
Mathematical Modelling and Numerical Analysis ESAIM: M2AN

Modélisation Mathématique et Analyse Numérique M2AN, Vol. 36, No 5, 2002, pp. 907–921

DOI: 10.1051/m2an:2002038

AN OBJECT-ORIENTED APPROACH TO THE DESIGN OF FLUID
MECHANICS SOFTWARE

Christophe Calvin1, Olga Cueto1 and Philippe Emonot1

Abstract. This article presents the guiding principles of the architecture of Trio U, a new genera-
tion of software for thermohydraulic calculations. Trio U is designed to serve as a thermohydraulic
development platform. Its basic conception is object-oriented and it is written in C++. The article
demonstrates how this type of design enables an open, modular software architecture.

Mathematics Subject Classification. 68N19, 76Z99.

Received: 30 November, 2001. Revised: 25 June, 2002.

1. Introduction

Trio U is a thermohydraulic software tool that has been under development at CEA, since 1993. This article
presents the guiding principles underlying the design of this software. It starts with a reminder of its overall
objectives and a justification of the main choice made:

• object-oriented design;
• C++ language;
• thermohydraulic framework.

We will show how this enabled us to develop an open, modular software architecture.

1.1. The decision to choose object-oriented design

The code is supposed to deal with various thermohydraulic problems including turbulent one phase incom-
pressible flows, two-phase compressible flows using various numerical methods including finite difference, finite
volume and finite element methods. It is also supposed to be performant on a wide variety of computers in-
cluding massively parallel computers. Abstraction and reusability is therefore a key issue. It should be possible
(when it makes sense) to write very generic algorithms for a class of problems without explicit (unneeded)
reference to a given discretization method (in time or space), or a specific physical model.

We want:
• an open software architecture to which new numerical schemes and physical models can easily be added;
• a modular structure from which sub-assemblies can easily be extracted to produce industrial software

dedicated to specific applications;

Keywords and phrases. Software architecture, thermohydraulic development platform, object-oriented design, open, modular
architecture.

1 Commissariat à l’Énergie Atomique, 17 rue des Martyrs 38054 Grenoble Cedex 9, France. e-mail: philippe.emonot@cea.fr

c© EDP Sciences, SMAI 2002

908 C. CALVIN ET AL.

• the platform to be suitable for hardware architectures comprising single or multiple processors. Parallel
processing must be handled in such a way that when new physical models or numerical schemes are added
there is no need to significantly change the software as a whole.

Object-oriented design would appear to be extremely suitable for producing an open, modular software architec-
ture, with components that can be reused. In addition, implementing parallel processing must be transparent
for developers who are either specialists in computing or fluid mechanics and who will be the “clients” of the
software platform. This article will try to show why this appears to be the case.

1.2. Merits of object-oriented design and programming

Why did we opt for “object-oriented design” rather than methods based on a functional decomposition?
One answer, which is of prime importance, is that with functional decomposition there is often insufficient data
abstraction. We therefore concluded that design based on functional decomposition would be:

• less capable of adapting to changes,
• less suitable for developing a modular software architecture (in the sense that it consists of software

modules that may be used separately).
The problem is that using functional decomposition means that interesting data lose their specificity, for when
a system is organized in the form of a function tree, any data accessed by two functions must be global for both.
As a result, an interesting piece of data rises further towards the top of the tree as more and more functions asks
to access it. In contrast, object-oriented design tends to concentrate on specifying classes and encapsulating
data. It is thus possible to make the dependencies between the different parts of a program explicit and above
all reduce dependencies by increasing the “localized” nature of data references (data are distributed among the
objects). The functional breakdown associated with the use of the Fortran 77 or C language has often led to
large sets of sub-programs using a small number of data structures. Any change to a data structure involves
finding all the sub-programs that use it and rewriting them if the change affects them. As a result, developers
rapidly “hard wire” the data structures, which in turn makes it very difficult to change the code. In addition,
there is a tendency to restrict the number of data structures and set up all-purpose data structures (catering
for what is thought to be the most general case). Adding anything that was not initially planned is very
difficult. Adding a new, specialist data structure alongside an existing one involves rewriting all the associated
procedures and thus duplicating code, which in turn must be validated all over again. The sub-programs are
free to handle data and change them; it is hard to tell which sub-program changed a given data structure, which
increases maintainability problems. Object-oriented design means that the program is built up around the data
(without prejudging the manner in which they are represented) and the relationships between them. Objects
communicate with one another by exchanging messages defined by their interface. Changing an object’s data
structure does not affect the rest of the code in any way (it is consequently not mandatory to determine the
best implementation right from the start). Enhancing the interface does not have a negative impact on the rest
of the code. Services can thus be added on demand, making the system extremely flexible and upgradable. An
existing object can be given a speciality by inheritance; at the very least, the derived class offers the same
services as the ancestor class (it inherits the interface from the ancestor class) so other objects will use the new
class in the same way as the ancestor class. Not only does the addition of a new class not jeopardize existing
code, but also it is directly compatible with it. The new class may change the way in which certain services
are implemented and provide new ones. Only the methods of an object have access to the object’s data, which
facilitates maintainability (encapsulation).

