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The difficulty in memorizing arithmetic facts is a general and persistent hallmark of math learning
disabilities. It has recently been suggested that hypersensitivity to interference could prevent a person
from storing arithmetic facts. The similarity between arithmetic facts would provoke interference, and
learners who are hypersensitive to interference would therefore encounter difficulties in storing arith-
metic facts in long-term memory. In this study, we created a measure of the interference weight for each
multiplication by measuring the overlap of digits between multiplications. First, we tested whether the
interference parameter could predict performance across multiplications by analyzing the data from
undergraduates published by Campbell (1997). The interference parameter substantially predicted per-
formance across multiplications. Similarly, the performance across multiplications was substantially
determined by the interference parameter in 3rd-grade children, 5th-grade children, and undergraduates
we tested. Second, we tested whether people with poor arithmetic facts abilities were particularly
sensitive to the interference parameter. We tested this hypothesis in typical development by analyzing the
data from the 3rd-grade children, 5th-grade children, and undergraduates. We analyzed data with regard
to atypical development from a published case study of dyscalculia as well as from 4th-grade children,
with either poor or good multiplication skills, tested twice 1 year apart. Results showed that the individual
sensitivity to the interference parameter determined part of the individual differences in multiplication
performance in all data sets. These findings show that the learning of multiplications is particularly
interference prone because of feature overlap and that people who are sensitive to this parameter therefore
encounter difficulties in memorizing arithmetic facts.
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Arithmetic facts are ubiquitous in daily life and are required
in all computations. The ability to quickly retrieve the answer to
basic arithmetic problems from the long-term memory (such as
2 � 5 � 10) is trained from primary school and constitutes the
basis of more complex calculation. The retrieval of arithmetic
facts is considered the most mature strategy in single-digit
problems because it is much faster and less resource demanding
than quantity-based or computing strategies. In addition to its
relevance to the development of numerical cognition, learning
arithmetic facts represents an ecologically valid memory task.
In order to understand how arithmetic facts are stored in mem-
ory, researchers first investigated which arithmetic operations

involved retrieval and which characteristics of the problem can
influence performance.

Among the four arithmetic operations, single-digit multipli-
cations are considered to be mainly solved by retrieval strategy.
Single-digit additions are known to involve both direct retrieval
(mainly for sums up to 10) and procedural strategies (e.g.,
Roussel, Fayol, & Barrouillet, 2002). Subtractions are rarely
solved by retrieval but imply quantity-based processes, and they
are sustained by brain regions other than those activated in
multiplications (Barrouillet, Mignon, & Thevenot, 2008; De
Smedt, Holloway, & Ansari, 2011; Yu et al., 2011). Finally,
divisions are also rarely solved by direct retrieval but often
involve access to multiplications (LeFevre & Morris, 1999).
Consequently, the major scientific contributions regarding
arithmetic facts have used multiplications and, to a lesser ex-
tent, additions.

Over recent decades, different models have been used to try
to determine the factors that influence performance across the
different multiplication facts. The most important and fre-
quently reported effect is the problem size effect, according to
which smaller single-digit multiplications are solved more
quickly and accurately than larger single-digit multiplications
(e.g., 2 � 3 compared with 7 � 8; e.g., Campbell, 1995;
Campbell & Graham, 1985; LeFevre, Sadesky, & Bisanz,
1996). In addition to being influenced by the highly predictive
power of the problem size, performance in single-digit multi-
plications is influenced by two other effects: the five effect and
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the ties effect. Controlling for magnitude, an advantage in
performance is observed in the problems including the number
five as an operand or including two identical operands
(e.g.,Campbell & Graham, 1985; De Brauwer, Verguts, & Fias,
2006).

Theoretical models of arithmetic facts represent problems and
answers linked in an interrelated associative network. The problem
size effect is attributed to problem-specific differences in the
strength of activation between problems and answers. Ashcraft
(1982, 1987) suggested that this variability in associative strength
stems from the frequency of usage of each problem, as he showed
that smaller calculations are encountered more frequently than
larger ones (Ashcraft & Christy, 1995). According to the Siegler’s
distribution of association model (Siegler, 1988), problems are
associated with the correct answer but also with wrong answers
generated by the subject in the past. When most associative
strength is concentrated in the correct answer, the problem is
represented by a peaked distribution that increases the probability
of retrieving the correct answer. Contrariwise, when associative
strength is dispersed among several answers, the problem is rep-
resented by a flat distribution that decreases the probability of
retrieving the answer. The problem size effect resides in the fact
that, during learning history, larger problems trigger more errors
than smaller problems; hence, distributions for larger problems are
flatter than those for smaller problems.

Another explanation for the problem size effect is provided by
Campbell (1995). According to his modified network interfering
theory, the problems activate magnitude representation of the
answers. Because the psychophysical scale for magnitude repre-
sentation is compressed as magnitude increases (Dehaene, 1992),
the answer magnitude representations of larger number problems
are more difficult to discriminate than those of smaller number
problems. Due to their bigger similarity in the magnitude code,
larger problems create more interference, and that increases the
retrieval time.

Although many children create a proper arithmetic facts net-
work during primary school, some of them encounter huge diffi-
culties. More specifically, an arithmetic facts deficit is the hall-
mark of developmental dyscalculia (math learning disability
without intelligence, sensory, or educational deprivation). Children
with dyscalculia systematically encounter difficulties in arithmetic
facts learning, and this trouble is persistent (Geary, Hoard, &
Hamson, 1999; Jordan, Hanich, & Kaplan, 2003; Jordan & Mon-
tani, 1997; Slade & Russel, 1971). Most children with dyscalculia
do not show the typical transition from a procedural computing
strategy to a retrieval strategy (De Smedt et al., 2011; Garnett &
Fleischner, 1983; Geary, Brown, & Samaranayake, 1991). Among
the different explanatory theories, several studies have suggested
that difficulties in arithmetic fact retrieval are due to a central
executive impairment (Barrouillet & Lépine, 2005; Kaufmann,
2002; Noël, Seron, & Trovarelli, 2004; Temple & Sherwood,
2002). In particular, it has been suggested that difficulty in arith-
metic fact retrieval is the consequence of a deficit in suppressing
irrelevant information (Barrouillet, Fayol, & Lathuliere, 1997;
Censabella & Noël, 2004; Geary, Hoard, & Bailey, 2012; Passol-
unghi, Cornoldi, & De Liberto, 1999; Passolunghi & Siegel, 2004).

In the same vein, De Visscher and Noël (2013) recently reported
a case study (DB) of dyscalculia with a circumscribed impairment
of arithmetic facts storage. In the context of perfect general cog-

nitive functioning, results revealed that DB had a hypersensitivity
to interference in memory. De Visscher and Noël formulated a new
hypothesis according to which hypersensitivity to interference in
memory prevents the storage of arithmetic facts because they are
made of very similar associations (between two operands and the
answer) corresponding to various combinations of the digits 0 to 9.
Similarity between items to remember has been shown to create
interference in memory. For instance, in a complex span test, the
encoding weight of an item is determined by its novelty. That is,
if this item is similar to previously encoded items, its encoding
weight will be smaller than if it was dissimilar to them (serial order
in a box model of Farrel and Lewandowsky, 2002). A way of
quantitatively apprehending similarity is to consider the feature
overlap between items, which has been suggested to partly account
for forgetting in memory tasks (the interference-based forgetting
model for feature overlapping of Nairne, 1990). In a situation
where items are very similar and share lots of features, the feature
overlap disturbs the storage of the items in working memory due
to interference (Oberauer & Lange, 2008). Hence, long-lasting
interference in long-term memory can result from this similarity
interference in working memory (such as in paired-associate learn-
ing; e.g., Hall, 1971). That is, previously learned items will inter-
fere with the new but similar items to remember, making this
subsequent learning much arduous than if they were dissimilar to
previous learning (proactive interference). Concretely, the recall of
an AC list is reduced when preceded by a similar AB list compared
to when preceded by a dissimilar DB list (Wickelgren, 1979).
Learning arithmetic facts that share lots of common features can
therefore be considered as a highly interfering memory task
(Wickelgren, 1979, p. 242). Consequently, people with heightened
sensitivity to interference in memory would encounter huge diffi-
culties in learning arithmetic facts.

This new hypothesis on the arithmetic fact storage deficit was
supported by a case study and has been tested in a larger group of
fourth-grade children who were developing their arithmetic facts
network (De Visscher & Noël, 2014). Twenty-three children with
poor arithmetic fluency and 23 control children matched in gender,
classroom, and age were submitted to an associative memory task
with interfering and noninterfering associations of nonnumerical
material. Results corroborated the hypersensitivity-to-interference
hypothesis by showing poorer performance in the interfering con-
dition by the children with poor arithmetic fluency compared to
control children; the groups did not differ in the noninterfering
condition. These studies produced data sustaining the theory that
an arithmetic facts deficit could stem from hypersensitivity to
interference in memory. However, despite a strong theoretical
background, these studies entail some limitations. Both studies
reported correlative data and therefore showed indirect relations
between the arithmetic facts capacities and sensitivity to interfer-
ence. Furthermore, these studies make use of the basic premise that
arithmetic facts are interfering because of feature overlap, but they
did not test this directly.

The similarity-based interference in arithmetic facts has been
previously underlined in the network interference model (Camp-
bell, 1995). According to this model, when a problem is presented
it will activate the magnitude representation of answers (which
explains the problem size effect; see above). In addition to the
magnitude code similarities, Campbell’s model includes a physical
code similarity that creates interference (through operand-related
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problems) and explains the feature errors and the priming effects
(see Campbell, 1987). According to this model, the two operands
and the operation sign of a displayed problem will activate other
problems according to the feature overlap (of digits and sign). A
weight of interference is given according to the type of feature
overlap (a weight for each common operand and sign). The prob-
lem node activation will depend on the total similarity correspond-
ing to the sum of the feature matching (of operands and sign) and
magnitude-similarity values (of answers). Campbell’s work shows
the effect of interference in retrieval and allows us to predict the
types of errors or the problems that interfere with each other. In
this article, the idea is to globally determine the level of proactive
interference for each multiplication, simply by computing the
number of feature overlaps between a problem and the previously
learned problems, and test whether this determines its difficulty.
The aim in this article is to evaluate the role of interference
mechanisms within the typical and atypical learning of arithmetic
facts (i.e., in the storage and the retrieval from long-term memory).
The hypersensitivity-to-interference hypothesis postulates that
arithmetic facts learning is an interference-prone situation, as a
result of the feature overlap. According to the interference-based
forgetting model for feature overlapping (Nairne, 1990; Oberauer
& Lange, 2008), the more features items share, the weaker their
memory traces will be.

