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Abstract. This paper presents a series expansion that describes the evolution of a mechanical
system starting at rest and subject to a time-varying external force. Mechanical systems are pre-
sented as second-order systems on a configuration manifold via the notion of affine connections. The
series expansion is derived by exploiting the homogeneity property of mechanical systems and the
variations of constant formula. A convergence analysis is obtained using some analytic functions and
combinatorial analysys results. This expansion provides a rigorous mean of analyzing locomotion
gaits in robotics, and lays the foundation for the design of motion control algorithms for a large class
of underactuated mechanical systems.
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1. Introduction. The general purpose of this work is to develop innovative and
powerful control and analysis method for underactuated mechanical control systems.
This paper introduces a series expansion that characterize the evolution of a mechan-
ical system starting at rest and subject to an open loop time-varying force. This tool
should prove useful in the study of robotic locomotion and in the design of motion
control algorithms.

1.1. Series expansions and their control applications. Original works on
perturbation methods and series expansions in mechanics go back to Poincarè and
Lagrange. Magnus [34] describes the evolution of systems on a Lie group. Chen [15],
Fliess [18], and Sussmann [43] develop a general framework to describe the evolution
of a nonlinear system via the so-called Chen-Fliess series and its factorization. Re-
lated work on the “chronological calculus” formalism was developed by Agračhev and
Gamkrelidze [2].

Within the context of modern geometric control theory, series expansions play
a key role in the study of nonlinear controllability. Small-time local controllability
was studied for example by Sussmann [42, 44], Agračhev and Gamkrelidze [3], and
Kawski [23, 25]. Controllability along trajectories is investigated by Bianchini and
Stefani in [8]. Finally, the work by Lewis and Murray [33] on configuration controlla-
bility for mechanical control systems is very related to this work.

Motion planning problems provide a second important use of series expansions.
A rich literature is available on the motion planning problem for kinematic systems,
that is systems without drift. Numerous approaches include algorithms for chained
systems by Murray and Sastry [37], for systems on Lie groups by Leonard and Krish-
naprasad [31] and Kolmanovsky and McClamroch [27], and the very general solution
proposed by Lafferriere and Sussmann [29]. These works rely on the following ob-
servation: an explicit expression for the “input history to final displacement” map
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2 F. BULLO

simplifies dramatically the two-point boundary value problem that defines the mo-
tion planning task. In other words, whenever an explicit expression (provided by a
series expansion) for the evolution of the control system is available, the two-point
boundary value problem is reduced to a low dimensional nonlinear program. Accord-
ingly, motion control algorithms are designed by inverting this “input history to final
displacement” map.

Finally, series expansions and the techniques developed in this paper have poten-
tial relevance in several areas including averaging and vibrational stabilization [6, 10],
high order variations for use in optimal control [26], digital multirate sampling of
nonlinear systems [19] and model reduction [20].

Series expansions that specifically exploit the structure of mechanical systems
have so far not been computed. However, some preliminary progress in this direction
has been obtained by Bullo, Leonard and Lewis [12, 14] via a perturbation analysis.
Under the assumption of small amplitude forcing, the authors compute the initial
terms of a Taylor series describing the forced evolution. The results are then found
to be in agreement with the controllability analysis in [33]. A different but related
research direction has focused on open loop vibrational control and the recent progress
we described in [10] is related to this paper.

1.2. Summary of results. The main contribution of the paper is a series that
describes the evolution of a forced mechanical system starting from rest. Mechanical
systems are characterized as second-order systems on a configuration manifold using
the theory of affine connections. By exploiting the problem’s structure, the system’s
evolution is described as a flow on the configuration space (n-dimensional) instead of
a series on the full phase space (2n-dimensional).

The treatment relies on some differential geometric tools to describe the homo-
geneity properties of nonlinear mechanical systems and the variations of constants
formula; see [2] and [24]. The homogeneous structure of nonlinear mechanical sys-
tems leads to a recursive procedure to compute the forced solution to a mechanical
system. The terms in the series are computed recursively via time integrals and
certain Lie brackets called symmetric products [33].

The series is guaranteed to convergence in a strong sense for small amplitude
inputs and bounded final time. The convergence analysis is sophisticated and relies
on various concepts from complex and combinatorial analysis. Following the analysis
by Agračhev and Gamkrelidze in [2, Proposition 2.1], a bound is computed for every
term of the series so that a notion of order is established. However, as opposed to [2],
only a recursive expression for the series terms is available and this much complicates
the treatment. The key idea is to obtain a recursive bound not only on the terms of
the expansion but also on their partial derivative.

The series expansion can be computed in simplified fashion in two settings. For
simple Hamiltonian systems with integrable forces, the main theorem can be inter-
preted as a statement on gradient and Hamilton flows: the flow of a Hamiltonian sys-
tem forced from rest can be written as a (time-varying) gradient flow. For invariant
systems on groups, the series can be computed via algebraic manipulations (no dif-
ferentiations). In other words, the computations are performed on the corresponding
Lie algebra and the theorem reduces to a statement on the flow of polynomial control
systems. These results agree and supersede the preliminary results in in [12, 14].

Finally, some numerical simulations of a three degree of freedom robotic manip-
ulator are performed. Truncating the series expansion at increasingly higher order,
various approximations are obtained and their accuracy is illustrated via some nu-
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merical data.

1.3. Organization. The paper is organized as follows. In Section 2 we present
the model and the homogeneity properties of a large class of mechanical control sys-
tems. Most ideas are common in the literature, some are not. In Section 3 we present
the main result of the paper, that is, a convergent series describing the evolution of
a forced mechanical system. Section 4 contains some applications and extensions,
including the simple Hamiltonian and the invariant system settings, as well as some
simulations. We present our conclusions in Section 5.

2. Some Geometric and Analytical Properties of Mechanical Systems.

We present a geometric definition of mechanical control systems, study their homo-
geneous properties, and provide bounds using analytic function theory.

2.1. Natural objects on manifolds. We review some basic definitions to fix
some notation, see [1]. All the objects we consider are smooth in the sense of analytic.
Let Q be a finite dimensional, Hausdorff, second countable manifold, q be a point
on it, vq be a point on TQ, I ⊂ R be a real interval and γ : I → Q be a curve
on Q. We let 0q denote the zero velocity tangent vector at on the tangent space
TqQ. Let π : TQ → Q denote the usual projection on the tangent bundle, that is,
π(vq) = q. On the manifold Q, we will define scalar functions q 7→ f(q) ∈ R and
vector fields q 7→ X(q) ∈ TqQ. Lie derivatives of functions and Lie brackets of vector
fields are denoted by

LXf, and LXY = [X,Y ].

2.2. Variation of constants formula in geometric terms. This section
presents a quick review of the variation of constants formula within the chronologi-
cal calculus formalism introduced in [2], see also [39]. Given a vector field Y and a
diffeomorphism φ, the pull-back of Y along φ, denoted φ∗Y , is a vector field defined
by

(φ∗Y )(q) , Tqφ
−1 ◦ Y ◦ φ,

where Tqφ
−1 is the tangent map to φ−1, see [1]. In a system of local coordinate

(q1, . . . , qn), a vector field is written as Y (q) = Y i(q) ∂/∂qi, and the pull-back of Y
along φ is

(φ∗Y )i(q) =
∂(φ−1)i

∂qj
Y j(φ(q),

where the summation convention is enforced here and in what follows.
A time-varying vector field (q, t) 7→ X(q, t) gives rise to the initial value problem

q̇(t) = X(q, t), q(0) = q0,

and its solution at time T , which we refer to as the flow of X, is denoted by q(T ) =
ΦX
0,T (q0). We shall usually assume time-varying quantities to be integrable with re-

spect to time. Given a time-varying vector field X(q, t), we denote its definite time
integral from time 0 to time T by:

X(q, T ) =

∫ T

0

X(q, τ)dτ. (2.1)
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q0 q1

flow along X + Y

flow along Y

ΦX+Y
0,T (q0) = ΦY

0,T (q1)

Fig. 2.1. The flow along X + Y is written as the flow along Y with initial condition qq. The

“variation” q1 is computed via the variation of constants formula as the flow along (ΦY
0,t)

∗X for

time [0, T ] with initial condition q0.