1.3. The choice of C++ language

We choose to use C++ for the following reasons:
• it is an object-oriented language that supports inheritance, polymorphism and encapsulation;
• the language uses strong typing which contributes to achieving reliability objectives;
• it is a compiled language and is therefore compatible with the level of performance required;

AN OBJECT-ORIENTED APPROACH TO THE DESIGN OF FLUID MECHANICS SOFTWARE 909

• it can invoke sub-programs written in C and Fortran 77;
• it is a de facto standard, with a large installed base. This contributes to the life expectancy of the

software and enables it to benefit from the development of a large number of software engineering tools
and component libraries.

We consider C++ to have a big drawback in that it is implementing many different concepts by pointers. That
is A* a; can be used to implement associations, aggregations, arrays, ... and we don’t know if a will be of type
A or any of it’s subtypes. We choose to provide a set of classes implementing associations, aggregations, arrays,
... so that the design will be apparent in the code. For sample, we will write “REF<A>a;” or “Any< A>a;”
or “ArrOf<A>a;” which also enables automatic retro conception.

1.4. Building a framework for thermohydraulic

There are three main types of software developments:
• Applications Programs

In that case everything is known at the beginning of the development, efforts are made to increase
internal reuse in order not to design and implement more than what you need.

• Toolkits
A toolkit is a set of related and reusable classes designed to provide some common functionality. Toolkits

emphasize code reuse. Diffpack [4] is an example of a toolkit.
• Frameworks

A framework is a set of cooperating classes that make up a reusable design for a specific class of
software. You can customize a specific framework to a particular application by creating application-
specific subclasses of abstract classes from the framework. The framework dictates the architecture of
your application. Reuse in this level leads to an inversion of control between the application and the
software on which it’s based. When you use a toolkit, you write the main body of the application and call
the code you want to reuse. When you use a framework, you reuse the main body and write the code it
calls. In that sense Frameworks and toolkits are complementary. Not only you build applications faster
as a result, but also the applications have similar structures so that they seems more consistent to their
users.

We choose to design a framework for thermohydraulic.

1.5. Modular architecture

Figure 1 provides an overall view of all the main Trio U modules. In this figure, the arrows indicate a link
between two modules:

The modules on the lower part are specialized versions of the Kernel for specific physical problems. The
modules in the upper part of the diagram are specialized versions of the Kernel for specific numerical methods.
The modules on the left are not related to the framework and those on the right are useful for many physical
problems and numerical methods. To build a concrete application (code to solve a given problem using a given
numerical method) involves specializing the Kernel in two ways at the same time, with respect to the physical
problem and the numerical methods. Developers who choose to introduce a new class by specializing one of the
existing classes are guided by the architecture, which provides a model to follow.

2. An introduction to the framework

In the following, we provide an overview of the classes and their relationships without discussing C++ related
issues regarding design and implementation. The layout reflects the manner in which the classes are organized
into modules. Object-oriented design uses an abstract representation of the system being modeled. If the
system is fairly complex, it is necessary to introduce classes representing concepts that differ a great deal and it
is convenient to draw a distinction between several domains within the model. By module, we refer to a set of
classes that correspond to the same domain of the modeled system, it can also be viewed as a toolkit fitting to

910 C. CALVIN ET AL.

Kernel

FVEFVD FV Hyperbolic

Discretization Specific Modules

HyperbolicThHydThSol

Physical Specific Modules

Operators

Fields

TimeShemes

Generic Modules

Utilities

Math

Geometry

Common Modules

Figure 1. Modules.

