
Logic and Mathematical Programming

Sanjoy K. Mi t te r
(Joint work with V. Borkar, V. Chandru

[both of Indian Ins t i tu te of Science]
and D. Micciancio [MIT]) *

Depar tment of Electrical Engineering and Compute r Science
and

Laboratory for Information and Decision Systems
Massachusetts Ins t i tu te of Technology

Cambridge, Massachusetts 02139

1 In troduct ion

A fundamental problem in logic is determining whether a formula is satisfiable,
i.e. there exists a valuation for the variables occurring in the formula that
makes the whole formula true. Logical deduction can be easily reduced to
satisfiability: formula ¢ is a logical consequence of a set of formulas A if and
only if the set of formulas A U {-¢} is unsatisfiable. Therefore algorithms to
decide the satisfiability of formulas can immediately be turned into procedures
for logical deduction and automated reasoning.

In fact, the first serious studies of spatial embeddings of logic [5, 4] have
been primarily aimed to transfer methodologies and algorithms from the field
of mathematical programming to the symbolic world of computational logic.

A new perspective on these studies is presented in [3]. In [3] the embedding
of logic into mathematical programming is used to prove some well known
theorems of first order logic. The novelty of this work is not in the results
achieved, but in the approach used: the topological structure of the space
logical satisfiability is embedded into is exploited to gain structural insights.

We are interested in logic mainly as a language to describe and reason
about computer programs. LFrom this point of view, it would be interesting to
see to what extent the spatial embeddings studied for propositional logic can
be extended to other logic languages, such as dynamic logic [7] and process
logic [6].

Finding embeddings of dynamic logic in the style of [3] is presumably a
hard problem because of some non-compactness results that affect that logic.

*This research has been supported by U.S. Army Research Office grant DAAL03-92-G-
0115 to the Center for Intelligent Control Systems and by a grant from Siemens AG.

80 Mitter

Therefore it seems desirable to explore the feasibility of such embeddings by
choosing a fairly simple subset of dynamic logic, namely modal logic.

The rest of this report is organized as follows. In Section 2 we review the
definitions and results presented in [3] for propositional and predicate logic.
Section 3, 4 and 5 summarize results obtained in [3] In section 6 we show
how modal logic can be spatially embedded into a linear systems. Finally,
connections of modal logic to the bisimulation relation are described in section 7
together with a simple example.

2 Proposit ional and Predicate Logic

In propositional logic, formulas are built up from propositional variables through
the use of the usual boolean connectives V, A and -~. Propositional variables
can evaluate to either True or False. In order to embed a propositional formula
into a linear program, we can associate the numbers 0 and 1 to the the symbolic
values False and True. It is then natural to express disjunctions as 0 - 1 linear
inequalities and formulas in conjunctive normal form as 0 - 1 linear systems.

For example the satisfiability of the logical formula

x V -~yV z

can be embedded as solubility of the inequality

x+(1-y)+z> 1
where x, y, z are 0 - 1 variables.

The conjunctive normal formula

(x) A (yV ~z) A (~wV x V ~y) A (w V z)

is satisfiable if and only if the following system has solution:

x > 1

y + (1 - z) _> 1

(1 - w) + x + (1 - y) _> 1

w + z > 1

x , y , z , w = 0 o r 1

It is conventional in mathematical programming to express linear systems
in matrix notation:

Ax>_b

where A is a matrix of coefficients, x is a vector of unknown and b is a vector
of constants. For example the above system can be rewritten as

1 0 0 0 x 1
0 1 - 1 0 y > 01
1 - 1 0 - 1 z - -
0 0 1 1 w 1

Logic and Mathematical Programming 81

In general we can associate to each formula in conjunctive normal form ¢
a system Az > b of c linear inequalities over 0 - 1 variables, where c is the
number of clauses in ¢. The satisfiability of ¢ is equivalent to the solubility of
the associated system

Ax _> b, x E {0, 1} ~' . (1)

