that r = xi + yj + zk in Cartesian coordinates, you might be tempted to writer =re, + aeq +
ze, in cylindrical coordinates. Of course, this temptation gives the wrong result (in particular, the units
of length in the second term are missing).
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13
dr = E dr + E] dg+ ﬂ—r dz:erdr+reqdq+ezd2
B B 8
€ der (q) €z

1983
€q

Dividing by dt, we obtain the velocity:

_dr _dr(t) +rdq(t)a dz(t)

i g 1gs " om

vy Vg vy

(a)
<

4

VECTOR FIELDS

A vector field is defined just like a scalar field, except that it's a vector. Namely, a vector fidd is a
position-dependent vector:

v =v(r)
Common examples of vector fidds include force fidds, like the gravitationd force or an eectrodtatic
forcefidd. Of course, inthis course, the vector field of greatest interest is.
Fluid Velocity as a Vector Field

Congder steedy flow around a submerged object. What do we mean by “fluid velocity?” There
are two ways to measure fluid velocity. First, we could add tracer particles to the flow and measure the
position of the tracer particles as a function of time; differentiating position with respect to time, we
would obtain the velocity.” A mathematica “tracer particle” is cdled a“materid point:”

Material point - fluid dement - a given st of fluid molecules whose location may change with
time8

~ Actudly, this only works for steady flows. In unsteady flows, pathlines, stresklines and streamlines
differ (see “ Streamlines, Pathlines and Stresklines’ on page 65).

8 In a molecular-level description of gases or liquids, even nearby molecules have widdly different
veocities which fluctuate with time as the molecules undergo collisons.  We will reconcile the
molecular-level description with the more common continuum description in Chapter 4. For now, we
just date that by “location of a materid point” we mean the location of the center of mass of the
molecules. The “point” needs to contain a Satisticaly large number of molecules so that r(t) converges
to asmooth continuous function.
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Suppose the trgjectory of amaterid point is given by:
r=r(t)

_dr

Then the fluid velodity a any timeis -

3)

A second way to measure fluid velocity is Smilar to the * bucket-and-stopwatch method.” We measure
the volume of fluid crossing a surface per unit time:

A%
nv= lim {m} —> n
Da® 0| Da —»

—>
where Da is the area of a surface dement having a unit —»
norma n and Dq is the volumetric flowrate of fluid crossng —»

. . . area Agr
Da in the direction of n. >

When Da is smal enough so that this quotient has converged
in amathematica sense and Da is samdl enough so that the surface is locdly planar so we can denote its
orientation by aunit norma n, we can replace Da by da and Dq by dq and rewrite this definition as:

dg=n-vda 4

This is particularly convenient to compute the
volumetric flowrate across an abitrary curved
surface, given the velocity profile. We just have to
sum up the contribution from each surface dement:

Q:_[nvda — > WA
A

surface 4
PARTIAL & MATERIAL DERIVATIVES

Let f=f(r,t)

represent some ungteady scdar fidd (e.g. the unsteady temperature profile indde amoving fluid). There
are two types of time derivatives of unsteady scdar fields which we will find convenient to define. Inthe
examplein which f represents temperature, these two time derivatives correspond to the rate of change
(denoted generically as df /dt) measured with a thermometer which ether is hed dationary in the
moving fluid or drifts dong with the locd fluid.

partial derivative - rate of change at afixed spatial point:
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T _ et
fit 8dt ajr:O

where the subscript dr=0 denotes that we are evauating the derivative dong a path™ on
which the spatia point r is hed fixed. In other words, there is no disolacement in
position during thetimeinterva dt. As time proceeds, different materid points occupy
the spatid point r.

material derivative (ak.a subgtantid derivative) - rate of change within a particular material
point (whose spatia coordinates vary with time):

Df _edlf 0
Dt 8dt er:vdt

where the subscript dr = v dt denotes that a displacement in position (corresponding to
the motion of the velocity) occurs: here v denotes the locd fluid velocity. As time
proceeds, the moving materid occupies different spatid points, so r is not fixed. In
other words, we are following aong with the fluid as we measure the rate of change of
f.

A relaion between these two derivatives can be derived using a generdized vectoria form of the Chain
Rule. Firg recall that for steady (independent of t) scdar fidds the Chain Rule gives the totd
differentid (in invariant form) as

df © f(r+dr)- f(r)=dr Nf

Whent isavariable, we just add another contribution to the total differential which arises from changes
int, namdy dt. The Chain Rule becomes

df = f(r+dr,t+dt)- f(r,t):m—idt +dr- Nf

The first term has the usud Chain-Rule form for changes due to a scalar variable; the second term gives
changes due to a displacement in vectoria position r. Dividing by dt holding R fixed yieds the materid
deriveive:

* By “pah” | mean a condraint among the independent variables, which in this case are time and
posgtion (eg. x,y,z and t). For example, | might vary one of the independent variables (eg. x) while
holding the others fixed. Alternatively, | might vary one of the independent variables (e.g. t) while
prescribing some related changes in the others (e.g. x(t), y(t) and z(t)). In the latter case, | am
prescribing (in parametric form) atrgjectory through space, hence the name * path.”
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But (dr/dt) isjust v, leaving: ootV Nif
This relaionship holds for a tensor of any rank. For example, the materid derivative of the velocity
vector isthe acceleration a of the fluid, and it can be calculated from the velocity profile according to

a:ﬂ:ﬂ_v+v. NV
Dt qt

We will define Nv in the next section.

Calculus of Vector Fields

Just like there were three kinds of vector multiplication which can be defined, there are three kinds
of differentiation with respect to postion.

Shortly, we will provide explicit definitions of these Notation Result

quarntities in terms of surface mtegrds Let me Divergence Ny alar

introduce this type of definition usng a more familiar

quantity: Curl N v vector
Gradient Nv tensor

GRADIENT OF A SCALAR (EXPLICIT)

Recdll the previous definition for gradient:
f=f(r): df = dr- Nf (implicit def’ n of Nif )

Such animplicit definition islike defining f ¢(x) as that function associated with f(x) which yidds
f=f(x): df =(dx) f ¢ (implicitdef'nof f ')

An equivdent, but explicit, definition of derivative is provided by the Fundamental Theorem of the
Cdculus

i _
£ O(x) © ng o{f(H%?( f(x)}:% (expliit def nof f')

We can provide an analogous definition of Nf

Copyright © 2000 by Dennis C. Prieve



06-703 17 Fall, 2000
- lim |1 . ~
Nf © v j nfda (explicit def' n of Nif )

wheref =any scdar fidd

A = a st of points which conditutes any
closed surface enclosing the point r
a which Nf isto be evaluated

V = volume of region enclosed by A

da = area of adifferentia dement (subset) of
A

volume W

n = unit normd to da, pointing out of region
enclosed by A

lim (V® 0) = limit as dl dimensonsof A shrink to zero (in other words, A collapses about the
point a which Nf isto be defined.)

What is meant by this surface integral? Imagine A to be the skin of apotato. To compute theintegrd:
1) Cavethe skininto anumber of dements. Each dement must be sufficiently smal so that
element can be considered planar (i.e. nispracticaly congtant over the e ement)
f ispracticdly constant over the dement
2) For each dement of skin, compute nf da
3) Sumyiddsintegrd

This same type of definition can be used for each of the three spatid derivatives of a vector fied:

DIVERGENCE, CURL, AND GRADIENT

. - lim |1
Divergence N v© —J'n vda
V®O0 VA
- lim
Curl N™vo° lJn’ vda
V® 0 VA
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- l[im
Gradient Ky © 1 J nvda
V® 0|V A

Physical Interpretation of Divergence

Let the vector fied v = v(r) represent the steady-state velocity profile in some 3-D region of space.
What isthe physical meaning of N- v?

n- v da = dq = volumetric flowrate out through da (cm3/s). This quantity is positive for
outflow and negative for inflow.

& N+ v da = net volumetric flowrate out of enclosed volume (cm¥/s). Thisis dso positive for
anet outflow and negetive for a net inflow.

(UV) & n- v da = flowrate out per unit volume (s'1)

> 0 for an expanding gas (perhaps T T or pl)
N- v =< =0for anincompressibe fluid (no room for accumulation)
< 0for agas being compressed

N- v = volumetric rate of expansion of a differentid dement of fluid per unit volume of thet
dement (s1)

Calculation of N- vin R.C.C.S.
Given: V = Vy(X,Y,. i+ Vy(X,Y,2)] + VXY, 2k
Evauae N- v at (Xg,Yo.20)-

Ay
Solution: Choose A to be surface of rectangular <>

pardlelopiped of dimensions Dx,Dy,Dz with one corner /;ﬁ_ﬁ
A=

& Xo,YoZ0- n <

So we partition A into the six faces of the paralelopiped.
The integra will be computed separately over each face:

7.

jn vda = jn-vda+ Jn vda+ L + _[n vda A = e
A A A, Ag

Surface A isthe x=x, face: n=-i

N v =-i- V=-V(XyY.2)
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Zp+Dz yo+Dy

J n vda = J J - Vy (Xo,Y,2)dydz
A % Yo

Using the Mean VVdue Theorem: = -Vy(Xq, Y4z DyDz

where Yo £ YCE y,+Dy

and Zy £ Z¢£ 7,+Dz

Surface A, isthe x=x,+Dx face: Nn=+i

NV =i v=V,(X,+tDx,y,2)

Z,+Dz yo+Dy
_[ nvda= .[ .[ Vy (X + DX, Y,2)dydz
A 4 Yo
Using the Mean Vaue Theorem: = Vy(Xot+Dx,y?,2)DyDz
where Yo £ Y? £ yotDy
and z,£2 £2,+Dz

The sum of thesetwo integrasis

[ ] =[x + Dy - v (x,,y620]0y Dz
AL A

Dividing by V = DxDyDz

- J ana:VX(Xo"'DX’y@Z@‘Vx(xo,yq;Z(D
\Y Dx
At Ay
Letting Dy and Dz tend to zero:
moL J 0 vdat = Yx(Xo * DX ¥o.20) - Vx(%0.Y0,%)
Dy,Dz® 0|V Dx
A1+A2

Findly, we take the limit as Dx tends to zero:

Copyright © 2000 by Dennis C. Prieve
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lim v
_[ nvda} = —%
V® 0 V A X Ix,yo .2
Similarly, from the two y=const surfaces, we obtain:
lim ﬂvy
nvday =——
V® 0 V I
+A4 Ty Xo01 Y0120
and from the two z=const surfaces:
lim
Ve 0 J n vda =M{
V A+ Ag Tz X0:Y0:Z0

Summing these three contributions yields the divergence:

vy . vy + v,
x v 1z

N v =

Evaluation of N" v and Nvin R.C.C.S.

Fall, 2000

In the same way, we could use the definition to determine expressions for the curl and the gradient.

Ry = ﬂVz_ ﬂVy i+(ﬂVx ) ﬂvzjj+ ﬂVY_
Iy 1z 1z X X

Theformulafor curl in R.C.C.S. turns out to be expressible as a determinant of a matrix:

T T

AR 11vz_ﬂ"yi+(ﬂvx_'|1vzjJ oMy )
x Ty 1z v 1z 1z X X

Vx Vy Vg

But remember that the determinant is just amnemonic device, not the definition of curl. The gradient

of the vector v is

_ 3 3
Ww=S S

v
i=1 j=1 X

— G €,
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where X, = X, X =y, and X3 = z, V1 = Vy, €C.

Evaluation of N- v, N" v and Nv in Curvilinear Coordinates
Ref: Greenberg, p175

These surface-integra definitions can be applied to any coordinate sysem. On HWK #2, we
obtain N- v in cylindrical coordinates.

More generdly, we can express divergence, curl and gradient in terms of the metric coefficients
for the coordinate sysems. If u,v,w ae the three scdar coordinate variables for the curvilinear
coordinate system, and

X =x(u,v,w) y = y(u,v,w) z= Z(u,v,w)
can be determined, then the three metric coefficients — hq, ho and hz — are given by

hy(u,v,w) = XS + y& +ZS

hy(u,v,w) = x3 + y3 + zg

ha(u,v,W) = /X3 +y2 +22

where letter subscripts denote partid differentias while numerical subscripts denote component, and the
generd expressions for evauating divergence, curl and gradient are given by

] o 1 9f 1 qf 1 9f
radient of scaar: Nf =——e; +——e, +——e
g by Tu 1 hy v 2 hs W 3

divergence of vector:

Gy=_1t | T Rl T
NV = Rt [ﬂu (hahava) + 35 () + 'nw(hlhzv3)}

L hlel hzez h3€3

. N © = ﬂ ﬂ
curl of vector: N™ v hhoha /‘ﬂu %v / Tw
hlvl h2V2 h3V3

These formulas have been evaluated for a number of common coordinate systems, including R.C.C.S,,
cylindrical and spherica coordinates. The results are tabulated in Appendix A of BSL (see pages 738
741). These pages are dso available online:
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rectangular coords.

cylindrical coords:

spherica coords:

Physical Interpretation of Curl

To obtain a physica interpretation of N v, let’s consider a particularly smple flow field which is
cdled solid-body rotation. Solid-body rotation is smply the velocity fidd a solid would experience if
it was rotating about some axis.  This is ds0 the vdocity fidd eventudly found in viscous fluids
undergoing steady rotation.

Imagine that we take a container of fluid

(like a can of soda pop) and we rotate the '
can about its axis. After a trandent period |—*—A—A—A—AAA_A_A_

whose duration depends on the dimensions |

w
4

.

of the container, the steady-state veocity = r ,
profile becomes solid-body rotation. side view

A maerid point imbedded in a solid would ke : »

move in acircular orbit a a constant angular le.(q@) e(q®)

speed equa to W radians per second. The
corresponding  velocity is most  eadly
described using cylindrical coordinates with
the zaxis oriented perpendicular to the
plane of the orbit and passng through the
center of the orbit. Then the orbit liesin a
z=cong plane. The radius of the orbit isthe
radid coordinate r which is aso congant.
Only the g-coordinate changes with time and
it increases linearly so that dg/dt = const =
W.

In parametric form in cylindrical coordinates,
the trgectory of amateria point is given by

r(t) = cons, z(t) = const, q(t) =W

The velocity can be computed using the formulas developed in the example on page 12:

vz dr(t)er o dq(t)eOI .\ dz(t)eZ - e
3 138 Es
0

r'w 0

q
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Alternatively, we could deduce v from the definition of derivative of a
vector with respect to ascalar: eq(a+Daq)

Dq
q+
v:%: lim %=J-rdd(i :r%eq=r\/\/eq 4 eq( 2)
oo r Ds=r Dq
More generdly, in invariant form (i.e. in any coordinate system) the
velocity profile corresponding to solid-body rotation is given by Dq &q(a)
v(rp) =W rp 5

where W is cdled the angular velocity vector and p is the position vector* whose origin lies
somewhere dong the axis of rotation. The magnitude of W is the rotation speed in radians per unit time.
It's direction is the axis of rotation and the sense is given by the “right-hand rule” In cylindrica
coordinates, the angular velocity is

W= We;

and the pogition vector is rp =rer +ze;

Taking the cross product of these two vectors (keeping the order the same asin (5)):
v(r) = rV\e_EZ% + ZV\E_EZ% = r\Weyq
€q 0

To obtain this result we have used the fact that the cross product of any two pardld vectors vanishes
(because the gne of the angle between them is zero — recall definition of cross
product on pl).

system yields a vector pardld to the third unit vector with a sense that can be
remembered using the figure at right. If the cross product of the two unit vectors
corresponds to a “ clockwise” direction around this circle, the senseis positive; in
a “counter-clockwise’ direction, the sense is negative. In this case, we are
crossing e, with e which is clockwise; hence the cross product is +e,

.
The cross product of two distinct unit vectors in any right-handed coordinate / \'
z 0

\ S
"

Now that we have the velocity fidld, let’s compute the curl. In cylindrical coordinates, the formula for
the curl is obtained from p739 of BSL:

* The subscript “p” was added here to avoid confusing the cylindrical coordinate r with the magnitude
of the pogtion vector. Note that in cylindrical coordinates, |rp| =\r2+Z2 1,
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N V:GM_ Mjer +(M_ M)eq +[gﬂ(rvq)_ 11y jez

rfa 1z z  Tr rfr 1o
Subdtituting vi=0 Vg =TW vz=0
we obtain N” v =2We, =2W

Thus the curl turns out to be twice the angular velocity of the fluid dements. While we have only shown
thisfor aparticular flow field, the results turns out to be quite generd:

N“v=2W

Vector Field Theory

There are three very powerful theorems which condtitute “vector field theory:”
Divergence Theorem
Stokes Theorem

Irrotational U Conservative U Derivable from potentia

DIVERGENCE THEOREM

This is also known as “Gauss8 Divergence Theorem” or “Green’s Formula’ (by Landau &
Lifshitz). Let v be any (continuoudy differentiable) vector field and choose A to be any (piecewise
smooth, orientable) closed surface; then

i{n vdazjﬂ vdVv
A Vv

where V is the region enclosed by A and n is the
outward pointing unit norma to the differentid
surface dement having area da.  Although we will
not attempt to prove this theorem, we can offer the

8 Carl Friedrich Gauss (1777-1855), German mathematician, physicist, ahd-astrgiginer ¥Considered
the grestest mathematician of his time and the equa of Archimedes and Isaac Newton, Gauss made
many discoveries before age twenty. Geodetic survey work done for the governments of Hanover and
Denmark from 1821 led him to an interest in space curves and surfaces.

Copyright © 2000 by Dennis C. Prieve



06-703 25 Fall, 2000

following rationdization. Condder the limit in which dl dimensons of the region are very smdl, i.e
V® 0. When the region is sufficiently small, the integrand (which is assumed to vary continuoudy with
position)* isjust a constant over the region:

N- v = cond. indde V
jn vda= IN- vdVv :(N- v)[j dVJ :(N V)V
A v v

Solving for the divergence, we get the definition back (recaling that this was derived for V® 0):

. 1
N-v:—J.n vda
VA

Thus the divergence theorem is at least consistent with the definition of divergence.

Corollaries of the Divergence Theorem

Although we have written the Divergence Theorem for vectors (tensors of rank 1), it can aso be
applied to tensors of other rank:

jnfda:jmfdv
A V

_[n tda= _[ N t dv

A v
One application of the divergence theorem is to smplify the evauation of surface or volume integras.
However, we will use GDT mainly to derive invariant forms of the equations of motion:
I nvariant: independent of coordinate system.

Toilludrate this gpplication, let’s use GDT to derive the continuity equation in invariant form.

* This is a consequence of v being “continuoudy differentiable’, which means that dl the partid
derivatives of dl the scalar components of v exist and are continuous.
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The Continuity Equation

Letr (r,t) and v(r,t) be the dengty and fluid velocity. What relationship between them is imposed
by conservation of mass?

For any system, conservation of mass means.
rateof acc. | [ netrateof
of total mass| | mass entering
Let's now apply this principle to an arbitrary system
whose boundaries are fixed spatid points. Note
that this system, denoted by V can be macroscopic
(it doesn't have to be differentiad). The boundaries
of the sysem are the st of fixed gpatid points

denoted as A. Of course, fluid may readily cross
these mathematica boundaries.

Subdividing V into many smdl volume dements:

dn=rdv
M :Jdm:jr dv
\Y
<) o}
t tg\/ p V‘ﬂt

where we have switched the order of differentiation and integration. This last equdity isonly vaid if the
boundaries are independent of t. Now mass enters through the surface A. Subdividing A into amdl
area dements.

n = outward unit normal
n- v da = val. flowrate out through da (cm3/s)
r (n- v)da = massflowrate out through da (g/s)

i rateof (]

i Y= C
imassleavmgg Ad

(nv)da= gy (rv)da= ¢\ (rv)dv

A \%

The third equdity was obtained by gpplying GDT. Subdtituting into the general mass baance:
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r c
—dV =- [R(rv)av
A

Since the two volume integrals have the same limits of integration (Same domain), we can combine them:
j[ﬂ—r +Ki (rv)}dv =0
Y% Tt

Since V is abitrary, and since this integrd mug vanish for dl V, the integrand must vanish a every
point.”

r & _
E+N(rv)—0

which is caled the equation of continuity. Note that we were gble to derive this result in its most
generd vectorid form, without recourse to any coordinate sysem and using a finite (not differentid)
control volume. Inthe specid caseinwhich r is a congtant (i.e. depends on neither time nor position),
the continuity equation reduces to:

N-v=0 r =const.

Recall that N- v represents the rate of expansion of fluid elements. “N- v = 0’ means that any flow into
a fluid dement is matched by an equd flow out of the fluid ement: accumulation of fluid ingde any
volumeis negligible amdl.

Reynolds Transport Theorem

In the derivation above, the boundaries of the system were fixed spatid points. Sometimes it is
convenient to choose a system whose boundaries move. Then the accumulation term in the balance will

* If the domain V were not arbitrary, we would not be able to say the integrand vanishes for every point
in the domain. For example:

2p _r2p . _
Io cosqdg = Jo sinqdg=0
2
_[0 IO(cosq - sing)dg=0
does not imply that cosq = sinq since the integral vanishes over certain domains, but not al domains.

Copyright © 2000 by Dennis C. Prieve



06-703 28 Fall, 2000

involve time derivatives of volume integras whose limits change with time. Smilar to Liebnitz rule for
differentiating an integral whose limits depend on the differentiation variable, it turns out that:3

d _ 1S
E[ fS(r,t)dV]— f i =dV + JS(r t)(n w)da (6)
V(t) V(t) A(t)

where w isthe loca velocity of the boundary and S(t) is atensor of any rank. If w= 0 at al points on
the boundary, the boundary is sationary and this equation reduces to that employed in our derivation of
the continuity equation. In the specid case in which w eguas the locd fluid velocity v, this rdaion is
called the Reynolds Transport Theorem.”

Az
EXAMPLE: rederive the continuity equation usng a control volume whose -
boundaries move with the velocity of the fluid.

-

[N

Solution: If the boundaries of the sysem move with the same velocity as
locd fluid dements, then fluid dements near the boundary can never cross it
gnce the boundary moves with them. Since fluid is not crossng the
boundary, the system is closed.” For a closed system, conservation of mass

e

requires.
i{massof}zo
dt | System
av d
— = 7
or o d{ 7)

Notice that we now have to differentiate a volume integrd whose limits of integration depend on the
variable with respect to which we are differentiating. Applying (6) with w=v (i.e. aoplying the Reynolds
Transport Theorem):

8 For aproof, see G:163-4.

~ Oshorne Reynolds (1842-1912), Engineer, born in Belfast, Northern Ireland, UK. Best known for
his work in hydrodynamics and hydraulics, he greetly improved centrifugd pumps. The Reynolds
number takes its name from him.

* When we say “closed,” we mean no net mass enters or leaves the system; individual molecules might
cross the boundary as a result of Brownian motion. However, in the absence of concentration
gradients, as many molecules enter the system by Brownian motion as leave it by Brownian motion. v is
the mass-averaged velocity.
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& 0

i(} or(r,nav:= (‘)ﬂ—rdv+ O r(r,t)(nv)da
&v (t) g V) At)

which mugt vanish by (7). Applying the divergence theorem, we can convert the surface integrd into a
volumeintegrd. Combining the two volume integrds, we have

'[ {‘21_;+N- (rv)}dv =0

V(t)
which is the same as we had in the previous derivation, except that V is afunction of time. However,

making this hold for dl time and dl initid V is redly the same as holding for dl V. The rest of the
derivation is the same as before.

STOKES THEOREM

Let v be any (continuoudy differentiable) vector
field and choose A to be any (piecewise smooth,
orientable) open surface. Then

_[n- (N" v)da= §v- dr
A C

where C is the closad curve forming the edge of A
(has direction) and n is the unit norma to A whose sense is related to the direction of C by the “right-
hand rule’. The above equation is called Stokes Theorem. 8

Velocity Circulation: Physical Meaning

The contour integral gppearing in Stokes' Theorem is an important quantity caled velocity
circulation. Wewill encounter this quantity in afew lectures when we discuss Kelvin's Theorem. For
now, I'd like to use Stokes Theorem to provide some physical meaning to velocity circulation. Using
Stokes Theorem and the Mean Vaue Theorem, we can write the following:

8 Sir George Gabrid Stokes (1819-1903): British (Irish born) mathematician and physicist, known for
his study of hydrodynamics. Lucasian professor of mathematics at Cambridge University 1849-1903
(longest-serving Lucasian professor); president of Roya Society (1885-1890).
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Stokes' Mean Vaue
Theorem Theorem

prd = (R v)da = (n(R"v))A=2(wW,)A

Findly, we note from the meaning of curl that N v is twice the angular velocity of fluid dements, so thet
n- N v is the norma component of the angular velocity (i.e. norma to the surface A).  Thus velocity
circulation is twice the average angular speed of fluid eements times the area of the surface whose edge
is the closed contour C.

Example: Compare “velocity circulation” and “angular
momentum” for a thin crcular disk of fluid undergoing < >
solid-body rotation about its axis.

Solution: Choosing cylindrica coordinates with the z ; Az
axis digned with axis of rotation. Solid-body rotation w
corresponds to the following velocity profile (see page

v =rWey
ad N v=2We,
Findly the unit normd to the disk surfaceisn = e,. Then the velocity-circulation integral becomes

§v- dr = In- (N” v)da= jez- (2We, ) da = 2WpR?
C A A

According to L&L Vol 18 page 25, the angular momentum L of amass m undergoing motion a velocity
v isthe lever am r times the linear momentum (p = mv): i.e. L = r" p. Summing this over differentia
fluid massin our disk with dm =r dV, the net angular momentum of thedisk is

L = _[(r “Vrav = rDz_[(r " v)da
% A
Sincethe disk is of uniform thickness Dz and dengity r , we can write the second equation above. If the

disk is sufficiently thin that we can neglect the z contribution to the position vector, then we can
approximater = re, in cylindrica coordinates.”  Substituting into the second integral above

8 Landau & Lifshitz, Mechanics and Electrodynamics (Course of Theoretica Physics Vol. 1),
Pergamon, 1959.
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R
L =r sz(r 2Wez)da: r Dz\/\/eZJ'r2 2prdr = §R4r D2We,
0

A

Dividing this by the velocity circulaion integrd:
L DRYrDaw
z _2
fv-dr  2wpR
C

2 _1 2 _ M
5 RrDz—%g%@r—‘l—

p

NI

where M isthe mass of fluid in the disk. This could be rewritten as

§v- dr = 4pi
c M
So the velocity-circulation integrd isjust proportiond to the angular momentum per unit mass.

DERIVABLE FROM A SCALAR POTENTIAL

A very specid class of vector fields conssts of those vectors for which a scaar fidd exists such that
the vector can be represented as the gradient of the scaar:

Suppose: v=v(r) andf =1(r)
If f exists such that: v = Nf

fordl r in some domain, then f(r) is caled the scalar potential of v and v is said to be derivable from
a potential inthet domain.

An example of a vector fidd which is“ derivable from a potentid” is the
gravitationd force near sealeve:

Far T

earih

Fgrav =-Mgk

and the associated potential energy is:

f (2 = Mgz

" Actudly this assumption isn't necessary since any z-component of r will produce an r-component in
the cross-product and this r-component will integrate to zero aslong as V is a body of rotation about
the same axis.
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Note that Nf = Mgk

isidenticd to the force, except for the sign (introduced by convention). This example adso suggests why
f iscdled the“potentid” of v. Not every vector field has a potential. Which do? To answer this, let's
look at some specid properties of such vector fields.

Property | : if v=Nf then N" v=0 (irrotational)

Proof: Recall that N” (Nf ) = 0 (see HWK #2, Prob. 4€). A vector which has this property is said to be
irrotational . This nameis an dluson to N” v representing the rotation rate if v is the fluid velodity.
N" v=0 means the fluid dements are not rotating.

Property I1: if v=Nf then §v- d =0 (conservative)
C

for any closed contour in the region.

Proof: Using Property 1, we know that N” v=0. Then we can deduce the vaue of this closed-contour
integra from Stokes Theorem:

ﬁ)v- dr:@n-(ﬂé da=0
C A 0

A vector field which hasthis property is said to be conservative. Thisnameis an dluson to the specid
case inwhich v represents a force, like gravity. Then v- dr (force times displacement) represents the
work required to move the object through the force fidd. Saying that the contour integral vanishes
means that the work required to lift aweight can be recovered when the weight falls. In other words,
energy is conserved.

If C isopen, v=Nf isdill quite useful:

Property I 11: let C, be an open contour connecting points A and B. Ca
- B
Ifv=Rf then &uov- dr =f (r)-f (o) /\/
A
for any contour connecting A and B.

Proof: Note that Nf - dr = df (from our definition of gradient). Then

ovxdr = §df =f (rg)- f(ra)
CO CO

We call this property path independence. Of course, Property Il is just a specid case of this for
whichA=Bsothat f (rg) - f (ra) = 0.
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THEOREM I1I

We have just shown that properties | and Il areimplied by v = Nf ; it turns out that the converse is
aso true, dthough I’'m not going to prove it here. We can ditill these properties and their converse into
adngle satement:

N v=0 f:f(r)exists §V- dr =0 for every
foralr ;U <suchthatv=Nf ;{ U {¢c
in Region in Region closed C in Region

TRANSPOSE OF A TENSOR, IDENTITY TENSOR

The transpose of atensor t isdenoted t ! and is defined so that:

v-t=tt v
and t-v=v-tt
for dl vectorsv. For example:
if t=ab
then tt=ba

More generaly, in terms of scalar components of t, we can write the relationship between a tensor and
itstranspose as.

Symmetric Tensor: t=

ll—+
||—t+

An example of a symmetric tensor isthe dyad aa.
| dentity Tensor: Also known asthe |dem Factor. Denoted as| and defined so that:
vV-l=v=l[-v

for any vector v. Clearly | is symmetric, but in addition, dotting it with another vector gives that vector
back (like multiplying by one). In any coordinate system, | can be calculated from:

1

| =Nr =
= ﬂr
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wherer isthe pogtion vector expressed in terms of the unit vectorsin that coordinate syssem. Recalling
from 6 that gradient can be thought of as the partia derivative with respect to postion, | can be
thought of as the derivative of the position vector with respect toitself. InR.C.C.S,, recall that:

r=xi+yj+z
and N\r=8 a4 €€
i '

where r; is the jth component of the position vector r and x; is the ith coordinate. In Cartesian
coordinates, the position vector components are related to the coordinates according to:

rM=X1=Xry=Xy=y,andrz=xz=z

r.
then 1T—]:dij
91
whichisOif it or 1if i=j. Thisleaves
Nr=8 a4 ee¢"
P
S | =ii +jj + Kk

Asapartid proof that | has the desired properties which make it the identity tensor, consider dotting it
with an arbitrary vector v:

V- (ii+j+kk) = v- Qi + v- jj +v- Kk
= (v )i+ (v j)j+ (v Kk
=Vyl + V] VK=V

Thus we have shown thet v- | =v, as advertised.

DIVERGENCE OF A TENSOR

In presenting the corollaries to the Divergence Theorem, we have dready introduced the divergence
of atensor. This quantity is defined just like divergence of avector.