our framework. All the classes that serve as basic bricks for building thermohydraulic applications belong to the
Kernel module. The term application refers to a software sub-assembly, comprising a certain number of modules,
which performs calculations in a particular field of fluid mechanics. Building an application will involve using
classes belonging to the Geometry, Fields, Time schemes, Operators, Utilities and Math modules, for example.
ThHyd, ThSol and Hyperbolic modules are specialized versions of Kernel used for particular applications: ThHyd
for the thermohydraulic of flows of incompressible fluids, ThSol for conduction in solids, Hyperbolic for flows of
compressible ideal gases.

2.1. Overview of kernel classes

The entities in thermohydraulics are fluids and the laws and differential equations governing flow. A problem
is a set of equations that may or may not be coupled. Trio U simulates flows and consequently applies to a finite
geometrical configuration. Simulation involves the notion of geometrical domains and, subsequently, the notion
of boundary conditions. Trio U is based on approximate solving of the equations and this leads to notions
such as meshed domains, discrete fields, spatial discretization methods, time discretization schemes and initial
conditions. The equations have one unknown (which is a scalar, a vector or a set of scalars) and consist of
operators, which act on the unknown, and source terms. We have, of course, associated classes with all these
notions. Figure 2 provides an overview of the classes that we created to model the above concepts as well as
relationships between the classes. The notation used are UML-compliant (see [5]). More precisely an equation
is supposed to be of the form:

∂φ

∂t
+

∑
i

Opi(φ) =
∑

j

fj (1)

AN OBJECT-ORIENTED APPROACH TO THE DESIGN OF FLUID MECHANICS SOFTWARE 911

Disc_Domain

 Domain

Coupled Problem

Equation

Time Scheme

Discretization

Medium

Unknown Field

Boundary Condition

Mass Solver

Operator

Source

Problem

Post processing

Figure 2. Kernel.

After applying a spatial Discretization, we obtain:

M
∂φh

∂t
+

∑
i

Oph
i (φh) =

∑
j

fh
j (2)

where M is the mass matrix -so that we will need a Mass Solver, φh is the Unknown Field, Oph
i are discrete

differential Operators and fh
j are Source terms. A Medium stores the fluid (or solid) properties. These equations

are associated with Boundary conditions. A Problem is a collection of such Equations discretized using the same
Discretization and the same Time Scheme solved on the same discretized Domain. A Coupled Problem is a
collection of problem differing either by their Equations, their Domain, their Medium,their spatial Discretization
or their Time Scheme. For each Problem we supply some Post Processing tools.

2.2. Specializing the Kernel

Before describing in more details the main classes of the Kernel, we will show how we can specialize it for
a given application. We will follow the sample of sigle-phase incompressible flows. In that case the problem
writes:

∂u

∂t
−∇ν∇u + u∇u + ∇p = g (3)

∇.u = 0 (4)

where ν is the viscosity and g the gravity field.
Pressure is considered as a byproduct of the divergence free velocity condition so that we can consider this

equation as a special case of (2). Figure 3 shows how we can specialize the framework for that (simple) case.

912 C. CALVIN ET AL.

Pressure Solver

Unknown Field

Divergence

Diffusion

Convection

Gradient

Operator

Hydr Problem Navier Stokes std

nu
rho

Incompressible Fluid

Problem Equation Medium

Given Field

pressure

velocity

Figure 3. Incompressible flows.

Problem

{} number of equations()
{} equation(i :integer)
save()
resume()
compute_time_step()
do_post_processing()

Hydraulic Problem

Turbulent Problem

Two Phase Problem

Conduction Problem

Figure 4. Problem hierarchy.

2.3. Problem hierarchy

Problem is an abstract class that acts as the basic class for the hierarchy of “problem” classes. Figure 4
shows the analysis object model for the Problem class.

