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3. Compact Course: Groups Theory 

Remark: This is only a brief summary of most important results of groups theory with respect 

to the applications discussed in the following chapters. For a more detailed description see 

references.  

 

3.1 Definition of a group 

We assume a set of elements C,...}B{A ,,=G . Furthermore, we assume that there is a 

definition of a combination of two elements AB, which we denote as the product of two 

elements. 

G  is a group if the following conditions are satisfied: 

1. Closure: G∈AB  

The product of two elements of the group is also an element of the group. 

2. Identity element: The is an element G∈E , such that AEAAE ==  for all G∈A . 

A ‘neutral’ element exists, which has no ‘effect’ on the other elements if the group. 

3. Associative law: CABBCA )()( =  for all G∈CBA ,, . 

4. Inverse element: The is an element G∈−1A , such that EAA =−1  for all G∈A . 

In inverse element exists for all elements of the group, which inverts the ‘action’ of a 

given element. 

• For some, but not for all groups, the commutative law holds (commutative law: 

BAAB = for all G∈A ). These groups are called Abelian groups. 

• Without proof (see e.g. F. A. Cotton):  1111 −−−− = CBAABC )( . 

(3.1:  Example for a group) 

 

3.2 Order of a group 

The number of elements of a group is called the order of the group. 
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3.3. Multiplication table 

For any group, we can set up a multiplication table, which tabulates the results of the products 

of two elements. 

Without proof: Every line and column contains every group element exactly once. No line or 

column is identical to another one. 

(3.2:  How many types of groups are there with three elements? Derive the multiplication tables.) 

 

3.4 Cyclic groups 

In a cyclic group all n elements are generated by powers of the first element 

}...AAAA{E nn 121 −== ,,),(G . 

(3.3:  Example of a cyclic group) 

An important property of cyclic groups is that they are Abelian (as nmmnmn AAAAA == + ). 

 

3.5 Subgroups 

A subset of the elements of the group G  can itself form a group U . We call U  a subgroup of 

G . 

(3.4:  Example of a subgroup) 

 

3.6 Symmetry groups 

The complete set of symmetry elements of a molecule, surface or crystal has the mathematic 

structure of a group. The set is called the symmetry group. 

(3.5:  Example of a symmetry group. H2O molecule: show that the symmetry elements behave like a group). 

 

3.7 Classes 

We define a similarity transformation 

AXXB 1−=  
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which transform some element A  by means of another element X  into some other element 

B . If  A  and X  are elements of the group G , the elements are called conjugated elements. 

A complete set of elements, which is conjugated to one another is called a class of elements of 

the group. 

 

The classes have a figurative meaning: Those symmetry operations belong to the same class, 

which can be reached by a transformation of the coordinate system, which is part of the 

symmetry group. 

(3.6:  Example: Divide the elements of the symmetry group C4v into classes). 

 

(The definition of classes will greatly simplify the work with symmetry groups). 

 

3.8 Representation of symmetry operations by matrices 

We can represent all symmetry operations discussed so far in the form of a matrix R.  

In the simplest case, these matrices act on points X
r

 in three-dimensional space and assign a 

new position XX
rr

R='  (Note: if instead we consider a basis transformation defining the new 

basis 'B
r

 in terms of the old one as BB
rr

A=' , the coordinates of the point in the new 

coordinated 'X
r

 are XX
rr

-1A=' ): 

(3.7:  Examples for matrix representations of symmetry operations). 

 

3.9 Representations of a group 

A set of matrices which upon multiplication behaves analogous to the elements of a group is 

called a representation of the group. 

Example: 

We consider the transformation of a point X
r

 in three dimensional space according to the 

symmetry operations of group C2V. 
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With respect to matrix multiplication, these matrices follow the multiplication table of group 

C2V. 

 

3.10 Reducible and irreducible representations 

As specific case of matrices are so called block-diagonal matrices. Block-diagonal matrices 

are multiplied according to the scheme, i.e. the multiplication can be reduced to the 

multiplications of the sub-matrices of lower dimension: 
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For the specific example considered, the matrices are completely diagonal, i.e. all blocks are 

of dimension 1. Accordingly we can reduce the three dimensional representation given above 

into three one-dimensional representations, which again are representations of the symmetry 

group C2V: 
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We consider a representation of a group by a set of matrices R  of dimension n. Additionally , 

we consider a basis transformation to a new coordinate system BB
rr

A=' , with the coordinates 

of a vector in the new basis in terms of the old coordinates XX
rv

-1A=' . The representation of 

the group in the new basis is RAAA' -1= . For any representation, we can search for the basis 

transformation, which yields a set of representations with lowest possible dimension. We 
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denote a representation with the lowest possible dimension as an irreducible representation 

and a representation with higher than minimum dimension as a reducible representation.  

