THE DESIGN PHILOSOPHY OF THE DARPA INTERNET PROTOCOLS
David D. Clark
Massachusetts Institute of Technology
Laboratory for Computer Science (now CSAIL)
Cambridge, Ma. 02139

This paper was originally published in 1988 in ACM SigComm. Revised,
with extensive commentary, 20131, The original text has been reformatted,
but is otherwise unchanged from the original except for a few spelling
corrections.

Version 1.2 of March 14, 2013

Limited distribution for comments.

Abstract

The Internet protocol suite, TCP/IP, was first proposed fifteen years ago. It was
developed by the Defense Advanced Research Projects Agency (DARPA), and has
been used widely in military and commercial systems. While there have been papers
and specifications that describe how the protocols work, it is sometimes difficult to
deduce from these why the protocol is as it is. For example, the Internet protocol is
based on a connectionless or datagram mode of service. The motivation for this has
been greatly misunderstood. This paper attempts to capture some of the early
reasoning which shaped the Internet protocols.

Introduction

For the last 15 years [1], the Advanced Research Projects Agency of the U.S.
Department of Defense has been developing a suite of protocols for packet switched
networking. These protocols, which include the Internet Protocol (IP), and the
Transmission Control Protocol (TCP), are now U.S. Department of Defense
standards for internetworking, and are in wide use in the commercial networking
environment. The ideas developed in this effort have also influenced other protocol
suites, most importantly the connectionless configuration of the ISO protocols
[2,3,4].

While specific information on the DOD protocols is fairly generally available [5,6,7],
it is sometimes difficult to determine the motivation and reasoning which led to the
design.

1 Original work was supported in part by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. NOOOIJ-83-K-0125. The 2013 revision was supported
by NSF under award number 1219557.

In fact, the design philosophy has evolved considerably from the first proposal to
the current standards. For example, the idea of the datagram, or connectionless
service, does not receive particular emphasis in the first paper, but has come to be
the defining characteristic of the protocol. Another example is the layering of the
architecture into the IP and TCP layers. This seems basic to the design, but was also
not a part of the original proposal. These changes in the Internet design arose
through the repeated pattern of implementation and testing that occurred before
the standards were set.

The Internet architecture is still evolving. Sometimes a new extension challenges
one of the design principles, but in any case an understanding of the history of the
design provides a necessary context for current design extensions. The
connectionless configuration of IS0 protocols has also been colored by the history of
the Internet suite, so an understanding of the Internet design philosophy may be
helpful to those working with ISO.

This paper catalogs one view of the original objectives of the Internet architecture,
and discusses the relation between these goals and the important features of the
protocols.

This paper makes a distinction between the architecture of the Internet
and a specific realization of a running network. Today, as discussed below,
I would distinguish three ideas?:

1. The core principles and basic design decisions of the architecture.

2. The second level of mechanism design that fleshes out the architecture
and makes it into a complete implementation.

3. The set of decisions related to deployment (e.g. the degree of diversity
in paths) that lead to an operational network.

Fundamental Goal

The top level goal for the DARPA Internet Architecture was to develop an effective
technique for multiplexed utilization of existing interconnected networks. Some
elaboration is appropriate to make clear the meaning of that goal.

The components of the Internet were networks, which were to be interconnected to
provide some larger service. The original goal was to connect together the original
ARPANET[8] with the ARPA packet radio network([9,10], in order to give users on
the packet radio network access to the large service machines on the ARPANET. At

Z] am indebted to John Wroclawski, both for the suggestion that led to this revision, and for the
insight that there are three concepts to be distinguished, not two.

the time it was assumed that there would be other sorts of networks to
interconnect, although the local area network had not yet emerged.

This paragraph hints at but does not state clearly that the Internet builds
on and extends the fundamental goal of the ARPANET, which was to
provide useful interconnection among heterogeneous machines. Perhaps
even by 1988 this point was so well-understood that it did not seem to
require stating.

There is also an implicit assumption that the end-points of network
connections were machines. This assumption seemed obvious at the time,
but is now being questioned, with architectural proposals that “addresses”
refer to services or information objects.

An alternative to interconnecting existing networks would have been to design a
unified system which incorporated a variety of different transmission media, a
multi-media network.

Perhaps “multi-media” was not well-defined in 1988. It now has a different
meaning, of course.

While this might have permitted a higher degree of integration, and thus better
performance, it was felt that it was necessary to incorporate the then existing
network architectures if Internet was to be useful in a practical sense. Further,
networks represent administrative boundaries of control, and it was an ambition of
this project to come to grips with the problem of integrating a number of separately
administrated entities into a common utility.

This last is actually a goal, and probably should have been listed as such,
although it could be seen as an aspect of goal 4, below.

The technique selected for multiplexing was packet switching.

Effective multiplexing of expensive resources (e.g. links) is another high-
level goal that is not in the explicit list but very important and well-
understood at the time.

An alternative such as circuit switching could have been considered, but the
applications being supported, such as remote login, were naturally served by the
packet switching paradigm, and the networks which were to be integrated together
in this project were packet switching networks. So packet switching was accepted as
a fundamental component of the Internet architecture. The final aspect of this

fundamental goal was the assumption of the particular technique for
interconnecting these networks. Since the technique of store and forward packet
switching, as demonstrated in the previous DARPA project, the ARPANET, was well
understood, the top level assumption was that networks would be interconnected
by a layer of Internet packet switches, which were called gateways.

From these assumptions comes the fundamental structure of the Internet: a packet
switched communications facility in which a number of distinguishable networks
are connected together using packet communications processors called gateways
which implement a store and forward packet forwarding algorithm.

In retrospect, this previous section could have been clearer. It discussed
both goals and basic architectural responses to these goals without teasing
these ideas apart. Gateways are not a goal, but a design response to a goal.

We could have taken a different approach to internetworking, for example
providing interoperation at a higher level—perhaps at the transport

protocol layer, or a higher service/naming layer. It would be an interesting
exercise to look at such a proposal and evaluate it relative to these criteria.

Second Level Goals

The top level goal stated in the previous section contains the word "effective,"
without offering any definition of what an effective interconnection must achieve.
The following list summarizes a more detailed set of goals which were established
for the Internet architecture.

Internet communication must continue despite loss of networks or gateways.
The Internet must support multiple types of communications service.

The Internet architecture must accommodate a variety of networks.

The Internet architecture must permit distributed management of its
resources.

The Internet architecture must be cost effective.

The Internet architecture must permit host attachment with a low level of
effort.

7. The resources used in the Internet architecture must be accountable.

W=

ow

This set of goals might seem to be nothing more than a checklist of all the desirable
network features. It is important to understand that these goals are in order of
importance, and an entirely different network architecture would result if the order
were changed. For example, since this network was designed to operate in a military
context, which implied the possibility of a hostile environment, survivability was put
as a first goal, and accountability as a last goal. During wartime, one is less
concerned with detailed accounting of resources used than with mustering
whatever resources are available and rapidly deploying them in an operational

manner. While the architects of the Internet were mindful of accountability, the
problem received very little attention during the early stages of the design, and is
only now being considered. An architecture primarily for commercial deployment
would clearly place these goals at the opposite end of the list.

Similarly, the goal that the architecture be cost effective is clearly on the list, but
below certain other goals, such as distributed management, or support of a wide
variety of networks. Other protocol suites, including some of the more popular
commercial architectures, have been optimized to a particular kind of network, for
example a long haul store and forward network built of medium speed telephone
lines, and deliver a very cost effective solution in this context, in exchange for
dealing somewhat poorly with other kinds of nets, such as local area nets.

