SBP Elektrotechnik # 0 by Clifford Wo	lf # 0 Antwort
	Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit.
	Das Lernen mit Lernkarten funktioniert nur wenn die Inhalte bereits einmal verstanden worden sind. Ich warne davor diese Lernkarten nur stur auswendig zu lernen.
SBP Elektrotechnik	Diese und andere Lernkarten können von http://www.clifford.at/zettelkasten/heruntergeladen werden.
	Viel Erfolg bei der SBP Elektrotechnik Prüfung!
	${\it Clifford\ Wolf} < {\it clifford@clifford.at} >$
	Diese Lernkarten stehen unter der CC BY-NC-SA Lizenz.
SBP Elektrotechnik # 1 by Clifford Wo	lf # 1 Antwort
	SI-Basisgröße SI-Basiseinheit
	${\text{Länge}} \frac{l}{\text{der Meter}} \frac{1 \text{m}}{l}$
	$egin{array}{lll} { m Zeit} & t & { m die Sekunde} & 1{ m s} \\ { m Masse} & m & { m das Kilogramm} & 1{ m kg} \\ \end{array}$
SI Basiseinheiten	Stromstärke I das Ampere 1 A
	Temperatur T das Kelvin 1 K Lichtstärke I_v das Candela 1 cd
	Stoffmenge n das Mol 1 mol
SBP Elektrotechnik # 2 by Clifford Wo	<u># 2</u> Antwort
	Abgeleitete Größe Abgeleitete Einheit
	Druck ρ Pascal $1 \text{ Pa} = 1 \text{ N/m}^2$
	Energie E Joule $1 J = 1 N m$ Leistung P Watt $1 W = 1 J/s$
Abgeleitete Größen und Einheiten	elektrische Spannung U Volt $1 \text{ V} = 1 \text{ V/A}$
Tissolottotto Großeit did Elimetteit	elektrische Ladung Q Coulomb $1 C = 1 A s$
	elektrischer Widerstand R Ohm $1\Omega = 1 \text{V/A}$ elektrischer Leitwert G Siemens $1 \text{S} = \frac{1}{\Omega}$
	elektrische Kapazität C Farad $1 \text{ F} = 1 \text{ C/v}$
	Induktivität L Henry $1 \text{ H} = 1 \text{ V·s/A}$ magnetischer Fluss Φ Weber $1 \text{ Wb} = 1 \text{ V s}$
	magnetischer Flussdichte B Tesla $1 \text{ T} = 1 \text{ Wb/m}^2$
SBP Elektrotechnik # 3 by Clifford Wo	<u># 3</u> Antwort
	Elementarladung (Ladung eines Elektron e^- bzw. Proton e^+):
	$e \approx 1,602 \cdot 10^{-19} \mathrm{C}$ $e^{+} = +e$ $e^{-} = -e$
Ladung, Strom und Stromdichte	Der Strom I ist bewegte elektische Ladung Q :
<u>-</u> .	$I = Q/t$ $[I] = 1 \mathrm{A}$ $[Q] = 1 \mathrm{A}\mathrm{s} = 1 \mathrm{C}$
	Die Stromdichte J ist Strom pro Leiterquerschnitt:
	$J = I/A$ $[J] = 1 \mathrm{A/mm^2}$ $I = \iint_A \vec{J} \mathrm{d}\vec{a}$
	$\int J J_A$

SBP Elektrotechnik	# 4	by Clifford Wolf	# 4	Antwort
		<u> </u>		ng U ist die Ursache fuer das Fliessen von Strom.
	Der Widerst	and R des Leiters behindert das Fliessen von Strom.		
			Das Ohmsch	ne Gesetz drückt diesen Zusammenhang aus:
Channing	Widerstand	Taitmant		$R \Leftrightarrow U = R \cdot I \qquad [U] = 1 \text{ V} [R] = 1 \Omega$
spannung,	Widerstand,	Leitwert		
			Der Leitwert	t G ist der Kehrwert des Widerstandes:
				G = 1/R $[G] = 1 S$
SBP Elektrotechnik	# 5	by Clifford Wolf	# 5	Antwort
BB1 Decider overcross	<i>π</i> •	og cogjora mog	77- 0	THIOWOLD
			• Induk	etion
			• Chem	ische Wirkung
G			• Licht	
Span	nungserzeugi	ıng	• Wärn	ne
			• Piezo	elektrizität
			• Reibu	ing
CDD Flahtmat ask mile	// 6	ha Clifford Walf	// 6	Antwork
SBP Elektrotechnik	# 6	by Clifford Wolf	# 6	Antwort
			Gleichstro	m. DC
				strom fließt der Strom immer in die Gleiche Rich-
				ch die Stromstärke konstant so spricht man vom
Spannung	gs- bzw. Stro	marten		
			Wechselstr	rom, AC
				elstrom fließt der Strom abwechselnd in eine und in
			die andere R	ichtung. Dabei ändert sich ständig die Stromstärke.
CDD File		1 (0):00 1	,,	
SBP Elektrotechnik	# 7	by Clifford Wolf	# 7	Antwort
				che Stromrichtung ist im äußeren Stromkreis vom in Minuspol gerichtet und damit dem Elektronen- gengesetzt.
			Strompfeile	zeigen in Richtung der technischen Stromrichtung.
Stromric	chtung, Stron	n- und		feile zeigen vom höheren zum tieferen Potential (in
	annungspfeil		Kichtung de	s Spannungsabfalls).

