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About this Tutorial 

An Algorithm is a sequence of steps to solve a problem. Design and Analysis of Algorithm 

is very important for designing algorithm to solve different types of problems in the branch 

of computer science and information technology.  

This tutorial introduces the fundamental concepts of Designing Strategies, Complexity 

analysis of Algorithms, followed by problems on Graph Theory and Sorting methods. This 

tutorial also includes the basic concepts on Complexity theory. 

 

Audience 

This tutorial has been designed for students pursuing a degree in any computer science, 

engineering, and/or information technology related fields. It attempts to help students to 

grasp the essential concepts involved in algorithm design. 

 

Prerequisites 

The readers should have basic knowledge of programming and mathematics. The readers 

should know data structure very well. Moreover, it is preferred if the readers have basic 

understanding of Formal Language and Automata Theory. 

 

Copyright & Disclaimer 

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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Basics of Algorithms 

1. 
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An algorithm is a set of steps of operations to solve a problem performing calculation, data 

processing, and automated reasoning tasks. An algorithm is an efficient method that can 

be expressed within finite amount of time and space.  

An algorithm is the best way to represent the solution of a particular problem in a very 

simple and efficient way. If we have an algorithm for a specific problem, then we can 

implement it in any programming language, meaning that the algorithm is independent 

from any programming languages. 

Algorithm Design 

The important aspects of algorithm design include creating an efficient algorithm to solve 

a problem in an efficient way using minimum time and space.  

To solve a problem, different approaches can be followed. Some of them can be efficient 

with respect to time consumption, whereas other approaches may be memory efficient. 

However, one has to keep in mind that both time consumption and memory usage cannot 

be optimized simultaneously. If we require an algorithm to run in lesser time, we have to 

invest in more memory and if we require an algorithm to run with lesser memory, we need 

to have more time.   

Problem Development Steps 

The following steps are involved in solving computational problems. 

 Problem definition 

 Development of a model 

 Specification of an Algorithm 

 Designing an Algorithm 

 Checking the correctness of an Algorithm 

 Analysis of an Algorithm 

 Implementation of an Algorithm 

 Program testing 

 Documentation  

Characteristics of Algorithms 

The main characteristics of algorithms are as follows: 

 Algorithms must have a unique name 

 Algorithms should have explicitly defined set of inputs and outputs  

 Algorithms are well-ordered with unambiguous operations 

 Algorithms halt in a finite amount of time. Algorithms should not run for infinity, 
i.e., an algorithm must end at some point 

1. DAA ─ Introduction 



Design & Analysis of Algorithms 

 

3 

 

Pseudocode 

Pseudocode gives a high-level description of an algorithm without the ambiguity associated 

with plain text but also without the need to know the syntax of a particular programming 

language. 

The running time can be estimated in a more general manner by using Pseudocode to 

represent the algorithm as a set of fundamental operations which can then be counted. 

Difference between Algorithm and Pseudocode 

An algorithm is a formal definition with some specific characteristics that describes a 

process, which could be executed by a Turing-complete computer machine to perform a 

specific task. Generally, the word "algorithm" can be used to describe any high level task 

in computer science. 

On the other hand, pseudocode is an informal and (often rudimentary) human readable 

description of an algorithm leaving many granular details of it. Writing a pseudocode has 

no restriction of styles and its only objective is to describe the high level steps of algorithm 

in a much realistic manner in natural language.   

For example, following is an algorithm for Insertion Sort. 

Algorithm: Insertion-Sort 

Input: A list L of integers of length n  

Output: A sorted list L1 containing those integers present in L 

Step 1: Keep a sorted list L1 which starts off empty  

Step 2: Perform Step 3 for each element in the original list L  

Step 3: Insert it into the correct position in the sorted list L1.  

Step 4: Return the sorted list 

Step 5: Stop 

Here is a pseudocode which describes how the high level abstract process mentioned 

above in the algorithm Insertion-Sort could be described in a more realistic way. 

for i ← 1 to length(A) 

    x ← A[i] 

    j ← i 

    while j > 0 and A[j-1] > x 

        A[j] ← A[j-1] 

        j ← j - 1 

    A[j] ← x 

In this tutorial, algorithms will be presented in the form of pseudocode, that is similar in 

many respects to C, C++, Java, Python, and other programming languages. 
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In theoretical analysis of algorithms, it is common to estimate their complexity in the 

asymptotic sense, i.e., to estimate the complexity function for arbitrarily large input. The 

term "analysis of algorithms" was coined by Donald Knuth.  

Algorithm analysis is an important part of computational complexity theory, which provides 

theoretical estimation for the required resources of an algorithm to solve a 

specific computational problem. Most algorithms are designed to work with inputs of 

arbitrary length. Analysis of algorithms is the determination of the amount of time and 

space resources required to execute it.  

Usually, the efficiency or running time of an algorithm is stated as a function relating the 

input length to the number of steps, known as time complexity, or volume of memory, 

known as space complexity. 

The Need for Analysis 

In this chapter, we will discuss the need for analysis of algorithms and how to choose a 

better algorithm for a particular problem as one computational problem can be solved by 

different algorithms.  

By considering an algorithm for a specific problem, we can begin to develop pattern 

recognition so that similar types of problems can be solved by the help of this algorithm. 

Algorithms are often quite different from one another, though the objective of these 

algorithms are the same. For example, we know that a set of numbers can be sorted using 

different algorithms. Number of comparisons performed by one algorithm may vary with 

others for the same input. Hence, time complexity of those algorithms may differ. At the 

same time, we need to calculate the memory space required by each algorithm.  

Analysis of algorithm is the process of analyzing the problem-solving capability of the 

algorithm in terms of the time and size required (the size of memory for storage while 

implementation). However, the main concern of analysis of algorithms is the required time 

or performance. Generally, we perform the following types of analysis: 

 Worst-case: The maximum number of steps taken on any instance of size a. 

 

 Best-case: The minimum number of steps taken on any instance of size a. 

 

 Average case: An average number of steps taken on any instance of size a. 

 

 Amortized: A sequence of operations applied to the input of size a averaged over 

time. 

 

To solve a problem, we need to consider time as well as space complexity as the program 

may run on a system where memory is limited but adequate space is available or may be 

vice-versa. In this context, if we compare bubble sort and merge sort. Bubble sort does 

not require additional memory, but merge sort requires additional space. Though time 

complexity of bubble sort is higher compared to merge sort, we may need to apply bubble 

sort if the program needs to run in an environment, where memory is very limited. 

2. DAA ─ Analysis of Algorithms 

https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Space_complexity
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To measure resource consumption of an algorithm, different strategies are used as 

discussed in this chapter. 

Asymptotic Analysis 

The asymptotic behavior of a function 𝒇(𝒏) refers to the growth of 𝒇(𝒏) as n gets large.  

We typically ignore small values of n, since we are usually interested in estimating how 

slow the program will be on large inputs.  

A good rule of thumb is that the slower the asymptotic growth rate, the better the 

algorithm. Though it’s not always true. 

For example, a linear algorithm 𝒇(𝒏) = 𝒅 ∗ 𝒏 + 𝒌 is always asymptotically better than a 

quadratic one, 𝒇(𝒏) = 𝒄. 𝒏𝟐 + 𝒒.  

Solving Recurrence Equations 

A recurrence is an equation or inequality that describes a function in terms of its value on 

smaller inputs. Recurrences are generally used in divide-and-conquer paradigm.  

Let us consider 𝑻(𝒏) to be the running time on a problem of size n.  

If the problem size is small enough, say 𝒏 < 𝒄 where c is a constant, the straightforward 

solution takes constant time, which is written as Ɵ(𝟏). If the division of the problem yields 

a number of sub-problems with size 
𝒏

𝒃
. 

To solve the problem, the required time is 𝒂. 𝑻(𝒏/𝒃). If we consider the time required for 

division is 𝑫(𝒏) and the time required for combining the results of sub-problems is 𝑪(𝒏), 

the recurrence relation can be represented as: 

𝑻(𝒏) =  {
𝜽(𝟏)     𝒊𝒇 𝒏 ≤ 𝒄

𝒂𝑻 (
𝒏

𝒃
) + 𝑫(𝒏) + 𝑪(𝒏)       𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

A recurrence relation can be solved using the following methods: 

 Substitution Method ─ In this method, we guess a bound and using mathematical 

induction we prove that our assumption was correct. 

 

 Recursion Tree Method ─ In this method, a recurrence tree is formed where each 

node represents the cost.  

 

 Master’s Theorem ─ This is another important technique to find the complexity 

of a recurrence relation. 

 

 

3. DAA ─ Methodology of Analysis 
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Amortized Analysis 

Amortized analysis is generally used for certain algorithms where a sequence of similar 

operations are performed.  

 Amortized analysis provides a bound on the actual cost of the entire sequence, 

instead of bounding the cost of sequence of operations separately. 

 

 Amortized analysis differs from average-case analysis; probability is not involved 

in amortized analysis. Amortized analysis guarantees the average performance of 

each operation in the worst case. 

It is not just a tool for analysis, it’s a way of thinking about the design, since designing 

and analysis are closely related. 

Aggregate Method 

The aggregate method gives a global view of a problem. In this method, if n operations 

takes worst-case time 𝑻(𝒏) in total. Then the amortized cost of each operation is 𝑻(𝒏)/𝒏. 

Though different operations may take different time, in this method varying cost is 

neglected. 

Accounting Method 

In this method, different charges are assigned to different operations according to their 

actual cost. If the amortized cost of an operation exceeds its actual cost, the difference is 

assigned to the object as credit. This credit helps to pay for later operations for which the 

amortized cost less than actual cost.  

If the actual cost and the amortized cost of ith operation are 𝒄𝒊 and 𝒄�̂�, then 

∑ 𝒄�̂�

𝒏

𝒊=𝟏

≥  ∑ 𝒄𝒊

𝒏

𝒊=𝟏

 

Potential Method 

This method represents the prepaid work as potential energy, instead of considering 

prepaid work as credit. This energy can be released to pay for future operations.  

If we perform 𝒏 operations starting with an initial data structure 𝑫𝟎. Let us consider, 𝒄𝒊 as 

the actual cost and 𝑫𝑖 as data structure of ith operation. The potential function ф maps to 

a real number  ф(𝑫𝒊), the associated potential of 𝑫𝒊. The amortized cost 𝒄�̂� can be defined 

by  

𝒄�̂� =  𝒄𝒊 +  ф(𝑫𝒊) − ф(𝑫𝒊−𝟏) 

 

Hence, the total amortized cost is  

∑ 𝒄�̂�

𝒏

𝒊=𝟏

=  ∑(𝒄𝒊 +  ф(𝑫𝒊) − ф(𝑫𝒊−𝟏))

𝒏

𝒊=𝟏

=  ∑ 𝒄𝒊 +  ф(𝑫𝒏) − ф(𝑫𝟎)

𝒏

𝒊=𝟏
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Dynamic Table 

If the allocated space for the table is not enough, we must copy the table into larger size 

table. Similarly, if large number of members are erased from the table, it is a good idea 

to reallocate the table with a smaller size.  

Using amortized analysis, we can show that the amortized cost of insertion and deletion is 

constant and unused space in a dynamic table never exceeds a constant fraction of the 

total space. 

In the next chapter of this tutorial, we will discuss Asymptotic Notations in brief.  
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In designing of Algorithm, complexity analysis of an algorithm is an essential aspect. 

Mainly, algorithmic complexity is concerned about its performance, how fast or slow it 

works.  

The complexity of an algorithm describes the efficiency of the algorithm in terms of the 

amount of the memory required to process the data and the processing time. 

Complexity of an algorithm is analyzed in two perspectives: Time and Space. 

Time Complexity 

It’s a function describing the amount of time required to run an algorithm in terms of the 

size of the input. "Time" can mean the number of memory accesses performed, the 

number of comparisons between integers, the number of times some inner loop is 

executed, or some other natural unit related to the amount of real time the algorithm will 

take.  

Space Complexity 

It’s a function describing the amount of memory an algorithm takes in terms of the size 

of input to the algorithm. We often speak of "extra" memory needed, not counting the 

memory needed to store the input itself. Again, we use natural (but fixed-length) units to 

measure this.  

Space complexity is sometimes ignored because the space used is minimal and/or obvious, 

however sometimes it becomes as important an issue as time. 

Asymptotic Notations 

Execution time of an algorithm depends on the instruction set, processor speed, disk I/O 

speed, etc. Hence, we estimate the efficiency of an algorithm asymptotically. 

Time function of an algorithm is represented by 𝐓(𝐧), where n is the input size. 

Different types of asymptotic notations are used to represent the complexity of an 

algorithm. Following asymptotic notations are used to calculate the running time 

complexity of an algorithm. 

 O: Big Oh 

 Ω: Big omega 

 Ɵ: Big theta 

 o: Little Oh 

 ω: Little omega 

 

 

4. DAA ─ Asymptotic Notations & Apriori Analysis 
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O: Asymptotic Upper Bound 

‘O’ (Big Oh) is the most commonly used notation. A function 𝐟(𝐧) can be represented is 

the order of 𝒈(𝒏) that is 𝑶(𝒈(𝒏)), if there exists a value of positive integer n as n0 and a 

positive constant c such that:  

𝒇(𝒏)  ≤ 𝒄. 𝒈(𝒏)  for 𝒏 > 𝒏𝟎 in all case. 

Hence, function 𝒈(𝒏) is an upper bound for function 𝒇(𝒏), as 𝒈(𝒏) grows faster than 𝒇(𝒏). 

Example  

Let us consider a given function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏. 

Considering 𝒈(𝒏) =  𝒏𝟑, 

𝒇(𝒏) ≤ 𝟓. 𝒈(𝒏) for all the values of 𝒏 > 𝟐. 

Hence, the complexity of 𝒇(𝒏) can be represented as 𝑶(𝒈(𝒏)), i.e. 𝑶(𝒏𝟑). 

Ω: Asymptotic Lower Bound 

We say that 𝒇(𝒏) =  𝛀(𝐠(𝒏)) when there exists constant c that 𝒇(𝒏) ≥ 𝒄. 𝒈(𝒏) for all 

sufficiently large value of n. Here n is a positive integer. It means function g is a lower 

bound for function f; after a certain value of n, f will never go below g. 

Example  

Let us consider a given function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏. 

Considering 𝒈(𝒏) =  𝒏𝟑, 𝒇(𝒏) ≥ 𝟒. 𝒈(𝒏) for all the values of 𝒏 > 𝟎. 

Hence, the complexity of 𝒇(𝒏) can be represented as 𝛀(𝒈(𝒏)), i.e. 𝛀(𝒏𝟑). 

