

XML

i

About the Tutorial

XML stands for Extensible Markup Language and is a text-based markup language derived

from Standard Generalized Markup Language (SGML).

This tutorial will teach you the basics of XML. The tutorial is divided into sections such as

XML Basics, Advanced XML, and XML tools. Each of these sections contain related topics

with simple and useful examples.

Audience
This reference has been prepared for beginners to help them understand the basic to

advanced concepts related to XML. This tutorial will give you enough understanding on

XML from where you can take yourself to a higher level of expertise.

Prerequisites

Before proceeding with this tutorial, you should have basic knowledge of HTML and

JavaScript.

Copyright & Disclaimer

 Copyright 2017 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

XML

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

XML BASICS ... 1

1. XML – Overview .. 2
XML Usage ... 2
What is Markup? ... 3
Is XML a Programming Language? ... 3

2. XML – Syntax .. 4

3. XML – Documents ... 8
Document Prolog Section .. 8
Document Elements Section ... 8

4. XML – Declaration ... 9

5. XML – Tags .. 11
Start Tag .. 11
End Tag .. 11
Empty Tag .. 11
XML Tags Rules .. 12

6. XML – Elements .. 13
Empty Element .. 13
XML Elements Rules .. 14

7. XML – Attributes ... 15
Attribute Types .. 16
Element Attribute Rules .. 17

8. XML – Comments .. 18
XML Comments Rules .. 18

9. XML – Character Entities ... 19
Types of Character Entities .. 19

10. XML – CDATA Sections .. 21
CDATA Rules .. 22

11. XML – Whitespaces ... 23
Significant Whitespace .. 23
Insignificant Whitespace ... 23

12. XML – Processing .. 24
Processing Instructions Rules .. 25

XML

iii

13. XML – Encoding... 26
Encoding Types .. 26

14. XML – Validation ... 27
Well-formed XML Document ... 27
Valid XML Document ... 28

ADVANCE XML .. 29

15. XML – DTDs ... 30
Internal DTD .. 30
External DTD .. 32
Types ... 33

16. XML – Schemas ... 34
Definition Types ... 35

17. XML – Tree Structure .. 37

18. XML – DOM ... 39

19. XML – Namespaces ... 41
Namespace Declaration... 41

20. XML – Databases ... 42
XML Database Types ... 42
XML- Enabled Database ... 42

XML TOOLS ... 44

21. XML – Viewers .. 45
Text Editors .. 45
Firefox Browser ... 46
Chrome Browser .. 46
Errors in XML Document ... 46

22. XML – Editors .. 48
Open Source XML Editors .. 48

23. XML – Parsers ... 49

24. XML – Processors .. 50
Types ... 50

XML

1

XML Basics

XML

2

XML stands for Extensible Markup Language. It is a text-based markup language derived

from Standard Generalized Markup Language (SGML).

XML tags identify the data and are used to store and organize the data, rather than

specifying how to display it like HTML tags, which are used to display the data. XML is not

going to replace HTML in the near future, but it introduces new possibilities by adopting

many successful features of HTML.

There are three important characteristics of XML that make it useful in a variety of systems

and solutions:

 XML is extensible: XML allows you to create your own self-descriptive tags or

language, that suits your application.

 XML carries the data, does not present it: XML allows you to store the data

irrespective of how it will be presented.

 XML is a public standard: XML was developed by an organization called the World

Wide Web Consortium (W3C) and is available as an open standard.

XML Usage

A short list of XML usage says it all:

 XML can work behind the scene to simplify the creation of HTML documents for

large web sites.

 XML can be used to exchange the information between organizations and systems.

 XML can be used for offloading and reloading of databases.

 XML can be used to store and arrange the data, which can customize your data

handling needs.

 XML can easily be merged with style sheets to create almost any desired output.

 Virtually, any type of data can be expressed as an XML document.

1. XML – Overview

XML

3

What is Markup?

XML is a markup language that defines set of rules for encoding documents in a format

that is both human-readable and machine-readable. So, what exactly is a markup

language? Markup is information added to a document that enhances its meaning in

certain ways, in that it identifies the parts and how they relate to each other. More

specifically, a markup language is a set of symbols that can be placed in the text of a

document to demarcate and label the parts of that document.

Following example shows how XML markup looks, when embedded in a piece of text:

<message>

 <text>Hello, world!</text>

</message>

This snippet includes the markup symbols, or the tags such as <message>...</message>

and <text>... </text>. The tags <message> and </message> mark the start and the end

of the XML code fragment. The tags <text> and </text> surround the text Hello, world!.

Is XML a Programming Language?

A programming language consists of grammar rules and its own vocabulary which is used

to create computer programs. These programs instruct the computer to perform specific

tasks. XML does not qualify to be a programming language as it does not perform any

computation or algorithms. It is usually stored in a simple text file and is processed by

special software that is capable of interpreting XML.

XML

4

In this chapter, we will discuss the simple syntax rules to write an XML document.

Following is a complete XML document:

<?xml version="1.0"?>

<contact-info>

<name>Tanmay Patil</name>

<company>TutorialsPoint</company>

<phone>(011) 123-4567</phone>

</contact-info>

You can notice, there are two kinds of information in the above example:

 Markup, like <contact-info>

 The text, or the character data, Tutorials Point and (040) 123-4567

The following diagram depicts the syntax rules to write different types of markup and text

in an XML document.

Let us see each component of the above diagram in detail.