This spatial embedding of propositional logic is extended in [3] to predicate
calculus, using infinite dimensional linear programming. Briefly, a first order
formula is transformed into an infinite conjunction of propositional clauses and
the resulting infinite propositional formula is embedded into a system .4x :>/~
over an infinite set x of 0 - 1 variables. The passage from predicate calculus to
propositional logic uses standard techniques" from logic (Skolemization). The
embedding of infinitary propositional calculus into infinite mathematical pro-
gramming extends the finitary case in the obvious way. As usual the formula
is satisfiable if and only if the associated system has solution. The structure
of the resulting system (the clausal form and finite support property, [3]) and
general properties of the product of topological spaces are used in [3] to prove
the Herbrand theorem and the existence of a minimal solution for systems of
Horn clauses.

We now discuss these results in summary form.

3 I n f i n i t e D i m e n s i o n a l 0 - 1 L i n e a r P r o g r a m s

Consider a mathematical program of the form

= {x e {0,1} °o : > Z} (2)

Each row of the matrix A has entries that are 0, +1, and each entry of the (un-
countably) infinite column/~ is 1 - the number o f - l ' s in the corresponding row
of A. So this is just an infinite version of (1). The finite support of the rows of
.4 is the important structural property that permits the compactness theorems
based on product topologies to go through in the ensuing development. It is
a natural restriction in the context of first order logic as it corresponds to the
finite "matrix" property of firs~ order formulae. Note that compactness theo-
rems can be pushed through for more general infinite mathematical programs
using the so called "weak, topologies" but this shall not concern us.

In discussing Horn Logic, we will encounter the continuous (linear program-
ming) relaxation of our infinite mathematical program (2).

g3 = {z E [0, 1]~: Az >_ fl} (3)

Let {Aax >_ fl~ }~ez denote a suitable indexing of all finite subfamilies of
{Ax _> ~}. And for each a in the uncountable set Z let

Da -- {xE{0 ,1}~ :Aax_>/?a}

23 a -- {xE[0 ,1]~ : `4ax_>/~}

82 Mitter

Thus,

The analysis of finite dimensional mathematical programs such as (1) is
based on elementary techniques from combinatorial and polyhedral theory. The
situation in the infinite dimensional case gets more complicated. Constraint
qualification is a sticky issue even for semi-infinite mathematical programs.
The standard approach in infinite dimensional mathematical programming is
to impose an appropriate (weak) topological framework on the feasible region
and then use the power of functional analysis to develop the structural theory.

4 A C o m p a c t n e s s T h e o r e m

A classical result in finite dimensional programmingstates that if a finite system
of linear inequalities in ~ is infeasible, there is a "small" (d+ 1) subsystem that
is also infeasible. This compactness theorem is a special case of the ubiquitous
Helly's Theorem. Analogous theorems are also known for linear constraints on
integer valued variables. In the infinite dimensional case, we could hope for the
"small" witness of infeasibility to simply be a finite witness. This is exactly
what we prove for mathematical programs of the form (3) and (2).

Let S 7, 7 E ~, be copies of a Hausdorff space S. Let t~ ¢ = HT~¢~q 7. The
product topology on S ¢ is the topology defined by a basis HTO 7 where the
0 7 are open in S 7 and 0 7 = S 7 for all but at most finitely many 7 E ~. A
classical theorem on compact sets with product topology is that of Tychonoff
which states that

Theor e m 4.1 Arbitrary (uncountable) products of compact sets with product
topology are compact.

Next we show tha t /) a and/3~, with product topologies, are also compact
for any a in 2;. This follows form the corollary and the lemma below.

Coro l la ry 4.2 {z E {0, 1}e°}({z E [0, 1]~}) (with product topology) is
compact.

Lemma 4.3 The set {x : .A~ >/~a}(a E 27) is closed and hence compact.

Theorem 4.4 ~D(/$) is empty if and only i/~(#~) is empty for some a E Z.

5 Herbrand T h e o r y and Infinite 0 - 1
P r o g r a m s

We will assume that the reader has a basic familiarity with Predicate Logic.
In particular, we assume that the reader is familiar with the Skoleam Normal
Form, the Herbrand Universe and the Horn Formula (see [8]).