Ɵ: Asymptotic Tight Bound 

We say that 𝑓(𝑛) =  Ɵ(g(𝑛)) when there exist constants c1 and c2 that 𝑐1. 𝑔(𝑛) ≤ 𝑓(𝑛) ≤

 𝑐2. 𝑔(𝑛) for all sufficiently large value of n. Here n is a positive integer.  

This means function g is a tight bound for function f. 

Example  

Let us consider a given function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏. 

Considering 𝒈(𝒏) =  𝒏𝟑, 𝟒. 𝒈(𝒏) ≤ 𝒇(𝒏) ≤ 𝟓. 𝒈(𝒏) for all the large values of n. 

Hence, the complexity of 𝒇(𝒏) can be represented as Ɵ(𝐠(𝒏)), i.e. Ɵ(𝒏𝟑). 
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O - Notation 

The asymptotic upper bound provided by O-notation may or may not be asymptotically 

tight. The bound 𝟐. 𝒏𝟐 = 𝑶(𝒏𝟐) is asymptotically tight, but the bound 𝟐. 𝒏 = 𝑶(𝒏𝟐) is not. 

We use o-notation to denote an upper bound that is not asymptotically tight.  

We formally define 𝒐(𝒈(𝒏)) (little-oh of g of n) as the set 𝒇(𝒏) = 𝒐(𝒈(𝒏)) for any positive 

constant 𝒄 > 𝟎 and there exists a value 𝒏𝟎 > 𝟎, such that 𝟎 ≤ 𝒇(𝒏) ≤ 𝒄. 𝒈(𝒏). 

Intuitively, in the o-notation, the function 𝒇(𝒏) becomes insignificant relative to 𝒈(𝒏) as 

n approaches infinity; that is, 

𝐥𝐢𝐦
𝒏→∞

(
𝒇(𝒏)

𝒈(𝒏)
) = 𝟎  

Example  

Let us consider the same function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏. 

Considering 𝒈(𝒏) = 𝒏𝟒, 

𝐥𝐢𝐦
𝒏→∞

(
𝟒 𝐧^𝟑 +  𝟏𝟎 𝐧^𝟐 +  𝟓 𝐧 +  𝟏

𝒏^𝟒
) =  𝟎  

 

Hence, the complexity of 𝒇(𝒏) can be represented as 𝒐(𝒈(𝒏)), i.e. 𝒐(𝒏𝟒). 

ω – Notation 

We use ω-notation to denote a lower bound that is not asymptotically tight. Formally, 

however, we define ⍵(𝒈(𝒏)) (little-omega of g of n) as the set 𝒇(𝒏) = ⍵(𝒈(𝒏)) for any 

positive constant 𝒄 > 𝟎 and there exists a value 𝒏𝟎 > 𝟎, such that 𝟎 ≤ 𝒄. 𝒈(𝒏) < 𝒇(𝒏). 

For example, 
𝒏𝟐

𝟐
= ⍵(𝒏), but 

𝒏𝟐

𝟐
≠ ⍵(𝒏𝟐). The relation 𝒇(𝒏) =  ⍵(𝒈(𝒏)) implies that the 

following limit exists 

𝐥𝐢𝐦
𝒏→∞

(
𝒇(𝒏)

𝒈(𝒏)
) = ∞ 

That is, 𝒇(𝒏) becomes arbitrarily large relative to 𝒈(𝒏) as n approaches infinity. 

Example 

Let us consider same function, 𝒇(𝒏) = 𝟒. 𝒏𝟑 + 𝟏𝟎. 𝒏𝟐 + 𝟓. 𝒏 + 𝟏. 

Considering 𝒈(𝒏) =  𝒏𝟐, 

𝐥𝐢𝐦
𝒏→∞

(
𝟒 𝐧𝟑 +  𝟏𝟎 𝐧𝟐 +  𝟓 𝐧 +  𝟏

𝒏𝟐
) = ∞ 

Hence, the complexity of 𝒇(𝒏) can be represented as 𝒐(𝒈(𝒏)), i.e. ⍵(𝒏𝟐). 
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Apriori and Apostiari Analysis 

Apriori analysis means, analysis is performed prior to running it on a specific system. This 

analysis is a stage where a function is defined using some theoretical model. Hence, we 

determine the time and space complexity of an algorithm by just looking at the algorithm 

rather than running it on a particular system with a different memory, processor, and 

compiler. 

Apostiari analysis of an algorithm means we perform analysis of an algorithm only after 

running it on a system. It directly depends on the system and changes from system to 

system. 

In an industry, we cannot perform Apostiari analysis as the software is generally made for 

an anonymous user, which runs it on a system different from those present in the industry. 

In Apriori, it is the reason that we use asymptotic notations to determine time and space 

complexity as they change from computer to computer; however, asymptotically they are 

the same. 
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In this chapter, we will discuss the complexity of computational problems with respect to 

the amount of space an algorithm requires. 

Space complexity shares many of the features of time complexity and serves as a further 

way of classifying problems according to their computational difficulties. 

What is Space Complexity? 

Space complexity is a function describing the amount of memory (space) an algorithm 

takes in terms of the amount of input to the algorithm.  

We often speak of extra memory needed, not counting the memory needed to store the 

input itself. Again, we use natural (but fixed-length) units to measure this.  

We can use bytes, but it's easier to use, say, the number of integers used, the number of 

fixed-sized structures, etc.  

In the end, the function we come up with will be independent of the actual number of 

bytes needed to represent the unit.  

Space complexity is sometimes ignored because the space used is minimal and/or obvious, 

however sometimes it becomes as important issue as time complexity. 

Definition 

Let M be a deterministic Turing machine (TM) that halts on all inputs. The space 

complexity of M is the function 𝒇: 𝑵 → 𝑵, where 𝒇(𝒏) is the maximum number of cells of 

tape and M scans any input of length n. If the space complexity of M is 𝒇(𝒏), we can say 

that M runs in space 𝒇(𝒏).  

We estimate the space complexity of Turing machine by using asymptotic notation. 

Let 𝒇:  𝑵 → 𝑹+ be a function. The space complexity classes can be defined as follows: 

𝑺𝑷𝑨𝑪𝑬(𝒇(𝒏))  =  {𝑳| 𝑳 𝒊𝒔 𝒂 𝒍𝒂𝒏𝒈𝒖𝒂𝒈𝒆 𝒅𝒆𝒄𝒊𝒅𝒆𝒅 𝒃𝒚 𝒂𝒏 𝑶(𝒇(𝒏)) 𝒔𝒑𝒂𝒄𝒆 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒊𝒔𝒕𝒊𝒄 𝑻𝑴} 

𝑵𝑺𝑷𝑨𝑪𝑬(𝒇(𝒏)) =  {𝑳|𝑳 𝒊𝒔 𝒂 𝒍𝒂𝒏𝒈𝒖𝒂𝒈𝒆 𝒅𝒆𝒄𝒊𝒅𝒆𝒅 𝒃𝒚 𝒂𝒏 𝑶(𝒇(𝒏))𝒔𝒑𝒂𝒄𝒆 𝒏𝒐𝒏

− 𝒅𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒊𝒔𝒕𝒊𝒄 𝑻𝑴} 

PSPACE is the class of languages that are decidable in polynomial space on a deterministic 

Turing machine.  

In other words, 𝑷𝑺𝑷𝑨𝑪𝑬 =  ⋃ 𝑺𝑷𝑨𝑪𝑬(𝒏𝒌)𝒌  

 

5. DAA ─ Space Complexities 
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Savitch’s Theorem 

One of the earliest theorem related to space complexity is Savitch’s theorem. According 

to this theorem, a deterministic machine can simulate non-deterministic machines by 

using a small amount of space.  

For time complexity, such a simulation seems to require an exponential increase in time. 

For space complexity, this theorem shows that any non-deterministic Turing machine that 

uses 𝒇(𝒏) space can be converted to a deterministic TM that uses 𝒇𝟐(𝒏) space. 

Hence, Savitch’s theorem states that, for any function, 𝒇: 𝑵 → 𝑹+, 𝐰𝐡𝐞𝐫𝐞 𝒇(𝒏) ≥ 𝒏,   

𝑵𝑺𝑷𝑨𝑪𝑬(𝒇(𝒏)) ⊆ 𝑺𝑷𝑨𝑪𝑬(𝒇(𝒏)) 

Relationship Among Complexity Classes 

The following diagram depicts the relationship among different complexity classes.  

 

Till now, we have not discussed P and NP classes in this tutorial. These will be discussed 

later. 
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Design Strategies 
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Many algorithms are recursive in nature to solve a given problem recursively dealing with 

sub-problems.  

In divide and conquer approach, a problem is divided into smaller problems, then the 

smaller problems are solved independently, and finally the solutions of smaller problems 

are combined into a solution for the large problem.  

Generally, divide-and-conquer algorithms have three parts: 

 Divide the problem into a number of sub-problems that are smaller instances of 

the same problem. 

 

 Conquer the sub-problems by solving them recursively. If they are small 

enough, solve the sub-problems as base cases. 

 

 Combine the solutions to the sub-problems into the solution for the original 

problem. 

Pros and cons of Divide and Conquer Approach 

Divide and conquer approach supports parallelism as sub-problems are independent. 

Hence, an algorithm, which is designed using this technique, can run on the multiprocessor 

system or in different machines simultaneously. 

In this approach, most of the algorithms are designed using recursion, hence memory 

management is very high. For recursive function stack is used, where function state needs 

to be stored.  

Application of Divide and Conquer Approach 

Following are some problems, which are solved using divide and conquer approach.  

 Finding the maximum and minimum of a sequence of numbers 

 Strassen’s matrix multiplication 

 Merge sort 

 Binary search 

6. DAA ─ Divide & Conquer 
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Let us consider a simple problem that can be solved by divide and conquer technique. 

Problem Statement 

The Max-Min Problem in algorithm analysis is finding the maximum and minimum value in 

an array. 

Solution 

To find the maximum and minimum numbers in a given array 𝒏𝒖𝒎𝒃𝒆𝒓𝒔[] of size n, the 

following algorithm can be used. First we are representing the naive method and then 

we will present divide and conquer approach. 

Naïve Method 

Naïve method is a basic method to solve any problem. In this method, the maximum and 

minimum number can be found separately. To find the maximum and minimum numbers, 

the following straightforward algorithm can be used. 

Algorithm: Max-Min-Element (numbers[]) 

max := numbers[1] 

min := numbers[1] 

for i = 2 to n do 

    if numbers[i] > max then  

        max := numbers[i] 

    if numbers[i] < min then  

        min := numbers[i] 

return (max, min) 

Analysis 

The number of comparison in Naive method is 𝟐𝒏 − 𝟐.  

The number of comparisons can be reduced using the divide and conquer approach. 

Following is the technique. 

Divide and Conquer Approach 

In this approach, the array is divided into two halves. Then using recursive approach 

maximum and minimum numbers in each halves are found. Later, return the maximum of 

two maxima of each half and the minimum of two minima of each half.  

7. DAA ─ Max-Min Problem 



Design & Analysis of Algorithms 

 

17 

 

In this given problem, the number of elements in an array is 𝒚 − 𝒙 + 𝟏, where y is greater 

than or equal to x.  

𝑴𝒂𝒙 − 𝑴𝒊𝒏(𝒙, 𝒚) will return the maximum and minimum values of an array 𝒏𝒖𝒎𝒃𝒆𝒓𝒔[𝒙 … 𝒚]. 

Algorithm: Max-Min(x, y) 

if x –y ≤ 1 then  

    return (max(numbers[x], numbers[y]), min((numbers[x], numbers[y])) 

else 

    (max1, min1):= maxmin(x, ⌊((x+y)/2)⌋) 

    (max2, min2):= maxmin(⌊((x+y)/2) + 1)⌋,y) 

return (max(max1, max2), min(min1, min2)) 

Analysis 

Let 𝑇(𝑛) be the number of comparisons made by 𝑴𝒂𝒙 − 𝑴𝒊𝒏(𝒙, 𝒚), where the number of 

elements 𝒏 =  𝒚 –  𝒙 +  𝟏.  

If 𝑻(𝒏) represents the numbers, then the recurrence relation can be represented as: 

𝑻(𝒏) =  {
𝑻 (⌊

𝒏

𝟐
⌋) + 𝑻 (⌈

𝒏

𝟐
⌉) + 𝟐    𝐟𝐨𝐫 𝒏 > 𝟐

𝟏                                           𝐟𝐨𝐫 𝒏 = 𝟐 
𝟎                                          𝐟𝐨𝐫 𝒏 = 𝟏

 

Let us assume that n is in the form of power of 2. Hence, 𝒏 =  𝟐𝒌 where k is height of the 

recursion tree. 

So,  

𝑻(𝒏) =  𝟐. 𝑻 (
𝒏

𝟐
) + 𝟐 = 𝟐. (𝟐. 𝑻 (

𝒏

𝟒
) + 𝟐) + 𝟐 … . . =

𝟑𝒏

𝟐
− 𝟐 

Compared to Naïve method, in divide and conquer approach, the number of comparisons 

is less. However, using the asymptotic notation both of the approaches are represented 

by 𝑶(𝒏). 
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In this chapter, we will discuss merge sort and analyze its complexity. 

Problem Statement 

The problem of sorting a list of numbers lends itself immediately to a divide-and-conquer 

strategy: split the list into two halves, recursively sort each half, and then merge the two 

sorted sub-lists. 

Solution 

In this algorithm, the numbers are stored in an array numbers[]. Here, p and q 

represents the start and end index of a sub-array. 

