
Design & Analysis of Algorithms

Design & Analysis of Algorithms

i

About this Tutorial

An Algorithm is a sequence of steps to solve a problem. Design and Analysis of Algorithm

is very important for designing algorithm to solve different types of problems in the branch

of computer science and information technology.

This tutorial introduces the fundamental concepts of Designing Strategies, Complexity

analysis of Algorithms, followed by problems on Graph Theory and Sorting methods. This

tutorial also includes the basic concepts on Complexity theory.

Audience

This tutorial has been designed for students pursuing a degree in any computer science,

engineering, and/or information technology related fields. It attempts to help students to

grasp the essential concepts involved in algorithm design.

Prerequisites

The readers should have basic knowledge of programming and mathematics. The readers

should know data structure very well. Moreover, it is preferred if the readers have basic

understanding of Formal Language and Automata Theory.

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Design & Analysis of Algorithms

ii

Table of Contents

About this Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents... ii

BASICS OF ALGORITHMS ... 1

1. DAA ─ Introduction ... 2

2. DAA ─ Analysis of Algorithms .. 4

3. DAA ─ Methodology of Analysis .. 5
Asymptotic Analysis ... 5
Solving Recurrence Equations ... 5
Amortized Analysis .. 6

4. DAA ─ Asymptotic Notations & Apriori Analysis .. 8
Asymptotic Notations .. 8
O: Asymptotic Upper Bound .. 9
Ω: Asymptotic Lower Bound .. 9
Ɵ: Asymptotic Tight Bound .. 9
O - Notation ... 10
ω – Notation .. 10
Apriori and Apostiari Analysis .. 11

5. DAA ─ Space Complexities ... 12
What is Space Complexity? .. 12
Savitch’s Theorem ... 13

DESIGN STRATEGIES .. 14

6. DAA ─ Divide & Conquer ... 15

7. DAA ─ Max-Min Problem ... 16
Naïve Method .. 16
Divide and Conquer Approach ... 16

8. DAA ─ Merge Sort.. 18

9. DAA ─ Binary Search .. 20

10. DAA ─ Strassen’s Matrix Multiplication ... 22
Naïve Method .. 22
Strassen’s Matrix Multiplication Algorithm ... 22

11. DAA ─ Greedy Method .. 24

Design & Analysis of Algorithms

iii

12. DAA ─ Fractional Knapsack .. 25
Knapsack Problem ... 25
Fractional Knapsack ... 26

13. DAA ─ Job Sequencing with Deadline .. 29

14. DAA ─ Optimal Merge Pattern ... 31

15. DAA ─ Dynamic Programming ... 34

16. DAA ─ 0-1 Knapsack .. 35
Dynamic-Programming Approach ... 36

17. DAA ─ Longest Common Subsequence .. 38

GRAPH THEORY ... 41

18. DAA ─ Spanning Tree ... 42
Minimum Spanning Tree ... 42
Prim’s Algorithm .. 43

19. DAA ─ Shortest Paths .. 45
Dijkstra’s Algorithm ... 45
Bellman Ford Algorithm ... 47

20. DAA ─ Multistage Graph .. 51

21. DAA ─ Travelling Salesman Problem .. 53

22. DAA ─ Optimal Cost Binary Search Trees ... 56

HEAP ALGORITHMS ... 59

23. DAA ─ Binary Heap .. 60

24. DAA ─ Insert Method... 63

25. DAA ─ Heapify Method.. 65

26. DAA ─ Extract Method ... 66

SORTING METHODS .. 68

27. DAA ─ Bubble Sort ... 69

28. DAA ─ Insertion Sort .. 71

29. DAA ─ Selection Sort ... 73

30. DAA ─ Quick Sort ... 76

Design & Analysis of Algorithms

iv

31. DAA ─ Radix Sort ... 78

COMPLEXITY THEORY .. 80

32. DAA ─ Deterministic vs. Nondeterministic Computations ... 81
Deterministic Computation and the Class P .. 81
Nondeterministic Computation and the Class NP ... 81

33. DAA ─ Max Cliques .. 83

34. DAA ─ Vertex Cover ... 85

35. DAA ─ P and NP Class .. 88

36. DAA ─ Cook’s Theorem .. 90

37. DAA ─ NP Hard & NP-Complete Classes ... 92

38. DAA ─ Hill Climbing Algorithm ... 94
Hill Climbing ... 94
Problems of Hill Climbing Technique ... 95
Complexity of Hill Climbing Technique .. 95
Applications of Hill Climbing Technique .. 96

Design & Analysis of Algorithms

1

Basics of Algorithms

1.

Design & Analysis of Algorithms

2

An algorithm is a set of steps of operations to solve a problem performing calculation, data

processing, and automated reasoning tasks. An algorithm is an efficient method that can

be expressed within finite amount of time and space.

An algorithm is the best way to represent the solution of a particular problem in a very

simple and efficient way. If we have an algorithm for a specific problem, then we can

implement it in any programming language, meaning that the algorithm is independent

from any programming languages.

Algorithm Design

The important aspects of algorithm design include creating an efficient algorithm to solve

a problem in an efficient way using minimum time and space.

To solve a problem, different approaches can be followed. Some of them can be efficient

with respect to time consumption, whereas other approaches may be memory efficient.

However, one has to keep in mind that both time consumption and memory usage cannot

be optimized simultaneously. If we require an algorithm to run in lesser time, we have to

invest in more memory and if we require an algorithm to run with lesser memory, we need

to have more time.

Problem Development Steps

The following steps are involved in solving computational problems.

 Problem definition

 Development of a model

 Specification of an Algorithm

 Designing an Algorithm

 Checking the correctness of an Algorithm

 Analysis of an Algorithm

 Implementation of an Algorithm

 Program testing

 Documentation

Characteristics of Algorithms

The main characteristics of algorithms are as follows:

 Algorithms must have a unique name

 Algorithms should have explicitly defined set of inputs and outputs

 Algorithms are well-ordered with unambiguous operations

 Algorithms halt in a finite amount of time. Algorithms should not run for infinity,
i.e., an algorithm must end at some point

1. DAA ─ Introduction

Design & Analysis of Algorithms

3

Pseudocode

Pseudocode gives a high-level description of an algorithm without the ambiguity associated

with plain text but also without the need to know the syntax of a particular programming

language.

The running time can be estimated in a more general manner by using Pseudocode to

represent the algorithm as a set of fundamental operations which can then be counted.

Difference between Algorithm and Pseudocode

An algorithm is a formal definition with some specific characteristics that describes a

process, which could be executed by a Turing-complete computer machine to perform a

specific task. Generally, the word "algorithm" can be used to describe any high level task

in computer science.

On the other hand, pseudocode is an informal and (often rudimentary) human readable

description of an algorithm leaving many granular details of it. Writing a pseudocode has

no restriction of styles and its only objective is to describe the high level steps of algorithm

in a much realistic manner in natural language.

For example, following is an algorithm for Insertion Sort.

Algorithm: Insertion-Sort

Input: A list L of integers of length n

Output: A sorted list L1 containing those integers present in L

Step 1: Keep a sorted list L1 which starts off empty

Step 2: Perform Step 3 for each element in the original list L

Step 3: Insert it into the correct position in the sorted list L1.

Step 4: Return the sorted list

Step 5: Stop

Here is a pseudocode which describes how the high level abstract process mentioned

above in the algorithm Insertion-Sort could be described in a more realistic way.

for i ← 1 to length(A)

 x ← A[i]

 j ← i

 while j > 0 and A[j-1] > x

 A[j] ← A[j-1]

 j ← j - 1

 A[j] ← x

In this tutorial, algorithms will be presented in the form of pseudocode, that is similar in

many respects to C, C++, Java, Python, and other programming languages.

Design & Analysis of Algorithms

4

In theoretical analysis of algorithms, it is common to estimate their complexity in the

asymptotic sense, i.e., to estimate the complexity function for arbitrarily large input. The

term "analysis of algorithms" was coined by Donald Knuth.

Algorithm analysis is an important part of computational complexity theory, which provides

theoretical estimation for the required resources of an algorithm to solve a

specific computational problem. Most algorithms are designed to work with inputs of

arbitrary length. Analysis of algorithms is the determination of the amount of time and

space resources required to execute it.

Usually, the efficiency or running time of an algorithm is stated as a function relating the

input length to the number of steps, known as time complexity, or volume of memory,

known as space complexity.

The Need for Analysis

In this chapter, we will discuss the need for analysis of algorithms and how to choose a

better algorithm for a particular problem as one computational problem can be solved by

different algorithms.

By considering an algorithm for a specific problem, we can begin to develop pattern

recognition so that similar types of problems can be solved by the help of this algorithm.

Algorithms are often quite different from one another, though the objective of these

algorithms are the same. For example, we know that a set of numbers can be sorted using

different algorithms. Number of comparisons performed by one algorithm may vary with

others for the same input. Hence, time complexity of those algorithms may differ. At the

same time, we need to calculate the memory space required by each algorithm.

Analysis of algorithm is the process of analyzing the problem-solving capability of the

algorithm in terms of the time and size required (the size of memory for storage while

implementation). However, the main concern of analysis of algorithms is the required time

or performance. Generally, we perform the following types of analysis:

 Worst-case: The maximum number of steps taken on any instance of size a.

 Best-case: The minimum number of steps taken on any instance of size a.

 Average case: An average number of steps taken on any instance of size a.

 Amortized: A sequence of operations applied to the input of size a averaged over

time.

To solve a problem, we need to consider time as well as space complexity as the program

may run on a system where memory is limited but adequate space is available or may be

vice-versa. In this context, if we compare bubble sort and merge sort. Bubble sort does

not require additional memory, but merge sort requires additional space. Though time

complexity of bubble sort is higher compared to merge sort, we may need to apply bubble

sort if the program needs to run in an environment, where memory is very limited.

2. DAA ─ Analysis of Algorithms

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity

Design & Analysis of Algorithms

5

To measure resource consumption of an algorithm, different strategies are used as

discussed in this chapter.

Asymptotic Analysis

The asymptotic behavior of a function 𝒇(𝒏) refers to the growth of 𝒇(𝒏) as n gets large.

We typically ignore small values of n, since we are usually interested in estimating how

slow the program will be on large inputs.

A good rule of thumb is that the slower the asymptotic growth rate, the better the

algorithm. Though it’s not always true.

For example, a linear algorithm 𝒇(𝒏) = 𝒅 ∗ 𝒏 + 𝒌 is always asymptotically better than a

quadratic one, 𝒇(𝒏) = 𝒄. 𝒏𝟐 + 𝒒.

Solving Recurrence Equations

A recurrence is an equation or inequality that describes a function in terms of its value on

smaller inputs. Recurrences are generally used in divide-and-conquer paradigm.

Let us consider 𝑻(𝒏) to be the running time on a problem of size n.

If the problem size is small enough, say 𝒏 < 𝒄 where c is a constant, the straightforward

solution takes constant time, which is written as Ɵ(𝟏). If the division of the problem yields

a number of sub-problems with size
𝒏

𝒃
.

To solve the problem, the required time is 𝒂. 𝑻(𝒏/𝒃). If we consider the time required for

division is 𝑫(𝒏) and the time required for combining the results of sub-problems is 𝑪(𝒏),

the recurrence relation can be represented as:

𝑻(𝒏) = {
𝜽(𝟏) 𝒊𝒇 𝒏 ≤ 𝒄

𝒂𝑻 (
𝒏

𝒃
) + 𝑫(𝒏) + 𝑪(𝒏) 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

A recurrence relation can be solved using the following methods:

 Substitution Method ─ In this method, we guess a bound and using mathematical

induction we prove that our assumption was correct.

 Recursion Tree Method ─ In this method, a recurrence tree is formed where each

node represents the cost.

 Master’s Theorem ─ This is another important technique to find the complexity

of a recurrence relation.

3. DAA ─ Methodology of Analysis

Design & Analysis of Algorithms

6

Amortized Analysis

Amortized analysis is generally used for certain algorithms where a sequence of similar

operations are performed.

 Amortized analysis provides a bound on the actual cost of the entire sequence,

instead of bounding the cost of sequence of operations separately.

 Amortized analysis differs from average-case analysis; probability is not involved

in amortized analysis. Amortized analysis guarantees the average performance of

each operation in the worst case.

It is not just a tool for analysis, it’s a way of thinking about the design, since designing

and analysis are closely related.

Aggregate Method

The aggregate method gives a global view of a problem. In this method, if n operations

takes worst-case time 𝑻(𝒏) in total. Then the amortized cost of each operation is 𝑻(𝒏)/𝒏.

Though different operations may take different time, in this method varying cost is

neglected.

Accounting Method

In this method, different charges are assigned to different operations according to their

actual cost. If the amortized cost of an operation exceeds its actual cost, the difference is

assigned to the object as credit. This credit helps to pay for later operations for which the

amortized cost less than actual cost.

If the actual cost and the amortized cost of ith operation are 𝒄𝒊 and 𝒄�̂�, then

∑ 𝒄�̂�

𝒏

𝒊=𝟏

≥ ∑ 𝒄𝒊

𝒏

𝒊=𝟏

Potential Method

This method represents the prepaid work as potential energy, instead of considering

prepaid work as credit. This energy can be released to pay for future operations.

If we perform 𝒏 operations starting with an initial data structure 𝑫𝟎. Let us consider, 𝒄𝒊 as

the actual cost and 𝑫𝑖 as data structure of ith operation. The potential function ф maps to

a real number ф(𝑫𝒊), the associated potential of 𝑫𝒊. The amortized cost 𝒄�̂� can be defined

by

𝒄�̂� = 𝒄𝒊 + ф(𝑫𝒊) − ф(𝑫𝒊−𝟏)

Hence, the total amortized cost is

∑ 𝒄�̂�

𝒏

𝒊=𝟏

= ∑(𝒄𝒊 + ф(𝑫𝒊) − ф(𝑫𝒊−𝟏))

𝒏

𝒊=𝟏

= ∑ 𝒄𝒊 + ф(𝑫𝒏) − ф(𝑫𝟎)

𝒏

𝒊=𝟏

Design & Analysis of Algorithms

7

Dynamic Table

If the allocated space for the table is not enough, we must copy the table into larger size

table. Similarly, if large number of members are erased from the table, it is a good idea

to reallocate the table with a smaller size.

Using amortized analysis, we can show that the amortized cost of insertion and deletion is

constant and unused space in a dynamic table never exceeds a constant fraction of the

total space.

In the next chapter of this tutorial, we will discuss Asymptotic Notations in brief.

Design & Analysis of Algorithms

8

In designing of Algorithm, complexity analysis of an algorithm is an essential aspect.

Mainly, algorithmic complexity is concerned about its performance, how fast or slow it

works.