The integral takes place over the linear space TqQ at fixed q ∈ Q. This operation can
be defined in two ways. Given a coordinates chart about q, the integral is well-defined
in the coordinate system (this definition suffices for the purpose of this paper, since the
analysis is local). A global coordinate-free definition is obtained providing sufficient
conditions in order for TqQ to be a Banach space and introducing the Cauchy-Bochner
integral, see [1, see the discussion at page 61].

Next, consider the initial value problem

q̇(t) = X(q, t) + Y (q, t), q(0) = q0, (2.2)

where X and Y are analytic time-varying vector fields. If we regard X as a perturba-
tion to the vector field Y , we can describe the flow of X+Y in terms of a nominal and
perturbed flow. The following relationship is referred to as the variation of constants
formula and describes the perturbed flow:

ΦX+Y
0,t = ΦY

0,t ◦ Φ
(ΦY0,t)

∗X

0,t . (2.3)

The result is illustrated in Figure 2.1 and proven in [2, equation (3.15)], see also [10,
Appendix A.1]. The result can be alternatively stated as follows. For all T ≥ 0, the
final value q(T ) of the curve q : [0, T ]→M solution to the initial value problem (2.2)
is also the final value of the curve solution to

q̇(s) = Y (q, s), q(0) = z(T ), (2.4)

where z : [0, T ]→M is the solution to the initial value problem

ż(s) =
(
(ΦY
0,s)

∗X
)
(z), z(0) = q0. (2.5)

The differential equation (2.5) is referred to as the “pulled back” or the “adjoint”
system in [21]. If both X and Y are time invariant, then the classic infinitesimal
Campbell-Backer-Hausdorff formula, see [22], provides a mean of computing the pull-
back:

(ΦY
0,t)

∗X =

∞∑

k=0

adkYX
tk

k!
.
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If instead X and Y are time-varying, a generalized expression is, see [2]:

(ΦY
0,t)

∗X(q, t) = X(q, t)

+

∞∑

k=1

∫ t

0

. . .

∫ sk−1

0

(
adY (q,sk) . . . adY (q,s1)X(q, t)

)
dsk . . . ds1. (2.6)

Just like in the classic Campbell-Backer-Hausdorff formula, see [45], the conver-
gence of the series expansion in the previous equation is a delicate manner. Suffi-
cient conditions for local convergence are given in [2, Proposition 2.1 and 3.1]. For
our analysis, the following straightforward statement suffices. If all the Lie brack-
ets adY (sk) . . . adY (s1)X vanish for all k greater than a given N , then the series in
equation (2.6) becomes a finite sum and it readily converges.

2.3. Affine connections. We refer to [17, 30] for a comprehensive treatment on
affine connections and Riemannian geometry. An affine connection on Q is a smooth
map that assigns to a pair of vector fields X,Y a vector field ∇XY such that for any
function f and for any third vector field Z:

(i) ∇fX+Y Z = f∇XZ +∇Y Z,
(ii) ∇X(fY + Z) = (LXf)Y + f∇XY +∇XZ.

We also say that ∇XY is the covariant derivative of Y with respect to X. Vector
fields can also be covariantly differentiated along curves, and this concept will be
instrumental in writing the Euler-Lagrange equations. Consider a smooth curve γ :
[0, 1]→ Q and a vector field along γ, that is, a map v : [0, 1]→ TQ such that π(v(t)) =
γ(t) for all t ∈ [0, 1]. Let V be a smooth vector field satisfying V (γ(t)) = v(t). The
covariant derivative of the vector field v along γ is defined by

Dv(t)

dt
, ∇γ̇(t)v(t) = ∇γ̇(t)V (q)

∣∣
q=γ(t)

.

It can be shown that this definition is independent of the choice of V . In a system
of local coordinate (q1, . . . , qn), an affine connection is uniquely determined by its
Christoffel symbols1 Γiij

∇ ∂

∂qi

(
∂

∂qj

)
= Γkij

∂

∂qk
,

and accordingly, the covariant derivative of a vector field is written as

∇XY =

(
∂Y i

∂qj
Xj + ΓijkX

jY k

)
∂

∂qi
.

2.4. Control systems described by affine connections. We introduce a
class of control systems that is a generalization of Lagrangian control systems. This
approach to modeling of vehicles and robotic manipulators is common to a number
of recent works; see [9, 33, 32, 10]. A control system described by an affine connection
is defined by the following objects:

(i) an n-dimensional configuration manifold Q, with q ∈ Q being the configura-
tion of the system and vq ∈ TqQ being the system’s velocity,

1We here refer to the Γk
ij functions as Christoffel symbols even without requiring ∇ to be a

Levi-Civita connection.
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(ii) an affine connection ∇ on Q, whose Christoffel symbols are {Γijk : i, j, k ∈
{1, . . . , n}},

(iii) a time-varying vector field Y on Q defining the input force.
The corresponding equations of motion are written as

Dvq
dt

= Y (q, t) (2.7)

or equivalently in coordinates as

q̇i = vi, v̇i + Γijk(q)v
jvk = Y i(q, t), (2.8)

where the indices i, j, k run from 1 to n, and where vq = vi ∂
∂qi

. These equations are
a generalized form of the Euler-Lagrange equations.

Remark 2.1. This definition of control systems described by an affine connec-
tion provides a convenient mean of treating various classes of Lagrangian mechanical
systems. For example, systems with nonholonomic constraints are described within
this framework in [32]. We will treat in more details “simple Hamiltonian systems”
in Section 4.2 and “invariant systems on Lie groups” in Section 4.3. A more detailed
exposition in presented in [10].

The second-order system in equation (2.7) can be written as a first-order differ-
ential equation on the tangent bundle TQ. Using { ∂

∂qi
, ∂
∂vi
} as basis for the tangent

bundle to TQ, we define

Z(vq) = vi
∂

∂qi
− Γ(q)ijkv

jvk
∂

∂vi
, and Y lift(vq, t) = Y i(q, t)

∂

∂vi
,

so that the control system is rewritten as

v̇q = Z(vq) + Y lift(vq, t). (2.9)

We refer to [33, 30] for coordinate independent definitions of the lifting operation
Y → Y lift and of the drift vector field Z.

2.5. Homogeneity and Lie algebraic structure. One fundamental structure
of the control system in equation (2.7) is the polynomial dependence of the vector
fields Z and Y lift on the velocity variables viq. This structure is reflected in the Lie

brackets computations involving Z and Y lift; see related ideas in [41, 10].
We here rely on the notion of geometric homogeneity2 as described in [24]. Given

two vector fields X and XE , we say that the vector field X is homogeneous with
degree m with respect to XE if

[XE , X] = mX.

