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Logic meets Number Theory

The history of interactions between these two subjects dates
back almost to the beginnings of mathematical logic:
PRESBURGER, SKOLEM, GÖDEL (1920s/30s);
DAVIS-PUTNAM-ROBINSON, MATIYASEVICH (1950–70).

In number theory, questions about Z are often studied by
relating them to the (more tractable) fields R (of real numbers)
and Qp (of p-adic numbers). These structures turned out to be
well-behaved also from the point of view of mathematical logic:

• TARSKI (1940s) for R;
ë

• AX-KOCHEN, ERŠOV (1960s) & MACINTYRE (1976) for Qp.

More recent applications of mathematical logic to problems of a
number-theoretic flavor, initiated by HRUSHOVSKI, involved
deep “pure” model-theoretic results (geometric stability theory)
applied to fields enriched with extra operators.
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An algebraic geometry primer

1 A variety V Ď Cn is the zero set of finitely many
polynomials P1, . . . , Pm P CrX1, . . . , Xns:

V “
 

x P Cn : P1pxq “ ¨ ¨ ¨ “ Pmpxq “ 0
(

.

Hypersurface = zero set of a single polynomial.
2 The varieties form the closed sets of a topology on Cn, the

ZARISKI topology. Below: dense = ZARISKI-dense.
3 A variety V is irreducible if it is not the union of two

varieties properly contained in V .
4 Every variety V is the union of a finite number of

irreducible varieties; this decomposition is unique if one
removes those subsets that are contained in another one,
and the elements of this unique decomposition are called
irreducible components of V .



Diophantine Geometry

Diophantine Geometry studies how the geometric features of a
variety V Ď Cn interact with its diophantine properties. For
example, given an “interesting” set K Ď C, how does the
geometry of V influence the structure of V pKq :“ Kn X V ?

A general principle

If V is a special variety and X Ď V is a variety which contains a
dense set of special points, then X, too, has to be special.
(Whatever “special” means.)

A conjecture, due to ANDRÉ (1989) and OORT (1995), states
that so-called SHIMURA varieties V obey such a principle.

PILA-ZANNIER found a general procedure using o-minimality to
prove instances of the “general principle.” This allowed PILA to
give the first unconditional proof (not relying, e.g., on the
RIEMANN Hypothesis) of ANDRÉ-OORT for the case V “ Cn.
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Diophantine Geometry

Here is an archetypical example of the “general principle.” Put

U :“
 

z P C : zn “ 1 for some n ě 1
(

(roots of unity).

The elements of U are our special points.

Theorem (LAURENT, 1984)

Let X Ď pCˆqn be irreducible. If XpUq is dense in X, then X is
defined by equations

Xα1
1 ¨ ¨ ¨Xαn

n “ b pα1, . . . , αn P Z, b P Uq.

This is an instance of the MANIN-MUMFORD Conjecture
(= RAYNAUD’s Theorem). The PILA-ZANNIER method (extended
by PETERZIL-STARCHENKO) gives (yet) another proof.
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The method of PILA-ZANNIER

The main idea

• We have an analytic surjection

e : Cn Ñ pCˆqn, epz1, . . . , znq “ pe
2πiz1 , . . . , e2πiznq.

Note: ζ P Un ðñ ζ “ epzq for some z P Qn.
• e has a fundamental domain:

D :“
 

pz1, . . . , znq P Cn : 0 ď Repziq ă 1 for each i
(

.

Then with re :“ e æ D, we still have

ζ P Un ðñ ζ “ repzq for some z P D XQn.
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The method of PILA-ZANNIER

e is “logically” badly behaved (its
kernel is Zn), but re and thus

rX :“ re´1pXq

are definable in the o-minimal
structure
`

R;ă, 0, 1,`,ˆ, exp, sin æ r0, 2πs
˘

,

with rXpQq “ re´1
`

XpUq
˘

.

