- -

v A
? L/
JE T RE

EXPLORING RESEARCH AND INMNOVATIONS

International Journal of Emerging Technology and Advanced Engineering
Website: www.ijetae.com , Volume 6, Issue 10, October 2016)

Determination of Field Intensities Belonging to the Wedge
Regions Adjacent to A Convex Triangular Obstacle Subject
to Asymmetric Conditions

Sanjay Kumar?, Dr. Amita Sharma?

P, G. Centre Department of Mathematics, 2P.G. Department of Physics, Ram Dayalu Singh College, Muzaffarpur-842002,
Bihar, B. R. A. Bihar University, Muzaffarpur, Bihar, India

Abstract : Electromagnetic (EM) field intensities happen Keywords: Electromagnetic field intensities, convex
to exist as solutions of Maxwell’s equations in a three triangular prism, Maxwell’s equations.
dimensional space. In the present paper, an attempt has
been made to determine the components of EM field . INTRODUCTION
intensities belonging to a pair of groove regions adjacent to ) ]
a convex triangular prism. Field intensities are supposed to A convex triangular obstacle forms a vital part of a
be asymmetric in the space R°, and the triangular prism periodic echellete antenna. In recent years [1-8] quite a
forms a part of an echellete grating of fixed period. The good number of results have been reported pertaining to
governing Maxwell’s equation is solved subject to the the groove field estimates and the efficiency of the said
Dirichlet conditions of the filed intensity F = (H \Y% E) gr_ating. The_ presgnt paper deals_ with a gen_eral convex
on the boundaries of the said groove regions. The triangular prismatic obstacle K(Figure 1) having an open
concerning mathematical ideas happen to be associated with rectangular base, a flare angle B, the groove depth ‘h’” and
the properties of associated Legendre function. Twelve the grating period ‘d” (Figure 2). In the present paper a
spherical wave functions have been determined for finding model M, has been allowed to interact with an
the components of_ the said field in_tensities._ Two existence asymmetric EM field F = (H v E) satisfying the
theorems, concerning an asymmetric spherical wave, have , .
been established. Finally, the expressions of the field Maxwell’s equations

intensities H and E have been utilized for determining
the current density.

oE oB oH
VxH=J=0E+e—, VXxE=—"=—pu—
ot ot ot
oF 0°F
and V°F=pyo—+c¢ 5
ot ot
The equations have been transformed by using Where 0K stands for the plane bounding faces of the
spherical ~ polar coordinates X, =rsindcos¢g model M. Two existence theorems, concerning an

asymmetric spherical wave have been established.
Twelve spherical wave functions have been determined
in terms of the components of E and H . The
concerning mathematical ideas happen to be associated
with the properties of associated Legendre function

V2E = 0_5_F+652F an(X) (m,neJ*) and oblique coordinate
o T a

X, =rsin@sing and X, =Z=rcosé resulting to

an asymmetric spherical wave. The solutions of the
Maxwell’s equation have been determined from the
following forms of EM problems :

transformations.

F|0K =f Dirichlet’s problem)
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1. Formulation of the problem
Consider the Maxwell’s equation [9]
_°F  0°F  OF _ ( oF GZFJ "

= + + =yl o—+
o o ac MN7a T

VF

Satisfied by the asymmetric field intensity vector
F = F(X, X, %, t)
Using the spherical polar coordinate transformation
X, =rsingcosg¢, X, =rsindsing, x,=rcosfd=z

one can transform the equation (1) in the form

2 2
VF =—— L E +2rsin0 % +sing 2 'z
r<siné or or 0 @
2
oF 1 O°F oF 0*F
+C0S0—+ —— S |THO—t€E——
06 sind o¢ ot ot

Now, applying variable separable method for the equation (2), one can arrive at the solution
F(ro.4t)=R()R6.9)Gt)  ©
Where the functions F;(r), F,(6,¢) and G(t) satisfy the equations

2 2
{(rzFﬁ 2rF1')/F1 +aa P 4 oot0 %2 1 cosecip O 2 /Fz}i

0’ 00 o’ r? 4)

= 1o Gth € G"(t))/G(t) = -k’

and

2

2
(rzFl”+2rFl’) F+kr?=- g ':22 +cot0 0 1 cosec?0” Fj F,=¢ (5)
00 o0 Y

Where Kk and & are independent of r, 8, ¢ andt.

