
Chapter 6

Mixing

SUMMARY: In environmental flows, mixing is important because it brings into
contact fluid parcels with different origins, dilutes their properties, and promotes
chemical reactions. Some preliminary considerations aim at defining mixing and
quantifying its efficiency. The present chapter then explores several situations in
which a shear flow generates mixing, with or without the impeding action of density
stratification.

6.1 The Nature of Mixing

Because mixing is an everyday word, most readily associated with our daily food
preparations and home washing machines, it tends to lack a sharp definition. It is
nonetheless accompanied by an extensive body of knowledge mostly stemming from
chemical engineering. Indeed, a frequent preoccupation among chemical engineers
is the design of swirling flows that maximize mixing followed by the determination
of the energy required to stir the contents of a chemical reactor in a certain amount
of time. The study of mixing also pertains to environmental fluid mechanics because
it is the process by which fluid parcels with different origins, and possibly different
contaminant loadings, come into contact, dilute their properties into one another,
and promote transformative chemical reactions.

A first approach to the study of mixing is the consideration of its geometrical as-
pects, that is, the topology of streamlines in the flow (Ottino, 1989). The questions
then concern the folding of fluid trajectories and rates of deformation of a cloud of
tracked fluid particles. Mixing can viewed as a three-dimensional “shuffling process”
(Brothman et al., 1945) during which there is an increasing probability over time
that a fluid parcel of a given size will pass through a certain region. Following this
line of thought and carefully distinguishing between stirring and mixing1, Eckart

1According to Eckart (1948), stirring should be used only to refer to the kinematic stretching
and folding of lines of fluid particles whereas mixing is the process that erases differences (gradients)
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Figure 6.1: Temporal deformation of a patch of butanol floating on water in a
rotating vessel. [From Welander, 1955]

(1948) calculated “mixing times” of temperature and salt anomalies in the ocean
without resorting to any dynamical description of the underlying processes.

Welander (1955) offers the following description for stirring in two-dimensions.
An initial square element with side short compared to the length scale of the de-
forming flow field is subjected to translation, rotation and shearing. As time passes,
the deformation of the element becomes significant, and the element gradually ac-
quires an irregular shape. Increasingly long and thin bands are formed (Figure
6.1). Whenever the band lies at right angle to the flow, folds develop at points of
maximum velocity. Folds also appear where the velocity gradient is nearly opposite
to the velocity direction. As the band folds, it becomes increasingly elongated and
thin while not occupying much more overall space. Within a finite amount of time,
the situation appears chaotic.

One reasonable assumption is that the rate of stretching of a band segment of
length ℓ grows proportionally to ℓ itself,

dℓ

dt
= α ℓ, (6.1)

with the coefficient of proportionality α depending on the features of the flow field.
Considering a stationary turbulence field, Batchelor (1952) took α as a constant
over time, with ℓ then increasing exponentially but never reaching an infinite value

under the subsequent action of molecular diffusion.
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in a finite time. Welander (1955), in contrast, argued that an infinite length could
be reached in a finite time. His argument based on properties of stretching in
high-curvature folds leads to the expression

α =
V

L

ℓ

ℓ0
, (6.2)

in which L and V are respectively the length and velocity scales of the flow field,
and ℓ0 the initial length of the segment. Equation (6.1) then includes a factor ℓ2

on the right and leads to a solution that reaches an infinite value in a finite time:

ℓ(t) =
ℓ0

1− V t/L
. (6.3)

Naturally, dissipation would act to smear fluid properties before a band of fluid
becomes infinitely long and thin. The point is that mixing time can be as short as
L/V .

Besides the consideration of deforming bands, an alternative approach is to
explore the probability of the position of a particle in the flow. For this, Taylor
(1921) considered a point source emitting particles, such as smoke particles from a
chimney, into a stationary and homogeneous fluid with zero mean velocity. With
~x(t) the position of the particle at time t after its release from the origin [~x(0) = 0],
the following variance is defined:

R2(t) = < ~x(t) · ~x(t) > , (6.4)

in which < ... > indicates an average over turbulent fluctuations and · represents
the scalar product of the two vectors. The variable ~x(t) is a random variable with
no mean, which corresponds to a trajectory with random turns. Although the
particle may occasionally move in a direction that takes it back toward its origin, it
is unlikely that it will ever return there, and the more time has elapsed, the further
away from the origin it is likely to be. The correlation R2(t) measures the square
of the distance from the origin by time t, regardless of direction, and the vigor of
mixing is measured by the rate at which R2(t) grows with time. So, we take its
time derivative:

dR2

dt
= 2 < ~x · d~x

dt
> . (6.5)

Since the time derivative of position is velocity, the preceding equation may also be
successively expressed as

dR2

dt
= 2 <

(
∫ t

0

~u(t′)dt′
)

· ~u(t) >

= 2

∫

t

0

< ~u(t′) · ~u(t) > dt′

= 2

∫

t

0

< ~u(t− τ) · ~u(t) > dτ , (6.6)
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in which ~u = d~x/dt is the vector velocity in the turbulent flow, which is a random
variable, too. The second expression was obtained by switching the order of oper-
ation between time integration and averaging over turbulent fluctuations, and the
change of variable τ = t− t′ was made to arrive at the third expression.

