CHAPTER 1

Logic and Proofs

1.1 THE LANGUAGE OF MATHEMATICS

Mathematics makes precise use of language in stating and proving its results. Math-
ematicians use the English (or other) language to express their ideas and arguments,
though they give some common English words a more precise meaning, so as to
make them unambiguous.

Your aim in writing mathematics should be to convince the reader (and your-
self) that your ideas are correct. Good mathematical writing consists of com-
plete sentences, allowing for the fact that symbols stand for words. For example,
“A — B is a sentence in which the subject is “A”, the verb is equals and the
object is “B”.

Symbols are supposed to make the mathematics easier to comprehend, not
to confuse the reader, so do not go overboard in using a multitude of nonstandard
symbols. The standard symbols that we use in this book are listed in the List
of Symbols on page 293. Nonmathematical readers may be baffled by pages of
mathematics full of symbols, but writing it out without symbols would not make
it any clearer to them.

Mathematicians use a variety of terms to label their results. We shall use
the terms theorem, proposition, and lemma to describe results, in decreasing
order of importance. These will be general statements that usually apply to a large
number of cases. A theorem will be a major landmark in the mathematical theory,
a proposition a lesser result, while a lemima will usually be a result that is needed to
prove a theorem or proposition but is not very interesting on its own. A corollary
is a result that follows almost immediately from a theorem. An example is not
normally a general result, but often a particular case of a theorem or proposition.
An algorithm is an explicit procedure for solving a problem in a finite number of
steps.

A definition gives a precise meaning to a mathematical term so that the
reader knows what the author intends. A given definition may not be the one you
would use, but you have to accept it to make sense of the following mathematics.
For example, some people would define the natural numbers as the positive integers
1, 2, 3,..., while others think that zero is natural, and would define the natural
numbers as the nonnegative integers 0, 1, 2, 3,....

A proof is a mathematical argument intended to convince us that a result is
correct. A proof of a theorem, or other result, is a series of logical deductions, using
the assumptions of the theorem, the definitions of the terms involved, and previous
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2 Chapter 1 Logic and Proofs

results that have been proven. You have to use your judgment when writing a proof
on how much detail to include, and this will depend on your audience. If you put in
too much detail, the overall argument will be cluttered. On the other hand, if you
do not put in enough detail, your readers may not understand all your argument
and, more important, you may omit some technicality that invalidates your proof.
In this chapter, we introduce the more common types of mathematical reasoning
used in proofs and the standard strategies for attacking proofs.

In mathematics, we tend to use more complicated, and more compound ex-
pressions than we do in everyday language, so the next section explains some meth-
ods for dealing with these expressions.

1.2 LOGIC

Logic is the study of correct reasoning. The rules of logic give precise meaning
to mathematical statements and allow us to make correct arguments about these
statements.

Definition. In mathematics, a statement or proposition is a sentence that is
either TRUE or FALSE.

For example,

e The year 2000 is a leap year.
e 3+2 = 6.
o 12 < 10.

e The decimal expansion of 7 contains one hundred consecutive 3s.

They are sentences that are either TRUE or FALSE, though you most probably do
not know the truth value of the last statement.
However, the following sentences are not statements.

o Let x =4.
o Find the nearest integer to \/513

e Is it Friday today?

Questions are never statements. If we changed the last sentence to “It is Friday
today” it would be a statement.

Propositional logic is the part of logic that deals with combining statements
using connectives such as AND, OR, NOT, or implies. We use these connectives in
everyday language, but in mathematics and computer science we tend to use them
in more complex combinations. We (and the computers) need to know precisely
what these combinations mean.
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We can always combine any two statements using AND or OR to form a third
statement. For example,

e Ottawa is the capital of Canada and New York is the capital of the United
States.

If P denotes the statement “Ottawa is the capital of Canada” and @ denotes the
statement “New York is the capital of the United States” then the preceding state-
ment could be denoted by P AND Q.

Every statement has a negation. For example, if P is the statement “3+2 = 6”
then its negation is “It is not true that 3 + 2 = 6” or more simply “3+2 # 6.”

Definition. Let P and @ be statements. The statement P AND () is called the
conjunction of P and Q. The statement P AND @ will be TRUE if P is TRUE
and @ is TRUE but will be FALSE otherwise.
The statement P OR. Q is called the disjunction of P and @. The statement
P OR @ will be TRUE if either P is TRUE, or @ is TRUE, or both are TRUE.
The negation of the statement P is denoted by NOT P. Another very
common notation is ~ P.