0

i

1

D Cˆ
re

(Identify C with R2.)

ea`ib “ eapcos b` i sin bq

(Definability in an o-minimal structure is obvious in this case,
but by far non-obvious in many other applications of the
PILA-ZANNIER method Ñ PETERZIL-STARCHENKO.)
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The method of PILA-ZANNIER

Split rX “ rXalg
loomoon

algebraic part

9Y rXtrans
loomoon

transcendental part

(to be defined).

Strategy

1 The upper bound: Prove that rXtranspQq is “small.”

[Follows from definability of rX and a theorem of PILA-WILKIE.]

2 The lower bound: Suppose that X contains a dense set of
special points (here: that XpUq is dense in X). Show that this
implies that rXtranspQq actually is finite.

[Involves an automorphism argument and some number theory;
here, only simple properties of EULER’s ϕ-function.]

3 Analyze rXalgpQq: Let A be a variety contained in e´1pXq; take
such A maximal and irreducible. Show that A is an affine
subspace of Cn defined over Q.

[Uses AX’ functional analogue of LINDEMANN-WEIERSTRASS.]
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O-minimal structures

O-minimal structures were introduced 30 years ago (VAN DEN

DRIES, PILLAY-STEINHORN) in order to provide an analogue for
the model-theoretic tameness notion of strong minimality in an
ordered context (“o-minimal” = “order-minimal”).

Let R “ pR;ă, . . . q be an expansion of the ordered set of reals.

(O-minimality can be developed if instead of pR;ăq we take any
linearly ordered set pR;ăq without endpoints, and it is indeed
useful to have the extra flexibility.)

Below, “definable” means “definable in R, possibly with
parameters.” A map f : S Ñ Rn, where S Ď Rm, is called
definable if its graph Γpfq Ď Rm`n is.
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O-minimal structures

Definition

R is o-minimal :ðñ

# all definable subsets of R are finite
unions of singletons and (open)
intervals

ðñ

# all definable subsets of R have
finitely many connected compo-
nents

ðñ

$

&

%

the definable subsets of R are
those that are already definable in
the reduct pR;ăq of R



O-minimal structures

Why do we care about o-minimality?

Although the o-minimality axiom only refers to definable
subsets of R, it implies finiteness properties for the definable
subsets of Rn for arbitrary n ě 1.

Some points in case

• Cell Decomposition Theorem ñ definable subsets of Rn
have only finitely many connected components.

• Definable maps S Ñ Rn (S Ď Rm) are very regular, e.g.,
• piecewise differentiable up to some fixed finite order;
• the finite fibers have uniformly bounded cardinality.

• Dimension of definable sets is very well-behaved, e.g.,
invariant under definable bijections: no space-filling curves.
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O-minimal structures

As logicians we know that geometric and topological
constructions of a finitary nature preserve definability.

Example

If S Ď Rn is definable, then so is its closure

clpSq “
 

x P Rn : @ε ą 0 Dy P S : |x´ y| ă ε
(

.

(Here we assume that R expands pR;ă, 0, 1,`,ˆq.)

Each o-minimal structure R gives rise to a self-contained
universe for a kind of “tame topology” (no pathologies) as
envisaged by GROTHENDIECK (1980s).
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O-minimal structures: examples

Ralg “ pR;ă, 0, 1,`,ˆq

TARSKI, 1940s

Ran “
`

Ralg,
 

f : r´1, 1sn Ñ R
restricted analytic, n P Ně1

(˘

VAN DEN DRIES, 1986
VAN DEN DRIES-DENEF, 1988

Rexp “ pRalg, expq

WILKIE, 1991

Ran,exp “ pRan, expq

VAN DEN DRIES-MILLER, 1992
MACINTYRE-MARKER-VAN DEN DRIES, 1994

semialgebraic sets
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The citation for the Karp Prize 2014 mentions . . .

• J. PILA, O-minimality and the André-Oort conjecture for Cn

Ann. of Math. 173 (2011), 1779–1840.

