
Notes on Logic

1 Propositional Calculus

A proposition or statement is an assertion which can be determined to be either true or

false (T or F). For example, “zero is less than any positive number” is a statement. We

are interested in combining and simplifying statements, as well as developing ways to

check whether a given statement is true or false using a set of rules called propositional

calculus. This hasn’t got anything to do with ordinary calculus, although later on

we’ll deal with statements which have variables, when we introduce quantifiers. In

order to work with and simplify statements, we often assign letters to represent them,

which allows us a convenient way to manipulate logical expressions. For example, p

could be the statement “zero is less than any positive number” and q could be the

statement “zero is larger than any negative number”. In the next section we will see

how to write the statement “p and q” using logical symbols.

2 Logical Operators and Truth Tables

At this point we can introduce notation for logical operators: the word and is repre-

sented by ∧, and called the conjunction operator. The word or is represented by ∨,

and called the disjunction operator. For any statement p, we write ¬p (or sometimes

in textbooks one sees p) for the statement “p is false”, which is the complement of p.

So now we can write expressions like p ∧ q and (p ∨ q) ∧ (¬r). The use of brackets

here will be explained in more detail later. Such abstract expressions can often be

simplified: for example, it is clearly redundant to say p ∧ p, since this is the same as

p itself. Let’s look more closely at some of the rules whereby symbolic logical state-

ments can be simplified, using truth tables. A truth table gives all possible values (T

or F) of a statement which combines a number of simpler statements. For example,

suppose that p and q are statements. Then the truth tables for ¬p, p ∧ q, p ∨ q, are

respectively

p ¬p

T F

F T

p q p ∧ q

F F F

F T F

T F F

T T T

p q p ∨ q

F F F

F T T

T F T

T T T
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We can already evaluate a statement such as ¬(¬p ∨ ¬q). The brackets tell us first

to evaluate ¬p ∨ ¬q, and then to take the complement of the result. The truth table

looks like this:

p q ¬p ¬q ¬p ∨ ¬q ¬(¬p ∨ ¬q)

F F T T T F

F T T F T F

T F F T T F

T T F F F T

But we already know this truth table – it is p ∧ q. This is our first example of a

simplification of a logical symbolic expression, and we refer to it as de Morgan’s Law.

It allows us, from now on, to reduce ¬(¬p ∨ ¬q) to p ∧ q inside any complicated

statement. Two statements are equivalent if they have the same truth table. The

symbol for equivalence is ↔ (sometimes people use ≡), and we just saw

¬(¬p ∨ ¬q) ↔ p ∧ q

Another way of saying p ↔ q is p if and only if q. It is also true that ¬(¬p∧¬q) ↔ p∨q,

and we refer to this also as de Morgan’s Law. As one would guess, there are many

other such equivalences; we list the most important onces here with their names:

Rules of Logic

• ¬(¬p) ↔ p double negation

• p ∧ p ↔ p absorption rule

• p ∨ p ↔ p absorption rule

• p ∨ (p ∧ q) ↔ p absorption rule

• p ∧ (p ∨ q) ↔ p absorption rule

• p ∧ q ↔ q ∧ p commutative rule for conjunction

• p ∧ q ↔ q ∧ p commutative rule for disjunction

• p ∧ (q ∧ r) ↔ (p ∧ q) ∧ p associative rule for conjunction

• p ∨ (q ∨ r) ↔ (p ∨ q) ∨ r associative rule for disjunction

• p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) distributive rule for conjunction

• p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r) distributive rule for disjunction

• ¬(¬p ∨ ¬q) ↔ p ∧ q de Morgan’s Law

• ¬(¬p ∧ ¬q) ↔ p ∨ q de Morgan’s Law

All of these equivalences can be checked with truth tables; this is left as an exercise.

These rules allow us to simplify logical statements (simplify means replace with a
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simpler equivalent statement). For example, suppose we want to simplify p∨¬(¬p∧
¬q). The brackets tell us which part to evaluate first, and we work from inside to

outside. Therefore

p ∨ ¬(¬p ∧ ¬q) ↔ p ∨ (p ∨ q) de Morgan

↔ (p ∨ p) ∨ q associative rule

↔ p ∨ q absorption rule

A final and very useful operator is called the exclusive or or xor operator, denoted ⊕.