We can define these connectives by the following truth tables, in which T
stands for TRUE and F stands for FALSE.

P | Qi PANDQ P Q| PORQ

T|T T T| T T P || NOT P
T|F F T|F T T F
F|T F F|T T F T
FiF F F|F F

A truth table for a statement containing unknowns lists the truth values of the
statement for all possible truth values of the unknowns. Since each statement has
two possible values, T or F, the number of possibilities for n independent unknown
statements is 2", and this will be the number of rows (not counting the headings)
in the truth table of a statement with n» unknowns. The statement P AND @ has
the two unknowns P and @, so the truth table will have four rows, while the truth
table for NOT P has two rows.

In everyday language, the word or can be used in two different ways. Consider
the meaning of or in the following two sentences.

o The prerequisite for this course is algebra or trigonometry.
¢ You will be served tea or coffee.

In the first sentence, the or is used in an inclusive way, which means that you can
still take the course if you have both algebra and trigonometry. However, in the
second sentence, or is used in an exclusive way; you should not expect tea and
coffee. Mathematics always uses the inclusive OR, which means that P OR @Q is
true even if both P and @ are true.
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Example 1.21. Show that the statement NOT (P AND Q) has the same truth
table as the statement (NOT P) OR (NOT Q).

Solution. PTG | PAND § || NOT (P AND Q)
TT T F
T|¥ F T
FIT F T
F|F P T
P Q[ NOT P | NOT Q || (NOT P) OR (NOT Q)
T[T F F F
T F| F T T
FlT| T F T
FIF| T T T

The two final columns are the same, so the two statements have the same truth

table. ]

The symbol [ ] denotes the end of a proof or solution.

The negation of a conjunction in the previous example can be illustrated in
everyday language. Consider the statement “It is not true that it is raining and
windy.” This means that “Either it is not raining or it is not windy.” Notice that
we are using the mathematical inclusive or here; it could be sunny and calm.

In a similar way, you are asked to show in Exercise 22 that NOT (P OR Q)
and (NOT P) AND (NOT @) have the same truth tables.

In mathematics, we often use statements of the form “If P, then Q” such as
“Tf an angle bisector of a triangle is also a median, then the triangle is isosceles.”
This is called a conditional statement or implication, where P is the hypothesis and
@ is the conclusion.

If P is a true statement, then clearly the truth value of “If P then Q” should
be the same as the truth value of Q. However, if P is false, it is not obvious what
the truth value of the statement should be. For example, if pigs can fly then I will
eat my hat. If P is false, then the statement “If P then @” normally imparts no
meaning in everyday language, though you would certainly not say that it is false.
Since we would like “If P then Q” to be a mathematical statement that is either
true or false, we define it to be true, whenever P is false. This yields the following
definition.

Definition. Given two statements P and (), the conditional statement
“If P, then Q" is denoted by P = @ (pronounced “P implies Q") and is de-
fined by the following truth table.

PiQlilP=Q
T|T T
T | F F
F| T T
F | F T
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The conditional in mathematics is an extension of everyday usage, but it
has some unusual consequences because P —> @ is always true if P is false. For
example, “If 5 > 7, then 2+2 = 3” is a true statement. When we use the conditional
“If P, then Q” in everyday language we are usually suggesting that the truth of
P causes @ to be true. In mathematics, there does not have to be any relation
whatsoever between P and . However, this leads to logically correct but pretty
useless statements, such as “If 2 < 4, then 242 = 4.” One reason for not considering
causality in the definition is that it would be very hard to make precise. “If you
take this pill, you will get better.” Is there a cause and effect here? Maybe, maybe
not.

An implication in which the hypothesis is false is sometimes called vacuously
true, because there is nothing to check. For example, “If « is an integer between
2.2 and 2.8, then z is even” is vacuously true, as there are no integers in that range.

The following are all alternative ways of expressing a conditional statement.
P= Q.

P implies Q.

If P, then Q.

IfP, Q.

Q if P.
e Ponlyif Q.
e P is sufficient for Q.
e () is necessary for P.

The converse of the conditional statement “If P, then Q" is “If ¢}, then P.”
Of course, even if a statement is true, its converse does not have to be true. For
example, “If a quadrilateral has its four sides equal, then it is a parallelogram” is
true, but the converse “If a quadrilateral is a parallelogram, then it has its four
sides equal” is false.

If the conditional statement “If P, then ¢)” and its converse “If (), then P”
are both true, then we say that “P if and only if @.” For example, if zy = 0 then
x=0o0ry=0. Also, if z =0 or y =0, then zy = 0. Hence

zy=0 ifandonlyif xz=0o0ry=0.