2. XML – Syntax

XML

5

XML Declaration

The XML document can optionally have an XML declaration. It is written as follows:

<?xml version="1.0" encoding="UTF-8"?>

Where version is the XML version and encoding specifies the character encoding used in

the document.

Syntax Rules for XML Declaration

 The XML declaration is case sensitive and must begin with "<?xml>" where "xml"

is written in lower-case.

 If the document contains XML declaration, then it strictly needs to be the first

statement of the XML document.

 The XML declaration strictly needs be the first statement in the XML document.

 An HTTP protocol can override the value of encoding that you put in the XML

declaration.

Tags and Elements

An XML file is structured by several XML-elements, also called XML-nodes or XML-tags.

The names of XML-elements are enclosed in triangular brackets < > as shown below:

<element>

Syntax Rules for Tags and Elements

Element Syntax: Each XML-element needs to be closed either with start or with end

elements as shown below:

<element>....</element>

or in simple-cases, just this way:

<element/>

Nesting of Elements: An XML-element can contain multiple XML-elements as its children,

but the children elements must not overlap. i.e., an end tag of an element must have the

same name as that of the most recent unmatched start tag.

XML

6

The following example shows incorrect nested tags:

<?xml version="1.0"?>

<contact-info>

<company>TutorialsPoint

<contact-info>

</company>

The following example shows correct nested tags:

<?xml version="1.0"?>

<contact-info>

<company>TutorialsPoint</company>

<contact-info>

Root Element: An XML document can have only one root element. For example, following

is not a correct XML document, because both the x and y elements occur at the top level

without a root element:

<x>...</x>

<y>...</y>

The following example shows a correctly formed XML document:

<root>

 <x>...</x>

 <y>...</y>

</root>

Case Sensitivity: The names of XML-elements are case-sensitive. That means the name

of the start and the end elements need to be exactly in the same case.

For example, <contact-info> is different from <Contact-Info>.

XML Attributes

An attribute specifies a single property for the element, using a name/value pair. An XML-

element can have one or more attributes. For example:

Tutorialspoint!

Here href is the attribute name and http://www.tutorialspoint.com/ is attribute

value.

Syntax Rules for XML Attributes

 Attribute names in XML (unlike HTML) are case sensitive. That

is, HREF and href are considered two different XML attributes.

XML

7

 Same attribute cannot have two values in a syntax. The following example shows

incorrect syntax because the attribute b is specified twice:

....

 Attribute names are defined without quotation marks, whereas attribute values

must always appear in quotation marks. Following example demonstrates incorrect

xml syntax:

....

In the above syntax, the attribute value is not defined in quotation marks.

XML References

References usually allow you to add or include additional text or markup in an XML

document. References always begin with the symbol "&" which is a reserved character

and end with the symbol ";". XML has two types of references:

 Entity References: An entity reference contains a name between the start and

the end delimiters. For example, & where amp is name. The name refers to

a predefined string of text and/or markup.

 Character References: These contain references, such as A, contains a

hash mark (“#”) followed by a number. The number always refers to the Unicode

code of a character. In this case, 65 refers to alphabet "A".

XML Text

The names of XML-elements and XML-attributes are case-sensitive, which means the name

of start and end elements need to be written in the same case. To avoid character encoding

problems, all XML files should be saved as Unicode UTF-8 or UTF-16 files.

Whitespace characters like blanks, tabs and line-breaks between XML-elements and

between the XML-attributes will be ignored.

Some characters are reserved by the XML syntax itself. Hence, they cannot be used

directly. To use them, some replacement-entities are used, which are listed below:

Not Allowed Character Replacement Entity Character Description

< < less than

> > greater than

& & ampersand

' ' apostrophe

" " quotation mark

XML

8

An XML document is a basic unit of XML information composed of elements and other

markup in an orderly package. An XML document can contain a wide variety of data. For

example, database of numbers, numbers representing molecular structure or a

mathematical equation.

XML Document Example

A simple document is shown in the following example:

<?xml version="1.0"?>

<contact-info>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</contact-info>

The following image depicts the parts of XML document.

Document Prolog Section

Document Prolog comes at the top of the document, before the root element. This

section contains:

 XML declaration

 Document type declaration

You can learn more about XML declaration in this chapter : XML Declaration.

Document Elements Section

Document Elements are the building blocks of XML. These divide the document into a

hierarchy of sections, each serving a specific purpose. You can separate a document into

multiple sections so that they can be rendered differently, or used by a search engine. The

elements can be containers, with a combination of text and other elements.

You can learn more about XML elements in this chapter : XML Elements

3. XML – Documents

https://www.tutorialspoint.com/xml/xml_declaration.htm
https://www.tutorialspoint.com/xml/xml_elements.htm

XML

9

This chapter covers XML declaration in detail. XML declaration contains details that

prepare an XML processor to parse the XML document. It is optional, but when used, it

must appear in the first line of the XML document.

Syntax

Following syntax shows XML declaration:

<?xml

 version="version_number"

 encoding="encoding_declaration"

 standalone="standalone_status"

?>

Each parameter consists of a parameter name, an equals sign (=), and parameter value

inside a quote. Following table shows the above syntax in detail:

Parameter Parameter_value Parameter_description

Version 1.0
Specifies the version of the XML standard

used.

Encoding

UTF-8, UTF-16, ISO-

10646-UCS-2, ISO-

10646-UCS-4, ISO-

8859-1 to ISO-8859-9,

ISO-2022-JP, Shift_JIS,

EUC-JP

It defines the character encoding used in

the document. UTF-8 is the default

encoding used.

Standalone yes or no.