* This expression for the identity tensor is vaid for any set of orthonorma unit vectors (not just the
Cartesian ones for which we have derived it here).
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- lim |1
o 0 —
“ve o{v {nida}

Note that this definition uses a pre-dot not a Ay A
post-dot. InR.C.C.S. <«——>
ny
t = SStjjejej n <
' Az
On the x=x, face: }
|
n= -81 i Fn x
| V; >
| /
_ 9o o) _©° - : S o
nt=a a tijeree; =-a ty| € 7 ____F _______ 27
P i Xq
Similarly, on the x=xq+Dx face, we obtain:
n=+eq
nt=a ty €
J X +Dx

After integrating over the area, we obtain:

f nt=da=é{t1j |xo +Dx - L1 |Xo}ei DyDz
A+A, i

Dividing by V:

1 o |t1j Ixg+Dx ~t1j Ix
— n tda = ° 0 le:
Y J = a{ :

Dx
At+hy
Taking thelimit asV® o:
veoly | midap=a >

A+ A J

Adding on smilar contributions from the y=const and z=const faces:
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Nt=iq[txx+ﬂtyx+ﬂtzx9i+ié[txy+ﬂtyy+ﬂtzygj+iq[txz+ﬂty2+ﬂtzzgk
= & Ix Ty z 5 & X Ty 1z 5 & Ty Tz 4

| ntroduction to Continuum M echanics*

In this course, we will treet fluids like continua; in other words, we are going to ignore the molecular
granularity of matter. Thisis an assumption which we, as engineers, often make in describing transport
of heat, mass, or momentum athough we don't dways date this assumption explicitly. To make the
nature of this assumption clearer, it might hep to discuss the dterndive.

Fluids are composed of molecules. In principle, if you tell metheinitid location of every moleculein
the fluid and its initid velocity, | can compute the podtion and veocity a some later time using
Newton's laws of motion (i.e. F = ma). The difficulty with this gpproach is that the number of
molecules in any volume of fluid of interest to us make such a detailed cdculation impracticd. For
example

1 cm3 of water ® 3.3x102 molecules® 10 million years

Even with a computer operating at 100 mfops, it would take 10 million years to do just one
multiplication for each molecule. Molecules of a liquid collide on the average of once every 1012
seconds. To describe one second of red behavior, | would need 1012~ 10 million years. Clearly, this
is an absurd length of time.  Although computers get faster every year, this will remain an absurdly long
timefor the foreseegble future. The dternativeis.

CONTINUUM HYPOTHESIS

A detailed description at the molecular leve is not required in order to predict macroscopic
behavior of any materid. For example, it is not necessary to know the precise location of every
molecule of fluid; it turns out that al that is needed for most gpplications is the digtribution of mass
described by the dengity profiler (r) of moleculesin some region:

* Reference: G.E. Mase, " Continuum Mechanics," Schaum's Outline Series, McGraw-Hill, 1970.
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where my; is the mass of molecule i, the sum is over dl the molecules
indde surface A, and V isthe volume. In fluid mechanics, asin heat and
mass trandfer, we make an assumption known as the "continuum

hypothesis."

I
Bascdly this assumption is that the limit above will =4
converge long before the dimendons of V sdhrink to
molecular Sze.

Smilaly, we dont need to know the trandationd,
rotationd, vibrationd and eectronic energy of each
molecule.  We usudly need only to know the internd | .
energy per unit volume as a function of position, which in 1020 o1t 100
turn, manifestsitself macroscopicaly as temperature.

4} | | | » ¥ {cm3)

A more precise satement of the continuum hypothesisis.

Continuum Hypothesis - the region to be described can be subdivided into a set of
(infinitesmdl) volume dements, each of which smultaneoudy:

1) issmadl enough to be consdered uniform (i.e. any spatid variations in properties -- such asr, v,
T, p -- indde the volume dement are negligible); and

2) islarge enough to contain a datidticaly large number of molecules.

In other words, we are assuming that dV exists such that the two conditions above are both satisfied.
Materials which obey this “hypothesis’ as said to behave as a continuum. Generdly, the continuum
hypothes's works well provided al the dimengons of the system are large compared to molecular size.
An example of a situation in which the continuum hypothess does not work is the flow of dilute gasesin
samall pores, where the mean free path (for the collison of molecules) is comparable to the dimensions of
the pore. Thissituation is called “Knudsen diffuson.”

The basic problem in continuum mechanics is to describe the response of materid to dress. A
quantitative statement of that response is known as.

Constitutive Equation - mode which describes how amaterid will respond to stress.

Familiar examples of condtitutive equations include:
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1) Hooke'slaw of dadticity (solids)

2) Newton'slaw of viscosity (fluids)

Many materids, like toothpaste and polymer melts, have characteristics of both solids and fluids and do
not obey ether of these smple"laws." Such fluids are called viscoel astic.

CLASSIFICATION OF FORCES

Having derived an equation (the Continuity equation) to describe the relationship among the
variables which is imposed by conservation of mass, the remaining fundamenta principle of physcsis
Newton's second law (SjF; = ma) which, as it turns out, is equivalent to conservetion of momentum.
To gpply this principle, we will need to ligt the forces which can act on fluid systems. Forces tend to fall
into one of two different categories, depending on the range over which they act: long-range (compared
to molecular size) forces are computed as volume integrals (caled “body forces’) and short-range
forces are computed as surface integrals (called “ surface forces”).

Of course, gravitational forces have the longest range of any known force. For example, gravitationa
forces between planets and the sun determine their orbits. In particular, dl fluid dements (not just those
a the syssem boundary) fed a gravitationd force of interaction with the rest of the universe outsde the
system boundaries. Thus gravity isa*“body force.”

body forces: those which act on every fluid dement in body (eg. gravity):

dFg=(dmg=rgdVv

At the other end of the spectrum are forces which shorl-range mierachions belween
have very short range. If therangeis of molecular "uitcrior” clements cancel

dimensions, then only fluid eements experience a
nonzero interaction with the universe outsde the
gydem.  Although interior fluid dements might
interact with one another through this short-range
force, this interaction is not consdered in a force
balance, because the “action” and “reaction”

forces cancd, leaving no net contribution to the
force on the sysem. When only surface dements
fed aparticular force from outside, that forceis cdled a“ surface force.”

short-range interactions between
"surfacy” clerments do nol cancel

At the molecular scde, pressure arises from the momentum transferred during collisons between
molecules outsde and molecules indde the sysem.  Since only surface molecules will be struck from
outside, pressure is a surface force.
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surface forces: those which act only on surfaces
(induding mathematica boundaries) n

One example is hydrostatic pressure:
dF, =-pnda

where dF, is the force exerted on the system (through
the surface eement da) by the fluid outside, and nis a
unit outward (to system) norma. For a proof that this
is the correct form for hydrodtatic pressure, see
Batchelor, Section 1.3.

Hydrostatic Equilibrium

If our materid is a fluid and if it is & res (no velocity and no accderation), then gravity and
hydrogtatic pressure forces are usudly the only forces acting on the syssem. At equilibrium, the forces
must be balanced. Thus Newton's® 2™ law, which generdly requires é’[ F = Ma, reduces to

i
& F =0 a mechanicd egilibrium.

|
In our case, this means F
Fg=QrgdVv
Fp = -G\npda = - §,NpdV

To obtain this last result, we gpplied one of the corollaries of the Divergence Theorem. Subgtituting
back into the force baance and combining the two volume integras leads to:

Fg+ Fp=a&[rg-NpJdv =0
SinceV is arbitrary, we conclude that the integrand vanishes.

~

Np=rg air

wiler lower p

E le
8 Sr Issac Newton (1642-1727), English mathematician and na higher 3);

consdered by many the greatest scientist of adl time invented differentic. c.ccoe oo o .t ecaees e
theories of universal gravitation, terrestrial mechanics, and color.
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This says that the pressure increases in the direction of the acceleration of gravity (downward), which
correctly describes (for example) how the pressure increases with depth in an ocean.

Flow of Ideal Fluids

Now let's congder fluidsin motion. The amplest andysisisfor:

ideal fluid - deformation of fluid elements is an isentropic process (i.e. adiabatic and
reversble):

m=0andk=0

where misthe viscosty and Kk is the therma conductivity. Generdly this means that any viscous forces
are negligible (snce viscous forced represent friction arisng between fluid dements and friction gives
riseto irrevershbility). Furthermore, to keep the process adiabatic, the therma conductivity must aso be

negligible.
EULER'SEQUATION
Suppose these conditions on the fluid are met. Thus consider the isentropic deformation of an ided

fluid for an arbitrary macroscopic sysem. In addition to pressure and gravity, we must aso consider
inertiawhen the system accelerates. Newton's law requires:

Ma = SiF; trajectory
of marenal ] .
_ _ _ it v(ta) v{ry)
Let r(t) denote the trgectory of one particular fluid r — —
dement inside the sysem. Then the velodity of the v(n}
fluid element is Y('3)
v=2r
Dt 7
whilethe accderation s
_Dv
Dt

We use the maerid derivaive here, snce we are following a particular materid point. Multiplying the
accderation by the mass of the fluid dement givesthe inertia

Dv
(dmja =r (dV)Ft
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To get the net inertia of the entire system, we must repest this caculation for each of the fluid dements
composing the system and add them up:

Dv
Ma) = ¢y —dV
< a} \Sj Dt

I’ve put carets (<...>) around the Ma to indicate that this is the postion-average inertia of the system
(gnce the locd @m)a varies from point to point within a generd system). Newton's second law
requires us to equate this with the net force acting on the system:

Jr%dV:Fp+Fg:Jrng- jnpda
V

t
v A23
[Npdv
Y,

Using the divergence theorem to convert the surface integra into a volume integra, we have three
volume integrals over the same domain. Combining these three volume integrals leaves:

J'[r bv. rg+Np}dV =0
v Dt

Since this must hold for any choice of V, the integrand must vanish a each point in the domain. After
dividing by r :

Np )

whichiscdled Euler's Equation (1755).

Significance: When combined with a statement of continuity, Euler’ s equation of
motion provides as many equations as unknowns.

Another rdationship among the unknowns is the continuity equation (see page 27), which comes
from the mass baance.

* Euler, Leonhard, 1707-83, Swiss mathematician. The most prolific mathematician who ever lived, he
worked at the St. Petersburg Academy of Sciences, Russa (1727-41, 1766-83), and at the Berlin
Academy (1741-66). He contributed to areas of both pure and applied mathematics, including
cdculus, andyds, number theory, topology, adgebra, geometry, trigonometry, andyticad mechanics,
hydrodynamics, and the theory of the moon's mation.
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.« _
ﬁ+N(rv)—0

For an incompressible fluid, r = congt. w.r.t. both time and postion. Then the continuity equation
reduces to:
imcompressible fluid: N- v=0, (9)

To see that we now have as many equations as unknowns, note that the unknownsin (8) and (9)
are

unknowns. 4 scaars v and p

which represents the 3 scalar components of v plus p, for a tota of 4 scdar unknowns. To evauate
these unknowns, we have equations (8) and (9):

equations: 4 scaars Euler + continuity

but Euler's equation (8) is a vector equation, which can be expanded into 3 independent scalar
equations. When added to continuity (a scalar equation), we obtain a tota of 4 independent scaar
equations, the same number as of scdar unknowns. Thus we are now in postion to begin solving
problems involving fluid flow. Wewill cal (8) and (9) “Euler’s equations of motion for incompressible
fluids”

EXAMPLE. Waer in a patidly filled tank undergoes

uniform® accderation a in the horizontd plane. Find the (}‘/

angle g of inclination of the water's surface with repectto [~ ——— T— — ] -
the horizontd plane. —>

Solution. The key to solving this problem is to recognize thet,

regardiess of the angle of inclinaion, the pressure is equd to

1 am everywhere on the free surface. Then the pressure

gradient Np must be norma to this plane. If we can find the

orientation of Np we will have the orientation of the free surface. Recall Euler's equation of motion for
anided fluid:

1.

t r NP

——

Dv_ ..
D
a

8 By “uniform acceleration” | mean the same acceleration is experienced at each point and at each time.
For a fluid, uniformity a each pogtion occurs only in the deady Sate after a trangent which is
nonuniform.
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Dv/Dt is jus the acceeration of the fluid in a Sationary reference frame. At Tlnvp
deedy date, dl of the fluid will undergo the same uniform acceleration as the ol g
tank; so Dv/Dt isjust a. Solving for the gradient, we have

%Np:g- a

Usng vector addition in the drawing at right, we can see tha the angle of
inclination of the free surface (rdaive to the horizon) isjust

- a
q =tan 1[—}
g

We were lucky in the previous example, because we knew the left-hand side of (8), so instead of 4
scdar unknowns, we only had one: p. The solution was relatively easy. In the more generd problem,
the left-hand side of (8) is an unknown nonlinear partid differentid equation:

ﬂ_V+V.NV:g_1

it ; Np (10

In this form, we have expanded Dv/Dt using the relaionship between materia derivative and partial

derivative (see page 15). Now we have 4 scaar unknowns: the three scalar components of v and
pressure: vy, Vy, vz and p. Coupled with the continuity equetion (for an incompressible fluid)

N-v=0

Euler’s equation aso gives us 4 scalar equations. One important class of solutions hasthe form v = Nf |
which is caled “potentia flow.” In the next section, we discuss how this form comes about and identify
which physicd problems have thisform.

KELVIN'S THEOREM

An important precursor to the theory of potentid flow is the principle of conservation of
circulation. Before gating this principle, let me define a quantity which Landau & LifshitA cdl the
velocity circulation:

§ L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Vol. 6 of a Course of Theoreticad Physics),
Pergamon, New Y ork, 1959.
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Ge° §v- dr

¢ contours

; : .
for any closed contour. Recdl that we showed on page gté?f?géﬁlt g?;gss

30 that this contour integrd is associated with the average
angular momentum of fluid dements located on the surface
whose edge is C. Kdvin' showed that this velocity
circulation is conserved:

\traj ectory of a

material point

for any set of material points forming a closed contour in
anided fluid. Thisresultiscdled Kelvin's Theorem.

Partial proof:© Since the contour C is composed of materia points, the time derivative of this contour
integrd islike the materid deriveive

dc_D
dt Dtm) d

Since we are aways integrating over the same set of materia points, a boundary term does not arise
when we interchange integration and differentiation operators, athough the set of spatiad points is time-
dependent: C = C(t). Of course, we have not rigoroudly shown this step to be vadid, thus we only clam
the proof is“partid.” Next, we subgtitute Euler’ s equation and write each term as the gradient:

dG _ 1o ) o _ N Pl g = LR p -
E_C[g-r_Np)dr_§(_Nfg_Nr_jdr_-(-fN(ngrr_jdr_o

C C

In the second equality above, we have introduced the potential energy per unit mass, f . Recall thet
gravity is a conservative force fidd (see page 32). For an object of constant mass (e.g. a brick),
Theorem [l guarantees that a scdar field f (r) exists such that Fy = mg = -Nf . For an object of

Lord Kevin (William Thomson), 1t Baron, 1824-1907, British mathematician and physcig; b.
Irdland. He was professor (1846-99) of naturd philosophy a the Univ. of Glasgow. His work in
thermodynamics coordinating the various existing theories of heat established the law of the conservation
of energy as proposed by James Joule. He discovered what is now cdled the “Thomson effect” in
thermoelectricity and introduced the Kelvin scae, or absolute scale, of temperature. His work on the
transmisson of messages by undersea cables made him aleading authority in thisfield.

© For amore rigorous proof, see Batchelor p269. For amore intuitive proof, see L&L, pi5.
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constant mass, we could divide both sdes of this equation by m and bring m ingde the gradient
operator: g = -N(f /m). Smilarly, a differentia volume dement dV would have a differential mass dm
and adifferentid potential energy df , such that g = -N(df /dm). So generally we can write:

g=-Nfg (11)

_ potential energy

where f 9
mass

The next-to-last expression (in the equation for d&dt) must vanish, becauseit hasthe form Ns: dr = ds:
integrating any tota differential around a closed contour yields zero. Thus

fv- dr = const. w.r.t. time
C

Keep in mind that this gpplies only if C is composed of materia points and only for ided flow. Since C
is composed of materid points (which in generd move with different velocities), the contour may change
shape or move. Given the meaning of this contour integral (G = angular momentum), this result implies
that (in the absence of friction) angular momentum of fluid is a condant. In generd, we change the
angular momentum of some object by applying atorque. So this result (i.e. Kevin's theorem) means
that (in the absence of friction) there is no way to gpply a torque to ided fluid

elements.

| r
If you think about it, this makes sense: the usua way to gpply a torque (with our ‘} M
hands to a cylinder, say) isto hold the cylinder between our hands and then move % ?
our hands in opposite directions, as shown in the sketch at right. Wethusrdy on

friction between our hands and the cylinder to exert the torque. If the cylinder

were greased and our hands dipped over its surface, we would not be able to

apply thetorque. Thisis the essence of what Kevin's theorem is saying.

IRROTATIONAL FLOW OF AN INCOMPRESSIBLE FLUID

As an example, congder towing a submerged object through an “ided fluid” which is otherwise

stagnant.
submerzed abject
v(r,t=0)=0 moving throngh
stagnant flud

Consider an arbitrary closed contour in the fluid far from
the disturbance caused by the motion of the submerged object. The contour integra vanishes since v
vanishes.

fv- dr =0 fort=0 sncev=0
C
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for every such contour C. Now a some later time the submerged object moves into the vicinity of C
which causes v to be nonzero. Despite this, Kelvin's Theorem dlill requires

v-dr=0fordit dthoughv? 0
C

Thisis ds0 true for every closed contour in the region (since every contour initialy had zero vaue for
thisintegrd).

Applying Theorem I11: N v=0fordlr,t (12)

which is sometimes cdled the persistence of irrotationality. Also from Theorem 111, we know f (r,t)
exigts such that:

v = Kif (13)

wheref iscdled the velocity potential .

Significance: Knowing that the solution has the form given by (13) dlows usto
decouple the four scalar equations represented by (8) and (9):

Subdtituting (13) into (9) yidds Laplace s equation in the velocity potentid:
(13) into (9): N2f =0

Instead of 4 equations in 4 unknowns, we now have a single equation which can be solved for f and v
= Nf , without any coupling to Euler's equation (8). Although Euler was the first to suggest this
approach, thisis caled Laplace's Equation™ after the French mathematician who solved this equation
iN SO Many cases.

Knowing the velocity profile v, we can now determine the pressure profile p from Euler's equation:

ﬂ_V+V.NV:g_1

N 14
m ~Rp (1)
We will now integrate this vector equation to obtain a single scalar equation for the pressure profile.
Each termin (14) can be expressed as a gradient of something. For example, we've dready seen in
(12) that:

* Pierre Simon de L aplace (1749-1827), French mathematician and astronomer, noted for his theory of
a nebular origin of the solar system and his investigations into gravity and the stability of planetary
moation.
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g=-Nf4

N F:COFISt~ P
Smilay, if r =cong,, then: r—Np = N(r_) (15)

For potentid flow, the unsteady term becomes

™ _ 1 ey /f I
ﬁ_ﬂt(Nf) N(‘ﬂtj (16)

Findly, for the convective term, we can apply identity A.3:

Rv? - v @239 (17)

0

v-Nv =

N |-

where V- v=V2

wherev =142 In our paticular case, the second term vanishes because N v = 0 for potentia flow.
Subdtituting (11) and (15) through (17) into (14):

2
NE+V_+f +£ =0
it 2 9 r

whichiscaled Bernoulli’s Equation.8 It impliesthat

2
E+V_+fg +P - constwirt.r (18)
mw 2 r

is spatidly uniform, but it might depend on time. Once the velocity profile is obtained (by solving
Laplace’ sequation), both f and v are known, leaving p as the only unknown.

" “ldentity A.3" in this equation refers to one of the mathematical identities summarized on the handout
titled “Useful Identitiesin Vector Notation”.

8 Danid Bernoulli (1700-1782, Swiss) has often been called the first mathematical physicist; the teacher
of Leonhard Euler. His greatest work was his Hydrodynamica (1738), which included the principle
now known as Bernoulli's principle and anticipated the law of conservation of energy and the kinetic-
molecular theory of gases developed a century later. He aso made important contributions to
probability theory, astronomy, and the theory of differentia equations.
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Potential Flow Around a Sphere

To solve a typicd problem involving potentid flow, we would first solve Laplaces equetion to
obtain the velocity profile and then we can evauate the pressure profile usng Bernoulli's equation. Let's
illugtrate the procedure using an example:

EXAMPLE: Find the velocity and pressure profiles for potentia flow
caused by a sphere of radius R moving through a stagnant fluid with ¥ =0 U
velocity U.

Solution: If the fluid behaves idedly, it undergoes potentid flow and
the velocity profile must satisfy Laplace’ s equation:

PD.E: N2f =0
Boundary conditions can be formulated by recognizing that fluid far from the sphere is unperturbed:
b.c. #1. v = 0O far from sphere

while fluid near the sphere cannot penetrate the sphere. To express this mathematicdly, recdl our
“bucket-and-stopwatch” method for defining fluid velocity (see page 13). Modifying it dightly to
account for the movement of the surface element at velocity U, the flowrate across a surface element of
areada isgiven by:

dg=n-(v- U)da=0
For an impenetrable sphere, the flowrate must vanish
b.c. #2: n-(v- U) =0 on sphere

To solve this problem, we adopt anew reference frame~ Let reference frame move with object:
in which the origin moves dong with the center of the

sphere. It turns out that the PDE does not change upon _/’O\> umiform Mow

this shift in reference frame for velocity: the new velocity around
potentiad must dso satisfy Laplace's equation: v slalionary objecl

P.D.E.: N2f =0

However, the boundary conditions are changed.
In this moving coordinate system, the sphere
gppears to be dationary and the fluid a infinity is
undergoing uniform flow

b.c. #1. V® -U° Uk asr® ¥ (19
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where U isthe velocity of the sphere in the origind dtationary reference frame.
For a gationary sphere, no fluid entering the sphere meansdg = n- vda=0, or
b.c. #2: nv=v,=0ar=R

Next we rewrite the b.c.’sin terms of the velocity potentia in spherica coordinates. In terms of velocity
potentid, (19) becomes:

Nf = Uk
Now we heed to trandate k into the unit vectorsin spherical coordinates*

o

mit cirele on
th — consl

surface

Referring to the figure above (see page 8), we note thet e;, e,, and e, = k dl liein the same F =const
plane (shaded region of left-hand figure above). If we shift al three unit vectorsto the origin (recal that
the originis not part of the definition of any vector) and re-orient the F =congt plane to coincide with the
plane of the page, then we get the figure above at right, from trigonometry of the right triangle it is
apparent that

k =(cosq)e; - (sing)eq

Thus the b.c. can be written as

asr® ¥: Nf ® Y easge; dsiage,
I ChL
fir r Yo

Equating corresponding components.

E:Ucosq and EE:Usinq
r 9iq

qr

* Here F is the sphericd coordinate, while f is the velocity potentid. For more on spherical
coordinates, see BS& L p733.
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Integrating either PDE leads to

b.c. #1. f ® Urcosqg+eonst as I® ¥

where we have arbitrarily sdlected a vaue of zero for this “const”.” In order to trandate b.c. #2, use
tables (see spherical coords ) to express the gradient in spherical coordinates:

v =Nf
R 19

+ + =1 e+ e +
V& TV QT & ‘ﬂreIr r fg rsing F

Dotting both sdes by the unit vector n = e;, then using b.c. #2:
b.c. #2: vV, =Tfr=0atr=R
odp wiew of

~ O — consl
f =f(r,q) |\ surfaces

Welook for a solution which isindependent of F :

This implies tha the fluid does not have any F -
component of velocity. In other words, the trgjectory — end view of
of any flud dement remans entirdy on a sdngle
F =congt surface. The sketch at right shows some
edge views of F =congt planes (looking along the z-axis
which passes through the center of the sphere).

From p740 of BS&L, we have N in sphericd
coordinates:

il(rzﬂj-f- 1 1(Si E):O 20
r qr r ) r2sing g nqﬂq 20
T /qr=0ar=R (21

f =Urcosgasr® ¥ (22)

* Like most energies in thermodynamics, the reference state for potentia is arbitrary and can be chosen
soldy for convenience.

" http://mww.andrew.cmu.edu/course/06-703/V ops_sph.pdf
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Although there are systematic procedures, like “separation of variables” for solving P.D.E.'s which
work in many cases, one should first check to see if there is a ample solution. The problem appears
formidible, but notice thet the trivid solution:

f=07?

satisfiesthe P.D.E. and the b.c. & r=R Unfortunately, it does not satisfy the b.c. & r® ¥, so we will
have to try another guess. Since the failure occurred with the b.c. a r® ¥, we look there for the form
of our second guess.

f =Arcosg ?

Thistoo satisfiesthe P.D.E. and theb.c. at r® ¥ (provided A=U) but to satisfy the b.c. a r=R, A must
be chosen as 0. Thetelsusthat A should have different vdues at different r's. So we try a third guess
which is dightly more genera than the second:

f (r,q) =f(r)cosg (23)
Subdtituting (23) into (20)-(22), we find that cosg cancels out, leaving:
r2f @+ 2rf ¢- 2f =0
fe=0ar=R
f=Urasr® ¥

Thus we have reduced the problem of solving the P.D.E. to one of solving an O.D.E. We recognize this
O.D.E. to be a Cauchy-Euler equation,8 which aways has at |least one solution of theform f =r". The
generd solution turns out to be:

f(r) = Ar2+Br

N n
§ The generd form of an Nth-order Cauchy-Euler equationis § a,x" d—r?/ =0. At least one of the
- dx
n=0

N linearly independent solutions hasthe form y(x) = Axa. Subdtituting this form leadsto
A
agAx? + g ajala- D(a- 2)Kl@- n+DAx® =0
n=1

Dividing out the common factor Ax2, we obtain an Nth-order polynomiad for a. Each distinct root of
the polynomid leads to a separate solution. In this example, therootsarea = -2 and +1.
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Using the b.c.'s, we can evaluate A and B. The particular solution to this problem is.

Substituting this back into (23) leaves v, =0
>
ot
=b
R3 L Vg (r,q=1%)
f(r,q):U{H%—z]cosq —*
r —>
5 Vi (1, p) vy (r,0)
i R vo=0 oV =
Vi =—=U|1- |—| |cosq a a
T ' —>
e
s o v, =0
vo =2 - ul142 R sing > _3
R =3 e

Notice that for g=p (g=0), v4=0 but v, decreases (in absolute
magnitude) from -U at r=¥ to O at r=R At g=p/2, v,=0 but v, increases from U to (3/2)U. This
increase is necessary to make up for the decrease in flow caused by the sphere blocking part of the flow

path.

Having solved for the velocity profile, we can determine the
pressure profile from Bernoulli's equation (18). Assuming steedy — >

date: oy
—>

V2 p
—+—+f 4 =congt B

2 r

independent of position. The "congt" can be evauated using any point where we know both the velocity
and the pressure. Suppose the pressure of the undisturbed fluid is known in the reference plane for the
gravitational potentid (f ¢ = 0):

ar®¥,fy =0 p=py andvZ=U2
2 2
Thus V_+£+fg :U_+&
2 2 r
or p(r,q)=p¥-rfg+%r(uz-v2)
2 2 2
where ve =v- v =[v, (r,q)]” +[vg(r.a)]
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Subdtituting the known velocity profile, we obtain the pressure profile.  Let's focus on the pressure
profile over the surface of the sphere:

= = - + l 2 2 -

for r=R p(R,q) %42%% %IEBLA@L%)ZEL 5

hydrostatic head dynamic head
P(R.0) pa (R.a)

A

In the sketch at right, we plot the dynamic pressure (dropping the Pd |

contribution from hydrostatic equilibrium).  Note the location of Lr u?

regions having high and low pressure. The sphereis being pushed in

at the poles and alowed to expand at the equator. Thisiswhy a

large bubble risng through stagnant water tends to become distorted

from spherical shape. Such bubbles tend to become extended in the

horizontal plane and compressed in the vertical direction by the 54

higher pressure.

e p

In p
' |
—_—> i p hip hi p i p
muleras:
In p

la p

alicr delonmabion

d'Alembert's Paradox

What is the net force on a rigid sphere owing the pressure profile developed by potentia flow
around it? The answer turns out to be:

Fp :-fn pda:-in(ph+ pd)da:-fn py, da - §n pgda=-rgVv (24)
A A AN2B AA2B
rgv 0

whereV is the volume of the sphere.

Proof: first consder the contribution from dynamic pressure:

Pg ° %ruz(Qcoszq- 5)
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The nin (24) is a unit vector norma to the surface, pointing outward. In spherica coordinates, with
their origin at the center of the sphere, this vector isthe unit vector in the r-direction:

n=edaf)

which direction depends on location on the surface. Although its length is a congtant, its direction varies
with pogition of the sphere; thus n cannot be treated as a constant. Anticipating that any net force will
be pardld to the direction of fluid flow, we dot both sides of (24) by k:

p =k Fp:'_[ I:L\pda
A C€0sq
For the contribution from dynamic pressure, py(r=R,q) depends solely

on g, sowe choosethe strip of width Rdqg and length 2pRang as our
differentid areada. Onthisgtrip q isvirtualy congant.

Fap =- Tcosq RefB.48 (20Rsing)(Rda)
0

f (cosq)

p
= 2pR? [ cosq f (cosq) (; =g
0 d cosq

X=C0s(q

-1
= 2pR?" 1ru? [x(9x® - 5jdx =0

i W4 Vi b Y Wi 2}
0

The nonzero contribution from (24) comes from the hydrogtatic head. We will leave this caculation as
an exercise for the reader (HWK #4, Prob. 1). The net force due to pressureis
- S N Bl 2 2 u _
Fo=- 0O (p¥ - rfg)nda- 0 é§rU (9005 q- S)Gnda—- rgv
AR apaaa8 NFaaamoaqa493
-rgv 0
The net force on the sphereis the sum of its weight and the net pressure force:

Fo+Fg=-rgV+rggV=_(rg-r)gvt 0

which is the difference in weight of the sphere and the weight of the fluid disolaced by it. Because the
pressure force is independent of the speed of motion of the sphere through the fluid, the particle will
continue to accelerate forever, without ever reaching a “termina velocity.” Of course, experiments
show that fdling particles reach atermind velocity which implies that the gravitationd force is balanced
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by some other force. The other force is fluid drag (friction), which is not predicted by potentid flow.
This serious discrepancy between the predictions of potentia flow theory and experiment is known as.

d'Alembert's8 paradox - potentia flow predicts no drag but experiments indicate drag.
Despite this, potentia flow is Hill useful:

Uses of potential flow — predicts lift (but not drag) on
greamline objects moving through stagnant fluid
a high Reynolds numbers (but till sub-sonic, i.e.
vV << ().

AV

 correctly predicts v(r,t) and p(r,t) except very near the surface
of the object (i.e. ingde boundary layer) and in wake [see pressure profile on airfoil shown below].

» for asymmetric shapes (e.g. arplane wings), it correctly predicts alift. [Seelift force shown below as
afunction of the angle of attack ]

T Lifr
[ A0
Cr 14 ]..' \
ot~ é\?,_‘ & Mo
N
12 ‘\‘Q?f
A
10} A/
{,[q R:%:fosd
"/ 04
- ; 0.2
ol ﬂfﬁ-—"/’
12°|-8 -4° [Ag ge | 20| 7§
/ x -
v 0217
{4k

Figs. 1.12 and 1.13 taken from Schlichting, 6th ed., p22f.