The statement “ry = 0” is true if and only if the statement “z = 0 or y = 0” is
true. The statements express the same idea in different words.

Example 1.22. Find the truth table for the statement
(P= Q) AND (Q = P).

Solution. P=>Q|Q=P| (P=Q) AND (Q= P)

s Y
e H|O

B A A
R

HA A
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We shall now use this for the truth table for the statement “P if and only if Q. [

Definition. Given two statements P and @, we denote the statement
«p if and only if Q" by P <= @, and define it by (P = Q) AND (Q = P).
The truth table is given below.

P|lQ| Pe=AQ
T| T T
T|F F
F|T F
FI|F T

The statement P <= Q is true precisely when P and Q have the same truth values,
in which case we say that P and Q are equivalent statements. Hence equivalent
statements have the same truth tables.

The expression “if and only if” is used so often in mathematics that it is often
abbreviated as iff. The following are alternative ways of expressing an “if and only
if” statement.

e P=Q.

e P if and only if Q.

o Piff Q.

e P is equivalent to Q.

e P is necessary and sufficient for Q.

Example 1.23. Show that the statement P == @ is equivalent to the state-
ment @ OR NOT P.

Solution. Compare their truth tables.

PIQP=>Q| NOTP | QORNOTP
T T T F T
T|F F F F
F|T T T T
F|F T T T

Since the statements P = Q and @ OR NOT P have the same truth tables, they
are equivalent.

As an example, the statement “If I am late, then I am running” is equivalent
to “Either I am running or I am not late.” O

Example 1.24. Is the statement R => (P OR Q) equivalent to the statement
P OR (Q AND NOT R)?

Solution. Compare their truth tables.

1.3
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PIQ|RJPORQ ||R— (PORQ)
T|[T|T T T
T|T|F T T
T|F|T T T
T|F|F T T
F|T|T T T
F|T|F T T w
F|F|T F F ”
F|F|F F T

PIQ[R| QANDNOT R || P OR (Q AND NOT R)

T|[T|T F T

T|T|F T T

T|F|T F T

T|F|F F T

F|T|T F F

F|T|F T T

F|F|T F F

F|F|F F F

Since the truth tables differ in two positions, the statements are not equivalent.
They differ when P is false and both @ and R are true and also when all the
variables are false. O

Alternative Notations for Connectives
Connective | Propositional Logic | C and Java syntax
AND A &&
OR \Y Il
NOT s or ~ !
= —_—
<~ —

1.3 SETS

Mathematics not only deals with individual objects, such as the integer 2007 or the
number /3, but also with collections of objects, such as all the real numbers, or all
the solutions to an equation. In mathematics, such a collection is called a set. We
shall not give a rigorous definition of set, but we shall describe it.

A set is any well-defined collection of objects; the objects are called the ele-
ments or members of the set. If z is an element of the set S, we say x belongs to S
and write

r €S

If y is not an element of S, we write y ¢ S. The set of real numbers is denoted by
the blackboard bold symbol R, so “/3 € R” is a true statement.
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There are two basic ways of describing a set. One method is to list all its
elements. For example, a set S whose elements are 2, 4, 6 and 8 can be written as

S = {2,4,6,8}.

In mathematics, a set is considered as an unordered collection, so this same set
S could be written as {4,8,6,2}, or even {2,2,8,6,4}. We might write the set of
letters of the alphabet as {4, B,C, ..., X,Y, Z}, where the three dots indicate that
all the letters between C and X are also to be included. By abusing this notation,
we write the set of positive integers (or natural numbers) as

P={1,2,3,4,...}
and also the set of all integers as
z=4..,-2-10,1,2,3,...}.

The set Z consists of the positive integers, zero, and the negative integers.
The other basic method of describing a set is by means of a rule. For example,

S = {zeR|1<z<2}

is read as “S is the set of all real numbers , such that x is greater than 1 and
less than 27 in other words, S is the set of real numbers lying between 1 and 2.
Other variants of this notation for the same set are {z € R : 1 <z < 2} and
{r|z€RAND 1<z <2}

The set with no elements is called the empty set or null set and is denoted by
the symbol §. There is only one empty set; for example, the set {reR|z? <0}
and the empty set of oranges are the same set.

If S and T are sets such that every element of S is also an element of T', then
we say that S is contained in T or that Sis a subsetof T and write S C T orT D S.
For example, {2,7,5} C P but {—1,5,8} is not a subset of P because —1 ¢ P. Two
sets S and T are equal if SCT and T C S.