The complexity of an algorithm describes the efficiency of the algorithm in terms of the

amount of the memory required to process the data and the processing time.

Complexity of an algorithm is analyzed in two perspectives: Time and Space.

Time Complexity

It’s a function describing the amount of time required to run an algorithm in terms of the

size of the input. "Time" can mean the number of memory accesses performed, the

number of comparisons between integers, the number of times some inner loop is

executed, or some other natural unit related to the amount of real time the algorithm will

take.

Space Complexity

It’s a function describing the amount of memory an algorithm takes in terms of the size

of input to the algorithm. We often speak of "extra" memory needed, not counting the

memory needed to store the input itself. Again, we use natural (but fixed-length) units to

measure this.

Space complexity is sometimes ignored because the space used is minimal and/or obvious,

however sometimes it becomes as important an issue as time.

Asymptotic Notations

Execution time of an algorithm depends on the instruction set, processor speed, disk I/O

speed, etc. Hence, we estimate the efficiency of an algorithm asymptotically.

Time function of an algorithm is represented by 𝐓(𝐧), where n is the input size.

Different types of asymptotic notations are used to represent the complexity of an

algorithm. Following asymptotic notations are used to calculate the running time

complexity of an algorithm.

 O: Big Oh

 Ω: Big omega

 Ɵ: Big theta

 o: Little Oh

 ω: Little omega

4. DAA ─ Asymptotic Notations & Apriori Analysis

Design & Analysis of Algorithms

9

O: Asymptotic Upper Bound

‘O’ (Big Oh) is the most commonly used notation. A function 𝐟(𝐧) can be represented is

the order of 𝒈(𝒏) that is 𝑶(𝒈(𝒏)), if there exists a value of positive integer n as n0 and a

positive constant c such that:

𝒇(𝒏) ≤ 𝒄. 𝒈(𝒏) for 𝒏 > 𝒏𝟎 in all case.

Hence, function 𝒈(𝒏) is an upper bound for function 𝒇(𝒏), as 𝒈(𝒏) grows faster than 𝒇(𝒏).

Example

Let us consider a given function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏.

Considering 𝒈(𝒏) = 𝒏𝟑,

𝒇(𝒏) ≤ 𝟓. 𝒈(𝒏) for all the values of 𝒏 > 𝟐.

Hence, the complexity of 𝒇(𝒏) can be represented as 𝑶(𝒈(𝒏)), i.e. 𝑶(𝒏𝟑).

Ω: Asymptotic Lower Bound

We say that 𝒇(𝒏) = 𝛀(𝐠(𝒏)) when there exists constant c that 𝒇(𝒏) ≥ 𝒄. 𝒈(𝒏) for all

sufficiently large value of n. Here n is a positive integer. It means function g is a lower

bound for function f; after a certain value of n, f will never go below g.

Example

Let us consider a given function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏.

Considering 𝒈(𝒏) = 𝒏𝟑, 𝒇(𝒏) ≥ 𝟒. 𝒈(𝒏) for all the values of 𝒏 > 𝟎.

Hence, the complexity of 𝒇(𝒏) can be represented as 𝛀(𝒈(𝒏)), i.e. 𝛀(𝒏𝟑).

Ɵ: Asymptotic Tight Bound

We say that 𝑓(𝑛) = Ɵ(g(𝑛)) when there exist constants c1 and c2 that 𝑐1. 𝑔(𝑛) ≤ 𝑓(𝑛) ≤

 𝑐2. 𝑔(𝑛) for all sufficiently large value of n. Here n is a positive integer.

This means function g is a tight bound for function f.

Example

Let us consider a given function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏.

Considering 𝒈(𝒏) = 𝒏𝟑, 𝟒. 𝒈(𝒏) ≤ 𝒇(𝒏) ≤ 𝟓. 𝒈(𝒏) for all the large values of n.

Hence, the complexity of 𝒇(𝒏) can be represented as Ɵ(𝐠(𝒏)), i.e. Ɵ(𝒏𝟑).

Design & Analysis of Algorithms

10

O - Notation

The asymptotic upper bound provided by O-notation may or may not be asymptotically

tight. The bound 𝟐. 𝒏𝟐 = 𝑶(𝒏𝟐) is asymptotically tight, but the bound 𝟐. 𝒏 = 𝑶(𝒏𝟐) is not.

We use o-notation to denote an upper bound that is not asymptotically tight.

We formally define 𝒐(𝒈(𝒏)) (little-oh of g of n) as the set 𝒇(𝒏) = 𝒐(𝒈(𝒏)) for any positive

constant 𝒄 > 𝟎 and there exists a value 𝒏𝟎 > 𝟎, such that 𝟎 ≤ 𝒇(𝒏) ≤ 𝒄. 𝒈(𝒏).

Intuitively, in the o-notation, the function 𝒇(𝒏) becomes insignificant relative to 𝒈(𝒏) as

n approaches infinity; that is,

𝐥𝐢𝐦
𝒏→∞

(
𝒇(𝒏)

𝒈(𝒏)
) = 𝟎

Example

Let us consider the same function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏.

Considering 𝒈(𝒏) = 𝒏𝟒,

𝐥𝐢𝐦
𝒏→∞

(
𝟒 𝐧^𝟑 + 𝟏𝟎 𝐧^𝟐 + 𝟓 𝐧 + 𝟏

𝒏^𝟒
) = 𝟎

Hence, the complexity of 𝒇(𝒏) can be represented as 𝒐(𝒈(𝒏)), i.e. 𝒐(𝒏𝟒).

ω – Notation

We use ω-notation to denote a lower bound that is not asymptotically tight. Formally,

however, we define ⍵(𝒈(𝒏)) (little-omega of g of n) as the set 𝒇(𝒏) = ⍵(𝒈(𝒏)) for any

positive constant 𝒄 > 𝟎 and there exists a value 𝒏𝟎 > 𝟎, such that 𝟎 ≤ 𝒄. 𝒈(𝒏) < 𝒇(𝒏).

For example,
𝒏𝟐

𝟐
= ⍵(𝒏), but

𝒏𝟐

𝟐
≠ ⍵(𝒏𝟐). The relation 𝒇(𝒏) = ⍵(𝒈(𝒏)) implies that the

following limit exists

𝐥𝐢𝐦
𝒏→∞

(
𝒇(𝒏)

𝒈(𝒏)
) = ∞

That is, 𝒇(𝒏) becomes arbitrarily large relative to 𝒈(𝒏) as n approaches infinity.

Example

Let us consider same function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏.

Considering 𝒈(𝒏) = 𝒏𝟐,

𝐥𝐢𝐦
𝒏→∞

(
𝟒 𝐧𝟑 + 𝟏𝟎 𝐧𝟐 + 𝟓 𝐧 + 𝟏

𝒏𝟐
) = ∞

Hence, the complexity of 𝒇(𝒏) can be represented as 𝒐(𝒈(𝒏)), i.e. ⍵(𝒏𝟐).

Design & Analysis of Algorithms

11

Apriori and Apostiari Analysis

Apriori analysis means, analysis is performed prior to running it on a specific system. This

analysis is a stage where a function is defined using some theoretical model. Hence, we

determine the time and space complexity of an algorithm by just looking at the algorithm

rather than running it on a particular system with a different memory, processor, and

compiler.

Apostiari analysis of an algorithm means we perform analysis of an algorithm only after

running it on a system. It directly depends on the system and changes from system to

system.

In an industry, we cannot perform Apostiari analysis as the software is generally made for

an anonymous user, which runs it on a system different from those present in the industry.

In Apriori, it is the reason that we use asymptotic notations to determine time and space

complexity as they change from computer to computer; however, asymptotically they are

the same.

Design & Analysis of Algorithms

12

In this chapter, we will discuss the complexity of computational problems with respect to

the amount of space an algorithm requires.

Space complexity shares many of the features of time complexity and serves as a further

way of classifying problems according to their computational difficulties.

What is Space Complexity?

Space complexity is a function describing the amount of memory (space) an algorithm

takes in terms of the amount of input to the algorithm.

We often speak of extra memory needed, not counting the memory needed to store the

input itself. Again, we use natural (but fixed-length) units to measure this.

We can use bytes, but it's easier to use, say, the number of integers used, the number of

fixed-sized structures, etc.

In the end, the function we come up with will be independent of the actual number of

bytes needed to represent the unit.

Space complexity is sometimes ignored because the space used is minimal and/or obvious,

however sometimes it becomes as important issue as time complexity.

Definition

Let M be a deterministic Turing machine (TM) that halts on all inputs. The space

complexity of M is the function 𝒇: 𝑵 → 𝑵, where 𝒇(𝒏) is the maximum number of cells of

tape and M scans any input of length n. If the space complexity of M is 𝒇(𝒏), we can say

that M runs in space 𝒇(𝒏).

We estimate the space complexity of Turing machine by using asymptotic notation.

Let 𝒇: 𝑵 → 𝑹+ be a function. The space complexity classes can be defined as follows:

𝑺𝑷𝑨𝑪𝑬(𝒇(𝒏)) = {𝑳| 𝑳 𝒊𝒔 𝒂 𝒍𝒂𝒏𝒈𝒖𝒂𝒈𝒆 𝒅𝒆𝒄𝒊𝒅𝒆𝒅 𝒃𝒚 𝒂𝒏 𝑶(𝒇(𝒏)) 𝒔𝒑𝒂𝒄𝒆 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒊𝒔𝒕𝒊𝒄 𝑻𝑴}

𝑵𝑺𝑷𝑨𝑪𝑬(𝒇(𝒏)) = {𝑳|𝑳 𝒊𝒔 𝒂 𝒍𝒂𝒏𝒈𝒖𝒂𝒈𝒆 𝒅𝒆𝒄𝒊𝒅𝒆𝒅 𝒃𝒚 𝒂𝒏 𝑶(𝒇(𝒏))𝒔𝒑𝒂𝒄𝒆 𝒏𝒐𝒏

− 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒊𝒔𝒕𝒊𝒄 𝑻𝑴}

PSPACE is the class of languages that are decidable in polynomial space on a deterministic

Turing machine.

In other words, 𝑷𝑺𝑷𝑨𝑪𝑬 = ⋃ 𝑺𝑷𝑨𝑪𝑬(𝒏𝒌)𝒌

5. DAA ─ Space Complexities

Design & Analysis of Algorithms

13

Savitch’s Theorem

One of the earliest theorem related to space complexity is Savitch’s theorem. According

to this theorem, a deterministic machine can simulate non-deterministic machines by

using a small amount of space.

For time complexity, such a simulation seems to require an exponential increase in time.

For space complexity, this theorem shows that any non-deterministic Turing machine that

uses 𝒇(𝒏) space can be converted to a deterministic TM that uses 𝒇𝟐(𝒏) space.

Hence, Savitch’s theorem states that, for any function, 𝒇: 𝑵 → 𝑹+, 𝐰𝐡𝐞𝐫𝐞 𝒇(𝒏) ≥ 𝒏,

𝑵𝑺𝑷𝑨𝑪𝑬(𝒇(𝒏)) ⊆ 𝑺𝑷𝑨𝑪𝑬(𝒇(𝒏))

Relationship Among Complexity Classes

The following diagram depicts the relationship among different complexity classes.

Till now, we have not discussed P and NP classes in this tutorial. These will be discussed

later.

Design & Analysis of Algorithms

14

Design Strategies

Design & Analysis of Algorithms

15

Many algorithms are recursive in nature to solve a given problem recursively dealing with

sub-problems.

In divide and conquer approach, a problem is divided into smaller problems, then the

smaller problems are solved independently, and finally the solutions of smaller problems

are combined into a solution for the large problem.

Generally, divide-and-conquer algorithms have three parts:

 Divide the problem into a number of sub-problems that are smaller instances of

the same problem.

 Conquer the sub-problems by solving them recursively. If they are small

enough, solve the sub-problems as base cases.

 Combine the solutions to the sub-problems into the solution for the original

problem.

Pros and cons of Divide and Conquer Approach

Divide and conquer approach supports parallelism as sub-problems are independent.

Hence, an algorithm, which is designed using this technique, can run on the multiprocessor

system or in different machines simultaneously.

In this approach, most of the algorithms are designed using recursion, hence memory

management is very high. For recursive function stack is used, where function state needs

to be stored.

Application of Divide and Conquer Approach

Following are some problems, which are solved using divide and conquer approach.

 Finding the maximum and minimum of a sequence of numbers

 Strassen’s matrix multiplication

 Merge sort

 Binary search

6. DAA ─ Divide & Conquer

Design & Analysis of Algorithms

16

Let us consider a simple problem that can be solved by divide and conquer technique.

Problem Statement

The Max-Min Problem in algorithm analysis is finding the maximum and minimum value in

an array.

Solution

To find the maximum and minimum numbers in a given array 𝒏𝒖𝒎𝒃𝒆𝒓𝒔[] of size n, the

following algorithm can be used. First we are representing the naive method and then

we will present divide and conquer approach.

Naïve Method

Naïve method is a basic method to solve any problem. In this method, the maximum and

minimum number can be found separately. To find the maximum and minimum numbers,

the following straightforward algorithm can be used.

Algorithm: Max-Min-Element (numbers[])

max := numbers[1]

min := numbers[1]

for i = 2 to n do

 if numbers[i] > max then

 max := numbers[i]

 if numbers[i] < min then

 min := numbers[i]

return (max, min)

Analysis

The number of comparison in Naive method is 𝟐𝒏 − 𝟐.

The number of comparisons can be reduced using the divide and conquer approach.

Following is the technique.

Divide and Conquer Approach

In this approach, the array is divided into two halves. Then using recursive approach

maximum and minimum numbers in each halves are found. Later, return the maximum of

two maxima of each half and the minimum of two minima of each half.

7. DAA ─ Max-Min Problem

Design & Analysis of Algorithms

17

In this given problem, the number of elements in an array is 𝒚 − 𝒙 + 𝟏, where y is greater

than or equal to x.

𝑴𝒂𝒙 − 𝑴𝒊𝒏(𝒙, 𝒚) will return the maximum and minimum values of an array 𝒏𝒖𝒎𝒃𝒆𝒓𝒔[𝒙 … 𝒚].

Algorithm: Max-Min(x, y)

if x –y ≤ 1 then

 return (max(numbers[x], numbers[y]), min((numbers[x], numbers[y]))

else

 (max1, min1):= maxmin(x, ⌊((x+y)/2)⌋)

 (max2, min2):= maxmin(⌊((x+y)/2) + 1)⌋,y)

return (max(max1, max2), min(min1, min2))

Analysis

Let 𝑇(𝑛) be the number of comparisons made by 𝑴𝒂𝒙 − 𝑴𝒊𝒏(𝒙, 𝒚), where the number of

elements 𝒏 = 𝒚 – 𝒙 + 𝟏.