It informs the parser whether the

document relies on the information from

an external source, such as external

document type definition (DTD), for its

content. The default value is set to no.

Setting it to yes tells the processor there

are no external declarations required for

parsing the document.

4. XML – Declaration

XML

10

Rules

An XML declaration should abide with the following rules:

 If the XML declaration is present in the XML, it must be placed as the first line in

the XML document.

 If the XML declaration is included, it must contain version number attribute.

 The parameter names and values are case-sensitive.

 The names are always in lower case.

 The order of placing the parameters is important. The correct order is: version,

encoding and standalone.

 Either single or double quotes may be used.

 The XML declaration has no closing tag, i.e. </?xml>

XML Declaration Examples

Following are few examples of XML declarations:

XML declaration with no parameters:

<?xml >

XML declaration with version definition:

<?xml version="1.0">

XML declaration with all parameters defined:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

XML declaration with all parameters defined in single quotes:

<?xml version='1.0' encoding='iso-8859-1' standalone='no' ?>

XML

11

Let us learn about one of the most important part of XML, the XML tags. XML tags form

the foundation of XML. They define the scope of an element in XML. They can also be used

to insert comments, declare settings required for parsing the environment, and to insert

special instructions.

We can broadly categorize XML tags as follows:

Start Tag

The beginning of every non-empty XML element is marked by a start-tag. Following is an

example of start-tag:

<address>

End Tag

Every element that has a start tag should end with an end-tag. Following is an example of

end-tag:

</address>

Note, that the end tags include a solidus ("/") before the name of an element.

Empty Tag

The text that appears between start-tag and end-tag is called content. An element which

has no content is termed as empty. An empty element can be represented in two ways as

follows:

A start-tag immediately followed by an end-tag as shown below:

<hr></hr>

A complete empty-element tag is as shown below:

<hr />

Empty-element tags may be used for any element which has no content.

5. XML – Tags

XML

12

XML Tags Rules

Following are the rules that need to be followed to use XML tags:

Rule 1

XML tags are case-sensitive. Following line of code is an example of wrong syntax

</Address>, because of the case difference in two tags, which is treated as erroneous

syntax in XML.

<address>This is wrong syntax</Address>

Following code shows a correct way, where we use the same case to name the start and

the end tag.

<address>This is correct syntax</address>

Rule 2

XML tags must be closed in an appropriate order, i.e., an XML tag opened inside another

element must be closed before the outer element is closed. For example:

<outer_element>

 <internal_element>

 This tag is closed before the outer_element

 </internal_element>

</outer_element>

XML

13

XML elements can be defined as building blocks of an XML. Elements can behave as

containers to hold text, elements, attributes, media objects, or all of these.

Each XML document contains one or more elements, the scope of which are either

delimited by start and end tags, or for empty elements, by an empty-element tag.

Syntax

Following is the syntax to write an XML element:

<element-name attribute1 attribute2>

....content

</element-name>

Where,

 element-name is the name of the element. The name its case in the start and

end tags must match.

 attribute1, attribute2 are attributes of the element separated by white spaces.

An attribute defines a property of the element. It associates a name with a value,

which is a string of characters. An attribute is written as:

name = "value"

name is followed by an = sign and a string value inside double (" ") or single (' ')

quotes.

Empty Element

An empty element (element with no content) has the following syntax:

<name attribute1 attribute2.../>

Following is an example of an XML document using various XML element:

<?xml version="1.0"?>

<contact-info>

 <address category="residence">

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

 <address/>

</contact-info>

6. XML – Elements

XML

14

XML Elements Rules

Following rules are required to be followed for XML elements:

 An element name can contain any alphanumeric characters. The only punctuation

mark allowed in names are the hyphen (-), under-score (_) and period (.).

 Names are case sensitive. For example, Address, address, and ADDRESS are

different names.

 Start and end tags of an element must be identical.

 An element, which is a container, can contain text or elements as seen in the above

example.

XML

15

This chapter describes the XML attributes. Attributes are part of XML elements. An

element can have multiple unique attributes. Attribute gives more information about XML

elements. To be more precise, they define properties of elements. An XML attribute is

always a name-value pair.

Syntax

An XML attribute has the following syntax:

<element-name attribute1 attribute2 >

....content..

< /element-name>

where attribute1 and attribute2 has the following form:

name = "value"

value has to be in double (" ") or single (' ') quotes. Here, attribute1 and attribute2 are

unique attribute labels.

Attributes are used to add a unique label to an element, place the label in a category, add

a Boolean flag, or otherwise associate it with some string of data. Following example

demonstrates the use of attributes:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE garden [

 <!ELEMENT garden (plants)*>

 <!ELEMENT plants (#PCDATA)>

 <!ATTLIST plants category CDATA #REQUIRED>

]>

<garden>

 <plants category="flowers" />

 <plants category="shrubs">

 </plants>

</garden>

7. XML – Attributes

XML

16

Attributes are used to distinguish among elements of the same name, when you do not

want to create a new element for every situation. Hence, the use of an attribute can add

a little more detail in differentiating two or more similar elements.

In the above example, we have categorized the plants by including attribute category and

assigning different values to each of the elements. Hence, we have two categories

of plants, one flowers and other color. Thus, we have two plant elements with different

attributes.

You can also observe that we have declared this attribute at the beginning of XML.

Attribute Types

Following table lists the type of attributes:

Attribute Type Description

StringType

It takes any literal string as a value. CDATA is a StringType. CDATA

is character data. This means, any string of non-markup characters

is a legal part of the attribute.