• J. PILA and A. J. WILKIE, The rational points of a definable set
Duke Math. J. 133 (2006), 591–616.

• Y. PETERZIL and S. STARCHENKO, Uniform definability of the
Weierstrass ℘-functions and generalized tori of dimension one
Selecta Math. (N.S.) 10 (2004), 525–550.

• , Definability of restricted theta functions and families of
abelian varieties
Duke Math. J. 162 (2013), 731–765.

. . . plus four more papers!



O-minimal structures: diophantine properties

Fix an o-minimal expansion R “ pR;ă, 0, 1,`,ˆ, . . . q of Ralg.

More than ten years ago, WILKIE realized that the geometry of
definable sets influences the distribution of integer points (=
points with integer coordinates) on 1-dimensional definable
sets.

Around the same time, and developing earlier ideas of
BOMBIERI-PILA (1989), PILA studied rational points on curves
and surfaces definable in Ran.

These developments culminated in the theorem of
PILA-WILKIE (2006):

Definable sets which are sufficiently “transcendental” contain
few rational points.



O-minimal structures: diophantine properties

Fix an o-minimal expansion R “ pR;ă, 0, 1,`,ˆ, . . . q of Ralg.

More than ten years ago, WILKIE realized that the geometry of
definable sets influences the distribution of integer points (=
points with integer coordinates) on 1-dimensional definable
sets.

Around the same time, and developing earlier ideas of
BOMBIERI-PILA (1989), PILA studied rational points on curves
and surfaces definable in Ran.

These developments culminated in the theorem of
PILA-WILKIE (2006):

Definable sets which are sufficiently “transcendental” contain
few rational points.



O-minimal structures: diophantine properties

Fix an o-minimal expansion R “ pR;ă, 0, 1,`,ˆ, . . . q of Ralg.

More than ten years ago, WILKIE realized that the geometry of
definable sets influences the distribution of integer points (=
points with integer coordinates) on 1-dimensional definable
sets.

Around the same time, and developing earlier ideas of
BOMBIERI-PILA (1989), PILA studied rational points on curves
and surfaces definable in Ran.

These developments culminated in the theorem of
PILA-WILKIE (2006):

Definable sets which are sufficiently “transcendental” contain
few rational points.



O-minimal structures: diophantine properties

Fix an o-minimal expansion R “ pR;ă, 0, 1,`,ˆ, . . . q of Ralg.

More than ten years ago, WILKIE realized that the geometry of
definable sets influences the distribution of integer points (=
points with integer coordinates) on 1-dimensional definable
sets.

Around the same time, and developing earlier ideas of
BOMBIERI-PILA (1989), PILA studied rational points on curves
and surfaces definable in Ran.

These developments culminated in the theorem of
PILA-WILKIE (2006):

Definable sets which are sufficiently “transcendental” contain
few rational points.



O-minimal structures: diophantine properties

Notation
Given non-zero coprime a, b P Z define the height of x “ a

b by
Hpxq :“ maxt|a|, |b|u, and set Hp0q :“ 0.

We also define a height function Qn Ñ N, still denoted by H:

Hpx1, . . . , xnq :“ max
 

Hpx1q, . . . ,Hpxnq
(

.

Given X Ď Rn and t P R, put

XpQ, tq :“
 

x P X XQn : Hpxq ď t
(

(a finite set).

We’d like to understand the asymptotic behavior of |XpQ, tq|.
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O-minimal structures: diophantine properties

Example
#

X “ ΓpP q where P : Rn´1 Ñ R
is a polynomial function with in-
teger coefficients of degree d

+

ñ |XpQ, tq| „ Ct2pn´1q{d

Question
When does |XpQ, tq| grow sub-polynomially as tÑ8?

Given X Ď Rn we let

Xalg :“
! union of all infinite connected semial-

gebraic subsets of X

)

algebraic
part of X

Xtrans :“ XzXalg transcendental
part of X.

