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Introduction 
Symmetry is one of the central concepts in crystallography. When you think about it, it is 
hard to expect that it could be any other way, because the very objects of crystallographic 
research, the crystals themselves, exhibit such remarkable perfection. Humans have been 
fascinated by the beauty of symmetry since the beginning of time, to the point that the 
symmetry has been considered beauty itself. This all shows that the appearance of 
symmetry in the world around us is connected deeply to the human experience of the 
universe.  

But what has all this to do with purely mathematical subject of the theory of 
groups? What are groups anyway and what is their relationship with symmetry in 
general? In the lecture the emphasis will be on the notion that the group theory, in the 
crystallographic context, is merely a mathematical formalism that describes symmetry. 
Sometimes though, the rigour of the mathematical concepts tends to obscure the 
simplicity of the underlying principles. It is therefore beneficial to use more visual 
approach and let the natural human ability to apprehend symmetry do its work. Although 
group theory will be introduced in general terms, the two dimensional plane groups will 
be described in more detail. Plane groups are easily visualized and contain all the 
necessary formalism that can than readily be mentally extended to space groups that 
dictate the packing of molecules in crystals. 

Group theory basics 
The mathematical group is a set of elements that can be combined (in an operation) to 
yield new elements of the same set. But these elements and the operation between them, 
have to satisfy certain properties, called axioms of the group: 

 The existence of an identity element E There exist an element E of the group G 
that leaves all other elements unchanged, i.e. AE = EA = A for every A in G. 

 The existence of an inverse element For every element A in the group G there 
exists an element B such that AB=E. Than B is called an inverse of A, B = A-1. Note 
that this does not exclude the possibility that A=B=A-1, in other words that the 
element can be its own inverse.  

 Closure under the operation Product of any two elements must also be an 
element of the group. That is for any elements A, and B of G, AB is also an element 
of G. 

 Associativity of the operation The operation in the group must be associative, 
i.e. it must not be sensitive to the order in which it is carried out. For any three 
elements of the group it must be true that A(BC) = (AB)C. 

It is immediately visible from the group axioms that they are postulated with symmetry in 
mind. If we look at some symmetric object, than the set of symmetry operations of that 
object form a group. Indeed, there is always an identity element which is equal to leaving 
object unchanged; for each symmetry operation there is another symmetry operation that 
returns the object to the original position, i.e. there is an inverse; applying two symmetry 
operations in succession is also a symmetry operation of the object; and finally the 



application of symmetry operations is associative. Therefore, each group actually shows 
some internal symmetry of the underlying set. 
 Let us mention some examples of sets that form groups. Number one and 
multiplication {1, ∙} form a group, albeit a trivial one, group containing only an identity 
element. The set {1, -1} forms a group under multiplication, group of only two members. 
The number of elements of the group is called order of a group. But number one and 
addition do not form a group, {1, +}, as this is not closed under addition. But if we extend it 
to the set of all whole numbers {..., -2, -1, 0, 1, 2..., +} than we have a group. The set of all 
real numbers without 0 forms a group under multiplication. If we have any set of n 
elements than the set of all permutations of these elements forms a group, so called 
symmetric group Sn. We notice that groups can have finite and infinite number of elements.  

Some important definitions 
Probably the most important property of groups is that they can have subgroups. The 
subgroup H of group G is a subset of elements of G that itself forms a group. It is best 
illustrated by an example. Consider the symmetry elements of a equilateral triangle (Fig. 
1), they form a group of order 6 and it is called D3 (also called dihedral group; dihedral 
group of order n is a group of symmetries of regular n-gon). In crystallographic context 
this is also known as point group 32. 

 

Figure 1. Symmetry elements of regular 3-gon, more commonly known as equilateral 
triangle . On the left are three reflection lines, passing through point 1-3. On the right are 

two rotations by 120° (r1) and 240° (r2). 

The group D3 consists of the following six elements {e, m1, m2, m3, , r2}. Now let us take a 
look at these three elements of the D3: identity element, rotation by 120° r1 and rotation 
by 240° r2. It can be seen that the rotations do not mix with the mirror elements, in other 
words, by rotating the triangle you can never get to the mirror image. In other words 
rotations form a subgroup 3 of the group D3 (the order of the subgroup is 3, Table 1). 
Notice that reflections do not form a subgroup (for example the product of reflections 
m1∙m2 = r2 is a rotation). This also leads to the another important theorem (Lagrange's 
theorem) stating that the order of a group must be divisible by the order of any of it's 
subgroups. Therefore it is impossible for D3 to have a subgroup of order 4, but possible for 
order 3, and it does! In fact rotations form something called cyclic group. In cyclic group 



each element of the group can be obtained just by repeatedly  applying one element: r1, 
r1∙r1= r2, r1∙r1∙r1= e. Think of it in this way, we rotate by 120°, then rotate once more by 
120°, and then once more and we are back where we were. One convenient way of 
representing the operation of the group is by so called multiplication table (Cayley's 
table). The multiplication table of the group D3 is given in Table 1.  

Table 1. The multiplication table of the D3 group. The concept of a subgroup is easily 
visible from the multiplication table, as the red square inside the blue one also forms a 
group. Note that the full group is non commutative, while the subgroup is commutative 

and cyclic. 

 

One other important thing to notice is that nowhere in the group axioms the 
commutativity was required, and indeed the application of symmetry elements is 
generally noncommutative. It would require that the multiplication table would have to be 
symmetric across the diagonal, which for group D3 does not hold true (Table 1).  As for the 
cyclic groups already mentioned, all the elements of the group can be generated by a 
subset of group elements, called group generators.  

 

Figure 2. One example how an entire infinite plane group (in this case p2) can be 
generated just by three symmetry elements, one twofold rotation and two translations. 

They are called the generators of the group.   

Groups in crystallography 
In crystallographic context both the finite and infinite groups appear. Point groups are 
the groups that have at least one point not moved by any of the symmetry operations. In 
other words all symmetry elements of the point group intersect in one point. They are the 
example of finite groups. Space groups describe the full three-dimensional symmetry of 
the crystal. Space groups are an example of infinite groups. Loosely speaking, their 
infiniteness is „caused“ by translational symmetry. The group of translations forms a 



subgroup of a space group. Moreover, this subgroup is commutative and also a normal 
subgroup.  

Visual approach to group theory 
Having in mind the natural human ability to recognize symmetry, it is advantageous to 
make use o f it in the introduction to group theory concepts. By interactively drawing 
plane group patterns on the screen, one can more easily apprehend the mutual disposition 
of symmetry elements in various groups, and thus help the learning process (Figure 4).  

 

Figure 4. Interactive drawing of the symmetry patterns is not only instructive but also 
visually pleasing. 
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