
#5
Taylor Series: Expansions, Approximations and Error

L. Olson

September 15, 2015

Department of Computer Science
University of Illinois at Urbana-Champaign

1



motivation

• All we can ever do is add and multiply with our Floating Point Unit
(FPU)

• We can’t directly evaluate ex , cos(x),
√

x

• What can we do? Use Taylor Series approximation
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taylor series definition

The Taylor series expansion of f(x) at the point x = c is given by

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n + . . .

=

∞∑
k=0

f (k)(c)
k !

(x − c)k
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an example

The Taylor series expansion of f(x) about the point x = c is given by

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n + . . .

=

∞∑
k=0

f (k)(c)
k !

(x − c)k

Example (ex)

We know e0 = 1, so expand about c = 0 to get

f(x) = ex = 1 + 1 · (x − 0) +
1
2
· (x − 0)2 + . . .

= 1 + x +
x2

2!
+

x3

3!
+ . . .
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taylor approximation

• So

e2 = 1 + 2 +
22

2!
+

23

3!
+ . . .

• But we can’t evaluate an infinite series, so we truncate...

Taylor Series Polynomial Approximation
The Taylor Polynomial of degree n for the function f(x) about the point
c is

pn(x) =
n∑

k=0

f (k)(c)
k !

(x − c)k

Example (ex)
In the case of the exponential

ex ≈ pn(x) = 1 + x +
x2

2!
+ · · ·+ xn

n!
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taylor approximation

Evaluate e2:

• Using 0th order Taylor series: ex ≈ 1 does not give a good fit.

• Using 1st order Taylor series: ex ≈ 1 + x gives a better fit.

• Using 2nd order Taylor series: ex ≈ 1 + x + x2/2 gives a a really
good fit.

1 import numpy as np

2 x = 2.0

3 pn = 0.0

4 for k in range(15):

5 pn += (x**k) / math.factorial(k)

6 err = np.exp(2.0) - pn
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taylor approximation is local

Approximate ex using c = −1:
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taylor approximation is local

Approximate ex using c = 0:

8



taylor approximation is local

Approximate ex using c = 1:
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taylor approximation recap

Infinite Taylor Series Expansion (exact)

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n + . . .

Finite Taylor Series Expansion (exact)

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(ξ)

n!
(x − c)n

but we don’t know ξ.

Finite Taylor Series Approximation

f(x) ≈ f(c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(x)

n!
(x − c)n
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taylor approximation error

• How accurate is the Taylor series polynomial approximation?

• The n terms of the approximation are simply the first n terms of
the exact expansion:

ex = 1 + x +
x2

2!︸          ︷︷          ︸
p2 approximation to ex

+
x3

3!
+ . . .︸      ︷︷      ︸

truncation error

(1)

• So the function f(x) can be written as the Taylor Series
approximation plus an error (truncation) term:

f(x) = fn(x) + En(x)

where

En(x) =
f (n+1)(ξ)

(n + 1)!
(x − c)n+1
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big-o (omicron)

Recall Big-O ”O” notation
Let g(n) be a function of n. Then define

O(g(n)) = {f(n) |∃c,n0 > 0 : 0 6 f(n) 6 cg(n), ∀n > n0}

That is, f(n) ∈ O(g(n)) if there is a constant c such that
0 6 f(n) 6 cg(n) is satisfied.
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truncation error

Using the Big ”O” notation,

En(x) =
f (n+1)(ξ)

(n + 1)!
(x − c)n+1

= O

(
(x − c)n+1

(n + 1)!

)
since we assume the (n + 1)th derivative is bounded on the interval
[a,b].

Often, we let h = x − c and we have

f(x) = pn(x) + O(hn+1)
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truncation error

The Taylor series expansion of sin (x) is

sin (x) = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
− . . .

If x � 1, then the remaining terms are small.
If we neglect these terms

sin (x) = x −
x3

3!
+

x5

5!︸            ︷︷            ︸
approximation to sin

−
x7

7!
+

x9

9!
− . . .︸                ︷︷                ︸

truncation error
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another example: f(x) = 1
1−x

• Evaluation of f(x) = 1
1−x using Taylor Series Expansion:

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)

2!
(x − c)2 + · · ·+ f (n)(ξ)

n!
(x − c)n

• Thus with c = 0

1
1 − x

= 1 + x + x2 + x3 + . . .

• Second order approximation:

1
1 − x

≈ 1 + x + x2
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taylor errors

• How many terms do I need to make sure my error is less than
2× 10−8 for x = 1/2?

1
1 − x

= 1 + x + x2 + · · ·+ xn +

∞∑
k=n+1

xk

• so the error at x = 1/2 is

ex=1/2 =

∞∑
k=n+1

(
1
2

)k

=
(1/2)n+1

1 − 1/2

= 2 · (1/2)n+1 < 2× 10−8

• then we need

n + 1 >
−8

log10(1/2)
≈ 26.6 or

n > 26
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some remarks

• can approximate infinite series; in particular analytic functions
(those that have a power series representation).

• a local approximation (i.e. convergence can be slow far away
from evaluation point c).

• Maclaurin is the special case when c = 0.

• useful for numerical approximation, differentiation, and
integration
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