§ Jean le Rond df Alembert (1717-83), French mathematician and philosopher, a leading figure of the
Enlightenment. His treatise on dynamics (1743) enunciated d'Alembert's principle, which permitted the
reduction of a problem in dynamics to one in atics. He did important work on the mechanics of rigid
bodies, the motions of fluids and vibrating strings, and the three-body problem in celestial mechanics.
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Stream Function

Before we resolve d’ Alembert’s paradox by adding viscous forces, let's step back for a moment
and review what we have accomplished for potentid (or irrotationa) flow. The mathematical problem
might be stated as: find v(x,t) such that:

N'v=0 (25)
and N-v=0 (26)

Egs. (25) and (26) represent four partid differentid equations in the components of the unknown vector
fieddld* Recognizing that the solution is derivable from a potentid alows us compress these four
equations into one scaar equation in one unknown:

v=Nf : N2f =0

which is quite a remarkable trick. The potentid is not the only scdar fidd which a vector fidd can be
expressed in terms of. Velocity can aso be expressed in terms of astream function.

Potential (f ) — a scdar fidd whose relaionship to v is carefully sdected to automaticaly satisfy
irrotationdity

v=Nf ® N'v=0

Wheress the relation between velocity and scalar potentid is chosen to automatically saisfy (25), the
relaionship between velocity and stream function is chosen to automaticaly satisfy (26):

v=fly)® N-v=0

Stream Function (y) — a scda fidd whose rdationship to v is carefully sdected to
autométically stisfy continuity.

It turns out that it is sufficient to expressv as the curl of another vector. According to Identity C.6, the
divergence of the curl of any vector is zero (See HWK #2, Prob. 4d):

v=Nu® N-v=0

A vector which can be expressed as the curl of another vector is said to be solenoidal. u is cdled the
vector potential of v. Of course, knowing that v = N u isn't dways of much help because we just

* Although it might appear that we have overspecified the problem by specifying both the divergence
and curl (which represent four scalar equations in the three components of v), this turns out not to be
true. In generd, both the divergence and curl must be specified throughout some region in space before
the vector field can be determined in that region.
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trade one unknown vector for another. Fortunately, there are severd broad classes of flows for which
the form of the vector potentid is known:

Two-D FLows

When nothing happens dong one of the three directionsin R.C.C.S,, we have 2-D flow:

V = V(X Y)i + vy (XY)]

or v,=0,1z=0
identity
- E3 .
v=N"[y(xy)e,] = Ny+y N>
For such aflow,3 0 (27)
_ &y fy o _ _fy_ . iy . -
=T —e t—e, . e, =— +—e, €
Sox Xy Vg T X283 Ty Ao
-8y €y
In terms of its scalar components, the velocity is:
_ Ty _ Ty —
Vy = - vy = - — v, =0 (28)
X ﬂy Yy ﬂX z

Next we subgtitute this form for v into (26):

identity
C6

(ves)g = ©

~ ~ ~
7 s

N-v:N-g

which automaticaly stisfies continuity (26), for any choice of y (x,y). The scdar fidd y (x,y) iscdled
the stream function. For irrotationd flow, the problem would be to determiney (x,y) such that (25) is
satisfied:

R[N (ye)] =0
We can reduce this to a scdar equation. Using identity E.5 from handout:

R [N (vep)] =NIR- (ye)] - R2(ye)

§ “Identity E.3” in this equation refers to one of the mathematical identities summarized on the handout
titled “Useful Identitiesin Vector Notation”.
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but N- (yey)=1y/Mz=0
and R2(ye) = (N%y)e,
Thus N v =-(2y)e,

So for irrotationd flow, the streamfunction must aso satisfy Laplace's equation:
N'v=0: N2y =0

Unlike the scaar potentid, the stresmfunction can be used in dl 2-D flows, including those for which the
flow is not irrotational. Indeed, we will use the sreamfunction to solve Stokes flow of a viscous fluid
around a sphere, in which the fluid isnot evenided.

AXISYMMETRIC FLOW (CYLINDRICAL)

Another generd dass of flows for which a sreamfunction exigts is axisymmetric flow. In cylindrica
coordinates (r,q,2), this corresponds to:

vV =V, (r,2€, +VAr,2e,
or Vg=0and 1/g=0
Then N- v = 0 can be satisfied by seeking v of the form:

v=N"[f(r,2eg]

or v=R- @2 (r.2) eqH
& '

The second expression usualy leads to somewhat Smpler expressions for N” v and is the one used in
the table on p131 of BS&L.:

11y L, ol

' r 9z o

Computing the curl in cylindrica coordinates and setting it equa to zero leads to the following PDE in y
(the details are left as an exercise):
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2 2
Ty 1y Ty

where E2y
Notethat E2y * N2y : Nzy (r z) ﬂ 1y iﬂ_y +ﬂ
w2 rir qA

AXISYMMETRIC FLOW (SPHERICAL)
In spherica coordinates (r,q,f ), axisymmetric flow means
v =v(r,a)er + v4(r.a)e,
or vi =0and 1/9f =0
wheref istheazimutha angle. Then N v=0 can be satisfied by seeking v of the form:

v=N"[y" (r.0)ef

or V:N,[y(r q)ef} 21 ﬂyer- 1 ﬂyeq
rsind | rlaipady | 14Dt
Vy Vg

Again, the second expression is the one used in the table on p131 of BS&L (except the dgns are
reversed). Taking the curl (HWK #4, Prob. 6a):

which requires E2y =0

where E%y = Ty +sinq1( ! ﬂlj

w2 2 fglsing 1q

Notethat E2y * N2y:

=4 420 4

N2y (r,q oy 21y 1 ﬂ‘fj‘:_'%ln Ty 6
(r.a) w2 r A rsmq‘ﬂqg 19 ¢
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ORTHOGONALITY OF Yy =CONST AND f =CONST

A contour on which y =congt is called a streamline. A contour on which f =const is caled a iso-
potential line. It turns out that these two contours are
orthogond at any point inthefluid. To seethisfirst note that

yeonsl
v = Nf ( $—const
.( Vyr

From the geometric meaning of gradient (see page 6 of Y
Notes), we know that Nf and hence v is normd to a
f =congt surface (see figure a right). Second, recdl that v
can aso be written in terms of streamfunction as

Vo

INEEEN|
<

~

for R.C.C.S. v=Ny k (29)

Recdl that the cross product is a vector which is orthogona
to two vectors being multiplied. Thus v, Ny, and k are
mutually orthogond. Since v and Nf paint in the same
direction, Nf and Ny must also be orthogondl.

Potential Flow Around Sphere. Lineslie
in plane of page, which could be any
STREAMLINES, PATHLINES AND F =const. plane.

STREAKLINES

Streamline - a contour in the fluid whose tangent is
everywhere pardle to v a agiven ingant of time.

Path Line - trgectory swept out by afluid eement.

Streak Line - a contour on which lie dl fluid dements which earlier past through a given point in space
(e.g. dyetrace)

For steady flows, these three definitions describe the same contour but, more generdly, they are
different.
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PHYSICAL MEANING OF STREAMFUNCTION

The precise meaning of streamfunction is somewhat
different for 2-D and axisymmetric flows. Let's focus on

2-D flows norma to a cylinder (not necessarily with |, _ ,_/——"_’\>
. . . .. YTy Do = %

circular cross-section, axis corresponds to z-axis in 2-y L
RC.CS). To motivate the somewhat lengthy andyss  _

which follows, we first state the physicl meaning. Firg *
we observe that materia points follow trgectories which
can be described asy =condt. Three such trgjectories are
shown a right which lie in the xy-plane.  When these

trgectories are (mathematicdly) trandated aong the z-
axisadistance L they sweep-out y =const surfaces.

No fluid crosses these surfaces: there are like the walls of atube. Since no fluid leaves or enters this
“tube’, conservation of mass means the mass flowrate must be a constant a any point dong the tube.
For an incompressble fluid, the volumentric flowrate is dso constant. Suppose we denote the
volumetric flowrate between any two of these y =const surfaces as DQ; then it turns out thet

DR_, ..
3 Yo-VY1

Thusy might be interpreted as the volumetric flowrate per unit length between this particular sreaming
surface and the one corresponding to
y=0.

Now let's show this. Consider an YA

arbitrary open contour C) in the xy-

plane, cutting across the flow. Next, ‘Q ="
consder the surface (A) formed by z

trandating this contour a distance L
pardld to the zaxis The volumetric

flowrate across A is

Q=aqn vda

where nisaunit normd to A. Since nothing changes with z, we choose a short segment of the contour,
having length ds and of length L as our differentid areadement.

da=Lds

Q ? %
T = On vds= Ny dr (30)
C C

The flowrate becomes:
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where nisnow normd to C and lies in the xy-plane.  The key to this proof is deriving the second
equdity in the expression above.

Firgt, v can be expressed in terms of the gradient of the streamfunction using (27):

v=Ny k 27

Both v and Ny lie in the plane of the page, wheress Kk is

perpendicular to this plane (points out of page). Post-crossing Ny 0
by the unit vector k does not change the magnitude but rotates Ny )
by 90° clockwise. If instead, we pre-crossed by k we would rotate

Ny by 90° counter-clockwise. In either case, the cross product of C

k and Ny isa vector lying in the plane of the page and of the same

magnitude as Ny .

The other term in the integrand of (30)

o isn ds, where ds is the magnitude of a 07 bk
differentid  displacement dong the £
contour, which wewill cdl dr:

C Vi xk
/ ds =|dr|
t
dr Since n is a unit vector n ds has the
same magnitude as dr but is rotated by 90°. Both n dsand dr lieinthe
p n planeof thepage. Just asin (27), we can rotate one vector into the other
— by crossing with k:
dr” k=nds (3D
Subtituting (27) and (31) into (30) yieds
n-vds=v-nds=(Ny~ k) (dr " k)=RNy- dr =dy (32)

The 3¢ equality above says that the dot product of the two rotated vectors is the same as the dot
product of the two vectors without rotation (since they are both rotated by the same amount). (32) into
(30) yidds:

2= g onvds= g dy=y(Q)-y(P)
L
CpreQ CreqQ
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To extract the physica meaning of this results, consider two

contours, denoted as C, and C, in the figure a right. U

Noticethet if C, coincides with a dreamline, the velocity is ~ ——————

pardld to the contour a every point any no fluid crossesit: Y Va3 -
2

then: QL=0 Gy

and yQ=y(P)=y2

Thus y =cond. dong adreamline -

On the other hand, if the contour cuts across two

streamlines (see contour C, in figure &t right), then the difference in vaue of y corresponding to two
different sreamlines is just the volumetric flowrate of fluid held between the two streamlines (per unit
length in the z-direction):

Dy =DQIL

INCOMPRESSIBLE FLUIDS

By “incompressble fluid’ we are usudly referring to the assumption that the fluid's dengty is not a
ggnificant function of time or of pogtion. In other words,

can be replaced by N-v=0

For steady flows, {r/fit = O dready and the main further requirement is that dengity gradients be
negligible

. ldentity C.1 . .
Nxrv) = r(Nv)+vNr »r(Nv)

Since flow causes the pressure to change, we might expect the fluid dengity to change — at least for
gases. Aswe shdl see shortly, gases as wdll asliquids can be treated as incompressible for some kinds
of flow problems. Conversdy, in other flow problems, neither gas nor liquid can be treated as
incompressble. Sowhat isthered criteria?

For an ided fluid (i.e. no visoous dissipation to cause NT), density variations come about primarily
because of pressure variaions. For an isentropic expansion, the compressibility of the fluid turns out to
be:
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(ﬂ_r] _1
fip S C2
where ¢ = speed of sound in the fluid

Thus changes in density caused by changesin pressure can be estimated as
1
Dr » —Dp (33)
c2

According to Bernoulli’ s equation, pressure changes for steady flow are related to velocity changes:

p, v
£+Z =const. or Dp=-4irDv? (34)
r 2 2
r Dv?
(34) into (33) Dr » - ——
2 2

The largest change in density corresponds to the largest change in v2, which isvy,,2 - O:

If the fraction change in dendity is smdl enough, then it can be neglected:

Criteria 1. Vimax <<C
for ar a sealevd: € =342 m/s=700 mph
for didtilled water a 25°C: ¢ = 1500 m/s = 3400 mph

For unsteady flows, a second criteria must be met:

Criteria 2: t >>|—

c
where t = time over which sgnificant changesin v occur
| = distance over which changesin v occur
I/c = time for sound to propagate a distance |

For steedy flow t =¥ and Criteria 2 isdways stisfied.
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Any fluid can be congdered incompressible if both criteria are met.

Viscous Fluids

To resolve d’ Alembert's paradox, we need to introduce another force into our force baance. This
force can be thought of as resulting from friction between the fluid dements.  Friction gives rise to
viscous heating which represent an irreversble converson of mechanica energy into heat. Indeed,
friction isthe main difference between an ided fluid and ared fluid.

fricion ® irreversble deformation ® nonided flow

TENSORIAL NATURE OF SURFACE FORCES
Friction isasurface force like hydrogtatic pressure, but unlike pressure, friction is not isotropic:
isotropic - independent of orientation (direction)

We sy that pressure is isotropic because the magnitude of the pressure force is independent of the
orientation of the surface on which it acts. Recal:

dF, = -npda
|dFp| = pda

which isindependent of n (orientation). Viscous friction does not
have this property:

|dF{ dependson n
but it's magnitude is proportiond to da:
veFd2p da

Thus it makes sense to talk about the force per unit area, which we usudly cal pressure. In the more
generd case in which the magnitude of the force per unit area might depend on the orientation of the
surface, we use the name stress. In generd, al surface forces can be lumped together and written as

derf ° t(n) da
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where t(n) denotes the surface force per unit area acting on the body through the surface el ement whose
orientation is given by the unit outward norma n. We cal this quantity the stress vector.” In what
follows, | will try to convince you that the effect of orientation of the surface can be expressed as

tn)=n-T

where T iscdled the stresstensor. While T depends on position and possibly time, it does not depend
on the orientation of the differential surface dement da, which isgivenby n. T is sometimes cdl the
“date of stress’ of the fluid.

Fire, let's try to understand better what we mean when we say a F . F
material experiences some “stress’.  Consider a block of some materid gl v [
which bears some externdly applied equilibrium load (see figure at N
right). By “equilibrium” | mean there is no net force and no net torque >

gpplied to the body: thus it is a mechanical equilibrium and has no
tendency to accelerate. The materid might be afluid or a solid, but what
we are about to say is easer to imagine if we think of materid as a
solid block.

Now condder some mathematicd surface insgde the materid
(indicated by the dotted line in the figure above). What are the
forces exerted across this mathematicd surface? To answer this
question, suppose we actudly separated the block into two pieces
by physicaly cutting dong this surface without changing the loading.
Block “1” now experiences an unbaanced load -F while block “2”
experiences an unbaanced load +F. Once separated, both blocks
would tend to accelerate in opposite directions.

Why don't the two halves accelerate when connected? Apparently, haf “2” must have exerted aforce
on half “1” which we denote ast(n1)A, where A is the area of the cut face, and which equals

t(npA=+F
while haf “1” exerted an equa but opposite force on haf “2”
t(ny)A =-F=-t(n)A (35)

When expressed per unit areg, this internd force between the two halves (when they are physicdly
connected) is what we mean by the “stress” experienced by the materid under load.  Given that nq =
-N,, (35) tdlsusthat

*see Whitaker, Introduction to Fluid Mechanics, Chapt. 4.
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t(nz) =-t(-ny)

More generdly, for any mathematically surface having orientation n, we can write t(n) = - t(- n)

or t(-n)=-t(+n) (36)

In essence, thisis just a statement of Newton's Third Law (for every
action, there isan equa but opposite reaction).

Now let's generdize to three dimensions. Suppose we know the I
digtribution of sress (i.e. the “loading”) on al six faces of a block of !
materid. Furthermore, suppose this loading is an equilibrium loading '
(no net force and no net torque on the block). Let'stry to caculate A o
the stress on a mathematica surface cutting through the materid at an
arbitrary angle. Let the orientation of the mathematica surface be
given by the unit normd n.

Problem: given the surface dress on mutualy perpendicular planes
[i.e given t(i) for x=const plane, t(j) for y=const plane, and t(k) for
z=cong plane], cdculate the surface stress on a plane of arbitrary

orientation specified by the unit normd n. z
Given: t@), t(), and t(k)
Find: t(n)

Solution: We choose the tetrahedron ABCO as our “system.” For the surface forces to be balanced”

S[t(n)da:O
A

We evduate this surface integra by subdividing the surface A into the four faces of the tetrahedron:
planes ABC, BCO, AOC, and ABO. For each surface, we need to eva uate the outward norma n, the
stress vector t and the surface area A. The results are tabulated bel ow:

*More generdly, in our force balance, we should include body forces and inertia as well as surfaces

forces. If we let V® 0 then the volume integras for body forces and inertia vanish more rapidly than

surface forces. Thus for the surface A enclasing atiny volume V, we mugt ill require {t da =0 for the
A

surface of every differentid volume dement.
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Outward Stress
Pane Normal Area Vector
ABC n A t(n)
BCO -i n- iA t(-i)
AOC - n- jA t(-))
ABO -k n- kA t(-k)

Applying the Mean VVaue Theorem to our surface integrd:

frda=0=[(t(n)+(ni)t(- ) + (n J)(e(- )+ (n- k)e(- k)] A

Dividing by A cancdsthe A out of our expresson for the integral. Taking the limit as dl the dimensions
of the block vanish (i.e. as A® 0) dlows us to replace the unknown averages with ther limit, which is
the value of the vector at the point that the tetrahedron collapses about.

t(n) + (n- i) + (- Pre) + (0 K)ei-k) =0
or t(n) = -(n- (i) - (0 PEE)) - (- kt(-k) (37)
Next we apply (36). Of course, we can replace nin (36) with i or j or k. Using (36) in (37):
t(n) = (n- it(i) + (0 tG) + (n- khe(k)
Recdling the definition of dyadic product, we could re-write this expression as
t(n) = n- it(i) + n- jt() + n- kt(k)
t(n) = n- [it(i) +jtg) + kt(k)] =n- T

The sum (insde square brackets) of these three dyadic products is some second-rank tensor, which is
independent of n. We denote thistensor by T.

Sgnificance: to calculate the surface force on some differentiad surface area da having orientation n, we
just multiply this expression for the siress by the arear

where T iscdled the stresstensor and dFg s represents the net surface force (al contributions) acting
on the body whose outward normad is n. While T does not depend on n, it might depend on position
ingde a solid which is nonuniformly stressed; thus

T=1(r)
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represents the state of stress of thefluid. In terms of the components of the tensor, we say that
Tjj = jth component of the force acting on ar; = const surface

To make this more understandable, it might help to express T in terms of other varidbles in a familiar
problem, say an ided fluid.

For anided fluid:

I—

:-pl

To show that this is correct, we will compute the surface force and show thet it reduces to the familiar
force due to pressure:

dFgyrf =N Ida=n- (-pl)da=-p(n- l)da=-pnda = de

GENERALIZATION OF EULER'SEQUATION

Recall that Euler’s equation was derived by applying Newton's Second Law (F=ma) to any fluid
eement. To generdize this result to include friction, we replace the “pressure force” by the surface
force.

Dv
Instead of : _[r?tdv =Fg+Fp :Jrng- anda
% % A
] Dv
we have: Ir EdV:Fg+Fsurf :jrgdv+jn-lda
% % A

Applying the Divergence Theorem and combining the three volume integrals:

_[(rﬂ rg- N dev =0
v Dt =

Since thismust result for al choices of V in some region, the integrand must vanish & every point in that
region, or:

Dv 1.

which isamore generdized verson of Euler's Equation.

For anided fluid:

-

=-pl
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ard R =- R{pl) = - Rp

For aproof of identity C.11, see Hwk #3, Prob. 4. For ared fluid, there is an additiona contribution
to T from friction:

For ared fluid: T=-pl+t (40)

wheret is cdled the viscous stress or the deviatoric stress (Snce it represents the deviation from
ided). Note that:

CAUTION: t inthese notes (and in Whitaker) ® -t inBS&L

By convention, tj; in these notes is positive for tensile stresses (which result from stretching a solid rod)
whereas t; in BS&L is podtive for compressive stresses (which result from putting a fluid under
pressure).  Although BS&L's notation might make more sense for fluids (which usudly do not
experience tendle dresses), we will use the other convention because it is more commonly used in
continuum mechanics. in particular, thisis the convention used by Whitaker.

When written in terms of scadar components, the above equation between T and t represents 9
equations in 10 unknowns (the nine components of t plus p). Clearly p and t cannot yet be uniquely
determined, given the state of stress T.  One additiona relationship is required. For a red fluid, we
somewhat arbitrarily define p as the average of the three diagona componentsof T:

T:1) (41)

where l:L:aééT--e-e-'_'.aqoiekekgzé_éé_'r--( : e;- € :éTkk
i oung i} ijk”ﬁfg(ﬂz

or, in Cartesian coords.; Il =Tt Ty tT,

In any coordinate system, T: | is caled the trace of T. Then p can be thought of as the isotropic
contribution to stress (that part of the norma sress which acts equdly in al directions) while t
represents the remainder, or the nonisotropic part. (40) might be regarded as decomposing t into an
isotropic part and a nonisotropic part, which is acommon thing to do with tensors.

The choice of p madein (41) aso represents the thermodynamic pressure; i.e. the hydrodynamic
p is now the same as the p gppearing in the thermodynamic equation of state

r=r(pT)

To summarize, we decompose the state of stressinto two contributions: an isotropic pressure:
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p=-3(T:))
and adeviatoric stress: t=T-13)T: )L
Taking the divergence of (40): N-T=-Np+N-t
and subdtituting it into Euler's Eq. (39):
Dv - <
r——=rg- Np+ Nt
Dt g P ——
new for
real fluids

MOMENTUM FLUX

Up to this point we have spoken of T as the stress on the fluid. T can dso be thought of as
momentum flux. To convince yoursdf that momentum is being transported (like heat and mass),
congder the problem of unsteady simple shear flow. Attime t=0, an initidly quiescent fluid confined
between infinite pardld plates is disturbed by imposing motion on the upper plate. The velocity profile
gradudly developsinto linear shear flow.

Note tha, like dl other fluid dements, the fluid > [/
element a y=h/2 undergoes acceleration: ~—
/

Modfit>0ety=h/2 A ! vl profile [or
In other words, the fluid element is gaining ) b increasing
> 1

momentum.  How can it acquire momentum?
Answver: momentum is trangported to y=h/2 from
above through friction between fluid dements. There
are two directions associated with transport of A
momentum: (Vx)|y:% 1)

1) direction of the momentum being transported
(in this example, x-momentum is trangported)

2) direction in which the momentum is trangported
v)

For this reeson momentum flux must be a 2nd rank
tensor. It turns out that:

\)
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-T = diffusive flux of momentum’
r vv = convective flux of momentum

In multicomponent systems, the flux of any species i due to convection is written as the product of
concentration and velocity:

conv. flux of speciesi = ¢;v [=] mol-cn2-s'1 [=] rate/area
where ¢ [=] mol/cm3
More generdly, by “flux,” | mean:

flux — that tensor (of whatever rank), which when pre-dotted by nda, gives the rate of
trangport through the surface eement having area da in the direction of its unit norma
n.

For example, the flux of fluid mass by convection is
rv [=] g-cnmr-s'1[=] rate/area
Proof: pre-dotting by nda we obtain:
(nda)- (rv)=rn-vda=r(dg) [=] d/s

which represents the mass flowrate across da. Indeed the convective flux of totd fluid mass aso has the
form of concentration times velocity since

r = concentration of mass [=] massival.
It might come as less of asurprize that r vv isthe convective flux of momentum if you redlize thet
r v = conc. of momentum [=] momentum/val.
After dl, momentum is masstimes velocity. So
(r v)v = r vv = conv. flux of momentum

Example: Apply consarvetion of linear momentum to an arbitrary fluid sysem. Thus prove that T and
r vv are momentum fluxes, as clamed.

Solution: We choose a system that has fixed boundaries in the laboratory reference frame: in other
words, V1 V(t). Referring to the discusson aovein which r v isthe concentration of momentum, r vv

* "Diffugve’ meansit results from random collisions between molecules.
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is the momentum flux by convection, and -T is the momentum flux by diffuson, conservation of
momentum requires

%Jrvdv = -§n-rvvda -ffn-(-l)da +Jrng
14243 114243 1AN2A4A8 M>B

accumulation in by convection in by diffusion in by external forces

Applying the divergence theorem, combining the resulting volume integrds, and invoking the result for
arbitrary V, we would obtain

q N N
—(rv) + LV, -NT-rg=0
) o T

T‘IT_;VH% [N- (rv)]v+rv-Nv

Expanding the partid time-derivative of the product and expanding the divergence of the dyadic product
using identity C.8

[ﬂ—r+ﬁl- (rZZJV Vv Riv- NT-rg=0
o4 nt
0

Finally, we recognize the factor insdde square brackets must vanish according to the generd continuity
equation. After thisterm is dropped, the remainder is Euler's equation:

r%ﬂvﬂvzﬁl-lﬂg

Comment: In writing the statement of consarvation of momentum, we have a term representing
trangport of momentum into the system by the action of externd forces. Clearly, an object faling from
res in a gravitationd field acquires momentum through the action of gravity. Does this acquigtion
represent trangport to the body from outside, or does it represent a "generation” term? |If it is
gpontaneous momentum generation, then momentum is not conserved.

With a little reflection, we can convince oursalves that the action of gravity is “trangport” and not
“generation.” Some of the earth's momentum is being transported to the faling object. When the object
eventualy collides with the earth and comes to rest again, that momentum is transported back to the
earth. The tota momentum of the universe has not changed: momentum is conserved.

Actudly, the term we cdl “diffuson of momentum” aso arises from the action of an externd force: this
timeit's the action of “surface” forces, rather than “body” forces.
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RESPONSE OF ELASTIC SOLIDSTO NORMAL (UNIAXIAL) STRESS

By generdizing, the force bdance plus the mass badance now contain more unknowns than
equations:

t,v,andp® 9+3+1 = 13 unknowns
Euler + Continuity ® 3+1 = 4 equations

Missng isthe constitutive equation which isan empirica description of how the fluid or solid materia
respondsto stress. Obtaining this relationship is an important objective of that field of science known as
continuum mechanics.

Let's start by congdering solids, whose response is more familiar. Suppose | try to siretch a rectangular
bar by applying atensleforce, F.

We will attempt to describe the response of Ly
the bar under conditions of mechanicd TF ~ I—)— F
equilibrium. To have the bar stretch instead of z

//_
/
|
L
accderating as a result of the force, | must A i

Ox w
apply an equa but opposite force to the other
end. Let the x-axis be digned with the
direction of the applied force:

Fx = IFI
At equilibrium, the length of the bar will increase by an amount d,. Hooke's law tdll us that:

I:X I‘X
L,L,

dy 1
y

Fx
L,

but = Ty

Ly

isthe applied stress. The two subscripts on stress denote the two directions associated with it: the first
subscript denotes the orientation of the surface the force is applied to k=const) while the second
denotes the direction of the applied force ().

Since the deformation is proportiond to the origind length of the bar, it makes sense to define the
deformation per unit length, which is caled:
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strain: €y = Ax
I_X

Later we will see that gtrain is a second-rank tensor.  For now, we will interpret the order of the
subscripts as follows: the first subscript gives surface (in the above case, an x=congt surface), while the
second subscript gives the direction of the deformation (in the above

case, the x-direction). A
Experiments show that the strain increases with the applied stress as T
shown in the figure a right. At low dress levels, the drain is directly
proportional to the applied stress: Hooke's law™ for purely elastic I
solidsis

Ty = Eeyy
E [=] forcelarea

where E is cdled the Young's Modulus. It turns out that deformation adso occurs in the y and z
directions.

Eyy = €7 = -Neyy
wheren iscdled Poisson'sratio. For most materias

0.28<n<0.33

RESPONSE OF ELASTIC SOLIDSTO SHEAR STRESS

Instead of a normal force, suppose | apply a shear force on the upper face. To keep the object
from trandating, | must gpply an equa but opposite force on the lower

face. By
This generates a force couple or torque, which will cause the body to P - }
in. To prevent a steady increase in rotation speed, | must apply an - Lp| TR
equa but opposite torque. Recdling that torque is force times lever
am: —~—
Fy
Fyly =FyLy

* Robert Hooke (1635-1703). English experimental physicist. Hooke's law first stated in 1660.
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. F Fy
Dividing by L,LL: X =
y Lel, LyL,
or Tyx = Ty

where Ty, = x-component of force/area acting on y=const surface. Note thet thisimplies that the stress
tensor is symmetric. Thisturns out to be true for virtudly al loadings”

This loading produces a shear deformation in which
dy 1 Ly
and dy 1 Ly

V=

The corresponding definition of shear strain is

d d
1| Yx y | _ —
E(L_J’L_X]‘exy = Cyx

y

Since we gpplied a symmetric stress, by goplying forces in both the x and y directions, we average the
drainsin the x and y directions to obtain a symmetric strain. Moreover, this definition yields a srain
which isinvariant to rotetion of the xy axes. Aswith norma stress, shear stress produces a shear strain
in direct proportion to the stress:

Tyy = 2Geyy (pure shear)
where G iscdl themodulus of elasticity for pure strain. Although the units are the same, the vaue
of 2G isdifferent from that of E.

GENERALIZED HOOKE'SLAW

Now let's try to generdize to some arbitrary loading which might involve both shear and normad
stresses.