SBP Elektrotechnik # 8 by Clifford Wolf	# 8 Antwort
Widerstandsgerade	Da das Ohmsche Gesetz $U=I\cdot R$ eine Proportionalität beschreibt ist die U-I-Kennlinie jedes Ohmschen Widerstandes eine Gerade mit der Steigung $1/R$. $[R]=1\Omega=1{\rm V/A}$
SBP Elektrotechnik # 9 by Clifford Wolf	# 9 Antwort
Ideale Strom- und Spannungsquellen	Eine Ideale Spannungsquelle liefert unabhänig vom Strom immer die selbe Spannung. Eine Ideale Stromquelle liefert unabhänig von der benötigten Spannung immer den selben Strom. Ideale Spannungsquellen werden im Kurzschluss singuär. Ideale Stromquellen werden im Leerlauf singulär.
SBP Elektrotechnik # 10 by Clifford Wolf	# 10 Antwort
Leiterwiderstand, spezifischer Widerstand, Leitfähigkeit	Der Leiterwiderstand R errechnet sich aus dem spezifischen Widerstand des verwendeten Leiterwerkstoffes ϱ der Leiterlänge l (in m) und des Leiterquerschnitts A (in mm²): $R = \frac{\varrho \cdot l}{A} \qquad [\varrho] = 1^{\Omega \cdot \mathrm{mm}^2/\mathrm{m}}$ Der Kehrwert des spezifischen Widerstands ist die Leitfähigkeit γ : $\gamma = 1/\varrho \qquad [\gamma] = 1^{\mathrm{S \cdot m}/\mathrm{mm}^2} = 1^{\mathrm{m}/\Omega \cdot \mathrm{mm}^2}$ z.B. Leitfähigkeit von Kupfer: $\gamma_{\mathrm{Cu}} = 56^{\mathrm{S \cdot m}/\mathrm{mm}^2}$
SBP Elektrotechnik # 11 by Clifford Wolf	# 11 Antwort
Die kirchhoffschen Gesetze	 Knotenregel: In einem Knoten ist die Summe aller zufließenden Ströme gleich der Summe der abfließenden Ströme. Oder mit negativem Vorzeichen für abfließenden Ströme: Die Summe aller Ströme in einem Knoten ist gleich Null. Maschenregel: Die Summe aller Spannungen in einer Masche ist gleich Null. (Umlaufrichtung und Vorzeichen beachten!)

SBP Elektrotechnik # 12 by Clifford Wolf	# 12 Antwort
Reihenschaltung von Widerständen	In einer Reihenschaltung von Widerständen addieren sich die Widerstandswerte auf. $R=R_1+R_2+\cdots+R_n$ Die abfallende Spannung Teilt sich dabei proportional zu den Widerstandswerten auf (Spannungsteiler). $I=\frac{U_1}{R_1}=\frac{U_2}{R_2}=\cdots=\frac{U_n}{R_n} \qquad U_i=U\cdot\frac{R_i}{R}$
SBP Elektrotechnik # 13 by Clifford Wolf	# 13 Antwort
Parallelschatung von Widerständen	In einer Parallelschatung von Widerständen addieren sich die Leitwerte auf. $G=G_1+G_2+\cdots+G_n$ Der fliessende Strom Teilt sich dabei proportional zu den Leitwerten auf (Stromteiler). $U=\frac{I_1}{G_1}=\frac{I_2}{G_2}=\cdots=\frac{I_n}{G_n} \qquad \qquad I_i=I\cdot\frac{G_i}{G}$
SBP Elektrotechnik # 14 by Clifford Wolf	# 14 Antwort
Dualität	Zwei Schaltungen heißen zueinander dual , wenn die eine hinsichtlich der Ströme die gleichen Eigenschaften aufweist wie die andere hinsichtlich der Spannungen.
SBP Elektrotechnik # 15 by Clifford Wolf	# 15 Antwort
Arbeit, Energie und Leistung	Die Arbeit W bezeichnet die Energiemenge E , die von einer Form in eine andere Umgewandelt wird. $[W] = [E] = 1\mathrm{J} = 1\mathrm{N}\mathrm{m} = 1\mathrm{W}\mathrm{s}$ Elektrische Arbeit: $W = U\cdot Q \qquad [W] = 1\mathrm{V}\mathrm{C} = 1\mathrm{J}$ Die Leistung P ist Arbeit pro Zeiteinheit: $P = \frac{W}{t} = \frac{U\cdot Q}{t} = U\cdot I \qquad [P] = 1\mathrm{W} = 1\mathrm{V}\cdot\mathrm{A}$

SBP Elektrotechnik # 16 by Clifford Wolf	# 16 Antwort
	Bei einem elektromechanischen System unterscheidet man die zugeführte Leistung P_{zu} , die abgegebene Leistung P_{ab} und die Verlustleitsung P_{V} :
	$P_{\rm V} = P_{\rm zu} - P_{\rm ab} \qquad \Leftrightarrow \qquad P_{\rm zu} = P_{\rm ab} + P_{\rm V}$
Wirkungsgrad	Der Quotient aus abgegebener und zugeführter Leistung heißt Wirkungsgrad η :
	$\eta = \frac{P_{\rm ab}}{P_{\rm zu}} = 1 - \frac{P_{\rm V}}{P_{\rm zu}} \qquad (\eta \le 1)$
	Der Wirkungsgrad ist eine dimensionslose Verhältnisszahl und wird oft in Prozent angegeben.
SBP Elektrotechnik # 17 by Clifford Wolf	# 17 Antwort
	Eine elektrische Ladung $+Q$ und ihre Gegenladung $-Q$ bewirken eine Feldänderung - den elektrischen Fluss Ψ - im Raum zwischen diesen Ladungen.
	Der elektrische Fluss ist Betrags- und Einheitsmäßig mit der felderzeugenden Ladung Q ident.
Der elektrische Fluss	$[\Psi] = [Q] = 1 \mathrm{C}$
	Der elektrische Fluss kann durch Feldlinien oder Feldröhren veranschaulicht werden, die bei der positiven Ladung $+Q$ beginnen und der negativen Gegenladung $-Q$ enden.
SBP Elektrotechnik # 18 by Clifford Wolf	# 18 Antwort
77 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Die zu einem elektrischen Fluss Ψ gehörenden Feldlinien oder Feldröhren bilden das Vektorfeld der elektrischen Flussdichte \vec{D} .
	$\Psi = \iint_A \vec{D} \mathrm{d}\vec{a}$ $[\vec{D}] = \frac{[Q]}{[A]} = 1 \mathrm{C/m^2}$
Die elektrische Flussdichte	(A sei die von den Feldlinien (normal) durchsetzte Fläche und d $\vec{a}=\vec{n}$ da ein Segment dieser Fläche mit \vec{n} als Einheitsnormalvektor auf dieses Segment.)
	Je kleiner der Abstand der Feldlinien, je mehr Feldlinien die gleiche Fläche durchdringen, desto grösser ist die elektrische Flussdichte an der betreffenden Stelle.
SBP Elektrotechnik # 19 by Clifford Wolf	# 19 Antwort
	Der elektrische Fluss mit der Flussdichte \vec{D} bewirkt im Raum den er durchdringt ein elektrisches Feld mit der elektrischen Feldstärke \vec{E} indirekt proportional zur Permittivität ε des durchdrungenen Mediums.
Die elektrische Feldstärke	$ec{E} = ec{D} rac{1}{arepsilon} \iff arepsilon ec{E} = ec{D}$
Die eleminene i elemente	Im elektrischen Feld \vec{E} wird eine Probeladung Q mit der Kraft \vec{F} beschleunigt (Coulombkraft):
	$\vec{F} = Q \cdot \vec{E} \iff \vec{E} = \frac{\vec{F}}{Q}$ $[E] = \frac{[F]}{[Q]} = 1 \text{ N/C} = 1 \text{ V/m}$