TokenizedType

This is a more constrained type. The validity constraints noted in the

grammar are applied after the attribute value is normalized. The

TokenizedType attributes are given as:

 ID: It is used to specify the element as unique.

 IDREF: It is used to reference an ID that has been named for

another element.

 IDREFS: It is used to reference all IDs of an element.

 ENTITY: It indicates that the attribute will represent an

external entity in the document.

 ENTITIES: It indicates that the attribute will represent

external entities in the document.

 NMTOKEN: It is similar to CDATA with restrictions on what

data can be part of the attribute.

 NMTOKENS: It is similar to CDATA with restrictions on what

data can be part of the attribute.

XML

17

EnumeratedType

This has a list of predefined values in its declaration, out of which,

it must assign one value. There are two types of enumerated

attribute:

 Notation Type: It declares that an element will be

referenced to a NOTATION declared somewhere else in the

XML document.

 Enumeration: Enumeration allows you to define a specific

list of values that the attribute value must match.

Element Attribute Rules

Following are the rules that need to be followed for attributes:

 An attribute name must not appear more than once in the same start-tag or empty-

element tag.

 An attribute must be declared in the Document Type Definition (DTD) using an

Attribute-List Declaration.

 Attribute values must not contain direct or indirect entity references to external

entities.

 The replacement text of any entity referred to directly or indirectly in an attribute

value must not contain a less than sign (<).

XML

18

This chapter explains how comments work in XML documents. XML comments are similar

to HTML comments. The comments are added as notes or lines for understanding the

purpose of an XML code.

Comments can be used to include related links, information, and terms. They are visible

only in the source code; not in the XML code. Comments may appear anywhere in XML

code.

Syntax

XML comment has the following syntax:

 <!-------Your comment----->

A comment starts with <!-- and ends with -->. You can add textual notes as comments

between the characters. You must not nest one comment inside the other.

Example

Following example demonstrates the use of comments in XML document:

<?xml version="1.0" encoding="UTF-8" ?>

<!---Students grades are uploaded by months---->

<class_list>

 <student>

 <name>Tanmay</name>

 <grade>A</grade>

 </student>

</class_list>

Any text between <!-- and --> characters is considered as a comment.

XML Comments Rules

Following rules should be followed for XML comments:

 Comments cannot appear before XML declaration.

 Comments may appear anywhere in a document.

 Comments must not appear within attribute values.

 Comments cannot be nested inside the other comments.

8. XML – Comments

XML

19

This chapter describes the XML Character Entities. Before we understand the Character

Entities, let us first understand what an XML entity is.

As put by W3 Consortium, the definition of an entity is as follows:

“The document entity serves as the root of the entity tree and a starting-point for an XML

processor.”

This means, entities are the placeholders in XML. These can be declared in the document

prolog or in a DTD. There are different types of entities and in this chapter we will discuss

Character Entity.

Both, HTML and XML, have some symbols reserved for their use, which cannot be used as

content in XML code. For example, < and > signs are used for opening and closing XML

tags. To display these special characters, the character entities are used.

There are few special characters or symbols which are not available to be typed directly

from the keyboard. Character Entities can also be used to display those symbols/special

characters.

Types of Character Entities

There are three types of character entities:

 Predefined Character Entities

 Numbered Character Entities

 Named Character Entities

Predefined Character Entities

They are introduced to avoid the ambiguity while using some symbols. For example, an

ambiguity is observed when less than (<) or greater than (>) symbol is used with the

angle tag (<>). Character entities are basically used to delimit tags in XML. Following is

a list of pre-defined character entities from XML specification. These can be used to express

characters without ambiguity.

 Ampersand: &

 Single quote: '

 Greater than: >

 Less than: <

 Double quote: "

9. XML – Character Entities

http://www.w3.org/TR/REC-xml/#dt-docent

XML

20

Numeric Character Entities

The numeric reference is used to refer to a character entity. Numeric reference can either

be in decimal or hexadecimal format. As there are thousands of numeric references

available, these are a bit hard to remember. Numeric reference refers to the character by

its number in the Unicode character set.

General syntax for decimal numeric reference is:

&# decimal number ;

General syntax for hexadecimal numeric reference is:

&#x Hexadecimal number ;

The following table lists some predefined character entities with their numeric values:

Entity name Character Decimal reference Hexadecimal reference

quot " " "

amp & & &

apos ' ' '

lt < < <

gt > > >

Named Character Entity

As it is hard to remember the numeric characters, the most preferred type of character

entity is the named character entity. Here, each entity is identified with a name.

For example:

 'Aacute' represents capital character with acute accent.

 'ugrave' represents the small with grave accent.

XML

21

In this chapter, we will discuss XML CDATA section. The term CDATA means, Character

Data. CDATA is defined as blocks of text that are not parsed by the parser, but are

otherwise recognized as markup.

The predefined entities such as <, >, and & require typing and are generally

difficult to read in the markup. In such cases, CDATA section can be used. By using CDATA

section, you are commanding the parser that the particular section of the document

contains no markup and should be treated as regular text.

Syntax

Following is the syntax for CDATA section:

<![CDATA[

 characters with markup

]]>

The above syntax is composed of three sections:

 CDATA Start section: CDATA begins with the nine-character

delimiter <![CDATA[

 CDATA End section: CDATA section ends with]]> delimiter.

 CData section: Characters between these two enclosures are interpreted as

characters, and not as markup. This section may contain markup characters (<, >,

and &), but they are ignored by the XML processor.