If 𝑻(𝒏) represents the numbers, then the recurrence relation can be represented as:

𝑻(𝒏) = {
𝑻 (⌊

𝒏

𝟐
⌋) + 𝑻 (⌈

𝒏

𝟐
⌉) + 𝟐 𝐟𝐨𝐫 𝒏 > 𝟐

𝟏 𝐟𝐨𝐫 𝒏 = 𝟐
𝟎 𝐟𝐨𝐫 𝒏 = 𝟏

Let us assume that n is in the form of power of 2. Hence, 𝒏 = 𝟐𝒌 where k is height of the

recursion tree.

So,

𝑻(𝒏) = 𝟐. 𝑻 (
𝒏

𝟐
) + 𝟐 = 𝟐. (𝟐. 𝑻 (

𝒏

𝟒
) + 𝟐) + 𝟐 … . . =

𝟑𝒏

𝟐
− 𝟐

Compared to Naïve method, in divide and conquer approach, the number of comparisons

is less. However, using the asymptotic notation both of the approaches are represented

by 𝑶(𝒏).

Design & Analysis of Algorithms

18

In this chapter, we will discuss merge sort and analyze its complexity.

Problem Statement

The problem of sorting a list of numbers lends itself immediately to a divide-and-conquer

strategy: split the list into two halves, recursively sort each half, and then merge the two

sorted sub-lists.

Solution

In this algorithm, the numbers are stored in an array numbers[]. Here, p and q

represents the start and end index of a sub-array.

Algorithm: Merge-Sort (numbers[], p, r)

if p < r then

q = ⌊(p + q) / 2⌋

Merge-Sort (numbers[], p, q)

 Merge-Sort (numbers[], q + 1, r)

 Merge (numbers[], p, q, r)

Function: Merge (numbers[], p, q, r)

n1 = q – p + 1

n2 = r – q

declare leftnums[1…n1 + 1] and rightnums[1…n2 + 1] temporary arrays

for i = 1 to n1

 leftnums[i] = numbers[p + i - 1]

for j = 1 to n2

 leftnums[j] = numbers[q+ j]

leftnums[n1 + 1] = ∞

rightnums[n2 + 1] = ∞

i = 1

j = 1

for k = p to r

 if leftnums[i] ≤ rightnums[j]

 numbers[k] = leftnums[i]

 i = i + 1

 else

8. DAA ─ Merge Sort

Design & Analysis of Algorithms

19

 numbers[k] = rightnums[j]

 j = j + 1

Analysis

Let us consider, the running time of Merge-Sort as 𝑻(𝒏). Hence,

 𝑻(𝒏) = {
𝒄 𝒊𝒇 𝒏 ≤ 𝟏

𝟐 𝒙 𝑻 (
𝒏

𝟐
) + 𝒅 𝒙 𝒏 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 where 𝑐 and 𝑑 are constants

Therefore, using this recurrence relation,

𝑻(𝒏) = 𝟐𝒊 𝑻(𝒏/𝟐𝒊) + 𝒊 . 𝒅 . 𝒏

As, 𝒊 = 𝒍𝒐𝒈 𝒏, 𝑻(𝒏) = 𝟐𝐥𝐨𝐠 𝒏 𝑻(𝒏/𝟐𝐥𝐨𝐠 𝒏) + 𝒍𝒐𝒈 𝒏 . 𝒅 . 𝒏

 = 𝒄 . 𝒏 + 𝒅 . 𝒏 . 𝒍𝒐𝒈 𝒏

Therefore, 𝑻(𝒏) = 𝑶(𝒏 𝒍𝒐𝒈 𝒏).

Example

In the following example, we have shown Merge-Sort algorithm step by step. First, every

iteration array is divided into two sub-arrays, until the sub-array contains only one

element. When these sub-arrays cannot be divided further, then merge operations are

performed.

Divide and Merge operations step by step:

32 14 15 27

31 7 23 26

32 14 15 27 31 7 23 26

32 14

14 15 27 32

15 27

31 7

23 26

32

14

27

31

15

7

23

26

14 32

15 27

7 31

23 26

7 23 26 31

7 14 15 23 26 27 31 32

Design & Analysis of Algorithms

20

In this chapter, we will discuss another algorithm based on divide and conquer method.

Problem Statement

Binary search can be performed on a sorted array. In this approach, the index of an

element x is determined if the element belongs to the list of elements. If the array is

unsorted, linear search is used to determine the position.

Solution

In this algorithm, we want to find whether element x belongs to a set of numbers stored

in an array numbers[]. Where l and r represent the left and right index of a sub-array in

which searching operation should be performed.

Algorithm: Binary-Search(numbers[], x, l, r)

if l = r then

 return l

else

 m := ⌊(l + r) / 2⌋

 if x ≤ numbers[m] then

 return Binary-Search(numbers[], x, l, m)

 else

 return Binary-Search(numbers[], x, m+1, r)

Analysis

Linear search runs in 𝑶(𝒏) time. Whereas binary search produces the result in 𝑶(𝒍𝒐𝒈 𝒏)

time.

Let T(n) be the number of comparisons in worst-case in an array of n elements.

Hence,

𝑻(𝒏) = {
𝟎 𝒊𝒇 𝒏 = 𝟏

𝑻 (
𝒏

𝟐
) + 𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Using this recurrence relation 𝑻(𝒏) = 𝒍𝒐𝒈 𝒏.

Therefore, binary search uses 𝑶(𝒍𝒐𝒈 𝒏) time.

9. DAA ─ Binary Search

Design & Analysis of Algorithms

21

Example

In this example, we are going to search element 63.

Design & Analysis of Algorithms

22

In this chapter, first we will discuss the general method of matrix multiplication and later

we will discuss Strassen’s matrix multiplication algorithm.

Problem Statement

Let us consider two matrices X and Y. We want to calculate the resultant matrix Z by

multiplying X and Y.

Naïve Method

First, we will discuss naïve method and its complexity. Here, we are calculating 𝒁 = 𝑿 𝒙 𝒀.

Using Naïve method, two matrices (X and Y) can be multiplied if the order of these

matrices are 𝒑𝒙𝒒 and 𝒒𝒙𝒓. Following is the algorithm.

Algorithm: Matrix-Multiplication (X, Y, Z)

for i = 1 to p do

 for j = 1 to r do

 Z[i,j] := 0

 for k = 1 to q do

 Z[i,j] := Z[i,j] + X[i,k] x Y[k,j]

Complexity

Here, we assume that integer operations take 𝑶(𝟏) time. There are three for loops in this

algorithm and one is nested in other. Hence, the algorithm takes 𝑶(𝒏𝟑) time to execute.

Strassen’s Matrix Multiplication Algorithm

In this context, using Strassen’s Matrix multiplication algorithm, the time consumption can

be improved a little bit.

Strassen’s Matrix multiplication can be performed only on square matrices where n is a

power of 2. Order of both of the matrices are n x n.

Divide X, Y and Z into four (𝐧/𝟐)𝐱(𝐧/𝟐) matrices as represented below:

𝒁 = [
𝑰 𝑱

𝑲 𝑳
] 𝑿 = [

𝑨 𝑩
𝑪 𝑫

] and 𝒀 = [
𝑬 𝑭
𝑮 𝑯

]

10. DAA ─ Strassen’s Matrix Multiplication

Design & Analysis of Algorithms

23

Using Strassen’s Algorithm compute the following:

𝑴𝟏 ∶= (𝑨 + 𝑪) 𝒙 (𝑬 + 𝑭)

𝑴𝟐 ∶= (𝑩 + 𝑫) 𝒙 (𝑮 + 𝑯)

𝑴𝟑 ∶= (𝑨 − 𝑫) 𝒙 (𝑬 + 𝑯)

𝑴𝟒 ∶= 𝑨 𝒙 (𝑭 − 𝑯)

𝑴𝟓 ∶= (𝑪 + 𝑫) 𝒙 𝑬

𝑴𝟔 ∶= (𝑨 + 𝑩) 𝒙 𝑯

𝑴𝟕 ∶= 𝑫 𝒙 (𝑮 – 𝑬)

Then,

𝑰 ∶= 𝑴𝟐 + 𝑴𝟑 – 𝑴𝟔 – 𝑴𝟕

𝑱 ∶= 𝑴𝟒 + 𝑴𝟔

𝑲 ∶= 𝑴𝟓 + 𝑴𝟕

𝑳 ∶= 𝑴𝟏 – 𝑴𝟑 – 𝑴𝟒 – 𝑴𝟓

Analysis

𝑇(𝑛) = {

𝑐 𝑖𝑓 𝑛 = 1

7 𝑥 𝑇 (
𝑛

2
) + 𝑑 𝑥 𝑛2 otherwise

 where 𝑐 and 𝑑 are constants

Using this recurrence relation, we get 𝑻(𝒏) = 𝑶 (𝒏𝐥𝐨𝐠 𝟕)

Hence, the complexity of Strassen’s matrix multiplication algorithm is 𝑶 (𝒏𝐥𝐨𝐠 𝟕).

Design & Analysis of Algorithms

24

Among all the algorithmic approaches, the simplest and straightforward approach is the

Greedy method. In this approach, the decision is taken on the basis of current available

information without worrying about the effect of the current decision in future.

Greedy algorithms build a solution part by part, choosing the next part in such a way, that

it gives an immediate benefit. This approach never reconsiders the choices taken

previously. This approach is mainly used to solve optimization problems. Greedy method

is easy to implement and quite efficient in most of the cases. Hence, we can say that

Greedy algorithm is an algorithmic paradigm based on heuristic that follows local optimal

choice at each step with the hope of finding global optimal solution.

In many problems, it does not produce an optimal solution though it gives an approximate

(near optimal) solution in a reasonable time.

Components of Greedy Algorithm

Greedy algorithms have the following five components:

 A candidate set: A solution is created from this set.

 A selection function: Used to choose the best candidate to be added to the

solution.

 A feasibility function: Used to determine whether a candidate can be used to

contribute to the solution.

 An objective function: Used to assign a value to a solution or a partial solution.

 A solution function: Used to indicate whether a complete solution has been

reached.

Areas of Application

Greedy approach is used to solve many problems, such as

 Finding the shortest path between two vertices using Dijkstra’s algorithm.

 Finding the minimal spanning tree in a graph using Prim’s /Kruskal’s algorithm, etc.

Where Greedy Approach Fails

In many problems, Greedy algorithm fails to find an optimal solution, moreover it may

produce a worst solution. Problems like Travelling Salesman and Knapsack cannot be

solved using this approach.

11. DAA ─ Greedy Method

Design & Analysis of Algorithms

25

The Greedy algorithm could be understood very well with a well-known problem referred

to as Knapsack problem. Although the same problem could be solved by employing other

algorithmic approaches, Greedy approach solves Fractional Knapsack problem reasonably

in a good time. Let us discuss the Knapsack problem in detail.

Knapsack Problem

Given a set of items, each with a weight and a value, determine a subset of items to

include in a collection so that the total weight is less than or equal to a given limit and the

total value is as large as possible.

The knapsack problem is in combinatorial optimization problem. It appears as a sub-

problem in many, more complex mathematical models of real-world problems. One

general approach to difficult problems is to identify the most restrictive constraint, ignore

the others, solve a knapsack problem, and somehow adjust the solution to satisfy the

ignored constraints.

Applications

In many cases of resource allocation along with some constraint, the problem can be

derived in a similar way of Knapsack problem. Following is a set of example.

 Finding the least wasteful way to cut raw materials

 portfolio optimization

 Cutting stock problems

Problem Scenario

A thief is robbing a store and can carry a maximal weight of W into his knapsack. There

are n items available in the store and weight of ith item is wi and its profit is pi. What

items should the thief take?

In this context, the items should be selected in such a way that the thief will carry those

items for which he will gain maximum profit. Hence, the objective of the thief is to

maximize the profit.

Based on the nature of the items, Knapsack problems are categorized as

 Fractional Knapsack

 Knapsack

12. DAA ─ Fractional Knapsack

Design & Analysis of Algorithms

26

Fractional Knapsack

In this case, items can be broken into smaller pieces, hence the thief can select fractions

of items.

According to the problem statement,

 There are n items in the store

 Weight of ith item 𝒘𝒊 > 𝟎

 Profit for ith item 𝒑𝒊 > 𝟎 and

 Capacity of the Knapsack is W

In this version of Knapsack problem, items can be broken into smaller pieces. So, the thief

may take only a fraction xi of ith item.

 𝟎 ≤ 𝒙𝒊 ≤ 𝟏

The ith item contributes the weight 𝒙𝒊. 𝒘𝒊 to the total weight in the knapsack and profit 𝒙𝒊. 𝒑𝒊

to the total profit.

Hence, the objective of this algorithm is to

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 ∑(𝒙𝒊. 𝒑𝒊)

𝒏

𝒏=𝟏

subject to constraint,

∑(𝒙𝒊. 𝒘𝒊)

𝒏

𝒏=𝟏

≤ 𝑾

It is clear that an optimal solution must fill the knapsack exactly, otherwise we could add

a fraction of one of the remaining items and increase the overall profit.

Thus, an optimal solution can be obtained by

∑(𝒙𝒊. 𝒘𝒊)

𝒏

𝒏=𝟏

= 𝑾

In this context, first we need to sort those items according to the value of 𝒑𝒊/𝒘𝒊, so that
𝒑𝒊+𝟏

𝒘𝒊+𝟏
≤

𝒑𝒊

𝒘𝒊
. Here, x is an array to store the fraction of items.

Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)

for i = 1 to n

 do x[i] = 0

weight = 0

for i = 1 to n

 if weight + w[i] ≤ W then

 x[i] = 1

Design & Analysis of Algorithms

27

 weight = weight + w[i]

 else

 x[i] = (W - weight) / w[i]

 weight = W

 break

return x

Analysis

If the provided items are already sorted into a decreasing order of 𝒑𝒊/𝒘𝒊, then the while-

loop takes a time in 𝑶(𝒏); Therefore, the total time including the sort is in 𝑶(𝒏 𝒍𝒐𝒈 𝒏).

Example

Let us consider that the capacity of the knapsack 𝑾 = 𝟔𝟎 and the list of provided items

are shown in the following table:

Item A B C D

Profit 280 100 120 120

Weight 40 10 20 24

Ratio (
𝒑𝒊

𝒘𝒊
) 7 10 6 5

As the provided items are not sorted based on pi / wi. After sorting, the items are as

shown in the following table.