Considering this, we calculated a level of interference for each
arithmetical problem. We focused on single-digit multiplication
problems because they are known to be mainly solved by retrieval.
We considered the interference to be coming from the structure of
the problems (different combinations of the basic 10 digits), and
we calculated the degree of overlap of each multiplication with the
others (taking into account the problem and its answer). Because
the hypothesis is about proactive interference, the usual problem
learning order was taken into account. The idea being that encod-
ing interference in the learning stage results in long-term associa-
tive interference. Analysis of the feature overlap according to the
learning order provides us with an interference parameter for the
different multiplication problems.

First, we assess the prediction power of the interference param-
eter over performance across multiplication problems and compare
it to that of the problem size effect, a parameter that has been
shown to largely explain performance across problems. We eval-
uate the influence of the interference parameter in published data
(Campbell, 1997) and, subsequently, through the development of
the arithmetic facts network by analyzing the performance in
different multiplication problems of third-grade children, fifth-
grade children, and adults.

Second, we investigate the individual differences in multiplica-
tion and test whether individual sensitivity to the interference
parameter of the problem predicts performance in multiplication.
In other words, we test whether being sensitive to the feature
overlap of the problems determines an individual’s performance in
multiplication. Another hypothesis could be that the performance
is determined by sensitivity to the problem size. One can imagine
that when someone has difficulties in multiplication, his or her
difficulties will be exacerbated by the problem size. We challenge
these two hypotheses in three different sections. First, we test
whether individual sensitivity to the interference parameter in
multiplication predicts the performance of third-grade children,
fifth-grade children, and adults, beyond the sensitivity to the

problem size. Second, we look at the previously published data of
the case study DB and test whether she showed higher sensitivity
to the interference parameter of multiplication problems than con-
trols did and whether she showed sensitivity beyond the problem
size effect. Finally, we challenge this hypothesis from a longitu-
dinal perspective by testing children twice, once in the fourth grade
and again 1 year later. This last experiment comprises two other
investigations that refine the hypersensitivity-to-interference hy-
pothesis. On the one hand, we investigate whether sensitivity to the
interference parameter in multiplication is linked to sensitivity to
interference in general, to inhibition capacities and/or to verbal
memory capacities. On the other hand, we test whether the hyper-
sensitivity to interference triggers difficulties in the retrieval stage
due to a storage deficit or an access deficit.

The Interference Parameter

In order to test sensitivity to interference directly with arithmetic
facts, we created a variable measuring the interference level of
each problem. As mentioned, we focused on single-digit multipli-
cation problems because they are known to be mainly solved by
retrieval, and if not, to lead to a clear increase in reaction time. The
36 different combinations of operands from 2 to 9 (without the
commutative problems) were taken into account. Because Camp-
bell (1995; see also Rickard & Bourne, 1996) showed that com-
muted pairs are similar in difficulty and because we did not take
into account the position of the digits in the problems, we did not
differentiate them. Indeed, according to the feature overlap model
(Oberauer & Lange, 2008), the position value of features does not
play a role. The problems with 0, 1, or 10 as an operand were also
excluded, as they are probably solved by rule-based strategies
(e.g., Sokol, McCloskey, Cohen, & Aliminosa, 1991).

The aim is to determine the level of proactive interference for
each problem based on the feature overlap concept described in
interference-based forgetting memory models (Nairne, 1990;
Oberauer & Lange, 2008). Specifically, the capacity to store and
retrieve the product of a multiplication depends on the memory
capacity to strongly bind two operands to the right answer. From
a memory perspective, all single-digit multiplications are therefore
associations composed of common features; namely, the 10 digits.
Problems that share lots of features will be more interfering and
will be less easily retrieved than problems with rare associations of
digits (which are therefore more distinctive problems). We assume
that the encoding-related interference in learning accumulates as
more problems are added to the long-term representation and
results in long-term associative interference. We thus calculated
the number of associations a problem shares with the other prob-
lems and named this variable the interference parameter. The first
parameter we created measured the feature overlap between all
problems. Taking a developmental perspective into account and
assessing the proactive interference of multiplications, we calcu-
lated the feature overlap of a problem with the previously learned
problems only. The multiplication tables are usually taught starting
with the two times table and working up to the nine times table.
We therefore considered this order of learning. Comparing the
power of these two parameters on the data of Study 1, the proactive
interference parameter turned out to explain more variance than
the full interference parameter. Besides, the proactive interference
parameter theoretically agreed better with our hypothesis than the
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full interference parameter did. Only the proactive interference
parameter has therefore been used in this article. All measures and
factors that were part of the study are reported hereafter.

We calculated the frequency of association of two digits in all
problems (considering both operands and product). We did not
consider the frequency of one digit, because this amounts to
considering the frequency of the answer digits only. Indeed, each
operand appears the same number of times in all the problems (8
instances � 2 operands). So, for this reason and because we
consider arithmetic fact learning to be an associative memory task,
we calculated the frequency of co-occurrences of digits. The
presence of only one digit is unlikely to cue a problem, but the
co-occurrence of digits shows a particular association that can be
more or less frequent and can trigger the activation of problems.
For instance, the occurrence of two 2s is rare in multiplications
because only two problems include two 2s: 2 � 2 � 4 and 2 � 6 �
12. So, these problems appear relatively distinctive compared to
others. Contrariwise, the association of 2 and 8 is quite frequent
because seven multiplications include them. The first problem we
learn with this association (of 2 and 8) is 2 � 4 � 8. At this point
there is no interference with previous problems. Proactive inter-
ference progressively increases from encountering 2 � 8 � 16,
then 2 � 9 � 18, then 8 � 3 � 24, then 7 � 4 � 28, then 4 � 8 �
32, and eventually 8 � 9 � 72. The scoring method for the level
of interference follows the principle of one point for each two-digit
association shared with a previously learned problem. Conse-
quently, when a problem shares three digits with a previously
learned problem (such as 3 � 9 � 27, which shares three digits
with 3 � 7 � 21), this overlap will score three points (because the
association of three digits amounts to three possible combinations
of 2 digits). An example of scoring is illustrated in Table 1. The six
combinations of two digits belonging to the problem 3 � 9 � 27
(combination of the digits 2, 3, 7, and 9) are 23, 27, 29, 37, 39, and
79. Considering that children learn the two times table (�2 up to
9) and then the three times table (�3 up to 9), this problem is the
15th problem encountered. Among the 14 previously learned prob-
lems, 7 shared similar associations of digits (see Table 1). The
number of similar digit associations with the previously learned
problem represents the level of proactive interference that the
current problem receives (9 in Table 1).

The problems learned in the first place are 2 � 2 � 4 and 2 �
3 � 6. They do not have any interference (level of interference is
0). The first feature overlap is encountered with the third problem

learned (2 � 4 � 8), which shares the digits 2 and 4 with 2 � 2 �
4. The problems encountered later are not necessarily the most
interfering. The problem 7 � 7 � 49, for instance, is learned 31st
but is ranked 16th in the interference weight. Conversely, the
problem 4 � 8 � 32 is learned 20th but is the most interfering
problem. The result of this computation is presented in Figure 1.
All 36 multiplications are ordered according to their interference
level, which is represented by a blue (gray) bar.

The aim in this article is to test whether the proactive interfer-
ence based on the feature overlap of problems is an important
factor for the typical and atypical development of an arithmetic
facts network, beyond the effects already shown in the literature.
Before reporting the analyses based on our data, we tested whether
the interference parameter can explain differences of performance
across multiplications by analyzing the data published by Camp-
bell (1997). In this paper, Campbell tested 44 undergraduates and
reported mean reaction time and number of errors for each multi-
plication problem (all multiplications including operands from 2 to
9, 64 problems). These data are used to test our interference
parameter and compare it with the different effects (ties, five, and
size effects) reported in the literature.

Ties and Five Effects

First, the interference parameter could potentially explain the
ties and five effects, because this parameter is based on the
co-occurrence of digits. The ties have two identical digits in their
digits combination (two identical operands), which is relatively
rare among multiplication problems. The problems including the
digit five as an operand are the only combinations of digits
including the digit five (no answer comprises a five outside the
five times table). Hence, these problems are less interfering ac-
cording to the feature overlap interference based on digits.

We first test whether performance in ties problems and in five
problems are similar (excluding the problem 5 � 5). The two types
of problems showed similar performance, in terms of accuracy,
t(19) � 1, and reaction time, t(19) � �1.321, p � .202. Conse-
quently, these special problems are considered together. Compared
to the other problems, these special problems are performed better,
in terms of accuracy, t(53.789) � 4.770, p � .001, as well as
reaction time, t(58.845) � 5.400, p � .001. More important,
considering the interference parameter, the five and ties problems
are shown to be less interfering than the other problems,
t(58.508) � 4.043, p � .001; M (SD) of interference level: five and
ties, 5.5 (4.3); other problems, 10.9 (6.5).

Finally, we ran a generalized linear mixed model on the reaction
time across multiplications, including the categorical variable ties
and five, the interference parameter, and their interaction. A main
effect of the interference parameter was found, F(1, 60) � 8.954,
p � .004. The ties and five effect was not significant, F(1, 60) �
2.581, p � .113, and there was no interaction (F � 1). The same
model run on the mean accuracy across multiplications showed the
same results, with a main effect of the interference parameter, F(1,
60) � 6.151, p � .016, and no effect of the ties and five variable
nor interaction (both Fs � 1).

