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1 Logic
A statement of form
iof P, then @)

means that ) is true whenever P is true. The converse of this statement is
the related statement

if Q, then P.

A statement and its converse do not have the same meaning. For example,
the statement

if v =2, then 2®> =4
is true while its converse
if 22 =4, then x = 2

is not generally true (maybe x = —2). The following phrases are all synony-
mous:

if P, then Q)

P implies Q);
Q. if P;
P only if Q;



The mathematical symbol = is also used to mean implies as in
r=2 = z?=4.

The contrapositive of the statement if P, then () is the statement if not @),
then not P. Unlike the converse, an implication and its contrapositive have
the same meaning. For example, the two assertions

r=2 = 2"=4 and 2*#4 — x#2
have exactly the same meaning. The statement
P if and only if Q
has the same meaning as the statement
if P, then Q) and if Q), then P.

This statement asserts a kind of equality — that P and (@) have the same
meaning: P is true exactly when (@) is. The phrase if and only if is frequently
abbreviated iff, especially in definitions. The mathematical symbol <= is
also used to mean if and only if as in

=4 «— r=2o0rz=-2.

This equation asserts that a number x satisfies the condition 22 = 4 exactly
when it satisfies the condition x = +2: the two conditions are “equal”.
Sometimes we say

the conditions P and () are equivalent
when we mean
P if and only if Q.

This is particularly the case when we have more than two conditions as in
the following

Example. For any number x the following conditions are equivalent:
(1) 22 =52 +6=0.
(2) Either x =2 or z = 3.
3) The number x is an integer between 1.5 and 3.5.
( g

What this means is that if any one of the three conditions is true, then all of
them are.



2 Proofs

One of the principal aims of this course is to teach the student how to read
and, to a lesser extent, write proofs. A proof is an argument intended to
convince the reader that a general principle is true in all situations. The
amount of detail that an author supplies in a proof should depend on the
audience. Too little detail leaves the reader in doubt; too much detail may
leave the reader unable to see the forest for the trees. As a general principle,
the author of a proof should be able to supply the reader with additional
detail on demand. When a student writes a proof for a teacher, the aim is
usually not to convince the teacher of the truth of some general principle (the
teacher already knows that), but to convince the teacher that the student
understands the proof and can write it clearly.

The “theorems” below show the proper format for writing a proof. In
each of them you are supposed to imagine that the theorem to be proved
has the indicated form. Notice how the key words choose, assume, let, and
therefore are used in the proof. In these sample formats, the phrase “Blah
Blah Blah” indicates a sequence of steps, each one justified by earlier steps.
The symbol [J is used to indicate the end of the proof.

Theorem If P, then Q.

Proof: Assume P. Blah Blah Blah. Therefore Q. 0
Theorem P if and only if Q).

Proof: Assume P. Blah Blah Blah. Therefore Q. Conversely, assume Q.
Blah Blah Blah. Therefore P. 0

Theorem P(x) for all x.

Proof: Choose z. Blah Blah Blah. Therefore P(x). O
Theorem There is an x such that P(x).

Proof: Let z =.... Blah Blah Blah. Therefore P(x). OJ

Usually P and @ themselves involve the logical phrases if, for all, there
is. In this case, the proof reflects that structure by using the corresponding
key word assume, choose, let. For example, consider the following

Theorem. For all a and b, if a # 0, then there is an x with ax = b.



Proof: Choose a and b. Assume a # 0. Let x = b/a. Then ax = a(b/a) = b.
Therefore az = b. O

Of course, this proof is quite trivial and is given here only to illustrate the
proper use of the key words choose, assume, let, and therefore. In general,
every step in a proof is either an assumption (based on the structure of the
theorem to be proved), an abbreviation (used to introduce notation to make
the proof easier to read), or follows from earlier statements by the application
of previously justified principles.

3 Sets

A set V divides the mathematical universe into two parts: those objects
x that belong to V and those that don’t. The notation x € V means x
belongs to V. The notation x ¢ V means that x does not belong to V. The
objects that belong to V' are called the elements of V' or the members of V.
Other words roughly synonymous with the word set are class, collection, and
aggregate. These longer words are generally used to avoid using the word set
twice in one sentence. The situation typically arises when an author wants
to talk about sets whose elements are themselves sets. One might write “
the collection of all finite sets of integers”, rather than “the set of all finite
sets of integers”.