Item B A C D

Profit 100 280 120 120

Weight 10 40 20 24

Ratio (
𝒑𝒊

𝒘𝒊
) 10 7 6 5

Solution

After sorting all the items according to 𝒑𝒊/𝒘𝒊. First all of B is chosen as weight of B is less

than the capacity of the knapsack. Next, item A is chosen, as the available capacity of the

knapsack is greater than the weight of A. Now, C is chosen as the next item. However,

the whole item cannot be chosen as the remaining capacity of the knapsack is less than

the weight of C.

Hence, fraction of C (i.e. (60 − 50)/20) is chosen.

Design & Analysis of Algorithms

28

Now, the capacity of the Knapsack is equal to the selected items. Hence, no more item

can be selected.

The total weight of the selected items is 𝟏𝟎 + 𝟒𝟎 + 𝟐𝟎 ∗ (𝟏𝟎/𝟐𝟎) = 𝟔𝟎

And the total profit is 𝟏𝟎𝟎 + 𝟐𝟖𝟎 + 𝟏𝟐𝟎 ∗ (𝟏𝟎/𝟐𝟎) = 𝟑𝟖𝟎 + 𝟔𝟎 = 𝟒𝟒𝟎

This is the optimal solution. We cannot gain more profit selecting any different combination

of items.

Design & Analysis of Algorithms

29

Problem Statement

In job sequencing problem, the objective is to find a sequence of jobs, which is completed

within their deadlines and gives maximum profit.

Solution

Let us consider, a set of n given jobs which are associated with deadlines and profit is

earned, if a job is completed by its deadline. These jobs need to be ordered in such a way

that there is maximum profit.

It may happen that all of the given jobs may not be completed within their deadlines.

Assume, deadline of ith job Ji is di and the profit received from this job is pi. Hence, the

optimal solution of this algorithm is a feasible solution with maximum profit.

Thus, 𝑫(𝒊) > 𝟎 for 𝟏 ≤ 𝒊 ≤ 𝒏.

Initially, these jobs are ordered according to profit, i.e. 𝒑𝟏 ≥ 𝒑𝟐 ≥ 𝒑𝟑 ≥ … ≥ 𝒑𝒏.

Algorithm: Job-Sequencing-With-Deadline (D, J, n, k)

D(0) := J(0) := 0

k := 1

J(1) := 1 // means first job is selected

for i = 2 … n do

 r := k

 while D(J(r)) > D(i) and D(J(r)) ≠ r do

 r := r – 1

 if D(J(r)) ≤ D(i) and D(i) > r then

 for l = k … r + 1 by -1 do

 J(l + 1) := J(l)

 J(r + 1) := i

 k := k + 1

Analysis

In this algorithm, we are using two loops, one is within another. Hence, the complexity of

this algorithm is 𝑶(𝒏𝟐).

13. DAA ─ Job Sequencing with Deadline

Design & Analysis of Algorithms

30

Example

Let us consider a set of given jobs as shown in the following table. We have to find a

sequence of jobs, which will be completed within their deadlines and will give maximum

profit. Each job is associated with a deadline and profit.

Job J1 J2 J3 J4 J5

Deadline 2 1 3 2 1

Profit 60 100 20 40 20

Solution

To solve this problem, the given jobs are sorted according to their profit in a descending

order. Hence, after sorting, the jobs are ordered as shown in the following table.

Job J2 J1 J4 J3 J5

Deadline 1 2 2 3 1

Profit 100 60 40 20 20

From this set of jobs, first we select J2, as it can be completed within its deadline and

contributes maximum profit.

 Next, J1 is selected as it gives more profit compared to J4.

 In the next clock, J4 cannot be selected as its deadline is over, hence J3 is selected

as it executes within its deadline.

 The job J5 is discarded as it cannot be executed within its deadline.

Thus, the solution is the sequence of jobs (J2, J1, J4), which are being executed within

their deadline and gives maximum profit.

Total profit of this sequence is 𝟏𝟎𝟎 + 𝟔𝟎 + 𝟐𝟎 = 𝟏𝟖𝟎.

Design & Analysis of Algorithms

31

Merge a set of sorted files of different length into a single sorted file. We need to find an

optimal solution, where the resultant file will be generated in minimum time.

If the number of sorted files are given, there are many ways to merge them into a single

sorted file. This merge can be performed pair wise. Hence, this type of merging is called

as 2-way merge patterns.

As, different pairings require different amounts of time, in this strategy we want to

determine an optimal way of merging many files together. At each step, two shortest

sequences are merged.

To merge a p-record file and a q-record file requires possibly 𝐩 + 𝐪 record moves, the

obvious choice being, merge the two smallest files together at each step.

Two-way merge patterns can be represented by binary merge trees. Let us consider a set

of n sorted files {f1, f2, f3, …, fn}. Initially, each element of this is considered as a single

node binary tree. To find this optimal solution, the following algorithm is used.

Algorithm: TREE (n)

for i := 1 to n – 1 do

 declare new node

 node.leftchild := least (list)

 node.rightchild := least (list)

 node.weight) := ((node.leftchild).weight) + ((node.rightchild).weight)

 insert (list, node);

return least (list);

At the end of this algorithm, the weight of the root node represents the optimal cost.

Example

Let us consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30 number of

elements respectively.

If merge operations are performed according to the provided sequence, then

M1 = merge f1 and f2 => 𝟐𝟎 + 𝟑𝟎 = 𝟓𝟎

M2 = merge M1 and f3 => 𝟓𝟎 + 𝟏𝟎 = 𝟔𝟎

M3 = merge M2 and f4 => 𝟔𝟎 + 𝟓 = 𝟔𝟓

M4 = merge M3 and f5 => 𝟔𝟓 + 𝟑𝟎 = 𝟗𝟓

Hence, the total number of operations is

𝟓𝟎 + 𝟔𝟎 + 𝟔𝟓 + 𝟗𝟓 = 𝟐𝟕𝟎

14. DAA ─ Optimal Merge Pattern

Design & Analysis of Algorithms

32

Now, the question arises is there any better solution?

Sorting the numbers according to their size in an ascending order, we get the following

sequence:

f4, f3, f1, f2, f5

Hence, merge operations can be performed on this sequence

M1 = merge f4 and f3 => 𝟓 + 𝟏𝟎 = 𝟏𝟓

M2 = merge M1 and f1 => 𝟏𝟓 + 𝟐𝟎 = 𝟑𝟓

M3 = merge M2 and f2 => 𝟑𝟓 + 𝟑𝟎 = 𝟔𝟓

M4 = merge M3 and f5 => 𝟔𝟓 + 𝟑𝟎 = 𝟗𝟓

Therefore, the total number of operations is

𝟏𝟓 + 𝟑𝟓 + 𝟔𝟓 + 𝟗𝟓 = 𝟐𝟏𝟎

Obviously, this is better than the previous one.

In this context, we are now going to solve the problem using this algorithm.

Initial Set

Step-1

Step-2

5 10 20 30 30

15

5 10

20 30 30

5 10

35 30 30

15 20

Design & Analysis of Algorithms

33

Step-3

Step-4

Hence, the solution takes 15 + 35 + 60 + 95 = 205 number of comparisons.

5 10

35 60

15 20 30 30

5 10

35 60

15 20 30 30

95

Design & Analysis of Algorithms

34

Dynamic Programming is also used in optimization problems. Like divide-and-conquer

method, Dynamic Programming solves problems by combining the solutions of sub-

problems. Moreover, Dynamic Programming algorithm solves each sub-problem just once

and then saves its answer in a table, thereby avoiding the work of re-computing the answer

every time.

Two main properties of a problem suggest that the given problem can be solved using

Dynamic Programming. These properties are overlapping sub-problems and optimal

substructure.

Overlapping Sub-Problems

Similar to Divide-and-Conquer approach, Dynamic Programming also combines solutions

to sub-problems. It is mainly used where the solution of one sub-problem is needed

repeatedly. The computed solutions are stored in a table, so that these don’t have to be

re-computed. Hence, this technique is needed where overlapping sub-problem exists.

For example, Binary Search does not have overlapping sub-problem. Whereas recursive

program of Fibonacci numbers have many overlapping sub-problems.

Optimal Sub-Structure

A given problem has Optimal Substructure Property, if the optimal solution of the given

problem can be obtained using optimal solutions of its sub-problems.

For example, the Shortest Path problem has the following optimal substructure property:

If a node x lies in the shortest path from a source node u to destination node v, then the

shortest path from u to v is the combination of the shortest path from u to x, and the

shortest path from x to v.

The standard All Pair Shortest Path algorithms like Floyd-Warshall and Bellman-Ford are

typical examples of Dynamic Programming.

Steps of Dynamic Programming Approach

Dynamic Programming algorithm is designed using the following four steps:

 Characterize the structure of an optimal solution.

 Recursively define the value of an optimal solution.

 Compute the value of an optimal solution, typically in a bottom-up fashion.

 Construct an optimal solution from the computed information.

Applications of Dynamic Programming Approach

 Matrix Chain Multiplication

 Longest Common Subsequence

 Travelling Salesman Problem

15. DAA ─ Dynamic Programming

Design & Analysis of Algorithms

35

In this tutorial, earlier we have discussed Fractional Knapsack problem using Greedy

approach. We have shown that Greedy approach gives an optimal solution for Fractional

Knapsack. However, this chapter will cover 0-1 Knapsack problem and its analysis.

In 0-1 Knapsack, items cannot be broken which means the thief should take the item as

a whole or should leave it. This is reason behind calling it as 0-1 Knapsack.

Hence, in case of 0-1 Knapsack, the value of xi can be either 0 or 1, where other

constraints remain the same.

0-1 Knapsack cannot be solved by Greedy approach. Greedy approach does not ensure an

optimal solution. In many instances, Greedy approach may give an optimal solution.

The following examples will establish our statement.

Example-1

Let us consider that the capacity of the knapsack is W = 25 and the items are as shown

in the following table.

Item A B C D

Profit 24 18 18 10

Weight 24 10 10 7

Without considering the profit per unit weight (𝒑𝒊/𝒘𝒊), if we apply Greedy approach to

solve this problem, first item A will be selected as it will contribute maximum profit among

all the elements.

After selecting item A, no more item will be selected. Hence, for this given set of items

total profit is 24. Whereas, the optimal solution can be achieved by selecting items, B and

C, where the total profit is 18 + 18 = 36.

Example-2

Instead of selecting the items based on the overall benefit, in this example the items are

selected based on ratio 𝒑𝒊/𝒘𝒊. Let us consider that the capacity of the knapsack is 𝑊 = 30

and the items are as shown in the following table.

Item A B C

Price 100 280 120

Weight 10 40 20

Ratio 10 7 6

16. DAA ─ 0-1 Knapsack

Design & Analysis of Algorithms

36

Using the Greedy approach, first item A is selected. Then, the next item B is chosen.

Hence, the total profit is 𝟏𝟎𝟎 + 𝟐𝟖𝟎 = 𝟑𝟖𝟎. However, the optimal solution of this instance

can be achieved by selecting items, B and C, where the total profit is 𝟐𝟖𝟎 + 𝟏𝟐𝟎 = 𝟒𝟎𝟎.

Hence, it can be concluded that Greedy approach may not give an optimal solution.

To solve 0-1 Knapsack, Dynamic Programming approach is required.

Problem Statement

A thief is robbing a store and can carry a maximal weight of W into his knapsack. There

are n items and weight of ith item is wi and the profit of selecting this item is pi. What

items should the thief take?

Dynamic-Programming Approach

Let i be the highest-numbered item in an optimal solution S for W dollars. Then 𝑺’ = 𝑺 −

 {𝒊} is an optimal solution for 𝑾 – 𝒘𝒊 dollars and the value to the solution S is Vi plus the

value of the sub-problem.

We can express this fact in the following formula: define c[i, w] to be the solution for

items 1,2, … , i and the maximum weight w.

The algorithm takes the following inputs

 The maximum weight W

 The number of items n

 The two sequences v = <v1, v2, …, vn> and w = <w1, w2, …, wn>

Dynamic-0-1-knapsack (v, w, n, W)

for w = 0 to W do

 c[0, w] = 0

for i = 1 to n do

 c[i, 0] = 0

 for w = 1 to W do

 if wi ≤ w then

 if vi + c[i-1, w-wi] then

 c[i, w] = vi + c[i-1, w-wi]

 else c[i, w] = c[i-1, w]

 else

 c[i, w] = c[i-1, w]

Design & Analysis of Algorithms

37

The set of items to take can be deduced from the table, starting at c[n, w] and tracing

backwards where the optimal values came from.

If 𝒄[𝒊, 𝒘] = 𝒄[𝒊 − 𝟏, 𝒘], then item i is not part of the solution, and we continue tracing

with c[i-1, w]. Otherwise, item i is part of the solution, and we continue tracing with c[i-

1, w-W].

Analysis

This algorithm takes Ɵ(𝒏. 𝒘) times as table c has (𝒏 + 𝟏). (𝒘 + 𝟏) entries, where each entry

requires Ɵ(𝟏) time to compute.

Design & Analysis of Algorithms

38

The longest common subsequence problem is finding the longest sequence which exists in

both the given strings.

Subsequence

Let us consider a sequence S = <s1, s2, s3, s4, …,sn>.

A sequence Z = <z1, z2, z3, …,zm> over S is called a subsequence of S, if and only if it can

be derived from S deletion of some elements.

Common Subsequence

Suppose, X and Y are two sequences over a finite set of elements. We can say that Z is a

common subsequence of X and Y, if Z is a subsequence of both X and Y.

Longest Common Subsequence

If a set of sequences are given, the longest common subsequence problem is to find a

common subsequence of all the sequences that is of maximal length.

The longest common subsequence problem is a classic computer science problem, the

basis of data comparison programs such as the diff-utility, and has applications in

bioinformatics. It is also widely used by revision control systems, such as SVN and Git, for

reconciling multiple changes made to a revision-controlled collection of files.

Naïve Method

Let X be a sequence of length m and Y a sequence of length n. Check for every

subsequence of X whether it is a subsequence of Y, and return the longest common

subsequence found.

There are 2m subsequences of X. Testing sequences whether or not it is a subsequence of

Y takes 𝑶(𝒏) time. Thus, the naïve algorithm would take 𝑶(𝒏𝟐𝒎) time.

Dynamic Programming

Let 𝑿 = < 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒎 > and 𝒀 = < 𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … , 𝒚𝒏 > be the sequences. To compute the

length of an element the following algorithm is used.

In this procedure, table C[m, n] is computed in row major order and another table B[m,n]

is computed to construct optimal solution.