To conclude, the interference parameter seems to be a good
theoretical explanation for the fact that ties and five problems are
globally better performed than other problems.

Table 1
Example of Scoring the Level of Proactive Interference With the
Problem 3 � 9 � 27

3 � 9 � 27 Previous problem

Combination

23 27 29 37 39 79

3 � 2 � 6 1
2 � 7 � 14 1
9 � 2 � 18 1
3 � 3 � 9 1
4 � 3 � 12 1
3 � 7 � 21 1 1 1
8 � 3 � 24 1

Level of interference � 9
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Size Effect

Several indices have been used in the literature to measure the
problem size effect. The one that is more frequently used is the
product of the two operands (Campbell, 1997). The other measures
used correlate highly with the product of the operand, r(35),
calculated on the 36 multiplication problems described above:
minimum operand, .948; maximum operand, .716; sum, .961; sum
squared, .988. The only measure that seems to differ from the
product is the maximum operand. In the data of Campbell (1997),
the maximum operand correlated better with the reaction time than
the product; respectively, r(63) � .71 and r(63) � .50. We there-
fore ran a linear regression with the problem size factor (maximum

operand) and the interference parameter (see Table 2). Results
showed that the two factors are significant and independently play
a substantial role in arithmetic fact solving, in terms of reaction
time and accuracy: M (SD) reaction time, 897 (101); accuracy,
11.53% of errors (12).

In our data (Study 1), the product was a better predictor of the
performance than the maximum operand (see Appendix A).
Hence, in all the following analyses we used the product as the
problem size index. The Pearson’s correlation between the inter-
ference parameter and the problem size (product) is significant,
r(35) � .544, p � .001, but there is no complete overlap between
them. The two parameters are compared in all subsequent analy-
ses, in order to test whether the interference parameter is a deter-
minant factor, even when the problem size is taken into account.

Study 1: Third-Grade Children, Fifth-Grade Children,
and Undergraduates

The first study addresses two questions. First, we question
whether the level of interference of a problem will account for the
difficulty across multiplication problems. Previous studies (e.g.,
De Brauwer et al., 2006) have shown that the accuracy and speed
of solving single-digit multiplications are functions of the problem
size (i.e., size of the product). Here, we wanted to measure whether
the interference parameter we developed is also able to predict the
accuracy and response speed of multiplication problems even
when the problem size is taken into account.

The second aim in this study is to see what accounts for the
individual differences in a multiplication task. We explore whether
the global performance of a person (accuracy and speed) is influ-
enced by sensitivity to the problem size and/or to the interference
parameter.

In order to explore the two factors’ influence on the develop-
ment of arithmetic facts network, we analyzed the multiplication
performance of third-grade children, fifth-grade children, and un-
dergraduate students.

Method

Participants. Thirty-eight third-grade children (17 girls, mean
age � 8 years 10 months, SD � 5 months), 42 fifth-grade children
(26 girls, mean age � 10 years 8 months, SD � 4 months), and 46
undergraduate students from the Université catholique de Louvain
in Belgium (40 girls, mean age � 20 years 1 month, SD � 14
months) participated in this study. Children were recruited from
two elementary schools in Brussels, composed of upper-middle-
class families. Parents filled out a consent form. Undergraduate
students received course credits for their participation.

The children’s intelligence was assessed by means of two sub-
tests of the Wechsler Intelligence Scale for Children—Fourth
Edition (WISC–IV; Wechsler, 2005): Similarities and Picture Con-
cepts. We averaged the two standard scores to achieve a global
score (third graders, M � 11.11, SD � 2.17; fifth graders, M � 11,
SD � 2.08). All children had a global standard score greater than
or equal to 6, excluding general cognitive impairment.

Material and procedure. Children and students were tested
in a quiet room in their school or university. All computerized
experiments were displayed on the 15-in. screen of a laptop com-
puter, using the E-Prime experimental software (version 1.1, Psy-
chology Software Tools).

Figure 1. All 36 multiplications ordered according to the interference
parameter, from the least interfering (bottom) to the more interfering (top).
The gray bar (blue online) represents the feature overlap with the previ-
ously learned multiplications according to the learning order in the two
times table to the nine times table. See the online article for the color
version of this figure.
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All the participants were submitted to a pool of tasks. Here, we
report only the multiplication data that are of interest to this study.
The computerized multiplication task included the 36 combina-
tions of integers from 2 to 9 (without the commutative pairs). Half
of the problems started with the larger operand and half with the
smaller operand, so that the magnitude of the answers was similar
in both the subsets (see Appendix B). Problems were presented
following a pseudo-random order, so that no more than three
successive problems were of the same type (smaller operand first,
larger operand first, or tie problem) and that two successive prob-
lems never shared the same operands or the same answer. The
trials started with a fixation cross lasting for 1 second, after which
the multiplication problem (4 � 1 cm in size) appeared in white on
a blue background until the participant answered. Participants were
instructed to answer as fast and as accurately as possible by typing
the answer on a numerical keypad. Their answer appeared next to
the problem when they typed, and they had to confirm it by
pressing the Enter key (marked with a green sticker). If the
participant did not answer after 10 seconds, the problem was
replaced by a question mark to push them to produce an answer.
Before and after the arithmetic problems, participants were in-
structed to perform a copying task involving typing the numbers
displayed as fast and as accurately as possible and confirming their
answer by pressing the Enter key. This task included the answers
to the 36 multiplications and allowed us to measure the motor
speed for typing on the numerical pad. The accuracy and reaction
time (of the validation key) were taken into account.

Results

Because the first aim in this study was to determine what
accounts for the level of difficulty of a multiplication problem
relative to the other problems, we calculated the average perfor-
mance (mean accuracy and the median of reaction time; RT) for
each multiplication separately for each group (provided in Appen-
dix C). Multiple regressions with performance as the dependent
variable and the interference parameter and the problem size (the
product) as independent variables were run for each group (third-
grade children, fifth-grade children, and adults).

With regard to the accuracy (see Table 3, first part), the problem
size explained a substantial part of the variance in performance in
the three age groups, with negative partial correlations of .6, .4,
and .5 for third-grade children, fifth-grade children, and under-
graduates, respectively. The interference parameter explained vari-

ance in the third-grade group only. All significant coefficients
were negatively correlated, indicating a decrease in accuracy when
the size of the problem or the level of interference increases.

The importance of the interference parameter is brought to light
in the reaction time analyses (see Table 3, second part). In the
third-grade children the interference parameter is significant (mar-
ginal significance for the problem size) and shows an effect size
similar to the problem size. In fifth-grade children, the interference
parameter shows high partial correlation and effect size. The
problem size is close to significant. Finally, in undergraduates, the
two factors are significant and show high partial correlation and
effect size.

The second aim in this study was to examine which predictor
was a significant determinant of the individual differences in
multiplication performance: sensitivity to the interference param-
eter and/or sensitivity to the problem size. For this purpose, we
measured the problem size effect and the interference parameter
effect for each individual. We therefore calculated a multiple
regression for each person, with the reaction time (of the correct
responses) as the dependent variable and the problem size (the
product) and the interference parameter as independent variables.
The slope of each independent variable (for each individual) was
used as the measure of the personal effect of the problem size and
of the interference parameter. That permits us to contrast the
sensitivity of each person to the two parameters and see which one
can explain part of the global performance in the multiplication
task.

Multiple regressions with the median RT as the dependent
variable and the interference slope and the problem size slope as
independent variables were run for each group (see Table 4).1

The two factors were significant in the three groups. All coef-
ficients showed a positive correlation with the reaction time,
meaning that increases in the individual effect implied increases in
individual RTs. The interference parameter showed partial corre-
lation of .421, .576, and .571, respectively, for third-grade chil-
dren, fifth-grade children, and undergraduates.

1 We also ran the same analyses with the median reaction time in
multiplication corrected for the individual motor speed (median in multi-
plication minus the mean of the median of the two speed measure tasks).
Results led to exactly the same conclusions.

Table 2
Multiple Regression Analyses With the Interference Parameter and the Problem Size as
Independent Variables and Performance as a Dependent Variable

Measure
Zero-order
correlation

Partial
correlation t p � R2

Reaction time
Interference parameter .585 .324 2.678 .010 .273 .562
Problem size (maximum operand) .715 .578 5.532 �.001 .563

Accuracy (number of errors)
Interference parameter .552 .328 2.707 .009 .314 .432
Problem size (maximum operand) .603 .428 3.694 �.001 .429

Note. Based on data from Campbell (1997). Median reaction time is shown in the top half of the table; accuracy
(number of errors) is shown in the bottom half of the table.
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When we ran the same analysis with accuracy as the dependent
variable (percentage of correct responses), none of the coefficients
were significant in all groups.

Conclusions

We first questioned whether the interference parameter accounts
for the difficulty across multiplications, beyond the problem size.
Results show that the interference parameter explains a substantial
part of the reaction time for the three age groups. The level of
interference of multiplication problems appears to affect the per-
formance of the three groups negatively: The time needed to solve
a multiplication increases as the level of interference increases.

Second, we tested whether the problem size and/or the interfer-
ence effect influences the individual differences in multiplications
performance. With regard to the speed, the interference effect

determines a substantial part of the performance across subjects, in
addition to the problem size effect, in the third-grade children,
fifth-grade children, and undergraduates. With regard to accuracy,
none of the factors could explain the performance in the three
groups.

This study showed that the interference parameter influences the
performance across multiplications and determines part of the
individual differences in multiplication. These influences mainly
concern reaction time.