SBP Elektrotechnik # 20 by Clifford Wolf	# 20 Antwort
Elektrisches Potential	Wird im (homogenen) elektrischen Feld \vec{E} eine Probeladung Q entgegen der Coulombkraft einen Weg \vec{s} bewegt, so wird die Energie W in dem System aus Probeladung und Feld gespeichert (ähnlich der Lageenergie einer Masse im Gravitationsfeld). $W = -\vec{E} \cdot \vec{s} \cdot Q$ Unter der Wahl eines belibigen Bezungspunktes kann jedem Punkt im Raum ein elektrisches Potential φ zugeordnet werden: $\varphi = -\vec{E} \cdot \vec{s} \qquad [\varphi] = 1\mathrm{V}$ Die Potentialdifferenz zwischen zwei Punkten ist die Spannung U .
SBP Elektrotechnik # 21 by Clifford Wolf	# 21 Antwort
	Die Permittivität (dielektrische Leitfähigkeit) ε gibt die Durchlässigkeit eines Materials für elektrische Felder an.
	$ec{D}=arepsilonec{E}=arepsilon_0arepsilon_rec{E}$
Permittivität	ε
	$ec{D}$ elektrische Flussdichte in $^{ m C/m^2}$ $ec{E}$ elektrische Feldstärke in $^{ m V/m}$
	$\varepsilon_0 \approx 8,\!8542 \cdot 10^{-12}\mathrm{F/m}$ ist die Permittivität des Vakuums.
SBP Elektrotechnik # 22 by Clifford Wolf	# 22 Antwort
Die Kapazität	Durch Anlegen einer Spannung kann Ladung in einem Kondensator gespeichert werden. Die Kapazität C des Kondensators gibt an, wie viel Ladung Q pro Spannungseinheit U im Kondensator gespeichert werden kann: $Q=C\cdot U \iff C=\frac{Q}{U} \qquad [C]=1\text{C/v}=1\text{F}$
	Das Farad (1 F) ist eine sehr große Einheit. Gebräuchlich ist daher 1 mF, 1 μ F, 1 nF und 1 pF.
SBP Elektrotechnik # 23 by Clifford Wolf	# 23 Antwort
Serien- und Parallelschaltung von Kondensatoren	Bei einem Plattenkondensator ist die Kapazität C direkt proportional zur Plattenoberfläche A und indirekt proportional zum Plattenabstand h . $([\varepsilon] = 1 ^{\text{F} \cdot \text{m}}/_{\text{m}^2} = 1 ^{\text{F}}/_{\text{m}})$ Parallelschaltung von Kondensatoren: $A = A_1 + A_2 + \dots + A_n \qquad \Longrightarrow \qquad C = C_1 + C_2 + \dots + C_n$ Serienschaltung von Kondensatoren: $h = h_1 + h_2 + \dots + h_n \qquad \Longrightarrow \qquad C = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}}$

SBP Elektrotechnik # 24	by Clifford Wolf	# 24 Antwort
		Das magnetische Feld ist ein Wirbelfeld. Die Feldlinien verlaufen ausserhalb eines Stabmagneten vom Nord- zum Südpol und innerhalb vom Süd- zum Nordpol.
		Magnetische Felder werden immer von elektrischen Strömen (allgem. bewegten elektrischen Ladungen) verursacht:
Magnetische Feld	er	• Leitungsströme
		KonvektionsströmeElektronenspin
		-
		Bestimmung der Richtung der Feldlinien aus der technischen Stromrichtung: Rechtsschraubenregel, Korkenzieherregel, Rechte-Hand-Regel
SBP Elektrotechnik # 25	by Clifford Wolf	# 25 Antwort
		Für die Magnetische Feldstärke im Außenraum eines geraden stromdurchflossenen Leiters gilt:
		$H = \frac{I}{l} = \frac{I}{2r\pi}$
Die Magnetische Feld	stärke	H Magnetische Feldstärke in $^{\mathrm{A}/\mathrm{m}}$ I Leitungsstrom in A
(beim geraden Lei		l
		Bzw. der allgemeine Fall für alle Arten von Strömen:
		rot $\vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$ $\left(\vec{J} = \text{Stromdichte}, \frac{\partial \vec{D}}{\partial t} = \text{Verschiebestrom} \right)$
SBP Elektrotechnik # 26	by Clifford Wolf	<u># 26</u> Antwort
		Im Mittelpunkt einer kreisrunden dünnen Leiterschleife:
		$H = \frac{I}{d} = \frac{I}{2r}$ $[H] = 1 \text{ A/m}, [I] = 1 \text{ A}, [d] = 1 \text{ m}$
		In einer Zylinderspule mit N Windungen und Länge l :
Die Magnetische Feld in Leiterschleifen und		$H pprox rac{I \cdot N}{l} \qquad ext{wenn } l > 10d$
	~p arer	In einer Ringspule mit Durchmesser D und Stärke d :
		<u> </u>
		$H \approx \frac{I \cdot N}{l} = \frac{I \cdot N}{D \cdot \pi}$ wenn $D > 5d$
SBP Elektrotechnik # 27	by Clifford Wolf	# 27 Antwort
	·	Die (magnetische) Durchflutung Θ ist ein Maß fuer die erregende Kraft der magnetischen Feldstärke in einer Spule mit N Windungen die vom Stron I durchflossen wird.
Magnetische Durchflutung		$\Theta = N \cdot I \qquad [\Theta] = 1 \mathrm{A}$
		Bei der Durchflutung wird jeder Strom in seiner Vielfachheit gemäß der entsprechenden Anzahl von Windungen gezählt.
		Aus der Beziehung $H = \frac{IN}{l}$ in einer Spule folgt der Durchflu-
		tungssatz: $\Theta = N \cdot I = H \cdot l$