Algorithm: LCS-Length-Table-Formulation (X, Y)

m := length(X)

n := length(Y)

for i = 1 to m do

 C[i, 0] := 0

17. DAA ─ Longest Common Subsequence

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Data_comparison
https://en.wikipedia.org/wiki/Diff_utility
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Revision_control
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Merge_(revision_control)

Design & Analysis of Algorithms

39

for j = 1 to n do

 C[0, j] := 0

for i = 1 to m do

 for j = 1 to n do

 if xi = yj

 C[i, j] := C[i - 1, j - 1] + 1

 B[i, j] := ‘D’

 else

 if C[i -1, j] ≥ C[i, j -1]

 C[i, j] := C[i - 1, j] + 1

 B[i, j] := ‘U’

 else

 C[i, j] := C[i, j - 1] + 1

 B[i, j] := ‘L’

return C and B

Algorithm: Print-LCS (B, X, i, j)

if i=0 and j=0

 return

if B[i, j] = ‘D’

 Print-LCS(B, X, i-1, j-1)

 Print(xi)

else if B[i, j] = ‘U’

 Print-LCS(B, X, i-1, j)

else

 Print-LCS(B, X, i, j-1)

This algorithm will print the longest common subsequence of X and Y.

Analysis

To populate the table, the outer for loop iterates m times and the inner for loop iterates

n times. Hence, the complexity of the algorithm is 𝑶(𝒎. 𝒏), where m and n are the length

of two strings.

Design & Analysis of Algorithms

40

Example

In this example, we have two strings 𝑿 = 𝑩𝑨𝑪𝑫𝑩 and 𝒀 = 𝑩𝑫𝑪𝑩 to find the longest common

subsequence.

Following the algorithm LCS-Length-Table-Formulation (as stated above), we have

calculated table C (shown on the left hand side) and table B (shown on the right hand

side).

In table B, instead of ‘D’, ‘L’ and ‘U’, we are using the diagonal arrow, left arrow and up

arrow, respectively. After generating table B, the LCS is determined by function LCS-Print.

The result is BCB.

Design & Analysis of Algorithms

41

Graph Theory

Design & Analysis of Algorithms

42

A spanning tree is a subset of an undirected Graph that has all the vertices connected

by minimum number of edges.

If all the vertices are connected in a graph, then there exists at least one spanning tree.

In a graph, there may exist more than one spanning tree.

Properties

 A spanning tree does not have any cycle.

 Any vertex can be reached from any other vertex.

Example

In the following graph, the highlighted edges form a spanning tree.

Minimum Spanning Tree

A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted

undirected graph that connects all the vertices together with the minimum possible total

edge weight. To derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used.

Hence, we will discuss Prim’s algorithm in this chapter.

As we have discussed, one graph may have more than one spanning tree. If there are n

number of vertices, the spanning tree should have 𝒏 − 𝟏 number of edges. In this context,

if each edge of the graph is associated with a weight and there exists more than one

spanning tree, we need to find the minimum spanning tree of the graph.

Moreover, if there exist any duplicate weighted edges, the graph may have multiple

minimum spanning tree.

18. DAA ─ Spanning Tree

Design & Analysis of Algorithms

43

In the above graph, we have shown a spanning tree though it’s not the minimum spanning

tree. The cost of this spanning tree is (𝟓 + 𝟕 + 𝟑 + 𝟑 + 𝟓 + 𝟖 + 𝟑 + 𝟒) = 𝟑𝟖.

We will use Prim’s algorithm to find the minimum spanning tree.

Prim’s Algorithm

Prim’s algorithm is a greedy approach to find the minimum spanning tree. In this

algorithm, to form a MST we can start from an arbitrary vertex.

Algorithm: MST-Prim’s (G, w, r)

for each u є G.V

 u.key = ∞

 u.∏ = NIL

r.key = 0

Q = G.V

while Q ≠ф

 u = Extract-Min (Q)

 for each v є G.adj[u]

 if each v є Q and w(u, v) <v.key

 v.∏ = u

 v.key = w(u, v)

The function Extract-Min returns the vertex with minimum edge cost. This function works

on min-heap.

Design & Analysis of Algorithms

44

Example

Using Prim’s algorithm, we can start from any vertex, let us start from vertex 1.

Vertex 3 is connected to vertex 1 with minimum edge cost, hence edge (1, 2) is added

to the spanning tree.

Next, edge (2, 3) is considered as this is the minimum among edges {(1, 2), (2, 3), (3,

4), (3, 7)}.

In the next step, we get edge (3, 4) and (2, 4) with minimum cost. Edge (3, 4) is selected

at random.

In a similar way, edges (4, 5), (5, 7), (7, 8), (6, 8) and (6, 9) are selected. As all the

vertices are visited, now the algorithm stops.

The cost of the spanning tree is (𝟐 + 𝟐 + 𝟑 + 𝟐 + 𝟓 + 𝟐 + 𝟑 + 𝟒) = 𝟐𝟑. There is no more

spanning tree in this graph with cost less than 23.

Design & Analysis of Algorithms

45

Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed

weighted graph 𝑮 = (𝑽, 𝑬), where all the edges are non-negative (i.e., 𝒘(𝒖, 𝒗) ≥ 𝟎 for each

edge (𝒖, 𝒗) є 𝑬).

In the following algorithm, we will use one function Extract-Min(), which extracts the

node with the smallest key.

Algorithm: Dijkstra’s-Algorithm (G, w, s)

for each vertex v є G.V

 v.d := ∞

 v.∏ := NIL

s.d := 0

S := ф

Q := G.V

while Q ≠ф

 u := Extract-Min (Q)

 S := S U {u}

 for each vertex v є G.adj[u]

 if v.d > u.d + w(u, v)

 v.d := u.d +w(u, v)

 v.∏ := u

Analysis

The complexity of this algorithm is fully dependent on the implementation of Extract-Min

function. If extract min function is implemented using linear search, the complexity of this

algorithm is 𝑶(𝑽𝟐 + 𝑬).

In this algorithm, if we use min-heap on which Extract-Min() function works to return

the node from Q with the smallest key, the complexity of this algorithm can be reduced

further.

19. DAA ─ Shortest Paths

Design & Analysis of Algorithms

46

Example

Let us consider vertex 1 and 9 as the start and destination vertex respectively. Initially,

all the vertices except the start vertex are marked by ∞ and the start vertex is marked by

0.

Vertex Initial
Step1

V1

Step2

V3

Step3

V2

Step4

V4

Step5

V5

Step6

V7

Step7

V8

Step8

V6

1 0 0 0 0 0 0 0 0 0

2 ∞ 5 4 4 4 4 4 4 4

3 ∞ 2 2 2 2 2 2 2 2

4 ∞ ∞ ∞ 7 7 7 7 7 7

5 ∞ ∞ ∞ 11 9 9 9 9 9

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16

7 ∞ ∞ 11 11 11 11 11 11 11

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20

Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is

𝟏−> 𝟑−> 𝟕−> 𝟖−> 𝟔−> 𝟗

This path is determined based on predecessor information.

Design & Analysis of Algorithms

47

Bellman Ford Algorithm

This algorithm solves the single source shortest path problem of a directed graph 𝑮 =

 (𝑽, 𝑬) in which the edge weights may be negative. Moreover, this algorithm can be applied

to find the shortest path, if there does not exist any negative weighted cycle.

Algorithm: Bellman-Ford-Algorithm (G, w, s)

for each vertex v є G.V

 v.d := ∞

 v.∏ := NIL

s.d := 0

for i = 1 to |G.V| - 1

 for each edge (u, v) є G.E

 if v.d > u.d + w(u, v)

 v.d := u.d +w(u, v)

 v.∏ := u

for each edge (u, v) є G.E

 if v.d > u.d + w(u, v)

 return FALSE

return TRUE

Analysis

The first for loop is used for initialization, which runs in 𝑶(𝑽) times. The next for loop runs

|𝑽 − 𝟏| passes over the edges, which takes 𝑶(𝑬) times.

Hence, Bellman-Ford algorithm runs in 𝑶(𝑽. 𝑬) time.

Design & Analysis of Algorithms

48

Example

The following example shows how Bellman-Ford algorithm works step by step. This graph

has a negative edge but does not have any negative cycle, hence the problem can be

solved using this technique.

At the time of initialization, all the vertices except the source are marked by ∞ and the

source is marked by 0.

In the first step, all the vertices which are reachable from the source are updated by

minimum cost. Hence, vertices a and h are updated.

Design & Analysis of Algorithms

49

In the next step, vertices a, b, f and e are updated.

Following the same logic, in this step vertices b, f, c and g are updated.

Design & Analysis of Algorithms

50

Here, vertices c and d are updated.

Hence, the minimum distance between vertex s and vertex d is 20.

Based on the predecessor information, the path is 𝑠−> 𝒉−> 𝒆−> 𝒈−> 𝒄−> 𝒅

Design & Analysis of Algorithms

51

A multistage graph 𝑮 = (𝑽, 𝑬) is a directed graph where vertices are partitioned into k

(where 𝒌 > 𝟏) number of disjoint subsets 𝑺 = {𝒔𝟏, 𝒔𝟐, … , 𝒔𝒌} such that edge (𝒖, 𝒗) is in E,

then 𝒖 є 𝒔𝒊 and 𝒗 є 𝒔𝟏+𝟏 for some subsets in the partition and |𝒔𝟏| = |𝒔𝒌| = 𝟏.

The vertex 𝒔 є 𝒔𝟏 is called the source and the vertex 𝒕 є 𝒔𝒌 is called sink.

G is usually assumed to be a weighted graph. In this graph, cost of an edge (𝒊, 𝒋) is

represented by 𝒄(𝒊, 𝒋). Hence, the cost of path from source 𝒔 to sink 𝒕 is the sum of costs

of each edges in this path.

The multistage graph problem is finding the path with minimum cost from source 𝒔 to

sink 𝒕.

Example

Consider the following example to understand the concept of multistage graph.

According to the formula, we have to calculate the cost (i, j) using the following steps:

Step-1: Cost (K-2, j)

In this step, three nodes (node 4, 5. 6) are selected as j. Hence, we have three options to

choose the minimum cost at this step.

𝑪𝒐𝒔𝒕(𝟑, 𝟒) = 𝒎𝒊𝒏{ 𝒄(𝟒, 𝟕) + 𝑪𝒐𝒔𝒕(𝟕, 𝟗), 𝒄(𝟒, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗)} = 𝟕

𝑪𝒐𝒔𝒕(𝟑, 𝟓) = 𝒎𝒊𝒏{ 𝒄(𝟓, 𝟕) + 𝑪𝒐𝒔𝒕(𝟕, 𝟗), 𝒄(𝟓, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗)} = 𝟓

𝑪𝒐𝒔𝒕(𝟑, 𝟔) = 𝒎𝒊𝒏{ 𝒄(𝟔, 𝟕) + 𝑪𝒐𝒔𝒕(𝟕, 𝟗), 𝒄(𝟔, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗)} = 𝟓

20. DAA ─ Multistage Graph

Design & Analysis of Algorithms

52

Step-2: Cost (K-3, j)

Two nodes are selected as j because at stage 𝒌 − 𝟑 = 𝟐 there are two nodes, 2 and 3. So,

the value 𝒊 = 𝟐 and 𝒋 = 𝟐 and 𝟑.

𝑪𝒐𝒔𝒕(𝟐, 𝟐) = 𝒎𝒊𝒏{ 𝒄(𝟐, 𝟒) + 𝑪𝒐𝒔𝒕(𝟒, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗), 𝒄(𝟐, 𝟔) + 𝑪𝒐𝒔𝒕(𝟔, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗), } = 𝟖

𝑪𝒐𝒔𝒕(𝟐, 𝟑) = 𝒎𝒊𝒏{ 𝒄(𝟑, 𝟒) + 𝑪𝒐𝒔𝒕(𝟒, 𝟗) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗), 𝒄(𝟑, 𝟓) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗)} = 𝟕

Step-3: Cost (K-4, j)

𝑪𝒐𝒔𝒕 (𝟏, 𝟏) = 𝒎𝒊𝒏{𝒄(𝟏, 𝟐) + 𝑪𝒐𝒔𝒕(𝟐, 𝟔) + 𝑪𝒐𝒔𝒕(𝟔, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗),

𝒄(𝟏, 𝟑) + 𝑪𝒐𝒔𝒕(𝟑, 𝟔) + 𝑪𝒐𝒔𝒕(𝟔, 𝟖 + 𝑪𝒐𝒔𝒕(𝟖, 𝟗))} = 𝟏𝟑

Hence, the path having the minimum cost is 𝟏−> 𝟐 −> 𝟔 −> 𝟖−> 𝟗.

Design & Analysis of Algorithms

53

Problem Statement

A traveler needs to visit all the cities from a list, where distances between all the cities are

known and each city should be visited just once. What is the shortest possible route that

he visits each city exactly once and returns to the origin city?

Solution

Travelling salesman problem is the most notorious computational problem. We can use

brute-force approach to evaluate every possible tour and select the best one. For n number

of vertices in a graph, there are (𝒏 − 𝟏)! number of possibilities.

Instead of brute-force using dynamic programming approach, the solution can be obtained

in lesser time, though there is no polynomial time algorithm.

Let us consider a graph 𝑮 = (𝑽, 𝑬), where V is a set of cities and E is a set of weighted

edges. An edge e(u, v) represents that vertices u and v are connected. Distance between

vertex u and v is d(u, v), which should be non-negative.

Suppose we have started at city 1 and after visiting some cities now we are in city j.

Hence, this is a partial tour. We certainly need to know j, since this will determine which

cities are most convenient to visit next. We also need to know all the cities visited so far,

so that we don't repeat any of them. Hence, this is an appropriate sub-problem.

For a subset of cities 𝑺 ∈ {𝟏, 𝟐, 𝟑, … , 𝒏} that includes 1, and 𝒋 ∈ 𝑺, let C(S, j) be the length

of the shortest path visiting each node in S exactly once, starting at 1 and ending at j.

When |𝑺| > 𝟏, we define 𝑪 (𝑺, 𝟏) = ∝ since the path cannot start and end at 1.

Now, let express C(S, j) in terms of smaller sub-problems. We need to start at 1 and end

at j. We should select the next city in such a way that

𝑪 (𝑺, 𝒋) = 𝐦𝐢𝐧 𝑪(𝑺 − {𝒋}, 𝒊) + 𝒅(𝒊, 𝒋) 𝒘𝒉𝒆𝒓𝒆 𝒊 ∈ 𝑺 𝒂𝒏𝒅 𝒊 ≠ 𝒋

Algorithm: Traveling-Salesman-Problem

C ({1}, 1) = 0

for s = 2 to n do

 for all subsets S є {1, 2, 3, … , n} of size s and containing 1

 C (S, 1) = ∞

 for all j є S and j ≠ 1

 C (S, j) = min {C (S – {j}, i) + d(i, j) for i є S and i ≠ j}

Return minj C ({1, 2, 3, …, n}, j) + d(j, i)

21. DAA ─ Travelling Salesman Problem

Design & Analysis of Algorithms

54

Analysis

There are at the most 2n.n sub-problems and each one takes linear time to solve.