Example

The following markup code shows an example of CDATA. Here, each character written

inside the CDATA section is ignored by the parser.

<script>

<![CDATA[

 <message> Welcome to TutorialsPoint </message>

]] >

</script >

In the above syntax, everything between <message> and </message> is treated as

character data and not as markup.

10. XML – CDATA Sections

XML

22

CDATA Rules

The given rules are required to be followed for XML CDATA:

 CDATA cannot contain the string "]]>" anywhere in the XML document.

 Nesting is not allowed in CDATA section.

XML

23

In this chapter, we will discuss whitespace handling in XML documents. Whitespace is a

collection of spaces, tabs, and newlines. They are generally used to make a document

more readable.

XML document contains two types of whitespaces - Significant Whitespace

and Insignificant Whitespace. Both are explained below with examples.

Significant Whitespace

A significant Whitespace occurs within the element which contains text and markup

present together. For example:

<name>TanmayPatil</name>

and

<name>Tanmay Patil</name>

The above two elements are different because of the space between Tanmay and Patil.

Any program reading this element in an XML file is obliged to maintain the distinction.

Insignificant Whitespace

Insignificant whitespace means the space where only element content is allowed. For

example:

<address.category="residence">

or

<address....category="..residence">

The above examples are same. Here, the space is represented by dots (.). In the above

example, the space between address and category is insignificant.

A special attribute named xml:space may be attached to an element. This indicates that

whitespace should not be removed for that element by the application. You can set this

attribute to default or preserve as shown in the following example:

<!ATTLIST address xml:space (default|preserve) 'preserve'>

Where,

 The value default signals that the default whitespace processing modes of an

application are acceptable for this element.

 The value preserve indicates the application to preserve all the whitespaces.

11. XML – Whitespaces

XML

24

This chapter describes the Processing Instructions (PIs). As defined by the XML 1.0

Recommendation,

"Processing instructions (PIs) allow documents to contain instructions for applications. PIs

are not part of the character data of the document, but MUST be passed through to the

application.”

Processing instructions (PIs) can be used to pass information to applications. PIs can

appear anywhere in the document outside the markup. They can appear in the prolog,

including the document type definition (DTD), in textual content, or after the document.

Syntax

Following is the syntax of PI:

<?target instructions?>

Where,

 target - Identifies the application to which the instruction is directed.

 instruction - A character that describes the information for the application to

process.

A PI starts with a special tag <? and ends with ?>. Processing of the contents ends

immediately after the string ?> is encountered.

Example

PIs are rarely used. They are mostly used to link XML document to a style sheet. Following

is an example:

<?xml-stylesheet href="tutorialspointstyle.css" type="text/css"?>

Here, the target is xml-stylesheet.

href="tutorialspointstyle.css" and type="text/css" are data or instructions that the target

application will use at the time of processing the given XML document.

In this case, a browser recognizes the target by indicating that the XML should be

transformed before being shown; the first attribute states that the type of the transform

is XSL and the second attribute points to its location.

12. XML – Processing

https://www.tutorialspoint.com/
https://www.tutorialspoint.com/

XML

25

Processing Instructions Rules

A PI can contain any data except the combination ?>, which is interpreted as the closing

delimiter. Here are two examples of valid PIs:

<?welcome to pg=10 of tutorials point?>

<?welcome?>

XML

26

Encoding is the process of converting unicode characters into their equivalent binary

representation. When the XML processor reads an XML document, it encodes the document

depending on the type of encoding. Hence, we need to specify the type of encoding in the

XML declaration.

Encoding Types

There are mainly two types of encoding:

 UTF-8

 UTF-16

UTF stands for UCS Transformation Format, and UCS itself means Universal Character Set.

The number 8 or 16 refers to the number of bits used to represent a character. They are

either 8 (one byte) or 16 (two bytes). For the documents without encoding information,

UTF-8 is set by default.

Syntax

Encoding type is included in the prolog section of the XML document. The syntax for UTF-

8 encoding is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

The syntax for UTF-16 encoding is as follows:

<?xml version="1.0" encoding="UTF-16" standalone="no" ?>

Example

Following example shows the declaration of encoding:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<contact-info>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</contact-info>

In the above example encoding="UTF-8", specifies that 8-bits are used to represent the

characters. To represent 16-bit characters, UTF-16 encoding can be used.

The XML files encoded with UTF-8 tend to be smaller in size than those encoded with UTF-

16 format.

13. XML – Encoding 14.

XML

27

Validation is a process by which an XML document is validated. An XML document is said

to be valid if its contents match with the elements, attributes, and associated document

type declaration (DTD), and if the document complies with the constraints expressed in it.

Validation is dealt in two ways by the XML parser. They are:

 Well-formed XML document

 Valid XML document

Well-formed XML Document

An XML document is said to be well-formed if it adheres to the following rules:

 Non DTD XML files must use the predefined character entities

for amp(&), apos(single quote), gt(>), lt(<), quot(double quote).

 It must follow the ordering of the tag. i.e., the inner tag must be closed before

closing the outer tag.

 Each of its opening tags must have a closing tag or it must be a self-ending tag

(<title>....</title> or <title/>).

 It must have only one attribute in a start tag, which needs to be quoted.

 amp(&), apos(single quote), gt(>), lt(<), quot(double quote) entities

other than these must be declared.

Example

Following is an example of a well-formed XML document:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE address

[

 <!ELEMENT address (name,company,phone)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT company (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

]>

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

14. XML – Validation

XML

28

</address>

The above example is said to be well-formed as:

 It defines the type of document. Here, the document type is element type.