Consder two arbitrary materia points in rchalive
the material. Let x denote the position of 5 — g‘ﬁﬂlﬂfﬁ:‘iﬂgal
the second materid point relative to the points by load

firdt, before the load is applied. After the
load is applied, both materid points

atter load

* For aproof based on the assumption of loca equilibrium, see W:4.3
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move as shown by the dashed lines in the figure a right. After the load the postion of the second
materid point relative to the first becomes x+d, where

d(x) = relative displacement

of two materia pointsinitialy located a x. The resulting strain can be generdized as

or e: -1 ﬂd_1+&
! 2 ﬂXi ﬂXJ

Note that this generd definition of strain reduces to earlier expresson for drain in the cases of pure
normal or pure shear siress.

y fidy . 1d d
nixial normal stress Oy = X+ X |=X ad T, =E
unixi XX 2( X ﬂX) L, xx = B €xx
fdy 9d dy d
. _1 y 117y —
pure shear: exy—i(W+‘"_yX =2 L_X+L_);, and Ty, =2G ey

If the strain components are dl smdl, we might reasonably suppose that Hooke's law generdizes into a
linear relationship between any component of strain and the nine components of stress (or vice versa):

Qo
n Qo

T =

j Gijki € (42)

k=11=1

There are then nine coefficients for each component of stress, making atotal of 81 possible coefficients.
But just by requiring:

symmetry of T (T;;=Tj;)

isotropy of materid (eg. same Y oung's modulus applies to uniaxid stressin x-direction as
foryand 2

it can be shown that the number of independent congtants is reduced from 81 to only 2. It is customary
to express the stress tensor as the sum of two tensors: one isotropic [(e: 1)I] and the remainder [e -
(e: 1)1]. Denote the two independent constants as k, and k, and use them as weighting factors in the
um:

Copyright © 2000 by Dennis C. Prieve



06-703 78 Fall, 2000

T=h gz 2l

remainder isotropic

This can be rearranged T =kee+ (k- ky)(e )l

Sometimes the constants are choosen as the two coefficients in this new form

T=2he+l(el)!

which represents the generdization of Hooke's law of dadticity. Thus of G, E and n, only two are
linearly independent properties of the materid; using the above relaionship we can show (HWK Set #5,
Prob. 1) that

RESPONSE OF A VISCOUSFLUID TO PURE SHEAR

Suppose | have athin layer of fluid held between parald plates and | apply aforce F, to the upper
plae. To cause deformation, rather than smple

trandation of the system, | must apply an equa but e h »
opposite force to the lower plate. v R
As before, this produces a force couple or torque. —’,
To keep the sysem from rotating, | must goply an — Y
opposing torgue.  Once again this equilibrium state ™™ —
corresponds to a symmetric stress tensor.  From our :’ X
experience, we know that eventudly the upper plate .
will dide past the lower plate at some Seady reldive >
speed U,,. e i,

: FxLy
response; Uy, H L,

This speed represents arate of deformation:

and the speed per unit thickness represents arate of strain:
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dt

Rewriting the proportiondity as an equdity, we have:

_ deyx

t m—
yx dt

whichiscdled Newton's Law of Viscosity (1686). Alternatively, BSL point out that

Uy _dv = - -mes
L_i_d—; and (txy)BSL_-(th)not&e_ dy

GENERALIZED NEWTON'SLAW OF VISCOSITY

This generdization of Newton's law of viscosty to arbitrary loading pardlels that of Hooke's Law
with the strain tensor replaced by the rate of srain. The main difference is that now the deformation isa
function of time:

displacement
d(x,t) = displacement of materid pt. M of material paing
= deformation by load

The trajectory of a materid point initialy located &t~ Pefore load

x(0) isgiven by: i

after load is
X[x(0),t] =x(0) + d[x(0),t] o applicd tor time ¢
Keeping the material point fixed (i.e. x(0) is constant)

while we take the time derivative is the same as taking the materid derivative of postion. Thusthe rate
of deformation of fluid dementsis

—=—=V (rate of deformation)

g:%[ﬂld+(l§|d)t], (strain)

Copyright © 2000 by Dennis C. Prieve



06-703 80 Fall, 2000

the gradient of the rate of deformation must be the rate of strain:

t
d=—= __[Nd+(|§|g)t] :%[NB_?+(ND_Qj ] = %[Nv+(l§lv)t](rateof strain)

Newton's law of viscosty is alinear relaionship between the stress and the rate of strain. Generdizing
thet linear relationship again leads to ardationship like (42), except that the strain tensor ey is replaced
by therate of strain tensor dy;. Once again, in order for the stresstensor T or t to be symmetric and
for the materid to be isotropic, only two of the 81 coefficients Cj;y are independent. We use the two
independent coefficients to multiply the isotropic part of t and its remainder:

t=2md+(k- Zm(d 1)

where mis the usud viscosty and k is called the second coefficient of viscosity. d: | has a specid
sgnificance, which we will now point out. Aswe showed on page 70, d: | isthetrace of d:

di1=dy+dptdg

Writing in terms of the velocity v: di =2 M+M

_af v v v
dll - Z(ﬂxl + ﬂxl} ﬂxl

b\ + \'2) + va
e X Tx3

S0 dl= =N v

So the trace of the rate of deformation tensor is just the divergence of the velocity. Newton's law of
viscosity becomes:

For an incompressible fluid: N-v=0

leaving t = 2nd =m&\v+ (Nv)t Y (incompressible)

NAVIER-STOKES EQUATION

Once again, let’s go back to Euler's equation, generdized to account for the tensorid nature of
viscous friction:
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rDv/IDt=rg-Np+N-t
For an incompressible fluid, N- v=0 and
t =2nd = njNv+(Nv){]

N-t =niN: Nv + N- (Nv){]

but using identity C.10: N- (Nv)t=N(N-v) =0

leaving N-t =nN- Nv=niN2v
, . Dv _ ~ ~ 2

Euler's equation becomes: rﬁ—rg- Np + MN“v

Fall, 2000

(r ,nFconst)

which is known as the Navier-Stokes Equation (1822).8 Now we have as many equations as

unknowns;
VvV, p® 4 unknowns

N-SE, Continuity ® 4 egns

BOUNDARY CONDITIONS

But to successfully model a flow problem, we need more than
a sufficient number of differentid equations. We dso need
boundary conditions.

A typicad boundary is the interface between two immiscible
phases -- ether two fluids or a fluid and a solid. One such
boundary condition which can generdly be gpplied is the no slip
condition:

vl =il

phasc 1

phase 1l

8 Sir George Gabrid Stokes (1819-1903): British (Irish born) mathematician and physicist, known for
his study of hydrodynamics. Lucasian professor of mathematics at Cambridge University 1849-1903
(longest-serving Lucasian professor); president of Roya Society (1885-1890).
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For example, in the problem of uniform flow around a Saionary solid

sphere, thisrequires: 7]
—>
—>
ar=a Vi=Vg=0 —>
—>
which meansthat thereis no flow of fluid across the boundary: —>
—>
ar=a: Ve = 0 —

We dso assumed this boundary condition when we solved the potentia
flow problem. But “no dip” aso means.

ar=a Vg=0
Note that our potentia flow solution did not satisfy this second equation:
for pot'l flow: vi(aqg) =0
Vg(@a) =-(3/2)Usng * 0
In addition to d'/Alembert's paradox, potentia flow failsto satisfy the no-dip condition.”

For a fluid-solid interface, in which the velocity of the solid phase is known, the no-dip condition is
aufficient. But in the case of fluid-fluid interface, the velocity of the second fluid is usudly unknown.
Then no-dip just relates one unknown to ancther.

A second boundary condition can be obtained by considering the stresses F phase | F
acting on the materia on ether side of the interface.  Suppose we were | «——
to gpply a loading as on page 66 to a two-phase region draddling the hase 3
interface, as suggested in the figure a right. Note that the loading is P =
balanced: that is there is no net force on the system.

If we were to qlit the sysem into two pats dong the
interface, each of the two halves would tend to accelerate.
This suggests that, when the two phases are in contact, each
exerts an “interna” force on the other, as shown in the figure
at right. Theseforces are equa but opposite:

Fion2=- Foon1=F

* Although "no dip" is usudly applicable, there are at least two Situations where no dip might not be
gpplicable: 1) when the mean-free path of gas molecules is comparable to the geometric dimension, and
2) when aliquid does not wet the solid.
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which might be thought of as “Newton’s Third Law”: for every action, there is an equa but opposite
reaction. Using (38) (on page 68) to express the forces in terms of the stress tensor:

No- llA: -Nq- lZA =F

where A is the area of the interface and where n; is the normd to the interface pointing out of phase i.
However, from the geometry, we can deduce that

Ng=-n,°n

Newton's Third Law becomes: n. 11 =n. lz (43)

When the interface is highly curved (e.g. asmdl oil droplet in water), then surface tenson can produce a
discontinuity in the norma components of the above force, which has not been included in the above
anadyss [see L&L, Chapt. 7 or Hunter, Vol I., p237f]. The more general form of this boundary
conditon is

N (T1-I2)=dNg nn (44)
where gis another property of the fluid called the surface tension and
Ng° (1 - nn)- N

is the surface component of the N operator. We will have more to say about this near
the end of the course. For now, we will neglect surface tension effects.

Ng n = curvature of surface [=] nrl

For aflat surface, n is independent of position dong the surface so that N n =0 and
(44) reducesto (43).

Exact Solutions of N-S Equations

Exact solution of the Navier-Stokes equations presents a formidible mathematical problem. By
“exact” | mean:

exact — neither viscous nor inertid terms are neglected (i.e. approximated by zero, as opposed
to being identically zero)

One difficulty is the non-linear inertid term. Mogt of the powerful mathematica techniques (such as
elgenfunction expansons, used in “ separation of variables’) only work when the P.D.E. islinear.
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Of course, if we can neglect the higher-order viscous terms, then we can cope with the non-linearity
using a velocity potentid, as we did earlier in solving problems in potentia flow. However, viscous
terms are ssdom completely negligible and leaving them in the equation makes the problem much more
difficult by increasng the order of the PD.E. Neverthdess, it is possble to find exact solutions in
certain cases, usudly when the inertia terms vanish in some naturd way. We will now examine afew of

these problems having exact solutions.

PROBLEMSWITH ZERO INERTIA

Fird, let’s consder problems in which the fluids dements travel dong straight streamlines a congtant

velocity. Then their acceleration vanishes identically.

Flow in Long Straight Conduit of Uniform Cross Section

Suppose we have pressure-driven flow in a long draight
conduit whose cross section does not vary dong the flow. In
mathematical terms, the conduit is a cylinder of arbitrary cross-
section.  Define Cartesan coordinates such that the axis of the
cylinder correspondsto the z-axis. In avery long pipe, we expect
that v, will depend on z (aswell asx and y) near the entrance and
exit of the pipe.

N — .
a "\

Entrance Fully Exit
region developed region

YY

wall ol
wonduil

In particular, near the entrance, we say the velocity profileis “developing”; i.e. evolving with z. Outside
the entrance and exit regions v, will beindependent of z. This Stuation is caled fully developed flow.

For fully developed, steady flow:
V2 = VyX.Y)
Vy=Vvy =0
Note that this automatically satisfies the Continuity Equation:

N-v=1v/1z=0
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For thisform of solution, it turns out that the nonlinear inertid terms automaticaly vanish:

v-Nv=0

To convince yoursdf of this, consder steedy flow. Since the velocity of afluid dement is congtant dong
adraght sreamline:

for steady flow: v-Nv=Dv/Dt=a=0

In other words, fluids eements are not accelerating.  Thus inertia forces are identicaly zero in steady
pipe flows. Strictly spesking, Reynolds number should not be thought of the ratio of inertia to viscous
forcesin this problem, since inertiaiis zero for laminar flow athough the Reynolds number is not zero.

For a steady flow, the N-S equations are:
0=nmNZv-Np+rg
Note that for avertical pipe” p=p(2
but more generdly for a horizonta or inclined pipe:
p=pxy.2)

where the dependence on position in the cross section arises from the contribution to pressure from the
hydrostatic head (i.e. from g). For this and some other problems, it's helpful to decompose the tota
pressure into contributions from gravity (i.e. hydrodtatic pressure, py) and from flow (cdled the
dynamic pressure, P)

P=pn+P
Np = Np;, + NP
g
From our earlier anaysis of hydrostatic equilibrium (see page 39), we know that Np, =rg.
Note that Np- rg=RNP

Next, we subdtitute thisinto the N-S Equation. Expanding them in component form:

* In the absence of gravity, Tp/Tx and fp/Ty must vanish: see the x- and y-components of (45).

Copyright © 2000 by Dennis C. Prieve



06-703 86 Fall, 2000

X - component: 0=- 1111—5
P=P(2)
: _ 9P
y - component: 0=-—
fy
z-component: 0=niN?v, - % (45)

where we have written the last term as the total derivative ingtead of the partial derivative because the
first two equations require that P be afunction of zadone. We can immediatdly deduce that P must be a
linear function of z

~ dP
Py = .
L)1)

snce the dP/dz isindependent of x and y, while the velocity profile isindependent of z, so (45) requires
that the two functions of different variables be equd:

a(x,y) =f(2) = const. w.r.t. x,y,z

which can only be true if both functions equa the same congant: thus P(2) must be a a
linear function. For steady flow in a circular conduit of radius a, the “no-dip” b.c.
requires

ar=a v,=0 (46)

Since neither the b.c. nor the differentid equation contain any dependence on g, we
expect the solution to be axisymmetric about the z-axis:

V, = VAT)
(45) becomes: li(r %J = 1dp = const
rdr\ dr m dz
The generd solution of thisequation is:
1 dP »
r)=——r“+¢lnr+c
z( ) am dz G 2

Requiring the solution to be bounded at the center of the tube (as r® 0) forces us to choose ¢,=0 while
the remaining congtant can be chosen to satisfy the no-dip condition (46). The particular solution is the
familiar parabolic velocity profile
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V(1) :i(]l—p(r2 - a2)

4m dz ~< i
> {area ol
The volumetric flowrate through the conduit ﬂ shaded
is computed from: — region)

Q= [nvda= [Fv,(r)(2pr)dr
A

sidh: view cmd view
4
or Q = & (_ d_Pj

which iscdled Poisueille's Formula This formula was been derived for a number of different cross
sections. In genera

kA2 ( dP)
Q=—|-—
m dz
where A = cross-sectiona area of duct

and where k is some congtant which depends on the shape of the duct; eg.

crde k = 1/8p = 0.0398

sguare: k =0.0351

dlipse __&
4p(1+ e2)

wheree = b/a £ 1istheratio of the minor to mgor axis.

Flow of Thin Film Down Inclined Plane

Suppose we have fluid overflowing some reservoir and
down an inclined plane surface.  Although there might be
some entrance or exit effects (a the upstream and
downdream ends of the plane), if the plane is sufficiently
long compared to these regions, then what we see in
experimentsis aregion in which the fluid flows downward as
afilm of uniform thickness. Let's try to andyze this centra
region in which the film in uniform.
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Let the x-axis be oriented pardld to the inclined plane in the direction of flow and let the y-axis be
perpendicular to the plane. One of the boundary conditionswill no “no-dip” a the solid surface:

a y=0: vV, =0
At the very leadt, there must be flow in the x-direction: otherwise there could be no viscous force to

balance gravity. In addition, the x-component must vary with'y: v, must vanish & y=0 (no dip) and be
nonzero for y>0. The amplest form of solution which is consstent with those condraintsis:

V = Vy(y)ey
Note that this form automaticaly satisfies the requirement of continuity for an incompressible fluid:
N- v=1v,/x=0

Subdtituting this velocity field into the Navier-Stokes equations:

X: 0 = -Tp/x + nd?v, /dy2 + r g, (47)
y: 0=-fip/My +rgy (48)
z 0=-1p/1z
where Oy = O €, = gcosb
ad Oy =9 ey =-gsnb
Integrating (48) with respect to y:

p(x,y) = -r gysinb + c(x) (49)

where the integration constant might depend on X, but cannot depend on z (according to z component
above) or y. Now let's turn to the boundary conditions. Continuity of stress across the interface
yidds

at y=d: n l”q =n lgas: n- ('pga&l + t=gas)

Now the viscosity of air is about 0.001 times that of water. Then it is reasonable to treet the air as an
inviscid fluid: i.e. neglect t 455 Thisleaves

N Tjig » -NPgas = -NPatm (50)

where pain=1atm. Now ey isthe unit normd to the interface in this problem

ey Tiig=€y (-pl +1)=-pey +ty,e +tye +te
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*

When v, = v,(y), the only nonzero components of the deviatoric stress tensor are tyy=tyx: Dropping
the other terms, (50) becomes:

-Pey + tyxex = -€yPatm

Equating separate components:
X-component: tyx(X,y=d) =0 (51)
y-component; p(X,y=d) = Patm

With this result, we can evaduate the integration congtant in (49):

p(x,y=d) = -r gdsinb + ¢(X) = Patm
Thus C(X) = Patm + r gdsnb
(49) becomes: P(X.y) = Patm* 1 9(d-y)sinb
Thus Tp/Tx = 0 and (47) becomes:

nd2v,/dy2 = -r gcosb

No-dip at the wal requires.
a y=0: v,=0

wheress if the dressin (51) is evauated usng Newton's
law of viscosty, we o require:

a y=d: tyx = mdv,/dy=0

Using these two boundary conditions, the velocity profile
can be uniquely determined:

2 2
_rgd©cosb| (y y
"X“’*THEJ’ (E) } v
LMK VWICW

* For a Newtonian fluid, the 9 scalar components of the stress tensor are expressed in terms of the
derivatives of the velocity field on pl145 of Whiteker. These expressions (except for a change in sign)
can be found on p88 of BSL or at the website for our course —

http://mww.andrew.cmu.edu/course/06-703/NLV _RCCS.pdf.
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By integrating over a plane perpendicular to the flow, we can evaduate the flowrate:

W d
Q:_[n-vda: .[ _[ v, (y)dy dz « 4 .
A 00
3 I
0= r gWd* cosb & | b
Rl Il’

where W is the width of the plane.
ol view
Time Out: The man novdty of this problem is the
treatment of the free surface. We treated the air as if it
was inviscid, dthough it has some viscosity. How important is the drag imposed by the air? Thisisthe
subject of HWK #6, Prob. 2

To answer this quedtion, let's condder a verticd film of water in
contact with a verticd film of air, as shown in the sketch a right.
Let’s re-solve the problem and see how large d, must be for agiven
d,, before we can neglect the effect of the air. For fully developed Y
flow, the velocity and pressure profiles should have the form:

Vx = Vx(Y)
vy =V, =0
p(x,y,z)=1am 5., B,y
N SE, becomes:
2,,W
for water: O:m,\,d V2X +r WO
dy
2,2
for air: O=maOI \;X
dy

wherewe havetaken r ; =0. Applying “no dip” a each of the three interfaces

at y=0: vy (0)=0
a y=d,: vy (dy) =vg(dy)° U
a y=dy+ d: vg(dy +dy)=0
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The particular solutions to the two ODE's are

_ w9 y
vW(y)==—22(d, - y)y+U—= (52)
dy +dj, -
Vi(y)=u et (53)
a

Theinterfacia speed U is unknown, but is choosen to match the shear stress at the interface:
at y=d,; tVx(dw) =t x(dw)
For Newtonian fluids, the stresses can be related to velocity profile:

w
dvy

W dy

a
dvy

d
y=dy, y y=d,,

Using the veocity profiles of (52) and (53), this stress matching yields:

-=r gd +rnNi: i
2 w W dW rnada
. . _1 w9y
Solving for U: Uu==—"—=42
2My My
dy da
The flowrate of the water is
My . My
dy 3 3 4t
rwad rowgdy, d d
= () ay = D% 4 2yq,, = Due _fw_Cla (54
0 my Tw , Ta
dy da
If theair film is very thick, the flowrate becomes
3

W dlién¥{Q} " am,

which is the same expresson we had in the Notes when the viscosity of air was completely ignored.
Dividing (54) by (55):
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o

4%4-% 4%+_W
Q 1 dy da _1 my dy
Q¥ 4%4.% 4&+d_w
dy da My da

When the viscosity of water is 1000 times larger than air (i.e. g, = 1000 my, ), thisgives

4000+ dw

Q 1 d,

Q¢ 41000+ dw

a

To reduce the flowrate by 1% means % =0.99, for which the arr film thickness must be

d, =0074d,,

So even if the ar is illed by a nearby boundary, the drag of the air on the free surface of the water will
be negligible (provided the boundary is not too close). In the absence of a rigid boundary in the air,
negligible error is made by tregting the air asinviscid.

TimelIn!

PROBLEMSWITH NON-ZERO INERTIA

L&L lig only three flow problems in which both including viscous and inertiad terms are important
and in which exact solutions are known:

1) rotating disk
2) converging (or diverging) flow between nonpardld planes
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3) the submerged jet

Rotating Disk* |

We will now examine the solution of the first problem — e Hoe
the rotating disk — because it is used as a modd system for
transport experiments.  An infinite plane disk immersed in a g

viscous fluid rotates uniformly about its axis. Determine the
motion of the fluid caused by this motion of the disk. This o
problem was firda solved by von Karmen (1921) using = Y
cylindrical coordinates with the z-axis coinciding with the axis L
of rotation. |
Define: z= w

n
where n=nir [=] cm@/s

is cdled the kinematic viscosity.
Then: vp(r,2) = rwk(2)
Vy(r2) =rG(2)

V2(2) =+/nw H(2)

p(2) = P (2)

Continuity and N-S become: 10
‘= 0.8

2F+H=0 G N
r: F24+F'H-GZF" =0 0.6-
q: 2FG+HG-G" =0 0.44
z P4+HH-H" =0 0.2 =

0 .
0 1 2 3 4

* See S;p93 (6th Ed); L&L:p79.
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where the prime (") denotes differentiation with respect to z. Boundary conditions take the form:
z=0: F=H=P=0, G=1
=¥ F=G=0

An important property of this solution is that the z-component of velocity depends only on z For this
reason, convective heat and mass trandfer problems becomes one-dimensiond.

This is perhaps the only problem in which there is flow normd to a wal where the mass-transfer
coefficient can be determined andytically. For this reason, the rotating disk is a favorite tool of
researchers in mass transfer.

Creeping Flow Approximation

CONE-AND-PLATE VISCOMETER

The cone-and-plate viscometer conssts of a flat plate, on which is W ?

placed a pool of liquid whose viscosity is to be measured, and an -
inverted cone which is lowered into the liquid until its apex just a
touches the plate. The cone is then rotated a some angular velocity, ,4

W, and the torque required to turn the cone or to keep the plate

dationary is measured.

since the surface of the cone and of the plate can be defined as
g=congt surfaces.

|
Spherica coordinates are most convenient to describe this problem, |
|
surface of cone: g=a
surface of plate: g=p/2
The cone is undergoing solid-body rotation (see HWK #4, Prob. 3):

for gfa: v(r)=Wr

In spherica coordinates, the position vector is
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r=re(q,f)
e
while the angular velocity is (see figure and p49):
W= We, = W[(cosa)e; - (sina)e] (56)

Subdtituting into the expression for solid body rotation:
g<a: V=W r=rWanq es ta
The principle direction of flow isthe f -direction. “No-dip”
requires:
ag=a: Vi = rWana

Vr =Vq=0
a q=p/2: Vi =V =Vy=0

The smplest velocity profile which is consstent with these boundary conditionsis:
Vi = v¢(r,0)
Vr =Vq=0
Next, I'd like to argue that the pressure profile can be expected to be independent of f .
p=p(r,a)

Since there exigts only a f -component of veocity, fluid streamlines will turn out to be cirdes (the
contour corresponding to r=const and g=const). The circle correspondsto O £ f £ 2p.

By andogy with the last problem, you might guess (incorrectly) that pressure must decrease aong the
direction of flow. However, in steady flow p cannot continoudly decrease with f for dl f. At the very
least, pressure must be periodic in f ; in other words, p(r,q.f ) = p(r,q,f +2p). So any decreases in
pressure over part of the cycle will have to be balanced by increases over the remaining part. Why
should the pressure be higher at some points aong the streamline than at other? There is no geometrical
asymmetry with respect to f and no reason to expect any f -dependence in the pressure.

The veocity profile automaticaly satisfies continuity:

N- v = (rdng)-1qv;/f =0
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Ignoring gravity, the Navier-Stokes equations in spherical coordinates becomes$

r: -r v¢2lr = -qp/vr (57)
q: -r vi2cotg/r = -r-1qp/fq (58)
V. v V.
f: 0= il(rzﬂf)+ ! 1(sinq.”fj- f (59)
r2 1 T ) r?sinqTa Ta ) r?sin’q

Notice that the pressure and velocity fieds have been separated. We can first solve the f -component
for the velocity profile and then subdtitute the result into the r and g-components to solve for the
pressure profile. Based on the boundary conditions, we might try a solution of the form:

V¢ (r,q) = rf(q)

When this is subgtituted into the f -equation above, the r-dependence cancels out, leaving a second
order ordinary differentid equation in f(q). The solution leadsto:

V¢ =rWwsin aM (60)

g(a)

where

1+ cogq
1-cosg

g(q) = cotq +%In( )sirq
Thisfunctionisplotted inthe figure a right. Noticethatinthe 2q

center (i.e. for q near p/2) the function is nearly linear. A
more careful asymptotic analysis would reved that

qI(ian]Ll{g(q)} = 2e+ O(e5) (61)

o |a

where eog-q

Notice that thisisalinear function of q as expected from the plot above.

§ http://www.andrew.cmu.edu/course/06-703/NSE sph.pdf
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Velocity Profile for Shallow Cones. Most cone- ,
and-plate viscometers are designed with cone angles ~—_

o

I

near to p/2. The reason for this will be apparent in a

moment. Notethearc lengthsre and re; on the figure h=re *~ A\
a right. For shalow cones (i.e. as a® p/2), re / e z=re
asymptotically becomes the vertica distance from some y vy

arbitrary point (r,q) in thefluid to the plate, |

limire;=z
Jim{re}

whilere, becomesthe vertica distance between the plate &t the cone:

lim {rer} =h(r)
®® 5
So in this limit we can use (61) to replace
asa® p/2: g(q)® 2e= ZrE conc:
h .
and g(a)® 2¢y=2— ad sna®1 -

r h

Then (60) smplifiesto linear shear flow (at least localy)

z
for a® p/2: Vi =rW— .
p f h plat:

Notice that the rate of strain isindependent of pogition:

v
fora® p/2: —f:ﬂ:iv:lvzconst.
Tz h(r) re ¢

This is an important advantage for a rheometer, since al the fluid experiences the same drain rate.
Later, we will show that stressis aso spatidly uniform for shalow cones.
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Torque. To use this device as a viscometer, we need to interpret torque
measurements. So let’s try to evauate the torque for a given velocity profile.

Recdl that torque isforce times lever am:

T=(rdma)F

I
"oude wviewn”
f—x/2 planc
tic
"Lop v isw”

Using vector notation:

T=rF

In our problem, the force F is not
concentrated at one point, but instead is
digtributed over the surface of the plate.
Let's condder the contribution to force and torque from some
differentia element of surface having areada.

Once the velocity profile is known, we can evauate the sress field
from Newton's law of viscogty. Given the dress fidd, we can
cdculate the force on any differentid solid surface lement of area
da from:

dF =n- Tda

where n is a unit normd pointing out of the body dF acts on.
Smilarly, we caculated the contribution to the torque by crossng
this force with the locd lever arm:

dT =r"dF=r" (n- Ida)

Let's cdculate the torque exerted by the fluid acting on the

gationary plate. Then we want to choose n to point out of the plate or

n=-eq

The net force exerted on the lower surfaceis.

F=qdF =-gey Ida

Similarly, the torque exerted on the lower surface is.

Firs let's consder:

T=qr dF=qr (-e4 T)da (62)

ey I= Tqrer + queq + quef
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To evauate the torque, we need to first cross this vector with the lever arm, which is the position vector.
In spherica coordinates, the position vector is:

r(r,a.f ) =rer(a.f)
r (eq' -|=-) = rTqr(er' er) + rqu(er, eq) + rqu(er' ef)
= rquef - rqueq

Anticipating that the torque vector T will have the same direction as the angular velocity W, we dot both
sideshy e, which equals-e, on the plate (q = p/2):

%: Bl [ ] il [ T)] ) [rquef - Iyt eq] =-rT,

Now we substitute Newton's law of viscosity:8

Teev 0 1 ‘ITVq

Ty =ty = Tesing- (63)
af ~taf 7 8 ‘ﬂqgsmqg sinq If g
What' s left isto subgtitute our velocity profile from (60) into (63), which yields
Ty = c:2 where co o228 (64)
sin“q g(a)

and where a isthe coneangle. On the surface of theflat plate, q = p/2andsing = 1. Ty (evaluated at
g=p/2) will be independent of f ; then we can choose da to be a ring of radius r and thickness dr,
leaving:

T, = @R(-rT¢)(2prdr)

(65)

where Risthe radius of the region of the plate which iswetted by the fluid.

Shear Stressand Torquefor Shallow Cones. If the coneangle a is very shdlow (i.e. a® p/2) then
Tr Will be prectically independent of position: from (64):

§ http://www.andrew.cmu.edu/course/06-703/NLV  sph.pdf
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- 2NV
2e

lim Tg (q)=C =
2® qo & qf()

forany g. This means the entire fluid experiences the same dress. This has a number of important
advantages for rheological sudies making the cone-and-plate viscometer one of the important
viscometric flows Subgtituting (61) into (65)

w
limfr 1=2 nR3—
e®0[ 3P e

Comment on Solution. There is a problem with our solution to NSE: when (60) is substituted
back into (57) and (58), there is no single function p(r,q) which will satisfy them. In other words, (60)
isnot an exact solution. It turns out that (60) is a reasonably good approximation if W is not too large.
The exact solution has the form:

g(a)

v=rWsina ——¢& +O(\N2)

g(a)

where O(W2) means that this term vanishes like W2 asW® 0. !
The centripetal force on fluid ements undergoing a circular .
orbit causes those fluid dements to be “thrown outward” in !
the +r-direction. Since fluid eements near the rotating cone > | /
are rotating fagter than fluid eements near the dationary '
plate, we have outflow near the cone supplied by inflow near '
the plate. The resulting r- and g-components of velocity are .

cdled secondary flow, whereas the origind f -component is
cdl the primary flow.

W2 (the secondary flow) vanishes faster than W (the primary flow), so for smal W, the leading term
is gpproximately correct. Thisis called the creeping-flow approximation.

CREEPING FLOW AROUND A SPHERE (Re® 0)

Let's return to the problem of flow around a sphere
(or motion of a sphere through a stagnant fluid). For g7z
boundary conditions, we impose “no dip” on the surface  —*
of the sphere and far from the sphere the flow is —»

undisurbed: .
ar=a: v=0 -

_’ “'
aSI® ¥: v® U .
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Here an exact solution to the Navier-Stokes equations is not possible. Of course, the vector equation
can be converted into a scalar equations using the stream function, but that yields a 4th order nonlinear
P.D.E. Although this could be solved numericdly, consderable smplification can be obtained if ether
the viscous terms or the inertid terms can be neglected — even if they are not identically zero. One
limiting caseis creeping flow which corresponds to the limit in which the Reynolds number issmadl (i.e.
0). Inthislimit theinertid termsin the Navier Stokes equations can usualy be neglected.

Scaling

To show that inertid terms are neglibible, let’ s try to estimate the order of magnitude of viscous and
inertid terms for uniform flow a speed U over a sphere of radius R

Py Ny = - Np + %2
inertia viscous

We will use a technique cdled scaling (akin to dimensgond andyss). We dart by liging dl the
parameters in the problem. In this problem, the parameters are

parameters: U Rr andm

A characterigtic vaue for each term in the equations of motion is then written as a product of these
parameters raised to some power:

each term g U2RYr Cndl
For example, throughout most of the region, the fluid velocity is undisturbed:
vl » U

where the symbaol “»” should be read as “scaes like” In “scaing” we ignore any position dependence
as wdl as any numerica coefficients, so |v| scales as U, dthough |v| might be dgnificantly less than U
near the surface of the sphere. From the boundary conditions, v changesfrom O at r=Rto U at r=¥.
To egtimate the magnitude of the gradient Nv we need to estimate over what distance most of this
change occurs. In the solution of the potentid flow problem, the velocity profile dong the rear
dagnation lineis

Ve (r,q=0)= U[l- (TR)B]cosq

We expect something smilar for Stokes flow. Two of the nine
scalar components of Nv are
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3
ﬂizaJR—COSQ »E
IIr ré R
11v, [1 RS)
——L=_U|=- —|sing»—=
r 19 ropé

We again ignore the position dependence: we scde r as R and treat cosg and Sinq as “1”. Then both
components above scale as U/R as do other components of Nv associated with derivatives of Vg SO

INv| » v,y
Dr R

Likewise the velocity gradient can be expected to decay from amaximum vaue of U/R near the sphere
surface to zero in the bulk; this change occurs over adistance on the order of R

» —qNV| » % = i
R

K2y
Dr R?

