The mathematical work of

Maryam Mirzakhani

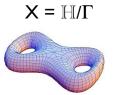
The mathematical work of

Maryam Mirzakhani

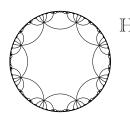
Selecta

- Simple loops on X
- Complex geodesics in Mg
- Earthquakes

The Setting



Riemann surface of genus g≥2 hyperbolic metric



Moduli space of Riemann surfaces $M_g = \{\text{isomorphism classes of } X \text{ of genus } g\}$

2 sides of moduli space

 M_g = (i) complex variety, dim_C M_g = 3g-3

= (ii) symplectic orbifold

Symplectic

 $(M_g, \omega) \leftarrow \text{hyperbolic geometry of } X$

$$\omega = \sum_{\mathbf{1}}^{\mathbf{3g-3}} \mathbf{d}\ell_{\mathbf{i}} \wedge \mathbf{d}\tau_{\mathbf{i}}$$

Fenchel-Nielsen length-twist coordinates; Wolpert

Complex structure on Mg: inherited from X

$$T_X^* Mg = Q(X) = \{\text{holomorphic quadratic differentials}$$

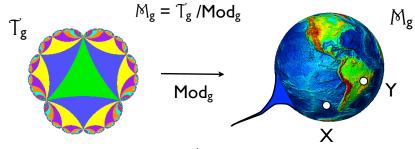
 $q = q(z) dz^2 \text{ on } X \}$

Complex structure ⇒ Teichmüller metric on Mg

$$||q|| = \int_{X} |q(z)| |dz|^2 = area(X,|q|)$$

= Kobayashi metric (Royden)

M_g is totally inhomogeneous

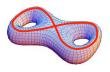


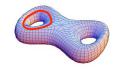
- $Aut(T_g) = Mod_g$
- $Q(X) \simeq Q(Y) \Rightarrow X \simeq Y$

unlike S^n or \mathbb{H}^n or $K\backslash G/\Gamma$

Work of Mirzakhani: I

Simple loops in X





Classical

 $\#Closed(X,L) \sim e^{L}/L$

(prime number theorem, 1940s)

Theorem - Mirzakhani

(2004)

 $\#Simple(X,L) \sim C_X L^{6g-6}$

Proof: Integration over M_g and hyperbolic dissection

⇒ New proof of Witten conjecture

Intersection numbers on moduli space:

$$\langle \tau_{d_1}, \dots, \tau_{d_n} \rangle = \int_{\overline{\mathcal{M}}_{g,n}} c_1(L_1)^{d_1} \cdots c_1(L_n)^{d_n}$$

⇒ solution of KdV equations / Virasoro algebra.

Kontsevich, 1992

⇒ Topological statistics

E.g., probability a random simple loop in genus 2 separates is 1/7.

Mirzakhani's volume formulas

Moduli of surfaces with geodesic boundary:

$$\begin{split} P_{g,n}(L_{1,\dots,}L_n) &= \text{Vol } M_{g,n}(L_{1,\dots,}L_n) &= \int \omega^N \\ &= \text{polynomial with coefficients in } \mathbb{Q}[\pi]. \end{split}$$

ex:
$$P_{1,1}(L) = (1/24)(L^2 + 4\pi^2)$$

Previously only $P_{g,n}(0,...,0)$ was known.

[Coefficients ⇒ statistics and characteristic numbers]

Work of Mirzakhani: II

Complex geodesics in M_g

Real geodesic: (local) isometry $f: \mathbb{R} \to M_g$

Complex geodesic: *holomorphic* isometry $F: \mathbb{H} \to M_g$

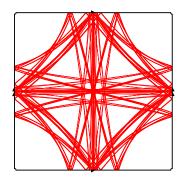
Abundance:

There exists complex geodesics through every $p \in M_g$, in every possible direction.

(Teichmüller disks)

Behavior of a real geodesic

- * Usually $\overline{f(\mathbb{R})}$ is dense in M_g ; ----
- * But sometimes, $\overline{f(\mathbb{R})}$ can be a fractal cobweb....defying classification.