Logic and Mathematical Programming 83

Assuming now that H is a Horn formula as defined above, we formulate the
following infinite dimensional optimization problem.

i n f { ~ z j : A ~ _ > / ~ , z E [0 , 1] ~) (4)

where linear inequalities Ax > fl are simply the clausal inequalities corre-
sponding to the ground clauses of H. The syntactic restriction on Horn clauses
translates to the restriction that each row of ,4 has at most one +1 entry (all
other entries are either 0 or - l ' s - - only finitely many of the latter though).
We shall prove now that if the infinite linear program (4) has a feasible solution
then it has an integer optimal (0 - 1) solution. Moreover, this solution will be
a least element of the feasible space i.e., it will simultaneously minimize all
components over all feasible solutions.

L e m m a 5.1 If the linear program (4) is feasible then it has a minimum solu.
tion.

L e m m a 5.2 If z 1 and z 2 are both feasible solutions for (4) then so is {~j =
min(z~, z~)}.

T h e o r e m 5.3 If the linear program (~) is feasible, then it has a unique 0 - 1
optimal solution which is the least element of the feasible set.

The interpretation of this theorem in the logic setting is that if a Horn
formula H has a model then it has a least model (a unique minimal model).
This is an important result in model theory (semantics) of so-called definite
logic programs.

6 Modal Logic

Modal logic extends classical logic introducing new quantifiers over formulas,
called modalities. The set of modalities may be different from one logic to the
other. For example, dynamical logic can be viewed as a modal logic where
the modalities are programs. Here we consider a special case of dynamic logic
where programs are single atomic actions. More precisely the set of modalities
is {l:]a}ae E (and their duals {<>a}ae~.) where ~ is a set of symbols.

A model M = (W, T, e) for a modal formula ¢ is given by a set of worlds
W, a family of transition functions T = {ta: W -+ 2 w } a ~ labeled by the
symbols in E, and a valuation for the variables e: V -+ 2 W that associate to
each propositional variable the set of worlds in which the variable is true. Given
a model M = (W, T, a) and a world s in W the truth value of a modal formula
is defined by induction on the structure of the formula as follows:

* M , s ~ x i f f s E ~ (x) ,

* M,s ~ ¢A~b iff both M,s ~ ¢ and M , s ~ ¢,

* M , s ~ ¢ V ¢ i f f e i t h e r M , s ~ ¢ o r M , s ~ ¢ ,

84 Mitter

• M , s ~ - ~ ¢ i f f n o t M , s ~ ¢ ,

• M , s ~ Da¢ iff M , t ~ ¢ for all t E ta(s),

• M , s ~ (s a ¢ i f f M , t ~ ¢ f o r s o m e t E t a (s) .

A formula ¢ is true in a model M, written M ~ ¢, if ¢ is true in all worlds
of M. A formula ¢ is satisfiable iff it is true in some model.

So far, we have defined a logic language that extends propositional logic
and we have defined a notion of satisfiability for formulas in that languages.
We want to embed the satisfiability of modal formulas into linear problems, as
it has been done for propositional logic.

We now propose embedding of modal logic that preferably preserves the
finiteness property of propositional logic. The intuition behind the embedding
that we define is to use "timed" linear systems of the form

Aox(t) + A l x (t + 1) > b

where the "time" t is used to express the "dynamics" associated to the modal
operators. The above system is of a kind usually encountered in the study of
dynamical systems and can be rewritten in a more compact way using a shift
operator * as follows:

A0z + Alz* >_ b.

Here the variable x is a function of time t and the action of the shift operator
on z is given by z*(t) = z(t + 1).

In order to simplify the presentation in the rest of this section we will take
E = {a] so that we have only two modal operators [] and (5 (the subscript a
is omit ted for brevity). However, everything can be extended to the general
case, with IEI possibly greater than one, with obvious modifications.