The truth table for this operator is:

p q p⊕ q

F F F

F T T

T F T

T T F

It is evident that p⊕ q is the same as (p ∨ q) ∧ ¬(p ∧ q) – as a phrase this is written

“p or q, but not both”. We could add a number of rules for ⊕ to our list above, but

we will leave these as exercises. Events p and q for which p ⊕ q = p ∨ q are called

mutually exclusive (so statements p and q are mutually exclusive if p ∧ q is always

false – for example “it is raining and I have an umbrella” and “it is raining and I have

no umbrella” are mutually exclusive statements). For mutually exclusive statements

p and q, p ∨ q is often written p
◦∨ q to stress that p ∧ q is false.

3 Conditional Statements

If we are given two very complicated statements, it might be difficult to check directly

whether they are equivalent. So it is often easier to break down the equivalence into

a number of implications. We write p → q for “statement p implies statement q”.

The truth table for this is given by:

p q p → q

F F T

F T T

T F F

T T T
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Depending on how one reads the English, the second line of the truth table may

seem curious: why is “p is false implies q is true” a true statement? One should

interpret it this way: p implies q can be false only if the guarantee that whenever p

is true then q is true is violated, and this happens only on the third line of the truth

table. For example, the claim “if it rains, then I carry an umbrella” is not violated by

carrying an umbrella when there is no rain. In English, we often state p → q as “q is a

necessary condition for p” and “p is a sufficient condition for q”. In many statements

of theorems, this terminology is used. Also p ↔ q is written “p is a necessary and

sufficient condition for q” or “p if and only if q”.

The converse of p → q is q → p. As we have defined it,

(p → q) ∧ (q → p) ↔ (p ↔ q).

So to check whether two statements are equivalent, we have to check that each implies

the other. We also say “q if p” instead of p → q and “q only if p” for q → p. This

clarifies our use of “if and only if” for equivalence of two statements. As an exercise,

check the above equivalence, using truth tables. Another rule we can use is that

p → q is equivalent to ¬p ∨ q:

(p → q) ↔ (¬p ∨ q).

This is useful for simplifying logical statements. As an exercise, the above equivalence

can be verified by truth tables. The contrapositive of p → q is written ¬q → ¬p, and

is very often extremely useful in proofs, as we shall see in the next section, since

(p → q) ↔ (¬q → ¬p) contrapositive

As an exercise, verify this statement.

4 Contradictions and Tautologies

A statement which is always true is called a tautology (the truth table should display

T in every row of the last column) and a statement which is always false is called a

contradiction (the truth table should display F in every row of the last column). We

write 0 to denote that a generic contradiction and 1 to denote a generic tautology.

For example, if p is any statement, then ¬p ∨ p is a tautology whereas ¬p ∧ p is a

contradiction (a statement can’t be false and true at the same time). The rules for
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interaction between a statement p and tautologies and contradictions are as follows:

1 ∨ p ↔ 1

0 ∨ p ↔ p

1 ∧ p ↔ p

0 ∧ p ↔ 0

So to check equivalence of two statements, we are really showing that their equivalence

is a tautology. All of the rules given previously are tautologies. Let’s do an example.

To see whether p∧ (p∨q) is a tautology, we could write out the truth table as follows:

p q p ∧ (p ∨ q)

F F F

F T F

T F T

T T T

So in fact we get the truth table of p (this actually proves one of the absorption

rules). Since p could be false, we conclude that p ∧ (p ∨ q) is not a tautology, since

it is equivalent to p. Consider, on the other hand, p ∨ (p ∧ q) ∨ (p → q). The truth

table is

p q p ∨ (p ∧ q) ∨ (p → q)

F F T

F T T

T F T

T T T

so this is a tautology. Checking tautologies via truth tables is tedious; for example

the truth table of a statement which is a logical combination of ten other statements

requires a truth table with 210 = 1024 rows – by no means painless! But we don’t

have to do it with truth tables, since we have the rules of logic to guide us (as an

exercise, check this):

p ∨ (p ∧ q) ∨ (p → q) ↔ p ∨ (p ∧ q) ∨ (¬p ∨ q)

↔ p ∨ (¬p ∨ q)

↔ (p ∨ ¬p) ∨ q

↔ 1 ∨ q

↔ 1.