Behavior of a complex geodesic

2D cobweb?

Theorem - Mirzakhani & coworkers

 $V = \overline{F(\mathbb{H})}$ is always an algebraic subvariety of M_g .

(E.g. genus 2, V = Teichmüller curve, Hilbert modular surface or whole space M_2)

Dynamics over moduli space

 $QM_g \cup SL_2(\mathbb{R})$

complex geodesic = projection of orbit $SL_2(\mathbb{R}) \cdot (X,q)$

$$X = P/\sim$$

$$q = dz^{2}$$

$$A \cdot (X,q) = (A(P)/\sim, dz^{2})$$

$$A \rightarrow$$

$$in SL_{2}(\mathbb{R})$$

$$A(P) \subset \mathbb{C}$$

Proof that $V = \overline{F(\mathbb{H})}$ is an algebraic subvariety of $M_{g.}$

I. Eskin & Mirzakhani:

All ergodic $SL_2(\mathbb{R})$ -invariant measures in QM_g come from special analytic varieties $A \subset QM_g$.

II. E & M & Mohammadi:

All $SL_2(\mathbb{R})$ orbit closures come from such A.

III. Filip:

Any such $A \subset QM_g$ is an algebraic subvariety defined over a number field.

(and A projects to V.) ■

Ramifications:

Beyond Homogeneous Spaces

U ^O G/Γ

 $P \subset \mathbb{C}$

G Lie group Γ lattice

 $U \subset G$ subgroup

Margulis, Ratner, et al

$$\overline{SL_2(\mathbb{R})x} = Hx \subset G/\Gamma$$

$$SL_2(\mathbb{R}) \cup QM_g = QT_g/Mod_g$$

Mirzakhani

$$SL_2(\mathbb{R})x = A \subset QT_g/Mod_g$$

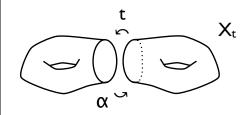
Rich theory of homogeneous dynamics resonates in highly inhomogeneous world of moduli spaces

Work of Mirzakhani: III

Classical:

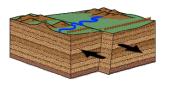
simple loop $\alpha, t \in \mathbb{R} \Rightarrow$

$$X_t = twist (t \alpha, X)$$



Earthquakes

 $twist(\lambda, X)$, λ in M_{log}

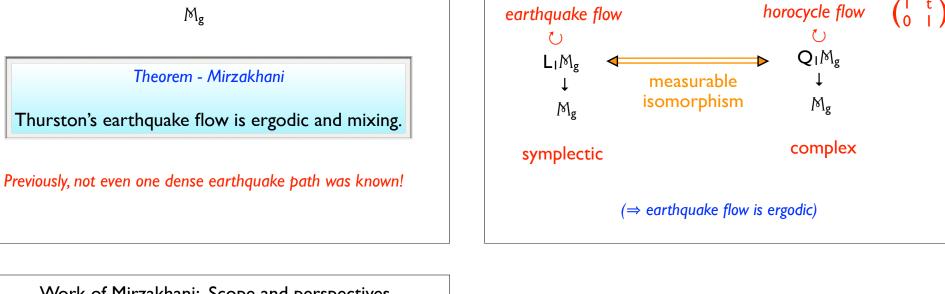


(Thurston)

= Hamiltonian flows on M_g generated by function $X \rightarrow length(X, \lambda)$

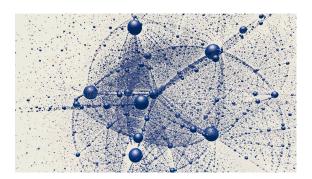
Earthquake dynamics over Mg

$$\{ \text{unit length } (X,\lambda) \} = L_1 \, M_g \, \, \circlearrowleft \, \frac{\text{earthquake flow}}{M_g}$$



Proof: Symplectic - Holomorphic Bridge

Work of Mirzakhani: Scope and perspectives



ML (Dumas)

breadth of methods integrated into a transformative research program

many developments still unfolding