Since the transition function t may associate to each world more than one
successor (or even none), the dynamics expressed by the modal operators [] and
(5 has a branching structure. Therefore time is not the right concept to express
the modalities. We will consider a notion of generalized time T. Variable z is
still a function of T, but there are two shift operators o and o that can act
over x. Putt ing it together, we want to embed the satisfiability problem for
modal logic into a system of the kind

Aox + A l x ~ + A2x ~ >_ b.

where the vector x is a function of T and the action associated to the shift
operators o and o is the following. We have said that T can be thought as a
"time" in a broad sense (carrying on this analogy, we call istants the elements
of T). Each istant in T may have more than one immediate successor in T. Let
7- be a function that associates to each istant the set of its immediate successors
in T. The result x Q of applying the ~ shift to x is the set of all possible values
that vector x can take after one unit of "time". Analogously the result x <> of
applying the o shift to x is some of the possible values that vector x can take
after one unit of "time".

Logic and Mathematical Programming 85

Now we look at how modal formulas can be represented in this framework.
Clearly any propositional formula that doesn't make use of the modalities can
be embedded into a system with At and A2 both equal to the null matrix.
Also, formulas that make very simple use of the modalities can be directly
embedded. For example the formula

v (ov ^ z)) ^ (az z)

can be rewritten as
v v []-w) ^ (O- z v z)

and then represented by the system

1 0 - 1] x +
0 0 1

0] o [00
0 0 0 + 0 0 -1 -

Things get harder if the formula makes a more complex use of modal oper-
ators. For example there is no direct way to express the formula OOz directly
into our system. It seems that the flat structure of the linear system does not
allow us to represent nested modal operators. A more subtle problem arises
when translating the formula I::lz V by. One could be tempted to embed this
formula into the system

[]° [1 1] x >1 . y -

At first sight this seems correct but a more careful exam shows that the meaning
of the above system is the formula rn(x V y) which is not equivalent to I::]x V ny.

In fact, the shift operator a acts on the vector [y] as a whole and therefore

we cannot choose x ° and ya independently of each other.
We will now illustrate an embedding technique that solves the above prob-

lems and allows the encoding of arbitrarily complex formulas into linear sys-
tems. The resulting system is finite, and its size is not significantly greater of
the starting modal formula. These ideas are due to D. Micciancio [9].

The method is based on the introduction of new variables associated to
subexpressions of the logic formula and is defined as a recursive procedure
Faabed(¢). On input a formula ¢ of propositional modal logic, Embed(C) returns
a system of linear equations over the variables of ¢, plus some fresh variables
introduced during the execution of the procedure, whose solubility over 0 - 1
variables is equivalent to the satisfiability of the original formula 4. First we
define a procedure to embed formulas of the form z ~ ¢:

Embed(x ++ ¢)

• if ¢ = z, then return {x _> I},

• if ¢ = -~¢, then introduce a fresh variable z and return

{ -x - z > -1, x + z > 1} U V.rabed(z ++ ¢)

86 Mit ter

• if ¢ = ¢I A ¢~, then introduce two fresh variables zl and z2 and return

{--X + Z 1 ~__ 0, --X + Z2 ~__ O, X - - Z l - - Z2 > - 1 }

(3 Embed(Zl ~-Y ¢1) U Embed(z2 ++ ¢2)

• if ¢ = ¢1 V ¢2, then introduce two fresh variables Z 1 and z2 and return

{ x - zl >_ 0, x - z~ >_ 0 , - x + zl + z 2 >_ 0}

t_J Embed(Zl ~Y ~bl) (3 Embed(z2 ~ ¢2)

• if ¢ = [2¢, then introduce a fresh variable z and return

{ - ~ + , ° > 0, • - z ° > 0} u Embed(z ++ ¢)

• if ¢ = ©¢, then introduce a fresh variable z and return

{-~ + z° > 0, • - z ° > 0} u ~.=bed(z ,+ ¢)

The general case easily follows. Any formula ¢ can be embedded into the
linear system {z > 1} U Faabed(z ++ ¢) where z is a variable not occurring in ¢.

