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motivation

e All we can ever do is add and multiply with our Floating Point Unit
(FPU)

e We can't directly evaluate e, cos(x), v/x
e What can we do? Use Taylor Series approximation



taylor series definition

The Taylor series expansion of f(x) at the point x = ¢ is given by
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an example

The Taylor series expansion of f(x) about the point x = ¢ is given by
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Example (e*)

We know €° = 1, so expand about ¢ = 0 to get

1
fx) =€ =1+1-(x—0)+ 5 - (x— 0} +
2 X3

X
—1+X+7+§+



taylor approximation

e So
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e But we can’t evaluate an infinite series, so we truncate...

Taylor Series Polynomial Approximation

The Taylor Polynomial of degree n for the function f(x) about the point
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In the case of the exponential
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taylor approximation

Evaluate e?:

e Using 0 order Taylor series: e¥ ~ 1 does not give a good fit.
e Using 15! order Taylor series: e* ~ 1 + x gives a better fit.

e Using 2™ order Taylor series: ¥ ~ 1 + x + x?/2 gives a a really
good fit.

1 import numpy as np

2x = 2.0

s pn = 0.0

4 for k in range (15):

5 pn += (x**k) / math.factorial (k)
6 err = np.exp(2.0) - pn



taylor approximation is local

Approximate e* using ¢ = —1:

approximation about e=—1
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taylor approximation is local

Approximate e* using ¢ = 0:

5 approximation about c=0
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taylor approximation is local

Approximate e* using ¢ = 1:

approximation about c=1
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taylor approximation recap

Infinite Taylor Series Expansion (exact)
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Finite Taylor Series Expansion (exact)
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taylor approximation error

e How accurate is the Taylor series polynomial approximation?

e The n terms of the approximation are simply the first n terms of
the exact expansion:
x? 5
X f— — —
= 1+x+2! T 3!+... (1)

p2 approximation to e¥  truncation error

e So the function f(x) can be written as the Taylor Series
approximation plus an error (truncation) term:

f(x) = fn(x) + En(x)

where
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big-0 (omicron)

Recall Big-O "O” notation
Let g(n) be a function of n. Then define

0(g(n)) ={f(n)|3¢,no >0 : 0 < f(n) < cg(n), Vn = no}

Thatis, f(n) € O(g(n)) if there is a constant ¢ such that
0 < f(n) < cg(n) is satisfied.
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truncation error

Using the Big "O” notation,

f(n+1)(£) o
Enlx) = gy (= ©)
_o(x=9m"
(n+1)!
since we assume the (n + 1) derivative is bounded on the interval

(a, b].

Often, we let h = x — ¢ and we have

f(x) = pn(x) + O(h"™)



truncation error

The Taylor series expansion of sin (x) is
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If x < 1, then the remaining terms are small.
If we neglect these terms
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approximation to sin  truncation error



f(x) =f(c)+f'(c)(x—c)+

e Thus withc =0
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e Second order approximation:
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taylor errors

e How many terms do | need to make sure my error is less than
2x 10 8forx =1/2?
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e then we need
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some remarks

e can approximate infinite series; in particular analytic functions
(those that have a power series representation).

e a local approximation (i.e. convergence can be slow far away
from evaluation point c).

e Maclaurin is the special case when ¢ = 0.

o useful for numerical approximation, differentiation, and
integration