With these estimates, we can further estimate the magnitude of viscous and inertia forces:

U

2
inertia=r |v- Nv| » r(U)(E) _ru-

R

viscous= mRi2y| » e
R2

inertia 5 rUZ/R _rUR _ Re
viscous mu/RZ  m

where Re isthe Reynolds number. So as 0, we should be able to neglect inertid forces

for Re<<1: 0 =- Kp+ niN3v (66)
N-v=0

ar=R v=0

asr® ¥: V® U, p® py

Eq. (66), called Stokes Equation, is common to dl low-Reynolds number problems; it's not specific
to the sphere. A common trick to reduce the number of unknowns is to take the curl of both sdes of
the equation:
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0=-N" Rp + " N2y
But N'Np=0
Moreover, usng identity F.1,
N2y = N(&Q N (RN v)=-curl®v
0

for incompressbleflow. Then (67) becomes:

curl3v =0 (68)
Velocity Profile

We might try to seek a solution having the form of potentia flow:
v = Kf (69)

since N'v=N Nf =0

(67)

(68) is automaticaly satisfied. But we know that the potentiad flow solution for the gohere does not

satisfy the no dip boundary condition. On the other hand, the boundary conditions are axisymmetric:
Vf = 0, ﬂ/ﬂf =0

S0 we might seek a solution using the stream function:

TN

rsing

Computing the curl in spherical coordinates using the tables (http://www.andrew.cmu.edu/course/06-
703/Vops_sph.pdf) (aso see HWK #5, prob. 1):

®eé&y 0 1 1y 1 vy

curlg SV S —— e - ——— g
&rsinggy HAapulg 195N

Vi Vg
Taking the curl asecond time, using the same tables:

& 0 .

cr?e Y Jof vk =— (%) (70)
grsing 4 rsinq
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where E2 isa partid differential operator given by:

g2y = 1 +sinq1( 1 'ﬂ_y)
r?  r? Talsing fq

Since we have to take the curl twice more, it might look like we have alot of dgebrato look forward
to. But, asit turnsout, therest iseasy. We need to evauate:

o [
b

curl®v = curl® (N v) = curl
T rsing

where the second equality is (70). The argument of this find curl-squared has exactly the same form as
that of the left-hand side of EQ. (70), except that the scdlar +y , which isafunction of r,q, is replaced by
-E2y, which is dso a scdar function of r,g. So all | have to do is to replace y by -E2y on the right-
hand sde of (70):

e ( E2y)

e
. } [E2 Ezy)] —_E2(E?)
rsing rsing rsing

Tosaidy (68), which represents the curl of the Navier-Stokes equation, we choose the streamfunction
to stidy:

curl 3v = curl 2{

E2E%y)=0
Trandating the boundary conditions a r=Rin terms of stream function:
v,=0: TyMg=0 ar=R
V=0: Ty/Mr=0
Trandating the boundary conditions at r® ¥ in terms of stream function (see HWK #5, Prob. 1a):
asI® ¥: y ® (1/2)Ur2dnq (71)

Thetrivid solution y = 0 satisfies the P.D.E. and the b.c. at r=R, but not the b.c. a r® ¥. Based on
the form of this nonhomogeneous b.c., we guess the solution has the following form:

Try: y (r,q) =f(r)sn’g

E?y = Ef(drég] = ... = (f"-2r2)sinPg = g(r)sing
where g(r) = " -2r-2f
Then: E2E?) = (9"-2r2g)dreg
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The Navier-Stokes equation become

E2(E2y )=0: g'-2r2g=0 (72)
def'nof g: f'-2r-2f = g(r) (73)
b.c.’s f® (/2Ur2asr® ¥ (74)

f=f' =0ar=R (75)

These two coupled second-order O.D.E.’s can be combined to produce a single fourth-order O.D.E.
inf(r). Theresult isa Cauchy-Euler equation whose genera solution is (see footnote on page 52):

f(r) =cqyrl+cor + cgre+ 4
Applying b.c. (74): c,=0
3= (U2)U

Asr becomes large, terms which are proportiond to higher power of r dominate those of lower power.
To have the third term win over the fourth, requires us to kill the fourth term by setting its coefficient to
zero. Theremaining congtants are evauated in a Sraightforward manner. Theresult is.

2l 1 R r r 2 2
y(r,0) =UR %7'%5*%(5) sinq (76)
3
R R
— 3241 =
Ve (r,q) —Ull 2'r +2(r] ]COSQ Slokes Now polenual Mow
#
_’_'_F/_'__'_'_,_,_,—f—'-._’:_,_'_'_'_'.—a—'—’_'—_'_'_

3
R R .
ey ='“[1' Al ]q ———
The figure a right compares the streamlines for
Stokes flow with those for potentid flow. The Ap—)395 ‘ Ay—(.406
dreamlines correspond to  vaues of the

dreamfunction which are uniformly spaced a
about the same interva for both profiles.

Displacement of Distant Streamlines

From the figure above, you can see that sreamlines in Stokes flow are displaced away from the
gphere — even those sreamlines which are quite distant — especidly compared with potentia flow, in
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which the distant streamlines become sraight. It turns out that all streamlines are displaced away from
the spherein Stokes flow.

Congder the greamline in the figure a right which
corresponds to y = yqo  Far upstream, the
coordinates of the streamline correspond to r® ¥
and q® p such that rsng ® cong, which we will
denote as y (see Hwk #5, Prob. 1la). The
relationship between y and y  can be deduced from
(72):

lim y(r,q) ® U rgie
r® ¥
a® p y?

y o =5Uy° (77)

At the equatoria plane g = p/2, the r coordinate of the streamline mugt satisty (76):

2
2|2 R 3T _ 1(re0
rg0,2) =y g =UR"|+—- 2L + 2| =2 78
y(902) Yo |:4r90 4 R Z(R)] ( )
Biminging y o between (77) and (78):
3
2 _ o2 3 1R
=rén- — —_
y 90~ 5 Moo 2 too

3( R). 1( RY®
or y =TIgp 1- | — |+=| —
2 foo 2 f90

For distant streamlines, rgy will be very large compared to R, so that Rirgg << 1. Then the square-root
in the expresson above is unity plus a smdl correction, which can be estimated as the firgt term in a

Taylor series expansion of the square-root function: v1+e =1+ %e+K

2
3( R R 3
=fonl 1- —| — |+ O — »lon- —R
Y 90[ 4(r90) O(rgo)} 04

where the “O(R/rgp)2" means that these terms decay to zero like (Rirgn)? as Rirgg® 0. When Rirgg is
aufficiently smal, we can neglect these terms compared to the others. This is how the second
(approximate) equality above was obtained.
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Fndll lim {ron- y'=d=3R
Yy r90®¥{90 Y} 4

Thus, even dreamlinesinfinitely far away are displaced adistance equa to %2R

Pressure Profile
Once the velocity prafile is known, the pressure can be determined from

Np = niN2v

T _ 3nURr - 3cosq

Subgtituting v: 1 Tr 3
—E:—nURr'Ssinq
rfqg 2
and then integrating with p® py at r® ¥ asthe b.c.
yieds
mod g
3 cosq
p(r.q) = py - NMUR—-= U ‘
2 r? — hi ; A lop
This profile corresponds to a higher pressure on the  mwderate pr r
mod

upstream side of the sphere (g=p) than on the
downstream side @=0). Thus it appears as if a
drag will be produced by this solution.

-gypnda = ... = 2pnRUk

is caled the form drag which arises from norma sresses. This however is not the total drag. More
generdly, we expect the net force exerted on the particle by thefluid is:

F:§n-lda=-§npda+ §n-£da = 6pnRUK
A H2m M2a

2pnRUK 4pmRUkK
(form drag)  (skinfriction)

where A isthe surface of the spherer=R
n=e,

From symmetry, we expect that this force will have only a z-component (the direction of bulk motion);
S0 let’ s concentrate on finding that component:

Copyright © 2000 by Dennis C. Prieve



06-703 108 Fall, 2000
F,=ak- (e I)da (79)
Substituting I=-pl+t
e I=-ple; 1) +et
=-pe +e-t

€ L=1r€ +1ro€q+ i€y

ra€q

For the determined velocity profile, Newton's law of viscodty in spherica coordinates (W:146) yields
t=Ofordlrandt, =0atr=R

ar=R e I=-per+t€q
k- (e I)=-pk- &) +trq(k' eq)
Usngk =e,from (56): k- (& I)=-pcosq -t ,8nq

Findly, we can integrate usng an azimuthd grip of width Rdg and of
radius Rang:

da = 2p(Rang)(Rda)

(79) becomes:

p
F, = 2pR2J-[- p(R,q)singcosq- tmI(R,q)sin2 q]dq
0
Findly t . is expressed in terms of the velocity profile using Newton's law of viscosity and subsequent
integration yidds.
F,=2pnRU + 4pnRU

We have dready noted that the contribution from the pressure profile is cal form drag. The second
contribution iscdl skin friction. Thetota drag forceis

Farag = 6pnRU (moving reference frame)
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which is known as Stokes Law (1850)." In the expression above, U is the veodity the digtant fluid
flowing around a Sationary sphere. If we switch back to the origind (dationary) reference frame (see
page 48f), Stokes Law becomes

Farag = - 6pmRU (stationary reference frame)

where now U is the velocity of the sphere moving through otherwise stagnant
fluid. Note tha the drag force acts in a direction opposing the direction of
motion of the sphere.

F

drag

Experimental results for the drag force around submerged bodies are
usualy expressed in terms of adimengonless drag coefficient. The quantity thet is used to make this
drag force dimensonlessis

%r U2[] K.E. _ force
vol area

This quantity aso can be shown (according to Bernoulli’ s equation) to represent the Dp required to stop

fluid which isflowing a speed U. Multiplying this by the projected area gives the force required to stop

the flow, which would otherwise pass through the sphere:

F
CD - drag

1 2- 2
2"V L

projected area

where pR?2 is the projected area of the sphere; in other words, pR2 is the area of the sphere’s shadow
cast dong the direction of flow. Using this definition, Stokes equation for the drag force on a sphere
yidds

12

° " Re

rurR
m

where Re®°

* Sir George G. Stokes (1819-1903), born in Shreen, Irdland, educated at Cambridge; theoretical
physcigt.
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Comparison with experimenta results confirm that this works very well for Re<0.1. The reproduction
above (taken from BSL, p192) uses the diameter for Reynolds number, rather than the radius. The
“friction factor” on the y-axis differs by afactor of two from the drag coefficient defined above.

CORRECTING FOR INERTIAL TERMS

For larger Re, Stokes law underestimates the drag force. Of course, this is due to the increasing
importance of inertiawhich has been neglected. A number of investigators have attempted to extend the
vaidity of Stokes law by including inertid termsin the andyss. We will now summarize some of these
and hint at the difficulties involved.

Firg, note that as Re ® O for flow around a sphere, the NSE approximated by
nN2v = Rip

whichis cdled Stokes equation. Stokes (1850) solved this equation to obtain:
F =6pnRU.

The usud gpproximation to solving differentid equations containing a smadl parameter (i.e Re) isto
perform a perturbation expansion. Badcdly, the idea is to perturb the smal parameter away from
zero value by means of a Taylor series.
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PERTURBATION EXPANSION

time out: Let's illugrate the main idea behind this powerful mathematicd technique by means of a
ample example (Example 25.1 from Greenberg). Find the solution y(x;e) to the following ODE
involving asmdl parameter which we denote ase:

y +y+ey?=0 (80)
ubject to the initid condition: y(0) = cose (81)

where the independent variable spans therange 0 £ x < ¥ and the parameter e isamdl: 0 £ e << 1.
Note that the solution of this problem isamogt trivid in the specid case of e=0 (first-order linear ODE)

y(x;0) = e

but obtaining a solution when e * 0 is more chalenging (because the ODE becomes nonlinear). The
generd idea behind a perturbation expansion isto “perturb” the easily obtained solution away from e=0
by seeking a solution in the form of a Taylor series expanson about e=0:

y(xe)=&(§9+—ﬂy(ﬂ§e)l,,;+%—ﬂ o T

Yo(x) 142 1442448
y1 (%) y2(x)

Of course, this assumes that y(x,e) is “andytic’ about e=0.8 It remains to be seen if the solution has
this property or not. Renaming the unknown coefficients (i.e. the partid derivates), we look for a
solution having the form

y(x.,) = Yo(X) + ya(X)e + yo(x)e? + ... (82)
Note that the coefficients y, Y1, > ... are not functions of the parameter e. Substituting (82) into (80):
(Yot Yie+ye2+.)+(Yo+ye+yre?+.)+e(yo+ye+yre?+.)2=0 (83)

Next we expand the squared sum by distributing each term of the first series over each term in the
second series:

(Yot yie tye2+..)2= (gt yie +ye2+..) (Yot yie +ye2+..)

8 “Andytic’ means that these partial derivatives exist and that the series convergesto y(x,e).
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Yo + yie+ Vo€ +K
Yo + Vie+ Yo +K

Y8 + Yoyie+ Yoy2€ +K
yoyie+ yie? +K
YoYo€ +K

V8 +2yoyse+(¥2 +2y0y2)? +K

Subgtituting this result for the squared sum in to (83) and collecting terms of like power in e:

Solution continues ... and will be completed in the next revison of the notes.

Fird, let’s write the equation in dimengonless form: we will denote the dimensionless variables using an
aderisk:

V*Ol r*oL N*o RN p*o P- Py eo Re:I’UR

U R nJ/R m
The Navier-Stokes equations for steady flow become:
ev* N* v* = N*Z v*-N* p*
We then look for a solution having the form of a Taylor series expansion about e = 0:
V*(r*,a.e) = Vo(r*,a) + e vq(r*,a) + e2 vy(r*,q) + ...

Smilarly for the pressure profile  Subdituting this infinite series into the Navier-Stokes equation
(dropping the *’s)

e(vo +evy+L) (Rvg+eflvy +1L) = (RPvq + el +L) - (Rpg + eNipy+L)
0e% +(vq Rvg)et+L= (N2v0 - Npo)eo +(N2v1- Npl)el+L

Next we bring al termsto the right-hand side of the equation. We then collect terms of like order in the
and| parameter (i.e. terms which are multiplied by e raised to the same power). To obtain zero for the
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sum for dl vaues of e we cannot rely on cancellation of positive and negative terms®  Instead, the
coefficient of each e" must vanish separately. This leaves the following equations:

el 0 =R?vg - Npg (84)
el: vy Nvg = N2vy - Ripy (85)

andsoon ... Notethat (84) isjust Stokes equation. The solution for v can then be substituted into
(85) leaving alinear equation to be solved for v, and p;.

This is the approach used by Whitehead (1889).© In many problems, this procedure works.
Unfortunately, the solution for the higher order terms in the current problem cannot satisfy the boundary
conditions. Thisresult isknown as Whitehead’s Paradox.  Another method must be used.

Asan dternative, Oseen (1910) used an entirely different gpproach. He gpproximated the inertid
terms and solved:

rU- Nv = nN2v - Np
thus obtaining: F = 6pnRU[1 + (3/8)Re]

In principle, one could refine the solution further by substituting the resulting solution for v in place of U
and then re-solving for an improved v. In practice, dthough the Oseen equations are linear, their
solution is sufficiently difficult thet no second gpproximations are known.

In 1957, Proudman & Pearson obtained the next order correction using a different technique
cdled matched-asymptotic expansions. In this technique a different form for the expanson is sought
near the sphere (which is cdled the “inner expanson”):

>R Vi = vgi(r,q)+v4i(r,q)(Re)+v4 (r,q)(Re)%+..

8 |f the sum of different functions of e vanished for one particular value of e (as a result of cancdllation
of pogtive and negative terms), then this same sum of functions evduated at a different vaue of e would
not necessarily vanish. The only way we can guarantee that the sum vanishes for every value of e isto
make every term vanish for vaue of e. See aso footnote on page 27 which concerns integrds rather
than sums.

©Alfred North Whitehead (1861-1947), English mathematician and philosopher, who collaborated with
Bertrand Russdll on Principia Mathematica (1910-13) and, from the mid-1920s, taught at Harvard
University and developed a comprehensive metaphysicd theory.

" SeeVan Dyke, p152-3.
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and far from the sphere (which is cdled the “ outer expanson”):

r>>R VO = v2(r ,q)+v10(r ,a)(Re)+v2(r ,q)(Re)%+...
where r =rRe

The inner expansion is identica with Whitehead's which can be made to stisfy the no dip condition at
r=R but the result does not have the correct form far from the sphere. Rather, the outer expansion is
made to satisfy the boundary condition far from the sphere and then gppropriately match with the inner
solution to determine the remaining integration congtants. Theresultis:

F =6pnRU[1 + (3/8)Re + (9/40)RelnRe + ...]
The term insde square brackets can be thought of as a correction to Stokes equation:

Re= 001 01 1.0
[.]= 1.004 1032 1375

Comparing the bracketed term with unity gives some idea of the error incurred by neglecting inertia.

FLow AROUND CYLINDERASRE® O

Now let’slook a the andogous problem of uniform flow normd to a cylinder a very low Reynolds
number. If we drop theinertid termsin the Navier-Stokes equation, we obtain:

nN2v = Np .
~ Z"“
N-v=0 -
—>
—>
e ¥: ve® U —> )
—>
—>
r=R v=0 —>
—>

end view ol
For flow normd to the cylinder, we expect the velocity profile to Cylindar

correspond to 2-D flow:
v,=0and 1/1z=0
So that a solution can be found using the stream function:
v=N"[y(rqe]

For dow enough flows, we expect that inertid terms can be neglected, leaving Stokes Equation (66).
After the pressure is diminated (by taking the curl of Stokes equation), we obtain a sSingle equation in
the unknown veocity profile:
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recall (68): curl 3v =0 = curl4(y e,) = N2(R2y e,

The boundary conditions are determined in a manner Smilar to those for a sphere (see Hwk #7, Prob.
1):

r®¥: y ® Urang
r=R Iy r=1y Mg=0

Based ontheb.c. a r® ¥ (which isthe only nonhomogeneous part of the problem), the stream function
should have the form:

y (r,q) =f(r)sinq
Reqiring N2(N2y) =0

generates an ODE for f(r) whose generd solution can be obtained. Unfortunately, none of the
particular solutions can satisfy al of the b.c.’s (sse HWK #7, Prob. 1). Thisisknown as

Stokes Paradox (1850) - Stokes equation for uniform flow normd to a cylinder has no
solution.

Asit turns, the inertia terms dropped by Stokes are not entirely negligible -- no matter how smadl Re is.
Lamb (1911)8 obtained a solution for the circular cylinder as 0 using Oseen’s gpproximation:

rU- Nv =nmN2v - Kip
N-v=0
Lamb's solution for the drag force per unit length of cylinder is:

F 4pmiJ

whereg = 0.577... is Euler’s constant. Notice that, unlike Stokes solution for the sphere, Re appears
explicitly in this result. No matter how smdl Re, this logarithm term in the denominator is never

negligible

8 Sir Horace Lamb (1839-1934), English mathematician who contributed to the field of mathematical
physcs. He wrote Hydrodynamics (1895) which was, for many years, the standard work on
hydrodynamics. His many papers, principaly on gpplied mathematics, detailed his researches on wave
propagetion, eectrica induction, earthquake tremors, and the theory of tides and waves
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Boundary-Layer Approximation

FLow AROUND CYLINDER AS Re® ¥

el = - o+ by

inertia viscous

We have just seen that redtricting attention to the limiting case of very smdl Reynolds number dlows
an andytical solution to the Navier-Stokes equation by neglecting or approximating the inertia terms.
Smilarly, we might expect that, in the opposite limit of very large Reynolds number, we might be able to
obtain an approximate solution by neglecting or approximating the viscous terms.

Let's return to the problem of flow norma to a cylinder, but a very large Re. If we just drop the
viscous terms from the Navier-Stokes equation, we get Euler's equation for an ideal fluid. Recdl that
a solution which satisfies the differentid equation and the boundary condition far from the cylinder is
potential flow. From HWK #4, Prob. 4a:

2 . -
Ve (r,q)=U|1- (—] cosq .
r ] >
F———————
RV | - q
Vg(r,q)=-U 1+(7) sing : >
Atr=R vi(R,g) =0 R
and Vq(R@)=-2Using r-A
R potential
which violates the no-dip boundary condition. An exact |- llow
solution of the NSEs can be obtaned numericdly. L0760
Comparing the solution for Re>>1 to the potentia flow [}] 7 3
solution (see figure & right), we see that the exact solution - Vg 1000
follows potentia flow everywhere except in a narrow region U.inqg

near the surface of the cylinder where the exact solution
turns downward in order to satisfy the no-dip condition.

In the potentid flow solution the velocity gradient goes like

outsdeb.l. M— » E
qr R
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Thisis dso the behavior of the exact solution outsde the boundary layer. By contrast, near the surface
(insde the boundary layer) as the Reynolds number increases, the velocity gradient gets steeper. A
closer andysis (which we will performin afew lectures) reveds

inddeb lim 1| UV Re
Re®¥ | Tr r:RE R

The thickness of this region in which the two solutions differ decreases asthe Re gets larger. Thisregion
isknown as the:

boundary layer: a very thin region near to a boundary in which the solution has a gradient
which is orders of magnitude larger than its characteristic vaue outsde the
region.

MATHEMATICAL NATURE OF BOUNDARY LAYERS

Boundary layers arise in solutions of differentid equations in which the highest order derivative is
multiplied by a smal parameter. To illudrate the mathematicd sngularity which results, congder a
ample example:

Example: find asymptotic solution to the following problemase ® O:
ey’ +Y +y =0
subject to: y(0)=0
y=1

Problem isto find the asymptotic behavior of y(x) ase® 0. This problem was presented Prandtl$ (the
father of boundary-layer andyss) to his dass on fluid mechanics a Goettingen U. during the winter
semester of 1931/2.

Solution: For e sufficient smdl, you might guess that the first term can be neglected, leaving
Y +y=0

whose generd solutionis: y(X) = Aexp(-x)

8 Ludwig Prandtl (1875-1953), German physicist who is considered to be the father of aerodynamics.
His discovery (1904) of the boundary layer, which adjoins the surface of a body moving in air or water,
led to an understanding of skin friction drag and of the way in which streamlining reduces the drag of
arplane wings and other moving bodies.
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Now A can be chosen to satisfy ether of the boundary conditions, but not both. To satisfy y(0) = 0, we
must choose A=0 which does not satisfy y(1) = 1:

y0O=0 ® A0 ® yx)=0fordlx ® y1)=0t1
On the other hand, if we choose A=e to satisfy y(1) = 1, then we cannot satisfy y(0) = O:
y)=1 ® A=e ® yX)=exp(l-x)fordlx ® y0)=et 0

The reason we can't satisfy both boundary conditions with this gpproximation is that, by neglecting the
first term, the order of the differential equation reduced from 2 to 1. With afirst order O.D.E., we can
only satisfy one boundary condition. Thus e=0is singularly different from e being arbitrarily smal,
but not identicaly zero.

e=0® O.D.E.is 1< order
e® 0® O.D.E.is2nd order

Now the exact solution to thislinear O.D.E. with constant coefficientsis easily determined:

sinh(iMJ

2e
sinh(i 1- 4ej
2e

y(x € = exp(lé ex)

yxe | y(x©)

2.6

2.4

2.2

Comparing the exact solution to that obtained by neglecting the term containing the smdl parameter for
the case of e=0.05, we see that the approximation is good except near x=0. For smdler e, the region
in which the exact and approximate solutions differ shrinks. To see what's hgppening to cause this
problem, let's take advantage of knowning the exact solution and deduce its asymptotic behavior ingde
the boundary layer. In particular, let'slook at the initid dope:
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1
J1- Ze eXp(z_e)
2e sjnh[i 1- 4ej
2e

yq0;e) =

Now consder the limiting behavior ase® 0.

v1- 4e® 1
and 1/2e® ¥

e
1 ®P %

¥
lim[y40;e)] = lim| ———%|® -
e®0[ e® 0 Zesinh( 1) ¥

Clearly thislimit is highly indeterminant as both exp and sinh “blow up” fairly quickly as their arguments
become large. This indeterminancy cannot be resolved with the help of L'Haopita's rule because, no
matter how many times you differentiate exp or sinh, they ill “blow up.” The indeterminancy can be
resolved instead by comparing the asymptotic behavior of sinh with thet of exp:

VA -Z
Recall the definition of sinh: snhz=< -2e »Lle? SO +¥
S0 Ff‘Xp(Z) ® 2 asz® +¥
sinh(z)

Asz® +¥, the second term of this definition becomes negligible compared to the firgt. Thus the ratio
of exp to sinh approaches 2 and our expression above becomes:

y(0,e® 0)» /e ® ¥

So the derivative of our function at this boundary is very strongly dependent on the value of the small
parameter. In particular, the derivative is not bounded in thelimit e® 0. This Sngularity is the essentid
nature of any boundary layer. In the above andyss, exp/snh was bounded athough both functions
become unbounded as their arguments becomes large. We say that the singularity of these two
functionsin thislimitisof the same order and we writethisas:

dh(2) = O(6) asz® ¥
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which iscaled the Big " Oh" notation (Bachman-Landa®). More generally, when we say that

f(x) = O[g(X)] asx® a

we mean f(x)/g(x) isbounded as x® a
Likewise, we could say that: y'(0,e) =0O(el) ase® 0
We could also show that y"'(0,e) = 0O(e?) ase® 0

which means that the second derivative blows up even fagter the the first. This notation gives us a
convenient way of describing the strength of apole.

at x=0: eﬂ: + ¥¢ +¥:O (86)
ofel) ofel) ©

Thus a the boundary, the first term of the O.D.E. is the same order of magnitude as the second term.
So no matter how smadl e becomes, the firgt term can never be neglected. This is the root of the
problem. One way to obtain the correct order in e of the solution using a Taylor series expansion
would be to transform the independent variable:

Let X xle and Y(X;e)° y(x;e)
Then y¢:ﬂ = ﬂd_x = e-ld_Y
dx dX dx dXx
e-l
2 2
and y@:d_yzi(ﬂjzi(e-ld_Y)=1(e-1d_v)d_x=e-2d Y
dx2 dx\ldx/) dx dX ) dX dX ) dx dx 2

Note that if dY/dX and d2Y/dX2 are O(e¥) as e ® 0, we will obtain the correct order for y' and y".
This is the basic idea behind “gretch transformation” which is part of the “inner expanson” which will
presented in the second haf of the next section.

8 Thisisthe German mathematician Edmund Landau, not the Russian physist Lev Davidovich Landau.
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M ATCHED-ASYMPTOTIC EXPANSIONS'

Matched-asymptotic expansons is a very generd technique for coping with sngulaities like
boundary layers. MAE isonetype of singular perturbation expansion. Greenberg describes it as
“one of the most important advances in gpplied mathemdtics in this century.”  Although the beginnings
go back to the 19th century and such names as Lindstedt and Poincaré,8 it was not until the 1960's that
sngular perturbation techniques became part of the sandard analytica tools of engineers, scientists and
mathematicians. Since boundary layers frequently arise in transport phenomena, let's goply this
technique to solve the smple problem posed by Prandtl.

EXAMPLE: Use Matched Asymptotic Expangions to find the asymptotic behavior of the solution
y(x;e) to the following problem ase® O.

ey' +y +y=0 (87)
subject to: y(0)=0
y)=1
Solution: Following Prandtl (1905), we divide the domain into two regions.
inner region: 0EXEd, y=Yy stiffiesinner b.c.
outer region: dEXEL y=yO satisfies outer b.c.

where d is the thickness of the boundary layer located near x=0. Within each region, we seek a
solution which isa Taylor series expanson of the function y(x,e) about e=0:

y(xe)=&(§9+—ﬂy(ﬂ§e)l,,;+%—ﬂ o T

Yo(x) 142 144244
y1 (%) y2(x)

The outer problem. The solution outside the boundary layer can often be found as a regular
perturbation expansion:

* The example problem introduced above was solved using MAE's by Greenberg, p508ff.

§ (Jules) Henri Poincaré (1854-1912), French mathematician, theoretical astronomer, and philosopher
of science who influenced cosmogony, rdlativity, and topology and was a gifted interpreter of scienceto
awide public
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YO(x,€) = Yo(X) + y1(X)e + yo(x)e? + ... (88)
whichisjust a Taylor series expansion about e=0. (88) into (87):

e(yo' +ey"+..) + (Yo+eyr'+..) + (Yoteyr+..) =0
Collecting terms of like power in e:
(Yo+Yoe® + (¥o' +y1+ypel + ... =0

In order for this sum to vanish for al vaues of e, each coefficient must separately vanish:
C Yo *Y¥0=0 (89)
el: Y1 *+Y1=-Yo' (90)

and smilarly for higher order terms. Note that we have succeeded in obtaining a set of O.D.E.'sfor the
st of coefficient functions whose solution can be easily uncoupled. If we start with (89), yo(X) can be
determined 0 thet it is known when we solve (90). The outer solution must be subject to the outer
boundary condition:

y(1)=1
Expanding thisin a Taylor series about e=0:

Yo(L) +ya(De + yA1)e2 + ... = (1)e0 + (O)el + (0)e2 + ...

Thus yo(D) = 1 1)
y1(1) =0
and so on. The solution to (89) subject to (91) is
Yo(x) = exp(1-x) (92)

We could now subgtitute (92) into (90) and obtain the solution for y,(x). Similarly, we could obtain
Yo(X), y3(X) and so on. If we stop after the leading term, the outer solution becomes:

¥° = Yo(x) + O(e)
yo(x,e) = exp(1-x) + O(e) ase® 0 (93)

The inner problem. To cope with the boundary-layer, we transform the independent variable
usng astretch transformation, whose generd formis

X =20 (n>0)
e
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where X is the location of the boundary at which the boundary layer arises. In this transformation the
distance from the boundary (x-xg) is magnified (“sretched”) by an amount depending on the small
parameter. In our problem, the boundary layer arises a x;=0, so the transformation becomes

dx dX dx
Smilaly &= e 2
where ¥ denotes dY/dX
Subdtituting into (87): el 2™+ ™ +Y =0 (94)

The purpose of the stretch transformation isto make Y, ¥, ¥ al O(e9):
ase® 0 (X=const): Y, ¥, ¥ = O(e0)
whereas yy.y' = 0(€9,0E™),0e?)