If the mixing fluid is in a state of stationary, homogeneous and isotropic turbu-
lence, then the dimensionless velocity auto-correlation over time,

S2(τ) =
< ~u(t) · ~u(t− τ) >

< ~u(t) · ~u(t) > =
< ~u(t) · ~u(t− τ) >

u2
∗

, (6.7)

is independent of time t, position and direction and can only be a function of the
time delay τ . The velocity variance u2

∗
is a constant measuring the turbulence

intensity of the flow. Equation (6.6) can then be cast as

dR2

dt
= 2u2

∗

∫

t

0

S2(τ) dτ. (6.8)

Two limiting cases are of interest. For short times (τ → 0), the velocity can-
not be significantly decorrelated because acceleration must remain finite. Hence,
S2(τ) ≃ 1 for short τ , and

dR2

dt
= 2u2

∗
t, (6.9)

of which the time integration yields:

R(t) = u∗ t. (6.10)

Thus, the spread of the particle position increases as the first power of time. In
essence, the particle is propelled in the direction of its initial velocity.

But this initial trajectory will not last long because velocity fluctuations will
soon redirect the particle and force it to meander. At long times, the velocity auto-
correlation vanishes (Figure 6.2), and the relevant quantity becomes the integration
of S2(t) from t = 0 to t = ∞, which defines a correlation time T of the turbulent
flow,

T =

∫

∞

0

S2(t) dt, (6.11)

interpreted as the memory time of the turbulent flow. In that limit, the variance of
the particle position becomes

R2(t) = 2u2
∗
T t, (6.12)

of which the square root is

R(t) = u∗

√
2T t . (6.13)

At long times, the variance increases as the pace of the square root of time. The
situation is similar to random walk.

Chaotic advection (Aref, 1984).
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Figure 6.2: Typical velocity auto-correlation in a turbulent flow. With no time
delay, velocity is perfectly correlated to itself, and the auto-correlation value is 1.
As time delay increases, the auto-correlation diminishes until it vanishes. The time
T defined in the text is the time scale over which the autocorrelation diminishes.
The area of the rectangle is equal to the area under the curve.

6.2 Mixing by Shear

Phenomenological description of mixing in wall turbulence. Mixing length concept
(Prandtl, 1925). How it is been used in practice.

6.3 Mixing in the Presence of Stratification

As seen in Sections 5.1 and 5.2, a velocity shear can destabilize a vertical stratifi-
cation. In such a case, kinetic energy is supplied by the flow and partly consumed
by an increase in potential energy, which is required to overcome buoyancy forces
and raise the center of gravity of the system. Whereas the analysis of the previous
chapter dealt with the early, linear stages of the process, we turn our attention here
to the end result, that of the mixed state. Because a detailed analysis of a highly
complex and turbulent regime is not possible, we first consider the energetics of the
mixing.

To elucidate the energetics of vertical mixing in the presence of a density differ-
ence, consider the following problem: Initially, the system is comprised of two layers
of fluid of thicknesses H1 and H2 with different densities, ρ1 and ρ2, and different
velocities, U1 and U2. Then, we assume that mixing occurs, leaving a single layer
of homogenized fluid of density ρ, flowing at a uniform velocity U over the entire
thickness H = H1 + H2 of the system (Figure 6.3). Conservation of momentum
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Figure 6.3: Mixing of a two-layer stratified fluid with velocity shear. Rising of
denser fluid and lowering of lighter fluid require work against buoyancy forces and
are possible only if there is a sufficient supply of kinetic energy. Kinetic energy is
released from the flow when the velocity shear is reduced.

and heat requires that the new velocity U be the weighted average of the initial
velocities U1 and U2, and the new density ρ be the weighted average of the initial
densities ρ1 and ρ2:

U =
H1U1 +H2U2

H1 +H2

(6.14)

ρ =
H1ρ1 +H2ρ2
H1 +H2

. (6.15)

Per unit area of the system, the kinetic energy prior to the mixing event was
(by invoking the Boussinesq approximation, which allows us to replace the actual
densities by the reference density ρ0):

KEinitial =

∫

H

0

1

2
ρ0u

2(z) dz

=
1

2
ρ0U

2
2H2 +

1

2
ρ0U

2
1H1

=
1

2
ρ0(H1U

2
1 +H2U

2
2 ) (6.16)

and has become afterwards

KEfinal =
1

2
ρ0U

2H

=
1

2
ρ0

(H1U1 +H2U2)
2

H1 +H2

. (6.17)
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There has been a drop in kinetic energy:

KEdrop = KEinitial −KEfinal

=
1

2
ρ0

U2
1H1H2 + U2

2H1H2 − 2U1U2H1H2

H1 +H2

=
1

2
ρ0

H1H2

H1 +H2

(U1 − U2)
2, (6.18)

which is always positive. (This is because the square of an average is always less
than the average of the squares.)