Applying the function Embed to the formula <>[]x we get the system

zl > 1

- z l + z ~ >_ 0

z l - z ~ > 0
-z~+z~ > 0

z2 - z~ >__ 0

- z 3 + x >_ 0

z a - x >__ 0

Obviously we could have embedded the

z ° > 1

- z + x ° > 0

z - - x <~ > O.

same formula in the smaller system

However, even if the system obtained by applying Embed is not the smallest
possible, it can be formally proved the the result of the given procedure is
never much bigger than necessary. Namely the system Embed(C) has at most
3n + 1 rows where n is the size of the formula ¢.

The last system can be writ ten in mat r ix notat ion as

[0 1 [0 01t [0 1o [1] 0 - 1 x + 1 0 x + 0 0 x > 0
0 1 z 0 0 z - 1 0 z - 0

Logic and M a t h e m a t i c a l P r o g r a m m i n g 87

Here we see how the introduction of a new variable z allows us to represent a
formula with nested modal operators.

Now consider the formula Dz V by, we have already remarked that this
formula cannot be straightforwardly translated into the system

[]° [1 1] z >i
y -

which in fact represent a different formula, namely D(x V y). Let's see how
expressions with multiple modal operators in the same clause are handled. The
result of applying the embedding function

or with a few simplifications

to formula Dx V Dy is the system

zl _> 1

- z : + z2 + za >_ 0

zl - z~ >_ 0

z : - z 3 > 0

-z~+z~ >_ 0

z2 - z~ >_ 0

- za+z~ > 0

za - z~ >_ 0
- z 4 + z >> 0

z 4 - z > 0

- z s + y >. 0

z s - y >_ 0

z + y n > 1

- z + x ° > 0

z - x n > O.

This last example shows how introducing a new variable z we can split a clause
with multiple occurrences of the same modal operator into the conjunction of
several clauses each of which contains at most one modal operator.

We have showed how any formula of modal logic can be translated into a
"small" linear system of the form

A o z + A : z ° +A2z ° >_b.

The equivalence of the system with the modal formula can be easily proved
by induction on the size of the formula. The linear system has the same "clausal
form" property shown in [3] for the propositional logic embedding. Another
property enjoyed by this linear system is that each row of the matrices A: and
As has at most one non-null entry. It is because of this last property that the
shift operators o and o can be applied to the unknown vector x as a whole, as
opposed to being applied componentwise.

88 Mitter

7 Modal Logic and Bisimulation

The relevance of modal logic in the context of modeling distributed computing
is exemplified by its relationship with bisimulation, a widely accepted equiva-
lence relation between labeled transition systems.

A labeled transition system is a graph whose edges are labeled with symbols
from some alphabet ~. Formally a labeled transition system is a tuple (N, E, L)
where N is a set of nodes, E is a binary relation on N and L is a function from
N to E. The nodes N represent the possible internal states of a process or set
of processes, the labels r. are actions the system may perform, and the edges of
the graph E express how the internal state of the system changes following the
execution of an action. Usually some node s E N is designated as the starting
node, the initial state of the process represented by the transition system.

Two labeled transition systems (N1, El, L1, sl) and (A~, E2, L2, s2) are bisim-
ilar if there exists a binary relation R C_ N1 x N2 such that

• (s l , s2) ~ R

• for all (tl,t2) E R:

- if (tl, t~) E El, then there exists some t~ such that (t2, t~) E E2 and
L2(t2,t~2) = Ll(t l , t l) .

- if (t2,t~) E E2, then there exists some t~ such that (Q,t~l) E E1 and
L2(tl , t l) - Ll(t2,t~2).

It is natural to view labeled transition systems as models for modal logic.
The nodes in the graph are the worlds of the model and the transition relation t ,
maps node s to the set {t : (s, t) e E}. We can ask when two labeled transition
systems can be distinguished by modal formulas. In other words, given two
labeled transition systems we look for some formula that is true in one system
but false in the other. Two labeled transition systems are considered equivalent
if no such formula exists.

It turns out that this notion of equivalence is exactly bisimilarity. Two
labeled transition systems are bisimilar if and only if they satisfy the same set
of modal formulas. For a formal proof of this statement together with a more
accurate description of the relationship between modal logic and bisimulation
the reader is referred to [2].