Now we are in a position to choose avalue for n. Recdl from the exact solution [see (86)] that the
second-derivetive term is not negligible insde the boundary layer. This is generdly the most important
congderation in choosing n: we select the vaue of the parameter n such that we do not loose the term
containing the highest order derivative (afterdl, dropping the highest order derivative is what lead to the
outer expangon, which we have shown failsin the inner region). To keep the highest order derivative,

This term must be lowest order8 in e (otherwise it will be svamped by alower order term)

Thisterm mugt not be the only term which has this order (if thisis the only term of that order, O.D.E.
requires it to vanish identicaly)

Asafirg attempt, we might try to make dl terms of the same order:

1-2n=-n=0

8The“order” of aterm with respect to asmall parameter e (as opposed to the order of the derivative)
refers to the exponent (power) to which e israised. For example, we say that a term which tends to
vanish likeen ase® 0is*“of order n.”
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which isimpossible for any snglevdue of n. Next, we might try balancing first and third:

1-2n=0o0r n=1/2
Orders (i.e. the exponent of e) of the three terms then are:
0,-1/2,0

Thisis no good, because highest order derivative (i.e. the first term) is not lowest order in e. Findly we
try to balance first and second term:

1-2n=-n,or n=1
Now the orders of eech termiis: -1,-1,0
whichisOK. Usng n=1, (94) becomes (after multiplying by e):
¥+¥+ey=0 (95)
Instead of (88), we seek a solution ingde the boundary layer which has the following form:
for x£d: yi(x,e) ° Y(X,e) = Yo(X) + Yi(X)e + Yo(X)eZ + ... (96)

(96) into (95) and collecting term of like order in e:

e0; ¥ +¥% =0
whose generd solutionis: Yo(X) = A + Bexp(-X)
Applying the inner boundary condition: Yo(0) =0

we can evaluate B=-A. Thisleaves uswith
Yo(X) = A[1-exp(-X)] 97)

Similarly, we could determine Y4(X), Y,(X) and so on. If we stop after the leading term, we have for
our inner solution:

y' = All-exp(-X)] + O(e)

This remaining integration constant A must be chosen so as to match the inner and outer solutions. One
possible choice is to take the outer limit of the inner solution [denoted (y)°] and equate it with the inner
limit of the outer solution [denoted (y°)i]:
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(V")'

which is caled the Primitive Matching Principle and was origindly used by Prandtl. Taking the limit
of (93) asx® O andthelimit of (97) as X® ¥:

A=e

The inner expansion becomes: yi = g 1-exp(-X)] + O(e)

which meansthat for x£d: y » e[ 1-exp(-x/e)]

whereas for x3d: y » exp(1-X)

A convenient choice of d is where y o

and y° intersect. Of course, this 3

intersection point depends on e; () N

d=d(e) 7|

which is Oe) in this problem. From

the figure a right, neither yi nor y° is a

good gpproximation to y in the vicinity 1

of d. However, in most transport

problems, the quantity of greatest

interest is dy/dx a x=0 and dyi/dx n !
i)

does seem to match dy/dx at x=0 quite
wel. If required, y and y° can be

blended together to obtain a sngle smooth function over the entire domain:

Y=y Y- ()0

which is caled the composite solution. For the present example, this is obtained by adding (92) and
(97), expressng them in the same independent variable, and subtracting e

X+e(1- e-x/e)_ e:e<e-x_ e—x/e)
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The plot a right compares y¢ (the dotted curve), and the
exact y (the solid curve). Note that ye is a reasonably
good gpproximation to y. The agreement gets much
better ase ® 0. Better agreement could be obtained for
any e by including the next order term in the expansons.
Greenberg (p508f) obtains the second term in both the
inner and outer expansions; the corresponding composite
solution for e = 0.05 is virtudly indistinguishable from the

exact solution.

MAE’SAPPLIED TO 2-D FLOW AROUND 0

CYLINDER
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Let's now try to apply MAE's to solve the problem of flow
around a cylinder a high Reynolds number. Fird, let’s write the
equation in dimensonless form: we will dencte the dimensonless

variables usng an asterisk:

V*O

r*O

eO

N*° RN

o (99
= Re

\Y
u
p* © p
r

- Py
U2

cls o=

R

TG

md view ol

¢y lmder

This nondimensiondizing differs from our previous atempt which was for the opposte limit of smal
Reynolds number (see p112 of Notes). First, we have used r U2 to nondimensiondize the pressure
instead of NU/R. This is because the disturbance to pressure caused by flow is proportiona to r U2 in
the potential flow solution (see Hwk #4, Prob. 4). The second difference is that e is defined as the
reciproca of the Reynolds numbers, rather than the Reynolds number itself. This choice makes e a
gmd| parameter inthelimit Re® ¥ .

The Navier-Stokes equations for steady flow become:

and
Boundary conditions are
asr® ¥:

ar*=1:

V*-N*V*:eN*Z V*-N* p*
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Expecting aboundary layer to arise a r*=1 as Re® ¥ (or as e® 0), we will now use the technique of

MAE to solveit:
Outer Expansion

In the outer region, the regular perturbation expansion in powers of e uses r* as the postion
vaiadle

V¥(r*,g;e) = vo(r*,q) + e vy(r*,q) + e2 vo(r+,q) + ...
p*(r*,a;e) = po(r*,q) +e p1(r*,q) +e2p(r*,g) + ...

Subdtituting this perturbation expangion into (99) through (101), collecting terms of like order in e, and
setting their coefficients to zero, produces a series of well-posed mathematical problems for the
coefficient functions. The firgt problem (the only one we will worry about in this andyss) is (dropping
the*’s):

e0; v Nvp =-Npg (103)
N-vg=0 (104)

The outer expansion is required to satisfy the outer boundary condition:

aSr®¥: Vo® ey and pp® O (105)

Although we should not generally require the outer expansion to satisfy the inner b.c.’s, when we later
match inner and outer expansions (see footnote on page 130), the outer expangon will have to satidfy:

Vip=0 a r=1 (106)

Note that the viscous term does not gppear in this result because the lowest order viscous term is
O(el), whereas other terms are O(€Y). It turns out that (103) through (106) is the same problem we
previous solved by potentid flow:

Vo = Nf
wheref (r,q) is chosen to satisfy (104): N2f =0
For potentia flow, N* vg=0 and (103) becomes:

N(po +%v§):0

which is just Bernoulli's equation for the pressure profile. After imposing the outer boundary conditions
in (105) (and v,=0 at r=1) we get the potentia flow solution (see Hwk Set #4, Prob. 4). Eventudly,
we will need the inner limit of the outer solution for matching:
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vP(r=1q)=0
vq(r =1,0) = - 2sing (107)
1- 4sin® q
p°(r =1,0) = — (108)
Inner Expansion
For the inner expansion, we use a“dretched” radia coordinate:
_rr-1 _
Y = or r*=1+ehy (109)
en
and rename the tangentid coordinate X=q

Unlike our smple example problem in the last section, the stretching parameter n in this problem is not
an integer. More generdly, the inner expansion should be a power series in el rather that a power
seriesin e itHf:

Vg(r*.g;€) = up(X,Y) +€"uy (X, Y) +e™up( X, Y)+K (110)
Vi (r,q;8) = vo(X,Y) +eMvi (X, Y) + e, (X,Y)+K (112)
p*(r*,q;e) = po( X,Y) +€"py(X,Y) +e py(X,Y)+K (112)

In cylindrica coordinates for 2-D flow, the equation of continuity (100) becomes:

‘ﬂr*v* *
N*-V*:i ( r)+iﬂvq =0
r* ﬂr* r* ﬂq

We congtruct the firgt term using (109) through (111):

v, = (1+ enY)(vo + env1+K) = Vg + (Yo +vq)e" +K

I r v,
( ' ) = 1ASR Vo +(YV0 +V1)en+K] :Me_ " +(V0 +YM +MJeO+K
I * r* Y 1Y 1Y Ty
e-n
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L (ﬂr*) (i Yﬁf{ (v +Y11TTVY kje +K}

:ﬂ—oe' (vo + ﬂ—lje +K
1A Ty

-1
In the andysis above, we needed to expand (1+e") " asa power series in e, This was
accomplished using the Binomial Series, which will be quite ussful in later problems aswell:

a(a- 1 2 a(a-l)(a-Z)X3+K
2!

1+x)? =1+ax+
3!

whichisjust a Taylor series expanson about x=0. The Binomia Series is known to converge provided
Ix|<1.

ﬂVq ﬂuO e lug K

Smilaly 1 ‘HX X

The continuity equation becomes:

WMo -y (Vo w1, Mo je +K=0
Y T 9IX

To satisfy “no dip” a the inner boundary, we must require;
a Y=0: Up =y =K=0 ad vp=v4=K=0 (113)
Setting the coefficients of each term separately to zero:

o _

e™n: 0 fordlY

vo(Y) =const =0
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which means that v must be congtant inside the boundary layer. To satisfy the no-dip condition (113),
the constant must be zero. Then vy must vanish everywhere8 The next term of the continuity equation
ismore useful:

V) +M+M:O

e0:
v X
or Tuo , vy _ (114)
> Y

Next, we will look at the principle component of the NSE, which will be the component tangent to the
surface. For steady 2-D flow, the g-component of (99) is (BSL, p85):

NsE; vl Yot Vg o %R, 9 (19(Vg)), 1 Wvg , 2V
"I r Tq v rfa |frlr I ) 2 ¢%q r fq

Next, we transform each term using (109) through (112) with vy = O:

2
NSE: Vi, tUo o HK=- Tpo. +HK+el 2N T u20 +K (115)
18 188 JX 14293

of?) e o) (et

As a generd rule, we don't want to lose the highest order derivative ingde the boundary layer, so we
want this term to be lowest order in e, but not the only term with this order. The largest inertid terms
are O(eY), so we choose n such that 1-2n = O:

1-2n=0:

S
1
N[~

(116)
After collecting like-power terms, the r-component of (99) is

NSE: 2 y k=AM T
O(%;O) 1420%8
O(e'l/z) @) eo)

8 This result could be used to evaluate the undetermined integration constant in the outer expansion.
Since v represents the leading term in the inner expansion for v, this result means thet the outer limit of
the inner expangon for v, is zero, and this must match with the inner limit of the outer expansion.
Indeed, our expressions for the outer solution aready make use of this result.
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The lowest order term in this equation is fipy/TY. Since there is no other term with this order, we must
require that:

e'V2of NSE: Ipo _
1
which integrates to yield: Po = ¢(X)

where the integration “ congtant” ¢(X) can be evauated by matching the outer limit (Y® ¥) of this inner
solution with the inner limit (r® 1) of the outer solution (108):

. 2
po =) =232 (117)

We dill have two unknowns: ug and v,. We can formulate two equations from the above:

2
Tug +v ﬂUo_ 1°ug

e0of (115): u =4sin X cos X (118)
Sax Ty qv?
and (114): Wo , v _ (119)
> 9y
No dip requires.
a Y=0: Up=Vv1=0 (120)

Matching the outer limit of the inner solution with the inner limit of the outer solution requires:

asY® ¥: Up® -2snX (121)

Boundary Layer Thickness
Recdl the definition for “boundary layer” from page 117:

boundary layer: a very thin region near to a boundary in which the solution has a gradient which is
orders of magnitude larger than its characteristic value outside the region.
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So how thick is the boundary layer for 2-D flows like the

one we just andyzed? A typicd profile for the tangentid .4
component of velocity inside the boundary layer is sketched |8, /]
at right. On the scale of this sketch, the velocity appears to /

—
I
|
|
d
|
|
|
|

i
approach (v§) which isthe inner limit of the outer solution. v

|

I
Actudly, the nearly horizonta dotted line isn't quite |
horizontd: it has a samdl negative dope, but its dope is 0 :
small compared to the dope insde the boundary layer, that |
the outer solution appears to be flat on the scde of this a
drawing.

y—r-R&

We might define the thickness of the boundary layer as the
distance we have to go away from the surface to reach the gpparent plateau. From the geometry of this
sketch this distance, which we denote as d, is gpproximated using

i
vy i
(%) Wy (122)
d iy | _
y=0

where dl of the quantitiesin this equation have units. Let’stry to “scde’ (122) and solve for d. Recall
that the outer solution corresponds to potentia flow. From HWK Set #4, Prob. 4:

vq(r,q)=U [1+ (TRjz}sinq

i
0 that (vg) = lim vg(r,q) = 2U sinq
r® R
i
or (Vg) » U

In dimengonless quantities, the inner solution isgiven by (110). Subdtituting n = 1/2, we have

Vg (r,a) = ug( X,Y) +e¥2uy (X, Y)+K

i *

ﬂVq :Hﬂvq :E ﬂY ll:UO(X,Y)+e%U1(XaY)+K:| :e-}ég T[U_O+K

fy RIr* RIr*IY R| AV,
e-% O(eo)

Dropping any multiplicative congtants, we obtain
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i
M_» e-%i
Ty R

Subdtituting this result into (122) and solving for the boundary-layer thickness d:

B» e-}ég

d R

R
or d»\/ERZ—
JRe

Thus d is proportiona to R and inversely proportiona to the square-root of Reynolds number. The
boundary layer gets ever thinner as the Reynolds numbersincreases. Thisistrue for dl boundary layers
in 2-D flows.

PRANDTL’SB.L. EQUATIONSFOR 2-D FLOWS

Let’s now summarize the mathematica problem which must be solved to obtain the velocity profile
insgde the boundary layer. The mathematical problem is represented by equations (118)-(121). For
clarity, let's rewrite these equations usng variables having dimensons [recdl (98), (110)-(112) and
(116)]. For example, ugisgiven by (110) and (98) as

*
Ug :Vq =

Cls

whileYisgiven by (109) and (116) as

/2
* _ _ -
_r*-1 _r Re_l/zzanRg r- R

Y = = -
eV2 R mg R
/2
so dY:ae—URg ar
mg R

oo __m R? Ty,
2 TrURU g2

Thus

Making amilar transformations to dimensond varigbles of each term, then multiplying both sides of the
equationby r U 2 / R, (118) becomes

vy :rU2

r 2 g , V, Mg 8 ~ 4sin gcosq (123)

&ERTq ' Trg g2
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10V I

(119) becomes Rq W =0 (124)
(120) becomes Vi=vg=0 a r=R
(121) becomes Vg=-2Usng a r® ¥

Notice that (123) and (124) are approximations to NSE; and continuity in cylindrical coordinates.

Although the above eguations for the velocity 07
profile insde the boundary layer were derived for the
specific geometry of acircular cylinder, it turns out that ¥
very Similar equations are obtained for any 2-D flow, '

provided we express them in terms of a local ~—
Cartesian coordinate system (X,y). — any
- Ainder
X = arc length measured dong the surface in the . b
direction of flow . -~
y = digtance from the surface measured dong a
normd to the surface
The more generd equations for any 2-D flow are given by
2
r(vX ﬂ‘I\T/; +Vy ﬂ‘I\T/X) =m V2X - ddF))?
y Ty (125)
ﬂV_X +T[V_y =0
ix Ty

where pg isthe inner limit of the pressure profile in potentid flow, which is given by (117):

po(x)° lim[p™" (r.q)]

For boundary conditions, weimpaose “no dip” at thewall:

a y=0: Vx(%,0) = vy(x,0)=0

Remaining integration congtants are evauated by matching the outer limit of the inner solution with the
inner limit of the outer solution:

asSy® ¥: Vx(X,y) ® Ug(x)

wher U(x) istheinner limit of the outer solution for the tangential component of velocity:
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Ug(x)© rl@i@mR[quF (r q)]

isthe inner limit of the potentia flow solution.

The the main difference from one geometry to ancther is a different potentia flow solution gpplies to
different geometries. From Bernoulli’ s equation, we have

2
por(X) + UOZ(X) - const

Differentiating with respect to x and rearranging:

ldpp _1dUG _,, dug
(2% 1% -y
r dx 2 dx dx
Substituting into (125):
2
v, fivy vy v nﬂ Vx =Uo%= known f (x)
X v dx
(126)
M_'_ﬂ\/_y =0
x Ty

wheren © nir . These PDE's are cdled Prandtl’s boundary layer equations. Appropriate b.c.’s
include

at y=0: VX=Vy=0

asYy® ¥: Vy ® Ug(X)
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ALTERNATE METHOD: PRANDTL’S
SCALING THEORY*

Now we will repeat the andysis of boundary
layers usng Prandtl’s andyds which is more
intuitive. Condder uniform flow normd to a long
cylinder. Of coursethisis2-D flow:

A

v,=0, /2= 0 magm ficd

At high Reynolds number, we expect the viscous
terms to become negligible everywhere except

/
- : . —%
indde the boundary layer. Dropping the viscous ,é'}’
terms from the problem yields potentid flow: g g
—x
=4
g 4

r-rR>d: v = Nf

where d isthe thickness of the boundary layer.
Prandtl’ s analysis of this problem assumed that:

outside the b.l., viscous << inertia, such that the velocity and pressure profiles are those obtained
from potentid flow. Recal the potentia-flow solution from HWK 4, Prob. 3:

PF R)?
Vy :Ull- (T) }cosq forr-R>d

2
PE RY | .
=-U|1+]| —
Vq [ (r) ]smq

d<<R =0 tha fluid dements ingde b.l. dont “see’ the curvature of the cylinder (we cdl this
“Postulate #1”).

inddethe b.l., inertia» viscous (we call this“Postulate #27).

Defining alocal Cartesan reference frame, the continuity and Navier-Stokes equations become:

ﬂv_x-{-ﬂv_yzo

continuity: . T
X y

*Schlichting, 6th ed., p117-21.
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M,y W 200, (TP TP
x Yy r x ™ fy?

2 2
ﬂvy+vy‘|1\/_y: 19p n‘ﬂvy+'ﬂ Vy
X v rf ™2 qy?

wheren © nmir . Next, Prandtl estimated the order of magnitude of each term, hoping that some can be
dropped. Thisiscalled scaling. In this estimate, we are not concerned about factors of 2 or 3, but
with orders of magnitude: we will try to guess the asymptatic behavior of each term in terms of the
characterigtic physical parameters. In particular, in scaling we try to express each term in the form of
the product of the physical parameters raised to some power: In this problem the physica parameters
aeR U, n,and d. Thuswewill try to express esch term as

RaUbncqd

Let's start with the primary &) component of velocity. Across the boundary layer, vy must vary
between zero a the surface (no-dip) and

at y=0: v, =0
at y»d: Vy = -VPF = 2Udng
2Wamdh - —— ~— — ==
which is the potential flow solution. The assumption here /)
is that the outer edge of the b.l. corresponds to the inner /|
edge of the potentid flow solution. v |
x I
So vy, » U :
|
vy » Dy » v 1_ >
fy Dy d & ¥

fivy U
Dl ¥x
ﬂZVx ( iy ] d 0

» » » —

v By 0-d d?

Now x is measured dong the surface of the cylinder.
Thinking of x as the ac length measured from the
forward stagnation point, then:

dx =-Rdq

Integrating with x=0 at g=p:
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X = R(p-0q)
v ‘HvPF dg 1) U
Thus X =-. 4 = cosq)(- —) »—
X g dx R R
2 2., PF 2 2
Similarly, Ty - 17V [ﬁ) = (2u sinq)(- i) »
x? q? \dx R/ R?
Next, we look at the equation of continuity:
My o I U
Ty x R
Y
Integrating acrossthe b.l.: vy = j My dy » - 2 2y, »
Ty mBas R
vy /1
0 ﬂv_y» 1(_ —Zuycosqj% ))U_d
x fTq R Jdx R?
-1R

Esimating the inertia and viscous termsin the x-component of N-S:
inertia v, v, /[ » (U)(U/R) = UZIR
v, v,y » (Ud/R)(U/d) = UZR
viscous: nT2v,/1x2 » nU/R2
nT2v,/1y2 » nU/d2

Now let's summarize our results as to the magnitude of each term in the x-component of the NSE:

2 2

v v v v
X Vxﬂx+vy—ﬂx=-lm+nﬂ 2X+nﬂ >
128 1% 158 155 (%5

U u? ? v nu

R R R? a2

Since d<<R (according to “Pogulate #1"), the first viscous term must be negligible compared to the
second:

d<<R nU/R2 << nU/d2
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N2V, /%2 << T2v,/Ty2
So we can neglect thisterm.

Ignoring the negligible term, we have established the following orders of magnitude for the terms in the
x-component of the Navier-Stokes equation:

2
y VLEE VR SR bl B (127)
1dm 4% 158 155
u? u? ? nu
R R ?

Now let's gpply Prandtl’s second postulate: Insde the boundary layer, viscous and inertid terms are of
the same magnitude:

inertia» viscous
U2R» nU/d2
This dlows us to estimate the thickness of the boundary layer:

d2=nRU = R¥(RU/n)

or d» 128
= (128)
where Re° RU/n

isthe Reynolds number. Notethat this correctly predicts that the boundary layer gets thinner as
d® Oas ¥

Theremaning termin (127) which has not yet been estimated is the pressure gradient. We can obtain
some idea of its magnitude by looking at the potentid flow solution, in which the pressure profile is given
by Bernoulli's equation:

for yed: plr +Vv2/2 = congt

Now the kinetic energy can be decomposed into contributions from the x- and y-components, whose
orders of magnitude we have dready estimated:

V2 = VX2 + Vy2 » VX2

Now v,2»U? while vy 2»(Ud/R)?, so vy 2<<v,? which leaves
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plr » const - v, /2
Differentiating: (Ur )P/ » vy v, /11X » UZR (129)

So this means we cannot neglect the pressure gradient in (127) since it is the same order of magnitude
astheinertid terms. Scading of the terms of the y-component of the Navier-Stokes equation yields:

v v v, 1%
y Vy— + y—y=-3E+n L +n— (130)
18 1% 198 1853 193
U u2d ? nUud nu
R? R? R aR

Subdtituting Eq. (128) for d shows that viscous and inertid terms again have the same magnitude:
2 2
d » U—2 TJ—R »U%R'%n%

inertia» >
R R

viscous » r(;—U »E Y » U%R' %n%

R VnR
o inartia» visoous

What remains to be determined is the pressure gradient. At mogt, the pressure gradient in this equation
has the same order of magnitude as the other terms:.

(Ur )Tp/y £ U2d/R2 (131)
Comparing thiswith the partid derivetive in the other direction, by dividing (131) by (129):
(TpMy)/(Tp/1x) £ d/R® 0as ¥

which means tha variations in pressure across the boundary layer are becoming insgnificant at large Re.
In other words, a good approximation would be to take:

p = p(x)

Since the pressure at the outer edge of the b.l. must correspond to that just outside, where potentia
flow occurs, we can caculate this pressure using the Bernoulli's equation and the potentid flow solution:

for y2 d: p/r +v?2/2 = congt (132)
In potentia flow a r=R v,=0
VA(Ra) = V4ARa) ° Ug(x) (133)
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(133) into (132): pir +U,2/2 = const
(Ur )p/ix + UydU,Jdx = 0 (134)
2
(134) into (127): v W gy T Ik _ g Y0 ynown (135)
“x oYy @O

The right-hand side of this equation is known because U is the inner limit of the potential-flow solution:

Ug(x)° rlémR[quF (r q)]

Together with the continuity equation, we now have two equations in two unknowns:
2 unknowns: Vy and vy,
2 equations. (135), Continuity

which are known as Prandtl's Boundary-Layer Equations for 2-D flows.

SOLUTION FOR A FLAT PLATE

Reference: Schlichting, 6th ed., p125-33, Whitaker
p430-440.

L
—

plarc

Before we continue with the andyss of flow
around a circular cylinder, let's look a the smpler
problem of flow tangent to a semi-infinite flat plate.
The andysis begins by computing the potentid-flow
solution.

A S

Step 1: find potentid flow solution
If the plate isinfinitesmaly thin, the uniform velodity profileis not disturbed:
P.F.: v =Ufordl (x,y)
and p =py fordl (xy)

Of course, this doesn't satify “no dip,” on the plate, but then neither did potentid flow around a
cylinder.

Step 2: gpply Prandtl’sb.l. equations

From this potentiad-flow solution, we can caculate the U, appearing in Prandtl's equation:
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Uo(X) = v, PF(x,0) = U (aconst.)
UodU/dx =0
Eq. (135) becomes: VTV /M1X + vy TV, /Ty = nfi2v,/qy2
Tyl IX + vy [y =0
Appropriate boundary conditions are:
no dip: vy =Vy =0at y=0, x>0
and outsde the boundary layer, we obtain potentia flow:
Vy® Uasy® ¥
Step 3: rewritethe b.l. equations in terms of the streamfunction
We can contract the two equations into one by using the stream function:
v =Ny (xy)k]

which automatically satisfies continuity. Written in terms of the stream function, the problem becomes:

YyWxy = YxYyy = NYyyy (136)
at y=0,x>0: Yx=Yy=
asy® ¥: y ® Uy

where the subscripts denote partid differentiation.
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Thedevelopment of thelaminar boundary layer along aflat plateisvisualized by the hydrogen
bubble method. A fineelectrodewireisintroduced upstream of theflat plate and a voltage pulseis
applied reapeatedly at regular intervals. Theboundary layer thicknessis seen to increase with
the distance downstream for theleading edge. Photo taken from Visualized Flow, Pergamon,
New York, p17 (1988).

How visudization studies show that the boundary-
layer grows in thickness as you move downstream
from the leading edge (see sketch a right). This
can be rationdized by consdering the inverse
problem of a plate moving through a stagnant fluid.

A

Focus your atention on an intidly aionary fluid
element in the path of the moving plate. The longer
the fluid is disturbed by the moving plate, the more time there is for momentum to diffuse awvay from the
plate.

Time Out: Flow Next to Suddenly Accelerated Plate

Frda congder the much smpler problem of a infinite plate
suddenly put in motion at t=0. Initidly, the fluid and wdl are
a rest; but a time t=0 the wal is set in motion in the x-
direction with a steady speed U. The initid and boundary
conditions are:

at t=0for dl y>0: vy, =0
at y=0for dl t>0: vy=U
asy® ¥: vV, ® 0
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The solution can be expected to have the form: vy = v, (y,t), vy = v, = 0. The NSE becomes:

ﬂ\/_x =n _ﬂZVX
Tty

wheren © mir . The solution to this problem iswell known:”

Vy(y,t)=U erfc{w/%j

h
lash® 0
where erfch® 1- i‘[e' he? dh¢®
P Oash® ¥
MN2> Q43
ef h

isthe complementary error function; theintegrd itsdf isthe error function.

At any fixed t, the velocity decays monotonicaly from U at y=0to zero as y® ¥. As t gets larger,
more and more fluid begins to move; we say “the motion penetrates deeper into the fluid.” Suppose we
wanted to know how far from the wall we have to go before the velocity dropsto 1% of the wal vaue.

\Y (d t) e d 0
v (y=4d,t)=001U: X = erfc =0.01
oy ) U &Jant o
erfg 0 ngJd_ =099

Looking up the appropriate vaue in atable of error functions, we obtain:

d
Jant

or d =365Vnt (137)

=1825

This gives us some idea how far the motion “penetrates’ into the stagnant fluid. Notice that the
penetration depth increases with the square-root of time.

* see BSL, pl124f.
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Timeln: Boundary Layer on Flat Plate

Now let's gpply this result to our origind problem: the boundary-layer next to a semi-infinite flat
plate. Huid farther downstream from the leading edge has been in contact with the moving plate longer;
and edtimate of the “ contact time” is:

t=x/U (138)
(138) into (137): dp /nt p /f% (139)
Step 4: solve bl. egudion usng “smilarity _U,
transform” - e
— =ER
Judging from the boundary conditions done, we :: P < =< B =< B F-E5)
would expect v, tovary fromO0a y=0to U at y=d —> / e F .;’
with sort of a parabolic shape, with d getting lager . ~ -
X

as we move downsiream. Notice that the basic

shape of this profile is not redly changing with x,

only therange of y-values over which the solution departs from potentia flow is increasing as we move
downgtream. This suggests a solution of the form:

vy /U =f" (y/d) (140)

Let's define a new independent variable which is scaed to the boundary-layer thickness:

y y
Let » ° h(x,
d(x) . /nx/U ()
To get thisguessin terms of the stream function, recall:
1
thus j W ¥ = Udjfc(hdh udf (h)
X, y=0 Ui ¢ ddh
subdtituting d from (139): y (% y) =+nuUxf(h) (141)

Interms of f(h), the boundary-layer equations (136) become:
ff"+2t"'=0

subject to: f=f'=0ah=0
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Now we have an ordinary two-point boundary-vaue problem, which can be easly solved. This
solution was firgt obtained by Blasius (1908), who was a Ph.D. student of Prandtl.

i

£

fin)

1 ts604

4
(LN
n = Alhead

o 2

)

{/
Ve [ 45
L1 v
) 2 3 6 &
An
n — WUy

Notice that the velocity component normal to the plate (i.e. vy) does not vanish far from the plate:

- 08604.]-“1 0
Ux

lim {—VV(X’Y)}
y® ¥ U

Condder a fluid bdance around the

rectangle in the figure & right. Owing to the need

to meet the “no dip” condition on the su

the plane, the flowrate out the right sde of the

shaded

rface of

l'!

L

N ¥ ¥ |
=
| = > A
/ ; ey g a(x)
> F [
S Na
- Y ’ ot

gystem is less than the flow in the left Sde. The
excess has to go out the top, causing vy, > O there.

Boundary-Layer Thickness

The definition of boundary layer thickness is somewhat arbitrary. Although we are tempted to say
that d isthet vaue of y a which the boundary-layer solution for vy(y) equals U (potentid flow), vy
approaches U only asymptoticaly asy® ¥ ; therefore, this "definition” yids the unhelpful result thet d is
¥ . There are saverd waysto assgn amore meaningful finite vaue to d(x).
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One way to define the boundary-layer thickness, d,
isthat vdue of y a which the velocity is 99% of the
asymptotic vaue.

]

~

12122222

Def'n1: Vy(X,d1) = 0.99U¢(x) -
X

For flow over aflat plate, this convention yieds:

dq(x) = 5.0\/¥

Ancther way to define d was suggested by Nernst who was N e
concerned with boundary layers which arose in mass transfer

problems. Nernst chose the diffuson boundary-layer thickness y
as the thickness of a hypotheticd stagnant film which has the
same diffuson resstance. ¢

A
Y

Y

Graphicdly, this d can be determined by drawing a tangent to
the concentration profile a the surface (y=0). By andogy,
concentration of massis like concentration of momentum, which isjust the fluid velocity.

If we defined for momentum transfer in the same way, replacing concentration by vy, then:

_ Dvy _UO(X)' 0

o DY -0

Tive

Ty

Def'n 2;

For flow tangent to afla plate, this definition yidds:

Recdl that the norma component of the velocity profile was nonzero far from the plate:

vy (X,
lim M = 08604 N, 0
y® ¥ U Ux

except far downstream from the leading edge:
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yl(i@n;{vy(s’y)} = lim {08604\/;} 0

X® ¥

This means that the streamline moves away from
the plate. A third definition for d is the distance
the streamline is displaced away from the plate.