For control systems described by an affine connection, we introduce the Liouville
vector field on TQ, see [7, pages 19 and 29], as

L(vq) = vi
∂

∂vi
,

2Geometric homogeneity corresponds to the existence of an (infinitesimal) symmetry in the equa-
tions of motion. For control systems described by an affine connection the symmetry is invariance
under affine time-scaling transformations.
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(1, 1)

#Y lift

2

1

3 4

#Zg

2

(2, 1)

(i, j)

1

P1 P0 P−1

{0} {0}

{0}

Fig. 2.2. Table of Lie brackets between the drift vector field Z and the input vector field Y lift.

The (i, j)th position contains Lie brackets with i copies of Y lift and j copies of Z. The corresponding

homogeneous degree is j− i. All Lie brackets to the right of P−1 exactly vanish. All Lie brackets to

the left of P−1 vanish when evaluated at vq = 0q.

where we recall vq = vi ∂
∂qi

. The key mathematical relationships between vector fields
on TQ are

[L,Z] = (+1)Z, and [L, Y lift] = (−1)Y lift.

Hence, the vector field Z is homogeneous of degree +1, and the vector field Y lift is
homogeneous of degree −1 with respect to the Liouville vector field. Let Pj be the
set of vector fields on TQ of homogeneous degree j, so that

Z ∈ P1, and Y lift ∈ P−1.

The sets Pj enjoy various interesting properties. Table 2.2 illustrates them, their
proof is via direct computation, and they are listed next:

(i) [Pi,Pj ] ⊂ Pi+j , that is, the Lie bracket between a vector field in Pi and a
vector field in Pj belongs to Pi+j .

(ii) Pk = {0} for all k ≤ −2,
(iii) for all X ∈ Pk with k ≥ 1, X(0q) = 0q,
(iv) every X ∈ P−1 is the lift of a vector field on Q.

It is helpful to provide an interpretation of Pi in coordinates. In a system of local
coordinates, let Hi(q, vq) be the set of scalar functions on TQ = R2n, which are
arbitrary functions of q and which are homogeneous polynomials in {v1, . . . , vn} of
degree i. Pi is the set of vector fields on R2n with the first n components in Hi and
the second n components in Hi+1.

Finally, it is of interest to focus on the Lie bracket [Y liftb , [Z, Y lifta ]], where Ya, Yb
are two vector fields on Q. This operation will play an important role in later compu-
tations. Since this Lie bracket belongs to P−1, there must exist a vector field on Q,
which we denote 〈Ya : Yb〉, such that

〈Ya : Yb〉
lift

= [Y liftb , [Z, Y lifta ]].

Such a vector field is called symmetric product between Yb and Ya and a direct com-
putation shows that it satisfies

〈Yb : Ya〉 = ∇YaYb +∇YbYa,
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or equivalently in coordinates

〈Yb : Ya〉
i
=
∂Y i

a

∂qj
Y j
b +

∂Y i
b

∂qj
Y j
a + Γijk

(
Y j
a Y

k
b + Y k

a Y
j
b

)
.

The adjective “symmetric” comes from the equality 〈Ya : Yb〉 = 〈Yb : Ya〉.

2.6. Integrable flows. Here we compute solutions to a few differential equations
defined by certain homogeneous vector fields. In particular, significant simplifications
take place in the following two cases. First, let (q, t) 7→ X(q, t) be a time-varying
vector field on Q, and consider the differential equation on TQ

v̇q = X lift(vq, t), (2.10)

with initial condition vq(0) = v0 ∈ Tq0Q. It can be seen that

ΦXlift

0,t (v0) = v0 +

∫ t

0

X(q0, s)ds, (2.11)

that is, in coordinates

ΦXlift

0,t

([
q0
v0

])
=

[
q0

v0 +
∫ t
0
X(q0, s)ds

]
.

Next, let X0 ∈ P0 and X1 ∈ P1 and consider the differential equation

v̇q = X0(vq, t) +X1(vq, t), (2.12)

with initial condition vq(0) = 0q0 ∈ Tq0Q. Define the vector field X0,1 on Q and its
flow ζ : [0, T ] 7→ Q via

X0,1 = Tπ ◦X0,

ζ(t) = Φ
X0,1

0,t (q0),

where Tπ : TTQ → TQ is the tangent map to the projection map π : TQ → Q.
In coordinates, this vector field consists of the first n components of the vector field
X0 =

[
X0,1(q, t)

′, X0,2(q, v, t)
′
]′

on TQ. It can be seen that

ΦX0+X1

0,t (0q0) = 0ζ(t),

that is, in coordinates

ΦX0+X1

0,t

([
q0
0

])
=

[
ζ(t)
0

]
.

The key observation in proving this statement is that the components of X0,2 and
X1 are polynomials in {v1, . . . , vn} of degree at least 1. Since the initial velocity is
assumed zero, vq remains zero for all time.

2.7. Analyticity and bounds over complex neighborhoods. In this section
we introduce a norm on the set of analytic vector fields over a compact subset of Q.
We also provide bounds to partial derivatives of analytic functions. The bounds are
not coordinate-free, i.e., they depend on the specific selection of coordinate system.
Accordingly, the treatment here assumes Q = Rn.
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Let q0 be a point on Rn, and let σ be a positive scalar, and define the complex
σ-neighborhood of q0 in Cn as

Bσ(q0) = {z ∈ Cn : ‖z − q0‖ < σ}.

Let f be a real analytic function on Rn that admits a bounded analytic continuation
over Bσ(q0). The norm of f is defined as

‖f‖σ , max
z∈Bσ(q0)

|f(z)|,

where f denotes both the function over Rn and its analytic continuation. Given a
time-varying vector field (q, t) 7→ Y (q, t) = Yt(q), let Y

i
t be its ith component with

respect to the usual basis on Rn. Assuming t ∈ [0, T ], and assuming that every
component function Y i

t is analytic over Bσ(q0), we define the norm of Y as

‖Y ‖σ,T , max
t∈[0,T ]

max
i∈{1,...,n}

‖Y i
t ‖σ.

In what follows, we will often simplify notation by neglecting the subscript T in
the norm of a time-varying vector field. Finally, given an affine connection ∇ with
Christoffel symbols {Γijk : i, j, k ∈ {1, . . . , n}}, introduce the notation:

‖Γ‖σ , max
ijk

∥∥Γijk
∥∥
σ
.

Next, we examine the norm of partial derivatives of these objects. Recall that the
Cauchy integral representation of analytic functions leads to bounds on high order
derivatives of analytic functions in terms of the norm of the functions themselves,
see the so-called Cauchy estimates in [28, Section 2.3] and [38]. Let (i1, . . . , im) be a
collection of integers belonging to {1, . . . , n}, and let σ′ be a positive real strictly less
than σ. It is known that

‖∂mf‖σ′ , max
i1,...,im

∥∥∥∥
∂mf

∂qi1 · · · ∂qim

∥∥∥∥
σ′
≤ m! δm‖f‖σ,

where δ = n/(σ−σ′). The quantity ∂mf/∂qi1 · · · ∂qim is a real function; it is bounded
by bounding its analytic continuation over Bσ(q0). Similarly, for vector fields

‖∂mY ‖σ′ , max
t∈[0,T ]

max
i,i1,...,im

∥∥∥∥
∂mY i

t

∂qi1 · · · ∂qim

∥∥∥∥
σ′
≤ m! δm‖Y ‖σ,

and for the Christoffel symbols

‖∂mΓ‖σ′ , max
i,j,k,i1,...,im

∥∥∥∥∥
∂mΓijk

∂qi1 · · · ∂qim

∥∥∥∥∥
σ′

≤ m! δm‖Γ‖σ.

3. A Series Expansion for Mechanical Control Systems. This section
describes first a preliminary bound, then the main result of the paper, that is, a series
expansion describing the evolution of a forced control system starting at rest.