In particular, assuming & = n(n +l)v nel’ the equation (5) gives rise to the surface harmonic function F, (0, ¢)
satisfying the PDE

0°F, oF 1 0°F,

+coth—2 +— +n(n+1)F, =0 (6)
06° 06  sin® @ 0¢? (n+1)F,
Now, separating ‘F,’further in the form of the product
F (91 ¢) =F (9)F4 (¢) (7
One can arrive at the following ordinary differential equations (ODE)
Fi(¢)+1°F,(¢)=0 ®)
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And
(-3, (6)-2xF, (0)+[n(n+1)-12/1-x*[F,(0)=0 (9)
Where X =C0S@and ‘I’ is zero or positive integer. The ODE (9) may be identified as associated Legendre equation

which furnishes the associated Legendre’s function PnI (COS H) as one of its solutions.

Thus, combining (7), (8) and (9), the surface harmonic function F, (6‘, ¢) may be expressed in the form

F, (‘9’ ¢) = C:semjpnI (X) (J = \/__1) (10)
(- x*)"D'P,(x) ( = dij (11)

where P!(x) y

n

for |X| <1, and ‘Cy’is an arbitrary constant.

Hence, considering the asymmetric EM field intensity F(r,@, ¢,t) it follows that the surface harmonic function
F, (6’, ¢) forms a part of the EM field.

However, looking to the wide utility of Ferrar’s function TnI (X) for physical applications one is led to convert PnI (X) in

terms of TnI (X) by means of the relation

1 1/2 ol
T, (x)=(-2)"RI(x) (12)
for |X| <1, and as such the surface harmonic function F, (6?, ¢) given by (10) may be further expressed in the form

F,(6,4)=C,exp(Jl(¢—7/2))T (cos 0) (13)
Now, recalling the equation (6), one can arrive at the linear ODE
r2F/+ 2rF1’+{ r? —n(n +1)}F1 =0 (14)

Possessing the only regular singular point (RSP) at origin r = 0, consequently one can arrive at Frobenius solution in
series

Fl(r): iazmrzmp (15)
m=0

Around the origin, the series being convergent within a sphere |r| = A of arbitrarily finite radius A. The values of the
identical roots happen to be

p=nand - (n+1) (16)

And the coefficients of the series (15) may be determined by means of the recurrence relation
- Kza-z(m 1)
a = - vmel”’ 17
™ [(p+2m) p+2m+1)—n(n+1)]

Now, considering the right hand side of the equation (4) one can arrive at the solution

G(t)= Aexp(ja)—(ij]t (18)
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yo,
2ue

p= \/— uzaz +4ue k? subject to the restriction 2k\/g > 04U and (0/2 e) stand for time attenuation of the EM
wave.

and

Where ‘A’ is an arbitrary constant, ‘@’ stands for the frequency of the EM wave satisfying the relation @ =

Therefore, combining (3), (13), (15) and (18), one can finally arrive at the asymmetric EM field
F(r,0,¢,t)=> a,,r*™"T, (cos 0)exp( jl(zh— ¢))G(t) (19)
m=0
For an arbitrary choice of ‘I’

Dirichelet Conditions
In order to match the initial value of the field intensity (19) with the prescribed initial values of EM fields on the
bounding faces OK of the model M one can arrive at the Dirichlet’s condition

F(r,0,40),, =F(X.0,%). F(r.0,4.0),. =F,(a,yx)

F(r.6,90), =F,(0,Y,%) and F(r,6,40) . =F,(x,-b,x) (0)
Where the field intensity F(r, o, ¢,t) is essentially expressed in the form

F(r,0,4,t)= i B!T!(cos O)F,(r)exp (jl(¢—7/2))G(t) (21)
n=1
Now, making use of the transformation [3]

X'sin B = psin(6, + S+ )
y'sin B = psin(, +¢) 22)
p=rsind
Over the bounding faces AC and BC' of the model “M”, one can arrive at the values
F,(r),. = F.(asin BcosecOcosec(, + ¢ + )

> 23
=>"a,,(asin )" "(cosecOcosec(d, + ¢+ B)\ """ (23)

m=0

Fy(r),e = iam (~bsin BF™"(cosecOcosec(d, + @) ™" (24)

Spherical wave functions and the components of electric and magnetic intensity vectors:

The expression (21) represents a spherical wave function
!//(r1 0,¢,t) _ (r H ¢) t(o/2e- jo) (25)

Where v (r.0 ¢):iB'Fl(r)T'(cosH)e“(“"”/Z) stands for the free space spherical wave formed by the

superimposition of spherical waves of amplitude B,'](F). The nature of these waves are similar to that given by (19).