The reader should consider carefully the above list of goals, and recognize that this
is not a "motherhood" list, but a set of priorities which strongly colored the design
decisions within the Internet architecture. The following sections discuss the
relationship between this list and the features of the Internet.

At the beginning of the NSF Future Internet Design (FIND) project, around
2008, I proposed a list of requirements that a new architecture might take
into account. Here are these two lists to compare:

1988 2008
1. Internet communication must 1. Security
continue despite loss of networks | 2. Availability and resilience
or gateways. 3. Economic viability
2. The Internet must support 4. Better management
multiple types of 5. Meet society’s needs
communications service. 6. Longevity
3. The Internet architecture must 7. Support for tomorrow’s
accommodate a variety of computing
networks. 8. Exploit tomorrow’s networking
4. The Internet architecture must 9. Support tomorrow’s applications

permit distributed management | 10. Fit for purpose (it works...)
of its resources.

5. The Internet architecture must
be cost effective.

6. The Internet architecture must
permit host attachment with a
low level of effort.

7. The resources used in the
Internet architecture must be
accountable.

The list from 1988 does not mention the word “security”. The first 1988
requirement, that the network continue operation despite loss of networks
or gateways, could be seen as a specific sub-case of security, but the text in
the next section of the original paper (see below) does not even hint that
the failures might be due to malicious actions. In retrospect, it is difficult to
reconstruct what our mind-set was when this paper was written (which is
in the years immediately prior to 1988). By the early 1990s, security was
an important if unresolved objective. It seems somewhat odd that the word
did not even come up in this paper.

The modern list calls out availability and resilience as distinct from the
general category of “security”, a distinction that was motivated by my
sense that this set of goals in particular were important enough that they
should not be buried inside the broader category. So there is some
correspondence between goal 1 in the 1988 list and 2 in the 2008 list.

The 2008 list has economic viability as its third objective. As I noted above,
the 1988 paper discussed “the problem of integrating a number of
separately administrated entities into a common utility”, which seems like
a specific manifestation of the recognition that the net is built out of parts.
But the focus on economic viability seems to have been poorly understood,
ifat all.

Survivability in the Face of Failure

The most important goal on the list is that the Internet should continue to supply
communications service, even though networks and gateways are failing. In
particular, this goal was interpreted to mean that if two entities are communicating
over the Internet and some failure causes the Internet to be temporarily disrupted
and reconfigured to reconstitute the service, then the entities communicating
should be able to continue without having to reestablish or reset the high level state
of their conversation. More concretely, at the service interface of the transport layer,
this architecture provides no facility to communicate to the client of the transport
service that the synchronization between the sender and the receiver may have
been lost. It was an assumption in this architecture that synchronization would
never be lost unless there was no physical path over which any sort of
communication could be achieved. In other words, at the top of transport, there is
only one failure, and it is total partition. The architecture was to mask completely
any transient failure.

This last sentence seems, in retrospect, a bit unrealistic, or perhaps poorly
put. The “architecture” does not mask transient failures at all. That is not

the goal, and it seems like an unrealizable one. The rest of the paragraph
makes the actual point—if transient failures do occur, the application may
be disrupted for the duration of the failure, but once the network has been
reconstituted, the application (or, specifically, TCP) can take up where it
left off. The rest of the section discusses the architectural approach to make
this possible.

Again in retrospect, it would seem that an important sub-goal would be
that transients are healed as quickly as possible, but I don’t think there was
any understanding then, and perhaps not now, of an architectural element
that could facilitate that sub-goal. So it is just left to the second-level
mechanisms.

To achieve this goal, the state information which describes the on-going
conversation must be protected. Specific examples of state information would be the
number of packets transmitted, the number of packets acknowledged, or the
number of outstanding flow control permissions. If the lower layers of the
architecture lose this information, they will not be able to tell if data has been lost,
and the application layer will have to cope with the loss of synchrony. This
architecture insisted that this disruption not occur, which meant that the state
information must be protected from loss.

In some network architectures, this state is stored in the intermediate packet
switching nodes of the network. In this case, to protect the information from loss, it
must replicated. Because of the distributed nature of the replication, algorithms to
ensure robust replication are themselves difficult to build, and few networks with
distributed state information provide any sort of protection against failure. The
alternative, which this architecture chose, is to take this information and gather it at
the endpoint of the net, at the entity which is utilizing the service of the network. I
call this approach to reliability "fate-sharing." The fate-sharing model suggests that
it is acceptable to lose the state information associated with an entity if, at the same
time, the entity itself is lost. Specifically, information about transport level
synchronization is stored in the host which is attached to the net and using its
communication service.

There are two important advantages to fate-sharing over replication. First, fate-
sharing protects against any number of intermediate failures, whereas replication
can only protect against a certain number (less than the number of replicated
copies). Second, fate-sharing is much easier to engineer than replication.

There are two consequences to the fate-sharing approach to survivability. First, the
intermediate packet switching nodes, or gateways, must not have any essential state
information about on-going connections. Instead, they are stateless packet switches,
a class of network design sometimes called a "datagram" network. Secondly, rather
more trust is placed in the host machine than in an architecture where the network
ensures the reliable delivery of data. If the host resident algorithms that ensure the

sequencing and acknowledgment of data fail, applications on that machine are
prevented from operation.

Despite the fact that survivability is the first goal in the list, it is still second to the
top level goal of interconnection of existing networks. A more survivable technology
might have resulted from a single multimedia network design. For example, the
Internet makes very weak assumptions about the ability of a network to report that
it has failed. Internet is thus forced to detect network failures using Internet level
mechanisms, with the potential for a slower and less specific error detection.

See the discussion below about where failures should be detected.

Types of Service

The second goal of the Internet architecture is that it should support, at the
transport service level, a variety of types of service. Different types of service are
distinguished by differing requirements for such things as speed, latency and
reliability. The traditional type of service is the bidirectional reliable delivery of
data. This service, which is sometimes called a "virtual circuit" service, is
appropriate for such applications as remote login or file transfer. It was the first
service provided in the Internet architecture, using the Transmission Control
Protocol (TCP)[11]. It was early recognized that even this service had multiple
variants, because remote login required a service with low delay in delivery, but low
requirements for bandwidth, while file transfer was less concerned with delay, but
very concerned with high throughput. TCP attempted to provide both these types of
service.

The initial concept of TCP was that it could be general enough to support any
needed type of service. However, as the full range of needed services became clear,
it seemed too difficult to build support for all of them into one protocol.

The first example of a service outside the range of TCP was support for XNET[12],
the cross-Internet debugger. TCP did not seem a suitable transport for XNET for
several reasons. First, a debugger protocol should not be reliable. This conclusion
may seem odd, but under conditions of stress or failure (which may be exactly when
a debugger is needed) asking for reliable communications may prevent any
communications at all. It is much better to build a service which can deal with
whatever gets through, rather than insisting that every byte sent be delivered in
order. Second, if TCP is general enough to deal with a broad range of clients, it is
presumably somewhat complex. Again, it seemed wrong to expect support for this
complexity in a debugging environment, which may lack even basic services
expected in an operating system (e.g. support for timers.) So XNET was designed to
run directly on top of the datagram service provided by Internet.