AN OBJECT-ORIENTED APPROACH TO THE DESIGN OF FLUID MECHANICS SOFTWARE 913

The Problem class has several components:
• a Disc domain type object, which itself has a link with a Domain type object. The Domain type object

represents the meshed geometry; the Disc domain type object provides the information on the geometry
and connectivity required to solve the problem with a given numerical method;

• a Postprocessing type object, which is used for implementing post-processing.
The Problem class has several associations. A Time scheme type object, which represents the time scheme
selected for the problem and a Discretization type object, which represents the spatial discretization method
selected for the problem are associated with it. The Problem class is used to solve, in the most general possible
way, a set of equations for a given domain. The equations that make up the problem are all discretized using
the same numerical method and time scheme. The Problem class has “virtual equations”, or in other words
the classes derived from Problem will have one or more components that are equations. The Problem class has
abstract methods that are implemented by the derived classes:

• the number of equations() method which returns the number of equations making up the problem;
• the equation(int i) method which returns the inth equation.

These virtual methods enable us to associate general algorithms with the Problem class. The algorithms are
encapsulated in methods belonging to the Problem class; the methods may be redefined by the derived classes.
Thanks to the number of equations() and equation() methods, Problem class operations are delegated to each
equation making up the problem.
Problem :: calculate_time_step()
{

double dt = time_scheme->maximum_time_step() ;
for (int i=0 ; i<number_of_equations() ; i++)

dt = min(dt,equation(i).calculate_time_step()) ;
}

2.4. Equation hierarchy

Equation is an abstract class that is used as a basis for the hierarchy of the “equation” classes.
The Equation class has “virtual operators”, in other words the classes derived from Equation will have one or

more components that are operators. Figure 5 shows the Equation class analysis object model. The Equation
class has several components:

• a Disc Domain object containing the boundary conditions and connectivity required to discretize the
boundary conditions;

• a Mass solver object corresponding the mass matrix associated with the selected numerical method;
• a set of Source objects to represent any source terms in the equation (this set may be empty).

The Equation class has several associations: an object belonging to one of the types derived from problem which
is the problem of which the equation is a component, a Time scheme type object which represents the time
scheme selected for the problem and a Disc zone type object which represents a discretized zone. The Equation
class has abstract methods that are implemented by the derived classes:

• the number of operators() method which returns the number of operators that make up the equation;
• the operator(int i) method which returns the inth operator;
• the unknown() method which returns the equation’s principal unknown.

A parallel may be drawn between the Problem and Equation classes; the algorithms are built using exactly the
same model (with the operators in the equation playing the part of the problem’s equations). These virtual
methods enable us to associate general algorithms with the Equation class. The unkn time derivative method
is the main method of the Equation class and an example of this technique:
Equation :: unkn_time_derivative(DoubleTab& derivative)
{

914 C. CALVIN ET AL.

Equation

{} number of operators()
{} operator(i :integer)
save()
resume()
compute_time_step()
do_post_processing()

Navier_Stokes

Convection Diffusion Equation

Turbulent Navier Stokes

Conduction Equation

unkn_time_derivative()

Figure 5. Equation Hierarchy

derivative = 0 ;
for (int i=0 ; i<number_of_operators() ; i++)

operator(i).add(derivative) ;
sources.add(derivative) ;
return mass_solver.apply(derivative) ;

}

We have already explained that for Navier-Stokes equations, the calculation of the time derivative of the unknown
(the velocity) is a special case.

After applying a spatial Discretization, we obtain:

M
∂Uh

∂t
+ ConvDiff(Uh) + BtP h = Fh (5)

BUh = 0 (6)

which leads to:

∂Uh

∂t
= P(N(Uh)) (7)

where:

N(Uh) = M−1(F − ConvDiff(Uh))

P = Id − M−1BtE−1B

E = BM−1Bt.

The Navier Stokes class will have its own version of the unkn time derivative() function (using polymorphism):
Navier_Stokes :: unkn_time_derivative(DoubleTab& acceleration)
{
// standard acceleration :

Equation :: unkn_time_derivative(acceleration);

AN OBJECT-ORIENTED APPROACH TO THE DESIGN OF FLUID MECHANICS SOFTWARE 915

// Projection of acceleration on the divergence free subspace :
divergence.add(acceleration,secmem);
pressure_solver.solve(secmem,pressure);
gradient.calculate(pressure,gradP);
mass_solver.apply(gradP);
acceleration -= gradP;