3.1 Defining Sets by Enumeration

The simplest sets are finite and these are often defined by simply listing
(enumerating) their elements between curly brackets. Thus if V = {2, 3,8}
then 3 € V and 7 ¢ V. Often an author uses dots as a notational device to
mean ‘et cetera” and indicate that the pattern continues. Thus if

V:{xl,l’g,... ,ZL’”}, (1)
then for any object y, the phrase “y € V7 and the phrase “y = x; for some
1=1,2,...,n” have the same meaning; that is, one is true if and only if the

other is. Having defined V' by (1), we have
yeV < y=x10ry=290r... OT Y = Tp.

In other words, the shorter phrase “y € V” has the same meaning as the
more cumbersome phrase “y =xy ory=x90r ... y =1x,".
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The device of listing some of the elements with dots between curly brack-
ets can also be used to define infinite sets provided that the context makes
it clear what the dots stand for. For example, we can define the set of non-
negative integers by

N={0,1,2,3,...}
and the set of integers by
Z={. ,-2,-1,012..1}

and hope that the reader understands that 0 € N, 5 € N, =5 ¢ N, % ¢ N,
0€Z,5€Z, —5€Z, 2 ¢, etc.

3.2 Common Sets
Certain sets are so important that they have names:

(the empty set)

(the nonnegative integers)
(the integers)

(the rational numbers)
(the real numbers)

(the complex numbers)

aroNzZ=

These names are almost universally used by mathematicians today, but in
older books one may find other notations. Here are some true assertions:
0¢0,2€Q,vV2¢Q V2€R,2?# —1foralzeR, and 22 = —1 for
some z € C (namely = = +i).

3.3 Sets and Properties

If V is a set and P(x) is a property that either holds or fails for each element
x € V, then we may form a new set W consisting of all x € V for which
P(z) is true. This set W is denoted by

W={zeV:Px)} 2)

and called “the set of all x € V' such that P(z)”. Some authors write “|”
instead of “:” as in

W={zeV|P)}
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This is a very handy notation. Having defined W by (2), we may assert that
for all

reW <= z eV and P(z)
and that for all x € V
reW <= P(x).

Since the property P(x) may be quite cumbersome to state, the notation
x € W is both shorter and easier to understand.

Example. IfW ={x € N:z? <6+ 2}, then 2 € W (as 22 < 6 + 2),
3¢W (as32 £6+3),and —1 ¢ W (as —1 ¢ N).

Another notation that is used to define sets is
W={f(x):z eV}
This is to be understood as an abbreviation for
W ={y:y= f(x) for some z € V'}
so that for any y
yeW < y= f(z) for some x € V.

It may be difficult to decide if y € W: the definition requires us to examine
all solutions x of the equation y = f(x).

Example. Using these notations the set W of even nonnegative integers
may be denoted by any of the following three notations:

W= {0,2,4,...}
= {m € N :m is divisible by 2}
= {2n:n e N}

Example. {2?:2<z<3}={y:4<y<9}.

Example. {r:2 <z <3} C {x:4 < z® <9}, but these are not equal:
the latter set contains negative numbers. The subset symbol C is explained
below.



Crude graphs can be used to get a rough idea of what a set of real numbers
is. For example, to graph the set V' = {x : yo < f(z) < y1} draw the two
horizontal lines y = yo and y = y;, plot the portion of the graph between
those lines and project to the x-axis.

Example. {z:1<z?<4}={z:-2<x<-1}U{r:1<z <2} (See
Figure 1. The union symbol U is explained below.)

To graph the set W = {f(z) : 9 < x < 21} draw the two vertical lines
r = x9 and x = x1, plot the portion of the graph between those lines, and
project to the y-axis.

Example. {2?: -1 <z <2} ={y:0<y<4}. (See Figure 1.)
Exercise. Simplify {2? : —2 < z < 3}.
Answer. {7?:-2<zx<3}={y:0<y<9}

Exercise. For each of the numbers z =0, —1, 3, 7/9, 9/7 and each of the
following sets V; say whether « € V;. (There are 5 x 4 = 20 questions here.)

Vi=1{1,2,...,9} Vo={z€Z:2* <9}
Vz={zeR:2?<9} Vi={2*:z€R, z<9}

Answer. 3€Vy; 0,—-1€V,; 0,—-1,7/9,9/7 € V3; 0,3,7/9,9/7 € V. In
all other cases z ¢ V.