Another service which did not fit TCP was real time delivery of digitized speech,
which was needed to support the teleconferencing aspect of command and control
applications. In real time digital speech, the primary requirement is not a reliable
service, but a service which minimizes and smooths the delay in the delivery of
packets. The application layer is digitizing the analog speech, packetizing the
resulting bits, and sending them out across the network on a regular basis. They
must arrive at the receiver at a regular basis in order to be converted back to the
analog signal. If packets do not arrive when expected, it is impossible to reassemble
the signal in real time. A surprising observation about the control of variation in
delay is that the most serious source of delay in networks is the mechanism to
provide reliable delivery. A typical reliable transport protocol responds to a missing
packet by requesting a retransmission and delaying the delivery of any subsequent
packets until the lost packet has been retransmitted. It then delivers that packet and
all remaining ones in sequence. The delay while this occurs can be many times the
round trip delivery time of the net, and may completely disrupt the speech
reassembly algorithm. In contrast, it is very easy to cope with an occasional missing
packet. The missing speech can simply be replaced by a short period of silence,
which in most cases does not impair the intelligibility of the speech to the listening
human. If it does, high level error correction can occur, and the listener can ask the
speaker to repeat the damaged phrase.

It was thus decided, fairly early in the development of the Internet architecture, that
more than one transport service would be required, and the architecture must be
prepared to tolerate simultaneously transports which wish to constrain reliability,
delay, or bandwidth, at a minimum.

This goal caused TCP and IP, which originally had been a single protocol in the
architecture, to be separated into two layers. TCP provided one particular type of
service, the reliable sequenced data stream, while IP attempted to provide a basic
building block out of which a variety of types of service could be built. This building
block was the datagram, which had also been adopted to support survivability. Since
the reliability associated with the delivery of a datagram was not guaranteed, but
"best effort," it was possible to build out of the datagram a service that was reliable
(by acknowledging and retransmitting at a higher level), or a service which traded
reliability for the primitive delay characteristics of the underlying network
substrate. The User Datagram Protocol (UDP)[13] was created to provide a
application-level interface to the basic datagram service of Internet.

The architecture did not wish to assume that the underlying networks themselves
support multiple types of services, because this would violate the goal of using
existing networks. Instead, the hope was that multiple types of service could be
constructed out of the basic datagram building block using algorithms within the
host and the gateway. For example, (although this is not done in most current
implementations) it is possible to take datagrams which are associated with a
controlled delay but unreliable service and place them at the head of the
transmission queues unless their lifetime has expired, in which case they would be

discarded; while packets associated with reliable streams would be placed at the
back of the queues, but never discarded, no matter how long they had been in the
net.

This section of the paper may reflect my own, long-standing preference for
QoS in the network. However, the discussion is about a much more basic set
of service types, and an architectural decision (splitting IP and TCP), which
gives the end-node and application some control over the type of service.
There is no mention in this paper of the ToS bits in the IP header, which
were the first attempt to add a core feature that would facilitate any sort
of QoS in the network. Discussions about QoS at the IETF did not start for
another several years later. But this section does suggest that the idea of
queue management as a means to improve application behavior was
understood even in the 1980s, and the ToS bits (or something like them)
would be needed to drive that sort of scheduling. I think, looking back, that
we really did not understand this set of issues, even in 1988.

It proved more difficult than first hoped to provide multiple types of service without
explicit support from the underlying networks. The most serious problem was that
networks designed with one particular type of service in mind were not flexible
enough to support other services. Most commonly, a network will have been
designed under the assumption that it should deliver reliable service, and will inject
delays as a part of producing reliable service, whether or not this reliability is
desired. The interface behavior defined by X.25, for example, implies reliable
delivery, and there is no way to turn this feature off. Therefore, although Internet
operates successfully over X.25 networks it cannot deliver the desired variability of
type service in that context. Other networks which have an intrinsic datagram
service are much more flexible in the type of service they will permit. but these
networks are much less common, especially in the long-haul context.

Even though this paper comes about five years after the articulation of the
end-to-end arguments, there is no mention of that paper or its concepts
here. Perhaps this was due to the fact that this paper was a retrospective of
the early thinking, which predated the emergence of end-to-end as a
named concept. The concept is lurking in much of what I wrote in this
section, but perhaps in 1988 it was not yet clear that the end-to-end
description as presented in the 1984 paper would survive as the accepted
framing.

Varieties of Networks

It was very important for the success of the Internet architecture that it be able to
incorporate and utilize a wide variety of network technologies, including military

and commercial facilities. The Internet architecture has been very successful in
meeting this goal: it is operated over a wide variety of networks, including long haul
nets (the ARPANET itself and various X.25 networks), local area nets (Ethernet,
ringnet, etc.), broadcast satellite nets (the DARPA Atlantic Satellite Network[14,15]
operating at 64 kilobits per second and the DARPA Experimental Wideband Satellite
Net[16] operating within the United States at 3 megabits per second), packet radio
networks (the DARPA packet radio network, as well as an experimental British
packet radio net and a network developed by amateur radio operators), a variety of
serial links, ranging from 1200 bit per second asynchronous connections to TI links,
and a variety of other ad hoc facilities, including intercomputer busses and the
transport service provided by the higher layers of other network suites, such as
IBM's HASP.

The Internet architecture achieves this flexibility by making a minimum set of
assumptions about the function which the net will provide. The basic assumption is
that network can transport a packet or datagram. The packet must be of reasonable
size, perhaps 100 bytes minimum, and should be delivered with reasonable but not
perfect reliability. The network must have some suitable form of addressing if it is
more than a point to point link.

There are a number of services which are explicitly not assumed from the network.
These include reliable or sequenced delivery, network level broadcast or multicast,
priority ranking of transmitted packet, multiple types of service, and internal
knowledge of failures, speeds, or delays. If these services had been required, then in
order to accommodate a network within the Internet, it would be necessary either
that the network support these services directly, or that the network interface
software provide enhancements to simulate these services at the endpoint of the
network. It was felt that this was an undesirable approach, because these services
would have to be re-engineered and reimplemented for every single network and
every single host interface to every network. By engineering these services at the
transport, for example reliable delivery via TCP, the engineering must be done only
once, and the implementation must be done only once for each host. After that, the
implementation of interface software for a new network is usually very simple.

Other Goals

The three goals discussed so far were those which had the most profound impact on
the design on the architecture. The remaining goals, because they were lower in
importance, were perhaps less effectively met, or not so completely engineered. The
goal of permitting distributed management of the Internet has certainly been met in
certain respects. For example, not all of the gateways in the Internet are
implemented and managed by the same agency. There are several different
management centers within the deployed Internet, each operating a subset of the
gateways, and there is a two-tiered routing algorithm which permits gateways from
different administrations to exchange routing tables, even though they do not
completely trust each other, and a variety of private routing algorithms used among

the gateways in a single administration. Similarly, the various organizations which
manage the gateways are not necessarily the same organizations that manage the
networks to which the gateways are attached.

Even in 1988 we understood that the issue of trust (e.g. trust among
gateways) as an important consideration.

On the other hand, some of the most significant problems with the Internet today
relate to lack of sufficient tools for distributed management, especially in the area of
routing. In the large Internet being currently operated, routing decisions need to be
constrained by policies for resource usage. Today this can be done only in a very
limited way, which requires manual setting of tables. This is error-prone and at the
same time not sufficiently powerful. The most important change in the Internet
architecture over the next few years will probably be the development of a new
generation of tools for management of resources in the context of multiple
administrations.