Problem 3.1. Assume the functions q 7→ Γijk(q) and the vector field (q, t) 7→
Y (q, t) analytic in q ∈ Q, and integrable in t ∈ [0, T ], for some positive time T . Let
γ : [0, T ] 7→ Q be the solution to the differential equation (2.7) with initial condi-
tion γ̇(0) = 0q0 . Characterize γ as a series expansion containing iterated symmetric
products and time integrals of Y .



10 F. BULLO

We start with a conservative bound.
Lemma 3.2 (Bound on evolution). Consider the system as described in Prob-

lem 3.1. Select a coordinate system about the point q0 ∈ Q and let σ be a positive
constant. A sufficient condition for γ([0, T ]) to be a subset of Bσ(q0) is that

‖Y ‖σT
2 <

η2(σn2‖Γ‖σ)

n2‖Γ‖σ
, (3.1)

where the function η : x ∈ R+ → [0, π/2] is the unique solution to η tan(η) = x.
Proof. Let T0 < T be the smallest time at which the solution γ reaches the

distance ‖γ(T0) − q0‖ = σ. If the solution never reaches this distance, then γ([0, T ])
is obviously a subset of Bσ(q0). Since γ([0, T0]) ⊂ Bσ(q0), for all t ∈ [0, T0] we have
the bound ‖γ̇(t)‖ ≤ y(t), where

ẏ = n2‖Γ‖σy
2 + ‖Y ‖σ, y(0) = 0.

The solution to this initial value problem is

y(t) =

√
‖Y ‖σ
n2‖Γ‖σ

tan
(√
‖Y ‖σn2‖Γ‖σ t

)
.

Straightforward manipulations show that the condition in equation (3.1) is equivalent
to Ty(T ) < σ. But since y is a monotone function, also T0y(T0) < σ. Note that
‖γ(0)− q0‖ = 0 and

d

dt
‖γ(t)− q0‖ ≤ ‖γ̇‖ ≤ y(t) < σ/T0

for all t ∈ [0, T0]. Therefore ‖γ(T0) − q0‖ < T0σ/T0 and the contradiction is now
immediate.

We are now ready to present the main theorem.
Theorem 3.3 (Evolution of a forced mechanical system starting at rest). Con-

sider the system as described in Problem 3.1. Define recursively the time-varying
vector fields Vk:

V1(q, t) =

∫ t

0

Y (q, s)ds (3.2)

Vk(q, t) = −
1

2

k−1∑

j=1

∫ t

0

〈
Vj(q, s) : Vk−j(q, s)

〉
ds, k ≥ 2. (3.3)

Select a coordinate system about the point q0 ∈ Q, let σ > σ′ be two positive constants,
and assume that

‖Y ‖σT
2 < L , min

{
σ − σ′

24n2(n+ 1)
,

1

24n(n+ 1)‖Γ‖σ
,
η2(σ′n2‖Γ‖σ′)

n2‖Γ‖σ′

}
. (3.4)

Then the solution γ : [0, T ]→ Q satisfies

γ̇(t) =
+∞∑

k=1

Vk(γ(t), t), (3.5)
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where Vk satisfies the bound

‖Vk‖σ′ ≤ L1−k ‖Y ‖kσ t
2k−1, (3.6)

and the series (q, t) 7→
∑∞

k=1 Vk(q, t) converges absolutely and uniformly for q ∈
Bσ′(q0) and for t ∈ [0, T ].

A few comments on the various steps of the proof are appropriate. First, we
investigate how to write the flow of a mechanical control system as the composition
of more elementary flows. Two observations play a key role: the homogeneity of
system (2.7) renders the computations tractable, the simplifying procedure can be
easily repeated giving rise to an iterative procedure. Second, we prove absolute and
uniform convergence of the series expansion resulting from the first formal part of the
proof. The proof of the bounds is inspired by the treatment in [2, Proposition 2.1],
but it is considerably more complicated here by the recursive nature of the series
expansion. Once the series is formally derived and it is proven to be convergent, a
limiting argument leads to the final statement in equation (3.5).

Proof.

Part I: Here we write the solution to equation (2.7) as composition of the flow of two
separate vector fields, one of which is defined recursively.

Let k be a strictly positive integer, let Xk, Yk,Wk be time-varying vector fields
on Q, and let vq,k be a smooth curve on TQ that satisfies the differential equation

v̇q,k =
(
Z + [X lift

k , Z] + Y liftk +W lift
k

)
(vq,k, t) (3.7)

vq,k(0) = 0q0 .

The mechanical system in equation (2.7) corresponds to setting k = 1, X1 = W1 = 0,
Y1 = Y (q, t), and accordingly γ̇(t) = vq,1(t). Using the formula in equations (2.4)
and (2.5) discussed in Section 2.2, we set

vq,k(t) = Φ
Y lift
k

0,t (vq,k+1(t)) (3.8)

and

v̇q,k+1 =

((
Φ
Y lift
k

0,t

)∗
(Z + [X lift

k , Z] +W lift
k )

)
(vq,k+1) (3.9)

vq,k+1(0) = 0q0 ,

where we compute the pull-back along the flow by means of the infinite series in
equation (2.6). Remarkably, this series reduces to a finite sum. From the discussion
in Section 2.5 on the Lie algebraic structure of the various vector fields, we have

adm+2
Y lift
k

Z = 0

adm+1
Y lift
k

[X lift
k , Z] = 0, admY lift

k
W lift

k = 0,
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for all m ≥ 1. With a little book-keeping we can exploit these equalities and compute

(
Φ
Y lift
k

0,t

)∗
(Z+[X lift

k , Z] +W lift
k )

= Z + [X lift
k , Z] +W lift

k +

∫ t

0

[Y liftk (s),
(
Z + [X lift

k , Z]
)
]ds

+

∫ t

0

∫ s1

0

[Y liftk (s2), [Y
lift
k (s1), Z]]ds2ds1

= Z + [X lift
k + Y

lift

k , Z] + [Y
lift

k (s), [X lift
k , Z]] +W lift

k

+

∫ t

0

∫ s1

0

[Y liftk (s2), [Y
lift
k (s1), Z]]ds2ds1

= Z + [X lift
k + Y

lift

k , Z]−
〈
Y k : Xk

〉lift
+W lift

k −
1

2

〈
Y k : Y k

〉lift
,

where we have used the · notation introduced in equation (2.1). The last equality
also relies on

∫ t

0

∫ s1

0

[Y liftk (s2), [Y
lift
k (s1), Z]]ds2ds1 = −

1

2

〈
Y k : Y k

〉lift
,

which follows from an integration by part and the symmetry of the symmetric product.
Remarkably, the differential equation describing the evolution of vk+1(t) is of the same
form as equation (3.7) describing the evolution of vq,k(t), where

Xk+1 = Xk + Y k

Yk+1 +Wk+1 = −
〈
Y k : Xk + 1

2
Y k

〉
+Wk.