(] Y
- - - _> -

Suppose that, far upstream, a Streamline is given —> strcamline EE'

by . PL_— consl _ >

—> § b3(x) wrd

. _ —>» —>»>

X® -¥: y=a = a L;»:

Thus the streamline is initidly a distance a from — ' x >

the x-axis. If downstream from the leading edge
of the plate, the streamline is a distance b from
the x-axis, then the digplacement of the streamlineis given by:

d3=b-a

To evduate this displacement, recdl (from the definition of streamling) that the flowrate in the x-
direction between y=0 and the streamline is the same dl dong the streamline. Thus:

o b(x)
y :W:au = {vxdy

where Wis the width of the plate (assumed to be arbitrarily wide). Adding d3U to both sides:

(a+ds) j vy dy + dgU (142)
0

The left-hand Sde of this expression can be rewritten as:

(a+d3)u =bU = [Udy (143)
0

b b
_[U dy:_[vxdy+d3U
0

(142) becomes: 0

40 = [(U - vy
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Of course, the upper limit b will depend on the particular streamline we have chosen.  In other words,
different streamlines are digplaced differently depending on how close to the plate they were initidly.
Thus the displacement distance d3 is not unique. However, distant streamlines are dl displaced by the
same distance (Since the integral converges as b® ¥). So let's define the boundary-layer thickness as
the displacement of external streamlines

¥
Def'n 3: daU = f(U - Vy)dy
0

For flow tangent to aflat plate, thisyields:

Nnx
d = 1721/—
3(x) U

Notice that dl three of these definitions yied a boundary-layer thickness which is proportiona to
A nx/U dthough the proportiondity constant varies considerably.

d(x) % (144)

We showed (see page 132) for any 2-D flow (which thisis) that:

R _ [0R (145)

Jre Vu

where Ris the radius of the cylinder. For noncircular cylinders, R is some characterigtic dimension of
the cross section (eg. the mgor or minor axis of an dlipse). A semi-infinite flat plate is somewhat
unusud in that it has no characterigtic dimension. However, if the plate were finite with length L dong
the direction of flow, it would seem naturd to choose L as the characterigtic length. If one can
reasonably assume that what happens downstream with a longer plate does not sgnificantly effect the
boundary layer thickness for a plate of length L (i.e. “exit effects’ don't propagate upstream). For an
semi-infinite plate, the same result is obtained by choose x as the characterigtic length; then

d»

n
d» x and ReO%
U n

which is conagtent with (144) and with Prandtl's more genera resullt.

Drag on Plate

The net force exerted by the fluid on the plate is caculated from:
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F=qn ITda=-gpnda+ qn tda

Choosing n = +j on the upper surface and n = -j on the lower
surface, the integra involving the pressure vanishes owing to
cancdlaion of the contributions from the upper and lower
surfaces (the pressure is the same, but n has opposite direction  __
on the two surfaces). Thisleaves

X
Fy =2m [‘Hv_x ]dx
0 fly y=0

The “2’ comes from addition of the two contributions from the upper and lower surface. Evauating the
integrd and expressing the result in dimensonless form:

Fx
Co 0 MK _ 1328
° %r u? +Re

where Re © Ux/n. In defining drag coefficient this way, we have departed somewhat from the
convention which uses the projected area aong the direction of flow (i.e, the area of the shadow cast
by the object if the light source were located very far upstream). In the case of a plate this projected
areais zero, so we have used the area of the plate instead.

SOLUTION FOR A SYMMETRIC CYLINDER

Let's now return to the problem of flow around a cylinder
a large Reynolds number. We follow the same generd steps
aswedid in solving flow tangent to afla plate:

Step 1: find potentia flow solution and Ug(x)

We accomplished this in HWK #4, Prob. 4. The veocity
profile in the potentid flow solution is

g
Vg = u[1+(TRﬂsinq

Step 2: apply Prandtl’ s b.l. equations (see page 134)
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VX ﬂvx +Vyﬂvx _ nﬂZVX = OdU—O
X Ty T2 dx
ﬂi+ﬂv_yzo

x Ty

From this potentiad-flow solution, we can caculate the U, appearing in Prandtl's equation:

Uo(X)=- vg(Ra)=2U =2U sin>

sing

. X . X
Sln(p- E):SIHE

Fall, 2000

where x is the arc length, mesasured from the forward stagnation line, and
q is the polar coordinate, which is measured from the rear stagnation line.
The two are related by

X
=R(p - -n- —
x=R(p- q) o q=p- o

Prandtl’ s boundary-layer equations (126) become

2 2
Vy T +Vy LS| \;X = sn—cos—
fix vy 1y
ﬂi+ﬂ_yzo
ix Ty

Appropriate boundary conditions are:
no dip: Vy=vy=0ay=0
and outsde the boundary layer, we obtain potentid flow:

Vy® Ug(X) asy® ¥

The main difference between a circular cylinder and the flat plate the left-hand side of the first equation,

which represents a pressure gradient dong the direction of flow inside the boundary layer.

u.dYo __1dp, 4
0 dx r dx

Step 3: re-write the b.l. equationsin terms of the streamfunction

In terms of the streamfunction, Prandtl’ s boundary-layer equations are:
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YW~ YxYw-NY —4U—25inlcosl
yr xy © Y xJyy yyy 1Ra
Yo
0" ax
a y=0: Yx=Yy=0
asy® ¥: y ® UgX)y

Fall, 2000

Blaugius obtained the solution to this problem, which in fact works for cylinders of much more generd

shape — not just circular cylinders.

What is required is that the potentid flow solution must be an odd function of x:

Ug(X) = UgX + Ugx3 + Ugx® + ...
Then Blausius obtained a solution with the form (see S:154-159):

y () = (nupYquxfy(h) + 4usx3sh) +
+ 6Usxf5(h;Uq,Ug,Us) + ...]

where h = y(uy/n)1/2

The veocity profile obtained thisway for acircular cylinder is sketched below:

This result is quite different from what was obtained with the flat plate. With the flat plate, the velocity
profile v, asafunction of y had the same shape for different x’s. Indeed the shape at different x’s were
amilar and we were able to use a “gmilarity transform.” Here, for flow perpendicular to a circular
cylinder, the basc shape changes with x (or a or q). In paticular notice that the initid dope
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(vx /ﬂy)|y:0 is positive for a=0 and becomes zero for a=108.8°. At even larger a’s, the initid dope
becomes negetive.

This turning around of the velocity profile coincides with a profound event cdled boundary-layer
separation. Separation does not occur on the flat plate. The main difference in Prandtl’s boundary-
layer equations which causes separetion isthe form of the pressure gradient.

Boundary-Layer Separation

To see what boundary-layer separation is and why it comes about, let's first recall the potentia flow
solution for the pressure on the surface of the cylinder. Using the velocity profile obtained in Hwk #4,
Prob. 4, we can cdculate the kinetic energy per unit volume at any point in the flow

4cC

2
12_y2d RI < 1FR
V2 =U2M - 2c0fq L += ) F
2 N2 qurK 2Hr K ¢

Then using Bernoulli’ s equation:

we can compuite the pressure profile around the cylinder.

Congder afluid dement approaching the cylinder dong
the stagnation line shown in the sketch at right. Asthe
fluid dement moves toward the stagnation point A (g =
p and r changesfrom ¥ to R), the pressure rises to a
maximum. Moving awvay from Point A dong the
surface of the cylinder (r = Rand q decreases from p
to p/2), the fluid dement now accderates until reaching
its maximum speed and minimum pressure a Point B
and so on.
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The reaults for the pressure changes or kinetic energy
changes during this journey are summarized on the graph
a right. Note that Bernoulli's equation baances an
increase in kinetic energy with a decrease in pressure
and vice versa  So that the sum of the two curves
equals a congant. Insde the boundary-layer, the same
pressure gradient gpplies but we aso have viscous
disspation in addition to kinetic energy. The upshot is:

just outside b.l.: potentid flow (no irrev. loss of
energy). The kinetic energy of the fluid a B is just
enough to overcome the pressure hill & C. Huid
eements arrive & C with v=0 (no kinetic energy to

spare).

inside b.l.. dp/dx same but viscous disspation
consumes some of the kindtic energy, leaving
insufficient energy to climb the pressure hill.

Consequently fluid elements in the boundary layer stop

their forward advance at some point before reaching C, which
we will labd S Huid dements between Sand C are driven

toward Shy fdling down the pressure hill.

To consarve mass, fluid must be pushed away from the cylinder

a S Thisisknown as separation of the boundary layer.

The x-component of flow is toward the separation point on
ether 9deof S Thusat y=0 dv,/dy>0 for x<xg and dv,/dy<0
for x>xg. At the sgparation point the derivative changes sign:

which serves as a convenient way to locate the separation point

in any mathematica solution to the flow problem.
Necessary conditions for separation include:
1. decderating flow or Dp/Dt>0

2. irreversble losses of energy
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Drag Coefficient and Behavior in the Wake of the Cylinder

Blausius solution does not gpply downstream from the separation point (i.e x>Xg). Indeed, the
boundary layer is not thin enough to be described by Prandtl’s equations.  Since the behavior on the
downdream sde sgnificantly inflences the drag and since this behavior is not predicted by Blausus
solution, Blausius solution does not correctly predict the drag force. Measurements of the drag
coefficient for flow normd to acircular cylinder are summarized below.

100 i T 1
8 ' - 1 -
50 N . a%?] 1
Cp Lamb's . o1
20 . e 7
solution 12 | tasires
70 / : 30 ?
H By et —A o L9 |Wieseisbergar
e l—1. fa 420
' s gag
“ :-;L._ * 0.0
2l -“““m_“_ ---Theeiy due ts {amb
a3 = i ' Y turbulent
o stationary vortex [ turbulen
04 vortex shedding - bdy. lyr.
o2 H
o Lo e Ly
art? ¢80 2 ot 7t Shp2? 468,57 #6827 468,02 08,

g=X0

taken from Schlichting, 6th ed., p17

Severd different regions are apparent in this log-log graph. Some of these correspond to maor
changes in the shgpe of the velocity profile.

Re << 1 Upstream and downstream haves of streamline are Re=0.038
mirror images. This is what you would expect if you looked for a
streamfunction solution with the form (see Hwk #7, Prob. 2):

y (r,a) =f(r)sng

Although inertid terms are never negligible. The measured drag
coefficients agree well with the prediction of Lamb.

As we increase the Reynolds number, inertia becomes more
important. Generdly large inertia has a tendency to make
Sreamlines sraight.

1 < Re< 6. Streamlines are no longer symmetric about g=p/2. Re=11
Streamlines are somewhat father from the cylinder on the
downstream side.

Drag coefficients are Sgnificantly smdler than predicted by Lamb.
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6 < Re<40. Two dationary vortexes are formed in the wake of the
cylinder -- a consequence of boundary-layer separation.

Re > 40. Periodic vortex shedding. Large vortices, the sze of the
cylinder, are created on a periodic bass. These vortices detach and
move downstream. Vortex shedding aternates between the top and
bottom of the cylinder. Vortexes shed from the top have a vorticity
(N” v) with asign opposite from vortexes shed from the bottom.

mﬁ@ /S /
o NG

Re=19

Re=140
These vortices perast many cylinder diameters downstream from the cylinder. Mogt of the irreversible
losses of energy occur in forming these vortices, whose ultimate fate is to disspate their kinetic energy
as hedt.

Re » 47 10°5. Onset of turbulence in the boundary layer. Point of separation moves further back
toward rear sagnation point. Drag is sgnificantly reduced -- amost a discontinuous drop.
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The Lubrication Approximation

Consder a plate diding on a lubricating film past a I
second dationary surface. If the distance separating the

two plates is samdl compared to the dimensions of the
plate, we can assume fully developed flow applies pg F
through out mogt of the ail film. Then: 1

7 g\ I”
for h<<L: vy(y)=U % =

p = pofordl x,y

=t =-

W
h

mULW
Fy=—

Since the pressure is same ingde the film as outsde the dide, the diding motion of two parald surfaces
produces no lateral component of force.

Now suppose the dider is inclined ever so dightly
reldive to the dationary plate. We might guess,
that if a is smdl enough, the veocity profile will
not be affected. But, owing to the indlingtion, h is
no longer independent of X, o our guess leads to:

= =2Uh(x) = f (x) (146)

which violates continuity. It turns out that

continuity is preserved by a nonzero pressure gradient, dp/dx, which causes pressure-driven flow. Thus
even the primary component of the veocity profile is affected by this dight inclination. More
sgnificantly, it turns out that this indination will produce a different pressure in the film from the fluid
outside the dider block which, tends to push the two surfaces together or apart.

Fy1 0

y
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Let's try to estimate this force. It turns out to be no
more difficult to obtain the result for an arbitrary gap
profile h(x) (see figure a right), since the essentid
difficulty arises from the fact that h is not congtant with
respect to x.

Suppose the thickness of the gap is everywhere very
smdl compared to the dimensions of the dider block.

h(x) <<L fordl x

Essntidly, this is a geometry with two very different

length scales characterizing variations in the different directions x and y: we expect dow variations with
x and rapid variationswith y.  We will exploit this difference usng a regular perturbation in the ratio of
the two length scaes.

We will gart by nondimensondizing the equations of motion:

Let xo X Y
L he U Ve

L isan obvious choice for the characterigtic value of x (since O<x<L) and U is a obvious choice for the
characterigtic vaue of v, (since vy, = U a y=0). Since O<y<h(x) some characteristic value h; of the
film thickness seemslike alogica choiceto scale y.* The choices of characteristic values for vy, and p
are not obvious, so we will postpone a choice for now and just denote these values as v, and p..

We seek a solution in the form of aregular perturbeation:

where ac° he
L

vx(x,y,a) =Uu(X,Y,a) =U[up(X,Y) +aw(X,Y)+.] (147)

vy (x,y,a) =vev(X,Y,a) = v fvo (X,Y) +avy (X,Y) +..4 (148)

p(xy.a)- py = PcP(X,Y.a)= p Ry(X,Y)+aR(X,Y)+.] (149)

Asusud an important aspect of thisform isthat al derivatives of the dimensionless velocity components
u and v with respect to the dimensionless coordinates X and Y are O(a9):

* For definiteness, we might select the largest value of h(x) to be h..
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TWIX, Tu/tY, IviTX and Tv/TY are O(aY) (150)

The choice of v, becomes gpparent when we nondimens onalize the continuity equation:

o MMy _

continuity: 0 151
v > Ty (150
Subdtituting (147) and (148) into (151):
Utu__ vetv 0 Tu_ 1 veiv  Tu__ v iv
L X he 1Y X hC/L u Iy X au Yy

(151) requires the two terms in the continuity equation to be equa but opposite; and to be exactly the
same order of a. Since Tu/fX and Tv/TY are O(a®) according to (150), we are forced to choose v,
such that v /aU isO(@0). Solet'schoose

Ve=au (152)
Subdtituting (147)-(149) and (152) into (151), the leading term is

> 1Y

el: (153)

Next we examine the principle component of the Navier-Stokes equation:

NSE. - v ﬂV_X+V v _ 1m+n _ﬂzvx +—‘"2VX (154)
X o Yy il qy?

Substituting (147)-(149) and (152) into (154):

U® Ju,aU® fu_ p P U U, U Tu

—u +— 5 n
L X aL Y rLIX 12 qx2  (aL)? qY2
s

o) o) T o) Ty

The last term in the equation is lowest-order in the small parameter a: it'sO(@@-2). All the other termsin
the equation (except possibly for the pressure gradient) are O(@%). Unless we have some other termin

the equation of the same order, we will be forced to take '"Z%Yz = 0, which yields linear shear flow

to dl ordersin a. We dready know that this solution violates macroscopic continuity. To avoid this
situation, we choose p., so that the pressure gradient term is dlso of O(@2):
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U

2

pc=rL” n @) a2l (155)
4
With this choice, the leading term in NSE; is
2
a2 _2520 = (156

So far we have two equations [(153) and (156)] in three unknows (Ug, Vg and Pg). We need another
equation. So we turn to the secondary component of NSE:

2 2
NSEyZ vxﬂv_y+v W_y:_im+nﬂvy+ﬂvy
ﬂXZ .”yz

au? ﬂ+(au)2 v _n T, au 1T2V+n au_f%v

L X ak W (alL)an)TY L x2 (aL)? 1v?
O(a) Ofa) — Ofa) P
O(a'?’) O(a )

After subgtituting the perturbation expansions (147)-(149), (152) and (155), then collecting terms, the
leading termis:

o _
v

a3 0 or Py=constw.r.t.Y (157)

This concluson suggests that the pressure gradient in (156) can be treated as a constant with respect to
Y:

2
T _ 9 _ onstwrt y (158)
qv2  dX

We might be tempted to st this pressure gradient to zero snce:

P(0) = p(L) = Py

Of course the pressure gradient is zero when the two plates are pardld. But we dready suspect that
the pressure gradient is needed to avoid linear shear flow, which violates continuity. So we avoid this
temptation and leave dPy/dX nonzero.
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From this point on, we will resort to the dimensional variables, using what we
have learned from the leading terms of the perturbation expansion. In essence,
we are truncating (147)-(149) after the first nonzero term.

Integrating (158) twice: Vy(X,y) = %% y2 + c(X)y+co(x)

Boundary conditions are given by the “no dip” requirement:
vy = 0 a y=h(x)
v,=U ay=0
Evauating the two integration congtants leeds to:

_ y 1 dp( 2
Vx(%,y) = U( : Fj Tl VAR

— -
linear shear flow  pressure-driven flow

The volumetric flowrate per unit width of plate is caculated as

Vy (X, y)dy = —- —— (159)

Q can be made to be a congtant at each x if dp/dx is alowed to take on non-zero values. The
necessary values can caculated from (159):

QM=congt.: — = (160)

Integrating with respect to x from x=0 where p=p to any other x.

 dx Qxdx
o(x) - p0=6rrujh—2- 12mv_vjﬁ (161)
0

The pressure is the same at the downstream end of the gap. Then:

L L
dx Q dx
L)- pp=0=6nU [ =- 12m= [=

Knowing the overal pressure drop is zero alows us to compute the flowrate:
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Q
~=-="" 162
w2 (162)
L L
L dx /.dx
where H= Oh_2 0h_3
0 0
isan average gap width. If h(x) isalinear function whaose vaue changes from
h(0) = hy
to h(L) = h2 < hl
then szﬂ or i:l i+i
hl + h2 H 2 hl h2
whichis called the “harmonic mean” of hy and h,. (162) into (160) gives the pressure gradient:
D&, ) — )
dx ph2 h Iy
| w
Note that h,<H<h / |
I
at x=0: h=h,>H ® dp/dx>0 }
I
at X=Xp: h=H ® dp/dx=0 Xy L "
at x=L: h=h;<H ® dp/dx<0

Thus H represents not only an average gap width (with respect to flowrate) but it is dso the width at the
point where pressure is a maximum.

Now we are in a position to evauate the force exerted on the plate by the fluid. The x-component of
the forceis

sk oL dvy oy
FX—WQtyX(X,O)dX—WQ md_Y{y:de_WL - +0(e)

-
L

where e°

is the angle of tilt between the two plates (/£Y2<< 1). This result is the same (neglecting the O(e)
correction) as would be obtained for two pardle plates. More interesting is the y-component. For a

linear gap:
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eruUL2 {mﬁ- 2(hy, - hz)}
(h - hp)?L M2 h+h
Does this reduce to zero when the two surfaces are parald (i.e. hy=h,)? Although it might appear that

Fy®¥ as hy® hy, it turns out that the terms inside the square brackets tend to zero faster than the
denominator outsde the brackets. In the limiting case that

F
= [ Tp00- poJax =

e<<1: hl » h2 » h,

and hl-h2 << min(hl,hz),
F .3

then we obtain: Y=ty aé:S e
W 2 hg

So we do recover zero force for pardle plates. The main difference between two pardld- and two
nonparallel-plates is the occurance of the nonzero y-component of lift which would not occur for parald
plates. Noticethat F\>0if e>0 (h;>hy) and Fy<0if e<0 (hy<hy). Thus either repulsion or atraction
of the two plates is possible, depending on the direction of

tilt relative to the direction of flow.

TRANSLATION OF A CYLINDER ALONG A
PLATE

The lubrication approximations developed for the dider
block can be easly extended to other geometries. For
example, instead of a planar dider block, suppose | try to

drag a cylinder paralel to a plate. What will be the force 7 N
tending to push the two surfaces gpat? The same / \T/ \ y
perturbation expanson done with the dider block applies S N\ ‘
here, except we have a different profile h(x) for the gap // \\
between the two surfaces. / N
f o ~—\

To deduce the gap profile, recdl the equation of acircle &‘ O\

(X- XC)Z_I_(y_ yC)Z: RZ (/ /\_/x/\/j
where (X, Y) is the location of the center of the circle and \\ 5
Risits radius. Substituting the coordinates of the center in S —> U

our problem and y(x) = h(x), we have

x2+(h- R- ho)2 =R
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Dividing by R2

2 2
X_+(h- ho _ ) -1
R? R

Recognizing that h-hg is very smal compared to R, we can use the Binomid Series, truncated after the
second term, to obtain an gpproximation to the second term:

2 2
(m_l) = 1_h_—RhO :(1_ e)2:1_ 2e+o(ez)))1_2h'h0
\_.V__J
e

R R

The“1” cancelswith the“1” on the right-hand side of the equation, leaving:

X2

h(x) = hy + s (163)

provided that h-hy << Rwhich requiresthat x remain small comparedto R

a=d_X_ g
dx

where we have moved x=0 to the center of the gap, which is now symmetric about x=0. Although
(163) is only vdid for x very smdl, it turns out virtudly dl of the contribution to the force comes from
the region where (163) is valid — provided that hy is sufficiently smal compared to R In any case, let's
assume that (163) is vdid. If that bothers you, then

replace the circular cylinder by a parabola

- cylinder
As with the flat dider, the pressure profile is /

. . parabola
determined by the need to have the volumetric flowrate é
through any x=congt plane be the same for dl such planes. \\
Eq. (159) becomes: AN

3
Q. uh_h” do = const w.r.t. X (164)

W 2 12mdx

If weview Q/W as an unknown integration congtant, then
we will need two boundary conditions to evauate the two
integration congtants we will have after integrating this.
Since the fluid held between the cylinder and the wal isin
contact with the same reservoir at either end of the gap, we can require;

P=poal X =-¥ +¥

Copyright © 2000 by Dennis C. Prieve



06-703 165 Fall, 2000

By “infinity”, we smply mean far from the origin. It might seem more reasonable to specify x=R, but if
Ris sufficiently large compared to hg, no sgnificant error will be incurred by extending the limit to
infinity. The counterpart to (161) is.

X X
: dx¢ Q | dx¢
p(x)- py =6nU | ?-12mv—vjF (165)
-¥ -¥
Applying the other boundary condition at x=+¥ dlow usto evduate Q. The counterpart of (162) is
g = ﬁ (166)
w2
where
IS an average gap width.
Substituting (163): H = %ho
Aslong as h(x) is an even function of X, then P— Po
p(X) must be odd: mJ H
0
h(x)=even® p(x)=0dd \
Thus the pressure profile given by (165) looks | /2 -
as shown at right. The extrema correspond to: ! / 3
dp/dx=0
X
Subsituting (166) and dp/dx=0 into (164) yidds \Rhg
dp/dx=0: h=H=2hy
Subgtituting (163) and solving for x:

dp/dx=0: X ==, /% Rhg

Because p isan odd function, there will be no norma force tending to separate the two surfaces:
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F ¥
p=0dd: Wy: J.[F(X)' po]dX—O
-¥
P - ¥‘t (x) dx = 2pmJ 2R
X = Bty - R
Wy hy
CAVITATION

However, there is an important phenomenon which we have not discussed which can cause a lift
force to push the two surfaces gpart. That phenomenon is

cavitation - formation of gas bubbles caused by alowering of pressure

If the absolute pressure of the fluid drops below the vapor pressure of the liquid, we will have boiling of
the liquid and cavitation. Because pressures generated in lubrication problems can be significant
compared to aamospheric, cavitation is not an uncommon event.

sources of gas bubbles:

vapor of liquid (if p<pyapor)
ar (if P<Psaturation)

Many liquids are kept in contact with air a one atmosphere and therefore become saturated with air. If
the pressure on the liquid is suddenly lowered, the air will be supersaturated and air bubbles will form.

What effect will cavitation have on the pressure profile?
Although an exact andyss would require consideration
of two-phase flow, we can anticipate that — at the very
leesst — the absolute pressure cannot drop below
saturetion.

A P- pO

Psa - Po _/’-%' \ -
If any of the negdtive portion of the pressure profile is \ 7
chopped off, the profile loses its anti-symmetry. A
repulsve force pushing the surfaces apart becomes
likey. The resulting profile might be expected to look

something like that shown at right.
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SQUEEZING FLOW

surfaces past one another. A related lubrication problem is the
sgueezing motion between two bodies. Consder the * squeezing” w
motion in a thin film of liquid held between a circular disk and a

The above two problems both involve the diding of two iFZ

pardld flat piteinthelimitinwhich h<<R In the limit e® WR K creular
® 0, asolution to the Navier-Stokes equation can be found viaa | |
regular pertubation expanson of the form: h

plate

Ve (1,2,6) = ucu(r,z,€) = ugug(r,z) +euy(r,z)+.. ]
V2(r,z,€) =UMr,z,e) =U[vo(r.z) +evy(r ,2)+.. ]
p(r.z.e)- py = pcP(r,z,e) = pc[po(r,z)+ep1(r,z)+...]
where ue—, eOE, reln and z°Zh:%R

Note by using the arbitrary u. as our characteridtic radia velocity, we are delaying the choice until we
have a chance to ingpect the continuity equation:

1 T(rvy ) + v

continuity: — 73 =0 (167)
Nondimensiondlizing; Ylflry Ut _,

Rr qr h 9z
Dividing by U/h: e 19(ru) _ v (168)

Uur Ir E
T%,—/ —
o(e?)  ole)

Boundary conditions on v, include:
at z=0 or z=0 v,=0 or v=0
a z=h or z=1: v,=U o v=1

Thismeanstha fiv,/9z (and fiv/1z) isnot zero; so that the other term in the continuity equation (167)

is not zero either. The only way the two sSdes of (168) can have the same order in e is for the
coefficient to be O(eV). Thisis accomplished by choosing:

u.=elu
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Next we examine the principle component of the Navier-Stokes equation. Although the flow is caused
by motion in the z-direction, the r-component is much larger (u. >> U for e << 1).

v,

r: V;
qr

™, __i@_'_ﬂl[lﬂ(rvr)}_ﬂﬂzvr
ro9qr

V,—— = 5
Iz re ir reqr rs 94z

Here we have added the subscript “f ” on the fluid densgity to avoid confusion with the dimensionless
radid coordinate. Nondimensondizing:

2
V) e s b 1o, ey ‘ﬂ{lﬂ(rU)}r el g2

R fr eR fz r¢RTr rfRZ‘ﬂ_f7 T 1 ri(eR)? 12°
O(e'z) O(e'z) O(e-l) O(e'3)

Clearly, the firgt viscous term and both inertia terms are negligible compared to the second viscous
term. Unless we have some other term in the equation of the same order, we will be forced to teke

'ﬂ% » =0, which (after no dip is applied) yieldsu = O for dl z. This would violate continity. Thus
z

we choose p,. S0 that the pressure derivative has the same order as the second viscous term:

-1
P _ MU

rfR_rf(eR)2 eR

Findly, welook at the secondary component of the Navier-Stokes equation:

z Vy

v, Y v, - 1 E_{_ﬂil(r ﬂvz)+ m ﬂZVZ

Nondimengondizing:

1y
(UM W U W /ERP, MU L[ W), m U T
R T &R Mz reR Mz riRErIL ) ¢ (er)? 12
%/_/

I

Notethat P/fz isthe lowest order term in this equation. Moreover, it is the only term which is O(e”

4). Therefore when the perturbation expansions are substituted, and terms of like order are collected,
theleading term is
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e % =0 o Ry=Rr) (169)
z

S0 that the z-dependence of pressure can be neglected compared to the r-dependence. The resulting
problem to solve (going back to dimensiond quantities) is:

19(rve) |, v,

Continuity: =0 170
nuty rqr 91z (179)
2
NSE: m‘"—vzIr = do =const. w.rt. z (A7)
Iz r

Since the right-hand side is independent of z, we can integrate immediately to obtain the genera solution:

2
iy =L 4 0y(r)2+cy(r)
Boundary conditions are:
a z=0: Vi=Vv,=0
a z=h: v,=0,v,=-U
Applying the b.c.'s we get: | ¢ ¢ ¢ i ¢ ¢ ¢ ‘
1 dp i
v, =——2(z- h 172 o
=5 z(z- h) ) & i =
[
As before, dp/dr is determined such that continuity is Side View
satisfied. Now, however, macrascopic continuity requires: S)/i\f
h\ _ 2 \/
OV (r.2)2prdz= pr<u (173) \ AT
0 flow in ¥
through top ' y’
flow out through
walls of cylinder
. . - Top View ™~
(172) into (173) and requiring that the result be satisfied for A
any r yields W
dp r
—=-6enU — 174
dr h3 (174)
Requiring that: pP(R) =po
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we can integrate to obtain the pressure profile:
P- Poa

R%-r?
p(r)- po =3nU 3

which is ketched a right. Subgtituting (174) into (172):

oG]

The other component of veocity can be determined by
applying microscopic continuity. Using (151) and (175):

e ) () (]

Integrating subject tov,=0at z=0:

é 2 3 U
v, (r.z) =-u&Z2 &%y (176)
g gy “&hg H
To caculate the force exerted by the plate on the fluid, we use o

the unit normal pointing out of the fluid: n=k:

dF=k- I da

From the axisymmetry of the problem, we anticipate that there
will only be a z-component of this force, which we can caculate
by post dotting the above by k:

dF,=k- T- k da=(-pt+t)da
In this problem, the norma component of the deviatoric stress (t ,,) vanishes. Using (176):
t 7= MIVA1Z=, = n(-U)[6212 - 62203] |- = 0

This leaves just a contribution from the pressure. Since p(r,h) is independent of g, we choose da =
(2pr)dr to be athin annulus of radiusr and thickness dr:

3pnUR*

R
-F, = Zerp(r,h)dr = o

0
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Notice that, for afixed U, the force required becomes unbounded as h® 0.

REYNOLDS EQUATION

Sliding motion and squeezing motion are quite different. Yet the lubrication gpproximation for each
has alot in common. In particular, note that in either case, pressure can be taken as as a constant along
anormal to ether surface (compare (157) and (169)). In ether case, the dominant velocity component
is tangent to the surfaces and the principle component of the NSE is approximated by a baance
between viscous shear stress on the surface with the pressure gradient aong the surface (compare (158)
and (171)). It turns out that the lubrication gpproximation can be generdized to handle an arbitrary
combination of squeezing and diding mation in 3-D.

Congder two bodies of arbitrary (but smooth) shape v =Uye, +\he, +Whe
moving dowly through a visoous fluid in the near vicinity of 2= " T2%y z

each other. A rectangular Cartesan coordinate system is \ ZJ/I/
» hy (X, )
) 2

chosen s0 that the zaxis coincides with a draight line dy ]|~
connecting the two surfaces & the points of minimum d, e
approach. The origin is located a some arbitrary point h, (X,y)

dong thisline. d; represents the distance (along the z-axis)
from the origin to the surface of body i (i = 1,2), while z=-
hy(x,y) and z=hy(x,y) describe a portion of ther surfaces
nearest the origin. Let Ry and R, be the radii of curvature
of body i inthex- and y-directions, respectively.