The example shows that there are irreducible representations (brief: irreps) of different type, 

i.e. behaving differently with respect to the symmetry operations contained in the group. 

 

3.11 Character of a matrix 

We define the character Γχ of a matrix Γ  as the sum over the diagonal elements: 

∑Γ=Γ
i

iiχ . 

(3.8:  Character of matrices). 

The character of a matrix has an important property: It is invariant upon a transformation of 

the basis. 

(3.9:  Character of matrices). 

This is quite handy, as in the following it allows us to work with characters instead of the full 

representation matrices, irrespective of a specific choice of the basis. 

 

3.12 Properties of irreducible representations: GOT “great orthogonality theorem”  

(for proof see textbooks) 

( ) ( ) '''' * nnmmij

ji
R

nmjmni δδδ
ll

h
RR =∑ ΓΓ  

with h : order of the group 

R : symmetry operation of the group 

 ( )RiΓ : matrix representation for operation R of the irreducible representation of type i 

 il : dimension of the i-th type of irreducible representation 
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The vectors consisting of corresponding elements of the representation matrices are 

orthogonal and normalized. There are a number of simpler conclusions following from the 

GOT, which can be easily proven (see e.g. A. F. Cotton), e.g: 

• ( ) hEχl
i

i
i

i =∑=∑
22 ; sum over the dimension squares of the irreps (sum over the 

character squares of the identity element) is equal to the order of the group. 

• ( ) hRχ
R

i =∑
2 ; sum over character sqares over all symmetry operation for a given type 

of representation is equal to the order of the group. 

• ( ) ( ) ij
R

ji hδRχRχ =∑ : Character vectors of different irreps are orthogonal. 

• The characters of representation matrices for a given type of irrep for operations 

belonging to a common class are identical. 

• The number of classes is equal to the number of irreps. 

(3.10:  Develop the characters and representation matrices for the symmetry group C2V from the above statements). 

 

3.13 Analysis of reducible representations 

The following idea is a key point for a large number of applications in the next chapters of 

this course. 

We assume that ( )RΓ  is a reducible representation of the symmetry group G with the 

corresponding characters ( )Rχ . We would like to know, how many irreducible 

representations of symmetry type i are contained in ( )RΓ . 

For this reason we assume that we have transformed ( )RΓ  to its blockdiagonal form ( )R'Γ . 

As the characters are invariant with respect to this transformation, we obtain: 

( ) ( ) ( )RχaRχRχ j
j

j∑== '   with   ( )Rχ j : character of j-th irrep of group 

     ja : number of times that j-th irrep is contained in ( )RΓ  

By multiplying with ( )Rχ  and summing over all operations of the group: 
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Here, all we need as an input is the characters of the irreps of the group. These are listed in the 

so called character tables. 

 

3.14 Character tables 

Most important information which is required to work with a given symmetry group is 

summarized in the co called character table. 

Example: C4V 

 

C4V E 2C4 C2 2σv 2σd   

A1 1 1 1 1 1 z x2+y2, z2  

A2 1 1 1 -1 -1 Rz  

B1 1 -1 1 1 -1  x2-y2 

B2 1 -1 1 -1 1 (x, y) xy 

E 2 0 -2 0 0 (Rx, Ry) (xz, yz) 

 

 

symmetry properties of 
some functions and their 
classification by irreps 

symmetry operations  
ordered by classes 

group name 
(Schoenfliess) 
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List of irreducible representations: 
 
Mulliken notation: 
 
(1)  1 dim. irreps: A, B 
 2 dim. irreps: E 
 3 dim. irreps: T 
 4 dim. irreps: G 
 5 dim. irreps: H 
 
(2) A/B: symmetric / antisymmetric with respect to rotation by 2π/n 

around principle axis Cn. 
 
(3)  Index 1/2: symmetric / antisymmetric with respect to rotation by π 

around C2 axis (perpendicular to Cn). 
 
(4) ’ or ’’: symmetric / antisymmetric with respect to σh. 
 
(5) g/u: symmetric / antisymmetric with respect to i. 