It is interesting that the limitations of manual route configuration were
understood in 1988, and we are not yet really beyond that stage. It is not
clear even now whether our persistent lack of progress in this area is due
to poor architectural choices, or just the intrinsic difficulty of the tasks.
Certainly, in the 1970s and 1980s we did not know how to think about
network management. We understood how to “manage a box”, but we had
no accepted view on systems-level management.

It is clear that in certain circumstances, the Internet architecture does not produce
as cost effective a utilization of expensive communication resources as a more
tailored architecture would. The headers of Internet packets are fairly long (a
typical header is 40 bytes), and if short packets are sent, this overhead is apparent.
The worse case, of course, is the single character remote login packets, which carry
40 bytes of header and one byte of data. Actually, it is very difficult for any protocol
suite to claim that these sorts of interchanges are carried out with reasonable
efficiency. At the other extreme, large packets for file transfer, with perhaps 1,000
bytes of data, have an overhead for the header of only four percent.

Another possible source of inefficiency is retransmission of lost packets. Since
Internet does not insist that lost packets be recovered at the network level, it may be
necessary to retransmit a lost packet from one end of the Internet to the other. This
means that the retransmitted packet may cross several intervening nets a second
time, whereas recovery at the network level would not generate this repeat traffic.
This is an example of the tradeoff resulting from the decision, discussed above, of
providing services from the end-points. The network interface code is much simpler,
but the overall efficiency is potentially less. However, if the retransmission rate is
low enough (for example, 1%) then the incremental cost is tolerable. As a rough rule

of thumb for networks incorporated into the architecture, a loss of one packet in a
hundred is quite reasonable, but a loss of one packet in ten suggests that reliability
enhancements be added to the network if that type of service is required.

Again, this 1988 paper provides a nice “time capsule” as to what we were
worrying about 25 years ago. Now we seem to have accepted the cost of
packet headers, and we seem to have accepted the cost of end-to-end
retransmission. The paper does not mention efficient link loading as an
issue, nor the question of achieving good end-to-end performance.

The cost of attaching a host to the Internet is perhaps somewhat higher than in
other architectures, because all of the mechanisms to provide the desired types of
service, such as acknowledgments and retransmission strategies, must be
implemented in the host rather than in the network. Initially, to programmers who
were not familiar with protocol implementation, the effort of doing this seemed
somewhat daunting. Implementers tried such things as moving the transport
protocols to a front end processor, with the idea that the protocols would be
implemented only once, rather than again for every type of host. However, this
required the invention of a host to front end protocol which some thought almost as
complicated to implement as the original transport protocol. As experience with
protocols increases, the anxieties associated with implementing a protocol suite
within the host seem to be decreasing, and implementations are now available for a
wide variety of machines, including personal computers and other machines with
very limited computing resources.

A related problem arising from the use of host-resident mechanisms is that poor
implementation of the mechanism may hurt the network as well as the host. This
problem was tolerated, because the initial experiments involved a limited number of
host implementations which could be controlled. However, as the use of Internet
has grown, this problem has occasionally surfaced in a serious way. In this respect,
the goal of robustness, which led to the method of fate-sharing, which led to host-
resident algorithms, contributes to a loss of robustness if the host misbehaves.

This paragraph brings out a contradiction in the architectural principles
that might have been made more clearly. The principle of minimal state in
routers and movement of function to the end-points implies a need to trust
those nodes to operate correctly, but the architecture does not have any
approach to dealing with hosts that mis-behave. Without state in the
network to validate what the hosts are doing, it seems that there are few
ways to discipline a host. In 1988, the problem was anticipated but we
clearly had no view as to how to think about it.

The last goal was accountability. In fact, accounting was discussed in the first paper
by Cerf and Kahn as an important function of the protocols and gateways. However,

at the present time, the Internet architecture contains few tools for accounting for
packet flows. This problem is only now being studied, as the scope of the
architecture is being expanded to include non-military consumers who are seriously
concerned with understanding and monitoring the usage of the resources within the
Internet.

Again, a deeper discussion here might have brought out some
contradictions among goals—without any flow state in the network (or
knowledge of what constitutes an “accountable entity”) it seems hard to do
accounting. The architecture does not preclude what we now call “middle-
boxes”, but the architecture also does not discuss the idea that there might
be information in the packets to aid in accounting. I think in 1988 we just
did not know how to think about this.

Architecture and Implementation

The previous discussion clearly suggests that one of the goals of the Internet
architecture was to provide wide flexibility in the service offered. Different
transport protocols could be used to provide different types of service, and different
networks could be incorporated. Put another way, the architecture tried very hard
not to constrain the range of service which the Internet could be engineered to
provide. This, in turn, means that to understand the service which can be offered by
a particular implementation of an Internet, one must look not to the architecture,
but to the actual engineering of the software within the particular hosts and
gateways, and to the particular networks which have been incorporated. I will use
the term "realization" to describe a particular set of networks, gateways and hosts
which have been connected together in the context of the Internet architecture.
Realizations can differ by orders of magnitude in the service which they offer.
Realizations have been built out of 1200 bit per second phone lines, and out of
networks only with speeds greater than 1 megabit per second. Clearly, the
throughput expectations which one can have of these realizations differ by orders of
magnitude. Similarly, some Internet realizations have delays measured in tens of
milliseconds, where others have delays measured in seconds. Certain applications
such as real time speech work fundamentally differently across these two
realizations. Some Internets have been engineered so that there is great redundancy
in the gateways and paths. These Internets are survivable, because resources exist
which can be reconfigured after failure. Other Internet realizations, to reduce cost,
have single points of connectivity through the realization, so that a failure may
partition the Internet into two halves.

If were writing this section today, I would actually talk about three
distinctions:

1. The core principles and basic design decisions of the architecture.

2. The second level of mechanism design that flesh out the architecture
and make it into a complete implementation.

3. The set of decisions related to deployment (e.g. degree of redundancy in
paths) that lead to an operational network.

The word “realization” seems to map to the third set of decisions, and the
second set is somewhat missing from this paper. One could argue that that
omission was intentional: the paper was about the architecture, and what
this text is saying is that one of the goals of the architecture was to permit
many realizations, a point that might have been listed as another goal. But
it is equally important to say that a goal of the architecture was to allow
for many different alternatives for mechanism design as well—the design
decisions of the architecture should permit a range of mechanism choices,
not embed those decisions into the architecture itself.

I believe that in 1988 we saw, but perhaps did not articulate clearly, that
there is a benefit to architectural minimality—that is, to specify as little as
possible consistent with making it possible for subsequent mechanisms to
meet the goals.

Were I writing the paper now, I would add a new section, which draws
from the previous sections the set of core principles of the architecture,
linking them back to the goals they enable.

Core architectural principles:
Packet switching.
- Effective multiplexing of resources.
- Ability to operate over a range of networks.
- Support for a wide range of applications.
Gateways (what we call routers today)

- Ability to exploit existing networks of many sorts—e.g. minimal
assumptions about what the networks would do.

No flow state in routers, which implies no flow setup, and thus the “pure”
datagram model. Also implies strict separation of IP from TCP, with no
knowledge of TCP in routers.

- Availability in the face of failures

- Minimal requirements for functions in gateways
Co-location of flow state with end-points of flows. (fate-sharing)
No mechanisms to report network failures to end-points.
Trust in the end-node

Minimal assumptions about service functions and performance.