Algorithm: Merge-Sort (numbers[], p, r) 

if p < r then  

q = ⌊(p + q) / 2⌋ 

Merge-Sort (numbers[], p, q) 

    Merge-Sort (numbers[], q + 1, r) 

    Merge (numbers[], p, q, r) 

 

Function: Merge (numbers[], p, q, r) 

n1 = q – p + 1 

n2 = r – q 

declare leftnums[1…n1 + 1] and rightnums[1…n2 + 1] temporary arrays 

for i = 1 to n1 

    leftnums[i] = numbers[p + i - 1] 

for j = 1 to n2 

    leftnums[j] = numbers[q+ j] 

leftnums[n1 + 1] = ∞ 

rightnums[n2 + 1] = ∞ 

i = 1 

j = 1 

for k = p to r 

    if leftnums[i] ≤ rightnums[j] 

        numbers[k] = leftnums[i] 

        i = i + 1 

    else 

8. DAA ─ Merge Sort 
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        numbers[k] = rightnums[j] 

        j = j + 1 

Analysis 

Let us consider, the running time of Merge-Sort as 𝑻(𝒏). Hence,  

  𝑻(𝒏) =  {
𝒄                                      𝒊𝒇 𝒏 ≤ 𝟏 

𝟐 𝒙 𝑻 (
𝒏

𝟐
) + 𝒅 𝒙 𝒏         𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

  where 𝑐 and 𝑑 are constants 

 

Therefore, using this recurrence relation,   

𝑻(𝒏)  = 𝟐𝒊  𝑻(𝒏/𝟐𝒊)  +  𝒊 . 𝒅 . 𝒏 

 

As, 𝒊 =  𝒍𝒐𝒈 𝒏,  𝑻(𝒏)  =  𝟐𝐥𝐨𝐠 𝒏 𝑻(𝒏/𝟐𝐥𝐨𝐠 𝒏)  +  𝒍𝒐𝒈 𝒏 . 𝒅 . 𝒏 

                            =  𝒄 . 𝒏  +  𝒅 . 𝒏 . 𝒍𝒐𝒈 𝒏 

Therefore,       𝑻(𝒏)  =  𝑶(𝒏 𝒍𝒐𝒈 𝒏 ). 

Example 

In the following example, we have shown Merge-Sort algorithm step by step. First, every 

iteration array is divided into two sub-arrays, until the sub-array contains only one 

element. When these sub-arrays cannot be divided further, then merge operations are 

performed. 

 

 

 

 

 

 

 

 

 

 

Divide and Merge operations step by step: 
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In this chapter, we will discuss another algorithm based on divide and conquer method. 

Problem Statement 

Binary search can be performed on a sorted array. In this approach, the index of an 

element x is determined if the element belongs to the list of elements. If the array is 

unsorted, linear search is used to determine the position.  

Solution 

In this algorithm, we want to find whether element x belongs to a set of numbers stored 

in an array numbers[]. Where l and r represent the left and right index of a sub-array in 

which searching operation should be performed.  

Algorithm: Binary-Search(numbers[], x, l, r) 

if l = r then  

    return l  

else 

    m := ⌊(l + r) / 2⌋ 

    if x ≤ numbers[m]  then 

        return Binary-Search(numbers[], x, l, m) 

    else 

        return Binary-Search(numbers[], x, m+1, r) 

Analysis 

Linear search runs in 𝑶(𝒏) time. Whereas binary search produces the result in 𝑶(𝒍𝒐𝒈 𝒏) 

time. 

Let T(n) be the number of comparisons in worst-case in an array of n elements. 

Hence, 

𝑻(𝒏) =  {
𝟎                     𝒊𝒇 𝒏 = 𝟏 

𝑻 (
𝒏

𝟐
) + 𝟏         𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

 

Using this recurrence relation 𝑻(𝒏)  =  𝒍𝒐𝒈 𝒏. 

Therefore, binary search uses 𝑶(𝒍𝒐𝒈 𝒏) time.  

 

 

9. DAA ─ Binary Search 
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Example 

In this example, we are going to search element 63. 
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In this chapter, first we will discuss the general method of matrix multiplication and later 

we will discuss Strassen’s matrix multiplication algorithm. 

Problem Statement 

Let us consider two matrices X and Y. We want to calculate the resultant matrix Z by 

multiplying X and Y. 

Naïve Method 

First, we will discuss naïve method and its complexity. Here, we are calculating 𝒁 =  𝑿 𝒙 𝒀. 

Using Naïve method, two matrices (X and Y) can be multiplied if the order of these 

matrices are 𝒑𝒙𝒒 and 𝒒𝒙𝒓. Following is the algorithm. 

 

Algorithm: Matrix-Multiplication (X, Y, Z) 

for i = 1 to p do 

    for j = 1 to r do 

        Z[i,j] := 0 

        for k = 1 to q do 

            Z[i,j] := Z[i,j] + X[i,k] x Y[k,j] 

Complexity 

Here, we assume that integer operations take 𝑶(𝟏) time. There are three for loops in this 

algorithm and one is nested in other. Hence, the algorithm takes 𝑶(𝒏𝟑) time to execute. 

Strassen’s Matrix Multiplication Algorithm 

In this context, using Strassen’s Matrix multiplication algorithm, the time consumption can 

be improved a little bit.  

Strassen’s Matrix multiplication can be performed only on square matrices where n is a 

power of 2. Order of both of the matrices are n x n. 

 

Divide X, Y and Z into four (𝐧/𝟐)𝐱(𝐧/𝟐) matrices as represented below: 

𝒁 = [
𝑰    𝑱

𝑲    𝑳
]           𝑿 = [

𝑨    𝑩
𝑪    𝑫

]        and      𝒀 = [
𝑬    𝑭
𝑮    𝑯

] 

 

 

10. DAA ─ Strassen’s Matrix Multiplication 
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Using Strassen’s Algorithm compute the following: 

𝑴𝟏 ∶=  (𝑨 +  𝑪) 𝒙 (𝑬 +  𝑭) 

𝑴𝟐 ∶=  (𝑩 +  𝑫) 𝒙 (𝑮 +  𝑯) 

𝑴𝟑 ∶=  (𝑨 −  𝑫) 𝒙 (𝑬 +  𝑯) 

𝑴𝟒 ∶=  𝑨 𝒙 (𝑭 −  𝑯) 

𝑴𝟓 ∶=  (𝑪 +  𝑫) 𝒙 𝑬 

𝑴𝟔 ∶=  (𝑨 +  𝑩) 𝒙 𝑯 

𝑴𝟕 ∶=  𝑫 𝒙 (𝑮 –  𝑬) 

 

Then,  

𝑰 ∶=  𝑴𝟐  +  𝑴𝟑 –  𝑴𝟔 – 𝑴𝟕 

𝑱 ∶=  𝑴𝟒  +  𝑴𝟔 

𝑲 ∶=  𝑴𝟓  +  𝑴𝟕 

𝑳 ∶= 𝑴𝟏 – 𝑴𝟑 –  𝑴𝟒 –  𝑴𝟓 

 

Analysis 

𝑇(𝑛) = {

𝑐                                        𝑖𝑓 𝑛 = 1 

7 𝑥 𝑇 (
𝑛

2
) + 𝑑 𝑥 𝑛2        otherwise

                 where 𝑐 and 𝑑 are constants 

 

Using this recurrence relation, we get 𝑻(𝒏)  =  𝑶 (𝒏𝐥𝐨𝐠 𝟕) 

Hence, the complexity of Strassen’s matrix multiplication algorithm is 𝑶 (𝒏𝐥𝐨𝐠 𝟕). 
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Among all the algorithmic approaches, the simplest and straightforward approach is the 

Greedy method. In this approach, the decision is taken on the basis of current available 

information without worrying about the effect of the current decision in future.  

Greedy algorithms build a solution part by part, choosing the next part in such a way, that 

it gives an immediate benefit. This approach never reconsiders the choices taken 

previously. This approach is mainly used to solve optimization problems. Greedy method 

is easy to implement and quite efficient in most of the cases. Hence, we can say that 

Greedy algorithm is an algorithmic paradigm based on heuristic that follows local optimal 

choice at each step with the hope of finding global optimal solution.  

In many problems, it does not produce an optimal solution though it gives an approximate 

(near optimal) solution in a reasonable time. 

Components of Greedy Algorithm 

Greedy algorithms have the following five components: 

 A candidate set: A solution is created from this set. 

 

 A selection function: Used to choose the best candidate to be added to the 

solution. 

 

 A feasibility function: Used to determine whether a candidate can be used to 

contribute to the solution. 

 

 An objective function: Used to assign a value to a solution or a partial solution. 

 

 A solution function: Used to indicate whether a complete solution has been 

reached. 

Areas of Application 

Greedy approach is used to solve many problems, such as   

 Finding the shortest path between two vertices using Dijkstra’s algorithm. 

 Finding the minimal spanning tree in a graph using Prim’s /Kruskal’s algorithm, etc. 

Where Greedy Approach Fails 

In many problems, Greedy algorithm fails to find an optimal solution, moreover it may 

produce a worst solution. Problems like Travelling Salesman and Knapsack cannot be 

solved using this approach. 

 

 

 

11. DAA ─ Greedy Method 
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The Greedy algorithm could be understood very well with a well-known problem referred 

to as Knapsack problem. Although the same problem could be solved by employing other 

algorithmic approaches, Greedy approach solves Fractional Knapsack problem reasonably 

in a good time. Let us discuss the Knapsack problem in detail. 

Knapsack Problem 

Given a set of items, each with a weight and a value, determine a subset of items to 

include in a collection so that the total weight is less than or equal to a given limit and the 

total value is as large as possible. 

The knapsack problem is in combinatorial optimization problem. It appears as a sub-

problem in many, more complex mathematical models of real-world problems. One 

general approach to difficult problems is to identify the most restrictive constraint, ignore 

the others, solve a knapsack problem, and somehow adjust the solution to satisfy the 

ignored constraints. 

Applications 

In many cases of resource allocation along with some constraint, the problem can be 

derived in a similar way of Knapsack problem. Following is a set of example. 

 Finding the least wasteful way to cut raw materials 

 portfolio optimization 

 Cutting stock problems 

Problem Scenario 

A thief is robbing a store and can carry a maximal weight of W into his knapsack. There 

are n items available in the store and weight of ith item is wi and its profit is pi. What 

items should the thief take? 

In this context, the items should be selected in such a way that the thief will carry those 

items for which he will gain maximum profit. Hence, the objective of the thief is to 

maximize the profit.  

Based on the nature of the items, Knapsack problems are categorized as  

 Fractional Knapsack 

 Knapsack 

 

12. DAA ─ Fractional Knapsack 
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Fractional Knapsack 

In this case, items can be broken into smaller pieces, hence the thief can select fractions 

of items.  

According to the problem statement,  

 There are n items in the store 

 Weight of ith item 𝒘𝒊 >  𝟎 

 Profit for ith item 𝒑𝒊 >  𝟎 and 

 Capacity of the Knapsack is W 

In this version of Knapsack problem, items can be broken into smaller pieces. So, the thief 

may take only a fraction xi of ith item. 

    𝟎 ≤  𝒙𝒊 ≤  𝟏 

The ith item contributes the weight 𝒙𝒊. 𝒘𝒊 to the total weight in the knapsack and profit 𝒙𝒊. 𝒑𝒊 

to the total profit. 

Hence, the objective of this algorithm is to  

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 ∑(𝒙𝒊. 𝒑𝒊)

𝒏

𝒏=𝟏

 

subject to constraint,  

∑(𝒙𝒊. 𝒘𝒊)

𝒏

𝒏=𝟏

≤ 𝑾 

    

It is clear that an optimal solution must fill the knapsack exactly, otherwise we could add 

a fraction of one of the remaining items and increase the overall profit.  

Thus, an optimal solution can be obtained by 

∑(𝒙𝒊. 𝒘𝒊)

𝒏

𝒏=𝟏

= 𝑾 

In this context, first we need to sort those items according to the value of 𝒑𝒊/𝒘𝒊, so that 
𝒑𝒊+𝟏

𝒘𝒊+𝟏
≤

𝒑𝒊

𝒘𝒊
. Here, x is an array to store the fraction of items. 

Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W) 

for i = 1 to n 

    do x[i] = 0 

weight = 0 

for i = 1 to n 

    if weight + w[i] ≤ W then  

        x[i] = 1 



Design & Analysis of Algorithms 

 

27 

 

        weight = weight + w[i] 

    else 

        x[i] = (W - weight) / w[i] 

        weight = W 

        break 

return x 

Analysis 

If the provided items are already sorted into a decreasing order of 𝒑𝒊/𝒘𝒊, then the while-

loop takes a time in 𝑶(𝒏); Therefore, the total time including the sort is in 𝑶(𝒏 𝒍𝒐𝒈 𝒏). 

Example 

Let us consider that the capacity of the knapsack 𝑾 =  𝟔𝟎 and the list of provided items 

are shown in the following table: 

Item A B C D 

Profit 280 100 120 120 

Weight 40 10 20 24 

Ratio (
𝒑𝒊

𝒘𝒊
) 7 10 6 5 

 

As the provided items are not sorted based on pi / wi. After sorting, the items are as 

shown in the following table.  

Item B A C D 

Profit 100 280 120 120 

Weight 10 40 20 24 

Ratio  (
𝒑𝒊

𝒘𝒊
)  10 7 6 5 

Solution 

After sorting all the items according to 𝒑𝒊/𝒘𝒊. First all of B is chosen as weight of B is less 

than the capacity of the knapsack. Next, item A is chosen, as the available capacity of the 

knapsack is greater than the weight of A. Now, C is chosen as the next item. However, 

the whole item cannot be chosen as the remaining capacity of the knapsack is less than 

the weight of C. 

Hence, fraction of C (i.e. (60 − 50)/20) is chosen. 
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Now, the capacity of the Knapsack is equal to the selected items. Hence, no more item 

can be selected.  

The total weight of the selected items is  𝟏𝟎 +  𝟒𝟎 +  𝟐𝟎 ∗ (𝟏𝟎/𝟐𝟎)  =  𝟔𝟎 

And the total profit is 𝟏𝟎𝟎 +  𝟐𝟖𝟎 +  𝟏𝟐𝟎 ∗ (𝟏𝟎/𝟐𝟎)  =  𝟑𝟖𝟎 +  𝟔𝟎 =  𝟒𝟒𝟎 

This is the optimal solution. We cannot gain more profit selecting any different combination 

of items. 
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Problem Statement 

In job sequencing problem, the objective is to find a sequence of jobs, which is completed 

within their deadlines and gives maximum profit.  

Solution 

Let us consider, a set of n given jobs which are associated with deadlines and profit is 

earned, if a job is completed by its deadline. These jobs need to be ordered in such a way 

that there is maximum profit.  

It may happen that all of the given jobs may not be completed within their deadlines. 

Assume, deadline of ith job Ji is di and the profit received from this job is pi. Hence, the 

optimal solution of this algorithm is a feasible solution with maximum profit. 

Thus, 𝑫(𝒊)  >  𝟎 for 𝟏 ≤  𝒊 ≤  𝒏.  

Initially, these jobs are ordered according to profit, i.e. 𝒑𝟏  ≥  𝒑𝟐  ≥  𝒑𝟑  ≥  …  ≥  𝒑𝒏.  