Now, recalling the Maxwell’s equations.
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VxH =0E+¢€ & and Vx E = —y% , one can arrive at following relations :

OHy oH, _ o, _0F
X, % oot
OHy oMy e % (26)
OX;  OX ot
oH, H_ e, %
Xl ox, ’
0E, OE,  oH,
x x| at
OE, OE oH
178 _,u_z (27)
oX, OX ot

Ok, G, __, oM,

ox x| ot

Replacing F by H and E successively in (25) one can recast (26) and (27) in the form
1 .
(Ea +jo ejEl = [%“3 (r,0,6,0)—wi(r,0, ¢,1)]G(t) (28)

Lo+ jvele <l rosn-uroslet) e
@m joe|E =[py(r.6.0) -3 (r.0.4.0]6() (@0

P %a— jo [H, =2 (r.6,00) -y (ro.g06l) @

L %a— jo [H, =[y(r.0.60)-vE (r.0,60G1) 32

% %a—jw H, =™ (.60 -vE(ro.g16k) @

where

0

vy (r,0,91)=> B3 (H)e"2{F/(r)T! (cos #)sin Osin ¢

n=1
B Fl(r)(Tnl (cos 9))' sin@cosdsin ¢
' (34)

R0 (cos0) >—¢}

rsiné
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o0

vy (r,0,91)=> B*(H)e"{F/(r)T, (cos 0)cos

n=1
I oin 2
o)
wi(r,0,41)= i BY(H )e2{E/(r)T!(cos 8)cos
n=1
I oin 2
+F(r)(T (cos 0)) smr 0} (36)

v (r.0,41)= i B(H )e"2{F(r)T!(cos 8)sin cos ¢
n=1

B Fl(r)(Tnl (cos 0))’ sin@cosdcos ¢
' 37)

—F(r)T coso) )M}

rsiné

0

w2 (r,0,91)=> By*(H )" "?{F(r)T, (cos @)sin g cos ¢

n=1
sin@cos @

I CoS ¢ (38)

R eoso) iR |

~ (1T, (cos6))

rsiné

0

vy (r,0,01)=> By (H "2 {F/(r)T, (cos @)sin Osin ¢
n=1
~F(r)T(cos 6), sin@cos@sin ¢
' (39)

+F (1T (cos ng,)m}

rsiné

Replacing H;, H,, H; and H by E, E,, E; and E respectively one can easily find the value of
vy (r0.00) s (r.0.62) w5 (r.0,42), v (r.0,01) v (r.0.61) v (r,0,4.).

Hence, one can arrive at the following theorems :

Theorem 1: An asymmetric electric intensity vector E is said to be associated with time dependent damped spherical wave
l//E(r,0,¢,t) of frequency @ and the damping factor (0'/2 e) iff the bounding surfaces of OK are conducting (o =0)
and the components of magnetic intensity vector H are given by (31) to (33) and the frequency @ and the wave number K

are mutually related by the non-linear relation 4 € k? = ,u(4 cw’ +0'2) subject to the restriction 2k\/€ > \/; o.
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Theorem 2: An asymmetric magnetic intensity vector H is said to be associated with a time dependent damped spherical
wave l//H (r,9,¢,t) of frequency @ with damped factor (0'/2 e) iff the bounding surfaces of OK are conducting
(o =0) and the components of electric intensity vector E are given by (28) to (30) and the frequency @ and K are

mutually related by the non-linear relation 4 € k? = /1(4 ca’ + 62) subject to the restriction that 2k\/g > \/; o.

Determination of Current Density |

A current density | consists of displacement current and the conduction current according to Maxwell’s theory in
electromagnetics. Hence one can express | in the form

I=1_+1, :oE(r,0,¢)+e%(r,9,¢,t) (40)

Now, combining the relations (25) and (40), | may be finally expressed in the form
| =y 5(r, 0,4, 1) (c/2+ joe)  (a1)

Which represents a spherical wave with its amplitudes and phase given by the following expressions :

|I| :%WE(r,é‘,@e"t/zewlio—Z +40° € iand phase (I ):5+a)twhere tano = 20¢

O

Il. CONCLUSIONS

The present paper furnishes the existence of “"f‘
asymmetric EM waves associated with an echellete i
model. The concerning wave functions happen to be !
derived from the governing Maxwell’s equation in B ! £

spherical coordinates (r,9,¢). The waves associated ¢
|
|
[
|

with such wave functions may be identified as spherical
waves. The present field of study happens to be
equivalent to EM boundary value problems. The
foregoing results have been applied for finding the
components of electric and magnetic intensity vectors E
and H. Two existence theorems regarding the spherical A~ Q
mode of polarisation of a EM wave have been /

established. Finally, the expression of the field intensities 8 d -
H and E have been utilized for computing the current
density.
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Captions of the Figures
Figure 1.

A convex triangular prism of dimensions a, b, d and
with it’s flare angle ‘B>, OO’ is perpendicular to the

planes As OAB and O'AB'.
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Figure 2.
A model ‘M’ consists of a triangular prism formed by

As OAB and O’A'B’ and its adjacent groove regions
formed by the sides BC' and AC and the sides parallel
to OO’, OA and OB.