The vector field Xk can be computed and substituted in as:

Xk =

k−1∑

j=1

Y j

Yk+1 +Wk+1 = −

〈
Y k :

k−1∑

j=1

Y j +
1

2
Y k

〉
+Wk. (3.10)

Notice that the quantities Yk and Wk are not yet uniquely determined. Equa-
tion (3.10) is verified for all k, if and only if for all m:

(Y2 + Y3 + . . .+ Ym+1) +Wm+1 = −

m∑

k=1

〈
Y k :

k−1∑

j=1

Y j +
1

2
Y k

〉
, (3.11)

where we used W1 = 0. Some further manipulation leads to:

m∑

k=1

〈
Y k :

k−1∑

j=1

Y j +
1

2
Y k

〉
=

m∑

k=1

k−1∑

j=1

〈
Y k : Y j

〉
+

1

2

m∑

k=1

〈
Y k : Y k

〉

=
1

2

m∑

j,k=1,j 6=k

〈
Y k : Y j

〉
+

1

2

m∑

k=1

〈
Y k : Y k

〉

=
1

2

m∑

j,k=1

〈
Y k : Y j

〉
.
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A selection of {Yi : i ∈ {1, . . . ,m}}, and Wm+1 that satisfies equation (3.11) is

Yi = −
1

2

m∑

j,k=1,j+k=i

〈
Y k : Y j

〉
= −

1

2

i−1∑

j=1

〈
Y j : Y i−j

〉
(3.12)

Wm+1 = −
1

2

m∑

j,k=1,j+k>m

〈
Y k : Y j

〉
.

Note that equation (3.12) is a well defined recursive relationship, and note that the
recursive definition of Vk in equation (3.3) and (3.2) inside the theorem statement
corresponds to setting Vk(q, t) = Y k(q, t). The iteration procedure proves that, for
any k ≥ 2, the solution to the original mechanical system γ̇ = vq,1 : [0, T ] 7→ TQ
satisfies

γ̇(t) =

(
Φ
Y lift
1

0,t ◦ Φ
Y lift
2

0,t ◦ . . .◦ Φ
Y lift
k−1

0,t

)
(vq,k(t)),

where vq,k : [0, T ] 7→ TQ is the solution to equation (3.7). The flow γ̇ is now written as
the composition of k flows and a first simplification is immediate. For all integers i, j
and for all times s1, s2 the vector fields Y lifti and Y liftj commute, that is

[Y lifti (vq, s1), Y
lift
j (vq, s2)] = 0,

so that γ is the solution to

γ̇(t) = Φ
∑k−1

j=1 Y
lift
j

0,t (vq,k(t)). (3.13)

A second simplification is also straightforward. The vector field in equation (3.13)
is homogeneous of degree 0, i.e., it is in the form of equation (2.10) in Section 2.6.
According to the result in equation (2.11) we have for all t ∈ [0, T ]

γ̇(t) = vq,k(t) +

k−1∑

j=1

Y j(π(vq,k(t)), t), (3.14)

where the sequence of vector fields Yj is defined via equation (3.12) and where the
curve vq,k : [0, T ] 7→ TQ is the solution to

dvq,k
dt

=


Z +



k−1∑

j=1

Y
lift

j , Z


+ Y liftk +W lift

k


 (vq,k, t) (3.15)

vq,k(0) = 0q0 .

Part II: Here we show absolute and uniform convergence of the series
∑∞

k=1 Yk(q, t)
over all q in a compact neighborhood of q0 and for all t ≤ T .

Given the vector field Y , let Ω1 = {Y }, and define recursively the set Ωk to be
the collection of vector fields − 12

〈
Bi : Bk−i

〉
, for all Bi ∈ Ωi and Bk−i ∈ Ωk−i. The

first few sets are:

Ω1 = {Y }, Ω2 =

{
−
1

2

〈
Y : Y

〉}
, Ω3 =

{
1

4

〈
Y :

〈
Y : Y

〉〉}
, (3.16)

Ω4 =

{
−
1

8

〈
Y :

〈
Y :

〈
Y : Y

〉〉〉
,−

1

8

〈〈
Y : Y

〉
:
〈
Y : Y

〉〉}
.
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Next, we prove by induction that, for all k, the vector field Yk is the sum of Nk vector
fields belonging to Ωk. The statement is true at k = 1 with N1 = 1. We assume it
true for all j < k and prove it for k. Because of the induction assumption, we write

Yj =
∑Nj

a=1Bj,a, where the Bj,a are elements in Ωj . We compute

Yk = −
1

2

k−1∑

j=1

〈
Y j : Y k−j

〉

= −
1

2

k−1∑

j=1

〈
Nj∑

a=1

Bj,a :

Nk−j∑

b=1

Bk−j,b

〉

=

k−1∑

j=1

Nj∑

a=1

Nk−j∑

b=1

−
1

2

〈
Bj,a : Bk−j,b

〉

︸ ︷︷ ︸
∈ Ωk

,

This concludes the proof by induction and the recursive relation on Nk is

N1 = 1, Nk =
k−1∑

j=1

NjNk−j , k ≥ 2. (3.17)

As we discuss in Appendix A equation (A.1), the sequence Nk can be explicitly
computed and bounded as

Nk =
1

k

(
2k − 2
k − 1

)
≤

22(k−1)

k − 1
2

. (3.18)

We now focus our attention on bounding the generic time-varying vector field
(q, s) 7→ Bk(q, s) in Ωk. Recall that the symbols δ, ‖ · ‖σ, ‖∂

m · ‖σ introduced in
Section 2.7. We claim that there exist sequences of real and integer coefficients {ck :
k ∈ R} and {dk : k ∈ N}, such that

‖∂mBk‖σ′ ≤ ck
(m+ dk)!

dk!
δm+k−1‖Y ‖kσt

2(k−1). (3.19)

For convenience, we redefine δ to δ = max
{

n
σ−σ′ , ‖Γ‖σ

}
, so that ‖∂mΓ‖σ′ ≤ m! δm+1.

As discussed in that section, the bound in equation (3.19) is satisfied at k = 1 for
all m ∈ N, with c1 = 1, d1 = 0. In what follows we provide a proof by induction on
k ≥ 2.

Any time-varying vector field Bk at k ≥ 2 can be written as Bk = − 12
〈
Ba : Bb

〉

for some 1 ≤ a, b ≤ k−1, a+ b = k and Ba ∈ Ωa, Bb ∈ Ωb. Accordingly, we compute:

‖∂m
〈
Ba : Bb

〉
‖σ′

= max
i,i1,...,im

∥∥∥∥∥
∂m

∂qi1 · · · ∂qim

(
∂Bi

a

∂qj
Bj
b +

∂Bi
b

∂qj
Bj
a + Γijl(B

j
aBl

b +Bj
b B

l
a)

)∥∥∥∥∥
σ′

≤ max
i

(∥∥∥∥∥∂
m

(
∂Bi

a

∂qj
Bj
b

)∥∥∥∥∥
σ′

+

∥∥∥∥∥∂
m

(
∂Bi

b

∂qj
Bj
a

)∥∥∥∥∥
σ′

+ 2
∥∥∥∂m

(
ΓijlB

j
aBl

b

)∥∥∥
σ′

)
.
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Relying on the equality

dm

dxm
f(x)g(x) =

m∑

α=0

(
m
α

)
dαf(x)

dxα
dm−αg(x)

dxm−α
,

the first term is bounded according to:

∥∥∥∥∥∂
m

(
∂Bi

a

∂qj
Bj
b

)∥∥∥∥∥
σ′

≤ n
m∑

α=0

m!

α!(m− α)!

∥∥∂α+1Ba

∥∥
σ′

∥∥∂m−αBb

∥∥
σ′

≤ n
m∑

α=0

m!

α!(m− α)!

(
ca

(α+ 1 + da)!

da!
δα+a‖Y ‖aσ

t2a−1

2a− 1

)

·

(
cb
(m− α+ db)!

db!
δm−α+b−1‖Y ‖bσ

t2b−1

2b− 1

)

=
ncacb

(2a− 1)(2b− 1)

(
m!

da!db!

m∑

α=0

(α+ 1 + da)!(m− α+ db)!

α!(m− α)!

)

· δm+a+b−1 ‖Y ‖a+bσ t2(a+b−1).