Algorithm: Job-Sequencing-With-Deadline (D, J, n, k) 

D(0) := J(0) := 0 

k := 1 

J(1) := 1   // means first job is selected 

for i = 2 … n do 

    r := k 

    while D(J(r)) > D(i) and D(J(r)) ≠ r do 

        r := r – 1 

    if D(J(r)) ≤ D(i) and D(i) > r then 

        for l = k … r + 1 by -1 do 

            J(l + 1) := J(l) 

        J(r + 1) := i 

        k := k + 1 

Analysis 

In this algorithm, we are using two loops, one is within another. Hence, the complexity of 

this algorithm is 𝑶(𝒏𝟐). 

 

 

13. DAA ─ Job Sequencing with Deadline 
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Example 

Let us consider a set of given jobs as shown in the following table. We have to find a 

sequence of jobs, which will be completed within their deadlines and will give maximum 

profit. Each job is associated with a deadline and profit. 

Job J1 J2 J3 J4 J5 

Deadline 2 1 3 2 1 

Profit 60 100 20 40 20 

 

Solution 

To solve this problem, the given jobs are sorted according to their profit in a descending 

order. Hence, after sorting, the jobs are ordered as shown in the following table. 

Job J2 J1 J4 J3 J5 

Deadline 1 2 2 3 1 

Profit 100 60 40 20 20 

 

From this set of jobs, first we select J2, as it can be completed within its deadline and 

contributes maximum profit.  

 Next, J1 is selected as it gives more profit compared to J4.  

 

 In the next clock, J4 cannot be selected as its deadline is over, hence J3 is selected 

as it executes within its deadline.  

 

 The job J5 is discarded as it cannot be executed within its deadline. 

Thus, the solution is the sequence of jobs (J2, J1, J4), which are being executed within 

their deadline and gives maximum profit. 

Total profit of this sequence is 𝟏𝟎𝟎 +  𝟔𝟎 +  𝟐𝟎 =  𝟏𝟖𝟎. 
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Merge a set of sorted files of different length into a single sorted file. We need to find an 

optimal solution, where the resultant file will be generated in minimum time. 

If the number of sorted files are given, there are many ways to merge them into a single 

sorted file. This merge can be performed pair wise. Hence, this type of merging is called 

as 2-way merge patterns. 

As, different pairings require different amounts of time, in this strategy we want to 

determine an optimal way of merging many files together. At each step, two shortest 

sequences are merged. 

To merge a p-record file and a q-record file requires possibly 𝐩 +  𝐪 record moves, the 

obvious choice being, merge the two smallest files together at each step.  

Two-way merge patterns can be represented by binary merge trees. Let us consider a set 

of n sorted files {f1, f2, f3, …, fn}. Initially, each element of this is considered as a single 

node binary tree. To find this optimal solution, the following algorithm is used. 

Algorithm: TREE (n)  

for i := 1 to n – 1 do  

    declare new node  

    node.leftchild := least (list) 

    node.rightchild := least (list) 

    node.weight) := ((node.leftchild).weight) + ((node.rightchild).weight)  

    insert (list, node);  

return least (list); 

At the end of this algorithm, the weight of the root node represents the optimal cost. 

 

Example 

Let us consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30 number of 

elements respectively. 

If merge operations are performed according to the provided sequence, then 

M1 = merge f1 and f2    =>  𝟐𝟎 +  𝟑𝟎 =  𝟓𝟎 

M2 = merge M1 and f3   =>  𝟓𝟎 +  𝟏𝟎 =  𝟔𝟎 

M3 = merge M2 and f4   =>  𝟔𝟎 +    𝟓 =  𝟔𝟓 

M4 = merge M3 and f5   =>  𝟔𝟓 +  𝟑𝟎 =  𝟗𝟓 

Hence, the total number of operations is 

𝟓𝟎 +  𝟔𝟎 +  𝟔𝟓 +  𝟗𝟓 =  𝟐𝟕𝟎 

14. DAA ─ Optimal Merge Pattern 
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Now, the question arises is there any better solution? 

Sorting the numbers according to their size in an ascending order, we get the following 

sequence: 

f4, f3, f1, f2, f5 

Hence, merge operations can be performed on this sequence 

M1 = merge f4 and f3    =>    𝟓 +  𝟏𝟎 =  𝟏𝟓 

M2 = merge M1 and f1   =>  𝟏𝟓 +  𝟐𝟎 =  𝟑𝟓 

M3 = merge M2 and f2   =>  𝟑𝟓 +  𝟑𝟎 =  𝟔𝟓 

M4 = merge M3 and f5   =>  𝟔𝟓 +  𝟑𝟎 =  𝟗𝟓 

Therefore, the total number of operations is  

𝟏𝟓 +  𝟑𝟓 +  𝟔𝟓 +  𝟗𝟓 =  𝟐𝟏𝟎 

Obviously, this is better than the previous one. 

 

In this context, we are now going to solve the problem using this algorithm.  

 

Initial Set 
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Step-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, the solution takes 15 + 35 + 60 + 95 = 205 number of comparisons. 
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Dynamic Programming is also used in optimization problems. Like divide-and-conquer 

method, Dynamic Programming solves problems by combining the solutions of sub-

problems. Moreover, Dynamic Programming algorithm solves each sub-problem just once 

and then saves its answer in a table, thereby avoiding the work of re-computing the answer 

every time. 

Two main properties of a problem suggest that the given problem can be solved using 

Dynamic Programming. These properties are overlapping sub-problems and optimal 

substructure. 

Overlapping Sub-Problems 

Similar to Divide-and-Conquer approach, Dynamic Programming also combines solutions 

to sub-problems. It is mainly used where the solution of one sub-problem is needed 

repeatedly. The computed solutions are stored in a table, so that these don’t have to be 

re-computed. Hence, this technique is needed where overlapping sub-problem exists.  

For example, Binary Search does not have overlapping sub-problem. Whereas recursive 

program of Fibonacci numbers have many overlapping sub-problems.  

Optimal Sub-Structure 

A given problem has Optimal Substructure Property, if the optimal solution of the given 

problem can be obtained using optimal solutions of its sub-problems. 

For example, the Shortest Path problem has the following optimal substructure property:  

If a node x lies in the shortest path from a source node u to destination node v, then the 

shortest path from u to v is the combination of the shortest path from u to x, and the 

shortest path from x to v.  

The standard All Pair Shortest Path algorithms like Floyd-Warshall and Bellman-Ford are 

typical examples of Dynamic Programming. 

Steps of Dynamic Programming Approach 

Dynamic Programming algorithm is designed using the following four steps: 

 Characterize the structure of an optimal solution. 

 Recursively define the value of an optimal solution. 

 Compute the value of an optimal solution, typically in a bottom-up fashion. 

 Construct an optimal solution from the computed information. 

Applications of Dynamic Programming Approach 

 Matrix Chain Multiplication 

 Longest Common Subsequence 

 Travelling Salesman Problem 

15. DAA ─ Dynamic Programming 
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In this tutorial, earlier we have discussed Fractional Knapsack problem using Greedy 

approach. We have shown that Greedy approach gives an optimal solution for Fractional 

Knapsack. However, this chapter will cover 0-1 Knapsack problem and its analysis.  

In 0-1 Knapsack, items cannot be broken which means the thief should take the item as 

a whole or should leave it. This is reason behind calling it as 0-1 Knapsack.  

Hence, in case of 0-1 Knapsack, the value of xi can be either 0 or 1, where other 

constraints remain the same. 

0-1 Knapsack cannot be solved by Greedy approach. Greedy approach does not ensure an 

optimal solution. In many instances, Greedy approach may give an optimal solution.  

The following examples will establish our statement. 

Example-1 

Let us consider that the capacity of the knapsack is W = 25 and the items are as shown 

in the following table. 

Item A B C D 

Profit 24 18 18 10 

Weight 24 10 10 7 

 

Without considering the profit per unit weight (𝒑𝒊/𝒘𝒊), if we apply Greedy approach to 

solve this problem, first item A will be selected as it will contribute maximum profit among 

all the elements. 

After selecting item A, no more item will be selected. Hence, for this given set of items 

total profit is 24. Whereas, the optimal solution can be achieved by selecting items, B and 

C, where the total profit is 18 +  18 =  36. 

Example-2 

Instead of selecting the items based on the overall benefit, in this example the items are 

selected based on ratio 𝒑𝒊/𝒘𝒊. Let us consider that the capacity of the knapsack is 𝑊 =  30 

and the items are as shown in the following table. 

Item A B C 

Price 100 280 120 

Weight 10 40 20 

Ratio 10 7 6 

 

16. DAA ─ 0-1 Knapsack 
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Using the Greedy approach, first item A is selected. Then, the next item B is chosen. 

Hence, the total profit is 𝟏𝟎𝟎 +  𝟐𝟖𝟎 =  𝟑𝟖𝟎. However, the optimal solution of this instance 

can be achieved by selecting items, B and C, where the total profit is 𝟐𝟖𝟎 +  𝟏𝟐𝟎 =  𝟒𝟎𝟎. 

 

Hence, it can be concluded that Greedy approach may not give an optimal solution.  

To solve 0-1 Knapsack, Dynamic Programming approach is required.  

Problem Statement     

A thief is robbing a store and can carry a maximal weight of W into his knapsack. There 

are n items and weight of ith item is wi and the profit of selecting this item is pi. What 

items should the thief take? 

Dynamic-Programming Approach  

Let i be the highest-numbered item in an optimal solution S for W dollars. Then 𝑺’ =  𝑺 −

 {𝒊} is an optimal solution for 𝑾 – 𝒘𝒊 dollars and the value to the solution S is Vi plus the 

value of the sub-problem. 

We can express this fact in the following formula: define c[i, w] to be the solution for 

items 1,2, … , i and the maximum weight w. 

The algorithm takes the following inputs 

 The maximum weight W  

 The number of items n  

 The two sequences v = <v1, v2, …, vn> and w = <w1, w2, …, wn> 

Dynamic-0-1-knapsack (v, w, n, W) 

for w = 0 to W do 

    c[0, w] = 0 

for i = 1 to n do 

    c[i, 0] = 0 

    for w = 1 to W do 

        if wi ≤ w then 

            if vi + c[i-1, w-wi] then 

                c[i, w] = vi + c[i-1, w-wi] 

            else c[i, w] = c[i-1, w] 

        else 

            c[i, w] = c[i-1, w] 
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The set of items to take can be deduced from the table, starting at c[n, w] and tracing 

backwards where the optimal values came from.  

If 𝒄[𝒊, 𝒘] =  𝒄[𝒊 − 𝟏,  𝒘], then item i is not part of the solution, and we continue tracing 

with c[i-1, w]. Otherwise, item i is part of the solution, and we continue tracing with c[i-

1, w-W].  

Analysis 

This algorithm takes Ɵ(𝒏. 𝒘) times as table c has (𝒏 + 𝟏). (𝒘 + 𝟏) entries, where each entry 

requires Ɵ(𝟏) time to compute.  
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The longest common subsequence problem is finding the longest sequence which exists in 

both the given strings. 

Subsequence 

Let us consider a sequence S = <s1, s2, s3, s4, …,sn>. 

A sequence Z = <z1, z2, z3, …,zm> over S is called a subsequence of S, if and only if it can 

be derived from S deletion of some elements. 

Common Subsequence 

Suppose, X and Y are two sequences over a finite set of elements. We can say that Z is a 

common subsequence of X and Y, if Z is a subsequence of both X and Y. 

Longest Common Subsequence 

If a set of sequences are given, the longest common subsequence problem is to find a 

common subsequence of all the sequences that is of maximal length. 

The longest common subsequence problem is a classic computer science problem, the 

basis of data comparison programs such as the diff-utility, and has applications in 

bioinformatics. It is also widely used by revision control systems, such as SVN and Git, for 

reconciling multiple changes made to a revision-controlled collection of files. 

Naïve Method 

Let X be a sequence of length m and Y a sequence of length n. Check for every 

subsequence of X whether it is a subsequence of Y, and return the longest common 

subsequence found.  

There are 2m subsequences of X. Testing sequences whether or not it is a subsequence of 

Y takes 𝑶(𝒏) time. Thus, the naïve algorithm would take 𝑶(𝒏𝟐𝒎) time. 

Dynamic Programming 

Let 𝑿 = < 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒎 >  and 𝒀 = < 𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … , 𝒚𝒏 > be the sequences. To compute the 

length of an element the following algorithm is used. 

In this procedure, table C[m, n] is computed in row major order and another table B[m,n] 

is computed to construct optimal solution. 

Algorithm: LCS-Length-Table-Formulation (X, Y) 

m := length(X) 

n := length(Y) 

for i = 1 to m do 

    C[i, 0] := 0 

17. DAA ─ Longest Common Subsequence 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Data_comparison
https://en.wikipedia.org/wiki/Diff_utility
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Revision_control
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Merge_(revision_control)
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for j = 1 to n do 

    C[0, j] := 0 

for i = 1 to m do 

    for j = 1 to n do 

        if xi = yj 

            C[i, j] := C[i - 1, j - 1] + 1 

            B[i, j] := ‘D’ 

        else 

            if C[i -1, j] ≥ C[i, j -1] 

                C[i, j] := C[i - 1, j] + 1 

                B[i, j] := ‘U’ 

            else 

                C[i, j] := C[i, j - 1] + 1 

                B[i, j] := ‘L’ 

return C and B 

 

Algorithm: Print-LCS (B, X, i, j) 

if i=0 and j=0 

    return  

if B[i, j] = ‘D’ 

    Print-LCS(B, X, i-1, j-1) 

    Print(xi) 

else if B[i, j] = ‘U’ 

    Print-LCS(B, X, i-1, j) 

else 

    Print-LCS(B, X, i, j-1) 

This algorithm will print the longest common subsequence of X and Y. 

Analysis 

To populate the table, the outer for loop iterates m times and the inner for loop iterates 

n times. Hence, the complexity of the algorithm is 𝑶(𝒎. 𝒏), where m and n are the length 

of two strings. 
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Example 

In this example, we have two strings 𝑿 = 𝑩𝑨𝑪𝑫𝑩 and 𝒀 = 𝑩𝑫𝑪𝑩 to find the longest common 

subsequence. 

Following the algorithm LCS-Length-Table-Formulation (as stated above), we have 

calculated table C (shown on the left hand side) and table B (shown on the right hand 

side).  

In table B, instead of ‘D’, ‘L’ and ‘U’, we are using the diagonal arrow, left arrow and up 

arrow, respectively. After generating table B, the LCS is determined by function LCS-Print. 

The result is BCB. 
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Graph Theory 
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A spanning tree is a subset of an undirected Graph that has all the vertices connected 

by minimum number of edges.  

If all the vertices are connected in a graph, then there exists at least one spanning tree. 

In a graph, there may exist more than one spanning tree. 

Properties 

 A spanning tree does not have any cycle. 