Therefore, the total running time is 𝑶(𝟐𝒏. 𝒏𝟐).

Example

In the following example, we will illustrate the steps to solve the travelling salesman

problem.

From the above graph, the following table is prepared.

 1 2 3 4

1 0 10 15 20

2 5 0 9 10

3 6 13 0 12

4 8 8 9 0

𝐒 = 𝛟

 𝐂𝐨𝐬𝐭 (𝟐, 𝛟, 𝟏) = 𝐝 (𝟐, 𝟏) = 𝟓

 𝐂𝐨𝐬𝐭 (𝟑, 𝛟, 𝟏) = 𝐝 (𝟑, 𝟏) = 𝟔

 𝐂𝐨𝐬𝐭 (𝟒, 𝛟, 𝟏) = 𝐝 (𝟒, 𝟏) = 𝟔

𝐒 = 𝟏

𝐂𝐨𝐬𝐭 (𝐢, 𝐬) = 𝐦𝐢𝐧 {𝐂𝐨𝐬𝐭 (𝐣, 𝐬 – (𝐣)) + 𝐝 [𝐢, 𝐣]}

𝐂𝐨𝐬𝐭 (𝟐, {𝟑}, 𝟏) = 𝐝 [𝟐, 𝟑] + 𝐂𝐨𝐬𝐭 (𝟑, 𝛟, 𝟏) = 𝟗 + 𝟔 = 𝟏𝟓

𝐂𝐨𝐬𝐭 (𝟐, {𝟒}, 𝟏) = 𝐝 [𝟐, 𝟒] + 𝐂𝐨𝐬𝐭 (𝟒, 𝛟, 𝟏) = 𝟏𝟎 + 𝟖 = 𝟏𝟖

𝐂𝐨𝐬𝐭 (𝟑, {𝟐}, 𝟏) = 𝐝 [𝟑, 𝟐] + 𝐂𝐨𝐬𝐭 (𝟐, 𝛟, 𝟏) = 𝟏𝟑 + 𝟓 = 𝟏𝟖

𝐂𝐨𝐬𝐭 (𝟑, {𝟒}, 𝟏) = 𝐝 [𝟑, 𝟒] + 𝐂𝐨𝐬𝐭 (𝟒, 𝛟, 𝟏) = 𝟏𝟐 + 𝟖 = 𝟐𝟎

Design & Analysis of Algorithms

55

𝐂𝐨𝐬𝐭 (𝟒, {𝟑}, 𝟏) = 𝐝 [𝟒, 𝟑] + 𝐂𝐨𝐬𝐭 (𝟑, 𝛟, 𝟏) = 𝟗 + 𝟔 = 𝟏𝟓

𝑪𝒐𝒔𝒕 (𝟒, {𝟐}, 𝟏) = 𝒅 [𝟒, 𝟐] + 𝑪𝒐𝒔𝒕 (𝟐, 𝝓, 𝟏) = 𝟖 + 𝟓 = 𝟏𝟑

𝐒 = 𝟐

𝐂𝐨𝐬𝐭 (𝟐, {𝟑, 𝟒}, 𝟏) = 𝐦𝐢𝐧 {
𝐝 [𝟐, 𝟑] + 𝐂𝐨𝐬𝐭 (𝟑, {𝟒}, 𝟏) = 𝟗 + 𝟐𝟎 = 𝟐𝟗

𝐝 [𝟐, 𝟒] + 𝐂𝐨𝐬𝐭 (𝟒 , {𝟑}, 𝟏) = 𝟏𝟎 + 𝟏𝟓 = 𝟐𝟓
 = 𝟐𝟓

𝐂𝐨𝐬𝐭 (𝟑, {𝟐, 𝟒}, 𝟏) = 𝐦𝐢𝐧 {
𝐝 [𝟑, 𝟐] + 𝐂𝐨𝐬𝐭 (𝟐, {𝟒}, 𝟏) = 𝟏𝟑 + 𝟏𝟖 = 𝟑𝟏

𝐝 [𝟑, 𝟒] + 𝐂𝐨𝐬𝐭 (𝟒, {𝟐}, 𝟏) = 𝟏𝟐 + 𝟏𝟑 = 𝟐𝟓
 = 25

𝐂𝐨𝐬𝐭 (𝟒, {𝟐, 𝟑}, 𝟏) = 𝐦𝐢𝐧 {
𝐝 [𝟒, 𝟐] + 𝐂𝐨𝐬𝐭 (𝟐, {𝟑}, 𝟏) = 𝟖 + 𝟏𝟓 = 𝟐𝟑

𝐝 [𝟒, 𝟑] + 𝐂𝐨𝐬𝐭 (𝟑, {𝟐}, 𝟏) = 𝟗 + 𝟏𝟖 = 𝟐𝟕
 = 𝟐𝟑

𝐒 = 𝟑

𝐂𝐨𝐬𝐭 (𝟏, {𝟐, 𝟑, 𝟒}, 𝟏) = 𝐦𝐢𝐧 {

𝐝 [𝟏, 𝟐] + 𝐂𝐨𝐬𝐭 (𝟐, {𝟑, 𝟒}, 𝟏) = 𝟏𝟎 + 𝟐𝟓 = 𝟑𝟓

𝐝 [𝟏, 𝟑] + 𝐂𝐨𝐬𝐭 (𝟑, {𝟐, 𝟒}, 𝟏) = 𝟏𝟓 + 𝟐𝟓 = 𝟒𝟎

𝐝 [𝟏, 𝟒] + 𝐂𝐨𝐬𝐭 (𝟒, {𝟐, 𝟑}, 𝟏) = 𝟐𝟎 + 𝟐𝟑 = 𝟒𝟑

 = 𝟑𝟓

The minimum cost path is 35.

Start from cost {1, {2, 3, 4}, 1}, we get the minimum value for d [1, 2]. When s = 3,

select the path from 1 to 2 (cost is 10) then go backwards. When s = 2, we get the

minimum value for d [4, 2]. Select the path from 2 to 4 (cost is 10) then go backwards.

When s = 1, we get the minimum value for d [4, 2] but 2 and 4 is already selected.

Therefore, we select d [4, 3] (two possible values are 15 for d [2, 3] and d [4, 3], but our

last node of the path is 4). Select path 4 to 3 (cost is 9), then go to s = ϕ step. We get

the minimum value for d [3, 1] (cost is 6).

Design & Analysis of Algorithms

56

A Binary Search Tree (BST) is a tree where the key values are stored in the internal nodes.

The external nodes are null nodes. The keys are ordered lexicographically, i.e. for each

internal node all the keys in the left sub-tree are less than the keys in the node, and all

the keys in the right sub-tree are greater.

When we know the frequency of searching each one of the keys, it is quite easy to compute

the expected cost of accessing each node in the tree. An optimal binary search tree is a

BST, which has minimal expected cost of locating each node.

Search time of an element in a BST is 𝑶(𝒏), whereas in a Balanced-BST search time is

𝑶(𝒍𝒐𝒈 𝒏). Again the search time can be improved in Optimal Cost Binary Search Tree,

placing the most frequently used data in the root and closer to the root element, while

placing the least frequently used data near leaves and in leaves.

Here, the Optimal Binary Search Tree Algorithm is presented. First, we build a BST from a

set of provided n number of distinct keys < 𝒌𝟏, 𝒌𝟐, 𝒌𝟑, … , 𝒌𝒏 >. Here we assume, the

probability of accessing a key Ki is pi. Some dummy keys (𝒅𝒐, 𝒅𝟏, 𝒅𝟐, … , 𝒅𝒏) are added as

some searches may be performed for the values which are not present in the Key set K.

We assume, for each dummy key di probability of access is qi.

Optimal-Binary-Search-Tree(p, q, n)

e[1…n+1, 0…n],

w[1…n+1, 0…n],

root[1…n+1, 0…n]

for i = 1 to n + 1 do

 e[i, i -1] := qi-1

 w[i, i -1] := qi-1

for l = 1 to n do

 for i = 1 to n – l + 1 do

 j = i + l – 1

 e[i, j] := ∞

 w[i, i] := w[i, i -1] + pj + qj

 for r = i to j do

 t := e[i, r -1] + e[r + 1, j] + w[i, j]

 if t < e[i, j]

 e[i, j] := t

 root[i, j] := r

return e and root

22. DAA ─ Optimal Cost Binary Search Trees

Design & Analysis of Algorithms

57

Analysis

The algorithm requires O (n3) time, since three nested for loops are used. Each of these

loops takes on at most n values.

Example

Considering the following tree, the cost is 2.80, though this is not an optimal result.

Node Depth Probability Contribution

k1
1 0.15 0.30

k2
0 0.10 0.10

k3
2 0.05 0.15

k4
1 0.10 0.20

k5
2 0.20 0.60

d0
2 0.05 0.15

d1
2 0.10 0.30

d2
3 0.05 0.20

d3
3 0.05 0.20

d4
3 0.05 0.20

d5
3 0.10 0.40

Total
 2.80

Design & Analysis of Algorithms

58

To get an optimal solution, using the algorithm discussed in this chapter, the following

tables are generated.

In the following tables, column index is i and row index is j.

e 1 2 3 4 5 6

5 2.75 2.00 1.30 0.90 0.50 0.10

4 1.75 1.20 0.60 0.30 0.05

3 1.25 0.70 0.25 0.05

2 0.90 0.40 0.05

1 0.45 0.10

0 0.05

w 1 2 3 4 5 6

5 1.00 0.80 0.60 0.50 0.35 0.10

4 0.70 0.50 0.30 0.20 0.05

3 0.55 0.35 0.15 0.05

2 0.45 0.25 0.05

1 0.30 0.10

0 0.05

root 1 2 3 4 5

5 2 4 5 5 5

4 2 2 4 4

3 2 2 3

2 1 2

1 1

From these tables, the optimal tree can be formed.

Design & Analysis of Algorithms

59

Heap Algorithms

Design & Analysis of Algorithms

60

There are several types of heaps, however in this chapter, we are going to discuss binary

heap. A binary heap is a data structure, which looks similar to a complete binary tree.

Heap data structure obeys ordering properties discussed below. Generally, a Heap is

represented by an array. In this chapter, we are representing a heap by H.

As the elements of a heap is stored in an array, considering the starting index as 1, the

position of the parent node of ith element can be found at ⌊i/2⌋. Left child and right child

of ith node is at position 2i and 2i + 1.

A binary heap can be classified further as either a max-heap or a min-heap based on

the ordering property.

Max-Heap

In this heap, the key value of a node is greater than or equal to the key value of the

highest child.

Hence, 𝑯[𝑷𝒂𝒓𝒆𝒏𝒕(𝒊)] ≥ 𝑯[𝒊]

Min-Heap

In mean-heap, the key value of a node is lesser than or equal to the key value of the

lowest child. Hence, H[Parent(i)] ≤ H[i]

In this context, basic operations are shown below with respect to Max-Heap. Insertion and

deletion of elements in and from heaps need rearrangement of elements. Hence, Heapify

function needs to be called.

23. DAA ─ Binary Heap

Design & Analysis of Algorithms

61

Array Representation

A complete binary tree can be represented by an array, storing its elements using level

order traversal.

Let us consider a heap (as shown below) which will be represented by an array H.

Considering the starting index as 0, using level order traversal, the elements are being

kept in an array as follows.

index 0 1 2 3 4 5 6 7 8 …

elements 70 30 50 12 20 35 25 4 8 …

Design & Analysis of Algorithms

62

In this context, operations on heap are being represented with respect to Max-Heap.

To find the index of the parent of an element at index i, the following algorithm Parent

(numbers[], i) is used.

Algorithm: Parent (numbers[], i)

if i == 1

 return NULL

else

 [i / 2]

The index of the left child of an element at index i can be found using the following

algorithm, Left-Child (numbers[], i).

Algorithm: Left-Child (numbers[], i)

If 2 * i ≤ heapsize

 return [2 * i]

else

 return NULL

The index of the right child of an element at index i can be found using the following

algorithm, Right-Child(numbers[], i).

Algorithm: Right-Child (numbers[], i)

if 2 * i < heapsize

 return [2 * i + 1]

else

 return NULL

Design & Analysis of Algorithms

63

To insert an element in a heap, the new element is initially appended to the end of the

heap as the last element of the array.

After inserting this element, heap property may be violated, hence the heap property is

repaired by comparing the added element with its parent and moving the added element

up a level, swapping positions with the parent. This process is called percolation up.

The comparison is repeated until the parent is larger than or equal to the percolating

element.

Algorithm: Max-Heap-Insert (numbers[], key)

heapsize = heapsize + 1

numbers[heapsize] = -∞

i = heapsize

numbers[i] = key

while i > 1 and numbers[Parent(numbers[], i)] < numbers[i]

 exchange(numbers[i], numbers[Parent(numbers[], i)])

 i = Parent (numbers[], i)

Analysis

Initially, an element is being added at the end of the array. If it violates the heap property,

the element is exchanged with its parent. The height of the tree is 𝒍𝒐𝒈 𝒏. Maximum 𝒍𝒐𝒈 𝒏

number of operations needs to be performed.

Hence, the complexity of this function is 𝑶(𝒍𝒐𝒈 𝒏).

Example

Let us consider a max-heap, as shown below, where a new element 5 needs to be added.

24. DAA ─ Insert Method

Design & Analysis of Algorithms

64

Initially, 55 will be added at the end of this array.

After insertion, it violates the heap property. Hence, the element needs to swap with its

parent. After swap, the heap looks like the following.

Again, the element violates the property of heap. Hence, it is swapped with its parent.

Now, we have to stop.

Design & Analysis of Algorithms

65

Heapify method rearranges the elements of an array where the left and right sub-tree of

ith element obeys the heap property.

Algorithm: Max-Heapify(numbers[], i)

leftchild := numbers[2i]

rightchild := numbers [2i + 1]

if leftchild ≤ numbers[].size and numbers[leftchild] > numbers[i]

 largest := leftchild

else

 largest := i

if rightchild ≤ numbers[].size and numbers[rightchild] > numbers[largest]

 largest := rightchild

if largest ≠ i

 swap numbers[i] with numbers[largest]

 Max-Heapify(numbers, largest)

When the provided array does not obey the heap property, Heap is built based on the

following algorithm Build-Max-Heap (numbers[]).

Algorithm: Build-Max-Heap(numbers[])

numbers[].size := numbers[].length

fori = ⌊numbers[].length/2⌋ to 1 by -1

 Max-Heapify (numbers[], i)

25. DAA ─ Heapify Method

Design & Analysis of Algorithms

66

Extract method is used to extract the root element of a Heap. Following is the algorithm.