The above argument represents something called a proof, which we discuss in the next

section.
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5 Proofs

The → symbol is transitive: this means that

((p → q) ∧ (q → r)) → (p → r).

As an exercise, check this using truth tables. Note that sometimes we write p → q → r

as shorthand for the left hand side. We call r the conclusion and p the premise of

the statement p → q → r. A proof of conclusion r starting with premise p is a series

of implications p → p1 → p2 · · · → pk → r where each pi is a statement. Many

very complicated mathematical proofs have long chains of simple implications (i.e.

they are broken down into many steps). In this section, we prove some elementary

mathematical statements using the logic developed so far. The first example is a

direct proof of the equivalence of two statements. To verify the equivalence p ↔ q,

we break it down into checking p → q and q → p.

Proposition 5.1 Let P (x) be a polynomial with real coefficients. Then P (0) = 0 if

and only if P (x) = xQ(x) for some polynomial Q(x).

Proof. (Direct Proof) We want to prove that “P (0) = 0” if and only if “P (x) = xQ(x)

for some polynomial Q(x)”. We could start by showing that the first statement implies

the second. We can suppose P (x) = anx
n + an−1x

n−1 + · · · + a1x + a0 where ai are

real numbers. Then here is the proof:

P (0) = 0 → an0n + an−10
n−1 + . . . + a10 + a0 = 0

→ a0 = 0

→ P (x) = anxn + an−1x
n−1 + · · ·+ a1x

→ P (x) = x(anx
n−1 + an−1x

n−2 + . . . + a1)

→ P (x) = xQ(x)

where Q(x) is the polynomial anxn−1 + an−1x
n−2 + . . . + a1. This proves that the

first statement implies the second. Now we have to show the converse: the second

statement implies the first. This is easy: P (x) = xQ(x) → P (0) = 0 ·Q(0) → P (0) =

0, as required. This completes the proof.

In this example, P (0) = 0 is the premise and P (x) = xQ(x) is the conclusion. Note

the use of a box to show that the proof is finished. In many cases in mathematics, it

is extremely helpful to use the contrapositive instead of direct proof (this really can’t
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be stressed enough). That is, instead of proving p → q, we prove that ¬q → ¬p. It

is often the case that proving p → q directly is much harder than showing ¬q → ¬p.

This will be referred to henceforth as a proof by contradiction. One of the most

basic examples leads to an extremely useful combinatorial technique known as the

pigeonhole principle. We will use this principle many times in the material to follow.

Proposition 5.2 (The Pigeonhole Principle) If more than n numbers are selected from

{1, 2, . . . , n}, then there are two of the numbers which are the same.

Proof. (Proof by contradiction) Suppose that the statement “there are two numbers

which are the same” is false; this is the same as saying all the numbers are different.

But there are only n available numbers, namely 1, 2, . . . , n, so we have a selection of

at most n numbers. In other words, “at most n numbers have been selected from

{1, 2, . . . , n}”, so the first statement of the proposition is false. This completes the

proof.

Although this may be an obvious statement, it is the beginning of a very powerful

technique in discrete mathematics called averaging, and sometimes gives very surpris-

ing results, as we shall see later.

Recall that a prime number is a positive integer larger than 1 which is divisible only

by 1 and itself. For instance, 2, 3, 5, 7, 11, 13, 17, 19 are the first eight prime numbers.

Here is a proof by contradiction that there are infinitely many prime numbers using

the double negation rule. We assume there are finitely many prime numbers and

derive a statement which is obviously false. We refer to this, too, as a proof by

contradiction. The proof goes back to Euclid, and is despite the fact that there is

no known simple formula for prime numbers (for example formulas like 2n + 1 or

n2 + n + 1 are not always prime for n ≥ 1).

Proposition 5.3 There are infinitely many prime numbers.