 Any vertex can be reached from any other vertex. 

Example 

In the following graph, the highlighted edges form a spanning tree. 

 

Minimum Spanning Tree 

A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted 

undirected graph that connects all the vertices together with the minimum possible total 

edge weight. To derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used. 

Hence, we will discuss Prim’s algorithm in this chapter. 

As we have discussed, one graph may have more than one spanning tree. If there are n 

number of vertices, the spanning tree should have 𝒏 − 𝟏 number of edges. In this context, 

if each edge of the graph is associated with a weight and there exists more than one 

spanning tree, we need to find the minimum spanning tree of the graph. 

Moreover, if there exist any duplicate weighted edges, the graph may have multiple 

minimum spanning tree. 

18. DAA ─ Spanning Tree 
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In the above graph, we have shown a spanning tree though it’s not the minimum spanning 

tree. The cost of this spanning tree is (𝟓 + 𝟕 + 𝟑 + 𝟑 + 𝟓 + 𝟖 + 𝟑 + 𝟒)  =  𝟑𝟖. 

We will use Prim’s algorithm to find the minimum spanning tree. 

Prim’s Algorithm 

Prim’s algorithm is a greedy approach to find the minimum spanning tree. In this 

algorithm, to form a MST we can start from an arbitrary vertex.  

Algorithm: MST-Prim’s (G, w, r) 

for each u є G.V 

    u.key = ∞ 

    u.∏ = NIL 

r.key = 0 

Q = G.V 

while Q ≠ф 

    u = Extract-Min (Q) 

    for each v є G.adj[u] 

        if each v є Q and w(u, v) <v.key 

            v.∏ = u 

            v.key = w(u, v) 

The function Extract-Min returns the vertex with minimum edge cost. This function works 

on min-heap. 
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Example 

Using Prim’s algorithm, we can start from any vertex, let us start from vertex 1. 

Vertex 3 is connected to vertex 1 with minimum edge cost, hence edge (1, 2) is added 

to the spanning tree. 

Next, edge (2, 3) is considered as this is the minimum among edges {(1, 2), (2, 3), (3, 

4), (3, 7)}. 

In the next step, we get edge (3, 4) and (2, 4) with minimum cost. Edge (3, 4) is selected 

at random.  

In a similar way, edges (4, 5), (5, 7), (7, 8), (6, 8) and (6, 9) are selected. As all the 

vertices are visited, now the algorithm stops. 

The cost of the spanning tree is (𝟐 + 𝟐 + 𝟑 + 𝟐 + 𝟓 + 𝟐 + 𝟑 + 𝟒)  =  𝟐𝟑. There is no more 

spanning tree in this graph with cost less than 23. 
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Dijkstra’s Algorithm 

Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed 

weighted graph 𝑮 =  (𝑽, 𝑬), where all the edges are non-negative (i.e., 𝒘(𝒖, 𝒗)  ≥  𝟎 for each 

edge (𝒖, 𝒗) є 𝑬).  

In the following algorithm, we will use one function Extract-Min(), which extracts the 

node with the smallest key. 

Algorithm: Dijkstra’s-Algorithm (G, w, s) 

for each vertex v є G.V  

    v.d := ∞ 

    v.∏ := NIL 

s.d := 0 

S := ф 

Q := G.V 

while Q ≠ф 

    u := Extract-Min (Q) 

    S := S U {u} 

    for each vertex v є G.adj[u] 

        if v.d > u.d + w(u, v) 

            v.d := u.d +w(u, v) 

            v.∏ := u 

Analysis 

The complexity of this algorithm is fully dependent on the implementation of Extract-Min 

function. If extract min function is implemented using linear search, the complexity of this 

algorithm is 𝑶(𝑽𝟐  +  𝑬).  

 

In this algorithm, if we use min-heap on which Extract-Min() function works to return 

the node from Q with the smallest key, the complexity of this algorithm can be reduced 

further.  

 

 

 

 

19. DAA ─ Shortest Paths 
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Example 

Let us consider vertex 1 and 9 as the start and destination vertex respectively. Initially, 

all the vertices except the start vertex are marked by ∞ and the start vertex is marked by 

0.  

Vertex Initial 
Step1 

V1 

Step2 

V3 

Step3 

V2 

Step4 

V4 

Step5 

V5 

Step6 

V7 

Step7 

V8 

Step8 

V6 

1 0 0 0 0 0 0 0 0 0 

2 ∞ 5 4 4 4 4 4 4 4 

3 ∞ 2 2 2 2 2 2 2 2 

4 ∞ ∞ ∞ 7 7 7 7 7 7 

5 ∞ ∞ ∞ 11 9 9 9 9 9 

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16 

7 ∞ ∞ 11 11 11 11 11 11 11 

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13 

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20 

 

Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is  

𝟏−> 𝟑−> 𝟕−> 𝟖−> 𝟔−> 𝟗 

This path is determined based on predecessor information. 
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Bellman Ford Algorithm 

This algorithm solves the single source shortest path problem of a directed graph 𝑮 =

 (𝑽, 𝑬) in which the edge weights may be negative. Moreover, this algorithm can be applied 

to find the shortest path, if there does not exist any negative weighted cycle.  

Algorithm: Bellman-Ford-Algorithm (G, w, s) 

for each vertex v є G.V  

    v.d := ∞ 

    v.∏ := NIL 

s.d := 0 

for i = 1 to |G.V| - 1 

    for each edge (u, v) є G.E 

        if v.d > u.d + w(u, v) 

            v.d := u.d +w(u, v) 

            v.∏ := u 

for each edge (u, v) є G.E 

    if v.d > u.d + w(u, v) 

        return FALSE 

return TRUE 

Analysis 

The first for loop is used for initialization, which runs in 𝑶(𝑽) times. The next for loop runs 

|𝑽 −  𝟏| passes over the edges, which takes 𝑶(𝑬) times. 

 

Hence, Bellman-Ford algorithm runs in 𝑶(𝑽. 𝑬) time.  
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Example 

The following example shows how Bellman-Ford algorithm works step by step. This graph 

has a negative edge but does not have any negative cycle, hence the problem can be 

solved using this technique. 

At the time of initialization, all the vertices except the source are marked by ∞ and the 

source is marked by 0.  

 

In the first step, all the vertices which are reachable from the source are updated by 

minimum cost. Hence, vertices a and h are updated. 
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In the next step, vertices a, b, f and e are updated. 

 

Following the same logic, in this step vertices b, f, c and g are updated. 
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Here, vertices c and d are updated. 

 

Hence, the minimum distance between vertex s and vertex d is 20.  

Based on the predecessor information, the path is 𝑠−> 𝒉−> 𝒆−> 𝒈−> 𝒄−> 𝒅 
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A multistage graph 𝑮 =  (𝑽, 𝑬) is a directed graph where vertices are partitioned into k 

(where 𝒌 >  𝟏) number of disjoint subsets 𝑺 =  {𝒔𝟏, 𝒔𝟐, … , 𝒔𝒌} such that edge (𝒖, 𝒗) is in E, 

then 𝒖 є 𝒔𝒊  and 𝒗 є 𝒔𝟏+𝟏  for some subsets in the partition and |𝒔𝟏|  =  |𝒔𝒌|  =  𝟏. 

The vertex 𝒔 є 𝒔𝟏 is called the source and the vertex 𝒕 є 𝒔𝒌  is called sink. 

G is usually assumed to be a weighted graph. In this graph, cost of an edge (𝒊, 𝒋) is 

represented by 𝒄(𝒊, 𝒋). Hence, the cost of path from source 𝒔 to sink 𝒕 is the sum of costs 

of each edges in this path. 

The multistage graph problem is finding the path with minimum cost from source 𝒔 to 

sink 𝒕. 

Example 

Consider the following example to understand the concept of multistage graph.  

 

According to the formula, we have to calculate the cost (i, j) using the following steps: 

Step-1: Cost (K-2, j) 

In this step, three nodes (node 4, 5. 6) are selected as j. Hence, we have three options to 

choose the minimum cost at this step. 

𝑪𝒐𝒔𝒕(𝟑, 𝟒) = 𝒎𝒊𝒏{ 𝒄(𝟒, 𝟕) + 𝑪𝒐𝒔𝒕(𝟕, 𝟗), 𝒄(𝟒, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗)} = 𝟕 

𝑪𝒐𝒔𝒕(𝟑, 𝟓) = 𝒎𝒊𝒏{ 𝒄(𝟓, 𝟕) + 𝑪𝒐𝒔𝒕(𝟕, 𝟗), 𝒄(𝟓, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗)} = 𝟓 

𝑪𝒐𝒔𝒕(𝟑, 𝟔) = 𝒎𝒊𝒏{ 𝒄(𝟔, 𝟕) + 𝑪𝒐𝒔𝒕(𝟕, 𝟗), 𝒄(𝟔, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗)} = 𝟓 

20. DAA ─ Multistage Graph 
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Step-2: Cost (K-3, j) 

Two nodes are selected as j because at stage 𝒌 − 𝟑 = 𝟐 there are two nodes, 2 and 3. So, 

the value 𝒊 =  𝟐 and 𝒋 =  𝟐 and 𝟑.  

𝑪𝒐𝒔𝒕(𝟐, 𝟐) = 𝒎𝒊𝒏{ 𝒄(𝟐, 𝟒) + 𝑪𝒐𝒔𝒕(𝟒, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗), 𝒄(𝟐, 𝟔) + 𝑪𝒐𝒔𝒕(𝟔, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗), } = 𝟖 

𝑪𝒐𝒔𝒕(𝟐, 𝟑) = 𝒎𝒊𝒏{ 𝒄(𝟑, 𝟒) + 𝑪𝒐𝒔𝒕(𝟒, 𝟗) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗), 𝒄(𝟑, 𝟓) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗)} = 𝟕 

 

Step-3: Cost (K-4, j) 

𝑪𝒐𝒔𝒕 (𝟏, 𝟏) =  𝒎𝒊𝒏{𝒄(𝟏, 𝟐) + 𝑪𝒐𝒔𝒕(𝟐, 𝟔) + 𝑪𝒐𝒔𝒕(𝟔, 𝟖) + 𝑪𝒐𝒔𝒕(𝟖, 𝟗),

𝒄(𝟏, 𝟑) + 𝑪𝒐𝒔𝒕(𝟑, 𝟔) + 𝑪𝒐𝒔𝒕(𝟔, 𝟖 + 𝑪𝒐𝒔𝒕(𝟖, 𝟗))} = 𝟏𝟑 

 

Hence, the path having the minimum cost is 𝟏−>  𝟐 −>  𝟔 −>  𝟖−>  𝟗. 
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Problem Statement 

A traveler needs to visit all the cities from a list, where distances between all the cities are 

known and each city should be visited just once. What is the shortest possible route that 

he visits each city exactly once and returns to the origin city? 

Solution 

Travelling salesman problem is the most notorious computational problem. We can use 

brute-force approach to evaluate every possible tour and select the best one. For n number 

of vertices in a graph, there are (𝒏 − 𝟏)! number of possibilities.  

Instead of brute-force using dynamic programming approach, the solution can be obtained 

in lesser time, though there is no polynomial time algorithm. 

Let us consider a graph 𝑮 = (𝑽, 𝑬), where V is a set of cities and E is a set of weighted 

edges. An edge e(u, v) represents that vertices u and v are connected. Distance between 

vertex u and v is d(u, v), which should be non-negative. 

Suppose we have started at city 1 and after visiting some cities now we are in city j. 

Hence, this is a partial tour. We certainly need to know j, since this will determine which 

cities are most convenient to visit next. We also need to know all the cities visited so far, 

so that we don't repeat any of them. Hence, this is an appropriate sub-problem. 

For a subset of cities 𝑺 ∈ {𝟏, 𝟐, 𝟑, … , 𝒏} that includes 1, and 𝒋 ∈ 𝑺, let C(S, j) be the length 

of the shortest path visiting each node in S exactly once, starting at 1 and ending at j. 

When |𝑺| > 𝟏, we define 𝑪 (𝑺, 𝟏) = ∝ since the path cannot start and end at 1. 

Now, let express C(S, j) in terms of smaller sub-problems. We need to start at 1 and end 

at j. We should select the next city in such a way that  

𝑪 (𝑺, 𝒋) = 𝐦𝐢𝐧 𝑪(𝑺 − {𝒋}, 𝒊) + 𝒅(𝒊, 𝒋)  𝒘𝒉𝒆𝒓𝒆 𝒊 ∈ 𝑺 𝒂𝒏𝒅 𝒊 ≠ 𝒋 

Algorithm: Traveling-Salesman-Problem 

C ({1}, 1) = 0 

for s = 2 to n do 

    for all subsets S є {1, 2, 3, … , n} of size s and containing 1 

        C (S, 1) = ∞ 

    for all j є S and j ≠ 1 

            C (S, j) = min {C (S – {j}, i) + d(i, j) for i є S and i ≠ j} 

Return minj C ({1, 2, 3, …, n}, j) + d(j, i) 

 

 

21. DAA ─ Travelling Salesman Problem 
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Analysis 

There are at the most 2n.n sub-problems and each one takes linear time to solve. 

Therefore, the total running time is 𝑶(𝟐𝒏. 𝒏𝟐). 

Example 

In the following example, we will illustrate the steps to solve the travelling salesman 

problem. 

 

From the above graph, the following table is prepared. 