The intersection of two sets S and T is the set SNT, consisting of all elements
that are in both S and T'; hence

SNT = {x|x€SANDzeT}

If SNT = 0, then S and T are said to be disjoint. The union of the sets S and T
is the set SUT, of all elements that are in either S or T' (or both S and T'). Hence

SUT = {z|z€SORzeT}.

The Cartesian product, or just the product, of two sets S and T is the set
S x T, of all ordered pairs (z,y), where z € S and y € T; hence

SxT = {(z,y)|z€SANDyeT}
For example, {a,b,c} x {1,2} is the six-element set
{(a,;1), (b, 1), (c;1), (a,2), (5,2), (c:2)}-

The product R x R = {(z,y) |,y € R} consists of all the points in the plane.

1.4
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t all its 1.4 QUANTIFIERS

ritten as . . . .
In mathematics we constantly use sentences involving variables, such as “z > 5.7

However, until the value of z is specified, this sentence has no truth value. If we

ame set let P(x) denote the sentence “z > 5” then P(7) is a true statement while P(0) is
e set of a false statement.

ate that If P(z) is a sentence depending on the variable z, we often want to say that
otation, P(z) is true for all values of z or that P(zx) is true for at least one value of z.

This can be done by adding quantifiers, which convert the sentence P(z) into a
statement that is either true or false.

Definition. The universal quantification of P(z) is the statement

e P(x) is true for all values of x

and is denoted by

<ample, e Vz, P(z)
where the symbol V is called the universal quantifier and is pronounced “for all.”
n 1 and
1 and 2. . . .
9} and This statement Vz, P(z) can also be expressed in any of the following ways.
o For all z, P(z).
noted by e For every z, P(x).
? < 0} e For each z, P(x).
e P(z), for all z.
T then
rT28S. The values of z are assumed to lie in a particular set called the universe of
P. Two discourse. For example, the universe of discourse may be the integers, or the real
numbers, or the set of all people.
plements If we are dealing with the real numbers, the statement “vz, 22 > 07 means
that “For all real numbers z, 22 > 0” which is a false statement. However the
statement “Vz,z% > 0” is true.
Sand T Definition. The eristential quantification of P(x) is the statement
)- Hence o There exists an x for which P(z) is true
and is denoted by
s the set

e dz, P(x)

where the symbol 3 is called the existential quantifier and is pronounced “there
exists.”

Again this is interpreted to mean that “There exists an z in the universe of
ane. discourse for which P(x) is true.” This statement 3z, P(z) could also be expressed
in any of the following ways.
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e There is an x for which P(z).
e For some z, P(x).
e P(z), for some z.

For example, if the universe of discourse is the set of real numbers, then the
factorization z° — 1 = (z — 1)(2% + x + 1) is true for all . So

ve, z3-1 = (z—-1)(z*+z+1)

is a true statement. However the equation 2% + x — 6 = 0 is true for only certain
values of z, namely z = 2 and z = —3. Hence Vz, 22+ — 6 =0 is false, but
Jz, 22+ — 6 =0 is true.

Example 1.41. Express the statement “Every real number has a real square
root” as a logical expression using quantifiers.

Solution. If we assume that the universe of discourse is the set of real numbers,
we can express this statement as

Vo 3z, 2° = a.

Note that this is just a statement. It does not have to be true; in fact it is not. [

Example 1.42. Express the statement “There is a real number between any
two real numbers” as a logical expression using quantifiers.

" Solution. Assume that the universe of discourse is the set of real numbers. Before
we start to convert the statement to a logical expression, we have to decide how
to interpret the English. Does between mean strictly between and does two real

numbers mean two distinct real numbers?
If we assume that between means strictly between and we require the statement
to be true, then we have to take distinct real numbers. We could write it in either

of the following ways.

VyVz, (y#z= 3z, (y<z<zORz<z<y)).
VyVz, (y<z= Tz, y<z<2)).

If we assume that between could include equals, then we could write

VyVz, Jz, (y<zx<zORz<z<y). ]

Proposition 1.43. IfS is any set and § denotes the empty set, then SCS
and ) C S. If A and B are sets, the inclusion relation A C B can be expressed
using a quantifier as

Vz, (z€ A=z € B).

