
REVIEW  OF  SERIES
EXPANSION

Introduction

In the second half of the course, we will focus quite a bit of attention on the use of series expan-
sions in physics and mathematics.  We will spend several weeks studying Fourier series (Ch. 7 in
Boas) , series solutions of differential equations (Ch. 12 of Boas) as well as Legendre series (also
Ch. 12 Boas).

Since we will be spending so much time studying series and series solutions, it is wise to review
what  we know,  and  develop  some general  principles  which  can focus  our  understanding  of
series. Additionally, this write up will show how we can use Mathematica to support and inform
our study of series.

Reviewing Taylor Series

In first year calculus, you undoubtedly spent significant time studying Taylor series.  The gen-
eral idea behind Taylor series is that if a function satisfies certain criteria , then you can express
the function as an infinite series of polynomials.  In its most general terms, the value of a func-
tion, f (x), in the vicinity of the point x0 = a, is given by :

f  x = f  a +
f ' a x - a

1 !
+

f '' a x - a2

2 !
+

f ''' a x - a3

3 !
+ ...

which can be expressed in the more economical summation form :

(1)
f  x =

S
¶

n=0
 f n a x - an

n!



where f na is the n-th derivative of the function evaluated at the point x0=a; and n! means n

factorial.  

Let's see what this equation means by using it to determine the value of e2.1.  In order to use
equation (1), we will evaluate the function f(x) = ex in the vicinity of the point a=2.0. Obviously,
the terms x - an will be 2.1 - 2.0n = 0.1n.

All the derivatives of ex are ex , so equation (1) becomes:  

f  2.1 = f  2 +
f ' 2 0.11

1
+

f '' 2 0.12

2 !
+

f ''' 2 0.13

3 !
+ ... fl

f  2.1 = e2 + e2 0.1 +
e2 0.01

2
+

e2 0.001
6

+ ... 

e21 + 0.1 + 0.005 + 0.00016 + ... = 8.1661

Based on only the first four terms of the Taylor expansion of ex in the vicinity of x0=2, we approx-

imate the value of e2.1 as 8.1661. Using Mathematica as comparison, we see:

In[8]:= Exp2.1
Out[8]= 8.16617

that this was not a bad approximation at all.

A special case of the Taylor series is the Maclaurin series, in which you use this technique to
determine the value of a function in the vicinity of the point x0 = 0. This leads to the obvious

simplification of equation (1):  

f  x = S
0

¶
 
f n 0 xn

n !

Thus, to find the Maclaurin expansion of any function (that is suitably behaved), you need to
take successive derivatives of the function, and then evaluate those derivatives at x0= a =0.  A

well known Maclaurin function, and one you probably did explicitly in Calc I or II, is the expan-
sion for the function:

f  x =
1

1 - x
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When evaluated at x = 0, f (0) = 1.  Let' s look at successive derivatives of the function :

f ' x =
1

1 - x2
fl f ' 0 = 1

f '' x =
2

1 - x3
fl f '' 0 = 2

f ''' x =
6

1 - x4
fl f ''' 0 = 6

or in general form, the nth derivative is :

f n x =
n !

1 - xn+1
fl f n 0 = n!

This particularly simple form allows us to write the Maclaurin expansion very quickly :

f  x =
1

1 - x
= S

n=0

¶
 
n ! xn

n !
= S

n=0

¶
 xn = 1 + x + x2 + x3 + x4 + ...

However, this expression is meaningful only as long as | x | < 1, since it is clear that the denomi-
nator goes to zero as x approaches 1 (recall your discussions of radius of convergence for series).

Looking at Taylor Series with Greater Depth :
  

Ok, you have seen this all before, but do you really believe it?  Do you really believe that the
function f(x) = 1/(1 - x), or any other function like cos x or arc tan x can be accurately approxi-
mated by an infinite sum of powers of x?  Let' s make use of Mathematica to see how well the
series expansion represents f(x) = 1/(1 - x).