Proof. (Proof by contradiction) Consider the statement: “there are infinitely many

prime numbers”. If we call this statement p, then it is enough to show that the

statement ¬p is false to show that p is true, by the double negative rule. Now ¬p is

the statement “there are finitely many prime numbers”. Let’s prove that this is false.

Suppose the finitely many prime numbers in the statement are p1, p2, . . . , pr. Take a

number n = p1p2 · · · pr + 1 (this is the key step of the proof). Then n is not prime,

so n must be divisible by a prime number m where 1 < m < n. But the primes are

p1, p2, . . . , pr, so m must be one of the primes p1, p2, . . . , pr. But that is impossible
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since m then divides p1p2 · · · pr, but m does not divide p1p2 . . . pr + 1. So ¬p is false,

and this completes the proof.

Later on we will study primes in much more detail; in particular with applications to

cryptography, where their use is fundamental.

6 Cases and Counterexamples

In many proofs, we have to break things down even further into cases. If premise

p ∨ q is given, and we want to prove r, then it is enough to show

(p → r) ∧ (q → r).

As an exercise, check this using the rules given above. This breaks the proof into

two cases: we have to check that p → r, and then we have to check that q → r. For

example, suppose we want to show that if x is not divisible by three, then x2 + 2 is

divisible by three. For short, we write this as 3|x2 + 2. If x is not divisible by three

(we write this as 3 - x), then we know that x = 3m+1 or x = 3m+2 for some integer

m. These are the statements p and q, and we want to derive r:

(x = 3m + 1) ∨ (x = 3m + 2) → 3|x2 + 2.

Let’s first prove x = 3m + 1 → 3|x2 + 2:

x = 3m + 1 → x2 + 2 = (3m + 1)2 + 2

↔ x2 + 2 = 9m2 + 6m + 3

↔ x2 + 2 = 3(3m2 + 2m + 1)

↔ 3|x2 + 2.

That proves p → r, and similarly one shows q → r. We deduce (p ∨ q) → r, which is

what we wanted.

The statement p ∧ q is false if p is false or q is false, by definition of conjunction.

We say that p is a counterexample to p ∧ q if p is false. More generally, to show

that a chain of conjunctions is false, all we have to do is produce a proof that one of

the statements in the chain is false (this statement is then a counterexample). For

instance, the statement “n2 + n + 1 is prime for all positive integers n < 10” is false,

since 42 +4+1 = 21 is not prime, and it is a chain of conjunctions of nine statements.
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7 Predicate Calculus and Quantifiers

The phrase “n2 + n + 1 is prime” is not really a statement if we don’t say what

n is, since the primality of n2 + n + 1 depends on the value of n. Remember that

statements are true or false, so this can’t be a statement. To turn it into a proper

statement, we introduce quantifiers. How can we write “n2 + n + 1 is prime for all

positive integers n” as a statement using logical symbols? The problem is the phrase

“for all”. If we tried to write it using ∧,∨,¬, we get into trouble since we’d have to

write an infinite chain of conjunctions and that is not defined so far. So we introduce

a new symbol, called a quantifier, and which represents “for all”. The symbol is ∀,
and the statement is written

∀n ≥ 1(n2 + n + 1 is prime).

The brackets tell us to which statement ∀n ≥ 1 applies to. We refer to n in this

statement as the variable of the statement; this is the main difference between propo-

sitional and predicate calculus: now sentences p accept a variable n, so we write

statements as ∀n(p(n)). More generally, there is no reason not to have statements

which depend on many variables, such as ∀l,m, n(p(l, m, n)).

How do we represent disjunctions? Consider the statement “there exists a positive

integer n such that n2 + n + 1 is prime”. This is the same as the disjunction p1 ∨
p2 ∨ p3 ∨ · · · where pi is the statement i2 + i + 1 is prime for i = 1, 2, . . .. The phrase

“there exists” is replaced with the symbol ∃:

∃n ≥ 1(n2 + n + 1 is prime).