SBP Elektrotechnik # 28	by Clifford Wolf	# 28 Antwort
		Der magnetische Fluss Φ ist die Gesamtheit aller Feldlinien des magnetischen Feldes.
		$[\Phi] = 1 \mathrm{Vs} = 1 \mathrm{Wb} = 1 \mathrm{Weber}$
Magnetischer Fluss magnetische Flussd		Ändert sich in einer Leiterschleife $(N=1)$ in 1s der magnetische Fluss um 1 Wb so wird eine Spannung von 1 V induziert.
magnetisene i lussu	iciioc	Magnetischer Fluss je Flächene inheit wird magnetische Flussdichte \vec{B} genannt:
		$\Phi = \iint_A \vec{B} d\vec{a} \qquad [\vec{B}] = 1 \text{Wb/m}^2 = 1 \text{T} = 1 \text{Tesla}$
SBP Elektrotechnik # 29	by Clifford Wolf	# 29 Antwort
		Die Permeabilität μ gibt die Durchlässigkeit eines Materials für magnetische Felder an.
		$\vec{B} = \mu \vec{H} = \mu_0 \mu_r \vec{H}$
Permeabilität		μ
		$ec{B}$ magnetische Flussdichte in $^{\mathrm{Vs/m^2}}=\mathrm{T}$ $ec{H}$ magnetische Feldstärke in $^{\mathrm{A/m}}$
		$\mu_0 \approx 4\pi \cdot 10^{-7} \text{Vs/Am}$ ist die Permeabilität des Vakuums.
SBP Elektrotechnik # 30	by Clifford Wolf	# 30 Antwort
		Die Induktivität L einer Leiterschleife $(N=1)$ oder Spule gibt direkt den Zusamenhang zwischen dem Strom I und dem magnetischen Fluss Φ an:
		$\Phi = L \cdot I$ $[L] = \frac{[\Phi]}{[I]} = 1 \text{ Vs/A} = 1 \text{ H} = 1 \text{ Henry}$
Induktivität		
		Die Induktivität einer Spule ergibt sich demnach aus:
		$L = \frac{\Phi_{ m v}}{I} = \frac{N \cdot \Phi}{I} = \frac{N^2 \cdot \mu \cdot A}{l}$
		$(\Phi_{\rm v} = N \cdot \Phi \text{ ist der } \textit{verkettete magnetische Fluss.})$
SBP Elektrotechnik # 31	by Clifford Wolf	# 31 Antwort
Die magnetische Spar	9,	Die magnetische Spannung $U_{\rm m}$ ist das Linienintegral über die magnetische Feldstärke \vec{H} . Betrachtet man einen vollständigen Umlauf so entspricht die magnetische Spannung der Durchflutung Θ . $U_{\rm m} = \int_{P_1}^{P_2} \vec{H} \; \mathrm{d}\vec{s} \qquad \qquad \Theta = H \cdot l = \oint \vec{H} \; \mathrm{d}\vec{s}$
der magnetische Leitw der magnetische Wide		Der magnetische Leitwert Λ bzw. der magnetische Widerstand $R_{\rm m}$ ergiebt sich aus der Permeabilität μ sowie der Geometrie $A \times l$ des Bauteils:
		$\Lambda = \frac{\mu \cdot A}{l} \qquad \qquad R_{\rm m} = \frac{l}{\mu \cdot A}$

SBP Elektrotechnik	# 32	by Clifford Wolf	# 32 Antwort
			Der magnetische Fluss Φ in einem magnetischen Kreis ergibt sich aus der magnetische Spannung $U_{\rm m}=\Theta$ und dem magnetischen Leitwert Λ bzw. dem magnetischen Widerstand $R_{\rm m}$ der verwendeten Bauteile:
Das ohmsch			$\Phi = rac{\Theta}{R_{ m m}} \qquad \Phi = \Theta \cdot \Lambda$
magnet	ischen Kre	PIS	Bei einer Reihenschaltung magnetischer Widerstände addieren sich die magnetischen Widerstandswerte.
			Bei einer Parallelschaltung magnetischer Widerstände addieren sich die magnetischen Leitwerte.
SBP Elektrotechnik	# 33	by Clifford Wolf	# 33 Antwort
			Bei einem magnetischen Kreis aus einem Eisenkörper und einem Luftspalt kann i.d.R. der magnetische Widerstand des Eisenkörpers vernachlässigt werden.
			Zur näherungsweisen Berechnung der magnetischen Durchflutung gilt die Merkregel:
Magnetischer I	Kreis mit	Luftspalt	$\frac{1\mathrm{mm}\cdot 1\mathrm{T}}{\mu_0}\approx 800\mathrm{A}$
			Pro 1 mm Luftspalt und 1 T Flussdichte wird eine Druchflutung von $\approx\!800\mathrm{A}$ benötigt.
SBP Elektrotechnik	# 34	by Clifford Wolf	# 34 Antwort
BBI Diction of Configuration 17 of the Proof			In einem Magnetischen Kreis mit Luftspalt und einer konzentrierten Wicklung wird nur ein Teil des von der Spule erzeugten Gesamtflusses $\Phi_{\rm g}$ als Nutzfluss $\Phi_{\rm n}$ im Luftspalt verwertet. Der Rest nimmt einen zum Luftspalt parallel liegende Weg. Dieser Rest wird Streufluss $\Phi_{\rm st}$ genannt.
Magnetisc	cher Streut	fluss	$\Phi_{\rm g} = \Phi_{\rm n} + \Phi_{\rm st}$
			$\Phi_{\rm st}$ wird oft über den Streufaktor σ als Verhältnisgröße (z.B. in Prozent) zum Nutzfluss $\Phi_{\rm n}$ bestimmt:
			$\Phi_{\mathrm{st}} = \sigma \cdot \Phi_{\mathrm{n}}$
SBP Elektrotechnik	# 35	by Clifford Wolf	# 35 Antwort
Magnetische Feldlinien beim Übertritt von einem Medium in ein anderes		Sei \vec{B}_1 die Flussdichte auf der einen und \vec{B}_2 die Flussdichte auf der anderen Seite einer Grenzschicht zweier Medien mit der Permeabilität μ_1 und μ_2 .	
	Sei weiters α der Winkel von \vec{B}_1 zum Lot auf die Grenzschicht und β der Winkel von \vec{B}_2 zum Lot auf die Grenzschicht und $B_{1\mathrm{T}}$ sowie $B_{2\mathrm{T}}$ der Betrag der zur Grenzschicht tangentialen Komponente von \vec{B}_1 und \vec{B}_2 .		
	n anderes	$rac{B_{1\mathrm{T}}}{B_{2\mathrm{T}}} = rac{ an lpha}{ an eta} = rac{\mu_1}{\mu_2}$	
			D.h. die magnetischen Flusslinien treten aus einem hochpermeablen Material (z.B. Eisen) näherungsweise normal in die Luft über.