 It includes a root element named as address.

 Each of the child elements among name, company, and phone is enclosed in its

self-explanatory tag.

 Order of the tags is maintained.

Valid XML Document

If an XML document is well-formed and has an associated Document Type Declaration

(DTD), then it is said to be a valid XML document. We will study more about DTD in the

chapter XML - DTDs.

https://www.tutorialspoint.com/xml/xml_dtds.htm

XML

29

Advance XML

XML

30

The XML Document Type Declaration, commonly known as DTD, is a way to describe XML

language precisely. DTDs check vocabulary and validity of the structure of XML documents

against grammatical rules of appropriate XML language.

An XML DTD can be either specified inside the document, or it can be kept in a separate

document and then liked separately.

Syntax

Basic syntax of a DTD is as follows:

<!DOCTYPE element DTD identifier

[

 declaration1

 declaration2

]>

In the above syntax,

 The DTD starts with <!DOCTYPE delimiter.

 An element tells the parser to parse the document from the specified root

element.

 DTD identifier is an identifier for the document type definition, which may be the

path to a file on the system or URL to a file on the internet. If the DTD is pointing

to external path, it is called External Subset.

 The square brackets [] enclose an optional list of entity declarations

called Internal Subset.

Internal DTD

A DTD is referred to as an internal DTD if elements are declared within the XML files. To

refer it as internal DTD, standalone attribute in XML declaration must be set to yes. This

means, the declaration works independent of an external source.

15. XML – DTDs

XML

31

Syntax

Following is the syntax of internal DTD:

<!DOCTYPE root-element [element-declarations]>

where root-element is the name of root element and element-declarations is where you

declare the elements.

Example

Following is a simple example of internal DTD:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE address [

 <!ELEMENT address (name,company,phone)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT company (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

]>

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

Let us go through the above code:

Start Declaration - Begin the XML declaration with the following statement.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

DTD - Immediately after the XML header, the document type declaration follows,

commonly referred to as the DOCTYPE:

<!DOCTYPE address [

The DOCTYPE declaration has an exclamation mark (!) at the start of the element name.

The DOCTYPE informs the parser that a DTD is associated with this XML document.

DTD Body - The DOCTYPE declaration is followed by the body of the DTD, where you

declare elements, attributes, entities, and notations.

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone_no (#PCDATA)>

XML

32

Several elements are declared here that make up the vocabulary of the <name>

document. <!ELEMENT name (#PCDATA)> defines the element name to be of type

"#PCDATA". Here, #PCDATA means parse-able text data.

End Declaration - Finally, the declaration section of the DTD is closed using a closing

bracket and a closing angle bracket (]>). This effectively ends the definition, and

thereafter, the XML document follows immediately.

Rules

 The document type declaration must appear at the start of the document (preceded

only by the XML header) — it is not permitted anywhere else within the document.

 Similar to the DOCTYPE declaration, the element declarations must start with an

exclamation mark.

 The Name in the document type declaration must match the element type of the

root element.

External DTD

In external DTD elements are declared outside the XML file. They are accessed by

specifying the system attributes which may be either the legal .dtd file or a valid URL. To

refer it as external DTD, standalone attribute in the XML declaration must be set as no.

This means, declaration includes information from the external source.

Syntax

Following is the syntax for external DTD:

<!DOCTYPE root-element SYSTEM "file-name">

where file-name is the file with .dtd extension.

Example

The following example shows external DTD usage:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<!DOCTYPE address SYSTEM "address.dtd">

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

XML

33

The content of the DTD file address.dtd is as shown:

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

Types

You can refer to an external DTD by using either system identifiers or public

identifiers.

System Identifiers

A system identifier enables you to specify the location of an external file containing DTD

declarations. Syntax is as follows:

<!DOCTYPE name SYSTEM "address.dtd" [...]>

As you can see, it contains keyword SYSTEM and a URI reference pointing to the location

of the document.

Public Identifiers

Public identifiers provide a mechanism to locate DTD resources and is written as follows:

<!DOCTYPE name PUBLIC "-//Beginning XML//DTD Address Example//EN">

As you can see, it begins with keyword PUBLIC, followed by a specialized identifier. Public

identifiers are used to identify an entry in a catalog. Public identifiers can follow any

format, however, a commonly used format is called Formal Public Identifiers, or FPIs.

XML

34

XML Schema is commonly known as XML Schema Definition (XSD). It is used to describe

and validate the structure and the content of XML data. XML schema defines the elements,

attributes, and data types. Schema element supports Namespaces. It is similar to a

database schema that describes the data in a database.

Syntax

You need to declare a schema in your XML document as follows:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

Example

The following example shows how to use schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="contact">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="company" type="xs:string" />

 <xs:element name="phone" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

The basic idea behind XML Schemas is that they describe the legitimate format that an

XML document can take.

Elements

As we saw in the XML - Elements chapter, elements are the building blocks of XML

document. An element can be defined within an XSD as follows:

<xs:element name="x" type="y"/>

16. XML – Schemas

https://www.tutorialspoint.com/xml/xml_elements.htm

XML

35

Definition Types

You can define XML schema elements in the following ways:

Simple Type

Simple type element is used only in the context of the text. Some of the predefined simple

types are: xs:integer, xs:boolean, xs:string, xs:date. For example:

<xs:element name="phone_number" type="xs:int" />

Complex Type

A complex type is a container for other element definitions. This allows you to specify

which child elements an element can contain and to provide some structure within your

XML documents. For example:

<xs:element name="Address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="company" type="xs:string" />

 <xs:element name="phone" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

In the above example, Address element consists of child elements. This is a container for

other <xs:element> definitions, that allows to build a simple hierarchy of elements in

the XML document.