Totally missing from this paper is any discussion of packet headers,
addressing, and so on. In fact, much earlier than 1988 we understood that
we had to agree on some format for addresses, but that the specific
decision did not influence our ability to address the goals in the list. Early
on in the design process (in the mid-1970s), variable-length addresses
were proposed, which would have served us much better with respect to
the goal of longevity. It was rejected because at the time, the difficulty of
building routers that could operate at line speeds (e.g. 1.5 mb/s) made
parsing of variable-length fields in the header a challenge. In my 1988 list
“longevity” is missing—probably a significant oversight. But in the 1970s
we made a design choice that favored the pragmatics of implementation
over flexibility.

The packet header also embodied other design choices, which we thought
we had to make in order to facilitate or enable the design of the second-
level mechanisms that flesh out the architecture into a complete
implementation. The idea of packet fragmentation supported the goal that
we be able to exploit pre-existing networks. Today, Internet is the
dominant architecture, and we can assume that issues like network
technology with small packet sizes will not arise.

The use of a TTL or hop count was an architectural decision that tried to
allow more generality in how routing was done—we wanted to tolerate
transient routing inconsistency. The architecture did not specify how
routing was to be done (the paper notes the emergence of the two-level
routing hierarchy), and indeed it was a goal that different routing schemes
could be deployed in different parts of the network. (This choice is a
manifestation of the idea of architectural minimality—specify as little as
possible in the core design, and leave as much as possible to later

implementers, so long as the high-level goals such as interoperation can be
met.) So the TTL field in the header is the only support for routing. I do not
know if a different decision might have allowed a different set of routing
schemes.

The Internet architecture tolerates this variety of realization by design. However, it
leaves the designer of a particular realization with a great deal of engineering to do.
One of the major struggles of this architectural development was to understand how
to give guidance to the designer of a realization, guidance which would relate the
engineering of the realization to the types of service which would result. For
example, the designer must answer the following sort of question. What sort of
bandwidths must he in the underlying networks, if the overall service is to deliver a
throughput of a certain rate? Given a certain model of possible failures within this
realization, what sorts of redundancy ought to be engineered into the realization?

Most of the known network design aids did not seem helpful in answering these
sorts of questions. Protocol verifiers, for example, assist in confirming that protocols
meet specifications. However, these tools almost never deal with performance
issues, which are essential to the idea of the type of service. Instead, they deal with
the much more restricted idea of logical correctness of the protocol with respect to
specification. While tools to verify logical correctness are useful, both at the
specification and implementation stage, they do not help with the severe problems
that often arise related to performance. A typical implementation experience is that
even after logical correctness has been demonstrated, design faults are discovered
that may cause a performance degradation of an order of magnitude. Exploration of
this problem has led to the conclusion that the difficulty usually arises, not in the
protocol itself, but in the operating system on which the protocol runs. This being
the case, it is difficult to address the problem within the context of the architectural
specification. However, we still strongly feel the need to give the implementer
guidance. We continue to struggle with this problem today.

This paragraph reflects an issue that could have been explored more
clearly. The goal of continued operation in the face of failures (resilience)
motivated us to design very good mechanisms to recover from problems.
These mechanisms were in fact good enough that they would also “recover”
from implementation errors. They papered over the errors, and the only
signal of the problem was poor performance. What is missing from the
Internet, whether in the architecture or as an expectation of the second-
level mechanisms, is some requirement to report when the error detection
and recovery mechanisms are being triggered. But without a good
architecture for network management, it is not surprising that these
reporting mechanisms are missing, because it is not clear to what entity
the report would go. Telling the user at the end-node is not useful, and
there is no other entity defined as part of the architecture.

The other class of design aid is the simulator, which takes a particular realization
and explores the service which it can deliver under a variety of loadings. No one has
yet attempted to construct a simulator which take into account the wide variability
of the gateway implementation, the host implementation, and the network
performance which one sees within possible Internet realizations. It is thus the case
that the analysis of most Internet realizations is done on the back of an envelope. It
is a comment on the goal structure of the Internet architecture that a back of the
envelope analysis, if done by a sufficiently knowledgeable person, is usually
sufficient. The designer of a particular Internet realization is usually less concerned
with obtaining the last five percent possible in line utilization than knowing
whether the desired type of service can be achieved at all given the resources at
hand at the moment.

The relationship between architecture and performance is an extremely challenging
one. The designers of the Internet architecture felt very strongly that it was a
serious mistake to attend only to logical correctness and ignore the issue of
performance. However, they experienced great difficulty in formalizing any aspect
of performance constraint within the architecture. These difficulties arose both
because the goal of the architecture was not to constrain performance, but to permit
variability, and secondly (and perhaps more fundamentally), because there seemed
to be no useful formal tools for describing performance.

From the perspective of 2013, this paragraph is very telling. For some goals
such as routing, we had mechanisms (e.g. the TTL field) that we could
incorporate in the architecture to support the objective. For performance,
we simply did not know. (We proposed an ICMP message called Source
Quench, which never proved useful and may have just been a bad idea. It is
totally deprecated.) At the time this paper was written, our problems with
congestion were so bad that we were at peril of failing 2013 goal 10: “It
works”. Yet there is no mention of congestion and its control in this paper.
Arguably, we still do not know what the architecture should specify about
congestion and other aspects of performance. We seem to have some
agreement on the ECN bit, but not enough enthusiasm to get the
mechanism actually deployed. And there are many alternative proposals:
re-ecn, XCP, RCP, etc. that would imply a different packet header. The
debate seems to continue as to what to put in the packet (e.g. specify as
part of the architectural interfaces) in order to allow a useful range of
mechanisms to be designed to deal with congestion and other aspects of
performance.

This problem was particularly aggravating because the goal of the Internet project
was to produce specification documents which were to become military standards.
It is a well known problem with government contracting that one cannot expect a
contractor to meet any criteria which is not a part of the procurement standard. If
the Internet is concerned about performance, therefore, it was mandatory that

performance requirements be put into the procurement specification. It was trivial
to invent specifications which constrained the performance, for example to specify
that the implementation must be capable of passing 1,000 packets a second.
However, this sort of constraint could not be part of the architecture, and it was
therefore up to the individual performing the procurement to recognize that these
performance constraints must be added to the specification, and to specify them
properly to achieve a realization which provides the required types of service. We
do not have a good idea how to offer guidance in the architecture for the person
performing this task.

Datagrams

The fundamental architectural feature of the Internet is the use of datagrams as the
entity which is transported across the underlying networks. As this paper has
suggested, there are several reasons why datagrams are important within the
architecture. First, they eliminate the need for connection state within the
intermediate switching nodes, which means that the Internet can be reconstituted
after a failure without concern about state. Secondly, the datagram provides a basic
building block out of which a variety of types of service can be implemented. In
contrast to the virtual circuit, which usually implies a fixed type of service, the
datagram provides a more elemental service which the endpoints can combine as
appropriate to build the type of service needed. Third, the datagram represents the
minimum network service assumption, which has permitted a wide variety of
networks to be incorporated into various Internet realizations. The decision to use
the datagram was an extremely successful one, which allowed the Internet to meet
its most important goals very successfully.

There is a mistaken assumption often associated with datagrams, which is that the
motivation for datagrams is the support of a higher level service which is essentially
equivalent to the datagram. In other words, it has sometimes been suggested that
the datagram is provided because the transport service which the application
requires is a datagram service. In fact, this is seldom the case. While some
applications in the Internet, such as simple queries of date servers or name servers,
use an access method based on an unreliable datagram, most services within the
Internet would like a more sophisticated transport model than simple datagram.
Some services would like the reliability enhanced, some would like the delay
smoothed and buffered, but almost all have some expectation more complex than a
datagram. It is important to understand that the role of the datagram in this respect
is as a building block, and not as a service in itself.