Study 2: DB’s Data

Because the interference parameter explains part of individual
differences in multiplication tasks, we explore whether it can
account for an arithmetic facts deficit in dyscalculia. We test its
influence by reanalyzing published data from a case of develop-

Table 3
Multiple Regressions on Performance in Multiplications With the Interference Parameter and the
Problem Size as Predictors

Measure Zero-order correlation Partial correlation t p � R2

Accuracy

Grade 3
Interference parameter �.697 �.520 �3.497 .001 �.403 .691
Problem size �.760 �.632 �4.686 �.001 �.540

Grade 5
Interference parameter �.466 �.235 �1.388 .175 �.233 .345
Problem size �.554 �.405 �2.547 .016 �.428

Undergraduates
Interference parameter �.504 �.238 �1.411 .168 �.217 .449
Problem size �.645 �.512 �3.422 .002 �.527

Reaction time

Grade 3
Interference parameter .514 .329 2.001 .054 .338 .338
Problem size .507 .316 1.917 .064 .324

Grade 5
Interference parameter .625 .466 3.026 .005 .465 .451
Problem size .546 .315 1.908 .065 .293

Undergraduates
Interference parameter .683 .506 3.371 .002 .434 .615
Problem size .695 .527 3.563 .001 .459

Note. Models on accuracy (above) and on speed (below) are provided for the third-grade children, fifth-grade
children, and undergraduate students.

Table 4
Multiple Regressions With the Average Speed in Multiplication and the Interference Parameter Slope and the Problem Size Slope as
Predictors for the Third-Grade Children, Fifth-Grade Children, and the Undergraduates

Reaction time Zero-order correlation Partial correlation t p � R2 M (SD) RT

Grade 3
Interference parameter slope .139 .421 2.750 .009 .454 .297 8,095 (2,253)
Problem size slope .381 .532 3.720 .001 .614

Grade 5
Interference parameter slope .362 .576 4.402 �.001 .912 .332 3,442 (846)
Problem size slope .002 .481 3.424 .001 .709

Undergraduates
Interference parameter slope .410 .571 4.559 �.001 .612 .361 2,080 (459)
Problem size slope .227 .481 3.598 .001 .483

Note. Reaction time (RT) is in milliseconds.
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mental dyscalculia with selective impairment in the arithmetical
fact network: the case of DB (De Visscher & Noël, 2013). As
mentioned above, DB had perfect general cognitive functioning
but showed hypersensitivity to interference in short-term and long-
term memory (using nonnumerical material). In accordance with
these previous findings, we first predicted that the interference
parameter would substantially explain her response time in multi-
plications, beyond the problem size. Second, we predict that her
interference slope (effect) would be steeper (larger) than that of the
controls, beyond the problem size slope.

Method

Participants. DB was a 42-year-old woman at the time of the
testing. She was diagnosed with high potential and dyscalculia.
Eleven control participants matched in gender, age, and education
constituted the control group (for further details, see De Visscher
& Noël, 2013, pp. 55–56).

Material and procedure. DB and the control participants
were submitted to a multiplication production task. Problems were
displayed in the center of the screen until the participant answered.
Participants were asked to respond as accurately and as fast as
possible using the voice key. The 36 combinations of digits from
2 to 9 (without the commutative pairs) and 8 additional rule
problems (n � 0, n � 1) were used. The rule problems are not
considered here (for further details on the task, see De Visscher &
Noël, 2013, pp. 55–56). The performance across multiplications
(median reaction time and mean accuracy) of the control group and
of DB is provided in Appendix D.

Results

If the rule problems are disregarded, DB was significantly
slower than the control participants at this task (DB’s median �
2,317 ms; controls’ average medians � 998 (177) ms; modified
Crawford t(10) � 7.114, p � .001) but showed normal accuracy
(DB � 94.44%; controls � 97.47 (2.14)%, modified
t(10) � �1.359, p � .102).

We first ran a multiple regression with the RT of DB as the
dependent variable (N � 33; two errors and one technical problem
with the voice key) and the two predictors—namely, the problem
size and the interference parameter—as independent variables. The
model was significant, F(2, 32) � 6.782, p � .004, and the two
coefficients were marginally significant (see Table 5, Model 1).
When we ran the first model, one outlier was highlighted (the
problem 7 � 7 � 49, with more than 3 standardized residuals,
15,217 ms). Hence, a second model was run without this outlier

(see Table 5, Model 2), improving the fit by 10%. In this last
model, the interference parameter is significant and shows an
important effect size. The problem size is not significant.

The slope of the linear regression of the interference parameter
on the reaction time (of correct responses) was calculated for DB
and each control. DB’s slope was significantly steeper than that of
the controls in a standard modified t test (Crawford & Howell,
1998; DB’s slope � 277; controls’ slope � 33 (15); t(10) �
15.624, p � .001). However, when we used the appropriate test
developed by Crawford and Garthwaite (2004) for comparing
slopes, Bartlett’s test (Test a) was significant. This result means
that there were differences among the controls’ error variance,
making the comparison of the patient’s slope with that of the
controls impossible.

We therefore calculated for each problem the Z score of DB’s
RT (DB’s RT minus mean of the controls’ RT/standard deviation
of the controls’ RT). This allowed us to measure the gap between
DB and the controls for each problem. The hypothesis is that DB’s
deviation from the mean will increase with the increasing level of
interference. We ran a multiple regression with the Z score of DB
as the dependent variable and the two factors (interference param-
eter and problem size) as independent variables. The model was
not significant. However, when running the model, the same 7 �
7 problem appeared to be an outlier (see Figure 2). Hence we ran
a second model without this outlier. The fit of the model was
consequently improved by 26% (see Table 6). The interference
parameter was significant and showed a substantial effect size, but
the problem size was not significant. This indicates that DB was
more sensitive to the interference parameter than the controls were.

Conclusions

In a previous paper, we showed that DB suffered from hyper-
sensitivity to interference, which disturbed her capacity to mem-
orize very similar items. We interpreted that this hypersensitivity
to interference was the cause of her arithmetic fact storage deficit.
In this paper, a measure of the feature overlap between multipli-
cation problems allowed us to directly assess the hypothesis of a
hypersensitivity to the interference weight of the different multi-
plication problems. Results showed that the interference parameter
determined a substantial part of DB’s response time in the multi-
plication task, but the problem size was not significant. Further-
more, she was more sensitive to the interference parameter than the
controls were. These current results corroborate the previous find-
ings and directly show that the abnormally slow response time of
DB in multiplication was due to her hypersensitivity to the inter-
ference weight of the problems.

Table 5
Multiple Regression on the Reaction Time of DB With the Interference Parameter and the Problem Size as Independent Variables

Reaction time Zero-order correlation Partial correlation t p � R2

Model 1 (N � 33)
Interference parameter .486 .322 1.860 .073 .326 .311
Problem size .482 .313 1.807 .081 .317

Model 2 (N � 32)
Interference parameter .620 .500 3.108 .004 .519 .411
Problem size .463 .209 1.153 .258 .193

Note. Model 1 includes all data. Model 2 excludes one outlier.
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Study 3: Longitudinal Data

In a previous study, we showed that fourth-grade children with
poor arithmetic facts fluency experienced higher sensitivity to
interference in a nonnumerical associative memory task than con-
trol children did (see De Visscher & Noël, 2014). In the present
study, we reanalyze the data from this study (Period 1) and report
original data from the same children tested 1 year later (Period 2).
In Wallonia (Belgium), Grade 4 is an important school year in
which the storing of multiplication facts is emphasized. We first
test whether the interference parameter and/or the problem size
effect predicts the individual differences in multiplication in fourth
grade and again 1 year later. Accordingly, the same multiplication
production task was used during the two periods of testing. Sub-
sequently, three main questions are addressed in order to refine the
hypersensitivity-to-interference hypothesis.

First, we explore whether sensitivity to the interference param-
eter reflects a general sensitivity to interference. We therefore
measure the correlation between the sensitivity to the interference
parameter (in the multiplication task) and the sensitivity to inter-
ference in a nonnumerical task (the associative memory task of the
first period of testing). Second, we want to determine whether this
sensitivity to interference is a specific concept or whether it is
confounded with close concepts such as inhibition capacities,

verbal memory, or associative memory capacities. To that end, we
tested the inhibition capacities with a Stroop color task, the verbal
memory capacities with a words list memory task, and the asso-
ciative memory capacities with a (noninterfering) paired-
associates memory task. Correlations between these measures and
the sensitivity to interference were calculated.

Third, we verify the assumption according to which hypersen-
sitivity to interference disturbs the retrieval strategy by using a
time-limited multiplication task. According to the hypothesis, be-
ing sensitive to interference hampers the storing of arithmetic facts
and consequently does not allow a retrieval strategy to be used
when solving those arithmetic facts. The multiplication production
task without time limitation allowed children to use different
strategies, such as computing strategies or retrieval strategies. We
therefore used a multiplication production task in which children
had only 2 seconds to answer, forcing them to use a retrieval
strategy.

Fourth, we directly address the original hypothesis; namely, that
hypersensitivity to interference prevents a person from storing
arithmetic facts. When showing an arithmetic facts deficit in an
individual, the question is whether this deficit is due to a storing
deficit or to an access deficit. In the case study DB, we investi-
gated this question in detail and found out that she presented a

Figure 2. Response time of DB in z-score (compared to the controls) for each problem according to the
interference parameter, with the outlier in the graph on the left and without it on the right. See the online article
for the color version of this figure. RT � reaction time. See the online article for the color version of this figure.

Table 6
Multiple Regression on the Score-Z of Reaction Time of DB (Deviation From the Mean) With
the Interference Parameter and the Problem Size as Independent Variables

Score-Z RT Zero-order correlation Partial correlation t p � R2

Model 1 (N � 33)
Interference parameter .197 .101 0.558 .581 .115 .059
Problem size .222 .144 0.799 .430 .164

Model 2 (N � 32)
Interference parameter .535 .558 3.617 .001 .649 .321
Problem size .120 �.220 �1.217 .234 �.218

Note. Model 1 includes all data. Model 2 excludes one outlier. RT � reaction time.
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storage deficit. From this case study we postulated that hypersen-
sitivity to interference disturbs the storage of very similar items. In
this study, we used a multiplication table membership judgment
task in order to disentangle between a storage versus an access
deficit. Indeed, in the case of a deficit of access to the stored
arithmetical facts, production is impaired but recognition of a
number as being one of the multiplication’s answers should be
spared. When a child can recognize whether or not a number
belongs to a multiplication table’s answers, this means that he or
she has created an arithmetic facts network to a certain extent.
Conversely, difficulties in this task reveal a storage deficit.