Here we will only illustrate the mentioned result on a simple scheduler
example taken from [1]. The scheduler described in [1] communicates with a
set {Pi}i of n processes through the actions ai and b~ (i = 1 , . . . ,n) . These
actions have the following meaning:

• action ai signals P~ has started executing,

• action bi signals Pi has finished its performance.

Each process wishes to perform its task repeatedly. The scheduler is re-
quired to satisfy the following specification:

Logic and Mathematical Programming 89

Spec(1, {1})

Sp c(1, {2}) - Sp (1, {1,2})

Sp c(2, t 12, { {1, 2})

spec(2, {2})

Figure 1: Simple scheduler specification

• actions a l , . . . , an are performed cyclically starting with al,

• action ai and bi are performed alternatively.

Informally processes start their task in cyclic order starting with/)1 and each
process finish one performance before it begins another.

Then a modular implementation of the scheduler is suggested. The imple-
mentation is based on a set of n components C1,. •., C~ connected in cycle that
pass a token each other in cyclic order. There is exactly one token, initially
owned by C1, going around. Furthermore, each component Ci performs action
ai after receiving the token and before passing it to a(i rood n)+l" Then after
the token has been passed to a(i rood ~)+1, Ci performs bl before receiving the
token again. For a more accurate description of this example the reader is re-
ferred to the original text [1, pages 113-123] where both the specification and
the implementation of the scheduler are formally given using the CCS language.

If the number n of processes being scheduled equals two, the specification is
given by the labeled transition system shown in Figure 1, while the implemen-
tation gives the system described by the labeled transition system in Figure 2.

If the system [CI 1... ICn] were a correct implementation of the specification,
the two systems in Figure t and 2 would not be distinguishable by any modal
formula. However this is not the case since formula s -+ [~ali-la~>b~ 1 is true
in the system depicted in Figure 1 but not in the one shown in Figure 2. The
formula s --+ i:3a~ Da~b2t c a n be translated into the linear system

- s + x °°~ > 0

- z + y °"~ > 0

x - y °°~ >_ 0

- y + t °b~ > 0

1Here s is a p red ica te t rue only in t he s t a r t i n g s t a t e a n d t is a p r ed i ca t e a lways t r ue

90 Mitter

C

A B

F

Figure 2: Simple scheduler implementation

which has solution

y - t °b2 >_ 0

t > 0

, = {&ec(1,0)}

x = {Spec(2,{1})}

y = {Spec(1, {1, 2})}

t = {@ee(i ,S) : i e {1,2},S_C {1,2}}

in the model associated to the system in Figure 1 but has no solution in the
model associated to the implementation. In conclusion the linear system shows
that the proposed implementation of the scheduler does not satisfy the given
specification.

R e f e r e n c e s

[1] R. Milner, Communication and Concurrency. Prentice Hall, London
(1989).

[2] J. van Benthem, J. van Eijck, V. Stebletsova, Modal logic, transition sys-
tems and processes Math Centrum, CS-R9321 (1993).

[3] V. S. Borkar, V. Chandru, S. K. Mitter, A Linear Programming Model of
First Order Logic Indian Institute of Science, TR IISc-CSA-95-5 (1995).

Logic and Mathematical Programming 91

[4] R. G. Jeroslow, Logic-Based Decision Support: Mixed Integer Model For-
mulation Annals of Discrete Mathematics 40. North-Holland (Amsterdam
1989).

[5] R. G. Jeroslow, Computation-oriented reductions of predicate to proposi-
tional logic Decision Support Systems 4 (1988) 183-197.

[6] V. R. Pratt, Process Logic, Proc. 6th Ann. ACM Syrup. on Principle of
Programming Languages (Jan. 1979).

[7] V. R. Pratt, Dynamic Logic, Proc. 6th International Congress for Logic,
Philosophy, and Methodology of Science, (Hanover, Aug. 1979).

[8] U. SchSning, Logic for Computer Scientists, Birkh~user (1989).

[9] D. Micciancio and S. K. Mitter: Forthcoming LIDS Technical Report,
M.I.T.