Let's see what happens if we compare the plots of  f(x)=1/(1-x) with the plots of the series expan-
sion on the interval (0,1).  First, let's see what happens if we compare 1/(1-x) with the first two
terms of the expansion.  In other words, let's plot on the same graph 1/(1-x) and (1+x):
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In[15]:=

Plot11  x, 1  x, x, 0, 1

Out[15]=

0.2 0.4 0.6 0.8 1.0

2

3

4

5

Interesting.  The two curves are pretty close until about x = 0.15, after which they noticeably
diverge.  Ok, let' s plot 1/(1 - x) and the first four terms of the series expansion :

In[16]:= Plot11  x, 1  x  x^2  x^3, x, 0, 1

Out[16]=

0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

7

Even more interesting.  the two curves are very close now until about x = 0.4, and the divergence
between them is less than before, so we have some confidence that adding more terms might
bring the two curves into closer and closer alignment.  But, we can also see that it will get pretty
boring pretty quickly if we have to keep writing explicit expansion sequences in our Plot state-
ments.
    
Can we find a more efficient way to do this in Mathematica?  Of course we can ... let' s take a
short Mathematica interlude and learn how to do sums in Mathematica.
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Mathematica Interlude I: Taking Sums

Summations in Mathematica are done using the Sum command. Suppose we want to sum the
first 21 terms in the series expansion :

f  x =
1

1 - x
= S

n=0

¶
 xn

To instruct Mathematica to sum the first 21 terms of this series, we write :

Sumx^n, n, 0, 20
(Remember, since we are starting at n=0, we are summing over 21 terms culminating with the

x20 term).  The command, Sum, is capitalized and uses square brackets.  The first element inside
the brackets is the expression we are summing over, in this case xn.  The information inside the
braces tells you (in order): the index over which you are summing (here that is n), the starting
value of n (n=0) and the final value (in this case, n =20.

So, let' s see how well this series converges to our function, f (x) = 1/(1 - x).  If x = 1/2, it is
trivial to calculate that f (1/2) = 2; let' s see what we obtain if we calculate the sum of the first 21
terms of this expansion :

In[20]:= Clearx
x  12;

Sumx^n, n, 0, 20  N

Out[22]= 2.

The notation : // N instructs Mathematica to return a number in decimal form, without this instruc-
tion, we get :

In[23]:= Clearx
x  12;

Sumx^n, n, 0, 20
Out[25]=

2 097 151

1 048 576

which you can see is pretty close to the value of 2.

To see another example of how the summation function works, let's investigate the function ex.
We know the Maclaurin expansion for exis:

ex = S
n=0

¶
 
xn

n!
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Let' s see how well this series expansion approximates the value of the exponential function for
x = 100.  We can use Mathematica to compute :
   

In[27]:= Exp100  N

Out[27]= 2.688121043

Ok, this is a pretty big number.  We might need quite a few terms in the expansion to approxi-
mate this.  Let' s start with the first 21 terms of the expansion :

In[31]:= Clearx
x  100;

Sumx^nn, n, 0, 20  N

Out[33]= 5.122371021

Not such a good match. We should not be too surprised since we curtailed our expansion at n =
20, and the value of the n = 20 term in the expansion is :

In[35]:=

xn

n
. n  20  N

Out[35]= 4.110321021

(Remember these commands; "/.n->20" means we will replace n with 20; // N is the instruction
to compute a decimal.)