[
[~
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Proof. The statement S C S is equivalent to Vz,(z € § = z € S). If P(x) is
the statement = € S, then P(z) = P(x) is true for all . Hence S C S is true.
The statement () C S is equivalent to Vz,(z € 0 = z € S). Now z € 0 is
false for all x. However, P == (Q is always true if P is false, so that the statement
# C S is true. []

Example 1.44. The divisibility relation a|b, which will be discussed in detail
in Chapter 2, can be defined symbolically as

Jdq, b= qa,

where the universe of discourse is the set of integers. Using this definition, determine
whether (i) 0|3 and (ii) 0]0.

Solution. (i) 0|3 is equivalent to 3, 3 = ¢0; that is, 3¢, 3 = 0. Since 3 =0 is
always false, 0|3 is not true.

(ii) 0|0 is equivalent to g 0 = ¢0; that is, 3¢, 0 = 0. Since 0 = 0 is always true,
we can choose ¢ as any integer, and so 0|0 is true. ]

How do we negate quantifiers? For example, the statement “All Canadians
speak French” is not true. However, we do not have to show that “All Canadians
do not speak French” to show that the statement is false. We only have to show
that “There exists a Canadian who does not speak French.” Also, the statement
“There exists a real solution to the equation 22 = —1.” is false. However, to show
this, we have to show that “For all real z, 2% # —1.”

Consider the negation of the statement “Everyone has a calculator.” It is “Not
everyone has a calculator,” which has the same meaning as “Someone does not have
a calculator.” On the other hand, the negation of the statement “Someone has a
calculator” is “No one has a calculator,” which has the same meaning as “Everyone
does not have a calculator.” These are examples of the following rules for negating
quantifiers.

Quantifier Negation Rules 1.45.

NOT (Vz, P(z)) is equivalent to (3z, NOT P(x)).
NOT (3z, P(x)) is equivalent to (Vz, NOT P(x)).

In general, two statements involving quantifiers will be equivalent if they have
the same meaning. We cannot always use truth tables to check for equivalence or
implications involving quantifiers, so at this stage we have to reason informally to
check the equivalence or implication.
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Example 1.46. If the universe of discourse is the integers, what does the
following statement mean in English? How would you prove it true or false?

Iz Vy, (z2y)

Solution. The statement says that there is an integer that is greater than or
equal to all integers. That is, the statement says that there is a largest integer.
This is false. To show that it is false, we have to prove that

NOT (3z Vy, (z>1y))
is true. This is equivalent to the following statements.

vz, NOT (Vy, (z>1y)).
vz 3y, NOT (z >y).
Vo Jy, (z<y).

This last statement is true because, for every x, we can take y = + 1. ]

Mathematicians would not normally write out the proof in the above example
this way, using logical symbols. They would write it out as in the example following
the Proof by Contradiction Method 1.55 in the next section, where it is proved that
there is no largest integer. This illustrates the fact that mathematics is normally
easier to understand if words are used for quantifiers rather than symbols. Compare
the following two ways of saying the same thing.

e JxVy, (z2>y).
e There is an integer that is greater than or equal to all integers.

The symbolic form is certainly more concise, but that does not necessarily make it
easier to understand. Therefore, in later chapters, we shall not normally use quan-
tifier symbols, but we shall write them out in English. However, some complicated
manipulations of logical statements, such as finding the negation, may be easier to
do using symbols.

Example 1.47. Determine whether each pair of statements are equivalent.
() Vz, (P(x) AND Q(z)). (¥, P(z)) AND (Vz, Q(z)).
(i) Vaz, (P(z) OR Q(z)). (Vz, P(z)) OR (Vz, Q()).

Solution. (i) These statements are equivalent. Suppose Vz, (P(x) AND Q(z))
is true. Hence Vz, P(z) is true and Q(z) is true. In particular, (Vz, P(z)) is true.
Similarly, (Vz, Q(z)) is true. Therefore, (Vz, P(z)) AND (Vz, Q(z)) is true.

Now suppose (Vz, P(z)) AND (Vz, Q(z)) is true. If z is any element in
the universe of discourse, then P(z) is true and Q(z) is true. Hence the statement
vz, (P(z) AND Q(z)) is true. We have shown that whenever one of the statements
is true, then the other one is also true.

1.5
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s the (ii) These statements are not always equivalent. We shall give a particular ex-
ample in which they do not have the same meaning.

Let the universe of discourse be the set of real numbers. Let P(z) be the

expression z > 0 and Q(z) be the expression z < 0. Then, for all real numbers z,

(P(z) OR Q(z)) is true. However, (Vz, P(z)) is not true, and (Vz, Q(z)) is not

an or true, so (Vz, P(x)) OR (Vz, Q(z)) is not true. 0J

er.