(A caveat: even if X is definable, then Xalg in general is not.)
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O-minimal structures: diophantine properties

Theorem (PILA-WILKIE, 2006)

Let X Ď Rn be definable. Then for each ε ą 0 there is some
t0 “ t0pεq such that

|XtranspQ, tq| ď tε for all t ě t0.

Remark

• The theorem continues to hold if given d ě 1, we replace

Q  set of algebraic numbers of degree ď d

H  a suitable height function on Qalg.

(PILA, 2009)
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O-minimal structures: diophantine properties

Two crucial ingredients in the proof:
• a parametrization theorem for bounded definable sets by

maps with bounded derivatives
(generalizing YOMDIN and GROMOV);

• a result about covering the rational points of such
parametrized sets by few algebraic hypersurfaces
(no definability assumptions here).



O-minimal structures: diophantine properties

Theorem I (parametrization)

Let X Ď p0, 1qn be definable, non-empty, and p P N. There is a
finite set Φ of definable maps φ : p0, 1qdimX Ñ p0, 1qn such that

• the union of the images of the φ P Φ equals X;
• each φ P Φ is Cp with ||φpαq|| ď 1 for |α| ď p.

Theorem II (covering by hypersurfaces)

Let m ă n and d be given. Then there are p P N and ε, C ą 0
with the following properties:

• if φ : p0, 1qm Ñ Rn is Cp with image X such that ||φpαq|| ď 1
for |α| ď p, then for each t, XpQ, tq is contained in the
union of Ctε hypersurfaces of degree d;

• ε “ εpm,n, dq Ñ 0 as dÑ8.
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O-minimal structures: diophantine properties

Toy case of the PILA-WILKIE Theorem:

X “ Γpfq where f : p0, 1q Ñ p0, 1q is definable.

Let ε ą 0 be given. Choose d so that εp1, 2, dq ď ε, and then
choose C, p as in Theorem II. Let Φ be a parametrization of X
as in Theorem I. Then XpQ, tq is contained in the union of C1t

ε

hypersurfaces of degree d, where C1 :“ C ¨ |Φ|.

The hypersurfaces H of degree d come in a definable (in fact,
semialgebraic) family. So for each such H, either X XH is
infinite (and then X XH Ď Xalg) or finite of uniformly bounded
size (by o-minimality). This allows us to count XtranspQ, tq.
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Elliptic curves: viewed algebraically

PILA’s Theorem deals with elliptic curves:

y2 “ x3 ` ax` b where a, b P C, 4a3 ‰ ´27b2.

y2 “ x3 ´ 2x

x

y

• plotted in R2

instead of C2;
• “elliptic” here has

nothing to do with
ellipses.

It is natural to add a “point 0 at infinity”:

E “
 

px, yq P C2 : y2 “ x3 ` ax` b
(

Y t0u
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Elliptic curves: viewed algebraically

Let E be an elliptic curve. Then E can be made into an abelian
group with 0 as its identity element.

For p, q, r P E,

p` q ` r “ 0 ðñ p, q, r lie on a line.

x

y

p‚
q ‚

‚r

x

y

p “ q
‚

r “ 8

This makes E into an algebraic group (the group operations are
given by rational functions of the coordinates).
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Elliptic curves: viewed analytically

Let E be an elliptic curve.

Then there is a complex analytic
surjective group morphism π : CÑ E whose kernel is a lattice,
which (after a change of coordinates) we may express as

Λ “ Z` Zτ where τ P H :“
 

z P C : Im z ą 0
(

.

Conversely, for every τ P H there is an elliptic curve E “ Eτ and
an analytic group morphism C� E with kernel Λ “ Z` Zτ .

0

τ

1 C

C{Λ

E

π

–
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Elliptic curves: viewed analytically

Thus H is a parameter space for elliptic curves.