Global Types

With the global type, you can define a single type in your document, which can be used

by all other references. For example, suppose you want to generalize

the person and company for different addresses of the company. In such case, you can

define a general type as follows:

<xs:element name="AddressType">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="company" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

XML

36

Now let us use this type in our example as follows:

<xs:element name="Address1">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="address" type="AddressType" />

 <xs:element name="phone1" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="Address2">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="address" type="AddressType" />

 <xs:element name="phone2" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

Instead of having to define the name and the company twice (once for Address1 and once

for Address2), we now have a single definition. This makes maintenance simpler, i.e., if

you decide to add "Postcode" elements to the address, you need to add them at just one

place.

Attributes

Attributes in XSD provide extra information within an element. Attributes

have name and type property as shown below:

<xs:attribute name="x" type="y"/>

XML

37

An XML document is always descriptive. The tree structure is often referred to as XML

Tree and plays an important role to describe any XML document easily.

The tree structure contains root (parent) elements, child elements, and so on. By using

tree structure, you can get to know all succeeding branches and sub-branches starting

from the root. The parsing starts at the root, then moves down the first branch to an

element, take the first branch from there, and so on to the leaf nodes.

Example

Following example demonstrates simple XML tree structure:

<?xml version="1.0"?>

<Company>

 <Employee>

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 <Address>

 <City>Bangalore</City>

 <State>Karnataka</State>

 <Zip>560212</Zip>

 </Address>

 </Employee>

</Company>

17. XML – Tree Structure

XML

38

Following tree structure represents the above XML document:

In the above diagram, there is a root element named as <company>. Inside that, there

is one more element <Employee>. Inside the employee element, there are five branches

named <FirstName>, <LastName>, <ContactNo>, <Email>, and <Address>. Inside the

<Address> element, there are three sub-branches, named <City> <State> and <Zip>.

XML

39

The Document Object Model (DOM) is the foundation of XML. XML documents have a

hierarchy of informational units called nodes; DOM is a way of describing those nodes and

the relationships between them.

A DOM document is a collection of nodes or pieces of information organized in a hierarchy.

This hierarchy allows a developer to navigate through the tree looking for specific

information. Because it is based on a hierarchy of information, the DOM is said to be tree

based.

The XML DOM, on the other hand, also provides an API that allows a developer to add,

edit, move, or remove nodes in the tree at any point in order to create an application.

Example

The following example (sample.htm) parses an XML document ("address.xml") into an

XML DOM object and then extracts some information from it with JavaScript:

<!DOCTYPE html>

<html>

 <body>

 <h1>TutorialsPoint DOM example </h1>

 <div>

 Name:

 Company:

 Phone:

 </div>

 <script>

 if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp = new XMLHttpRequest();

 }

 else

 {// code for IE6, IE5

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.open("GET","/xml/address.xml",false);

 xmlhttp.send();

 xmlDoc=xmlhttp.responseXML;

 document.getElementById("name").innerHTML=

18. XML – DOM

XML

40

 xmlDoc.getElementsByTagName("name")[0].childNodes[0].nodeValue;

 document.getElementById("company").innerHTML=

 xmlDoc.getElementsByTagName("company")[0].childNodes[0].nodeValue;

 document.getElementById("phone").innerHTML=

 xmlDoc.getElementsByTagName("phone")[0].childNodes[0].nodeValue;

 </script>

 </body>

</html>

Contents of address.xml are as follows:

<?xml version="1.0"?>

<contact-info>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</contact-info>

Now let us keep these two files sample.htm and address.xml in the same

directory /xml and execute the sample.htm file by opening it in any browser. This should

produce the following output.

Here, you can see how each of the child nodes is extracted to display their values.

XML

41

A Namespace is a set of unique names. Namespace is a mechanism by which element

and attribute name can be assigned to a group. The Namespace is identified by URI

(Uniform Resource Identifiers).

Namespace Declaration

A Namespace is declared using reserved attributes. Such an attribute name must either

be xmlns or begin with xmlns: shown as below:

<element xmlns:name="URL">

Syntax

 The Namespace starts with the keyword xmlns.

 The word name is the Namespace prefix.

 The URL is the Namespace identifier.

Example

Namespace affects only a limited area in the document. An element containing the

declaration and all of its descendants are in the scope of the Namespace. Following is a

simple example of XML Namespace:

<?xml version="1.0" encoding="UTF-8"?>

<cont:contact xmlns:cont="www.tutorialspoint.com/profile">

 <cont:name>Tanmay Patil</cont:name>

 <cont:company>TutorialsPoint</cont:company>

 <cont:phone>(011) 123-4567</cont:phone>

</cont:contact>

Here, the Namespace prefix is cont, and the Namespace identifier (URI)

as www.tutorialspoint.com/profile. This means, the element names and attribute names

with the cont prefix (including the contact element), all belong to

the www.tutorialspoint.com/profile namespace.

19. XML – Namespaces

XML

42

XML Database is used to store huge amount of information in the XML format. As the

use of XML is increasing in every field, it is required to have a secured place to store the

XML documents. The data stored in the database can be queried using XQuery, serialized,

and exported into a desired format.