1.5 PROOFS

Why are mathematicians so fussy about proving their results? Besides wanting to
be correct, mathematicians want to be able to rely on a result, so that they can
build on it and use it for further theorems. It is not good enough if the result is
correct 99.9% of the time. Mathematics is most probably the most cumulative of
subjects; later work nearly always relies on previous theorems. If an earlier theorem
was found to be incorrect, it may put any subsequent work in jeopardy.

] There are many methods for proving theorems, propositions, and lemmas,

but there is no procedure that will apply to all proofs. It is extremely difficult to

ample get a computer to write a good proof. Proof writing is an art that requires much

jowing practice. There is a delicate balance between writing down too many details and

d that leaving out logical steps that cannot easily be filled by the reader. Remember that
rmally a proof is designed to be read and understood by a human!

mpare There are some standard strategies for attacking proofs, and we now introduce

the most important of these. These methods of proof are not only important in
mathematics but also in computer science, where for example they are used in
software specification for verifying programs.

‘ , Many mathematical theorems can be expressed symbolically in the form

nake it P=—Q.

quan-

licated ‘~ The statement P is called the assumption or hypothesis of the theorem, and the
sier to ' statement Q is the conclusion. The assumption will consist of one or more state-

ments, normally involving some variables. The theorem says that if the assumption
is true, then the conclusion is true.
How do you go about thinking up ways to prove a result? In general, it takes

ent time and practice before you are comfortable in being able to write out a proof.
You should start out with simple proofs and build up to multistage proofs. If you
cannot immediately see how to prove a result, here are some steps you should go

' Q(x)) 5 though in tackling a proof.

is true. : e Understand the definitions. You should know the technical terms involved

€ in the result; this may mean looking up the definition of some terminology

nent in with which you are not familiar.

tement

ements e Try examples. Look at various concrete examples that satisfy the hypothesis

in order to get a feel for the problem. These examples should convince you
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that the result is true and may suggest a method of attack for the proof. If
the problem involves sets, like the first proposition below, you might draw an
appropriate Venn diagram, and if the problem involves functions, you might
sketch some suitable graphs.

If you find an example that satisfies the hypothesis but does not satisfy the
conclusion, then you have found a counterexample, and the result is false. We
discuss counterexamples in the next section.

e Try standard proof methods. Try the various techniques in this section that
are appropriate for the result you are trying to prove.

Direct Proof Method 1.51. Proving P = Q

The direct method of proving P = Q is to assume that the hypothesis P is true,
and use this to prove that the conclusion @ is true.

PROPOSITION. IfSNT =S5, then SCT.

Proof. Suppose that SNT = S. To prove that S is a subset of T, we
need to prove that if z € S, thenz € T.

Let z € S, so that € SNT, since SNT = S. It follows from the
definition of the intersection of sets that x € T'. It now follows from the
definition of inclusion that § C T. U

If and Only If Proof Method 1.52. Proving P < Q

This type of result can usually be recognized by the phrase “if and only if” or the
phrase “necessary and sufficient.” The result “P if and only if @” can be split up
into the two cases, the “only if” part P = @, and the “if” part Q = P, and
then each case can be proved separately.

PROPOSITION. SNT=SuTifandonly if S =T.

Proof. To prove (SNT = SUT) = (S =T), suppose SNT = SUT.
Ifz € S then z € SUT. Since SNT = SUT, x € SNT, and hencexz € T'.
This proves that S C T. The problem is symmetric in S and T, since
interchanging S and T leaves the problem unchanged. Hence a similar
proof, with S and T interchanged, will show that T C S. Combining
S C T with T C S shows that S =T.

The proof in the other direction of (S =T) = (SNT =SUT) is
very easy. Is is often the case that one direction of an “if and only if”
proof is simple. Suppose that S = T. Then SNT = SNS =8 and
SUT=8SUS=S,s05NT=SUT. L]
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The contrapositive of the general implication “If P, then Q” is the statement
“If not @, then not P.” The Contrapositive Law will show that these statements are
equivalent. For example, the contrapositive of the statement “If it rains, then I get
wet.” is the statement “If T am not wet, then it is not raining.” These statements
mean the same thing.

Contrapositive Law 1.53. P = Q is equivalent to NOT @ = NOT P.
Proof. Consider the truth tables.