We therefore tested whether children who are more sensitive to
the interference parameter encounter more difficulties in a judg-
ment task than the controls do. If that is the case, the results would
support the assertion that sensitivity to interference disturbs the
storage process; otherwise, they would support the assertion that
sensitivity to interference disturbs access to arithmetic facts.

Method

Participants. Among 101 fourth-grade children, coming from
three elementary French-speaking schools composed of upper-
middle-class families, 23 children (11 girls) with poor arithmetical
fluency and 23 control children were selected as follows. We
selected the three or four children who had the lowest score in their
classroom in single-digit multiplications and additions fluency
tasks but normal scores in a processing speed task (subtest Sym-
bols from the WISC–IV; Wechsler, 2005) and for whom we had
matched controls in the same class. One child was eventually
excluded because he was unwell on the day of the individual
testing. Control children were matched in gender, age, and class
and scored in the arithmetical fluency task at one standard devia-
tion at least above their low arithmetic fluency child peer. The first
period of testing took place on the same day or after a maximum
of 2 weeks after the selection phase. The second period of testing
was conducted 1 year later. Children were individually tested in a
quiet room. The study has been approved by the ethical committee
of the Psychological Sciences Research Institute of Université
catholique de Louvain (Belgium). Parents filled in a consent form
for their child’s participation.

Material and procedure. The first period of testing included
a measure of reasoning (Picture Concepts subtest from WISC–IV;
Wechsler, 2005), a computerized multiplication task, and an asso-
ciative memory task with two levels of interference (further details
and the results of this first time period can be found in De Visscher
& Noël, 2014).

The second period of testing comprised the same computerized
multiplication task, a words list and a paired-associates memory
task (respectively, Children’s Memory Scale [CMS], Cohen, 2001,
and Wechsler Intelligence Scale for Adults [WMS], Wechsler,
2011), a color Stroop task (Albaret & Migliore, 1999), a time-
limited multiplication production task, and a multiplication table
membership judgment task.

Memory and inhibition tasks. In the words list memory task
(CMS; Cohen, 2001), the experimenter orally presented 14 words
and children were instructed to recall as many words as possible,
irrespective of the presentation order. After the child responded,
the experimenter reminded the child of the words he forgot. This
procedure was repeated three times so that the children were given

four opportunities to memorize as many words of the list as
possible. The total of words recalled during the four recall sessions
was converted into a standard score.

In the paired-associate memory task (WMS; Wechsler, 2011),
the experimenter orally presented 8 unrelated word pairs and then
successively proposed the first word of each pair, to which the
child had to recall the associated word (in a pseudo-randomized
order). When the child made a mistake, the experimenter gave him
the correct answer. This procedure was repeated three times so that
the children were given four opportunities to memorize the paired
associates. The total of the paired words recalled during the four
recall sessions was converted into a standard score.

The color Stroop task included four subtests of 45 seconds each
(Albaret & Migliore, 1999). The two first subtests consisted in
reading as many words as possible in 45 seconds. The reading test
comprised color words written in black (first test) or in a color of
ink that was incongruent with the color words (second test). The
third subtest was a color naming task during which children had to
name the color of filled squares. The last subtest used the color
words written in incongruent color ink sheet, and children were
instructed to give the ink color (and therefore inhibit the written
word). The inhibition score is computed by subtracting the words’
color ink naming scores from the squares’ color naming scores.

Multiplication tasks. The computerized multiplication task
used in the two periods of testing included the same 36 problems
mentioned above (see Appendix B). The problems were presented
in a pseudo-random order according to the same criteria described
previously. The problems were displayed on a gray background
until the child answered using the voice key. Five easy additions
were used to familiarize the children with the task (for further
details, see De Visscher & Noël, 2014).

In the time-limited multiplication task, children were instructed
to answer each single-digit multiplication problem before the
bomb explodes (within 2 seconds). In order to force them to
answer and decrease any potential anxiety, they were asked to say
the first answer they thought even if they “guessed.” All the
combinations of integers from 2 to 9 (64 problems) were presented
twice (in two separate blocks). In each block, the problems were
presented according to a pseudo-random order, so that two suc-
cessive problems never had the same answer or a same operand
and so that commutative pairs were separated by 7 problems at
least. After a 1-second fixation cross, the problem appeared along
with a picture of a bomb for 2 seconds and was followed by for a
picture of the bomb exploding 500 ms (with a sound).

In the multiplication table membership judgment task, children
were instructed to decide as accurately and rapidly as possible
whether the number displayed was an answer to a multiplication
question (from the two to the nine times tables). Before they
started the task, children received complete instructions and ex-
amples to ensure their understanding. The task included 46 two-
digit numbers that were presented twice (in two separate blocks).
Half of the numbers were answers to multiplications. The other
half were not answers to multiplications and were matched in size
and parity (see Appendix E).

Results and Conclusions

The mean accuracy and median RT for each multiplication
problem for Periods 1 and 2 are provided in Appendix F.
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Predictive power of the interference parameter. In this
section, we test whether individual sensitivity to the interference
parameter and the problem size predicts the individual perfor-
mance differences in a multiplication task.

The slope between the reaction time (for correct responses) in
the multiplication production task (without time limitation) and the
two predictors (i.e., the problem size and the interference param-
eter) were calculated for each individual with multiple regression
analyses.

First period of testing. Concerning accuracy, multiple regres-
sion with the interference slope and the problem size slope as
independent variables showed massive influence from the inter-
ference slope with large partial correlation and effect size (see
Table 7). The problem size slope reached significance (p � .051)
but showed half effect size. This indicates that being sensitive to
the interference and, to a lesser extend to the problem size de-
creases global accuracy in the task. With regard to the median of
reaction times, the multiple regression with the interference slope
and the problem size slope as independent variables showed a
substantial effect from the interference parameter only. This indi-
cates that being sensitive to the interference parameter increases
the time needed for solving multiplications.

Second period of testing. We followed the same procedure for
the second period of testing (1 year later). With regard to accuracy,
the interference slope showed high partial correlation and effect
size, indicating that as the sensitivity to the interference parameter
increases the global accuracy decreases. The problem size slope
was not significant.

Concerning the RTs, both slopes were significant, with high
partial correlations and effect sizes (see Table 8). The major result
is that sensitivity to the interference parameter was associated with
lower accuracy and longer RTs in multiplications.

Cross period prediction. Finally, we tested whether the two
slopes stemming from the first period of testing predicted perfor-
mance 1 year later. The multiple regression on accuracy and that
on reaction time (Period 2) both led to the same conclusion that the
interference slope was a good predictor of performance 1 year
later, but the problem size slope was not a significant predictor (see
Table 9).

Sensitivity to proactive interference, inhibition, and verbal
memory capacities. During the first period of testing, we eval-
uated the children’s sensitivity to interference of children by using
a kind of recent-probes task paradigm in an associative memory
task, in which children had to memorize associations of cartoon
characters and places. Propositions of character–place associations

were then presented to the child, who had to judge whether these
were true or false. Some of these propositions were interfering and
the others were noninterfering (see De Visscher & Noël, 2014, for
more details). We observed that children with poor arithmetical
fluency performed worse than the controls in the interfering con-
dition but not in the noninterfering condition. It was thus con-
cluded that they showed increased sensitivity to interference com-
pared to children with normal arithmetical fluency.

The first aim in this section is to test whether the sensitivity to
interference in multiplication is correlated with this nonnumerical
measure of sensitivity to interference. The second aim is to test
whether this sensitivity to the interference parameter in multipli-
cation in some way reflects the inhibition capacities or verbal
memory capacities or if instead it is a distinct concept. We there-
fore calculated the sensitivity to interference in the associative
memory task of each child as follows (N � 46):

STI � 100 �
% CR on interfering trials

% CR on noninterfering trials
� 100,

where STI is the sensitivity to interference measure and % CR is
the percentage of correct responses. This measure represents the
STI in terms of percentage. The higher the STI measure, the more
sensitive the person is. During the second period of testing, we
collected a measure of inhibition with a color Stroop task and a
measure of verbal memory with a words list recall task and with a
paired-associates memory task (see the Method section above).

Due to the existence of nonnormally distributed residuals in
these statistical models, we used the nonparametric Spearman
correlations (two-tailed), adjusted for multiple comparisons with
the Bonferroni correction. The correlations are computed between
measures of the same period of testing. Table 10 resumes the
correlations between the interference slope of the first period of
testing with the STI (Period 1) and the interference slope of the
second period and the inhibition and verbal memory measures
(words list and paired associates, all Period 2).

Results show a positive correlation between sensitivity to the
interference parameter during Period 1 and sensitivity to interfer-
ence in a nonnumerical associative memory task (Period 1). Con-
versely, sensitivity to the interference parameter does not correlate
with any inhibition or verbal memory measures. Let us note that
the same results appear if we calculate the correlations between the
three last tasks and the interference slope in Period 1. This means
that sensitivity to interference in a multiplication task reflects a

Table 7
Multiple Regression in the Performance (Mean Accuracy and Median RT) of Fourth-Grade Children With the Interference Parameter
Slope and the Problem Size Slope as Independent Variables for the First Period of Testing

Period 1 Zero-order correlation Partial correlation t p � R2 M (SD) % CR RT

Mean accuracy
Interference parameter slope �.484 �.544 �4.255 �.001 �.580 .300 89.7 (9.2)
Problem size slope �.071 �.293 �2.009 .051 �.274

Median RT
Interference parameter slope .575 .599 4.908 �.001 .639 .360 2,934 (1,496)
Problem size slope �.042 .208 1.398 .169 .182

Note. Reaction time (RT) is shown in milliseconds. CR �correct responses.
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general sensitivity to interference but does not correspond to
dominant response inhibition or (associative) memory capacities.