V= Ulex +Vley +Wlez

For distances h;(x,y) much lessthan both R and Ry, h; can be approximated by8

2 2
X
h(xy)=d +—+
2Ry 2Ry
Thetotd distance between the two surfacesis
h h d S
X, = X, + X, =d+ + 2
(X,y) =h (X, y) +ha(Xy) 2R, 2R,

whered =d; + dyand R (j = x,y) can be considered to be the radii of curvature of the film:

8 Actudly, this assumes that the principle radii of curvature of both surfaces lie dther in the x- or y-
directions. Should one of the surfaces be rotated around the z-axis by an angle q, the function acquires
an addition term which is proportiona to xy Sng cosg.
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1 1 1

- 4 —

Ri Ry Ryj

Asin the two previous examples, scding leads usto the following equations for the velocity profilein the
film:

2% _ S
2
vy b
2 W

where the pressure profile isindependent of z

P =p(X.y)

Since pressure isindependent of z, these equations can be easily integrated to yield the velocity profilein
the film, which again turns out to be the sum of linear shear flow (from the diding maotion) and a
parabolic pressure-driven flow.

1
v, =P [ - Zhy - hy)- h1h2]+—(z+h1)+U1 (177)
x 2m
1
vy = Lty ) iy |+ B ) s
where DU ° U2'U 1 and DV o V2-V1

Sill unknown is the pressure profile, which is found by requiring the velocity profile to satidfy the
continuity equation. In particular, Since pressure is independent of z, we will choose p to satidy the
integra of the continuity equation with respect to z

ha (X, y,t)
I (N-v)dz=0
-y (x,y.t)

Expanding the divergence and separating derivatives with respect to z from those with respect to x and
y:

hy hy
N~ N 3ﬂTVX 1-[Vy ﬂVZ O —
S(N- v)dz= Og T v ;dZ—O (178)
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Applying Leibnitz rule for differentiating an integrd whose limits are functions of the differentiation
vaiable

ho (x,y) ho (%, y)
1 N N v (- hl
o o) Ve (%, y, 2 dz= 0 ﬂ—;dz +vx(x,y,hz)%- Vi (X, y,- hy) (‘ﬂx )
- by (x,y) -hy (xy) U, Uy
hy hy
vy 1 i, h
So) O dz—— va(x y, z)dz- Uzﬂ—-Ul ™ (179)
hy
Subgtituting the velocity profile (177) into (179) and integrating leads to:
hy 3
. + h+h) 1
OVX dz= hl' 2hz (Ul +U2)' —( 1Zn) ﬂ_)r()
-hy
0 1 by fhpo g 1pd
Differentiating x OV dZZE(UlJrUZ)SW W5 T T
where h=h;+h,
hp
(179) becomes A Mgy L T galpg 1, DN (180)
N x 1Zn‘ﬂx8 ﬂXg 2 x
1
where Dh=h,-hy
Thereisavery amilar result for the integra of ﬂvy/‘ﬂy:
2
c‘)—y = 1;” I ?.3 fpo 1 py 1D (181)
Ry Ty WE vy 2 iy
Findly the result for theintegra of v, /z:
hy hy
O AWz g, = (‘)dvZ =v, (X, y,hy) - v5(x,y,-h)=DW (182)
-hy W, W,
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Adding (180), (181) and (182), stting to zero (to satisfy (178)) and rearranging:

1(h3@) +l(h3EJ —-6mpu T v I L 1o (183)
X ™x%) Tyl Ty X Ty

which is cdled Reynolds lubrication equation. The solution to this equation yields the pressure
profile in the gap for any prescribed trandation of the two bodies. Outside the gap, the pressure must
approach the bulk pressure, which istaken to be zero

P® 0as(x2+y?) ® ¥
In the specid case in which upper and lower surfaces are surfaces of revolution around the same axis,

polar coordinates (r,q) are more convenient than (x,y) sncethen hy = hy(r) and hy = hy(r). (183) can
be written in invariant vector notation:

Nsr(hSNSp) =-6m(vy - vi)fny -nyg) (184)

wherev; isthe velocity of body i (i = 1or 2) and n; are local normals to body i (not necessarily of unit
length). In particular n; is defined as:

ni = Nfl
where f1(x,y,2) = hy(x)y) +z
and fa(X,y,2) = ha(X,y) —z

Thet n; arelocal normalsto body i follows from the fact thet f4 is a constant on surface #1 (defined as z
=-h4) and f, isacongtant on surface #2 (defined asz = +h,). If we decompose the velocity of the two
bodies into contributions along the z axis and in the xy plane

Vi = Vg + We,

then (184) becomes

~ 3,., _ ~
Ng ’(h Ng p) = -6IT(V52 - Vsl))Ns (l‘g } I‘!L) +  12nDW (185)
sliding motion squeezing motion
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Example#1l. Let'sreformate the diding-flow problem for
a plate diding past a cylinder (see page 163). In this
problem the equation of the lower surface (the plate) is just

hy(x,y) =0

The equation of the upper surfaceis

X
X) = hy +—— .
i‘12( ) IAb 2 R ,II’, \\T‘,r \\\
2 AN
Thetotal gap between the two surfacesis / H L

2

NGO =ty +hy =g+

For Reynolds equation, we aso need
Dh=h, - hy =h(x)

The velocity of the lower surfaceis

U;=U V;=0 W;=0
while the upper surface is Sationary:

U,=0 V,=0 W,=0
The following quantities gppear in Reynolds equation

DU=-U DV=0 DW=0

Reynolds equation becomes i(ﬁﬁj _gny dn
dx dx dx

which is identical to the derivative of (164). Solving this 2 order ODE leads to the same pressure
profile we determined earlier.

Example #2.

Now let’s reformulate the squeezing flow problem on page 167. In this problem the equation of the
lower surface (the plate) isjust

hi(x,y) =0

The equation of the upper surfaceis hy(X,y) = h

Copyright © 2000 by Dennis C. Prieve



06-703 176 Fall, 2000

The tota gap between the two surfacesis
h=hy +h =h
For Reynolds equation, we aso need
Dh=h,-h;=h
The velocity of the upper surfaceis
U,=0 V,=0 W,=-U
while the lower surface is stationary:
U;=0 V;=0 W;=0
The following quantities appear in Reynolds equation becomes

DU=0 DV=0 DW=-U
(185) becomes R x(h3NS p) = - 12mU (186)

Because the upper surface is a circular disk and the gap is uniform, we expect squeezing flow to be
axisymmetric in cylindrica coordinates. In other words, we expect that p = p(r) (i.e. o g-
dependence). In cylindricd (r,q,2) or polar coordinates (r,q), the gradient is8

< 1
Nsp :ﬂ_rper
. , . - - 1dadpo
while the divergenceis . 3R -2 &0
S)( Sp) r drg dr g
(186) becomes 14300 1omy
r drg ar g

Multiplying through by r and integrating:

§ see http://www.andrew.cmu.edu/course/06-703/V ops cyl.pdf
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Dividing by rh3 e — +—

When this is integrated a second time, the second term will lead to a logarithmic singularity a r=0. To
keep pressure finite, we choose ¢=0 and then the above equation is identical to (174). Solving this 2
order ODE leads to the same pressure profile we determined earlier.

Example#3. Siding of aplate past a sphere

n this problem the equation of the lower surface (the plate)
isjust

hy(x,y) =0

The equation of the upper surfeceis

r2

hz(r):ho+ﬁ

The totd gap between the two surfacesis

2
i
hir)=h +h, =hy+—
(r) =ty +h; 0t om

For Reynolds equation, we aso need
Dh=h, - hy =h(r)
The velocity of the sphereis purely dong the x-axis
Vo = Vg = Ue, = e, Ucosq - e, Usnq
U,=U V,=0 W,=0
while the lower surfaceis stetionary: Vi=Vvq =0

The following quantities gppear in (185):

& ~ dh
Ns(hZ' Q)=Nsh:d—er
r
N _ : h ¢ _,, dh
(vs2 - vaa) s (1 - ) =(U cosa g - U sinaeq) F5 e 9= Soosg
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. 3 qn0
1930, 193" PO ) @cosq

(185) becomes r : :
rfré o rfagr Ta; dr

The solution for sphere of radius R, diding dong aplate at speed U in the x-direction, is:
oerJx

h(x.y)]’

This produces no force in the z-direction (pressure profile is antisymmetric) but of course a force must
be applied to the sphere to get it to move:

p(xy)=

_16 R 0
R“"§WMRmE+O@) asd® 0

Fy=F,=0
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Turbulence

GENERAL NATURE OF TURBULENCE

In dl the problems we have andyzed to date, the fluid dements travel dong smooth predictable
trgectories. This state of affairsis caled:

laminar flow - fluid dements travel dong smooth determinigtic trgectories

These trgjectories are Sraight pardle lines for smple pipe flows. However, thisis not the only solution
to the equations of motion. Congder the following experiment

Reynolds Experiment (1882) - inject a thin stream of dye into a fully developed flow in a pipe;
observe the dye downstream. (see S:37)

. FIOW Fig. 32. Water, upper: velocity 11 cmis, Ae = 1.5 x 10°, middle: velocity 17 em's, Re = 2,34 R
% 107, lower: velocity B4 cmv's, e — 7.5 = 107, pipe mim, diye imjection method.
Direction : v Ae — 7.5 % 10°, pipe ID 14 lye inj €

—_—> : 1500

 for laminar flow: dye stream appears as a straight colored threed

As the tota flow rate of fluid in the pipe is increased, a sudden change in the gppearance of the dye
dream occurs. The thread of dye becomes more radidly mixed with the fluid and, far enough
downgtream, its outline becomes blurred.

* for turbulent flow: irregular radid fluctuations of dye thread

Using a pipe with a sharp-edge entrance, Reynolds determined the critica flow rate for a large number
of fluids and pipe Szes He found in dl cases the trangtion occurred a a critical vaue of a
dimensionless group:

r(v,)D

m
%/_J
Re

=2300+ 200
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where (V,) is the cross-sectiond average velocity (= volumetric flowrate / pipe ares). Today, we
know this dimensionless group as the Reynolds number .

origin of turbulence - ingability of laminar-flow solution to N-S egns
instability - smal perturbations (caused by vibration, etc.) grow rather than decay with time,

That the laminar-flow solution is metastable for Re>2100 can be seen from Reynolds experiment
performed with a pipe in which disturbances are minimized:

- reduce vibration
- fluid enters pipe smoothly
- gmooth pipe wal

Under such conditions, laminar flow can be seem to persist up to Re = 104. However, just adding
some vibrations (disturbance) can reduce the critical Re to 2100. The onset of turbulence causes a
number of profound changes in the nature of the flow:

- dyethread breaks up -- streamlines appear contorted and random
- sudden increasein Dp/L

- locd v fluctuates wildly with time

+ dmilar fluctuations occur in vy and v,

As a conseguence of these changes, no smplification of the N-S equation is possble: vy, v
dl dependonr, g, zand t.

g Vzand p

TURBULENT FLOW IN PIPES

Velocity profiles are often measured with a pitot tube, which is a device with a very dow response
time. Asaconsegquence of this dow response time, the rapid fluctuations with time tend to average ot.
In the descriptions which follow, we will partition the instantaneous velocity v into atime-averaged vaue

V (denoted by the overbar) and afluctuation v ¢ (denoted by the prime):
V=V+V(e

Cross-sectional area averages will be denoted by enclosing the symbol insde carets:
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R
Ivz(r)Zprdr
(7)==
_[Zprdr
0

In laminar flow, the velocity prafile for fully developed flow is parabalic in shgpe with a maximum
velocity occurring a the pipe center that is twice the
cross-sectional mean velocity:

L L. B
In turbulent flow, the time-averaged veocity profile i
has a flatter shape. Indeed as the Reynolds number Be — J‘m.nm
increases the shape changes such that the profile _+ )
becomes even flater. The profile can be fit to the ( ) 77 T N\
following empirical equation: pipe i
venlortmye E
B B R-r 1n a \I
VZ(r) = Vz’maX R LJ ! \j
pipc walls
where the vaue of the parameter n depends on Re:
Re= 40x103 23x104 11x10° 1.1x106 20x106 3.2x106
n= 6.0 6.6 7.0 8.8 10 10
Vmax/<Vz> 1.26 1.24 1.22 1.18 1.16 1.16

The reduction in the raio of maximum to
average velocity reflects the flattening of the
profile as n becomes larger. Of course, this
equation gives a “kink” in the profileat r=0 _Vz
and predicts infinite dope a& r=R o it 'z
shouldn’'t be applied too close to either
boundary dthough it gives a reasonable fit
otherwise.

How big are the fluctuations relaive to the - - !
maximum velocity? |nstantaneous peeds can 02 | - | | _I | -
be obtained for ar flows usng a hot-wire
anemometer. Thisis amply a very thin wire 00 | | ‘
which is dectricadly heated above ambient by 00 0.2 0.4 0.6 08 1.0

passng a current through it. As a result of R-r
dectrica heating (12R) the temperature of the R

wire will depend on the heat trandfer
coefficient, which in turn depends on the
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velocity of flow over the wire
Vz- -->h- -->Tyire Tair

It's easy to determine the temperature of the wire from its eectrical resistance, which generdly increasses
with temperature. The reason for making the wire very thin is to decrease its thermd inertia. Very thin
wires can respond rapidly to the rapid turbulent fluctuationsin v.

Anyway, the indantaneous speed can be measured. Then the
time-averaged speed and the fluctuations can be calculated. The
root-mean-square fluctuations depend on radid postion, as
shown & right. Typicaly the axid fluctuations are less than 10%
of the maximum velocity wheress the radid fluctuations are
perhaps hdf of the axid.

Note that the fluctuations tend to vanish a the wal. Thisis a
result of no-dip (gpplies even in turbulent flow) which requires
that the instantaneous velocity must vanish a the wall for dl time,
which implies that the time average and the ingtantaneous
fluctuations mugt vanish.

TIME-SMOOTHING

As we will see shortly, these fluctuations profoundly increase transport rates for heet, mass, and
momentum. However, in some gpplications, we would be content to predict the time-averaged vel ocity
profile. So let’stry to time-average the Navier-Stokes equations with the hope that the fluctuations will
average to zero.

Firgt, we need to define what we mean by atime-averaged quantity. Suppose we have some property
like velocity or pressure which fluctuates with time:

s=4t)
We can average over sometimeinterva of haf width Dt:

1 (t+Dt N et
S(t) 0 ﬁ t- Dt S(t )dt

We dlow that the time-averaged quantity might dill
depend on time, but we have averaged out the rapid
fluctuations due to turbulence.

Y

Now let's define another quantity called the fluctuation
about the mean:
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s(t) ° s(t) - (1)

TIME-SMOOTHING OF CONTINUITY EQUATION

The smple functional form of our experimentaly messured velocity profile -- v, (r) -- is exactly the

same as for laminar flow. This suggedts, thet if we are willing to settle for the time-averaged velocity
profile, then | might be able to get the result from the NSE. Let’s try to time-smooth the equation of
motion and see what happens. We will start with the equation of continuity for an incompressible flow:

N-v=0
Integrating the continuity equetion for an incompressible fluid and dividing by 2Dt:

Dt D
[ P = [
2Dt Jt- Dt 2Dt Jt- Dt

Odt'=0
Thus the right-hand-side of the equation remains zero. Let's take a closer look at the left-hand sde.
Interchanging the order of differentiation and integration:

1 (t+Dt. Y 1 (t+Dt .
ﬁ t-DtNXth _Nx{ﬁ-[t-Dtth}_Nxv

Substituting this result for the left-hand Sde of the continuity equation, leaves:
N>¥ =0

Thus the form of the continuity equation has not changed as aresult of time-smoothing.

TIME-SMOOTHING OF THE NAVIER-STOKES EQUATION

Encouraged by this amplification, we try to time-smooth the Navier-Stokes equation:

r%+rv>ﬂv:-l§|p+nﬂzv+rg

After integrating both sides with respect to time and dividing by 2Dt, we can bregk the integrd of the
sum into the sum of the integrds. Mogt of the terms transform in much the same way as the left-hand
Sde of the continuity equetion. Theresultis

r%+rv>¢\lvz-l§lp+nﬂzv+rg

With alittle additional massaging (see Whitaker), the remaining term can be expressed as
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rvxily = rV><NV+N><rv¢/EI)

If the second term on the right-hand side were zero, then NSE after time-smoothing would have exactly
the same form as before time-smoothing.  Unfortunately, this term is not zero.  Although the average of
the fluctuations is zero, the average of the square of the fluctuations is not zero. So this second term
cannot be dropped. Thus the time-smoothed Navier-Stokes equation becomes:

r%+rv>ﬂv:-|§m+nﬂ2v+rg+l§|{(t)

where E(t) =-rv¢

has units of stress or pressure and is cdled the Reynold's stress. Sometimes it is dso cdled the
turbulent stress to emphasize that arises from the turbulent nature of the flow. The exisence of this
new term is why even the time-averaged veocity profile insgde the pipe is different from that during
laminar flow. Of course, our empirical equation for the v, (r) isaso different from thet for laminar flow.

Although we don't yet know how to evaluate this Reynolds stress, we can add it to the viscous siress
and obtain a differentia equation for their sum which we can solve for the smple case of pipe flow.
Here's how we do it. Firg, recdl that for incompressble Newtonian fluid, the stress is related to the
rate of strain by Newton'slaw of viscodty. Time smoothing this condtitutive equation yieds:

r=n|Ny+(R)'|

Taking the divergence K> =2y

c N voRiv= - p+ KT +rg+RNx®
Tt = = (165)
:-Nﬁ+rg+N>£(T)
where I(T) :i"'i(t)

is the tota dress, i.e., the sum of the time-averaged viscous stress and the Reynolds stress. Thus we
see that the Reynolds stress appears in the equations of motion in the same manner as the viscous stress.
Indeed the sum of the two contributions plays the same role in turbulent flows that the viscous friction
played in laminar flow.
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ANALYSISOF TURBULENT FLOW IN PIPES

We can make the same assumptions (i.e. the same guess) about the functiond form of the time-
averaged veocity and pressure profile in turbulent flow that we made for laminar flow: we will assume
that the time-averaged velocity profile is axisymmetric (v,=0, 1/1g=0) and fully developed (1/1z=0).

V, =V,(r) ¥ =Vq=0

pP=p(2
Then the z-component of (165) yieds
o=-TP 2T (D 1y )
=- o oz )'_ T,
Iz rMr r 19

1z
—_— — — T

where P is the time-averaged dynamic pressure. This form of this equation was obtained using the

tables in BSL (top haf of p85, egn C), dfter replacing the indantaneous quantities by their time

averages, except that the instantaneous viscous stresses t has been replaced by (minus) the total stress
t(T). Expecting the time-averaged flow to be axisymmetric (1/flq = 0) and fully developed (/91z = O,

except for pressure), the last two terms in this equation can be dropped and the second term is a
functionof r only. This leaves us with the same equation we had for laminar flow: a function of r only

equd to afunction of z only. The only way these two terms can sum to zero for dl r and z is if both
equal agpatia congtant:

P 191p)=- P oo

dz  rar
Thisimpliesthat pressure P varieslinearly with z. Solving for the total stress fg) by integrating:

1DP ¢
i) = STt Y (166)

The integration congtant ¢ was chosen to be zero to avoid having the stress unbounded a r=0. Now
thisisthetotal stress: the sum of the Reynolds stress

tf) =-rvevg
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and aviscous contribution from time-smoothing Newton’s law of viscosity:

T, =m¥z
dr

The later can be determined by differentiating the time-averaged
velocity profile. If we subtract this from the total we can determine
fﬁtz) -- one of the components of the Reynolds stress tensor.  The

result is shown in the figure a right. Notice that the turbulent stress
tends to vanish near the wall. This can be explained by noting that at
the wall, “no dip” between the fluid and the sationary wal requires
that the ingtanteous velocity, as well asits time average, must be zero:

v, =v,=0P vg=0P W =-rvevg=0
In terms of the relative importance of these two contributions to the total, one can define three regions:
1. turbulent core:t®>>t. Thiscovers most of the cross section of the pipe.

2. laminar sublayer: t<<t. Very near the wall, the fluctuations must vanish (dong with the
Reynolds stress) but the viscous stress are largest.

3. transition zone: t O»t. Neither completely dominates the other.

When applied to the Stuation of fully developed pipe flows, continuity is auttomatically satisfied and the
time-smoothed Navier-Stokes equations yields only one equation in 2 unknowns.

2 unknowns: v,(r) and rvgvg
Clearly another relationship is needed to complete the modd. This missng relationship is the

constitutive equation relating the Reynolds dress to the time-smoothed velocity profile. One might
be tempted to define a quantity like the viscosity to relate stress to the time-averaged velocity.

£) i) 9%z
dr

But if you define the “turbulent viscogty” thisway, its value turns out to depend strongly on position.

m? _|»100 near pipe centerline
m |o at pipe wall

S0 unlike the usud viscosty, m® is not a materia property (since it depends on position rather than
just the materid).

Copyright © 2000 by Dennis C. Prieve



06-703 187 Fall, 2000

PRANDTL’SMIXING LENGTH THEORY

The firgt successful condtitutive equation for turbulence was posed by Prandtl in 1925. Prandtl imagined
that the fluctuations in ingantaneous fluid velocity at some fixed point were caused by eddies of fluid
which migrate across the flow from regions having higher or lower time-averaged velocity.

eddy - a packet of fluid (much larger than a fluid dement) which can undergo random migration across
dreamlines of the time-smoothed ve ocity field.

These eddies have a longitudind velocity which corresponds to the time-average velocity at ther
previous location.

As this eddy moves across the dreamlines, it '

gradudly exchanges momentum with the surrounding y

flud which is moving a a different longituding eddy migrating
vdocity.  But this exchange does not occur - ([gr‘ggsm][ oW
indantaneoudy. The eddy retains its origind velocity I v

for a brief period of time. We might cdl this the —

mixing time. During this time, the eddy migrates > >

|aterdly adistance| cdled the mixing length: ()

mixing length () - characteristic distance an eddy
migrates normd to the main flow before mixing

Although momentum exchange between eddies occurs continuoudy in actud turbulent flow, Prandtl
imagined that a migrating eddy keeps dl of its originad velocity until it migrated a digance | and then
suddenly it exchanges it.  This is like molecules of a gas retaining its momentum until it collides with
another gas molecule, which causes a sudden exchange of momentum. Indeed, you might find it helpful
to think of the mixing length as being the andogue of mean-free-path in the kinetic theory of gases.
Recdl that:

mean-free path - average digance a gas molecule A
travels before colliding with another gas molecule.

. . v/ . {y+ [y
Now suppose we are monitoring the instantaneous :
velocity at adistancey from the wall when an eddy drifts | L —— ;x(}-’}
into our location from y+l. Because this migrating eddy ‘
has a higher velocity than the average fluid a 'y, we will
observe an positive fluctuation when the eddy arives. 5
To edimate the magnitude of the fluctuation, we can
expand the time-smoothed velocity profile in Taylor
series about y=y:

Copyright © 2000 by Dennis C. Prieve



06-703 188 Fall, 2000

2
|+%CI V2X 12 +...
dx y

_ _ dv
Vx(y+|):Vx(Y)+d_;

y
Asauming that | is sufficiently smal that we can truncate this series without introducing significant error:

.
(V) apove = (Y +1) - T(y) » 1=

where the subscript “above’ is appended to remind us that is the fluctuation resulting from an eddy
migrating from above. At some later time, another eddy might migrate to our location from below,
producing a negative fluctuation in velocity:

= o dv
(VQ)deW = Vx(y' l)' Vx(y) » - Id_X
y
Of course the average fluctuation is zero: v¢ = 0, but the average of the squaresis not:

2
2( dvy

Now let'sturn our attentionto v¢. Thisis related to how fast the eddies migrate, and the sign depends

ve? > 3o ]

above

(97,

on whether they are migrating upward or downward.

If the eddy migrates from above, it represents a ;v{‘,)

negdtive y-fluctuation (it is moving in the -y direction). I Gl b
Such an eddy will have a grester x-veocity than the v, r<D
fluid receiving it, consequently generating a positive x- A
fluctuation:
- - v
Vy <O0® vy’ >0 ® vy’ vy <0 >
X

On the other hand, if the eddy migrates from below, it
represents a podtive y-fluctuation but has less x-
veocity than the fluid receiving it, generating a negetive x-fluctuation:

vy 20® vy’ <0 ® vy vy <0
Findly, if thereis no vertical migration of eddies, there is no reason for the x-velocity to fluctuate:
Vy’ =0 ® VX’ =0

These three statements suggest that the y-fluctuations are proportiona to the x-fluctuations, with a
negative proportionaity constant:
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Vy' »-aVy'
wherea>0. Alternaively, we can write:
Vx' vy =-alvy )2

Time averaging and then subdtituting (167):

_ \2
Vg =-a(vg)® =-al 2(%)

Absorbing the unknown a into the (dill unknown) mixing length parameter:

_ \2
) :-rW:rlz(d—) (168)

dy
we could conclude that an apparent turbulent viscosity isgiven by:

) = 12| 9

Of course, this viscogity is not atrue fluid property, because it depends strongly on the velocity profile.

For this theory to be useful, we need a vadue for the “mixing length” |. There are two properties of |
which we can easly deduce. Firg of dl, | was defined as the distance norma to the wal which the
eddy travels before becoming mixed with locd fluid. Clearly, this mixing must occur before the eddy
“bumps’ into the wall, so:

Property #1. <y

wherey isthe distance from thewall. Secondly, we know from no-dip that the fluctuations al vanish at
the wall. Consequently, the Reynolds stress must vanish a the wal. Since the velocity gradient does
not vanish, we must require thet the mixing length vanish at the wall:

Property #2: =0 at y=0

If it’s not a condtant, the next amplest functiond relationship between | and y which satisfies both these
propertiesis:

Copyright © 2000 by Dennis C. Prieve



06-703 190 Fall, 2000
| =ay (169)

where a is some constant and O<a<1.

PRANDTL’S* UNIVERSAL” VELOCITY PROFILE

The veocity profile in turbulent flow is essentidly flat, except near the wal where the veocity gradients
are deep.  Focussing attention on this region near the flow, Prandtl tried to deduce the form for the
veocity profilein turbulent flow. Recdl from (166) that in pipe flow, the total stress varies linearly from
0 a the center line to amaximum vaue & thewal:

1DP r
't'(T) =- ——7 =t —<O 170
rz 2 L 0 R ( )
where we have defined to° -(V2)(RL)DP >0

which represents the stress on the wall. In the “turbulent core’, the Reynolds stress dominates the
“laminar” gtress; then subgtituting (168) through (170):

’[_g(ty) » ,[-g)

N
g
x
- Oi,

» A
to? R 47y

: 2 g
dy r R R
The generd solution to this 1% order ODE is

2 T2 "
viy*)=c+ 2 1o L. Srant 1- Lo (172)
al” r* a R

where C is the integration congtant, v* is caled the friction velocity and where we have introduced
dimensonless variables:

+
<[

+ V¥ v*

=—y ad R =—
=5 n
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Near thewadl (i.e. for y<<Ror y*<<R"), we can smplify (172):

Fall, 2000

+ +
for y*<<R*: 1- Y _=1. Y _+0(y*?) (173)
R 2R
+
tann? 1- Y = LR +0o(y*)
R* 2 y+

Dropping the higher-order terms.

+( +\_ 2- Inl4rR") 1

v (y ):—+C+—Iny (174)

a a
C
where c isa collection of constants.
This result can be derived more easlly by starting over with asmplified (171):
+

for y<<R ay&:v* or W _1dy _1dy (175)

dy vioay ayt

dv*
. . =+ 1 -+

which integrates to v =glny +C
where ¢ is some integration congant. When
plotted on semi-log coordinates, experimental T T T sz
velodity profiles do indeed show a linear R
region which extends over a couple of 5@ “
decades of y* vaues - — |
Moreover, the dope and intercept of this ‘i'c_?ﬁékfbms; -
draight line dont seem to depend on the o =1x0f

Reynolds number. Indeed, the dope and
intercept aso don't seem to depend on the
shape of the conduit. Rectangular conduits
yidds the same veocity profile on these

'

=23 10" ‘

- 4010 %! Mikuradse
= 1x10%; |
=gt 1L
- gax g™ ‘

! & Rejchardt

coordinates. This is cdled Prandtl’s
Universal Velocity Profile

y+>26: vF =25Iny* +55
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which gpplies for yt>26 (the turbulent core). This coefficient of Iny* corresponds to a=0.4. so (169)
becomes:

| =04y
Recall that we reasoned that a had to be in the range of 0 to 1 to be physicaly redidtic.

Inthe laminar sublayer, Reynolds stress can be totally neglected, leaving just viscous stress. This
closethewall, the total stressis practically a congtant equd to the wall shear stresst (y;

f » f(T)
y<<R dvy _
m——-= to
dy

Then we can integrate the above ODE for v, , subject to v, = 0 at y=0 (i.e. no dip):

Dividing both Sdes by v* we can make the result dimensionless:
y+<5: vi=y® (177)

which applies for O<y*™<5 (the laminar sublayer). Of course (176) aso does not apply near the
center of the pipe, Snce they* » R there, whereas (176) was derived by assuming that y* << R* (see
(173)).

PRANDTL’SUNIVERSAL LAW OF FRICTION

Let's try to figure deduce the andog of Poisuelles Formula (see page 86) for turbulent flow.
Poisuellles Formulais the relaionship between volumetric flowrate through the pipe and pressure drop.
Volumetric flowrate Q is caculated by integrating the axia component of fluid velocity of the cross
section of the pipe:

<\72> :p% —%J' rvz(r)dr

Now we are going to use (176) for the velocity profile, dthough we assumed in (175) that y<<R (where
y=Rr).
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Although the derivation of (176) assumed that "y B B e S At e
we are very close to the wall (ft<<R*, see 134-—] I | S P
(173)), (176) works remarkly well right out , ] |
to the centerline y*=R*. The plot & right ¢« [
shows the velodity profiles (with different wal 77
roughness on the wadls) compared with 10
predictions based on (176). The ordinateis o L
— — — x © smaoth
SR /) v ()= Y AR
v 7 o 126 | |
:2.5(|nR+-|ny+):2.5|n- 6 . S -2 N N N
5l e . ) _
= 2.5InE =2.5In R PAEERN ‘
y R-r ]®\§ ’
3 ORI . . — — —
1 TR |
Note that (176) predicts an infinite veloity- \\!‘%\ 1
difference a y=0, wheress the actual velocity T BB S
must be finite. Of course, (176) does not ) o P - 0?“»;{}
apply right up to the wall because very near ' ' ' oy
the wal the Reynolds dtresses are not R
dominant.
Subdtituting (176) and integrating:
(V2)=v* [2.5|n(" nR) " 175} (178)

Now the friction velocity can be related to the friction factor, whose usua definition can be expressed
interms of the varidblesin thisandyss.

Thus

Likewise, the usud definition of Reynolds number yieds
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g 2(vz)R
n
v*R_<\_/2>R, v* _Reyf
Thes n n <\_/Z>_ /2
Re/2 TE

Relating v* to f and <\_/z> to Re, (178) can be written as:

if =177In(Re[T ) - 060
\

1
or F = 4.07'0910(R€«/T) - 060

Fall, 2000

which fits experimenta data remarkable well. A dightly better fit can be obtained by adjusting the

coefficients.

1
NG 40logyo(Rey/f ) - 040

(179)

which is cdled Prandtl’s (universal) law of friction. It gpplies virtudly over the entire range of

Reynolds numbers normally encountered for turbulent pipe flow: 2100 < Re < 5x106.
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