$$u(t) = \hat{U} \cdot \sin(t\omega + \varphi_{11})$$

 $\begin{array}{cccc} \hat{U} & & & & & \text{Spitzenspannung} \\ \omega & & & & \text{Kreizfrequenz in } \text{rad/s} = \text{1/s} = \text{Hz} \\ \varphi_{\text{u}} & & & \text{Nullphasenwinkel in rad} \end{array}$

 $\omega=$ die Winkelgeschwindigkeit im Zeigerdiagramm

$$\omega = \frac{\alpha}{t} = \frac{2\pi}{T} = 2\pi f$$

SBP Elektrotechnik

37

Sinusgrössen

am Beispiel der Wechselspannung

by Clifford Wolf

37

Antwort

Arithmetischer Mittelwert \bar{U} : Das Integral über eine volle Schwingung durch die Periodendauer. Bei reinem Sinus ohne Gleichanteil = 0.

Gleichrichtwert $|\bar{U}|$: Das Integral des Betrags über eine volle Schwingung durch die Periodendauer.

$$\frac{1}{2\pi} \int_0^{2\pi} \left| \hat{U} \sin(t) \right| dt = \frac{2\hat{U}}{2\pi} \int_0^{\pi} \sin(t) dt =$$

$$= \frac{\hat{U}}{\pi} \left[-\cos(t) \right]_{t=0}^{t=\pi} = \frac{2\hat{U}}{\pi}$$

Arithmetischer Mittelwert und Gleichrichtwert sinusförmiger Größen

SBP Elektrotechnik

38

Effektivwert sinusförmiger Spannungen

by Clifford Wolf

38

Antwort

Effektivwert U: jene Gleichspannung, die an einem ohmschen Verbraucher die gleiche Leistung in Wärme umsetzt. Aus $P=U^2/R$ folgt:

$$\frac{U^2}{R} = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{R} (u(t))^2 dt \implies U = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} (u(t))^2 dt}$$

Für sinusförmige Spannungen folgt aus $\int_0^{2\pi} \sin^2(t) dt = \pi$:

$$U = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} \hat{U}^2 \sin^2(t) dt} = \sqrt{\frac{\hat{U}^2 \pi}{2\pi}} = \frac{\hat{U}}{\sqrt{2}}$$