This discussion of the datagram seems reasonable from the perspective of
2013, but as I said above, were I to write the paper now I would give
similar treatment to some of the other design decisions we made. See the
discussion at the end of the original paper.

TCP

There were several interesting and controversial design decisions in the
development of TCP, and TCP itself went through several major versions before it
became a reasonably stable standard. Some of these design decisions, such as
window management and the nature of the port address structure, are discussed in
a series of implementation notes published as part of the TCP protocol handbook
[17,18]. But again the motivation for the decision is sometimes lacking. In this
section, I attempt to capture some of the early reasoning that went into parts of TCP.
This section is of necessity incomplete; a complete review of the history of TCP itself
would require another paper of this length.

The original ARPANET host-to host protocol provided flow control based on both
bytes and packets. This seemed overly complex, and the designers of TCP felt that
only one form of regulation would he sufficient. The choice was to regulate the
delivery of bytes, rather than packets. Flow control and acknowledgment in TCP is
thus based on byte number rather than packet number. Indeed, in TCP there is no
significance to the packetization of the data.

This decision was motivated by several considerations, some of which became
irrelevant and others of which were more important than anticipated. One reason to
acknowledge bytes was to permit the insertion of control information into the
sequence space of the bytes, so that control as well as data could be acknowledged.
That use of the sequence space was dropped, in favor of ad hoc techniques for
dealing with each control message. While the original idea has appealing generality,
it caused complexity in practice.

A second reason for the byte stream was to permit the TCP packet to be broken up
into smaller packets if necessary in order to fit through a net with a small packet
size. But this function was moved to the IP layer when IP was split from TCP, and IP
was forced to invent a different method of fragmentation.

A third reason for acknowledging bytes rather than packets was to permit a number
of small packets to be gathered together into one larger packet in the sending host if
retransmission of the data was necessary. It was not clear if this advantage would be
important; it turned out to be critical. Systems such as UNIX which have a internal
communication model based on single character interactions often send many
packets with one byte of data in them. (One might argue from a network perspective
that this behavior is silly, but it was a reality, and a necessity for interactive remote
login.) It was often observed that such a host could produce a flood of packets with
one byte of data, which would arrive much faster than a slow host could process
them. The result is lost packets and retransmission.

If the retransmission was of the original packets, the same problem would repeat on
every retransmission, with a performance impact so intolerable as to prevent
operation. But since the bytes were gathered into one packet for retransmission, the
retransmission occurred in a much more effective way which permitted practical
operation.

On the other hand, the acknowledgment of bytes could be seen as creating this
problem in the first place. If the basis of flow control had been packets rather than
bytes, then this flood might never have occurred. Control at the packet level has the
effect, however, of providing a severe limit on the throughput if small packets are
sent. If the receiving host specifies a number of packets to receive, without any
knowledge of the number of bytes in each, the actual amount of data received could
vary by a factor of 1000, depending on whether the sending host puts one or one
thousand bytes in each packet.

In retrospect, the correct design decision may have been that if TCP is to provide
effective support of a variety of services, both packets and bytes must be regulated,
as was done in the original ARPANET protocols.

Another design decision related to the byte stream was the End-Of-Letter flag, or
EOL. This has now vanished from the protocol, replaced by the push flag, or PSH.
The original idea of EOL was to break the byte stream into records. It was
implemented by putting data from separate records into separate packets, which
was not compatible with the idea of combining packets on retransmission. So the
semantics of EOL was changed to a weaker form, meaning only that the data up to
this point in the stream was one or more complete application-level elements, which
should occasion a flush of any internal buffering in TCP or the network. By saying
"one or more" rather than "exactly one", it became possible to combine several
together and preserve the goal of compacting data in reassembly. But the weaker
semantics meant that various applications had to invent an ad hoc mechanism for
delimiting records on top of the data stream.

Several features of TCP, including EOL and the reliable close, have turned
out to be of almost no use to applications today. While TCP is not properly
part of the architecture of the Internet, the story of its design and evolution
provides another view into the process of trying to figure out in advance
what should be in, and what should be out, of a general mechanism that is
intended to last for a long time. (The goal of longevity).

In this evolution of EOL semantics, there was a little known intermediate form,
which generated great debate. Depending on the buffering strategy of the host, the
byte stream model of TCP can cause great problems in one improbable case.
Consider a host in which the incoming data is put in a sequence of fixed size buffers.
A buffer is returned to the user either when it is full, or an EOL is received. Now
consider the case of the arrival of an out-of- order packet which is so far out of order
to he beyond the current buffer. Now further consider that after receiving this out-
of-order packet, a packet with an EOL causes the current buffer to be returned to the
user only partially full. This particular sequence of actions has the effect of causing
the out of order data in the next buffer to be in the wrong place, because of the
empty bytes in the buffer returned to the user. Coping with this generated book-
keeping problems in the host which seemed unnecessary.

To cope with this it was proposed that the EOL should "use up" all the sequence
space up to the next value which was zero mod the buffer size. In other words, it
was proposed that EOL should be a tool for mapping the byte stream to the buffer
management of the host. This idea was not well received at the time, as it seemed
much too ad hoc, and only one host seemed to have this problems3. In retrospect, it
may have been the correct idea to incorporate into TCP some means of relating the
sequence space and the buffer management algorithm of the host. At the time, the
designers simply lacked the insight to see how that might be done in a sufficiently
general manner.

Conclusion

In the context of its priorities, the Internet architecture has been very successful.
The protocols are widely used in the commercial and military environment, and
have spawned a number of similar architectures. At the same time, its success has
made clear that in certain situations, the priorities of the designers do not match the
needs of the actual users. More attention to such things as accounting, resource
management and operation of regions with separate administrations are needed.

While the datagram has served very well in solving the most important goals of the
Internet, it has not served so well when we attempt to address some of the goals
which were further down the priority list. For example, the goals of resource
management and accountability have proved difficult to achieve in the context of
datagrams. As the previous section discussed, most datagrams are a part of some
sequence of packets from source to destination, rather than isolated units at the
application level. However, the gateway cannot directly see the existence of this
sequence, because it is forced to deal with each packet in isolation. Therefore,
resource management decisions or accounting must be done on each packet
separately. Imposing the datagram model on the Internet layer has deprived that
layer of an important source of information which it could use in achieving these
goals.

This suggests that there may be a better building block than the datagram for the
next generation of architecture. The general characteristic of this building block is
that it would identify a sequence of packets traveling from the source to the
destination, without assuming any particular type of service with that service. I have
used the word "flow" to characterize this building block. It would be necessary for
the gateways to have flow state in order to remember the nature of the flows which
are passing through them, but the state information would not be critical in
maintaining the desired type of service associated with the flow. Instead, that type
of service would be enforced by the end points, which would periodically send
messages to ensure that the proper type of service was being associated with the

3 This use of EOL was properly called "Rubber EOL" but its detractors quickly called it "rubber baby buffer bumpers" in an
attempt to ridicule the idea. Credit must go to the creator of the idea, Bill Plummocr, for sticking to his guns in the face of
detractors saying the above to him ten times fast.

flow. In this way, the state information associated with the flow could be lost in a
crash without permanent disruption of the service features being used. I call this
concept "soft state," and it may very well permit us to achieve our primary goals of
survivability and flexibility, while at the same time doing a better job of dealing with
the issue of resource management and accountability. Exploration of alternative
building blocks constitute one of the current directions for research within the
DARPA Internet program.