Pl Q| P=>Q | NOTQ | NOTP || NOT Q= NOT P
T|T T F F T
T, F F T F F
F|T T F T T
F,F T T T T

We see from the truth table that P = @ is equivalent to NOT Q = NOT P. []

Contrapositive Proof Method 1.54. Proving P =

In this method, we prove the statement P == Q by proving its contrapositive
NOT Q@ = NOT P.

ProrosiTIiON. If x is a real number such that x3 + 7z% < 9, then
z <1.1.

Proof.  The contrapositive of the statement that we have to prove is
“If £ > 1.1, then 2% + 722 > 9.” Hence suppose that z > 1.1. In
particular, x is positive, and so

2 +720% > 1.1847(1.1)2 = 1.331+847 = 9.801.

Therefore, by the Contrapositive Proof Method, the original result must
be true. ]

Proof by Contradiction Method 1.55.

In the proof technique called proof by contradiction we assume that the statement
we want to prove is false and then show that this implies a contradiction.

For example, suppose we wanted to prove the statement Q. If we can show
that NOT Q leads to a contradiction, then NOT Q must be false; that is, ¢ must
be true.

PROPOSITION.  There is no largest integer.

Proof.  Suppose that n is the largest integer. Then n + 1 is also an
integer, and it is larger than n. This contradicts our assumption that n
was the largest integer. Hence there is no largest integer. ]
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PROPOSITION.  There is no real solution to 2 — 6x + 10 = 0.

Proof. Assume that the result is false; that is, assume that there is a
real number z with 22 — 6z + 10 = 0. Then, by completing the square,
we can write this as

(z—3*%*+1 = 0.

However (z — 3)2 > 0 for any real number z, so the left side of this
equation is greater than or equal to 1. This gives a contradiction. Hence
the original statement is true. Ll

We could prove, in a similar way, that there is no real square root of —1. These
are examples of nonexistence results, which are normally proved by contradiction.
Other good examples of proof by contradiction are Euclid’s Theorem 2.52 on
the existence of an infinite number of primes, and Theorem 5.21 on the irrationality

of V2.

Proof Method 1.56. Proving P = (Q OR R)

The statement Q is either true or false. If Q is true then (Q OR R) is true, and
P = (Q OR R) is always true, regardless of the truth values of P and R. We
therefore only have to prove the result when @ is false. The method of proof
therefore consists of assuming that P is true and NOT @ is true and using these
to prove that R is true. The statement P = (Q OR R) is therefore equivalent to
the statement

(P AND NOT Q) = R.

You are asked to verify this equivalence using truth tables in Problem 76.

PROPOSITION. Let m and n be integers. If m® +n® is odd, then m is
odd or n is odd.

Proof. Suppose that m3 +n? is odd and that m is not odd. Therefore,
m is even and so m3 will also be even. Hence m?® +n® —m? = n® will
be odd. The contrapositive of the true statement “if n is even, then n3
is even” is the true statement “if n3 is odd, then n is odd.” Hence we
have shown

(m® 4 n® is odd ) AND NOT (m is odd ) = (n is odd ).

This is equivalent to the statement that was to be proved, namely
(m3 +n®isodd )= (misodd ) OR (nis odd ). U]

Another good example of this type of proof, which we shall meet later, is in
Theorem 2.53, which states that whenever p is a prime number

p divides ab = (p divides a) OR (p divides b).
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Proof Method 1.57. Proving (P OR Q) = R

We have to assume that P OR @ is true and then prove R. Whenever P is true,
then (P OR Q) is true, and so we have to prove P = R. Similarly, we have to
prove Q = R. These two results are sufficient, and this proof method is equivalent
to proving

(P = R) AND (Q = R).

Therefore, we have to prove both of the separate statements P —> R and () = R.
Problem 77 asks you to verify this equivalence using truth tables.

THEOREM.  Ifz is a real number, then (z — a)(z — b) = 0 if and only
ifr=aorzxz=0b.
Proof. We shall first prove (z —a)(z —b) =0 = (z = a) OR (z = b),
using Proof Method 1.56.

Suppose that z # a and that (x —a)(z —b) = 0. Then (z —a) #0
and we can divide by (z — a) to obtain (z —b) =0 and z = b.

Hence (x — a)(z — b) = 0 implies z = a or x = b.

We shall now prove (z = a) OR (z = b) = (z —a)(z —b) = 0,
using Proof Method 1.57.

Suppose £ = a. Then £ —a = 0 and so (z — a){(z — b) = 0. Similarly,
if z = b then (z — a)(z — b) = 0.