Similarly, the potential energy was

PEinitial =

∫ H

0

ρ(z)gz dz

=

∫ H2

0

ρ2gz dz +

∫ H1+H2

H2

ρ1gz dz

=
1

2
ρ2gH

2
2 +

1

2
ρ1g(2H1H2 +H2

1 ) (6.19)

and has become

PEfinal =

∫ H

0

ρgz dz

= ρg
H2

2

=
1

2
(ρ1H1 + ρ2H2)g (H1 +H2), (6.20)

causing a gain of potential energy:

PEgain = PEfinal − PEinitial

=
1

2
(ρ2 − ρ1)gH1H2. (6.21)

Note how the densities were approximated by the reference density ρ0 in the
expressions of the kinetic energy, where small variations in density do not matter,
but not in the expressions of the potential energy, where the small density variations
make the whole difference.

Physically, the potential-energy level has been raised because cold fluid has
been elevated and light fluid lowered, all against gravity, while kinetic energy has
dropped. Naturally, if the kinetic-energy release (6.21) exceeds the potential-energy
gain (6.24), mixing will take place spontaneously. Therefore, the system will un-
dergo spontaneous mixing if the following inequality is satisfied
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1

2
ρ0

H1H2

H1 +H2

(U1 − U2)
2 >

1

2
(ρ2 − ρ1)gH1H2

which can be reduced to

ρ0(U1 − U2)
2 > gH(ρ2 − ρ1). (6.22)

In reality, a sizeable fraction of the kinetic energy released by the mixing creates
turbulence and, hence, is dissipated by friction. Only the remainder of the energy
release serves to increase the potential energy. Laboratory experiments (reference
needed here) indicate that this remainder is about 30%. Thus, the preceding in-
equality must be amended as follows:

(0.3)ρ0 (U1 − U2)
2 > gH (ρ2 − ρ1), (6.23)

i.e., if

gH∆ρ

ρ0∆U2
< 0.3, (6.24)

where ∆U = |U1 − U2| is the absolute velocity difference and ∆ρ = ρ2 − ρ1 is the
density excess of the lower layer with respect to the upper layer. If we further replace
the density difference by its equivalent temperatrure difference, ∆ρ = αρ0∆T , the
same criterion becomes:

αgH∆T

∆U2
< 0.3, (6.25)

Hence, mixing occurs whenever the fluid is sufficiently shallow under given den-
sity and velocity differences or, put another way, whenever the velocity shear is
sufficiently large or the density (temperature) difference is sufficiently weak.

In the event that inequality (6.28) is not satisfied, there is not enough energy
available in the velocity shear for complete mixing. Mixing is then confined to an
intermediate height, say h, that marginally obeys (6.28):

h = 0.3
ρ0∆U2

g∆ρ
= 0.3

∆U2

αg∆T
. (6.26)

In practice, it is helpful to codify the preceding considerations by introducing a
dimensionless number, called the Richardson number:

Ri =
αgH∆T

∆U2
, (6.27)

where H is the fluid depth under consideration (either total depth or depth of a
turbulent layer, whichever the context dictates is the most appropriate), ∆T is
a measure of the vertical temperature difference across the depth H , and ∆U a
measure of the velocity shear across that same layer. Physics tell us that:

• If Ri < 0.3, mixing occurs and engulfs the entire thickness H of the fluid.
• If Ri > 0.3, mixing occurs but does not extend over the entire thickness of

the domain; it is confined to the thickness h given by (6.29).
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The time scale over which mixing occurs, is given by:

mixing time ≃ thickness of mixing

velocity of overturn

=
∆U2/αg∆T

∆U
=

∆U

αg∆T
(6.28)

and is usually quite fast.

6.4 Entrainment

Text of section. Turner (1973)

6.5 Mixed-Layer Modeling

Effect of rotation on mixing. Pollard, Rhines and Thompson (1973). Price’s models.
Examples of applications.

Problems

6-1. Problem statement
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6-4.

6-5.

6-6.

6-7.

6-8.

6-9.