 1 2 3 4 

1 0 10 15 20 

2 5 0 9 10 

3 6 13 0 12 

4 8 8 9 0 

 

𝐒 =  𝛟 

  𝐂𝐨𝐬𝐭 (𝟐, 𝛟, 𝟏)  =  𝐝 (𝟐, 𝟏)  =  𝟓 

  𝐂𝐨𝐬𝐭 (𝟑, 𝛟, 𝟏)  =  𝐝 (𝟑, 𝟏)  =  𝟔 

  𝐂𝐨𝐬𝐭 (𝟒, 𝛟, 𝟏)  =  𝐝 (𝟒, 𝟏)  =  𝟔 

𝐒 = 𝟏 

𝐂𝐨𝐬𝐭 (𝐢, 𝐬)  =  𝐦𝐢𝐧 {𝐂𝐨𝐬𝐭 (𝐣, 𝐬 – (𝐣))  +  𝐝 [𝐢, 𝐣]} 

𝐂𝐨𝐬𝐭 (𝟐, {𝟑}, 𝟏)  =  𝐝 [𝟐, 𝟑]  +  𝐂𝐨𝐬𝐭 (𝟑, 𝛟, 𝟏)     =  𝟗 +  𝟔 =  𝟏𝟓 

𝐂𝐨𝐬𝐭 (𝟐, {𝟒}, 𝟏)  =  𝐝 [𝟐, 𝟒]  +  𝐂𝐨𝐬𝐭 (𝟒, 𝛟, 𝟏)     =  𝟏𝟎 +  𝟖 =  𝟏𝟖 

𝐂𝐨𝐬𝐭 (𝟑, {𝟐}, 𝟏)  =  𝐝 [𝟑, 𝟐]  +  𝐂𝐨𝐬𝐭 (𝟐, 𝛟, 𝟏)     =  𝟏𝟑 +  𝟓 =  𝟏𝟖 

𝐂𝐨𝐬𝐭 (𝟑, {𝟒}, 𝟏)  =  𝐝 [𝟑, 𝟒]  +  𝐂𝐨𝐬𝐭 (𝟒, 𝛟, 𝟏)     =  𝟏𝟐 +  𝟖 =  𝟐𝟎 
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𝐂𝐨𝐬𝐭 (𝟒, {𝟑}, 𝟏)  =  𝐝 [𝟒, 𝟑]  +  𝐂𝐨𝐬𝐭 (𝟑, 𝛟, 𝟏)     =  𝟗 +  𝟔 =  𝟏𝟓 

𝑪𝒐𝒔𝒕 (𝟒, {𝟐}, 𝟏)  =  𝒅 [𝟒, 𝟐]  +  𝑪𝒐𝒔𝒕 (𝟐, 𝝓, 𝟏)     =  𝟖 +  𝟓 =  𝟏𝟑 

 

𝐒 =  𝟐 

𝐂𝐨𝐬𝐭 (𝟐, {𝟑, 𝟒}, 𝟏) = 𝐦𝐢𝐧 {
𝐝 [𝟐, 𝟑] +  𝐂𝐨𝐬𝐭 (𝟑, {𝟒}, 𝟏) = 𝟗 +  𝟐𝟎 =  𝟐𝟗

𝐝 [𝟐, 𝟒] +  𝐂𝐨𝐬𝐭 (𝟒 , {𝟑}, 𝟏) = 𝟏𝟎 +  𝟏𝟓 =  𝟐𝟓
     = 𝟐𝟓 

𝐂𝐨𝐬𝐭 (𝟑, {𝟐, 𝟒}, 𝟏) = 𝐦𝐢𝐧 {
𝐝 [𝟑, 𝟐] +  𝐂𝐨𝐬𝐭 (𝟐, {𝟒}, 𝟏) = 𝟏𝟑 +  𝟏𝟖 =  𝟑𝟏

𝐝 [𝟑, 𝟒] +  𝐂𝐨𝐬𝐭 (𝟒, {𝟐}, 𝟏) = 𝟏𝟐 +  𝟏𝟑 =  𝟐𝟓
    = 25 

𝐂𝐨𝐬𝐭 (𝟒, {𝟐, 𝟑}, 𝟏) = 𝐦𝐢𝐧 {
𝐝 [𝟒, 𝟐] +  𝐂𝐨𝐬𝐭 (𝟐, {𝟑}, 𝟏) = 𝟖 +  𝟏𝟓 =  𝟐𝟑

𝐝 [𝟒, 𝟑] +  𝐂𝐨𝐬𝐭 (𝟑, {𝟐}, 𝟏) = 𝟗 +  𝟏𝟖 =  𝟐𝟕
         = 𝟐𝟑 

 

 

𝐒 =  𝟑 

𝐂𝐨𝐬𝐭 (𝟏, {𝟐, 𝟑, 𝟒}, 𝟏) = 𝐦𝐢𝐧 {

𝐝 [𝟏, 𝟐] +  𝐂𝐨𝐬𝐭 (𝟐, {𝟑, 𝟒}, 𝟏) = 𝟏𝟎 +  𝟐𝟓 =  𝟑𝟓

𝐝 [𝟏, 𝟑] +  𝐂𝐨𝐬𝐭 (𝟑, {𝟐, 𝟒}, 𝟏) = 𝟏𝟓 +  𝟐𝟓 =  𝟒𝟎

𝐝 [𝟏, 𝟒] +  𝐂𝐨𝐬𝐭 (𝟒, {𝟐, 𝟑}, 𝟏) = 𝟐𝟎 +  𝟐𝟑 =  𝟒𝟑

       = 𝟑𝟓 

 

The minimum cost path is 35. 

Start from cost {1, {2, 3, 4}, 1}, we get the minimum value for d [1, 2]. When s = 3, 

select the path from 1 to 2 (cost is 10) then go backwards. When s = 2, we get the 

minimum value for d [4, 2]. Select the path from 2 to 4 (cost is 10) then go backwards.  

When s = 1, we get the minimum value for d [4, 2] but 2 and 4 is already selected. 

Therefore, we select d [4, 3] (two possible values are 15 for d [2, 3] and d [4, 3], but our 

last node of the path is 4). Select path 4 to 3 (cost is 9), then go to s = ϕ step. We get 

the minimum value for d [3, 1] (cost is 6).   
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A Binary Search Tree (BST) is a tree where the key values are stored in the internal nodes. 

The external nodes are null nodes. The keys are ordered lexicographically, i.e. for each 

internal node all the keys in the left sub-tree are less than the keys in the node, and all 

the keys in the right sub-tree are greater.  

When we know the frequency of searching each one of the keys, it is quite easy to compute 

the expected cost of accessing each node in the tree. An optimal binary search tree is a 

BST, which has minimal expected cost of locating each node. 

Search time of an element in a BST is 𝑶(𝒏), whereas in a Balanced-BST search time is 

𝑶(𝒍𝒐𝒈 𝒏). Again the search time can be improved in Optimal Cost Binary Search Tree, 

placing the most frequently used data in the root and closer to the root element, while 

placing the least frequently used data near leaves and in leaves. 

Here, the Optimal Binary Search Tree Algorithm is presented. First, we build a BST from a 

set of provided n number of distinct keys < 𝒌𝟏, 𝒌𝟐, 𝒌𝟑, … , 𝒌𝒏 >. Here we assume, the 

probability of accessing a key Ki is pi. Some dummy keys (𝒅𝒐, 𝒅𝟏, 𝒅𝟐, … , 𝒅𝒏) are added as 

some searches may be performed for the values which are not present in the Key set K. 

We assume, for each dummy key di probability of access is qi.  

Optimal-Binary-Search-Tree(p, q, n) 

e[1…n+1, 0…n],  

w[1…n+1, 0…n], 

root[1…n+1, 0…n] 

 

for i = 1 to n + 1 do 

    e[i, i -1] := qi-1 

    w[i, i -1] := qi-1 

 

for l = 1 to n do 

    for i = 1 to n – l + 1 do 

        j = i + l – 1 

        e[i, j] := ∞ 

        w[i, i] := w[i, i -1] + pj + qj 

        for r = i to j do 

            t := e[i, r -1] + e[r + 1, j] + w[i, j] 

            if t < e[i, j] 

                e[i, j] := t 

                root[i, j] := r 

return e and root 

22. DAA ─ Optimal Cost Binary Search Trees 
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Analysis 

The algorithm requires O (n3) time, since three nested for loops are used. Each of these 

loops takes on at most n values. 

Example 

Considering the following tree, the cost is 2.80, though this is not an optimal result. 

 

Node Depth Probability Contribution 

k1 
1 0.15 0.30 

k2 
0 0.10 0.10 

k3 
2 0.05 0.15 

k4 
1 0.10 0.20 

k5 
2 0.20 0.60 

d0 
2 0.05 0.15 

d1 
2 0.10 0.30 

d2 
3 0.05 0.20 

d3 
3 0.05 0.20 

d4 
3 0.05 0.20 

d5 
3 0.10 0.40 

Total 
  2.80 
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To get an optimal solution, using the algorithm discussed in this chapter, the following 

tables are generated. 

In the following tables, column index is i and row index is j. 

e 1 2 3 4 5 6 

5 2.75 2.00 1.30 0.90 0.50 0.10 

4 1.75 1.20 0.60 0.30 0.05  

3 1.25 0.70 0.25 0.05   

2 0.90 0.40 0.05    

1 0.45 0.10     

0 0.05      

 

w 1 2 3 4 5 6 

5 1.00 0.80 0.60 0.50 0.35 0.10 

4 0.70 0.50 0.30 0.20 0.05  

3 0.55 0.35 0.15 0.05   

2 0.45 0.25 0.05    

1 0.30 0.10     

0 0.05      

 

root 1 2 3 4 5 

5 2 4 5 5 5 

4 2 2 4 4  

3 2 2 3   

2 1 2    

1 1     

 

From these tables, the optimal tree can be formed. 
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Heap Algorithms 
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There are several types of heaps, however in this chapter, we are going to discuss binary 

heap. A binary heap is a data structure, which looks similar to a complete binary tree. 

Heap data structure obeys ordering properties discussed below. Generally, a Heap is 

represented by an array. In this chapter, we are representing a heap by H. 

As the elements of a heap is stored in an array, considering the starting index as 1, the 

position of the parent node of ith element can be found at ⌊i/2⌋.  Left child and right child 

of ith node is at position 2i and 2i + 1.  

A binary heap can be classified further as either a max-heap or a min-heap based on 

the ordering property. 

Max-Heap 

In this heap, the key value of a node is greater than or equal to the key value of the 

highest child.  

Hence, 𝑯[𝑷𝒂𝒓𝒆𝒏𝒕(𝒊)] ≥  𝑯[𝒊] 

 

Min-Heap 

In mean-heap, the key value of a node is lesser than or equal to the key value of the 

lowest child. Hence, H[Parent(i)] ≤ H[i] 

In this context, basic operations are shown below with respect to Max-Heap. Insertion and 

deletion of elements in and from heaps need rearrangement of elements. Hence, Heapify 

function needs to be called.  

23. DAA ─ Binary Heap 
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Array Representation 

A complete binary tree can be represented by an array, storing its elements using level 

order traversal.  

Let us consider a heap (as shown below) which will be represented by an array H.  

 

Considering the starting index as 0, using level order traversal, the elements are being 

kept in an array as follows. 

index 0 1 2 3 4 5 6 7 8 … 

elements 70 30 50 12 20 35 25 4 8 … 
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In this context, operations on heap are being represented with respect to Max-Heap. 

To find the index of the parent of an element at index i, the following algorithm Parent 

(numbers[], i) is used.  

Algorithm: Parent (numbers[], i) 

if i == 1 

    return NULL 

else 

    [i / 2] 

The index of the left child of an element at index i can be found using the following 

algorithm, Left-Child (numbers[], i). 

Algorithm: Left-Child (numbers[], i) 

If 2 * i ≤ heapsize 

    return [2 * i] 

else 

    return NULL 

The index of the right child of an element at index i can be found using the following 

algorithm, Right-Child(numbers[], i). 

Algorithm: Right-Child (numbers[], i) 

if 2 * i < heapsize 

    return [2 * i + 1] 

else 

    return NULL 
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To insert an element in a heap, the new element is initially appended to the end of the 

heap as the last element of the array.  

After inserting this element, heap property may be violated, hence the heap property is 

repaired by comparing the added element with its parent and moving the added element 

up a level, swapping positions with the parent. This process is called percolation up.  

The comparison is repeated until the parent is larger than or equal to the percolating 

element. 

Algorithm: Max-Heap-Insert (numbers[], key) 

heapsize = heapsize + 1 

numbers[heapsize] = -∞ 

i = heapsize 

numbers[i] = key 

while i > 1 and numbers[Parent(numbers[], i)] < numbers[i] 

    exchange(numbers[i], numbers[Parent(numbers[], i)]) 

    i = Parent (numbers[], i) 

Analysis 

Initially, an element is being added at the end of the array. If it violates the heap property, 

the element is exchanged with its parent. The height of the tree is 𝒍𝒐𝒈 𝒏. Maximum 𝒍𝒐𝒈 𝒏 

number of operations needs to be performed.  

Hence, the complexity of this function is 𝑶(𝒍𝒐𝒈 𝒏). 

Example 

Let us consider a max-heap, as shown below, where a new element 5 needs to be added. 

 

24. DAA ─ Insert Method 
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Initially, 55 will be added at the end of this array. 

 

After insertion, it violates the heap property. Hence, the element needs to swap with its 

parent. After swap, the heap looks like the following. 

 

Again, the element violates the property of heap. Hence, it is swapped with its parent.  

 

Now, we have to stop.  
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Heapify method rearranges the elements of an array where the left and right sub-tree of 

ith element obeys the heap property. 

Algorithm: Max-Heapify(numbers[], i) 

leftchild := numbers[2i] 

rightchild := numbers [2i + 1] 

if leftchild ≤ numbers[].size and numbers[leftchild] > numbers[i] 

    largest := leftchild 

else 

    largest := i 

if rightchild ≤ numbers[].size and numbers[rightchild] > numbers[largest] 

    largest := rightchild 

if largest ≠ i 

    swap numbers[i] with numbers[largest] 

    Max-Heapify(numbers, largest) 

When the provided array does not obey the heap property, Heap is built based on the 

following algorithm Build-Max-Heap (numbers[]). 

Algorithm: Build-Max-Heap(numbers[]) 

numbers[].size := numbers[].length 

fori = ⌊numbers[].length/2⌋ to 1 by -1 

    Max-Heapify (numbers[], i) 

 

 

 

 

 

 

 

25. DAA ─ Heapify Method 
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Extract method is used to extract the root element of a Heap. Following is the algorithm. 

Algorithm: Heap-Extract-Max (numbers[]) 

max = numbers[1] 

numbers[1] = numbers[heapsize] 

heapsize = heapsize – 1 

Max-Heapify (numbers[], 1) 

return max 

Example 

Let us consider the same example discussed previously. Now we want to extract an 

element. This method will return the root element of the heap.  

 

After deletion of the root element, the last element will be moved to the root position. 

 

26. DAA ─ Extract Method 
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Now, Heapify function will be called. After Heapify, the following heap is generated. 
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Sorting Methods 
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Bubble Sort is an elementary sorting algorithm, which works by repeatedly exchanging 

adjacent elements, if necessary. When no exchanges are required, the file is sorted. 

This is the simplest technique among all sorting algorithms. 