Retrieval strategy deficit: Storage deficit or access deficit?
During the second period of testing, the children were submitted to
a time-limited multiplication production task, aimed at getting a
measure of their retrieval strategy (see the Method section). The
time-limited multiplication task forces the children to produce an
answer for each problem in the assigned time (2 seconds). This
procedure permits retrieval capacity to be measured by preventing
other strategies from being used. We therefore tested whether
sensitivity to the interference parameter of multiplication (inter-
ference slope) correlated with performance in this task measuring
retrieval performance.

We also used a multiplication table membership judgment task
to test the hypothesis that hypersensitivity to interference prevents
a person from storing arithmetic facts. We therefore tested whether
children who are more sensitive to the interference parameter
encounter more difficulties in a judgment task than the controls do.
If that is the case, the results would support the assertion that
sensitivity to interference disturbs the storage process; otherwise,
they would support the assertion that sensitivity to interference
disturbs access to arithmetic facts.

We used Spearman’s nonparametric correlation for the reason
mentioned above. We used the slope of the second period of
testing, because the time-limited multiplication production task
and the judgment task were submitted during this period of testing.
The interference slope correlated negatively with accuracy in the
time-limited multiplication production task, �(45) � �.750, p �
.001. In the table membership judgment task, the interference slope
did not correlate with accuracy but correlated with the mean
reaction time; respectively, �(45) � �.230, p � .125, and �(45) �

.433, p � .003. These results indicate that children who are the
more sensitive to the interference parameter of multiplication are
also those who perform less well in the time-limited multiplication
task and who are slower in the table membership judgment task.

Discussion

The aim in this article was to test whether the learning of
arithmetic facts is an interference-prone situation and so whether,
consequently, this learning is disturbed in case of hypersensitivity
to interference in memory. According to the interference-based
forgetting memory model (e.g., Oberauer & Lange, 2008), the
feature overlap between items to be remembered determines the
quality of their memory trace. The more features items share,
the less strongly they will be held in the memory. On the basis of
this theory, we created a parameter measuring the feature overlap
between the 36 multiplication problems, taking into account the
usual learning order (from the two times table up to the nine times
table). This interference parameter therefore represents the proac-
tive interference weight for each multiplication problem. We as-
sumed that interference during learning would result in long-term
associative interference. Two main questions were addressed in
this article and are successively discussed hereinafter.

First, we tested whether the interference parameter can predict,
beyond the problem size, difficulty across different multiplication
problems. By analyzing the data from Campbell (1997), the inter-
ference parameter has been shown to determine part of the speed
and accuracy across multiplications, in undergraduates. Further-
more, the interference parameter could explain the ties and the five
effects. In the first study, we tested this hypothesis through the
development of the multiplications network with third-grade chil-

Table 8
Multiple Regression on the Performance (Mean Accuracy and Median RT) With the Interference Parameter Slope and the Problem
Size Slope as Independent Variables for the Second Period of Testing (Grade 5)

Period 2 Zero-order correlation Partial correlation t p � R2 M (SD) % CR RT

Mean accuracy
Interference parameter slope �.457 �.412 �2.965 .005 �.418 .224 90.1 (9.9)
Problem size slope .255 .137 0.909 .369 .128

Median RT
Interference parameter slope .612 .694 6.328 �.001 .721 .493 2,246 (841)
Problem size slope .142 .435 3.169 .003 .361

Note. Reaction time (RT) is shown in milliseconds. CR �correct responses.

Table 9
Multiple Regression on the Performance (Mean Accuracy and Median RT) of Fifth-Grade Children (Period 2) With the Interference
Parameter Slope and the Problem Size Slope (Tested in Grade 4, Period 1) as Independent Variables

Period 1 (VI) ¡ Period 2 (VD) Zero-order correlation Partial correlation t p � R2 M (SD) % CR RT

Mean accuracy
Interference parameter slope �.373 �.409 �2.942 .005 �.437 .168 90.1 (9.9)
Problem size slope �.031 �.185 �1.236 .223 �.184

Median RT
Interference parameter slope .554 .592 4.816 �.001 .632 .350 2,246 (841)
Problem size slope .000 .249 1.686 .099 .221

Note. Reaction time (RT) is shown in milliseconds. CR �correct responses; VI � interference parameter slope and problem size slope; VD � mean
accuracy and median RT.
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dren, fifth-grade children, and undergraduate students. The results
showed that performance in multiplication was massively influ-
enced by the two factors investigated—namely, the interference
parameter and the problem size—but in different ways. On the one
hand, the problem size largely influenced accuracy in multiplica-
tion (third-grade children, fifth-grade children, and undergraduate
students). This indicates that the higher the value of the multipli-
cation’s answer, the more error prone this multiplication is. On the
other hand, the interference parameter largely influenced the re-
action time needed for solving the multiplication problem for all
three age groups. When individuals respond correctly, the average
reaction time increases as the interference weight of the problem
increases. One interpretation is that high-interfering problems are
retrieved by fewer individuals than low-interfering problems are.
Results seem to reflect that the interference parameter influences
the storage of arithmetic facts in the memory. Highly interfering
problems are not stored, and more time is needed to solve them as
a computing strategy is being used. This result supports the hy-
pothesis that feature overlap provokes interference that disturbs
storage in the memory. Our findings corroborate those of Zbrodoff
(1995), who showed that the learning of alphabet–arithmetic as-
sociations mimics the problem size effect better when problems
differ in frequency and in similarity. The difference with this
theory is that the frequency was replaced by the order of learning
in our model. The present results complement the findings of
Zbrodoff, which suffer from an interpretative limitation. Indeed, in
the alphabet–arithmetic task, the similarity was manipulated by
using the same letter several times or only once in calculation
associations (e.g., using A � 2 � C, A � 3 � D, A � 4 � E, but
using the first operand G only once). The similarity stemmed
therefore from the operand overlap. However, the digits 0 to 9 are
used the same number of times as operands in multiplication
tables. Although this similarity showed a detrimental effect upon
performance, the interpretation of this similarity in actual arithme-
tic problems was compromised. By using the similarity between
co-occurrence of digits in the all digits’ associations (including the
operands and its answer), our findings reconcile Zbrodoff’s results
with this interpretation.

Current results are also in line with Campbell’s studies, which
showed that solving arithmetic facts is an interference-prone situ-
ation. Our work differs along at least two dimensions, however.
First, our hypothesis looks at the encoding stage (which constitutes
a premise in the interference parameter), whereas Campbell
showed that interference occurs at the retrieval stage of the com-
pleted arithmetic facts network. Our studies complement Camp-
bell’s theory by showing that interference plays a role at the
encoding stage as well. Campbell and Graham (1985) actually
assumed that proactive interference could account for the problem

size effect, but they did not test this hypothesis as far as we know.
By using an alphaplication task in which participants had to learn
associations of letters mimicking the arithmetic facts learning,
Graham and Campbell (1992) showed that performance in prob-
lems encountered later was poorer than in problems introduced in
the first set of the learning task. This supports the idea that the
order of learning plays a role, but Graham and Campbell did not
manipulate the interference level between the problems. Our data
support their assumption of a proactive interference in arithmetic
facts learning. Second, in our theory, the whole association (both
the problem and its answer) is considered when calculating the
physical feature overlap, whereas Campbell (1995) took only the
operands and operand sign into account. On the basis of Camp-
bell’s work, Griffiths and Kalish (2002) previously aimed to test
whether the similarity of problems creates interference that ex-
plains the pattern of errors observed in adults. For this purpose,
they used a tree-sorting task that enabled them to collect perceived
similarity ratings. Participants were asked to rate the perceived
similarity of the multiplication problems, and this rating was
converted into a low-dimensional spatial representation inversely
relating the similarity to distance. Results supported the assertion
that similarity between multiplications was involved in the expla-
nation of the pattern of errors in adults. Our study, in which the
similarity is objectively measured by the feature overlap between
digits, is in accordance with this previous study and shows that
similarity between multiplications determines the performance
across multiplications and across subjects. Our findings are also in
line with the fan effect (e.g., Pirolli & Anderson, 1985), showing
that concepts that appear several times in an associative memory
task are retrieved more slowly than concepts used once. The
similarity between the associations to be learned creates interfer-
ence that delays reaction time in retrieving.

Future research should address the contradiction between the
Verguts and Fias (2005) model and our hypothesis. Indeed, the
former suggested that the neighbor problems will compete or
cooperate according to their consistency with the actual response.
For instance, the problem 6 � 7 � 42 will cooperate when solving
the problem 6 � 8 � 48 because of the consistency in the decade
of the answers. Contrariwise, the problem 7 � 8 � 56 will
compete when solving the problem 6 � 8 � 48 because of
inconsistency between the decade and the unit of the two answers.
A problem having more consistent neighbor problems will be
better performed than a problem having less consistent neighbor
problems. However, in accordance with our feature overlap mea-
sure, consistent neighbor problems should provoke more interfer-
ence than inconsistent neighbor problems. Our results are therefore
in opposition with the Verguts and Fias (2005) theory. We should
mention however that they consider only the neighbor problems

Table 10
Spearman Correlations Between Sensitivity to the Interference Parameter and a Nonnumerical Sensitivity to Interference, Inhibition,
and Verbal Memory Capacities

Spearman’s rho STI, Period 1 Inhibition (Stroop), Period 2 Words list (CMS), Period 2 Paired-associates (WMS), Period 2

Interference slope, Period 1 .506���

Interference slope, Period 2 .114 �.297 .066

Note. STI � sensitivity to interference; CMS � Children’s Memory Scale; WMS � Wechsler Intelligence Scale for Adults.
��� p � .001 with Bonferroni correction.
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(which have a similar operand to the ongoing problem) and not the
entire set of problems, as we did.