The third term is bounded according to:

∥∥∥∂m
(
ΓijlB

j
aBl

b

)∥∥∥
σ′

= n2
m∑

α=0

α∑

β=0

m! ‖∂m−αΓ‖σ′

(m− α)!β!(α− β)!
‖∂βBa‖σ′ ‖∂

α−βBb‖σ′

= n2
m∑

α=0

α∑

β=0

m!

(m− α)!β!(α− β)!

(
(m− α)! δm−α+1

)

·

(
ca

(β + da)!

da!
δβ+a−1‖Y ‖aσ

t2a−1

2a− 1

)

·

(
cb
(α− β + db)!

db!
δα−β+b−1‖Y ‖bσ

t2b−1

2b− 1

)

=
n2cacb

(2a− 1)(2b− 1)


 m!

da!db!

m∑

α=0

α∑

β=0

(β + da)!(α− β + db)!

β!(α− β)!




· δm+a+b−1 ‖Y ‖a+bσ t2(a+b−1).

To simplify notation, let us define

S(l, d1, d2) ,
l∑

a=0

(a+ d1)!(l − a+ d2)!

a!(l − a)!
.

Putting it all together:

‖∂m
〈
Ba : Bb

〉
‖σ′ ≤

ncacb
(2a− 1)(2b− 1)

m!

da!db!
δm+a+b−1 ‖Y ‖a+bσ t2(a+b−1)

·

(
S(m, da + 1, db) + S(m, da, db + 1) + 2n

m∑

α=0

S(α, da, db)

)
.
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Equation (A.2) in Appendix A implies that

S(l, d1, d2) =
d1!d2!(l + 1 + d1 + d2)!

l!(1 + d1 + d2)!
, (3.20)

so that we compute

m!

da!db!

(
S(m, da + 1, db) + S(m, da, db + 1) + 2n

m∑

α=0

S(α, da, db)

)

=
m!

da!db!

((
(da + 1)!db! + da!(db + 1)!

) (m+ 2 + da + db)!

m!(2 + da + db)!

+2n

m∑

α=0

da!db!(α+ 1 + da + db)!

α!(1 + da + db)!

)

=
(m+ 2 + da + db)!

(1 + da + db)!
+

2nm!

(1 + da + db)!

m∑

α=0

(α+ 1 + da + db)!

α!
︸ ︷︷ ︸
S(m, 1 + da + db, 0)

,

and again applying equation (3.20) with (l, d1, d2) = (m, 1 + da + db, 0)

=
(m+ 2 + da + db)!

(1 + da + db)!
+

2nm!

(1 + da + db)!

(1 + da + db)!(m+ 2 + da + db)!

m!(2 + da + db)!

=
(m+ 2 + da + db)!

(2 + da + db)!
(2 + 2n+ da + db) .

Substituting in

‖∂m
〈
Ba : Bb

〉
‖σ′

≤
ncacb(2 + 2n+ da + db)(m+ 2 + da + db)!

(2a− 1)(2b− 1)(2 + da + db)!
δm+a+b−1 ‖Y ‖a+bσ t2(a+b−1).

Next, we express everything back in terms of k = a+ b and Bk = − 12
〈
Ba : Bb

〉
.

We have that:

‖∂mBk‖σ′ ≤ max
a+b=k

(
ncacb(2 + 2n+ da + db)

2(2a− 1)(2b− 1)

(m+ 2 + da + db)!

(2 + da + db)!

)
δm+k−1 ‖Y ‖kσ t

2(k−1)

Equation (3.19) is proven by defining sequences ck and dk such that c1 = 1, d1 = 0
together with

dk ≤ max
a+b=k

2 + da + db,

ck ≤ max
a+b=k

ncacb(2 + 2n+ da + db)

2(2a− 1)(2b− 1)
.

It is immediate to see that dk = 2(k − 1) satisfies the recursive requirement, so that
we require ck to satisfy c1 = 1 together with the requirement

ck ≤ max
a+b=k

n(k + n− 1)cacb
(2a− 1)(2b− 1)

= max
a∈{1,...k−1}

n(k + n− 1)cack−a
(2a− 1)(2k − 2a− 1)

.
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Consider the polynomial p(a) = (2a− 1)(2k − 2a− 1) in a ∈ [1, k − 1], it assumes its
minimum value (2k − 3) at a = 1, or equivalently a = k − 1. Accordingly, a stricter
requirement on ck is

ck ≤ max
a∈{1,...k−1}

n(k + n− 1)

2k − 3
cack−a.

Since (k − 1)/(2k − 3) ≤ 1 and n/(2k − 3) ≤ n for all k ≥ 2, a conservative selection
of ck that satisfies this requirement is provided by the sequence

c1 = 1, ck = n(1 + n)

k−1∑

a=1

cack−a, k ≥ 2.

Recalling the definition in equation (3.17), one can show that ck = (n(1 + n))k−1Nk.
Finally, we summarize all the analysis in Part II and prove convergence. Evalu-

ating at m = 0 the bound in equation (3.19), we have

‖Bk‖σ′ ≤ (n(1 + n))k−1Nk δ
k−1‖Y ‖kσ t

2(k−1),

and recalling the bound in equation (3.18), we compute

‖Yk‖σ′ ≤ Nk ‖Bk‖σ′ ≤ (n(1 + n))k−1N2
k δ

k−1 ‖Y ‖kσ t
2(k−1)

≤
(24n(1 + n) δ)k−1

(k − 1/2)2
‖Y ‖kσ t

2(k−1).

An immediate consequence is that for (24n(n+ 1)δ) ‖Y ‖σT
2 < 1, the series

Y∞(q, t) , lim
K→∞

K∑

k=1

Yk(q, t)

converges absolutely and uniformly in t ∈ [0, T ] and q ∈ Bσ′(q0).

Part III: Here we provide the final limiting argument by collecting various results in
Part I, Part II and in Lemma 3.2

We start by studying the behavior as k → ∞ of the equation (3.14) and of the
initial value problem (3.15) from Part I. We shall exploit a variation of a standard
result on the continuous dependence of solutions of differential equations with respect
to parameter changes, see [16, Chapter I, Section 3]. Uniform convergence of the

vector field describing a differential equation, say for example
∑K

k=1 Yk, implies the
uniform convergence of the solution to the Kth differential equation to the solution
of the limiting differential equation. In order to apply this result to the differential
equation (3.15) we need to ensure that the vector field on right hand side converges
uniformly and absolutely.

Assume that the time length T and input vector field Y satisfy the bound in
equation (3.4) inside the theorem statement. Then Lemma 3.2 guarantees that
γ([0, T ]) ⊂ Bσ′(q0), and the analysis in Part II guarantees that series

∑∞
k=1 Yk con-

verges absolutely and uniformly over q ∈ Bσ′(q0). Therefore the series converges uni-
formly and absolutely along the curve γ. From equation (3.14) one can deduce that
γ(t) = π (vq,k(t)), so that the series

∑∞
k=1 Yk converges also along π◦vq,k : [0, T ] 7→ Q.

Accordingly, we can take the limit as k →∞ in equation (3.15).
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Notice that uniformly in t ∈ [0, T ] and q ∈ Bσ′(q0)

lim
k→∞

Yk(q, t) = 0, and lim
k→∞

Wk(q, t) = 0,

and define the time-varying vector field

V∞ =

∞∑

k=1

Vk =

∞∑

k=1

Y k.