Algorithm: Sequential-Bubble-Sort (A) 

fori← 1 to length [A] do 

for j ← length [A] down-to i +1 do 

    if A[A] < A[j-1] then 

        Exchange A[j] ↔ A[j-1] 

Implementation 

voidbubbleSort(int numbers[], intarray_size) 

{ 

    inti, j, temp; 

    for (i = (array_size - 1); i>= 0; i--) 

    for (j = 1; j <= i; j++) 

        if (numbers[j-1] > numbers[j]) 

        { 

            temp = numbers[j-1]; 

            numbers[j-1] = numbers[j]; 

            numbers[j] = temp; 

        } 

}  

Analysis 

Here, the number of comparisons are 

𝟏 +  𝟐 +  𝟑 + . . . + (𝒏 −  𝟏)  =  𝒏(𝒏 −  𝟏)/𝟐 =  𝑶(𝒏𝟐) 

Clearly, the graph shows the n2 nature of the bubble sort. 

In this algorithm, the number of comparison is irrespective of the data set, i.e. whether 

the provided input elements are in sorted order or in reverse order or at random. 

 

 

27. DAA ─ Bubble Sort 
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Memory Requirement 

From the algorithm stated above, it is clear that bubble sort does not require extra 

memory.  

Example 

Unsorted list: 

1st iteration: 

5 >2 swap 

  5 >1 swap 

  5 >4 swap 

  5 > 3 swap 

  5 <7 no swap 

  7 > 6 swap 

2nd iteration: 

  2 >1 swap 

  2 <4 no swap 

  4 >3 swap  

  4 <5 no swap  

  5 <6 no swap 

 

There is no change in 3rd, 4th, 5th and 6th iteration. 

 

Finally, the sorted list is  

1 2 3 4 5 6 7 

 

 

 

5 2 1 4 3 7 6 

 

2 5 1 4 3 7 6 

 
2 1 5 4 3 7 6 

 
2 1 4 5 3 7 6 

 
2 1 4 3 5 7 6 

 
2 1 4 3 5 7 6 

 
2 1 4 3 5 6 7 

 

1 2 4 3 5 6 7 

 
1 2 4 3 5 6 7 

 
1 2 3 4 5 6 7 

 
1 2 3 4 5 6 7 

 
1 2 3 4 5 6 7 
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Insertion sort is a very simple method to sort numbers in an ascending or descending 

order. This method follows the incremental method. It can be compared with the technique 

how cards are sorted at the time of playing a game. 

The numbers, which are needed to be sorted, are known as keys. Here is the algorithm 

of the insertion sort method.  

Algorithm: Insertion-Sort(A) 

for j = 2 to A.length 

    key = A[j] 

    i = j – 1 

    while i > 0 and A[i] > key 

        A[i + 1] = A[i] 

        i = i -1 

    A[i + 1] = key 

Analysis 

Run time of this algorithm is very much dependent on the given input.  

If the given numbers are sorted, this algorithm runs in 𝑶(𝒏) time. If the given numbers 

are in reverse order, the algorithm runs in 𝑶(𝒏𝟐) time.  

Example 

 

Unsorted list: 

 

1st iteration: 

 Key = a[2] = 13   

a[1] = 2 < 13  

So, no swap.  

 

2nd iteration: 

 Key = a[3] = 5 

 a[2] = 13 > 5 

 Swap 5 and 13 

28. DAA ─ Insertion Sort 

2 13 5 18 14 

 

2 13 5 18 14 

 

2 5 13 18 14 
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 Next, a[1] = 2 < 13 

 So, no swap 

 

3rd iteration: 

 Key = a[4] = 18 

 a[3] = 13 < 18, 

 a[2] = 5 < 18, 

 a[1] = 2 < 18 

 So, no swap 

 

4th iteration: 

 Key = a[5] = 14 

 a[4] = 18 > 14 

 Swap 18 and 14 

 Next, a[3] = 13 < 14, 

 a[2] = 5 < 14, 

 a[1] = 2 < 14 

 So, no swap  

 

 

Finally, the sorted list is  

 

 

 

 

 

 

 

2 5 13 14 18 

2 5 13 18 14 

 

2 5 13 18 14 

 

2 5 13 14 18 

 

2 5 13 14 18 
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This type of sorting is called Selection Sort as it works by repeatedly sorting elements. 

It works as follows: first find the smallest in the array and exchange it with the element 

in the first position, then find the second smallest element and exchange it with the 

element in the second position, and continue in this way until the entire array is sorted.  

Algorithm: Selection-Sort (A) 

fori← 1 to n-1 do 

    min j ←i; 

    min x ← A[i] 

    for j ←i + 1 to n do 

        if A[j] < min x then 

            min j ← j 

            min x ← A[j] 

    A[min j] ← A [i] 

    A[i] ← min x 

Selection sort is among the simplest of sorting techniques and it works very well for small 

files. It has a quite important application as each item is actually moved at the most once. 

Section sort is a method of choice for sorting files with very large objects (records) and 

small keys. The worst case occurs if the array is already sorted in a descending order and 

we want to sort them in an ascending order.  

Nonetheless, the time required by selection sort algorithm is not very sensitive to the 

original order of the array to be sorted: the test if 𝑨[𝒋]  <  𝒎𝒊𝒏 𝒙 is executed exactly the 

same number of times in every case.  

Selection sort spends most of its time trying to find the minimum element in the unsorted 

part of the array. It clearly shows the similarity between Selection sort and Bubble sort.  

 Bubble sort selects the maximum remaining elements at each stage, but wastes 

some effort imparting some order to an unsorted part of the array.  

 

 Selection sort is quadratic in both the worst and the average case, and requires no 

extra memory. 

For each i from 1 to n - 1, there is one exchange and n - i comparisons, so there is a total 

of n - 1 exchanges and  

(𝒏 − 𝟏)  +  (𝒏 − 𝟐) + . . . + 𝟐 +  𝟏 =  𝒏(𝒏 − 𝟏)/𝟐 comparisons.  

These observations hold, no matter what the input data is.  

 

29. DAA ─ Selection Sort 
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In the worst case, this could be quadratic, but in the average case, this quantity 

is O(n log n). It implies that the running time of Selection sort is quite insensitive 

to the input. 

Implementation 

Void Selection-Sort(int numbers[], int array_size) 

{ 

    int i, j; 

    int min, temp; 

 

    for (i = 0; I < array_size-1; i++) 

    { 

        min = i; 

        for (j = i+1; j < array_size; j++) 

            if (numbers[j] < numbers[min]) 

                min = j; 

        temp = numbers[i]; 

        numbers[i] = numbers[min]; 

        numbers[min] = temp; 

    } 

} 

Example 

Unsorted list: 

 

1st iteration: 

Smallest = 5 

2 < 5, smallest = 2 

1 < 2, smallest = 1  

4 > 1, smallest = 1  

3 > 1, smallest = 1  

Swap 5 and 1  

 

 

 

1 2 5 4 3 

 

5 2 1 4 3 
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2nd iteration: 

 Smallest = 2 

2 < 5, smallest = 2 

2 < 4, smallest = 2 

2 < 3, smallest = 2 

No swap 

 

3rd iteration: 

 Smallest = 5 

4 < 5, smallest = 4 

3 < 4, smallest = 3 

Swap 5 and 3  

 

4th iteration: 

 Smallest = 4 

4 < 5, smallest = 4 

No swap  

 

 

Finally, the sorted list is  

1 2 5 4 3 

 

1 2 3 4 5 

 

1 2 3 4 5 

 

1 2 3 4 5 
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It is used on the principle of divide-and-conquer. Quick sort is an algorithm of choice in 

many situations as it is not difficult to implement. It is a good general purpose sort and it 

consumes relatively fewer resources during execution.  

Advantages 

 It is in-place since it uses only a small auxiliary stack. 

 
 It requires only 𝒏 𝒍𝒐𝒈(𝒏) time to sort n items. 

 

 It has an extremely short inner loop. 

 

 This algorithm has been subjected to a thorough mathematical analysis, a very 
precise statement can be made about performance issues. 

Disadvantages 

 It is recursive. Especially, if recursion is not available, the implementation is 

extremely complicated. 

 

 It requires quadratic (i.e., n2) time in the worst-case. 

 

 It is fragile, i.e. a simple mistake in the implementation can go unnoticed and cause 
it to perform badly. 

Quick sort works by partitioning a given array A[p ... r] into two non-empty sub 

array A[p ... q] and A[q+1 ... r] such that every key in A[p ... q] is less than or equal 

to every key in A[q+1 ... r].  

Then, the two sub-arrays are sorted by recursive calls to Quick sort. The exact position of 

the partition depends on the given array and index q is computed as a part of the 

partitioning procedure. 

Algorithm: Quick-Sort (A, p, r) 

if p < r then 

    q Partition (A, p, r) 

    Quick-Sort (A, p, q) 

    Quick-Sort (A, q + r, r) 

Note that to sort the entire array, the initial call should be Quick-Sort (A, 1, length[A]) 

As a first step, Quick Sort chooses one of the items in the array to be sorted as pivot. 

Then, the array is partitioned on either side of the pivot. Elements that are less than or 

equal to pivot will move towards the left, while the elements that are greater than or equal 

to pivot will move towards the right. 

 

30. DAA ─ Quick Sort 
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Partitioning the Array 

Partitioning procedure rearranges the sub-arrays in-place.  

Function: Partition (A, p, r) 

x ← A[p] 

i ← p-1 

j ← r+1 

while TRUE do 

    Repeat j ← j - 1 

    until A[j] ≤ x 

 

    Repeat i← i+1 

    until A[i] ≥ x 

 

    if i < j then  

        exchange A[i] ↔ A[j] 

    else  

        return j 

Analysis 

The worst case complexity of Quick-Sort algorithm is O(n2). However using this technique, 

in average cases generally we get the output in O(n log n) time. 
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Radix sort is a small method that many people intuitively use when alphabetizing a large 

list of names. Specifically, the list of names is first sorted according to the first letter of 

each name, that is, the names are arranged in 26 classes.  

Intuitively, one might want to sort numbers on their most significant digit. However, Radix 

sort works counter-intuitively by sorting on the least significant digits first. On the first 

pass, all the numbers are sorted on the least significant digit and combined in an array. 

Then on the second pass, the entire numbers are sorted again on the second least-

significant digits and combined in an array and so on. 

Algorithm: Radix-Sort (list, n) 

shift = 1 

for loop = 1 to keysize do 

    for entry = 1 to n do 

        bucketnumber = (list[entry].key / shift) mod 10 

        append (bucket[bucketnumber], list[entry]) 

    list = combinebuckets() 

    shift = shift * 10 

Analysis 

Each key is looked at once for each digit (or letter if the keys are alphabetic) of the longest 

key. Hence, if the longest key has m digits and there are n keys, radix sort has order 

O(m.n).  

However, if we look at these two values, the size of the keys will be relatively small when 

compared to the number of keys. For example, if we have six-digit keys, we could have a 

million different records. 

Here, we see that the size of the keys is not significant, and this algorithm is of linear 

complexity O(n). 

Example 

Following example shows how Radix sort operates on seven 3-digits number. 

Input 1st Pass 2nd Pass 3rd Pass 

329 720 720 329 

457 355 329 355 

657 436 436 436 

839 457 839 457 

436 657 355 657 

720 329 457 720 

355 839 657 839 

31. DAA ─ Radix Sort 
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In the above example, the first column is the input. The remaining columns show the list 

after successive sorts on increasingly significant digits position. The code for Radix sort 

assumes that each element in an array A of n elements has d digits, where digit 1 is the 

lowest-order digit and d is the highest-order digit. 
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Complexity Theory  
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To understand class P and NP, first we should know the computational model. Hence, in 

this chapter we will discuss two important computational models. 

Deterministic Computation and the Class P 

Deterministic Turing Machine 

One of these models is deterministic one-tape Turing machine. This machine consists of a 

finite state control, a read-write head and a two-way tape with infinite sequence. 

Following is the schematic diagram of a deterministic one-tape Turing machine. 

 

 

 

 

 

 

 

 

A program for a deterministic Turing machine specifies the following information: 

 A finite set of tape symbols (input symbols and a blank symbol) 

 A finite set of states   

 A transition function 

In algorithmic analysis, if a problem is solvable in polynomial time by a deterministic one 

tape Turing machine, the problem belongs to P class. 

Nondeterministic Computation and the Class NP 

Nondeterministic Turing Machine 

To solve the computational problem, another model is the Non-deterministic Turing 

Machine (NDTM). The structure of NDTM is similar to DTM, however here we have one 

additional module known as the guessing module, which is associated with one write-only 

head.  

 

 

32. DAA ─ Deterministic vs. Nondeterministic 
Computations 

 

Finite State 

Control 

Tape read-write head 
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Following is the schematic diagram. 

 

 

 

 

 

 

 

 

If the problem is solvable in polynomial time by a non-deterministic Turing machine, the 

problem belongs to NP class. 
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In an undirected graph, a clique is a complete sub-graph of the given graph. Complete 

sub-graph means, all the vertices of this sub-graph is connected to all other vertices of 

this sub-graph. 

The Max-Clique problem is the computational problem of finding maximum clique of the 

graph. Max clique is used in many real-world problems.  

Let us consider a social networking application, where vertices represent people’s profile 

and the edges represent mutual acquaintance in a graph. In this graph, a clique represents 

a subset of people who all know each other.  

To find a maximum clique, one can systematically inspect all subsets, but this sort 

of brute-force search is too time-consuming for networks comprising more than a few 

dozen vertices.  

Algorithm: Max-Clique (G, n, k) 

S := ф 

for i = 1 to k do 

    t := choice (1…n)  

    if t є S then 

        return failure 

    S := S U t  

for all pairs (i, j) such that i є S and j є S and i ≠ j do 

    if (i, j) is not a edge of the graph then  

        return failure 

return success 

Analysis 

Max-Clique problem is a non-deterministic algorithm. In this algorithm, first we try to 

determine a set of k distinct vertices and then we try to test whether these vertices form 

a complete graph.  

There is no polynomial time deterministic algorithm to solve this problem. This problem is 

NP-Complete. 

 

 

 

 

33. DAA ─ Max Cliques 

https://en.wikipedia.org/wiki/Brute-force_search
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Example 

Take a look at the following graph. Here, the sub-graph containing vertices 2, 3, 4 and 6 

forms a complete graph. Hence, this sub-graph is a clique. As this is the maximum 

complete sub-graph of the provided graph, it’s a 4-Clique. 
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A vertex-cover of an undirected graph 𝑮 = (𝑽,  𝑬) is a subset of vertices 𝑽′ ⊆ 𝑽 such that if 

edge (𝒖,  𝒗) is an edge of 𝑮, then either 𝒖 in 𝑽 or 𝒗 in 𝑽’ or both. 

Find a vertex-cover of maximum size in a given undirected graph. This optimal vertex-

cover is the optimization version of an NP-complete problem. However, it is not too hard 

to find a vertex-cover that is near optimal. 