Algorithm: Heap-Extract-Max (numbers[])

max = numbers[1]

numbers[1] = numbers[heapsize]

heapsize = heapsize – 1

Max-Heapify (numbers[], 1)

return max

Example

Let us consider the same example discussed previously. Now we want to extract an

element. This method will return the root element of the heap.

After deletion of the root element, the last element will be moved to the root position.

26. DAA ─ Extract Method

Design & Analysis of Algorithms

67

Now, Heapify function will be called. After Heapify, the following heap is generated.

Design & Analysis of Algorithms

68

Sorting Methods

Design & Analysis of Algorithms

69

Bubble Sort is an elementary sorting algorithm, which works by repeatedly exchanging

adjacent elements, if necessary. When no exchanges are required, the file is sorted.

This is the simplest technique among all sorting algorithms.

Algorithm: Sequential-Bubble-Sort (A)

fori← 1 to length [A] do

for j ← length [A] down-to i +1 do

 if A[A] < A[j-1] then

 Exchange A[j] ↔ A[j-1]

Implementation

voidbubbleSort(int numbers[], intarray_size)

{

 inti, j, temp;

 for (i = (array_size - 1); i>= 0; i--)

 for (j = 1; j <= i; j++)

 if (numbers[j-1] > numbers[j])

 {

 temp = numbers[j-1];

 numbers[j-1] = numbers[j];

 numbers[j] = temp;

 }

}

Analysis

Here, the number of comparisons are

𝟏 + 𝟐 + 𝟑 + . . . + (𝒏 − 𝟏) = 𝒏(𝒏 − 𝟏)/𝟐 = 𝑶(𝒏𝟐)

Clearly, the graph shows the n2 nature of the bubble sort.

In this algorithm, the number of comparison is irrespective of the data set, i.e. whether

the provided input elements are in sorted order or in reverse order or at random.

27. DAA ─ Bubble Sort

Design & Analysis of Algorithms

70

Memory Requirement

From the algorithm stated above, it is clear that bubble sort does not require extra

memory.

Example

Unsorted list:

1st iteration:

5 >2 swap

 5 >1 swap

 5 >4 swap

 5 > 3 swap

 5 <7 no swap

 7 > 6 swap

2nd iteration:

 2 >1 swap

 2 <4 no swap

 4 >3 swap

 4 <5 no swap

 5 <6 no swap

There is no change in 3rd, 4th, 5th and 6th iteration.

Finally, the sorted list is

1 2 3 4 5 6 7

5 2 1 4 3 7 6

2 5 1 4 3 7 6

2 1 5 4 3 7 6

2 1 4 5 3 7 6

2 1 4 3 5 7 6

2 1 4 3 5 7 6

2 1 4 3 5 6 7

1 2 4 3 5 6 7

1 2 4 3 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Design & Analysis of Algorithms

71

Insertion sort is a very simple method to sort numbers in an ascending or descending

order. This method follows the incremental method. It can be compared with the technique

how cards are sorted at the time of playing a game.

The numbers, which are needed to be sorted, are known as keys. Here is the algorithm

of the insertion sort method.

Algorithm: Insertion-Sort(A)

for j = 2 to A.length

 key = A[j]

 i = j – 1

 while i > 0 and A[i] > key

 A[i + 1] = A[i]

 i = i -1

 A[i + 1] = key

Analysis

Run time of this algorithm is very much dependent on the given input.

If the given numbers are sorted, this algorithm runs in 𝑶(𝒏) time. If the given numbers

are in reverse order, the algorithm runs in 𝑶(𝒏𝟐) time.

Example

Unsorted list:

1st iteration:

 Key = a[2] = 13

a[1] = 2 < 13

So, no swap.

2nd iteration:

 Key = a[3] = 5

 a[2] = 13 > 5

 Swap 5 and 13

28. DAA ─ Insertion Sort

2 13 5 18 14

2 13 5 18 14

2 5 13 18 14

Design & Analysis of Algorithms

72

 Next, a[1] = 2 < 13

 So, no swap

3rd iteration:

 Key = a[4] = 18

 a[3] = 13 < 18,

 a[2] = 5 < 18,

 a[1] = 2 < 18

 So, no swap

4th iteration:

 Key = a[5] = 14

 a[4] = 18 > 14

 Swap 18 and 14

 Next, a[3] = 13 < 14,

 a[2] = 5 < 14,

 a[1] = 2 < 14

 So, no swap

Finally, the sorted list is

2 5 13 14 18

2 5 13 18 14

2 5 13 18 14

2 5 13 14 18

2 5 13 14 18

Design & Analysis of Algorithms

73

This type of sorting is called Selection Sort as it works by repeatedly sorting elements.

It works as follows: first find the smallest in the array and exchange it with the element

in the first position, then find the second smallest element and exchange it with the

element in the second position, and continue in this way until the entire array is sorted.

Algorithm: Selection-Sort (A)

fori← 1 to n-1 do

 min j ←i;

 min x ← A[i]

 for j ←i + 1 to n do

 if A[j] < min x then

 min j ← j

 min x ← A[j]

 A[min j] ← A [i]

 A[i] ← min x

Selection sort is among the simplest of sorting techniques and it works very well for small

files. It has a quite important application as each item is actually moved at the most once.

Section sort is a method of choice for sorting files with very large objects (records) and

small keys. The worst case occurs if the array is already sorted in a descending order and

we want to sort them in an ascending order.

Nonetheless, the time required by selection sort algorithm is not very sensitive to the

original order of the array to be sorted: the test if 𝑨[𝒋] < 𝒎𝒊𝒏 𝒙 is executed exactly the

same number of times in every case.

Selection sort spends most of its time trying to find the minimum element in the unsorted

part of the array. It clearly shows the similarity between Selection sort and Bubble sort.

 Bubble sort selects the maximum remaining elements at each stage, but wastes

some effort imparting some order to an unsorted part of the array.

 Selection sort is quadratic in both the worst and the average case, and requires no

extra memory.

For each i from 1 to n - 1, there is one exchange and n - i comparisons, so there is a total

of n - 1 exchanges and

(𝒏 − 𝟏) + (𝒏 − 𝟐) + . . . + 𝟐 + 𝟏 = 𝒏(𝒏 − 𝟏)/𝟐 comparisons.

These observations hold, no matter what the input data is.

29. DAA ─ Selection Sort

Design & Analysis of Algorithms

74

In the worst case, this could be quadratic, but in the average case, this quantity

is O(n log n). It implies that the running time of Selection sort is quite insensitive

to the input.

Implementation

Void Selection-Sort(int numbers[], int array_size)

{

 int i, j;

 int min, temp;

 for (i = 0; I < array_size-1; i++)

 {

 min = i;

 for (j = i+1; j < array_size; j++)

 if (numbers[j] < numbers[min])

 min = j;

 temp = numbers[i];

 numbers[i] = numbers[min];

 numbers[min] = temp;

 }

}

Example

Unsorted list:

1st iteration:

Smallest = 5

2 < 5, smallest = 2

1 < 2, smallest = 1

4 > 1, smallest = 1

3 > 1, smallest = 1

Swap 5 and 1

1 2 5 4 3

5 2 1 4 3

Design & Analysis of Algorithms

75

2nd iteration:

 Smallest = 2

2 < 5, smallest = 2

2 < 4, smallest = 2

2 < 3, smallest = 2

No swap

3rd iteration:

 Smallest = 5

4 < 5, smallest = 4

3 < 4, smallest = 3

Swap 5 and 3

4th iteration:

 Smallest = 4

4 < 5, smallest = 4

No swap

Finally, the sorted list is

1 2 5 4 3

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Design & Analysis of Algorithms

76

It is used on the principle of divide-and-conquer. Quick sort is an algorithm of choice in

many situations as it is not difficult to implement. It is a good general purpose sort and it

consumes relatively fewer resources during execution.

Advantages

 It is in-place since it uses only a small auxiliary stack.

 It requires only 𝒏 𝒍𝒐𝒈(𝒏) time to sort n items.

 It has an extremely short inner loop.

 This algorithm has been subjected to a thorough mathematical analysis, a very
precise statement can be made about performance issues.

Disadvantages

 It is recursive. Especially, if recursion is not available, the implementation is

extremely complicated.

 It requires quadratic (i.e., n2) time in the worst-case.

 It is fragile, i.e. a simple mistake in the implementation can go unnoticed and cause
it to perform badly.

Quick sort works by partitioning a given array A[p ... r] into two non-empty sub

array A[p ... q] and A[q+1 ... r] such that every key in A[p ... q] is less than or equal

to every key in A[q+1 ... r].

Then, the two sub-arrays are sorted by recursive calls to Quick sort. The exact position of

the partition depends on the given array and index q is computed as a part of the

partitioning procedure.

Algorithm: Quick-Sort (A, p, r)

if p < r then

 q Partition (A, p, r)

 Quick-Sort (A, p, q)

 Quick-Sort (A, q + r, r)

Note that to sort the entire array, the initial call should be Quick-Sort (A, 1, length[A])

As a first step, Quick Sort chooses one of the items in the array to be sorted as pivot.

Then, the array is partitioned on either side of the pivot. Elements that are less than or

equal to pivot will move towards the left, while the elements that are greater than or equal

to pivot will move towards the right.

30. DAA ─ Quick Sort

Design & Analysis of Algorithms

77

Partitioning the Array

Partitioning procedure rearranges the sub-arrays in-place.

Function: Partition (A, p, r)

x ← A[p]

i ← p-1

j ← r+1

while TRUE do

 Repeat j ← j - 1

 until A[j] ≤ x

 Repeat i← i+1

 until A[i] ≥ x

 if i < j then

 exchange A[i] ↔ A[j]

 else

 return j

Analysis

The worst case complexity of Quick-Sort algorithm is O(n2). However using this technique,

in average cases generally we get the output in O(n log n) time.

Design & Analysis of Algorithms

78

Radix sort is a small method that many people intuitively use when alphabetizing a large

list of names. Specifically, the list of names is first sorted according to the first letter of

each name, that is, the names are arranged in 26 classes.

Intuitively, one might want to sort numbers on their most significant digit. However, Radix

sort works counter-intuitively by sorting on the least significant digits first. On the first

pass, all the numbers are sorted on the least significant digit and combined in an array.

Then on the second pass, the entire numbers are sorted again on the second least-

significant digits and combined in an array and so on.

Algorithm: Radix-Sort (list, n)

shift = 1

for loop = 1 to keysize do

 for entry = 1 to n do

 bucketnumber = (list[entry].key / shift) mod 10

 append (bucket[bucketnumber], list[entry])

 list = combinebuckets()

 shift = shift * 10

Analysis

Each key is looked at once for each digit (or letter if the keys are alphabetic) of the longest

key. Hence, if the longest key has m digits and there are n keys, radix sort has order

O(m.n).

However, if we look at these two values, the size of the keys will be relatively small when

compared to the number of keys. For example, if we have six-digit keys, we could have a

million different records.

Here, we see that the size of the keys is not significant, and this algorithm is of linear

complexity O(n).

Example

Following example shows how Radix sort operates on seven 3-digits number.

Input 1st Pass 2nd Pass 3rd Pass

329 720 720 329

457 355 329 355

657 436 436 436

839 457 839 457

436 657 355 657

720 329 457 720

355 839 657 839

31. DAA ─ Radix Sort

Design & Analysis of Algorithms

79

In the above example, the first column is the input. The remaining columns show the list

after successive sorts on increasingly significant digits position. The code for Radix sort

assumes that each element in an array A of n elements has d digits, where digit 1 is the

lowest-order digit and d is the highest-order digit.

Design & Analysis of Algorithms

80

Complexity Theory

Design & Analysis of Algorithms

81

To understand class P and NP, first we should know the computational model. Hence, in

this chapter we will discuss two important computational models.

Deterministic Computation and the Class P

Deterministic Turing Machine

One of these models is deterministic one-tape Turing machine. This machine consists of a

finite state control, a read-write head and a two-way tape with infinite sequence.

Following is the schematic diagram of a deterministic one-tape Turing machine.

A program for a deterministic Turing machine specifies the following information:

 A finite set of tape symbols (input symbols and a blank symbol)

 A finite set of states

 A transition function

In algorithmic analysis, if a problem is solvable in polynomial time by a deterministic one

tape Turing machine, the problem belongs to P class.

Nondeterministic Computation and the Class NP

Nondeterministic Turing Machine

To solve the computational problem, another model is the Non-deterministic Turing

Machine (NDTM). The structure of NDTM is similar to DTM, however here we have one

additional module known as the guessing module, which is associated with one write-only

head.

32. DAA ─ Deterministic vs. Nondeterministic
Computations

Finite State

Control

Tape read-write head

Design & Analysis of Algorithms

82

Following is the schematic diagram.

If the problem is solvable in polynomial time by a non-deterministic Turing machine, the

problem belongs to NP class.

Finite

State

Control

Tape
Read-Write

head

Guessing

Module

Write-only
head

Design & Analysis of Algorithms

83

In an undirected graph, a clique is a complete sub-graph of the given graph. Complete

sub-graph means, all the vertices of this sub-graph is connected to all other vertices of

this sub-graph.

The Max-Clique problem is the computational problem of finding maximum clique of the

graph. Max clique is used in many real-world problems.

Let us consider a social networking application, where vertices represent people’s profile

and the edges represent mutual acquaintance in a graph. In this graph, a clique represents

a subset of people who all know each other.

To find a maximum clique, one can systematically inspect all subsets, but this sort

of brute-force search is too time-consuming for networks comprising more than a few

dozen vertices.

Algorithm: Max-Clique (G, n, k)

S := ф

for i = 1 to k do

 t := choice (1…n)

 if t є S then

 return failure

 S := S U t

for all pairs (i, j) such that i є S and j є S and i ≠ j do

 if (i, j) is not a edge of the graph then

 return failure

return success

Analysis

Max-Clique problem is a non-deterministic algorithm. In this algorithm, first we try to

determine a set of k distinct vertices and then we try to test whether these vertices form

a complete graph.

There is no polynomial time deterministic algorithm to solve this problem. This problem is

NP-Complete.

33. DAA ─ Max Cliques

https://en.wikipedia.org/wiki/Brute-force_search

Design & Analysis of Algorithms

84

Example

Take a look at the following graph. Here, the sub-graph containing vertices 2, 3, 4 and 6

forms a complete graph. Hence, this sub-graph is a clique. As this is the maximum

complete sub-graph of the provided graph, it’s a 4-Clique.