}

2.5. The time schemes hierarchy

Time scheme is an abstract class that is used as a basis for the hierarchy of the “time scheme” classes.
The class has a set of attributes that are the characteristics common to all the time schemes, both im-
plicit and explicit, and a set of methods that are used to manage the time advance of a transient calcula-
tion. The methods are valid for all the classes derived from Time scheme. The class has a single abstract
method, do a time step(Equation&). To design a class derived from Time scheme, one must just define the
do a time step(Equation&) method. For example, the following algorithm, for the do a time step(Equation&
eq) method, corresponds to the Explicit Euler Scheme class:

Un+1 = Un + ∆t

(
∂U

∂t

)n

(8)

Explicit_Euler_Scheme :: do_a_time_step(Equation& eqn)
{

DoubleTab& future=eqn.unknown.future();
eqn.unkn_time_derivative(future);
future*=dt;
future+=eqn.unknown.present();

}

where future stands for Un+1 and present for Un.

2.6. Field hierarchy

Field is an abstract class that is used as a basis for the hierarchy of the “field” classes. Figure 6 shows the
field class analysis object model.

The field class possesses the following attributes: a name, a number of components, a nature (the field is
scalar, vectorial or set of scalars), a name and a unit of measurement for each of its components and a time
value.

The field class carries a set of abstract operations value at (or values at), thanks to which it is possible to
access the value of the field at any point (or set of points) on the calculation domain. It also includes the
abstract method inject(field) which injects the field used as a parameter into the current instance. For the
fields, two other hierarchies may be distinguished within the main hierarchy:

• the hierarchy of the fields which represent an unknown. The Unkn Field class is used to represent fields
that are calculated by solving an equation, so it has an association with the equation used to calculate
the field. This class has a Wheel component that represents the values at different times. The number of
elements in the Wheel depends on the time scheme being used to discretize the equation (Explicit Euler
needs the values of the field, at two different times). It also has a virtual method “nodes coordinates()”
returning the coordinates of the discretization’s nodes;

• the hierarchy of the fields which represent a given field. The Given Field class is used to represent the
fields that are functions of the spatial coordinates, the time and eventually one or more unknown fields.

916 C. CALVIN ET AL.

Unknown Field

name : string

units : strings

comp names : strings

time : real

{} values at (coordinates)

Wheel
values

Field

unknown of Equation

Given Field

update(time)

P1 Field

{} values at (coordinates)

update(time)

nodes_coordinates()

Figure 6. Field

The inject(field), value at() and values at() methods play a very important role in the writing of generic
algorithms using the fields. For example the Lagrange interpolation can be coded very simply:
Unkn_Field::inject(const Unkn_Field& f)
{
values=f.values_at(nodes_coordinates());
}

The only methods that need to be redefined by derived classes are the ones involving localization of the degrees
of freedom of the field (values at, and nodes coordinates()).

It should be noted that another (and maybe better) conception would have been to distinguish mainly
between discrete fields and continuous ones.

2.7. Discretization and disc domain hierarchy

Discretization is an abstract class that is used as a basis for the hierarchy of classes that represent a spatial
discretization methods. The discretization class and its derivatives are classes comprising methods only and the
methods are used to discretize the various objects involved in solving problems. The Discretization is responsible
of the creation of the connectivities and geometrical information (stored in a Disc Zone object) needed by the
method and deduced from the Domain. It is also responsible of the typing of the Unknown Fields. It can be
considered as an Object Factory pattern (see [3]).

The Disc Domain classes have fundamentally one abstract method: “discretize()” which corresponds to the
creation of all the geometrical and connectivity information related to the numerical method.

2.8. Operator hierarchy

Operator is an abstract class that is used as a basis for the hierarchy of the “operator” classes. The operator
class is used to implement the Op(Uh) term. We have introduced classes derived from the operator class to
represent the various sorts of term involved in the equations.

AN OBJECT-ORIENTED APPROACH TO THE DESIGN OF FLUID MECHANICS SOFTWARE 917

• Conv operator is the basic class for operators that represent a convective term.
• Diff operator is the basic class for operators that represent a diffusive term.
• Grad operator is the basic class for operators calculating the gradient of an unknown scalar field.
• Div operator is the basic class for operators calculating the divergence of an unknown vectorial field.

The concrete classes are specialized versions of these basic classes, designed for a given numerical method
and, if appropriate, a given calculation option. We shall use the convective term as an example. The
FVD Upstream Conv op class which is derived from the FVD Conv op class corresponds to using the upstream
scheme for the convective operator (�u�∇φ) for Finite Volumes Difference.