Ok, let' s try this again; let' s try this expansion over the first 31 terms :

In[39]:= Clearx
x  100;

Sumx^nn, n, 0, 30  N

Out[41]= 5.354161027

Trying again :

In[60]:= Clearx
x  100;

Sumx^nn, n, 0, 120  N

Out[62]= 2.627181043

And if we use 121 terms, we come within about 3% of being accurate.  But wait, what happens if
we keep adding terms, we want to make sure that we don' t overshoot the value of Exp[100]. So
let' s see what happens if we try this :
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In[72]:= Cleara, x
x  100;

Sumx^nn, n, 0, a . a  120, 160, 200  N

Out[74]= 2.627181043, 2.688121043, 2.6881171418160101043
In this last summation, we treated the upper limit (the number of terms we would include in the
summation) as a variable denoted by a, and then  used the "/." command to evaluate the sum for
three different values of the upper limit.  The results above show you the value of the summation
using 121, 161 and 201 terms respectively, and that we could truly add an infinite number of
terms without changing the value of the sum.  This occurs because at sufficiently large values of
n, the value of xn/n! decreases so that successive individual terms do not cause the expansion to
diverge.

Back to Series Expansions

Let' s consider again our function 1/(1 - x) on the interval (0, 1).  We can see the approach to
convergence by treating the number of terms in the expansion as a variable :

In[88]:= Clearx, a, n
Plot11  x, Sumx^n, n, 0, a . a  1, 5, 10, x, 0, 1

Out[89]=

0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

7

In this code, the variable a represents the largest value of n over which we sum; the use of "/.a-
>{1,5,10}" instructs the program to compute sums of xn summing respectively over the first 2, 6
and 11 terms.  Finally, all four plots (including 1/(1-x) are placed on one graph.  You can see
how summing over more and more terms causes the series to converge to the function.
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Mathematica Interlude II

Now we are in a position to see one of the most striking features of Mathematica, the Manipulate
command.  This is an interactive command, so to fully appreciate this, you will need to use this
code in an open session of Mathematica.  First, use the following code (as with all Mathematica
code, be careful to have all the brackets, braces and parentheses in correct order):

In[90]:= Clearx, n, a
Manipulate

Plot11  x, Sumx^n, n, 0, a, x, 0, 1, a, 1, 100

Out[91]=

a

0.2 0.4 0.6 0.8 1.0

2

3

4

5

Your output will look like the box above.  Notice the slide bar; this bar will allow you to change
the number of terms included in the expansion  as you slide the bar from its lowest value to its
highest value (1 - 100).  As you move the slide bar, you will see the lower curve (the one repre-
senting the summation of xn) approach the curve of 1/(1-x) until the two curves are identical.
This is powerful visual verification that summation of sufficient terms in the series expansion
will cause the expansion to converge to the function.

Some Slightly More Complicated Functions

In choosing functions like 1/(1 - x) and even ex, we are working with relatively simple functions
in  that  they  are  both  monotonically  increasing  over  their  convergence  intervals.   Let's  think
about the nature of the Maclaurin expansions for trig functions like sin x and cos x.  The plot
below shows the well known curves for sin x and cos x for the interval (0,6p):
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In[94]:= PlotSinx, Cosx, x, 0, 6

Out[94]=
5 10 15

-1.0

-0.5

0.5

1.0

Let' s think about the oscillatory behavior of trig functions in terms of power series expansions;
if we believe we can write sin x and cos x as an infinite sum of terms, we realize very quickly
that some of the terms must be positive and some must be negative.  If we had only positive
terms, the function would continually increase; in order to have a function oscillate between the
values of + 1 and - 1, successive terms must cause the function to increase or decrease by just
the needed amount.  Let' s see how quickly the Maclaurin series for cos x will converge.  To
refresh your memory, the Maclaurin series for cos x is :

(2)f  x = cos x = 1 -
x2

2 !
+

x4

4 !
-

x6

6 !
+ ... 

-1n x2 n

2 n!