Acknowledgments -- A Historical Perspective

It would be impossible to acknowledge all the contributors to the Internet project;
there have literally been hundreds over the 15 years of development: designers,
implementers, writers and critics. Indeed, an important topic, which probably
deserves a paper in itself, is the process by which this project was managed. The
participants came from universities, research laboratories and corporations, and
they united (to some extent) to achieve this common goal.

The original vision for TCP came from Robert Kahn and Vinton Cerf, who saw very
clearly, back in 1973, how a protocol with suitable features might be the glue that
would pull together the various emerging network technologies. From their position
at DARPA, they guided the project in its early days to the point where TCP and IP
became standards for the DOD.

The author of this paper joined the project in the mid-70s, and took over
architectural responsibility for TCP/IP in 1981. He would like to thank all those who
have worked with him, and particularly those who took the time to reconstruct
some of the lost history in this paper.

References

1. V. Cerf, and R. Kahn, "A Protocol for Packet Network intercommunication”, IEEE
Transactions Communications, Vol. Corn-22, No. 5, May1974 pp. 637-648.

2.1S0, "Transport Protocol Specification", Tech. report IS-8073, International
Organization for Standardization, September 1984.

3.1S0, "Protocol for Providing the Connectionless- Mode Network Service", Tech.
report DIS8473, International Organization for Standardization,

1986.

4. R. Callon, "Internetwork Protocol", Proceedings of the IEEE, Vol. 71, No. 12,
December 1983, pp. 1388-1392.

5. Jonathan B. Postel, "Internetwork Protocol Approaches”, IEEE Transactions

Communications, Vol. Corn-28, N"d: 4, April 1980, pp. 605-611.

6. Jonathan B. Postel, Carl A. Sunshine, Danny Cohen, "The ARPA Internet Protocol",
Computer Networks 5, Vol. 5, No. 4, July 1981, pp. 261-271

7. Alan Shehzer, Robert Hinden, and Mike Brescia, "Connecting Different Types of
Networks with Gateways", Data Communications, August 1982.

8.]. McQuillan and D. Walden, "The ARPA Network Design Decisions ' ', Computer
Networks, Vol. 1, No. 5, August 1977, pp. 243-289.

9. R.E. Kahn, S.A. Gronemeyer, J. Burdifiel, E.V. Hoversten, "Advances in Packet Radio
Technology"”, Proceedings of the IEEE, Vol. 66, No. 11, November 1978, pp. 1408-
1496.

10. B.M. Leiner, D.L. Nelson, F.A. Tobagi, "Issues in Packet Radio Design",
Proceedings of the IEEE, Vol. 75, No. 1, January 1987, pp. 6-20.

11. "Transmission Control Protocol RFC-793", &DN Protocol Handbook, Vol. 2,
September 1981, pp, 2.179-2.198.

12.Jack Haverty, "XNET Formats for Internet Protocol Version 4 IEN 158", DDN
Protocol Handbook, Vol. 2, October 1980, pp. 2-345 to 2-348.

13. Jonathan Postel, "User Datagram Protocol NICRFC- 768", DDN Protocol
Handbook, Vol.
2. August 1980, pp. 2.175-2.177.

14.1.]Jacobs. R. Binder, and E. Hoversten, "General Purpose Packet Satellite
Networks", Proceedings of the IEEE, Vol. 66, No. 11, November 1978, pp' 1448-
1467.

15. C. Topolcic and]. Kaiser, "The SATNET Monitoring System", Proceedings of the
IEEEMILCOM Boston, MA, October 1985, PP.
26.1.1-26.1.9.

16. W.Edmond, S.Blumenthal, A.Echenique, S.Storch, T.Calderwood, and T.Rees, "The
Butterfly Satellite IMP for the Wideband Packet Satellite Network' ', Proceedings of
the ACM SIGCOMM '86, ACM, Stowe, Vt., August 1986, pp. 194-203.

17. David D. Clark, "Window and Acknowledgment Strategy in TCP NIC-RFC-813",
DDN Protocol Handbook, Vol. 3, July 1982, pp. 3-5 to 3-26.

18. David D. Clark, "Name, Addresses, Ports, and Routes NIC-RFC-814", DDN
Protocol Handbook, Vol. 3, July 1982, pp. 3-27 to 3-40. 114

A perspective from 2013

By the principle of architectural minimality, architecture does not specify how to
achieve outcomes such as good security, scalable routing or good control of
congestion. What a minimal architecture does is specify a small set of constraints
and design decisions that allow these goals to be achieved in the overall design and
realization. Good architecture does not necessarily specify how to achieve goals, it
just makes them possible. And by clever design, good architecture may make
difficult or impossible behaviors that are not desirable—security is essentially a
negative goal.

When looking at an artifact such as the present Internet, or a design for a future
Internet, this paper proposes that an analysis or evaluation should distinguish
between the core architecture (the design principles and the key constraints and
interfaces), the larger set of mechanisms that complete the design, and a specific
realization, which is the use of these mechanisms in a particular configuration to
produce a running system. At each of these steps, the evaluation should ask what
that step implies for the step that follows—what becomes easy or hard, what
degrees of freedom there are, and whether the different goals are actually achieved
at the end, with a running system.

In the Internet design, we were successful to different degrees in achieving our
objectives. Using my 2013 list as a starting point, here is how I would score the core
architecture of the Internet:

Security

Early on in the design of the Internet, we settled on a view that integrity and
confidentiality should be achieved using an “end-to-end” approach based on
encryption. This was understood, if not perhaps clearly stated; it was more clearly
stated with the design of multicast, in which any receiver could attach to a multicast
stream. The end-point approach was the only way to achieve these goals given that
design decision about multicast.

The end-point approach to integrity is elaborated in several of the future Internet
proposals that use some sort of ID based on a hash of a key or content to allow end-
points to validate each other’s identity. However, since (with the exception of NDN)
these fields are not validated in the network, it is not clear if the definition of IDs is
actually a mandatory part of the architectural specification, or only a
recommendation about end-node behavior, which becomes mandatory if it catches
on, like the DNS.

Securing the network itself, which seems to call for secure versions of routing
protocols, etc., has been relegated to that second stage of mechanism design that
turns the architecture into a complete implementation. This approach is probably
valid, since different circumstances call for different degrees of security. But there is
an open question as to whether there are architectural decisions that could make
this task easier.

Availability and resilience

This view about security leaves availability as the major problem that the
architecture must solve. However, in the 1980s we did not understand how to think
about availability in general. We understood that packets might get lost, so we
designed TCP to recover. But there is nothing in the architecture itself to help with
this problem (unless you consider that at this point, the functions of TCP are
essentially a part of the architecture). We understood that links and routes might
fail, so we needed dynamic routing. But aside from the TTL field, the architecture
did not contain any features to facilitate dynamic routing. Our intuition was that no
architectural support was needed for routing, or for availability more generally.

Many designers today consider this approach inadequate. By the end-to-end
argument, there may be failures that only the end-nodes can detect, since only the
end-nodes can confirm correct operation. If the end-nodes are the point where
failures are detected, then the end-nodes must be able to initiate corrective actions.
This approach, in general, is often described using the term “user choice”. The
Internet was very consistent in giving the user little choice. But several of the future
Internet proposals are questioning and revisiting this approach.

Over the years, there have been many proposals for additions to the core design to
improve one or another aspect of security, such as capabilities, signed source
addresses, and so on. None of these seem to have caught on.