3. Parallelism

In this section, we give a brief description on how Object Oriented Design can simplify the task of building
a parallel application. For more details see [1] and [2].

3.1. Parallel computing.

Given that we must be able to finely simulate flows in complex, 3D geometries, discretization of the studied
domains generally leads to grids comprising several million elements. To solve problems of this sort multiple-
processor machines, and in particular massively parallel machines with distributed memory, are needed.

The most commonly used approach when parallelizing scientific code is to start with sequential code and add
directives, or primitives, at appropriate points making it possible to parallelize the code. The major drawback
with this approach is that for each new development, the work of parallelization has to be carried out again for
the newly added module. This often results in two versions of the same code – one sequential, the other parallel
– with the obligation to call in a “parallel processing specialist” each time the parallel version of the code needs
to be updated. To avoid this type of problem, we opted to design it as a parallel application. From the start
of code design, all the building bricks were designed for parallel processing. The ultimate objective is to make
the parallelism completely transparent, not only for end users but also for the majority of co-developers. In
other words, users must find the same behavior, operating mode and application usage, regardless of the target
machine (single or multiple processor). In addition, a co-developer wishing for instance to add a new physical
model must not need to bother about parallelizing it. We set the following objectives:

• transparent parallel processing;
• only one set of code may be used at any one time on all architectures;
• transparent for end-user: parallel calculation is triggered by an option in the data set;
• transparent for the co-developer: any new development will be implicitly parallel;
• physical quality of results: the same physical results should be obtained with parallel and sequential

processing;
• efficiency and performance: this objective is almost self-evident in the case of parallel processing. How-

ever, it must be balanced with the preceding objectives and a compromise must be established between
performance and portability, reusability, modularity, quality and transparency;

• portability: the same code must be able to run on any architecture, from a PC to a massively parallel
computer with distributed memory. The following choices were made with respect to parallelism models;

• parallelism model: data parallelism thanks to an initial breakdown of the calculation domain. This is a
natural choice for this type of application;

• programming model: SPMD (Single Program Multiple Data) — the same program is executed by all the
processors. This choice is a direct result of the previous one;

• explicit message exchange (use of libraries such as PVM or MPI). This choice is not only dictated by the
need for high performance, but also the desire to take parallel processing to the roots of the code.

The previous choices are fairly general and widely used. They do not impact directly on the design of the code.
The main objectives that guided the fundamental design decisions were the transparent nature of the parallel
processing and the quality of the results obtained. We have not imposed the use of domain decomposition

918 C. CALVIN ET AL.

0 1 2

3 4 5

6 7 8

0 1 2

0

3

6

PE 0

PE 1

PE 2

Figure 7. Domain splitting: PEO stores ((v0
0 , v0

1 , ..., v
0
8), (v

1
0 , v1

3 , v1
6), (v

2
0 , v2

1 , v
2
2)).

methods because the numerical results obtained in sequential or parallel computations won’t be identical. Only
one physical problem is addressed, as with sequential processing, and it is solved cooperatively by the various
processors. To achieve this, each of the processors must have a copy of values computed by other processors.
We apply the “owner computing rule”, in other words a processor does not calculate values localized on meshes
or faces that do not belong to its sub-domain. In the following example (see Fig. 7), we have three sub-domains.

Suppose we want to compute the gradient at the mesh edges of a constant by element field using the simplest
finite difference scheme pi+1−pi

∆x . We see that processor 0 will need 3 values from processor 1 (at element 0, 3
and 6) and 3 from processor 2 (at element 0, 1 and 2).

We have consequently designed objects that make it possible to store not only the values on a given calculation
domain, but also a copy of the values from neighboring domains. The array has a real part containing the values
on the sub-domain under consideration, and a virtual part, which contains a copy of the values on the neighboring
sub-domains. It also has a description of the values to be send to and of the values he will receive from other
processors. All these information are provided when an Unkn Field is constructed. For example a P0 field will
create a distributed vector that knows how to exchange values at elements for a given stencil. Moreover the
Unkn Field class provides an update() method which is called (at least) at the end of each time step and which
will also update the virtual values. The description of the virtual part of the value vector is also used for the
resolution of the linear systems. The update method is a generic one:

Unkn_Field::update()
{

wheel.roll();
values.exchange_data();

}

AN OBJECT-ORIENTED APPROACH TO THE DESIGN OF FLUID MECHANICS SOFTWARE 919

Figure 8. Wessel.