As shown in class, we can use the Manipulate feature to help us see the approach to convergence
of the series expansion for cos x to the function.  The commands below instruct Mathematica to
construct two plots over the interval (0,6p) on the same graph.  The two functions plotted are cos
x and the partial sum of the series expansion described in eq. (2) above.  In the Sum command,
the first part is the expression for the n-th term in the series; the second element of the Sum
command is the expression in braces, {n,0,a} which means to sum over the index n, starting
from n=0 and ending when n=a.  As you have seen before, we let a be a floating variable, so we
can see what the graph of the series expansion looks like as we add more and more terms to the
partial sum.  The final set of braces, {a, 0, 30} allows us to determine the upper limit of summa-
tion.  The expression {a,0,30} means to set the variable a initially to zero and vary the value of a
from 0 to 30 as you move the slide bar.  When a=1, we are summing over the first two terms of
the series (the zeroth term and the first term of the expansion).  You should see nicely how the
series expansion converges to the function f(x)=cos x as you add more and more terms to the
expansion. 
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In[131]:=

Clearx, n, a
ManipulatePlotCosx, Sum1^n x^2n2n, n, 0, a,

x, 0, 6, a, 0, 30

Out[132]=

a

0.

5 10 15

-1.0

-0.5

0.5

1.0

Some Familar Series

There are some Taylor and Maclaurin series that are so well known and so frequently used, that
it is wise to know them and their properties.  These include :
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1

1 - x
= 1 + x + x2 + x3 + x4 + ... xn = S

n=0

¶
 xn for  x  < 1

ex = 1 + x +
x2

2!
+

x3

3 !
+ ... 

xn

n !
= S

n=0

¶
 
xn

n !
for all x

cos x = 1 -
x2

2 !
+

x4

4!
-

x6

6 !
+

x8

8 !
+ ... 

-1n x2 n

2 n!
= S

n=0

¶
 
-1^n x2 n

2 n!
for all x

sin x = x -
x3

3 !
+

x5

5 !
-

x7

7 !
+ ... 

-1n x2 n+1

2 n + 1!
=

Sn=0
¶  -1n x2 n+1

2 n + 1!
for all x

1 - x = 1 - Å
x

2
-

x2

8
-

x3

16
-

5 x4

128
- ...

Manipulating Series Expansions

One of the most powerful aspects of series expansions is that simple substitutions or manipula-
tions of a well known series allows you to determine the series expansion for a more complex
function without the need for doing laborious multiple differentiations.  Let' s start with our well
known expansion for 1/(1 - x), and show how it allows us to simply determine the series expan-
sion for many different series, including the series for arc tan x.  We begin by writing :

(3)
1

1 - x
= 1 + x + x2 + x3 + ...

Let' s say we now want to know the series expansion for a similar series, 1/(1 + x). We could
use the formula for Taylor series and compute the value of the n - th derivative at x = 0, or we
can look at equation (3) and realize that if we simply substitute (-x) for x on both sides of the
equation, we obtain :

(4)

1

1 - -x = 1 + -x + -x2 + -x3 + ... fl

1

1 + x
= 1 - x + x2 - x3 + x4 - ...

We can continue working with eq. (4), substituting x2 for x on both sides of the equation, and
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obtain:

(5)
1

1 + x2
= 1 - x2 + x4 - x6 + x8 - ...

You may remember that 1  1 + x2) is the derivative of arc tan x, so, if we multiply both sides of

eq. (5) by dx and then integrate each term, we get:

 1

1 + x2
 dx =  1 - x2 + x4 - x6 + ... dx =

(6)
Arc tan x = x -

x3

3
+

x5

5
-

x7

7
+ ...

(What happened to the constant of integration that we know we get when we do an indefinite
integral? How can you prove that the constant in this case equals zero?)

As a sidenote, let' s see what happens if we set x = 1 in equation (6) above.  We know that arctan
(1) =p/4; so if set x=1 in equation (6), we get:  

Arc Tan 1 


4
 1 

1

3


1

5


1

7
 ...

And we derive a simple (but slowly converging) series that allows us to calculate the value of p.  

There are many other examples of similar series operations; suppose we want to find the series

expansion of  of 1  1 - x2.  We recognize this is simply the derivative of 1/(1-x), so we can

take equation (3), and differentiate term by term to obtain:

(7)
1

1 - x 2
= 1 + 2 x + 3 x2 + ...