XML Database Types

There are two major types of XML databases:

 XML- enabled

 Native XML (NXD)

XML- Enabled Database

XML enabled database is nothing but the extension provided for the conversion of XML

document. This is a relational database, where data is stored in tables consisting of rows

and columns. The tables contain set of records, which in turn consist of fields.

Native XML Database

Native XML database is based on the container rather than table format. It can store large

amount of XML document and data. Native XML database is queried by the XPath-

expressions.

Native XML database has an advantage over the XML-enabled database. It is highly

capable to store, query, and maintain the XML document than XML-enabled database.

Example

Following example demonstrates XML database:

<?xml version="1.0"?>

<contact-info>

 <contact1>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

 </contact1>

 <contact2>

 <name>Manisha Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 789-4567</phone>

20. XML – Databases

XML

43

 </contact2>

</contact-info>

Here, a table of contacts is created that holds the records of contacts (contact1 and

contact2), which in turn consists of three entities - name, company, and phone.

XML

44

XML Tools

XML

45

This chapter describes THE various methods to view an XML document. An XML

document can be viewed using a simple text editor or any browser. Most of the major

browsers supports XML. XML files can be opened in the browser by just double-clicking the

XML document (if it is a local file) or by typing the URL path in the address bar (if the file

is located on the server), in the same way as we open other files in the browser. XML files

are saved with a ".xml" extension.

Let us explore various methods by which we can view an XML file. Following example

(sample.xml) is used to view all the sections of this chapter.

<?xml version="1.0"?>

<contact-info>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</contact-info>

Text Editors

Any simple text editor such as Notepad, TextPad, or TextEdit can be used to create or view

an XML document as shown below:

21. XML – Viewers

XML

46

Firefox Browser

Open the above XML code in Chrome by double-clicking the file. The XML code displays

coding with color, which makes the code readable. It shows plus(+) or minus (-) sign at

the left side in the XML element. When we click the minus sign (-), the code hides. When

we click the plus (+) sign, the code lines get expanded. The output in Firefox is as shown

below:

Chrome Browser

Open the above XML code in Chrome browser. The code gets displayed as shown below:

Errors in XML Document

If your XML code has some tags missing, then a message is displayed in the browser. Let

us try to open the following XML file in Chrome:

<?xml version="1.0"?>

<contact-info>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</ontact-info>

XML

47

In the above code, the start and end tags are not matching (refer the contact_info tag),

hence an error message is displayed by the browser as shown below:

XML

48

XML Editor is a markup language editor. The XML documents can be edited or created

using existing editors such as Notepad, WordPad, or any similar text editor. You can also

find a professional XML editor online or for downloading, which has more powerful editing

features such as:

 It automatically closes the tags that are left open.

 It strictly checks syntax.

 It highlights XML syntax with color for increased readability.

 It helps you write a valid XML code.

 It provides automatic verification of XML documents against DTDs and Schemas.

Open Source XML Editors

Following are some open source XML editors:

 Online XML Editor: This is a lightweight XML editor, which you can use online.

 Xerlin: Xerlin is an open source XML editor for Java 2 platform released under an

Apache license. It is a Java-based XML modelling application, for creating and

editing XML files easily.

 CAM - Content Assembly Mechanism: CAM XML Editor tool comes with

XML+JSON+SQL Open-XDX sponsored by Oracle.

22. XML – Editors

https://www.tutorialspoint.com/online_xml_editor.htm
http://www.xerlin.org/
http://sourceforge.net/projects/camprocessor/

XML

49

XML parser is a software library or a package that provides interface for client applications

to work with XML documents. It checks for proper format of the XML document and may

also validate the XML documents. Modern day browsers have built-in XML parsers.

Following diagram shows how XML parser interacts with XML document:

The goal of a parser is to transform XML into a readable code.

To ease the process of parsing, some commercial products are available that facilitate the

breakdown of XML document and yield more reliable results.

Some commonly used parsers are listed below:

 MSXML (Microsoft Core XML Services): This is a standard set of XML tools from

Microsoft that includes a parser.

 System.Xml.XmlDocument: This class is part of .NET library, which contains a

number of different classes related to working with XML.

 Java built-in parser: The Java library has its own parser. The library is designed

such that you can replace the built-in parser with an external implementation such

as Xerces from Apache or Saxon.

 Saxon: Saxon offers tools for parsing, transforming, and querying XML.

 Xerces: Xerces is implemented in Java and is developed by the famous open

source Apache Software Foundation.

23. XML – Parsers

XML

50

When a software program reads an XML document and takes actions accordingly, it is

called processing the XML. Any program that can read and process XML documents is

known as an XML processor. An XML processor reads the XML file and turns it into in-

memory structures that the rest of the program can access.

The most fundamental XML processor reads an XML document and converts it into an

internal representation for other programs or subroutines to use. This is called a parser,

and it is an important component of every XML processing program.

Processor involves processing the instructions, that can be studied in the

chapter Processing Instruction.

Types

XML processors are classified as validating or non-validating types, depending on

whether or not they check XML documents for validity. A processor that discovers a validity

error must be able to report it, but may continue with normal processing.

A few validating parsers are: xml4c (IBM, in C++), xml4j (IBM, in Java), MSXML

(Microsoft, in Java), TclXML (TCL), xmlproc (Python), XML::Parser (Perl), Java Project X

(Sun, in Java).

A few non-validating parsers are: OpenXML (Java), Lark (Java), xp (Java), AElfred

(Java), expat (C), XParse (JavaScript), xmllib (Python).

24. XML – Processors

https://www.tutorialspoint.com/xml/xml_processing.htm