The interference parameter we created is based on the feature
overlap model (Nairne, 1990; Oberauer & Lange, 2008) and could
potentially be subject to discussion. First, we decided to take into
account the order of learning in accordance with the Graham and
Campbell (1992) finding, showing that problems encountered later
were poorly memorized compared to earlier problems, in their
alphaplication task. As far as we know, the order of learning in
Wallonia usually starts with the two times table and continues
progressively up to the nine times table. This order of learning
depends on the educational strategies and is likely to vary across
cultures. Second, we decided to consider the digits as the feature
composition of arithmetic facts. In accordance with Oberauer and
Lange (2008) we did not take into account the order of the features
in the item, meaning that decades and units were not considered
differently. In previous research, we attempted to investigate this
small difference and observed that it did not impact the results and
interpretation. Because the activation of the digits occurs irrespec-
tive of the position value, we chose the simplest (most restrictive)
model of feature overlap. Moreover, without taking into account
the position value, we considered the commutative pairs as the
same problem. This was in accordance with Campbell (1995) as
well as with Rickard and Bourne (1996) who showed that com-
mutative pairs are similar in difficulty. However, a difference in
difficulty could potentially exist during the development. Unfor-
tunately, we do not have data permitting us to test this hypothesis,
which should be investigated in future studies. Finally, it has to be
noted that we considered only the interference across multiplica-
tions, although interference could exist in a larger arithmetic facts
network including other operation problems as simple additions
and subtractions. It is however difficult to determine which prob-
lems the actual arithmetic facts network includes, because this
depends on one’s personal experience. Consequently, we focused
on multiplications because they are specifically trained during
primary school.

Second, we tested whether the individual differences in solving
multiplications are partly determined by individual sensitivity to
the interference parameter and/or the problem size. In Study 1, we
tested this hypothesis through the arithmetic facts’ development,
with third-grade children, fifth-grade children, and undergraduates.
We observed that the interference slope determined a substantial
part of the individual differences in terms of speed in the third-
grade children, fifth-grade children, and the undergraduate stu-
dents, beyond the problem size slope.

Similarly, we showed in Study 2 that the interference parameter
substantially determined the RT of the case DB, who was impaired
in learning arithmetical facts, but the problem size was not signif-
icant. More important, compared to controls, DB showed a steeper
interference slope, but her problem size slope did not differ from
that of the controls.

Finally, the third study reported longitudinal data on fourth-
grade children with poor versus normal arithmetic facts fluency,
who are building their multiplications network during this period
at school. The prediction of the interference parameter was studied
after 1 year of development.

Results showed again that the children’s interference slope
determined a major part of the performance (in accuracy and
speed) in multiplication in both the fourth and fifth grades. The

interference slope of the first period of testing (in fourth grade)
also predicted the performance (accuracy and speed) in multipli-
cation 1 year later. Moreover, children who were more sensitive to
the interference parameter also performed worse in the time-
limited multiplication production task, where the retrieval strategy
is the only successful strategy, again supporting the idea that this
sensitivity disturbs the storage of multiplication facts and conse-
quently disturbs the use of the retrieval strategy. Furthermore, the
sensitivity to the interference parameter correlated with the speed
in the table membership judgment task. This result supports the
idea that children who are sensitive to the interference parameter
build a weaker or smaller arithmetic facts network for multiplica-
tions, and they therefore need more time to judge whether a
number belongs to the multiplication tables’ answers. Interference
therefore already plays a detrimental role in the encoding/learning
phase. Nonetheless, the interference parameter could also impact
on the retrieval process. Indeed, the interference parameter, rep-
resenting the progressive feature overlap during learning multipli-
cation, could raise competition between the potential responses of
a problem during retrieval. In other words, after creation of a
complete arithmetic fact network, if a problem is more interfering,
numerous answers can be activated in parallel and compete be-
cause of similarity, whereas if a problem is less interfering, few
competitors will be activated (Wickelgren, 1979). Some evidence
of similarity interference during the retrieval stage has been re-
ported in a retrieval-induced forgetting paradigm. In several ex-
periments, Phenix and Campbell (2004) tested the effect of prac-
tice on the lure effect in a verification multiplication task. Of
importance, they showed that after practice of specific multiplica-
tion facts, the performance for practiced product-related lures
decreased and the performance for practiced product-unrelated
lures was enhanced. This indicates that global similarity (operands
with answer) across problems creates interference in a retrieval
context. The detrimental effect of the interference parameter dur-
ing the associative retrieval should be specifically tested in future
studies.

This last study also aimed at refining the hypersensitivity-to-
interference concept. First, we showed that sensitivity to the in-
terference parameter was positively correlated with a measure of
nonnumerical sensitivity to interference in associative memory.
This result thus indicates that it is not a characteristic specific to
the numerical domain but is a domain-general process.

Second, we tested whether sensitivity to interference reflects a
lack of verbal memory capacity and measured verbal memory
capacity with words list and paired-associates recall memory tasks.
Neither of the verbal memory measures correlated with sensitivity
to interference, sustaining the assumption of different processes.
Finally, we tested whether the sensitivity to interference in mem-
ory resides in an inhibition deficit. However, results dismissed this
assumption, revealing an independent relation between the sensi-
tivity to interference in multiplication and inhibition capacities in
children. Accordingly, the resistance to proactive interference has
been convincingly demonstrated by Friedman and Miyake (2004)
as being different from prepotent response inhibition and inhibi-
tion to distractors. According to Friedman and Miyake, the resis-
tance to proactive interference is the ability to resist memory
intrusions from irrelevant information that was previously relevant
to the task. Some studies brought to light memory intrusions from
irrelevant information in children with dyscalculia or in adults who
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are less performant in simple arithmetic (Barrouillet et al., 1997;
Censabella & Noël, 2004; Geary et al., 2012; Passolunghi &
Siegel, 2004). These studies interpreted the intrusions as an inhi-
bition problem. These results could actually agree with the
hypersensitivity-to-interference hypothesis.

The investigation of the individual difference in arithmetic facts
effect (problem size effect) relative to the global performance in
arithmetic facts was investigated by Barrouillet and Lépine (2005).
This study compared third- and fourth-grade children with low
versus high working memory capacities in single-digit additions.
Barrouillet and Lépine assumed that working memory capacities
represent the attentional resources that are required for processing
and storing materials in the long-term memory and that are re-
quired for activating knowledge from the long-term memory. They
predicted and showed that children with low working memory
capacities use fewer retrieval strategies than children with high
working memory capacities do. On the basis of Siegler’s (1996)
theory that predicts that as the difficulty of the problem increases
the effect of working memory capacity increases, they predicted an
interaction between the problem size effect and the group (children
with low vs. high working memory capacities). However, results
did not support this last assumption, showing no difference in
problem size effect between groups. They wanted to test the
interaction between groups and the problem difficulty, which is
usually considered to be related to the problem size. Our studies
showed, however, that the interference parameter substantially
predicted performance across multiplications. Accordingly, the
link between the retrieval and the working memory levels could
potentially be explained by our interference parameter. Future
studies on math learning disabilities should include a measure of
sensitivity to interference in memory and/or should test the indi-
vidual sensitivity to the interference parameter of the multiplica-
tion problems. According to our findings, one could imagine that
the global math achievement is partly influenced by the sensitivity
to interference in memory.

When evaluating sensitivity to interference in the multipli-
cation problems, one alternative explanation could account for
the results. In our hypothesis, the sensitivity to interference is
viewed as an ability to resist or suppress irrelevant information
during ongoing processing. We considered the difference in this
ability between participants. However, this ability can be influ-
enced by the individual representation of the material used.
Because the interference comes from the feature overlap be-
tween the items to remember, the individual representation of
these items will influence the feature overlap. The richer a
representation is, the more features this representation has.
When a representation has numerous features, it can be better
distinguished from others (distinctiveness). One can therefore
imagine that when someone has a poor representation of num-
bers, he or she might experience more sensitivity to the inter-
ference parameter. Consequently, the relationship between the
interference parameter and global performance in solving mul-
tiplications could potentially be explained by poor representa-
tions of numbers. A weak magnitude representation (or a dif-
ficulty in accessing the representation from symbols) could
make the multiplication associations fuzzy, less distinctive, and
therefore more interference prone. This hypothesis is certainly
worth testing. Nonetheless, the hypersensitivity to interference
in memory hypothesis remains robust, because the case DB did

not show any number representations deficit and also because
people with an arithmetic facts deficit have been shown to have
hypersensitivity to interference in nonnumerical tasks, which
cannot be explained by the alternative assumption.

Perspectives and Summary

This hypothesis of hypersensitivity to interference responsi-
ble for arithmetic facts storage deficit has important implica-
tions for educational strategies as well as for the assessment and
treatment of developmental dyscalculia. When a new cause of
arithmetic facts deficit is discovered, the question of treatment
is consequently raised. Despite the huge interest in finding a
treatment, the question is not simple. Can we act on the ability
to suppress irrelevant information? Could we train people with
material that progressively increases the level of interference
and decrease their sensitivity to interference in this manner?
Could these persons suffering from hypersensitivity to interfer-
ence be trained to use an explicit strategy for reducing the
interference effect? Future studies should focus on such alter-
native possibilities for treatment.

Our hypothesis is currently sustained by behavioral data, with a
case study and some group studies. Future studies should investi-
gate this hypothesis with imaging studies allowing the neural
correlates of this phenomenon to be explored. The activation of the
medial temporal lobe, in particular the hippocampus, has been
shown when children are learning arithmetic facts (De Smedt et
al., 2011). Because the hippocampus is known to sustain declara-
tive memory and more precisely relational memory, a structural or
functional difference in the hippocampus could be observed in
children with arithmetic facts deficit. Alternatively, the resolution
of proactive interference has been shown to involve the left infe-
rior frontal cortex (e.g., Jonides & Nee, 2006). A difference in this
brain structure could potentially explain the hypersensitivity to
interference of some people. These two assumptions should be the
object of future studies.