Design & Analysis of Algorithms

85

A vertex-cover of an undirected graph 𝑮 = (𝑽, 𝑬) is a subset of vertices 𝑽′ ⊆ 𝑽 such that if

edge (𝒖, 𝒗) is an edge of 𝑮, then either 𝒖 in 𝑽 or 𝒗 in 𝑽’ or both.

Find a vertex-cover of maximum size in a given undirected graph. This optimal vertex-

cover is the optimization version of an NP-complete problem. However, it is not too hard

to find a vertex-cover that is near optimal.

APPROX-VERTEX_COVER (G: Graph)

c ← { }

E’ ← E[G]

while E’ is not empty do

 Let (u, v) be an arbitrary edge of E’

 c ← c U {u, v}

 Remove from E’ every edge incident on either u or v

return c

Example

The set of edges of the given graph is:

{(𝟏, 𝟔), (𝟏, 𝟐), (𝟏, 𝟒), (𝟐, 𝟑), (𝟐, 𝟒), (𝟔, 𝟕), (𝟒, 𝟕), (𝟕, 𝟖), (𝟑, 𝟖), (𝟑, 𝟓), (𝟖, 𝟓)}

34. DAA ─ Vertex Cover

Design & Analysis of Algorithms

86

Now, we start by selecting an arbitrary edge (1, 6). We eliminate all the edges, which are

either incident to vertex 1 or 6 and we add edge (1, 6) to cover.

In the next step, we have chosen another edge (2, 3) at random.

Design & Analysis of Algorithms

87

Now we select another edge (4, 7).

We select another edge (8, 5).

Hence, the vertex cover of this graph is {1, 2, 4, 5}.

Analysis

It is easy to see that the running time of this algorithm is 𝑶(𝑽 + 𝑬), using adjacency list to

represent 𝑬’.

Design & Analysis of Algorithms

88

In Computer Science, many problems are solved where the objective is to maximize or

minimize some values, whereas in other problems we try to find whether there is a solution

or not. Hence, the problems can be categorized as follows:

Optimization Problem

Optimization problems are those for which the objective is to maximize or minimize some

values. For example,

 Finding the minimum number of colors needed to color a given graph.

 Finding the shortest path between two vertices in a graph.

Decision Problem

There are many problems for which the answer is a Yes or a No. These types of problems

are known as decision problems. For example,

 Whether a given graph can be colored by only 4-colors.

 Finding Hamiltonian cycle in a graph is not a decision problem, whereas checking

a graph is Hamiltonian or not is a decision problem.

What is Language?

Every decision problem can have only two answers, yes or no. Hence, a decision problem

may belong to a language if it provides an answer ‘yes’ for a specific input. A language is

the totality of inputs for which the answer is Yes. Most of the algorithms discussed in the

previous chapters are polynomial time algorithms.

For input size n, if worst-case time complexity of an algorithm is O(nk), where k is a

constant, the algorithm is a polynomial time algorithm.

Algorithms such as Matrix Chain Multiplication, Single Source Shortest Path, All Pair

Shortest Path, Minimum Spanning Tree, etc. run in polynomial time. However there are

many problems, such as traveling salesperson, optimal graph coloring, Hamiltonian cycles,

finding the longest path in a graph, and satisfying a Boolean formula, for which no

polynomial time algorithms is known. These problems belong to an interesting class of

problems, called the NP-Complete problems, whose status is unknown.

In this context, we can categorize the problems as follows:

P-Class

The class P consists of those problems that are solvable in polynomial time, i.e. these

problems can be solved in time O(nk) in worst-case, where k is constant.

These problems are called tractable, while others are called intractable or super-

polynomial.

35. DAA ─ P and NP Class

Design & Analysis of Algorithms

89

Formally, an algorithm is polynomial time algorithm, if there exists a polynomial p(n) such

that the algorithm can solve any instance of size n in a time O(p(n)).

Problem requiring Ω(n50) time to solve are essentially intractable for large n. Most known

polynomial time algorithm run in time O(nk) for fairly low value of k.

The advantages in considering the class of polynomial-time algorithms is that all

reasonable deterministic single processor model of computation can be simulated

on each other with at most a polynomial slow-down.

NP-Class

The class NP consists of those problems that are verifiable in polynomial time. NP is the

class of decision problems for which it is easy to check the correctness of a claimed answer,

with the aid of a little extra information. Hence, we aren’t asking for a way to find a

solution, but only to verify that an alleged solution really is correct.

Every problem in this class can be solved in exponential time using exhaustive search.

P versus NP

Every decision problem that is solvable by a deterministic polynomial time algorithm is

also solvable by a polynomial time non-deterministic algorithm.

All problems in P can be solved with polynomial time algorithms, whereas all problems in

𝑁𝑃 − 𝑃 are intractable.

It is not known whether 𝑷 = 𝑵𝑷. However, many problems are known in NP with the

property that if they belong to P, then it can be proved that P = NP.

If 𝑷 ≠ 𝑵𝑷, there are problems in NP that are neither in P nor in NP-Complete.

The problem belongs to class P if it’s easy to find a solution for the problem. The problem

belongs to NP, if it’s easy to check a solution that may have been very tedious to find.

Design & Analysis of Algorithms

90

Stephen Cook presented four theorems in his paper “The Complexity of Theorem Proving

Procedures”. These theorems are stated below. We do understand that many unknown

terms are being used in this chapter, but we don’t have any scope to discuss everything

in detail.

Following are the four theorems by Stephen Cook:

Theorem-1

If a set S of strings is accepted by some non-deterministic Turing machine within

polynomial time, then S is P-reducible to {DNF tautologies}.

Theorem-2

The following sets are P-reducible to each other in pairs (and hence each has the same

polynomial degree of difficulty): {tautologies}, {DNF tautologies}, D3, {sub-graph pairs}.

Theorem-3

 For any 𝑻𝑸(𝒌) of type Q,
𝑻𝑸(𝒌)

√𝒌

(𝐥𝐨𝐠 𝒌)𝟐

 is unbounded

 There is a 𝑻𝑸(𝒌) of type Q such that

𝑻𝑸(𝒌) ≤ 𝒌 𝟐𝒌(𝐥𝐨𝐠 𝒌)𝟐

Theorem-4

If the set S of strings is accepted by a non-deterministic machine within time 𝑻(𝒏) = 𝟐𝒏,

and if 𝑻𝑸(𝒌) is an honest (i.e. real-time countable) function of type Q, then there is a

constant K, so S can be recognized by a deterministic machine within time 𝑻𝑸(𝑲𝟖𝒏).

 First, he emphasized the significance of polynomial time reducibility. It means that

if we have a polynomial time reduction from one problem to another, this ensures

that any polynomial time algorithm from the second problem can be converted into

a corresponding polynomial time algorithm for the first problem.

 Second, he focused attention on the class NP of decision problems that can be

solved in polynomial time by a non-deterministic computer. Most of the intractable

problems belong to this class, NP.

36. DAA ─ Cook’s Theorem

Design & Analysis of Algorithms

91

 Third, he proved that one particular problem in NP has the property that every

other problem in NP can be polynomially reduced to it. If the satisfiability problem

can be solved with a polynomial time algorithm, then every problem in NP can also

be solved in polynomial time. If any problem in NP is intractable, then satisfiability

problem must be intractable. Thus, satisfiability problem is the hardest problem in

NP.

 Fourth, Cook suggested that other problems in NP might share with the satisfiability

problem this property of being the hardest member of NP.

Design & Analysis of Algorithms

92

A problem is in the class NPC if it is in NP and is as hard as any problem in NP. A problem

is NP-hard if all problems in NP are polynomial time reducible to it, even though it may

not be in NP itself.

If a polynomial time algorithm exists for any of these problems, all problems in NP would

be polynomial time solvable. These problems are called NP-complete. The phenomenon

of NP-completeness is important for both theoretical and practical reasons.

Definition of NP-Completeness

A language B is NP-complete if it satisfies two conditions:

 B is in NP

 Every A in NP is polynomial time reducible to B.

If a language satisfies the second property, but not necessarily the first one, the language

B is known as NP-Hard. Informally, a search problem B is NP-Hard if there exists some

NP-Complete problem A that Turing reduces to B.

The problem in NP-Hard cannot be solved in polynomial time, until 𝐏 = 𝐍𝐏. If a problem is

proved to be NPC, there is no need to waste time on trying to find an efficient algorithm

for it. Instead, we can focus on design approximation algorithm.

NP-Complete Problems

Following are some NP-Complete problems, for which no polynomial time algorithm is

known.

 Determining whether a graph has a Hamiltonian cycle

 Determining whether a Boolean formula is satisfiable, etc.

37. DAA ─ NP Hard & NP-Complete Classes

Design & Analysis of Algorithms

93

NP-Hard Problems

The following problems are NP-Hard

 The circuit-satisfiability problem

 Set Cover

 Vertex Cover

 Travelling Salesman Problem

In this context, now we will discuss TSP is NP-Complete

TSP is NP-Complete

The traveling salesman problem consists of a salesman and a set of cities. The salesman

has to visit each one of the cities starting from a certain one and returning to the same

city. The challenge of the problem is that the traveling salesman wants to minimize the

total length of the trip.

Proof

To prove TSP is NP-Complete, first we have to prove that TSP belongs to NP. In TSP,

we find a tour and check that the tour contains each vertex once. Then the total cost of

the edges of the tour is calculated. Finally, we check if the cost is minimum. This can be

completed in polynomial time. Thus TSP belongs to NP.

Secondly, we have to prove that TSP is NP-hard. To prove this, one way is to show that

𝑯𝒂𝒎𝒊𝒍𝒕𝒐𝒏𝒊𝒂𝒏 𝒄𝒚𝒄𝒍𝒆 ≤𝒑 𝑻𝑺𝑷 (as we know that the Hamiltonian cycle problem is NP-

complete).

Assume 𝑮 = (𝑽, 𝑬) to be an instance of Hamiltonian cycle.

Hence, an instance of TSP is constructed. We create the complete graph 𝑮’ = (𝑽, 𝑬′),

where

𝑬′ = {(𝒊, 𝒋): 𝒊, 𝒋 ∈ 𝑽 𝐚𝐧𝐝 𝒊 ≠ 𝒋

Thus, the cost function is defined as follows:

𝒕(𝒊, 𝒋) = {
𝟎 𝐢𝐟 (𝒊, 𝒋) ∈ 𝑬

𝟏 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

Now, suppose that a Hamiltonian cycle 𝒉 exists in 𝑮. It is clear that the cost of each edge

in 𝒉 is 𝟎 in 𝑮’ as each edge belongs to 𝑬. Therefore, 𝒉 has a cost of 𝟎 in 𝑮’. Thus, if graph

𝑮 has a Hamiltonian cycle, then graph 𝑮’ has a tour of 𝟎 cost.

Conversely, we assume that 𝑮’ has a tour 𝒉’ of cost at most 𝟎. The cost of edges in 𝑬’ are

𝟎 and 𝟏 by definition. Hence, each edge must have a cost of 𝟎 as the cost of 𝒉’ is 𝟎. We

therefore conclude that 𝒉’ contains only edges in 𝑬.

We have thus proven that 𝑮 has a Hamiltonian cycle, if and only if 𝑮’ has a tour of cost at

most 𝟎. TSP is NP-complete.

Design & Analysis of Algorithms

94

The algorithms discussed in the previous chapters run systematically. To achieve the goal,

one or more previously explored paths toward the solution need to be stored to find the

optimal solution.

For many problems, the path to the goal is irrelevant. For example, in N-Queens problem,

we don’t need to care about the final configuration of the queens as well as in which order

the queens are added.

Hill Climbing

Hill Climbing is a technique to solve certain optimization problems. In this technique, we

start with a sub-optimal solution and the solution is improved repeatedly until some

condition is maximized.

The idea of starting with a sub-optimal solution is compared to starting from the base of

the hill, improving the solution is compared to walking up the hill, and finally maximizing

some condition is compared to reaching the top of the hill.

Hence, the hill climbing technique can be considered as the following phases:

 Constructing a sub-optimal solution obeying the constraints of the problem

 Improving the solution step-by-step

 Improving the solution until no more improvement is possible

Hill Climbing technique is mainly used for solving computationally hard problems. It looks

only at the current state and immediate future state. Hence, this technique is memory

efficient as it does not maintain a search tree.

Algorithm: Hill Climbing

Evaluate the initial state.

Loop until a solution is found or there are no new operators left to be
applied:

 - Select and apply a new operator

38. DAA ─ Hill Climbing Algorithm

Design & Analysis of Algorithms

95

 - Evaluate the new state:

 goal-> quit

 better than current state-> new current state

Iterative Improvement

In iterative improvement method, the optimal solution is achieved by making progress

towards an optimal solution in every iteration. However, this technique may encounter

local maxima. In this situation, there is no nearby state for a better solution.

This problem can be avoided by different methods. One of these methods is simulated

annealing.

Random Restart

This is another method of solving the problem of local optima. This technique conducts a

series of searches. Every time, it starts from a randomly generated initial state. Hence,

optima or nearly optimal solution can be obtained comparing the solutions of searches

performed.

Problems of Hill Climbing Technique

Local Maxima

If the heuristic is not convex, Hill Climbing may converge to local maxima, instead of global

maxima.

Ridges and Alleys

If the target function creates a narrow ridge, then the climber can only ascend the ridge

or descend the alley by zig-zagging. In this scenario, the climber needs to take very small

steps requiring more time to reach the goal.

Plateau

A plateau is encountered when the search space is flat or sufficiently flat that the value

returned by the target function is indistinguishable from the value returned for nearby

regions, due to the precision used by the machine to represent its value.

Complexity of Hill Climbing Technique

This technique does not suffer from space related issues, as it looks only at the current

state. Previously explored paths are not stored.

For most of the problems in Random-restart Hill Climbing technique, an optimal solution

can be achieved in polynomial time. However, for NP-Complete problems, computational

time can be exponential based on the number of local maxima.

Design & Analysis of Algorithms

96

Applications of Hill Climbing Technique

Hill Climbing technique can be used to solve many problems, where the current state

allows for an accurate evaluation function, such as Network-Flow, Travelling Salesman

problem, 8-Queens problem, Integrated Circuit design, etc.

Hill Climbing is used in inductive learning methods too. This technique is used in robotics

for coordination among multiple robots in a team. There are many other problems where

this technique is used.

Example

This technique can be applied to solve the travelling salesman problem. First an initial

solution is determined that visits all the cities exactly once. Hence, this initial solution is

not optimal in most of the cases. Even this solution can be very poor. The Hill Climbing

algorithm starts with such an initial solution and makes improvements to it in an iterative

way. Eventually, a much shorter route is likely to be obtained.

https://en.wikipedia.org/wiki/Travelling_salesman_problem