SBP Elektrotechnik

39

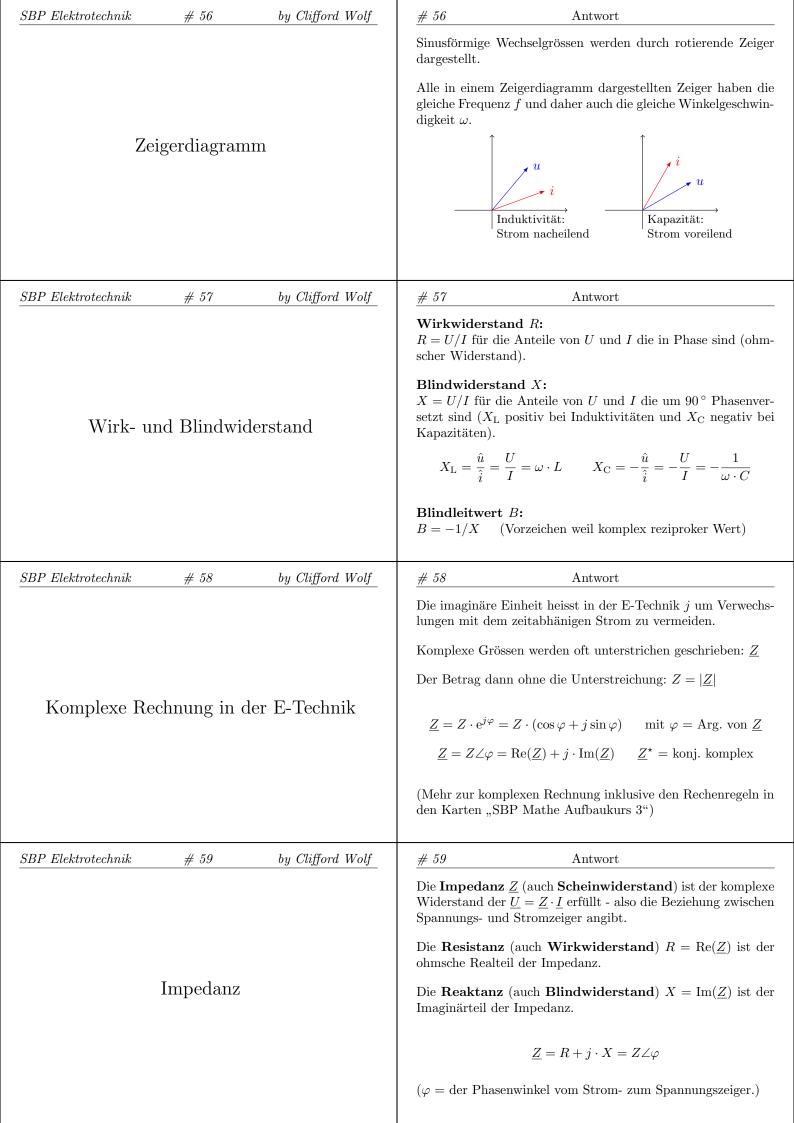
by Clifford Wolf

39

Antwort

Scheitelfaktor k_s : Verhältnis von Scheitelwert (Spitzenwert) zu Effektivwert \hat{U}/U . Bei sinusförmiger Spannung = $\sqrt{2}\approx 1,414$.

Formfaktor $k_{\mathbf{f}}$: Verhältnis von Effektivwert zu Gleichrichtwert $U/|\bar{U}|$. Bei sinusförmiger Spannung = $\pi/(2\sqrt{2}) \approx 1,111$.


Scheitelfaktor und Formfaktor sinusförmiger Grössen

SBP Elektrotechnik	# 40	by Clifford Wolf	# 40 Antwort
Ind	${ m uktionsgeset}$	${f tz}$	$u = -\frac{\Delta \Phi_{\rm v}}{\Delta t} = N \frac{\Delta \Phi}{\Delta t} \qquad \Phi = BA$ Bewegungsinduktion (Änderung der Geometrie A): $u = -NB \frac{\Delta A}{\Delta t}$ Ruheinduktion (Änderung der Flussdichte B): $u = -NA \frac{\Delta B}{\Delta t}$ $\Phi_{\rm v} = {\rm Verkettungsfluss}, \qquad N = {\rm Windungszahl}$
SBP Elektrotechnik	# 41	by Clifford Wolf	# 41 Antwort
Lei	nzsche Rege	·1	Der induzierte Strom (und das damit verknüpfte magnetische Feld) wirken stets der Ursache der Induktion entgegen. Bei Bewegungsinduktion: die resultierende Lorenzkraft wirkt entgegen der ursprünglichen Bewegungsrichtung. Bei Ruheinduktion: das resultierende magnetische Feld wirkt entgegen der ursprünglichen Feldänderung.
SBP Elektrotechnik	# 42	by Clifford Wolf	# 42 Antwort
Bewegungsi schräg zun	nduktion no n magnetisc		$u = N \cdot B \cdot l \cdot v_{\mathbf{x}} = N \cdot B \cdot L \cdot v \cdot \sin \alpha$ $N \qquad \qquad \text{Windungszahl bei Spule (sonst } N = 1)$ $l \qquad \qquad \text{Leiterlänge im magnetischen Feld}$ $v \qquad \qquad \text{Geschwindigkeit des Leiters}$ $v_{\mathbf{x}} \qquad \qquad \text{Komponente von } \vec{v} \text{ normal zu } \vec{B}$ $\alpha \qquad \qquad \text{Winkel der von } \vec{v} \text{ und } \vec{B} \text{ eingeschlossen wird}$
SBP Elektrotechnik	# 43	by Clifford Wolf	# 43 Antwort
Induktion e Feld rotier	iner im mag enden Leite		$u = \hat{U} \cdot \sin(\omega t) \qquad \hat{U} = 2 \cdot r \cdot l \cdot B \cdot \omega$ $r, l \dots $ Radius und Länge der Leiterschleife in m $B \dots $ magnetische Flussdichte in T $\omega \dots $ Winkelgeschwindigkeit in $^{\mathrm{rad}/\!\mathrm{s}} = \mathrm{Hz}$

SBP Elektrotechnik # 44 by Clifford Wolf	# 44 Antwort
Ruheinduktion bei sinusförmigem Flussverlauf	$u = \hat{U} \cdot - \cos(\omega t) \qquad \hat{U} = N \cdot \omega \cdot \hat{\Phi}$ $N \qquad \qquad \qquad \qquad \text{Windungszahl}$ $\omega \qquad \qquad \qquad \qquad \text{Kreisfrequenz in } ^{\text{rad}/\text{s}} = \text{Hz}$ $\hat{\Phi} \qquad \qquad \qquad \text{Spitzenwert des Flusses in Wb}$ $\text{Effektivwert der induzierten Spannung:}$ $U \approx 4,44 \cdot N \cdot f \cdot \hat{\Phi} \qquad \left(\text{wegen } \frac{2\pi}{\sqrt{2}} \approx 4,44 \right)$
SBP Elektrotechnik # 45 by Clifford Wolf	# 45 Antwort
Selbsinduktion	Selbsinduktion = Induktion durch Änderung des Stromflusses durch eine Spule in die Spule zurück. Eine Änderung des Stroms i in einer Spule um Δi bewirkt eine Änderung des magnetischen Flusses Φ um $\Delta \Phi$. $u = -N\frac{\Delta\Phi}{\Delta t}, \frac{\Delta i}{\Delta t} \sim \frac{\Delta\Phi}{\Delta t} \Longrightarrow u \sim -\frac{\Delta i}{\Delta t}$
SBP Elektrotechnik # 46 by Clifford Wolf	# 46 Antwort
Induktivität einer Spule	$\Phi_{\rm v} = N \cdot \Phi = Li$ $N \qquad \qquad \qquad \text{Windungszahl der Spule}$ $\Phi_{\rm v} \qquad \qquad \qquad \text{Verkettungsfluss in Wb = Vs}}$ $\Phi \qquad \qquad \qquad \text{Magnetischer Fluss in Wb = Vs}}$ $L \qquad \qquad \qquad \qquad \text{Induktivität in H} = \text{Vs/A}}$ $\text{Induktivität L = Verkettungsfluss in Weber}$ $\text{pro Ampere Stromstärke}$
SBP Elektrotechnik # 47 by Clifford Wolf	# 47 Antwort
Selbstinduktionsspannung einer Spule	$u_{\rm L} = -L \cdot \frac{\Delta i}{\Delta t}$ $u_{\rm L} \qquad \qquad \qquad \text{Selbstinduktions spannung in V}$ $L \qquad \qquad \qquad \qquad \text{Induktivit \"{a}t in H} = \text{Vs/A}}$ $\Delta i/\Delta t \qquad \qquad \qquad \qquad \text{Strom\"{a}nderung in A/s}$