Because the hypersensitivity to interference is not specific to
numbers, other learning could be affected and should be investi-
gated. Hypersensitivity to interference could potentially disturb the
learning of grapheme–phoneme conversion during the learning of
reading or maybe disturb the acquisition of homophones. This
opens new avenues for research, especially given the observation
that people suffering from dyslexia often have difficulties in learn-
ing arithmetic facts, in particular multiplication facts (De Smedt &
Boets, 2010)

In summary, this work shows that the feature overlap in
multiplications creates interference and determines part of the
difficulty across multiplication problems, beyond the problem
size. Moreover, it shows that being sensitive to this interference
parameter of multiplications negatively influences performance
in multiplication. People who are more sensitive to this feature
overlap in multiplication problems show slower reaction times
in all age groups, and in the fourth and fifth grade, these
children are also less accurate. Furthermore, the sensitivity to
the interference parameter has been shown to be directly linked
to a deficit in retrieval strategy due to a weaker storage of the
arithmetic facts. Finally, we found that the sensitivity to the
interference parameter of multiplication problems is partly
linked to sensitivity to interference in general but not with
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inhibition or verbal memory capacities. We conclude that the
learning and storage of multiplications is particularly interfer-
ence prone because of feature overlap and that people with
hypersensitivity to interference in memory will therefore en-
counter difficulties in this learning. These new findings should
be taken into consideration in education in schools and in the
diagnosis and treatment of dyscalculia.
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Appendix A

Comparison of the Correlations Between the Performance (Mean Accuracy, Median RT) of the Third-Grade
Children, Fifth-Grade Children, and Undergraduates, and the Two Problem Size Indices:

Product and Maximum Operand

Variable

Mean accuracy Median RT

3rd-grade children 5th-grade children Undergraduates 3rd-grade children 5th-grade children Undergraduates

Product �.760 �.554 �.645 .507 .546 .695
Maximum operand �.580 �.422 �.529 .444 .619 .679

Note. RT � reaction time.
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Appendix B

Stimuli of the Multiplication Task Used for Third-Grade Children, Fifth-Grade Children,
and Undergraduate Students

Problem Response Condition Problem Response Condition Problem Response Condition

2 � 3 � 6 small first 4 � 2 � 8 large first 2 � 2 4 tie
2 � 5 � 10 small first 6 � 2 � 12 large first 3 � 3 9 tie
3 � 4 � 12 small first 7 � 2 � 14 large first 4 � 4 16 tie
2 � 8 � 16 small first 5 � 3 � 15 large first 5 � 5 25 tie
2 � 9 � 18 small first 6 � 3 � 18 large first 6 � 6 36 tie
4 � 5 � 20 small first 7 � 3 � 21 large first 7 � 7 49 tie
3 � 8 � 24 small first 6 � 4 � 24 large first 8 � 8 64 tie
4 � 7 � 28 small first 9 � 3 � 27 large first 9 � 9 81 tie
5 � 6 � 30 small first 8 � 4 � 32 large first
4 � 9 � 36 small first 7 � 5 � 35 large first
5 � 8 � 40 small first 7 � 6 � 42 large first
6 � 8 � 48 small first 9 � 5 � 45 large first
6 � 9 � 54 small first 8 � 7 � 56 large first
8 � 9 � 72 small first 9 � 7 � 63 large first

Appendix C

Mean of the Medians of Reaction Time and Mean Accuracy for Each Problem Separately for Third-Grade
Children, Fifth-Grade Children, and Undergraduates

Problem

Accuracy Reaction time

Grade 3 Grade 5 Undergraduates Grade 3 Grade 5 Undergraduates

2 � 2 � 95 93 100 4,614.5 1,884 1,222.5
2 � 4 � 92 100 98 4,863 2,265.5 1,506
2 � 6 � 89 95 98 6,314.5 2,297 1,560
2 � 7 � 79 100 96 5,887.5 2,787 1,636.5
3 � 2 � 95 98 98 4,434 1,981 1,379
3 � 3 � 76 98 100 5,614 2,408 1,402.5
3 � 5 � 84 98 100 6,982 2,840 1,773
3 � 6 � 50 98 100 12,271 4,625 2,550.5
3 � 7 � 50 93 98 10,657 3,565 1,804
3 � 9 � 53 93 87 14,896.5 3,528 2,538.5
4 � 3 � 71 100 100 8,019 3,222 1,638.5
4 � 4 � 66 93 98 6,972 2,973 1,529
4 � 6 � 47 95 98 11,642 3,882 1,765
4 � 8 � 42 93 80 13,517 4,769 2,714
5 � 2 � 95 98 98 4,779 2,332 1,705
5 � 4 � 82 98 98 5,983 3,092 1,762
5 � 5 � 92 95 98 8,048 2,726 1,548
5 � 7 � 61 95 98 10,117 3,177.5 1,793
5 � 9 � 76 98 91 8,081 3,401 2,198
6 � 5 � 63 93 85 11,460.5 4,051 3,010
6 � 6 � 21 95 100 16,122 2,916 1,681.5
6 � 7 � 8 93 83 17,396 3,718 3,631
7 � 4 � 18 93 91 11,897 4,173 2,616.5
7 � 7 � 13 86 80 26,247 3,999 2,189
7 � 8 � 18 79 61 12,089 5,536 3,455.5
7 � 9 � 18 79 80 19,534 6,535 3,805
8 � 2 � 82 100 98 5,710 2,714 2,043
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Appendix C (continued)

Problem

Accuracy Reaction time

Grade 3 Grade 5 Undergraduates Grade 3 Grade 5 Undergraduates

8 � 3 � 53 86 98 11,262 5,263,5 2,640
8 � 5 � 68 95 93 10,280.5 4,345.5 2,459
8 � 6 � 18 86 67 8,351 4,392.5 2,701
8 � 8 � 21 83 83 10,260.5 3,053 2,338
9 � 2 � 79 100 98 6,299.5 2,538 1,746
9 � 4 � 39 74 89 11,901 6,051 3,263
9 � 6 � 18 95 65 16,414 5,132 4,204.5
9 � 8 � 37 79 85 9,083.5 4,421 3,969
9 � 9 � 29 100 96 7,500 2,886.5 2,172.5
M 55.5 92.97 91.28 10,152.76 3,596.67 2,276.38
SD 28.46 6.95 10.57 4,777 1,157 800

Appendix D

Performance Across Multiplications (Mean of Median Reaction Time and Mean Accuracy)
of the Control Group and DB

Problem

Control group (N � 11) DB

RT (ms) % CR RT (ms) or errors

2 � 2 733 100 912
2 � 3 895 100 1,175
2 � 4 810 100 1,402
2 � 5 878,5 100 1,608
2 � 6 891 100 1,256
2 � 7 883 100 829
2 � 8 1,026 100 1,448
2 � 9 892 100 1,998
3 � 3 784 100 990
3 � 4 865 100 2,984
3 � 5 791 100 1,866
3 � 6 996.5 100 2,958
3 � 7 907 100 2,317
3 � 8 1,134 100 4,613
3 � 9 1,035 100 5,964
4 � 4 864 100 3,176
4 � 5 916 100 1,639
4 � 6 1,110 100 2,963
4 � 7 1,043 100 5,171
4 � 8 1,513.5 91 3,969
4 � 9 1,490 100 6,758
5 � 5 783 100 1,108
5 � 6 1,087 100 1,906
5 � 7 1,124 100 1,989
5 � 8 1,170 100 1,486
5 � 9 1,234 100 2,489
6 � 6 812 100 voice key problem
6 � 7 1,200 100 13,619
6 � 8 1,206 91 error (46)
6 � 9 1,856 91 11,773
7 � 7 1,044.5 100 15,217
7 � 8 1,456 91 4,895
7 � 9 1,319 100 7,678
8 � 8 1,157 100 1,837
8 � 9 1,891 91 error (71)
9 � 9 862 100 2,652
M 1,074 98.74 3,717
SD 283 3.19 3,621

Note. RT � reaction time; CR �correct responses.

(Appedices continue)
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Appendix E

Stimuli of the Multiplication Table Membership Judgment Task

Targets (true) Lures (false)

12 11
14 13
15 17
16 19
18 22
21 23
24 26
25 29
27 31
28 37
32 41
35 34
36 38
42 44
45 46
48 52
49 58
54 62
56 66
63 68
64 74
72 76
81 78

M 38.1 42
SD 20 21.2
No. odd 9 9
No. even 14 14

(Appedices continue)
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Appendix F

Performance Across Multiplications (Mean of Medians Reaction Time and Mean Accuracy)
of the Fourth-Grade Children in Period 1 and Period 2

Problem

Period 1 Period 2

% RC RT (ms) % CR RT (ms)

2 � 2 � 100 1,520.5 100 1,294
2 � 4 � 95 1,604 98 1,600
2 � 6 � 100 1,782 100 1,555
2 � 7 � 100 1,730 100 1,328
3 � 2 � 100 2,176 99 1,932.5
3 � 3 � 99 2,009 98 1,491
3 � 5 � 99 1,784 100 1,434
3 � 6 � 91 3,656 87 2,594
3 � 7 � 93 3,627 93 2,155
3 � 9 � 89 3,236 83 3,582
4 � 3 � 98 3,617 96 2,050
4 � 4 � 88 2,195 96 1,774.5
4 � 6 � 82 4,550 90 3,431
4 � 8 � 78 4,018 80 3,887
5 � 2 � 100 1,755.5 100 1,507
5 � 4 � 99 2,930.5 98 2,027.5
5 � 5 � 98 1,790.5 98 1,520
5 � 7 � 93 3,211 98 3,017
5 � 9 � 91 3,197 97 2,489
6 � 5 � 93 2,446 95 2,402
6 � 6 � 97 1,707 98 1,302
6 � 7 � 75 3,553 85 2,567.5
7 � 4 � 95 3,740 80 3,246.5
7 � 7 � 75 1,882 72 1,474
7 � 8 � 61 5,190.5 53 3,564
7 � 9 � 71 3,627 74 3,973.5
8 � 2 � 99 2,263 100 1,810.5
8 � 3 � 78 4,199 83 3426
8 � 5 � 98 3,074 92 2,597
8 � 6 � 83 5,875 83 3,903
8 � 8 � 79 2,014 76 1,728
9 � 2 � 100 1,998 98 1,842.5
9 � 4 � 85 5,302 80 3,861
9 � 6 � 86 4,876.5 80 4,229
9 � 8 � 68 2,812 89 2,169
9 � 9 � 93 1,872 96 1,655
M 90 2,967 90 2,401
SD 11 1,200 11 930

Note. RT � reaction time; CR � correct responses.
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