Taking the limit as k →∞ in equations (3.14) and (3.15) one obtains

γ̇(t) = vq,∞(t) + V∞(π(vq,∞(t)), t),

where the curve vq,∞ : [0, T ] 7→ TQ is the solution to

dvq,∞
dt

=
(
Z +

[
V lift∞ , Z

])
(vq,∞, t) (3.21)

vq,∞(0) = 0q0 .

According to the discussion in Section 2.6, the initial value problem in equa-
tion (3.21) can be explicitly integrated. Because Z ∈ P1, [V

lift
∞ , Z] ∈ P0, and because

of the equality

Tπ ◦
[
V lift∞ , Z

]
= V∞,

the curve vq,∞ satisfies

vq,∞(t) = 0ζ(t), where ζ(t) = ΦV∞
0,t (q0),

and plugging in

γ̇(t) = 0ζ(t) + V∞(π(0ζ(t)), t) = V∞(ζ(t), t).

The last two statements imply γ = ζ and are equivalent to statement in equation (3.5)
inside the theorem.

Two brief comments are appropriate. First, it is interesting to emphasize an in-
termediate result proved in Part II : the Vk term in the series is the sum of known
number of vector fields belonging to the set Ωk, see the definition preceding equa-
tion (3.16). This additional structure might be useful in controllability or motion
planning studies. Second, it is unpleasant to remark that while the series expansion is
stated in a coordinate-free context, its convergence properties rely on the introduction
of a coordinate system.

4. Applications and Extensions. We present a few diverse comments in order
to relate the theorem to various earlier works, as well as obtain stronger results under
specific additional assumptions on the system.

4.1. The first few order terms and small amplitude forcing. Equation (3.5)
is well-defined in the sense that, at fixed q, the integration is performed with respect
to the time variable. Using the abbreviated notation introduced in equation (2.1),
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the first few terms of the sequence {Vk : k ∈ N} are computed as

V1 = Y

V2 = −
1

2

〈
Y : Y

〉

V3 =
1

2

〈〈
Y : Y

〉
: Y
〉

V4 = −
1

2

〈〈〈
Y : Y

〉
: Y
〉
: Y

〉
−

1

8

〈〈
Y : Y

〉
:
〈
Y : Y

〉〉
,

so that we can write

γ̇(t) = Y (γ, t)−
1

2

〈
Y : Y

〉
(γ, t) +

1

2

〈〈
Y : Y

〉
: Y
〉
(γ, t)

−
1

2

〈〈〈
Y : Y

〉
: Y
〉
: Y

〉
(γ, t)−

1

8

〈〈
Y : Y

〉
:
〈
Y : Y

〉〉
(γ, t) +O(‖Y ‖5t9).

This series converges under the assumption that the product of final time T and
input magnitude ‖Y ‖σ be small. Typically, in controllability studies [42] it is the final
time that is assumed to be small (the famous acronym STLC stands for small-time
local controllability). Within the context of motion planning problems [31, 14], it
is instead convenient to study the small input magnitude case. Motivated by the
treatment in [14], let ε be a small positive constant, and consider a total acceleration
of the form

Y (q, t, ε) = εX1(q, t) + ε2X2(q, t) + ε3X3(q, t), t ∈ [0, 1].

Accordingly, equation (3.5) is equivalent to

γ̇(t) = εX1(γ, t) + ε2
(
X2 −

1

2

〈
X1 : X1

〉)
(γ, t)

+ ε3
(
X3 −

1

2

〈
X1 : X2

〉
+

1

2

〈〈
X1 : X1

〉
: X1

〉)
(γ, t) +O(ε4).

This expression generalizes the results presented in Proposition 4.1 in [14]. Note that
those results were proven via a perturbation theory argument that is not as general
and powerful as the treatment in Theorem 3.3.

4.2. Simple Hamiltonian systems with integrable forces. In this and the
following section we analyze systems with more structure both in the affine connec-
tions ∇ as well as in the input forces Y . Here we consider systems with Lagrangian
equal to “kinetic minus potential” and with integrable forces. In the interest of brevity,
we refer to the textbooks [17, 35] for a detailed presentation and review here only the
necessary notation. The affine connection of a simple system is the Levi-Civita con-
nection associated with the kinetic energy matrix M , that is, the Christoffel symbols
are defined according to the usual relationship

Γkij =
1

2
Mmk

(
∂Mmj

∂qi
+
∂Mmi

∂qj
−
∂Mij

∂qm

)
, (4.1)

where Mij and Mmk are the components of the matrix representation of M and of
its inverse. An integrable time-varying force is written as

Y (q, t) = gradϕ(q, t), where (gradϕ)i = M ij ∂ϕ

∂qj
, (4.2)
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and where ϕ is a scalar function on Rn × R.
One remarkable simplification takes place for a simple system described by a

Levi-Civita connection: the set of gradient vector fields is closed under the operation
of symmetric product. Let ϕ1, ϕ2 be scalar functions on Rn and define a symmetric
product between functions according to

〈ϕ1 : ϕ2〉 ,
∂ϕ1
∂q

M−1 ∂ϕ2
∂q

. (4.3)

Then the symmetric product of the corresponding gradient vector fields equals the
gradient of the symmetric product of the functions. In equations:

〈gradϕ1 : gradϕ2〉 = grad 〈ϕ1 : ϕ2〉 .

We refer to [10] for the proof. Accordingly, the main theorem can be restated as
follows.

Theorem 4.1. Consider the system as described in Problem 3.1. Additionally,
let the Christoffel symbols and the input vector field be defined as in equation (4.1)
and (4.2). Define recursively the time-varying functions:

ϕ1(q, t) =

∫ t

0

ϕ(q, s)ds

ϕk(q, t) = −
1

2

k−1∑

j=1

∫ t

0

〈
ϕj(q, s) : ϕk−j(q, s)

〉
ds, k ≥ 2.

Then the solution γ : [0, T ]→ Q satisfies

γ̇(t) = grad
+∞∑

k=1

ϕk(γ(t), t). (4.4)

In other words, the flow of a simple Hamiltonian system forced from rest is written as
a (time-varying) gradient flow. For completeness, we include a convergence treatment
derived from the one in the main theorem.

Remark 4.2. Given 0 < σ′′ < σ′ < σ, we assume M and ϕ to be analytic in
a neighborhood Bσ(q0) of q0 and uniformly integrable in t ∈ [0, T ]. Two immediate
bounds are

‖ gradϕ‖σ′ ≤ n‖M−1‖σ′

∥∥∥∥
∂ϕ

∂q

∥∥∥∥
σ′

‖Γ‖σ′ ≤ A ,
3n2

2(σ − σ′)
‖M−1‖σ′‖M‖σ.

Accordingly, the bounds in the main theorem can be restated (in a more conservative
manner) as follows. If

∥∥∥∥
∂ϕ

∂q

∥∥∥∥
σ′
T 2 <

1

n‖M−1‖σ′
min

{
σ′ − σ′′

24n2(n+ 1)
,

1

24n(n+ 1)A
,
η2(n2σ′′A)

n2A

}
,

the series
∑∞

k=1 ϕk(q, t) converges absolutely and uniformly in t and q for all t ∈ [0, T ]
and for all q in a neighborhood Bσ′′(q0) of q0.
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4.3. Invariant systems on Lie groups. In this section we briefly investigate
systems with kinetic energy and input forces invariant under a certain group action.
These systems have a configuration space G with the structure of an n dimensional
matrix Lie group. Systems in this class include satellites, hovercraft, and underwater
vehicles.