3.2. Parallel I/o’s

We have required that every object in the application is able to read an write itself on a stream. A com-
munication chanel being just a type of stream, every object can be sent from one processor to another. Object
Oriented designs is also very convenient for dealing with parallel I/o’s. We have developed a library of IO classes
enabling us to diffuse users’s data from a single file to each processors and to collect numerical results from each
processor to a single file for exemple.

4. Calculation, performance and software environment

4.1. Performance

It is always tricky to discuss the raw performance of code. Simulation time depends to a very large extend
on the case under study and the physical models, numerical schemes and hardware being used. However,
a recurrent question concerns the performance of code using an object-oriented language compared with a
functional programming language such as Fortran. We have made a close comparison of the performance of
Trio U and its predecessor Trio VF, which was programmed in Fortran. This study has enabled us to draw the
following conclusions:

• Object-based mechanisms do not penalize performance if they are used at a certain level in the code, on
the contrary. However, they must not be used in the lowest calculation loops.

• Time is spent solving linear systems, in which optimized routines (such as BLAS routines) are invoked.
• The performance differences observed between Trio U and Trio VF with respect to solving systems (around

40% overcost for Trio U) are related to the manner in which the matrices are stored. Trio VF uses IJK
data structures leading to direct addressing while Trio U uses indirect addressing. For the rest of the
code, Trio U yields higher performance (from 30 to 40%).

920 C. CALVIN ET AL.

Figure 9. Clear water concentration in the core.

4.2. Industrial calculations

The following example concerns the calculation of the transient thermal hydraulics in the primary cooling
system of a 900 MW PWR (Pressurized Water Reactor) using Trio U version 1 (see Figs. 8 and 9). The simu-
lation focuses on the dilution in the primary system of a plug of clear water (water whose boron concentration
is lower than the rated concentration in the primary system). In short, this is a thermohydraulic problem
involving the transport of a concentration. The following choices were made regarding the representation of the
primary system:

• the pressure vessel was modeled approximately, with the downcomer, inlet plenum, core and outlet plenum;
• one of the three cooling system loops was modeled approximately with the hot leg, to which a pressurizer,

the bottom of the steam generator, the crossover leg, pump and cold leg were connected;
• the other two loops were represented in less detail by the equivalent shunts (the flow rates distributed over

the three loops were modeled).

The primary cooling system was closed, initially at rest, in an isothermal state, and the pressure was determined
by the pressurizer. The crossover leg was filled with clear water. Simulation started at the moment when the

AN OBJECT-ORIENTED APPROACH TO THE DESIGN OF FLUID MECHANICS SOFTWARE 921

pump was started. Calculation characteristics were as follows:
• 400 000 cubic elements;
• incompressible thermohydraulics;
• simulated time: 22 s; after this lapse of time, almost all of the clear water plug had crossed the core.

The results of the simulation show the position of the clear water all over the primary system.

5. Conclusion

We have shown in this article how object-oriented design has enabled us to develop an open, modular
software architecture. The current version of Trio U, which was written entirely in C++, is used for industrial
calculations in single-phase thermohydraulics and research in both single-phase turbulent thermohydraulics and
two-phase direct simulation. It has demonstrated its effectiveness (open, modular architecture) for software
yielding performance equivalent to software written with Fortran.

References

[1] C. Calvin and P. Emonot, The parallelism in Trio-Unitaire. Actes de la conférence NURETH 8, Kyoto Japan, October (1997).
[2] C. Calvin and P. Emonot, The Trio-Unitaire Project: A parallel CFD 3-Dimensional Code. Actes de la conférence IS-

COPE (1997).
[3] M. Farvacque, O. Cueto, P. Emonot and F. Barre, A new generation of ThermalHydraulics computer code. Actes de la

conférence NURETH 8, Kyoto Japan, October (1997).
[4] J. Rumbaugh et al., Object Oriented Modeling and Design. 2nd ed., Prentice Hall (1991).
[5] B. Stroustrup, The C++ programming language. 2nd ed., Addison Wesley (1992).

To access this journal online:
www.edpsciences.org