3.4 Subsets

Definition. A set W is a subset of a set V', written
W cCV,

iff every element of W is an element of V. The notation W ¢ V signifies
that W is not a subset of V/, that is, that there is at least one element of W
which is not an element of V. For example,

{1,3,4,7} € {0,1,2,3,4,7,9}
since every element on the left appears on the right. However,

{1,3,4,7} ¢ {0,1,2,4,7,9}
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{z:1<2?<4} {z?: -1 <x <2}

Figure 1: The image and preimage of an interval

since 3 € {1,3,4,7} but 3 ¢ {0,1,2,4,7,9}. To prove that V. C W we prove
reV = zeW
Note the following inclusions:
e N C Z (every nonnegative integer is an integer),
e 7 C Q (every integer is a rational number),
e Q C R (every rational number is a real number),
e R C C (every real number is a complex number),

e () C V (The empty set is a subset of every set V).

The last statement is true because every element x of the empty set lies in
V' — or indeed satisfies any other property — since there are no such elements
x. However, do not confuse the empty set with the set whose only element
is 0;

0 # {0}
since 0 € {0} but 0 ¢ 0.



The following illustrates the proper format for proving a set inclusion.
The phrase ‘Blah Blah Blah’ indicates a sequence of steps each of which
follows from the previous ones.

Theorem V C W.

Proof: Choose x € V. Blah Blah Blah. Therefore x € W. O
Example. We prove V' C W where

V={yeR:0<y<4}, W={2":-2<x<3}

Proof: Choose y € V. Then 0 <y < 4. Letx = ,/y. Then -2 <z <3
and y = x2. Hence, y € W as required. O
Example. Let V={z?:z2€N, -2 <z <3} and W = {0,1,4,9}. Then
WgVas9eWbut9é¢V.

Exercise. For each of the following pairs of sets (V;,V;) decide if V; C V.

If so, prove it; if not, exhibit an z with x € V; but = ¢ V,. (There are
4 x (4 — 1) = 12 problems here.)

Vi = {2€R:1<3z+7<20}
Vo = {2€Z:1<3x+7<20}
Vs = 3z+7:2€R, 2<x<13/3}
Vi = {3z+7:2€eR, —2<x<13/3}

Answer. It helps if you note that

Vi={zeR:-2<z<13/3}, Vh={-1,0,1,2,3,4},

Va={yeR:13<y<20}, Vi={yeR:1<y<20}.

Thus Vo C Vi. V3, Vy & Vi as 19 € V3,V but 19 ¢ V5. Hence Vi, Vy ¢ Va.
Vigd Voas1/2 € Vibut1/2¢ Vo, Vi g Va3, Vias0 € Vi but0¢ Vs, V.
Vs Vibut Vy & Vaas2 € Vybut 2 ¢ Vs,



3.5 Boolean Operations

The intersection, V N, of two sets V' and W is the set of objects in both
of them:

VAW ={z:z€V and z € W}.

The union, V U W, of two sets V and W is the set of objects in one or the
other of them:

VUW ={z:2z€Vorze W}

The difference, V' \ W, of two sets V' and W is the set of objects in the first
and not in the second:

VAW ={z:2z€V and z ¢ W}
For example, if
V ={1,3,5}, W ={2,3},
then

VAW ={3}, VUW ={1,2,3,5}, V\W = {1,5.

3.6 Equality of Sets

Definition. (Equality of Sets) Two sets V and W are equal, written
V=W,it VW and W C V, that is, iff every element of V' is an element
of W and every element of W is an element of V. To prove that V =W we
prove

zeV «<— zec W

The following illustrates the proper format for proving a set equality. The
phrase ‘Blah Blah Blah’ indicates a sequence of steps each of which follows
from the previous ones.

Theorem V = W.

Proof: We show V € W. Choose z € V. Blah Blah Blah. Therefore
x € W. This proves V C W.
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We show W C V. Choose x € W. Blah Blah Blah. Therefore xz € V.
This proves W C V. Il

Example. Let f(z) = 2* — 2z. We show that V = W where
V={yeR:-1<y<8}, W={f(x):—1<z<4}.