The equation of motion (2.7) decouples into a kinematic and dynamic equation
in the configuration variable g ∈ G and the body velocity3 v ∈ Rn. The kinematic
equation can be written 4 as a matrix differential equation using matrix group notation
ġ = gv̂; we refer to [36] for the details. The dynamic equation, sometimes referred to
as Euler-Poincarè, is

v̇i + γijkv
jvk = yi(t), (4.5)

where the coefficients γijk are determined by the group and metric structure. The
curve y : [0, T ] 7→ Rn denotes the time-varying forcing.

Within this setting, the result in Theorem 3.3 is summarized as follows. The
solution to the equation (4.5) with initial condition v(0) = 0 is v(t) =

∑∞
k=1 vk(t),

where

v1(t) =

∫ t

0

y(s)ds

vk(t) = −
1

2

k−1∑

j=1

∫ t

0

〈
vj(s) : vk−j(s)

〉
ds, k ≥ 2,

and where the symmetric product between velocity vectors is 〈x : y〉
i
= −2γijkx

jyk.
Local convergence for the series expansion can be easily established in this setting.

This result agrees and indeed supersedes the ones presented in [14] obtained via
the perturbation method. The relationship of this case to the more general setting
studied in Theorem 3.3 is clarified via the notion of invariant connection; see [5,
Appendix B] and [40, Section 27, “Variations on a theme by Euler”] for more details.

4.4. Simulations for a three degree of freedom manipulator. In this sec-
tion we illustrate the approximations derived in Theorem 3.3 by applying them to an
example system. We consider a three link planar manipulator. The configuration is
described by three angles (θ1, θ2, θ3). A constant (integrable) force is applied to the
first variable. Specifically, we set ϕ(q, t) = εθ1 and we let the parameter ε vary in the
range 10−2 to 1. The integration time is T = 1 seconds. Setting all lengths, masses
and moments of inertia to unity, the kinetic energy matrix is:

M =
1

16




25 6 cos(θ1 − θ2) 2 cos(θ1 − θ3)
6 cos(θ1 − θ2) 21 2 cos(θ2 − θ3)
2 cos(θ1 − θ3) 2 cos(θ2 − θ3) 17


 .

The initial condition is assumed to be q(0) = (0, π/4, 0). We investigate the error
value eε,N = ‖γ(T )− γN (T )‖, where γN is the solution to the Nth order truncation:

γ̇N (t) = grad
∑N

k=1 ϕk(γN , t). An empirical forecast of the eε,N is computed as

3More precisely, the body velocity v lives in the Lie algebra of the group G.
4Alternatively, the kinematic equation can be written in a system of local coordinates q (e.g.,

Euler angles in the case of rotation matrices) as q̇ = J(q)v, where J(q) is an appropriate Jacobian
matrix.
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Table 4.1
Numerical comparison of various degrees of approximations. The entries in the table are the

error values eε,N that provide a measure of the accuracy of the Nth order truncated approximation.

ε 1 .1 .01

N = 1 5.3 · 10−3 4.6 · 10−5 4.5 · 10−7

N = 2 2.4 · 10−4 4.2 · 10−7 4.2 · 10−10

N = 3 1.4 · 10−4 3.0 · 10−9 2.3 · 10−13

N = 4 5.2 · 10−5 2.4 · 10−10 3.5 · 10−15

follows. Since T = 1 and ‖Y ‖ = O(ε), there exist two constants c, d such that the
kth term in series is bounded by c(dε)k. Summing the neglected contributions from
k = N + 1 to infinity and assuming that dε ¿ 1, one can compute eε,N ≈ c(dε)N+1.
We summarize the results of the numerical investigation5 in Table 4.1. The results
are in qualitative agreement with the theoretical forecasts.

5. Conclusions. We have presented a series expansion that describes the evo-
lution of a forced mechanical system. Our result provides a first order description to
the solutions of a second order initial value problem. Both the series and the proof
method provide insight into the geometry of mechanical control systems. The treat-
ment expands on our previous work [10] on high amplitude high frequency averaging
and vibrational stabilization.

Series expansions are the underlying technique for controllability and motion plan-
ning. For mechanical systems moving in the low velocity regime, these two problems
have been tackled with various degrees of success in [33, 13]. Future research will rely
on the contributions in this work to develop more general motion planning algorithms
than the ones in [14], and sharper sufficient controllability tests than the ones in [33].

Acknowledgments. The author thanks Jim Radford and Andrew D. Lewis for
helpful and stimulating discussions.
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Appendix A. Some Basic Identities in Combinatorial Analysis. We here
present a basic result and derive a useful expression that is needed in the proof of the
main theorem. The main reference is the method of generating functions as described
in Section 3.4 in [4]. The first identity is explicitly proven in the reference. If N1 = 1
and

Nk =

k−1∑

j=1

NjNk−j , k ≥ 2,

then

Nk =
1

k

(
2k − 2
k − 1

)
=

2k

(4k − 2)

1 · 3 · 5 · · · (2k − 1)

1 · 2 · 3 · · · k
≤

4k

4k − 2
. (A.1)

The second equality needed in the proof of Theorem 3.3 is

k∑

a=0

(
a+ d1
d1

)(
k − a+ d2

d2

)
=

(
k + 1 + d1 + d2

k

)
. (A.2)

To prove it we use the method of generating functions, see [4]. We claim that, for all
real x with |x| < 1

∞∑

k=0

(
k∑

a=0

(
a+ d1
d1

)(
k − a+ d2

d2

))
xk =

∞∑

k=0

(
k + 1 + d1 + d2

k

)
xk. (A.3)

The first step is to notice that

∞∑

k=0

(
k∑

a=0

(
a+ d1
d1

)(
k − a+ d2

d2

))
xk =

∞∑

k=0

∑

m+n=k

(
n+ d1
d1

)(
m+ d2
d2

)
xn+m

=

(
∞∑

n=0

(
n+ d1
d1

)
xn

)(
∞∑

m=0

(
m+ d2
d2

)
xm

)
.

Accordingly, we define

fa(x) =

∞∑

m=0

(
m+ a
a

)
xm, (A.4)

and the thesis in equation (A.3) is equivalent to proving that

fd1
(x)fd2

(x) = fd1+d2+1(x). (A.5)
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In passing, we also note that the convergence radius of f is |x| < 1.
The second step is to study the properties of f . First of all,

fa(x) =

∞∑

m=0

(m+ a)!

m!a!
xm =

1

a!

∞∑

m=0

(m+ a) · · · (m+ 1)xm

=
1

a!

da

dxa

∞∑

m=0

xm+a =
1

a!

da

dxa

(
xa

∞∑

m=0

xm

)
=

1

a!

da

dxa
xa

1− x
.

Additionally, it is immediate to see that

f0(x) =
1

1− x
, xf0(x) = f0(x)− 1,

and consequently

fa(x) =
1

a!

da

dxa
1

1− x
=

1

a!

da

dxa
f0(x).

Finally, we prove by induction that

fa(x) = f0(x)
a+1. (A.6)

At a = 0 the statement is obvious. We assume it true up to a and compute:

fa+1(x) =
1

(a+ 1)!

da+1

dxa+1
1

1− x
=

1

(a+ 1)!

da

dxa

(
1

1− x

)2

=
1

(a+ 1)!

a∑

b=0

(
a
b

)(
db

dxb
1

1− x

)(
da−b

dxa−b
1

1− x

)

=
a!

(a+ 1)!

a∑

b=0

(
1

b!

db

dxb
1

1− x

)(
1

(a− b)!

da−b

dxa−b
1

1− x

)

=
1

a+ 1

a∑

b=0

(
1

1− x

)b+1(
1

1− x

)a−b+1
=

(
1

1− x

)a+2
.

This concludes the proof of equation (A.6), which immediately implies equation (A.5)
and the main thesis in equation (A.3).