SBP Elektrotechnik # 48 by Clifford Wo	lf # 48 Antwort
	Bei einer schlanken Zylinderspule $(l/d > 10)$:
	$L = N^2 \mu \frac{A}{l}$
Berechnung der Induktivität einer schlanken Zylinderspule	N
	Bzw. allgemein am magnetischen Kreis: $L = N^2 \cdot (1/R_{\rm m}) = N^2 \cdot \Lambda$
	$\textbf{Doppelte Windugszahl} \rightarrow \textbf{vierfache Induktivität!}$
SBP Elektrotechnik # 49 by Clifford Wo	<u># 49</u> Antwort
	Induktivitätsbelag = Induktivität pro Leitungslänge
	$L' = \frac{\mu}{4\pi} \cdot \left(1 + 4\ln\frac{4a}{d}\right)$
Induktivitätsbelag einer Doppelleitung	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Bei Verringerung des Abstands der Leiter sinkt auch die Induktivität der Doppelleitung!
SBP Elektrotechnik # 50 by Clifford Wo	<u># 50</u> Antwort
	Reihenschaltung von magnetisch nicht gekoppelten Spulen:
	$L_{\rm ges} = L_1 + L_2 + \dots + L_n$
	Parallelschaltung von magnetisch nicht gekoppelten Spulen:
Reihen- und Parallelschaltung von Induktivitäten	$\frac{1}{L_{\text{ges}}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}$
voir induitivituoi	
SBP Elektrotechnik # 51 by Clifford Wo	<u># 51</u> Antwort
	$M = k \cdot \frac{N_1 \cdot N_2}{R_{\rm m}} = k \cdot N_1 \cdot N_2 \cdot \Lambda$
Gegeninduktivität magnetisch gekoppelter Spulen	M

SBP Elektrotechnik # 52 by Clifford Wolf	# 52 Antwort
	 Doppelleitung: Leitung 1 und 2, Doppelleitung: Leitung 3 und 4:
Längenbez. Gegeninduktivität zweier paralleler Doppelleitungen	$M'=rac{\mu}{2\pi}\lnrac{r_{14}r_{23}}{r_{13}r_{24}}$ M'
	Die Gegeninduktivität wird minimal wenn der rechte Faktor $\ln 1 = 0$ wird: $\frac{r_{14}r_{23}}{r_{13}r_{24}} \to 1 \text{bzw.} \frac{r_{14}}{r_{24}} = \frac{r_{13}}{r_{23}} \text{bzw.} \frac{r_{14}}{r_{13}} = \frac{r_{24}}{r_{23}}$
SBP Elektrotechnik # 53 by Clifford Wolf	# 53 Antwort
	Übersetzungsverhältnis eines idealen Transformators bei sinudialen Signalen: $\ddot{u}=\frac{U_1}{U_2}=\frac{I_2}{I_1}=\frac{N_1}{N_2}$
Übersetzungsverhältnis eines idealen Transformators	\ddot{u}
	Die Leistung ist primärseitig und sekundärseitig ident: $U_1\cdot I_1=U_2\cdot I_2 \Longrightarrow \frac{U_1}{U_2}=\frac{I_2}{I_1}$
SBP Elektrotechnik # 54 by Clifford Wolf	# 54 Antwort
Transformation von Zweipolelementen	Transformation von Zweipolelementen bei sinudialen Signalen: $R'=R\cdot\ddot{u}^2 \qquad L'=L\cdot\ddot{u}^2 \qquad C'=C/\ddot{u}^2$
	\ddot{u}
SBP Elektrotechnik # 55 by Clifford Wolf	# 55 Antwort
Energie im magnetischen Feld	Energie inhalt einer stromdurchflossenen Spule: $W=\frac{L\cdot i^2}{2}=\frac{N^2\cdot\Phi^2}{2\cdot L}=\frac{N\cdot\Phi\cdot i}{2}$ Energie dichte einer stromdurchflossenen Spule: $w=\frac{W}{V}=\frac{B\cdot H}{2}=\frac{\mu\cdot H^2}{2}=\frac{B^2}{2\mu}$

