Derivation of Taylor Series Expansion

Objective:
Given f(x), we want a power series expansion of this function with respect to a chosen point x,, as follows:
Jlx)=a) ta(x—x,)+a{x- xo}g +a.(x —xo:ﬁ ... 0

(Translation: find the values of ay, ai, ay, ... of this infinite series so that the equation holds. )

Method:
The general idea will be to process both sides of this equation and choose values of x so that only one
unknown appears each time.

To obtain a,: Choose x=x, in equation (1). This results in
aop = f(Xo)

To obtain a;: First take the derivative of equation (1)
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Now choose x=X,.
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To obtain ay: First take the derivative of equation (2)
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Now choose x=xX,.
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To obtain ag: First take the derivative of equation (3)
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Now choose X=X.
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To obtain ay: First take the kth derivative of equation (1) and then choose x=X,.
_1|dfr
“H| &

X

= xﬁ‘



Summary:
The taylor series expansion of f(x) with respect to X, is given by:
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Generalization to multivariable function:
flamyz)= Ava)(x—x,) vay(x —5,)° +as(x —x5,) +-
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Using similar method as described above, using partial derivatives this time,
A = f('x.:\:y.paz.p}
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(Note: the procedure above does not guarantee that the infinite series converges. Please see Jenson and
Jeffreys, Mathematical Methods in Chemical Engineering, Academic Press, 1977, for a thorough discussion
on how to analyze the convergence of the resulting series.)