APPROX-VERTEX_COVER (G: Graph) 

c ← { } 

E’ ← E[G] 

while E’ is not empty do 

    Let (u, v) be an arbitrary edge of E’ 

    c ← c U {u, v} 

    Remove from E’ every edge incident on either u or v 

return c 

Example 

The set of edges of the given graph is: 

{(𝟏, 𝟔), (𝟏, 𝟐), (𝟏, 𝟒), (𝟐, 𝟑), (𝟐, 𝟒), (𝟔, 𝟕), (𝟒, 𝟕), (𝟕, 𝟖), (𝟑, 𝟖), (𝟑, 𝟓), (𝟖, 𝟓)} 

 

 

 

34. DAA ─ Vertex Cover 
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Now, we start by selecting an arbitrary edge (1, 6). We eliminate all the edges, which are 

either incident to vertex 1 or 6 and we add edge (1, 6) to cover. 

 

 

In the next step, we have chosen another edge (2, 3) at random. 
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Now we select another edge (4, 7). 

 

We select another edge (8, 5). 

 

Hence, the vertex cover of this graph is {1, 2, 4, 5}. 

Analysis 

It is easy to see that the running time of this algorithm is 𝑶(𝑽 + 𝑬), using adjacency list to 

represent 𝑬’. 
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In Computer Science, many problems are solved where the objective is to maximize or 

minimize some values, whereas in other problems we try to find whether there is a solution 

or not. Hence, the problems can be categorized as follows: 

Optimization Problem 

Optimization problems are those for which the objective is to maximize or minimize some 

values. For example, 

 Finding the minimum number of colors needed to color a given graph. 

 

 Finding the shortest path between two vertices in a graph. 

Decision Problem 

There are many problems for which the answer is a Yes or a No. These types of problems 

are known as decision problems. For example,  

 Whether a given graph can be colored by only 4-colors. 

 

 Finding Hamiltonian cycle in a graph is not a decision problem, whereas checking 

a graph is Hamiltonian or not is a decision problem.  

What is Language? 

Every decision problem can have only two answers, yes or no. Hence, a decision problem 

may belong to a language if it provides an answer ‘yes’ for a specific input. A language is 

the totality of inputs for which the answer is Yes. Most of the algorithms discussed in the 

previous chapters are polynomial time algorithms.  

For input size n, if worst-case time complexity of an algorithm is O(nk), where k is a 

constant, the algorithm is a polynomial time algorithm.  

Algorithms such as Matrix Chain Multiplication, Single Source Shortest Path, All Pair 

Shortest Path, Minimum Spanning Tree, etc. run in polynomial time. However there are 

many problems, such as traveling salesperson, optimal graph coloring, Hamiltonian cycles, 

finding the longest path in a graph, and satisfying a Boolean formula, for which no 

polynomial time algorithms is known. These problems belong to an interesting class of 

problems, called the NP-Complete problems, whose status is unknown. 

In this context, we can categorize the problems as follows: 

P-Class 

The class P consists of those problems that are solvable in polynomial time, i.e. these 

problems can be solved in time O(nk) in worst-case, where k is constant.  

These problems are called tractable, while others are called intractable or super-

polynomial. 

35. DAA ─ P and NP Class 



Design & Analysis of Algorithms 

 

89 

 

Formally, an algorithm is polynomial time algorithm, if there exists a polynomial p(n) such 

that the algorithm can solve any instance of size n in a time O(p(n)). 

Problem requiring Ω(n50) time to solve are essentially intractable for large n. Most known 

polynomial time algorithm run in time O(nk) for fairly low value of k. 

The advantages in considering the class of polynomial-time algorithms is that all 

reasonable deterministic single processor model of computation can be simulated 

on each other with at most a polynomial slow-down. 

NP-Class 

The class NP consists of those problems that are verifiable in polynomial time. NP is the 

class of decision problems for which it is easy to check the correctness of a claimed answer, 

with the aid of a little extra information. Hence, we aren’t asking for a way to find a 

solution, but only to verify that an alleged solution really is correct. 

Every problem in this class can be solved in exponential time using exhaustive search. 

P versus NP 

Every decision problem that is solvable by a deterministic polynomial time algorithm is 

also solvable by a polynomial time non-deterministic algorithm. 

All problems in P can be solved with polynomial time algorithms, whereas all problems in 

𝑁𝑃 − 𝑃 are intractable. 

It is not known whether 𝑷 =  𝑵𝑷. However, many problems are known in NP with the 

property that if they belong to P, then it can be proved that P = NP. 

If 𝑷 ≠  𝑵𝑷, there are problems in NP that are neither in P nor in NP-Complete. 

The problem belongs to class P if it’s easy to find a solution for the problem. The problem 

belongs to NP, if it’s easy to check a solution that may have been very tedious to find. 
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Stephen Cook presented four theorems in his paper “The Complexity of Theorem Proving 

Procedures”. These theorems are stated below. We do understand that many unknown 

terms are being used in this chapter, but we don’t have any scope to discuss everything 

in detail. 

Following are the four theorems by Stephen Cook: 

 

Theorem-1 

If a set S of strings is accepted by some non-deterministic Turing machine within 

polynomial time, then S is P-reducible to {DNF tautologies}. 

 

Theorem-2 

The following sets are P-reducible to each other in pairs (and hence each has the same 

polynomial degree of difficulty): {tautologies}, {DNF tautologies}, D3, {sub-graph pairs}. 

 

Theorem-3 

 For any 𝑻𝑸(𝒌) of type Q, 
𝑻𝑸(𝒌)

√𝒌

(𝐥𝐨𝐠 𝒌)𝟐

 is unbounded 

 

 There is a 𝑻𝑸(𝒌) of type Q such that  

𝑻𝑸(𝒌) ≤ 𝒌 𝟐𝒌(𝐥𝐨𝐠 𝒌)𝟐
 

 

Theorem-4 

If the set S of strings is accepted by a non-deterministic machine within time 𝑻(𝒏) =  𝟐𝒏, 

and if 𝑻𝑸(𝒌) is an honest (i.e. real-time countable) function of type Q, then there is a 

constant K, so S can be recognized by a deterministic machine within time 𝑻𝑸(𝑲𝟖𝒏). 

 First, he emphasized the significance of polynomial time reducibility. It means that 

if we have a polynomial time reduction from one problem to another, this ensures 

that any polynomial time algorithm from the second problem can be converted into 

a corresponding polynomial time algorithm for the first problem. 

 

 Second, he focused attention on the class NP of decision problems that can be 

solved in polynomial time by a non-deterministic computer. Most of the intractable 

problems belong to this class, NP. 

36. DAA ─ Cook’s Theorem 
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 Third, he proved that one particular problem in NP has the property that every 

other problem in NP can be polynomially reduced to it. If the satisfiability problem 

can be solved with a polynomial time algorithm, then every problem in NP can also 

be solved in polynomial time. If any problem in NP is intractable, then satisfiability 

problem must be intractable. Thus, satisfiability problem is the hardest problem in 

NP. 

 

 Fourth, Cook suggested that other problems in NP might share with the satisfiability 

problem this property of being the hardest member of NP. 
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A problem is in the class NPC if it is in NP and is as hard as any problem in NP. A problem 

is NP-hard if all problems in NP are polynomial time reducible to it, even though it may 

not be in NP itself. 

 

If a polynomial time algorithm exists for any of these problems, all problems in NP would 

be polynomial time solvable. These problems are called NP-complete. The phenomenon 

of NP-completeness is important for both theoretical and practical reasons. 

Definition of NP-Completeness 

A language B is NP-complete if it satisfies two conditions: 

 B is in NP 

 Every A in NP is polynomial time reducible to B. 

If a language satisfies the second property, but not necessarily the first one, the language 

B is known as NP-Hard. Informally, a search problem B is NP-Hard if there exists some 

NP-Complete problem A that Turing reduces to B.  

The problem in NP-Hard cannot be solved in polynomial time, until 𝐏 = 𝐍𝐏. If a problem is 

proved to be NPC, there is no need to waste time on trying to find an efficient algorithm 

for it. Instead, we can focus on design approximation algorithm.  

NP-Complete Problems 

Following are some NP-Complete problems, for which no polynomial time algorithm is 

known. 

 Determining whether a graph has a Hamiltonian cycle 

 Determining whether a Boolean formula is satisfiable, etc. 

 

 

 

 

37. DAA ─ NP Hard & NP-Complete Classes 
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NP-Hard Problems 

The following problems are NP-Hard 

 The circuit-satisfiability problem  

 Set Cover  

 Vertex Cover 

 Travelling Salesman Problem 

In this context, now we will discuss TSP is NP-Complete 

TSP is NP-Complete 

The traveling salesman problem consists of a salesman and a set of cities. The salesman 

has to visit each one of the cities starting from a certain one and returning to the same 

city. The challenge of the problem is that the traveling salesman wants to minimize the 

total length of the trip. 

Proof 

To prove TSP is NP-Complete, first we have to prove that TSP belongs to NP. In TSP, 

we find a tour and check that the tour contains each vertex once. Then the total cost of 

the edges of the tour is calculated. Finally, we check if the cost is minimum. This can be 

completed in polynomial time. Thus TSP belongs to NP. 

Secondly, we have to prove that TSP is NP-hard. To prove this, one way is to show that 

𝑯𝒂𝒎𝒊𝒍𝒕𝒐𝒏𝒊𝒂𝒏 𝒄𝒚𝒄𝒍𝒆 ≤𝒑  𝑻𝑺𝑷 (as we know that the Hamiltonian cycle problem is NP-

complete).  

Assume 𝑮 =  (𝑽, 𝑬) to be an instance of Hamiltonian cycle.  

Hence, an instance of TSP is constructed. We create the complete graph 𝑮’ =  (𝑽, 𝑬′), 

where  

𝑬′ =  {(𝒊, 𝒋): 𝒊, 𝒋 ∈  𝑽      𝐚𝐧𝐝      𝒊 ≠  𝒋 

 

Thus, the cost function is defined as follows: 

𝒕(𝒊, 𝒋) = {
𝟎       𝐢𝐟 (𝒊, 𝒋) ∈ 𝑬

𝟏        𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

 

Now, suppose that a Hamiltonian cycle 𝒉 exists in 𝑮. It is clear that the cost of each edge 

in 𝒉 is 𝟎 in 𝑮’ as each edge belongs to 𝑬. Therefore, 𝒉 has a cost of 𝟎 in 𝑮’. Thus, if graph 

𝑮 has a Hamiltonian cycle, then graph 𝑮’ has a tour of 𝟎 cost. 

Conversely, we assume that 𝑮’ has a tour 𝒉’ of cost at most 𝟎. The cost of edges in 𝑬’ are 

𝟎 and 𝟏 by definition. Hence, each edge must have a cost of 𝟎 as the cost of 𝒉’ is 𝟎. We 

therefore conclude that 𝒉’ contains only edges in 𝑬. 

We have thus proven that 𝑮 has a Hamiltonian cycle, if and only if 𝑮’ has a tour of cost at 

most 𝟎. TSP is NP-complete. 
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The algorithms discussed in the previous chapters run systematically. To achieve the goal, 

one or more previously explored paths toward the solution need to be stored to find the 

optimal solution. 

For many problems, the path to the goal is irrelevant. For example, in N-Queens problem, 

we don’t need to care about the final configuration of the queens as well as in which order 

the queens are added.  

Hill Climbing  

Hill Climbing is a technique to solve certain optimization problems. In this technique, we 

start with a sub-optimal solution and the solution is improved repeatedly until some 

condition is maximized.  

 

The idea of starting with a sub-optimal solution is compared to starting from the base of 

the hill, improving the solution is compared to walking up the hill, and finally maximizing 

some condition is compared to reaching the top of the hill. 

Hence, the hill climbing technique can be considered as the following phases: 

 Constructing a sub-optimal solution obeying the constraints of the problem 

 Improving the solution step-by-step  

 Improving the solution until no more improvement is possible  

Hill Climbing technique is mainly used for solving computationally hard problems. It looks 

only at the current state and immediate future state. Hence, this technique is memory 

efficient as it does not maintain a search tree. 

Algorithm: Hill Climbing 

Evaluate the initial state. 

Loop until a solution is found or there are no new operators left to be 
applied: 

    - Select and apply a new operator 

38. DAA ─ Hill Climbing Algorithm 
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    - Evaluate the new state: 

        goal-> quit 

        better than current state-> new current state 

Iterative Improvement 

In iterative improvement method, the optimal solution is achieved by making progress 

towards an optimal solution in every iteration. However, this technique may encounter 

local maxima. In this situation, there is no nearby state for a better solution. 

This problem can be avoided by different methods. One of these methods is simulated 

annealing. 

Random Restart 

This is another method of solving the problem of local optima. This technique conducts a 

series of searches. Every time, it starts from a randomly generated initial state. Hence, 

optima or nearly optimal solution can be obtained comparing the solutions of searches 

performed.  

Problems of Hill Climbing Technique 

Local Maxima 

If the heuristic is not convex, Hill Climbing may converge to local maxima, instead of global 

maxima. 

Ridges and Alleys 

If the target function creates a narrow ridge, then the climber can only ascend the ridge 

or descend the alley by zig-zagging. In this scenario, the climber needs to take very small 

steps requiring more time to reach the goal. 

Plateau 

A plateau is encountered when the search space is flat or sufficiently flat that the value 

returned by the target function is indistinguishable from the value returned for nearby 

regions, due to the precision used by the machine to represent its value.  

Complexity of Hill Climbing Technique 

This technique does not suffer from space related issues, as it looks only at the current 

state. Previously explored paths are not stored. 

For most of the problems in Random-restart Hill Climbing technique, an optimal solution 

can be achieved in polynomial time. However, for NP-Complete problems, computational 

time can be exponential based on the number of local maxima. 
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Applications of Hill Climbing Technique 

Hill Climbing technique can be used to solve many problems, where the current state 

allows for an accurate evaluation function, such as Network-Flow, Travelling Salesman 

problem, 8-Queens problem, Integrated Circuit design, etc. 

Hill Climbing is used in inductive learning methods too. This technique is used in robotics 

for coordination among multiple robots in a team. There are many other problems where 

this technique is used. 

Example 

This technique can be applied to solve the travelling salesman problem. First an initial 

solution is determined that visits all the cities exactly once. Hence, this initial solution is 

not optimal in most of the cases. Even this solution can be very poor. The Hill Climbing 

algorithm starts with such an initial solution and makes improvements to it in an iterative 

way. Eventually, a much shorter route is likely to be obtained. 

 

 

https://en.wikipedia.org/wiki/Travelling_salesman_problem