Economic viability

One way to think about economic viability is that all the actors in the ecosystem
created by the architecture must have the motivation to play the role assigned to
them by that architecture. In particular, if there is a class of actor that does not find
an economic incentive to enter the ecosystem and invest, the design will not thrive.

This way of looking at things was roughly understood early on, but we had no tools
to reason about it. In fact, the issues have really only become clear in the last decade,
with ISPs (which make large capital investments) trying to find ways to increase
revenues by “violating” the architecture—peeking into packets, exercising
discrimination of various sorts, and so on. As well, the current debates about when
interconnection (e.g. peering) should be revenue neutral and whether paid peering
should be acceptable illustrate the complexity of the economic landscape.

Early on, the Internet designers realized that the architecture lacked a concept that
was central to earlier forms of cost recovery (e.g. in telephone systems), the “call”. In
fact, the designers were proud that the Internet lacked any sort of call setup or call
indication (flow indicator) in the packets. But this lack eliminated a range of
possible billing models. The telephone system has “sender pays” long-distance calls
(the normal model) and “receiver-pays” calls (800 numbers). The Internet
architecture explicitly did not offer any hook for this sort of function, and this
decision was considered a good thing.

The billing model supported by the Internet design is a very simple one, called “bill
and keep”. Each end-point attached to the Internet pays for access, and small ISPs
pay bigger ISPs (e.g. what we call transit) and in the middle, where the tier 1
providers peer, no money flows.

The bill-and-keep model is very simple—it is based on volume of flow, but on
nothing else, such as where the packets are going. There have been many proposals
to add mechanisms to packets or state in routers to allow billing based on the
location of source and destination, or the direction of the “value flow” (like the 800
number). But there have been few proposals for an architectural mechanism that
would facilitate a more general set of billing models. In fact, I think there is a
resistance to the design of any such mechanism at the level of architecture.

Better management

As I discussed in part above, the original Internet architecture did not contain any
design elements intended to address the issues of network management. We
received some criticism from our friends in the telephone industry about this; they
said that a major part of the design of the telephone system was to address issues of
management—fault detection and isolation, performance issues and the like. Many
of the basic data formats used to transport voice across the digital version of the
telephone system contain fields related to management, and we were asked why we
had not understood that. Our basic headers (e.g. the IP packet header) did not
contain any data fields that defined building blocks for network management.

In fact, I don’t think we had any idea what these might be. After the fact, creative
people repurposed the TTL field to create traceroute, which has to be seen as a truly
ugly but pragmatic response to a lack of any architectural clarity about
management. But even today, [don’t think we have a sense of the right building
blocks to make network management more effective.

If one is probing the network with a tool like traceroute, and one of the ISPs along
the path is actively malicious, then they might process traceroute packets properly
but disrupt normal data packets. For this reason, it might make sense to incorporate
some testing/probing fields into the normal data packet, so that a malicious ISP
cannot disrupt the normal data flow without also causing anomalies in the probing.

Meet society’s needs

This very general heading captures a range of issues such as privacy (on the one
hand), lawful intercept (on the other hand), resilience of critical services, control of
disruptive or illegal behavior by users, and so on. There is very little in the 1988
paper that speaks to these issues. It may not have been clear in 1988 that the way
addresses are specified and used (for example) has a material influence on the
balance between privacy, traffic analysis, lawful intercept and the like. These issues
have now emerged as important, but I do not think we have clear ideas about how to
deal with them, and in particular how to deal with them in a way that leaves a
degree of subsequent flexibility to the implementation and the realization.

Longevity

From the 2013 perspective, longevity seems almost a definitional aspect of
architecture—one way of viewing architecture is that it is those decisions that
survive over time, and allow a series of implementations to be derived
incrementally from the architecture. A specific way of saying this is that since the
highest level goal for the Internet was interoperability, a successful architecture
would permit interoperation in space (among a number of networks) and in time (a
progression of implementations that embody new innovations.

The migration from IPv4 to IPv6 is a clear illustration of the issue—the address
format is one of the most basic of the architectural interfaces defined for the
Internet, and changing it is really changing the architecture. This change is proving
really hard.

Support for tomorrow’s computing

The original Internet evolved in an environment of very heterogeneous machines—
9 bit bytes, for example. The design deals better with some aspects of heterogeneity
than others. Highly parallel computers often face performance bottlenecks sending
data over the inherently serial Internet. Attempts to use parallel interfaces creates a
model of parallelism that manifests end-to-end, which is a barrier to heterogeneity.
But in general, the Internet has survived predictions that future machines will be
unable to run the protocols either because the machines are too fast (e.g. super-
computers) or two feeble (e.g. sensors). But this debate will constantly be renewed,
with today’s issues being data-centers and “cloud”, Internet of Things, and the like.

Exploit tomorrow’s networking

Despite the fact that the second network hooked to the Internet after the ARPAnet
was a mobile wireless network (the ARPA packet radio network) it is arguably true
that the Internet is not as suited for mobile endpoints (and mobile networks) as it
might be. To some extent, some second level decisions (e.g. the TCP pseudo-header)
made this problem worse. But better support for mobility is a goal of some future
Internet proposals.

Optical communications is the other major technology to raise challenges to the
Internet architecture. One cannot do packet-level processing in the optical domain
(although there have been some very clever technologies proposed), so any
switching seems to imply a conversion from the optical to the electrical domain.
However, this problem has been neatly sidestepped by designing complex lower-
layer architectures (both optical and electrical, such as MPLS) that provide an
environment of virtual links over which Internet can run. It is actually a good idea
that these lower-level technologies are not a part of the Internet itself, since the
functional isolation among them has allowed innovation and development at the
lower layers without having to “change” IP. However, it is again an open question as
to whether there are changes to IP (or the second-level mechanisms) that would be
advantageous, given that the Internet protocols today run over very complex lower

level technology, with their own complex mechanisms for routing, traffic
engineering, fault management, and so on.

If there were an improvement to be had in this space, it would probably not be in
the data carriage itself, but in the various aspects of network management. For
example, when different layers detect a link failure and all initiate recover, the
different recovery algorithms may interfere with each other, since they are not
connected in any way. Of course, the management area is one in which the Internet
design does poorly in the first place. It is possible that a future design for an Internet
might contemplate a totally different modularity for network management.

Support tomorrow’s applications

The designers of the Internet are perhaps justifiably proud of the wide range of
applications that the architecture supports. However, as I discuss below under “fit
for purpose”, applications that don’t work will over the Internet are often dismissed
or ignored. Real-time process control, remote control of autonomous vehicles,
advanced tele-presence, and other challenging applications are set aside as not
important. The research community should be open to the consideration of what
new sorts of applications might emerge (or might have emerged) if the Internet had
a slightly different service model.

Fit for purpose (it works...)

Those of us who designed the original Internet are so pleased (and perhaps
surprised) that it works as well as it does that we feel justified in turning a blind eye
to the aspects that don’t work so well. If the Internet is not as reliable as the phone
system, and routing takes rather long to converge after a transient, we say that after
all routing is just one of those “second-level” mechanisms, and not a part of the
architecture, and who said that “5 nines” is the right idea for the Internet? If
management is difficult, costly, and a major cause of outages, we (at least in the
research community) do not seem to view this as our problem. Security is a
persistent problem, and so on.

In each of these cases, the relevant research challenge for architecture is actually
very nuanced. The architecture question is not “how should we solve this problem”,
but “what set of architectural design decisions would let designers of specific
implementations and realizations solve these problems more easily or effectively”?
A tough question, and one we don’t yet know how to think about in general.