Using the rule p∨ q = ¬(¬p∧¬q), we see that the symbols ∀ and ∃ are related in the

following important way:

∀n(p(n)) ↔ ¬(∃n(¬p(n))) negation

This is very useful in proofs, since proving ∀n(p(n)) might be hard if we consider all

values of n, whereas checking that there can’t be a value of n such that p(n) does

not hold could be easier. For example, consider proving that n2 + 1 is never divisible

by three. This is precisely the statement that ∀n(3 - n2 + 1). We can’t very well

go through all integers n to check that the statement in brackets is true. Rather,

suppose that there is a value of n such that 3 | n2 + 1. Let’s derive from this a

contradiction. We can write n = 3m + r where r ∈ {0, 1, 2} and m is an integer.

Then n2 + 1 = (3m + r)2 + 1 = 9m2 + 6mr + r2 + 1. But if r ∈ {0, 1, 2}, then

r2 + 1 ∈ {1, 2, 5}, and so 3 - r2 + 1 and 3 - n2 + 1. That proves ∀n(3 - n2 + 1).
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Many mathematical statements can now be written very succinctly using quantifiers

(although sometimes it is hard to read). Let’s consider examples. Suppose we are

given statements p(x) : “x is a power of two” and q(y) : “y is a power of three” and

the statement r(z) : “z is prime”. How do we say there is at least one value of x and

at least one value of y such that x− y is a prime?

∃x, y(p(x) ∧ q(y) ∧ r(x− y)).

This is quite a simple example, since we did not mix occurrances of ∃ and ∀. A good

exercise at this point is to try to write the statement “71 is prime” using quantifiers.

7.1 Definition of Limits

We now consider the example of the definition of a limit using quantifiers. In all of this

section, variables ε, δ,X and so on are assumed to be real numbers. The definition of

limx→a f(x) = L in words is “the closer x gets to a, the closer f(x) gets to L”. This is

more complicated to write with quantifiers, since we have to introduce new variables

ε and δ to take care of the word “closer”, which appears twice in the definition. The

logical definition of limx→a f(x) = L is:

∀ε > 0(∃δ > 0(|x− a| < δ → |f(x)− L| < ε)).

Here is another example of limits, where we have to introduce a new variable. We

wish to write limx→∞ f(x) = L using quantifiers. Informally, this can be written “the

larger the value of x, the closer f(x) is to L”. The problem is that “the larger the

value of x...” has to be written with quantifiers: the key is to introduce a new variable

X. Then the statement is

∀ε > 0(∃X(∀x > X(|f(x)− L| < ε))).

8 Quick Summary

• Logical symbols ¬,∨,∧,⊕,
◦∨,→,↔,∀,∃.

• Truth tables.

• Laws for manipulating logical expressions.

• Conditional statements and equivalence, contrapositive.

• Contradiction and tautology.

• Proof by contradiction and direct proof.

• Pigeonhole principle.

• Quantifiers and negating quantifiers.
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9 Exercises

Question 1. Consider “this sentence is false”. Is this a proposition? [1]

Question 2. Determine which of the following statements are tautologies. If the

statement is a tautology, give a proof by referring to the appropriate rules at each

step of your proof. If not, then justify your answer by giving a counterexample or

using truth tables. [10]

(a) (p → q) ∧ (q → r) ↔ (p → r)

(b) p ∨ (p ∧ q) ↔ p

(c) (p ∧ (p⊕ r)) ↔ (r → p)

(d) (r → p) ∨ (p ∧ r) ∨ (p → r)

(e) (p⊕ q ⊕ r) ↔ ((p ∨ q ∨ r) ∧ ¬((p ∧ r) ∨ (q ∧ r) ∨ (p ∧ q)))

Question 3. Prove that if we choose any n + 1 integers from {1, 2, . . . , 2n}, then

one of the integers chosen divides another. You may find it useful to note that every

positive integer x can be written in the form x = 2k · m for some positive integer

m and some integer k ≥ 0, and then to use the pigeonhole principle applied to the

number of possible different values of m. [4]

Question 4. Write the statement “there are infinitely many primes” in terms of

the statements p(n), q(m,n) and r(m,n), where p(n) is the statement “n > 1 is an

integer”, q(m,n) is the statement “m > n is an integer” and r(m,n) is the statement

“m < n is an integer”. [3]

Question 5. Use quantifiers to write the statement “ lim
x→∞

sin x does not exist”. [3]

11