Hence x = a or z = b implies (z — a){x — b) = 0. il

Proof Method 1.58. Proving P = (Q AND R)

The result can be split up into the two cases, P —> ), and P = R, and then
each case can be proved separately.

You are asked to verify this common sense result using truth tables in Prob-
lem 78.

Proof Method 1.59. Proving (P AND Q) = R

In this case we assume that P and Q) are true and use any of the previous techniques
to prove R, such as the Direct Proof Method 1.51, the Contrapositive Method 1.54,
or Proof by Contradiction 1.55.

PROPOSITION.  Let = be a real number. Then z? + = < 0 if and only
if-1<z<0.
Note that the statement “—1 < z < 0” means “—1 < ¢ AND z < 0.”

Proof. We first prove 22 +2 <0 == —1 <z AND z < 0.
Assume that 22 + 2 < 0 so

z(z+1) < 0.
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If the product of two numbers is negative, then one number is positive
and the other is negative. There are two cases to consider.
Case (i) Ifz>0andz+1<0, thenz>0 and z < —1. This case is
impossible, since no real number is both positive and negative.
Case (i) Ifz <0and z+1> 0, thenz <0 and x > —1. Hence
-1<z<0.

We now prove 1<z ANDz<0=2?+2z<0.

If -1 < « and 2 < 0, then z + 1 > 0 and = < 0. Since the product
of a positive number and a negative number is negative, it follows that
z(z + 1) < 0. That is, 24+ <0. ]

You may find it useful to refer back to the different types of proof methods
in this section when you encounter specific examples of proofs in the remainder of
the book.

1.6 COUNTEREXAMPLES

How do mathematicians think up their theorems? It is usually a combination of
looking at many examples, mimicking a result in a related area, a hunch, and trial
and error. However, the methods they use in formulating theorems are almost never
disclosed or published; only the finished proof is presented. Before a result can be
called a theorem or proposition, it has to be proved. A result that is thought to be
true but has not been proven is called a conjecture.

Sometimes a conjectured result in mathematics is not true. In that case, we
would not be able to prove it. However, we could try to disprove it; that is, try to
prove that its negation is true. If the conjectured result is of the form

vz, P(z),

then its negation is NOT (Vz, P(z)), which by the Quantifier Negation Rules 1.45,

is equivalent to
3z, NOT P(x).

Hence to disprove the statement Vz, P(z) we only have to find one value of =,
say c, such that P(c) is false. This value c is called a counterexample to the

conjecture Vz, P(z).
If the conjectured result is of the form

Ve, P(z) = Q(x),

then its negation is
3z, NOT (P(z) = Q(x)),

which, by Example 1.23 and Exercise 22, is equivalent to the statement

3z, (P(z) AND NOT Q(z)).
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Hence z = c is a counterexample to the conjecture if P(c) is true, while Q{c) is
false.

A mathematician, when first tackling a proof of a conjecture, is not sure
whether it is true and must always be on the lookout for counterexamples. You
will be put in this situation when answering a question that asks whether a certain
result is true or not.

Often the first attempt at stating a theorem is basically correct but fails in
certain cases. If this happens, the hypotheses might be able to be changed to
eliminate the bad cases and obtain a true result. When writing proofs, you should
get in the habit of making sure that you have used all the hypotheses. If you
have not used them all and your proof is correct, then you have proved a more
general result, as the unused hypotheses could be removed from the statement of
the theorem. However, at this stage in your mathematical development, it usually
means that your proof is faulty, as most of the results you will be asked to prove
have had any unnecessary hypotheses removed.

EXAMPLE. Let z be a real number. Disprove the statement
If 22 > 9 then, z > 3.

Solution. One counterexample to the statement is obtained by taking
T =c = —4, since ¢ =16 > 9 and ¢ < 3. This counterexample
disproves the statement. L]

ExXAMPLE. Let m and n be integers. If m or n is odd, is it necessarily
true that m? + n3 is odd?

Solution. This is a question about the converse of a result proved on
page 16.

The answer to the question is no, since we can easily find a counter-
example in which m or n is odd, and m2+n? is even. One such counter-
example is m =1 and n=1.

Notice that the mathematical inclusive OR is necessary here. Of
course, there is an infinite number of counterexamples in this case; they
occur when m and n are both odd. However, one counterexample is
enough to disprove the result. U

If we wished to disprove an existence statement such as dz, P(z), then its
negation is NOT (3z, P(z)), which is equivalent to Vz, NOT P(z). In this case
we cannot use a counterexample because we have to show that P(x) is false for all
values of x.