SBP Elektrotechnik # 60 by Clifford Wolf	# 60 Antwort
${f Admittanz}$	Die Admittanz \underline{Y} (auch Scheinleitwert) ist der Kerhwert der Impedanz: $\underline{Y} = \frac{1}{\underline{Z}} = G + j \cdot B = Y \angle - \varphi$ $\underline{Z} \qquad \qquad$
SBP Elektrotechnik # 61 by Clifford Wolf	# 61 Antwort
Schaltung von Wechselstromwiderständen	Schaltungen von Wechselstromwiderständen können genauso berechnet werden wie bei Gleichstromwiderständen, nur dass die Rechenregeln für die komplexe Rechnung angewandt werden müssen und die Widerstandswerte frequenzabhänig sind. z.B. Serienschaltung: $\underline{Z} = \underline{Z}_1 + \underline{Z}_2 + \dots + \underline{Z}_n$ z.B. Parallelschaltung: $\underline{\frac{1}{Z}} = \frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2} + \dots + \frac{1}{\underline{Z}_n}$ $\underline{Y} = \underline{Y}_1 + \underline{Y}_2 + \dots + \underline{Y}_n$
SBP Elektrotechnik # 62 by Clifford Wolf	# 62 Antwort
Wirk-, Blind- und Scheinleistung	Wenn Strom und Spannung in Phase sind, ist die Momentanleistung $p=u\cdot i$ immer positiv. Wenn es einen Phasenversatz zwischen Strom und Spannung gibt so kommt es zu negativen Momentanleistungen und somit zu einem zeitweisen Energiefluss zurueck in die Quelle. Wirkleistung $P=U\cdot I\cdot\cos\varphi$ in Watt: Die Leistung die tatsächlich am Verbraucher umgesetzt wird. Blindleistung $Q=U\cdot I\cdot\sin\varphi$ in var (für Volt-Ampere reaktiv): Die zwischen Quelle und Verbraucher hin und zurück pendelnde Leistung. (Negativ bei kapazitiver Last.) Scheinleistung $S=\sqrt{P^2+Q^2}$ in VA (für Volt-Ampere): Die geometrische Summe aus Wirk- und Blindleitsung. Leistungsfaktor $\cos\varphi=P/S$ (1 bei ohmscher Last)
SBP Elektrotechnik # 63 by Clifford Wolf	# 63 Antwort
Komplexe Scheinleistung	Bei der komplexen Scheinleistung \underline{S} ist der Strom konjungiert Komplex einzusetzen: $\underline{S} = P + j \cdot Q$ $\underline{S} = \underline{U} \cdot \underline{I}^* = U \cdot I \angle (\varphi_{\mathbf{U}} - \varphi_{\mathbf{I}})$ $P \qquad \qquad \qquad \qquad \text{Wirkleistung}$ $Q \qquad \qquad \qquad \qquad \qquad \text{Scheinleistung}$ $\underline{U} = U \angle \varphi_{\mathbf{U}} \qquad \qquad \qquad \qquad \text{Komplexe Spannung}$ $\underline{I} = I \angle \varphi_{\mathbf{I}} \qquad \qquad \qquad \qquad \qquad \text{Komplexer Strom}$

SBP Elektrotechnik	# 64	by Clifford Wolf	# 64 Antwort
Reihenresonanzkreis			Ein Reihenresonanzkreis ist eine Serienschaltung einer Induktivität und einer Kapazität. Bei der Resonanzfrequenz $f_{\rm r}$ ($\omega_{\rm r} = 2\pi \cdot f_{\rm r}$) heben sich $X_{\rm L}$ und $X_{\rm C}$ gerade auf. D.h. bei dieser Frequenz wird die Reaktanz (Blindwiderstand) des Kreises zu Null und der Kreis bildet einen Kurzschluss bei dieser Frequenz. $X_{\rm L} = -X_{\rm C} \ \Rightarrow \ \omega_{\rm r} \cdot L = \frac{1}{\omega_{\rm r} \cdot C} \ \Rightarrow \ \omega_{\rm r} = \frac{1}{\sqrt{L \cdot C}}$ Dabei kommt es an Induktivität und Kapazität zu hohen gegenphasigen Spannungen, die sogenannte Spannungsresonanz, die die Bauteile zerstören kann.
SBP Elektrotechnik	# 65	by Clifford Wolf	# 65 Antwort
Paralle	elresonanzki	reis	Ein Parallelresonanzkreis ist eine Parallelschaltung einer Induktivität und einer Kapazität. Bei der Resonanzfrequenz f_r ($\omega_r = 2\pi \cdot f_r$) heben sich B_L und B_C gerade auf. D.h. bei dieser Frequenz wird die Suszeptanz (Bleindleitwert) des Kreises zu Null und der Kreis bildet eine Unterbrechung bei dieser Frequenz. $B_L = -B_C \Rightarrow \omega_r \cdot C = \frac{1}{\omega_r \cdot L} \Rightarrow \omega_r = \frac{1}{\sqrt{L \cdot C}}$ Dabei kommt es an Induktivität und Kapazität zu hohen gegenphasigen Strömen, die sogenannte Stromresonanz, die die Bauteile zerstören kann.
SBP Elektrotechnik	# 66	by Clifford Wolf	# 66 Antwort
Güte und Bandbreite eines Resonanzkreises			Güte Q_{ser} des Reihen- und Q_{par} des Parallelschwingkreises: $Q_{\mathrm{ser}} = \frac{U_{\mathrm{r}}}{U} = \frac{X_{\mathrm{r}}}{R} \qquad Q_{\mathrm{par}} = \frac{I_{\mathrm{r}}}{I} = \frac{R}{X_{\mathrm{r}}}$ U_{r}
SBP Elektrotechnik	# 67	by Clifford Wolf	# 67 Antwort
	asen Drehst		Beim Dreiphasen Drehstrom werden 3 Leiter über jeweils um 120° Phasenversetzte Wechselspannungsquellen mit einem Neutralleiter (Sternpunkt) verbunden. Sternspannung U_{\downarrow} (\underline{U}_{1N} , \underline{U}_{2N} , bzw. \underline{U}_{3N}): Spannung zwischen Leiter und Sternpunkt Leiterspannung U (\underline{U}_{12} , \underline{U}_{23} , bzw. \underline{U}_{31}): Spannung zwischen zwei Leitern (eilt U_{iN} um jew. 30° vor) $U = U_{\downarrow} \cdot \sqrt{3}$ ($\sqrt{3} = \text{Verkettungsfaktor}$) $U = 400\text{V} \implies U_{\downarrow} = 231\text{V}$

SBP Elektrotechnik # 68 by Clifford Wolf

Lasten am Dreiphasen Drehstrom

68 Antwort

Sternschaltung: Lasten (Stränge) zwischen Leitern und Sternpunkt. Laststrom = Strangstrom. Im Dreileiter-Netz ist der Sternpunkt nicht mit einem Neutralleiter verbunden.

Bei Sternschaltung im Vierleiter-Netz (sowie allgemein bei symetrischer Sternschaltung) kann die Schaltung als dreifache Einphasenschaltung mit gemeinsamen Rückleiter berechnet werden

Dreieckschaltung: Die Lasten (Stränge) zwischen den Leitern (reines Dreileiter-Netz).

Bei gleichem Lastwiderstand wird in der Dreieckschaltung dreimal soviel Leistung wie in der Sternschaltung umgesetzt.