Proof: We show V.C W. Choose y € V. Then —1 < y < 8. Let
r=1++IT+y. Theny = f(z) and -1 < 1++0 <2 <1++/9 = 4. Hence
y e W. This proves V.C W.

We show W C V. Choosey € W. Theny = f(z) = 2 —2x = (z—1)*—1
for some x with —1 < x < 4. There are two possibilities:

case (1) —1 <z < 1. Inthiscase, -2 <zx—1<0s00< (z—1)*<4s0
—1l<y=(x—-1)>%*-1=f(z)<3<8

case (2) 1 <x < 4. Inthiscase, 0 <x—1<3s00< (z—1)? <9s0
—1<y=(z—-12-1=f(z) <8

In either case y € V. This proves W C V. O
If you draw the graph of y = 2% — 2z, you'll see how I picked the numbers,
but the logic of the proof has nothing to do with the graph.

Exercise. Let V ={n € N:n?+7 < 6n} and W = {2,3,4}. Prove that
V=W.

Answer. We show W C V. Choose n € W. If n = 2 then n2 +7 =
11 <12 =6n. If n = 3 thenn?+7 = 16 < 18 = 6n. If n = 4 then
n?+7 =23 <24 =6n. Inany case n € V. This shows W C V. We
show V. W. Choose n € V. Then n> +7 < 6n and n € N. Hence
3—+v2 <n <3+ +2. Since n is an integer, we must have n € W. This
shows V C W.

4 Sample worked problem

The quality of your writing will constitute an important component of your
grade. You should never assume that your reader knows anything about a
problem beyond what appears on the work you hand in. In particular, when
you write homework you should not assume that the reader has access to the
book — if you write only a problem number the reader will not know what
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the problem asks. Here is a solution to problem 6 on page 28 in the style
that I want.

Problem 6. Suppose that

a1, a a b

m=pypstopt,  n=ppy ) (1)
where py,pa, ..., pr are distinct primes and the exponents aq, ... , by are non-
negative integers. Then the greatest common divisor (m,n) of the integers m
and n is given by the formula

(m,n) =pips - py (2)
where ¢; = min(a;, b;) fori=1,2,... k. For example,
(235271, 2°3%5) = (2%3°5271, 253851 70) = 23305170 = 235,

Proof: Denote the right hand side of (2) by f. According to the definition
on page 23 we must show three things:

(a) f>0.
(b) f|m and fln.
(c) if dlm and d|n then d|f.

Condition (a) holds because p; > 1 according to the definition of prime
number given on page 26 and a product (in particular a power) of positive
numbers is positive. Condition (b) holds because m = fr and n = fs where

a1—cC1

— a2 —cCc2
r="n

2!

. .ka*Ck’ 5 = pf{1761pg2762 . .ka*Ck'
(The numbers r and s are integers because the exponents are nonnegative:
¢; = min(a;, b;) < a; and ¢; = min(a;, b;) < b;.) To prove (c) assume that
d|lm and d|n; we must show that d|f. By property (c) of Lemma 1.5.2 any
prime which divides d also divides m and n so the unique prime factorization
(see Theorem 1.5.8) of d has the form

e1, €2

d:p1 Dy pZ’“

As d|lm and d|n there are integers u and v with m = du and n = dv. From
u|m and v|n it follows (again by property (c) of Lemma 1.5.2) that

Lk Y1 ,.Y2

w=pi'py-pt, v=pl'py - pt
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where x4, ... ,y, are nonnegative integers. Thus

_ e1tx1, etz er+Tk

m = du = p{* "' pg R s , n:alv:piﬁy1

gz-i—yz . ek+yk. (3)

By the uniqueness of the prime factorization (Theorem 1.5.8) and (1) and (3)
we get

a) =€+, G =€+ T2, ..., A = €} + Tk
and
by =e1+11, bo=ex+ya, ..., by =er+ Y.
Hence ¢; < a; and ¢; < b; so e; < ¢; = min(a;, b;) for i = 1,2,... k. Thus
f = dz where
z =T OpF T
in other words d|f as required. 0J

Note that I can follow the above proof without having the book before
me. I can even infer from what is written above that part (c) of Lemma 1.5.2
says that If x|y and y|z, then x|z. The above proof is too detailed for a
book (it is hard to see the forest for the trees) but appropriate for a student
assignment (the teacher is in no doubt that the student understands).
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