But the map

τ ÞÑ (isomorphism class of Eτ )

is not one-to-one:

SLp2,Zq “
"ˆ

a b
c d

˙

: a, b, c, d P Z, ad´ bc “ 1

*

acts on H via
`

a b
c d

˘

¨ τ “ aτ`b
cτ`d , and for σ, τ P H:

Eσ – Eτ ðñ σ “ Aτ for some A P SLp2,Zq.

The j-invariant (19th century: KLEIN . . . )

There exists a holomorphic surjection j : HÑ C such that

jpσq “ jpτq ðñ Eσ – Eτ .

(So the “correct” parameter space is C – SLp2,ZqzH.)
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Let X Ď Cn be an irreducible variety. If X contains a dense set
of special points, then X is special.

Of course, we need to define what “special” should mean.
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PILA’s Theorem

Let E “ C{Λ be an elliptic curve, where Λ “ Z` Zτ (τ P H).

EndpEq –
 

α P C : αΛ Ď Λ
(

.

Usually EndpEq “ Z. But it may be bigger:

EndpEq ‰ Z ðñ τ satisfies a quadratic equation over Q.

The jpτq P C with τ P H quadratic over Q (“E has CM”) will be
our special points. KRONECKER: special ñ algebraic integer.

Why are these points special?

One possible explanation from algebraic number theory:
• A finite field extension K of Q has abelian GALOIS group
ðñ K Ď Qpζq for some ζ P U. (KRONECKER-WEBER)

• If Eτ has CM, all abelian extensions of Qpτq can similarly
be constructed from U, jpτq, and torsion points of Eτ .
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PILA’s Theorem

What should be the special varieties V Ď Cn?

While e is a group morphism, j is not. (H is not even a group!)
Still, there are algebraic relations between jpτq and jpnτq:

The nth classical modular polynomial (n P Ně1)

There is an irreducible Φn P ZrX,Y s such that for x, y P C:

Φnpx, yq “ 0 ðñ x “ jpτq, y “ jpnτq for some τ P H.

The Φn are symmetric in X and Y .

For example,

Φ2 “ X3 ´X2Y 2 ` 1488X2Y ´ 162000X2 ` 1488XY 2`

40773375XY ` 8748000000X ` Y 3 ´ 162000Y 2`

8748000000Y ´ 157464000000000
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PILA’s Theorem

If τ P H is quadratic, then so is nτ P H, so tΦn “ 0u contains a
dense set of special points.

Definition
A variety V Ď Cn is special if it is an irreducible component of a
variety defined by equations

Φnpxi, xjq “ 0 and xi “ a where a P C is special.

The proof of PILA’s Theorem follows the earlier pattern:

1 The upper bound: j has a natural (semialgebraic)
fundamental domain D, and j æ D is definable in Ran,exp.

2 The lower bound: C. L. SIEGEL’s theorem (1935) on the
growth of the class number of quadratic number fields.

3 Analysis of the algebraic part: A LINDEMANN-
WEIERSTRASS Theorem for j.
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Further developments

Many recent results employ and further develop ingredients
from this circle of ideas:

• in number theory: ULLMOV-YAFAEV, KLINGER-ULLMO-YAFAEV,
PILA-TSIMERMAN, MASSER-ZANNIER, HABEGGER-PILA . . .

• in logic: PETERZIL-STARCHENKO, FREITAG-SCANLON,
BIANCONI, THOMAS, JONES-THOMAS, JONES-THOMAS-WILKIE,
BAYS-KIRBY-WILKIE, CLUCKERS-COMTE-LOESER, . . .

“It is now widely accepted that a new method has emerged in
this subject.”



If you want to know more

SCANLON’s excellent surveys:

• O-minimality as an approach to the André-Oort conjecture,
Panor. Synth., to appear.

• Counting special points: logic, Diophantine geometry, and
transcendence theory, Bull. Amer. Math. Soc. 49 (2012), 51–71.

• A proof of the André-Oort conjecture via mathematical logic
[after Pila, Wilkie and Zannier ], Séminaire Bourbaki: Vol.
2010/2011, Astérisque 348 (2012), 299–315.