Calculations Involving Taylor Series

Suppose we want to find the series expansion of a more complicated function like :

ex

cos x

in the vicinity of x = 0.  Since cos x does not vanish at x = 0, and because both ex and cos x have
well determined series expansions, we can be hopeful that ex  cos x will also have a well defined
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series expansion. That means we anticipate that we can construct a series such that:

(8)
f  x =

ex

cos x
= S

n=0

¶
 an xn = a0 + a1 x + a2 x2 + a3 x3 + ...

In short, we know exactly the form of this series expansion; all we have to do is determine the
value of the various coefficients.  We know one method that will work; we can take successive
derivatives of  ex  cos x and evaluate those derivatives at 0. However, our experience with differ-
entiating quotients should give us some pause, since we know that each differentiation produces
a more and more complex term.  

There is another technique we can use.  Since we already have the form of the series expansion
for this f(x), suppose we multiply each side by cos x in eq. (8) to produce:

(9)ex =  a0 + a1 x + a2 x2 + a3 x3 + ... cos x

Using the known series expansions for ex and cos x, eq. (9) becomes:

(10)
1 + x +

x2

2
+

x3

6
+ ... =

 a0 + a1 x + a2 x2 + a3 x3 + a4 x4 ... 1 -
x2

2
+

x4

24
- ...

We can multiply out the right hand side of (10) to get :

(11)

1 + x +
x2

2
+

x3

6
+ ... =

a0 - a0 
x2

2
+ a0 

x4

24
+ a1 x - a1 

x3

2
+ a1 

x5

24
+ a2 x2 -

a2 
x4

2
+ a2 

x6

24
+ a3 x3 - a3 

x5

2
+ a4 x4 - a4 

x6

2
+ ...

If we group the terms on the right side of eq. (11) according to powers of x, we obtain :
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(12)1 + x +
x2

2
+

x3

6
+

x4

24
+ ... =

a0 + a1 x + a2 -
a0

2
 x2 + a3 -

a1

2
 x3 +  a0

24
-

a2

2
+ a4 x4

In order for the two sides of eq. (12) to be equal, we know that the coefficient of the
xn term on the left must equal the coeffiecient of the similar term on the right; thus, by inspecting
each side of eq. (12), we conclude that: 

(13)

a0 = 1

a1 = 1

a2 -
a0

2
= Å

1

2
fl a2 =

a0

2
+ Å

1

2
= 1

a3 -
a1

2
= Å

1

6
fl a3 =

a1

2
+ Å

1

6
= Å

2

3

a4 -
a2

2
+

a0

24
=

1

24
fl a4 =

a2

2
-

a0

24
+

1

24
= Å

1

2

Having worked out these coefficients, we can now write that the Taylor Series for our function is
:

(14)f  x =
ex

cos x
= 1 + x + x2 +

2 x3

3
+

x4

2
+ ...

Mathematica Interlude III

The Mathematica command Series outputs the series expansion of functions.  To get started, let'
s see how we use Mathematica to get the first few terms in the series expansion for cos x.  We
input :

In[151]:=

SeriesCosx, x, 0, 10

Out[151]= 1 
x2

2


x4

24


x6

720


x8

40 320


x10

3 628 800
 Ox11
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The first element in the Series call is obviously the function we wish to expand; the braces {x, 0,
10} instruct Mathematica to expand this function in the neighborhood of x = 0, and write out the

series up to and including the x10 term.  The last term in the output, Ox11 is the mathematical

way of writing "plus terms of order x11 and higher".  

We can produce output omitting the "O[x]" term if we input :

In[152]:=

SeriesCosx, x, 0, 10  Normal

Out[152]= 1 
x2

2


x4

24


x6

720


x8

40 320


x10

3 628 800

Verifying our series expansion for f (x) = ex  cos x:

In[155]:=

SeriesExpxCosx, x, 0, 4

Out[155]= 1  x  x2 
2 x3

3


x4

2
 Ox5
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