

Assembly Language Tutorial

i

ASSEMBLY LANGUAGE TUTORIAL

Simply Easy Learning by tutorialspoint.com

tutorialspoint.com

TUTORIALS POINT

Simply Easy Learning

ABOUT THE TUTORIAL

Assembly Programming Tutorial

Assembly language is a low-level programming language for a computer, or other

programmable device specific to a particular computer architecture in contrast to most high-

level programming languages, which are generally portable across multiple systems.

Assembly language is converted into executable machine code by a utility program referred to

as an assembler like NASM, MASM etc.

Audience

This tutorial has been designed for software programmers with a need to understand the

Assembly programming language starting from scratch. This tutorial will give you enough

understanding on Assembly programming language from where you can take yourself at

higher level of expertise.

Prerequisites

Before proceeding with this tutorial you should have a basic understanding of Computer

Programming terminologies. A basic understanding of any of the programming languages will

help you in understanding the Assembly programming concepts and move fast on the learning

track.

TUTORIALS POINT

Simply Easy Learning

Copyright & Disclaimer Notice

All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from

tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form
without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the
accuracy of the site or its contents including this tutorial. If you discover that the tutorialspoint.com site
or this tutorial content contains some errors, please contact us at webmaster@tutorialspoint.com

file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

TUTORIALS POINT

Simply Easy Learning

Table of Content

Assembly Programming Tutorial .. 2

Audience .. 2

Prerequisites .. 2

Copyright & Disclaimer Notice .. 3

Assembly Introduction .. 8

What is Assembly Language? ... 8

Advantages of Assembly Language ... 8

Basic Features of PC Hardware ... 9

The Binary Number System ... 9

The Hexadecimal Number System ... 9

Binary Arithmetic .. 10

Addressing Data in Memory ... 11

Assembly Environment Setup .. 13

Installing NASM .. 13

Assembly Basic Syntax .. 15

The data Section .. 15

The bss Section ... 15

The text section .. 15

Comments .. 15

Assembly Language Statements .. 16

Syntax of Assembly Language Statements .. 16

The Hello World Program in Assembly... 16

Compiling and Linking an Assembly Program in NASM 17

Assembly Memory Segments ... 18

Memory Segments ... 18

Assembly Registers ... 20

Processor Registers ... 20

Data Registers ... 20

Pointer Registers .. 21

Index Registers .. 21

Control Registers ... 22

Segment Registers ... 22

Example: .. 23

Assembly System Calls .. 24

Linux System Calls ... 24

Example ... 25

Addressing Modes ... 27

TUTORIALS POINT

Simply Easy Learning

Register Addressing ... 27

Immediate Addressing.. 27

Direct Memory Addressing ... 28

Direct-Offset Addressing .. 28

Indirect Memory Addressing ... 28

The MOV Instruction .. 28

SYNTAX: .. 28

EXAMPLE: .. 29

Assembly Variables ... 31

Allocating Storage Space for Initialized Data ... 31

Allocating Storage Space for Uninitialized Data 32

Multiple Definitions ... 32

Multiple Initializations ... 33

Assembly Constants .. 34

The EQU Directive ... 34

Example: .. 34

The %assign Directive.. 35

The %define Directive .. 35

Arithmetic Instructions .. 37

SYNTAX: ... 37

EXAMPLE: .. 37

The DEC Instruction ... 37

SYNTAX: ... 37

EXAMPLE: .. 37

The ADD and SUB Instructions .. 38

SYNTAX: .. 38

EXAMPLE: ... 38

The MUL/IMUL Instruction ... 40

SYNTAX: .. 40

EXAMPLE: ... 41

EXAMPLE: .. 41

The DIV/IDIV Instructions ... 42

SYNTAX: ... 42

EXAMPLE: .. 43

Logical Instructions .. 45

The AND Instruction ... 45

Example: .. 46

The OR Instruction ... 46

Example: .. 47

TUTORIALS POINT

Simply Easy Learning

The XOR Instruction ... 47

The TEST Instruction ... 48

The NOT Instruction ... 48

Assembly Conditions.. 49

The CMP Instruction... 49

SYNTAX ... 49

EXAMPLE: ... 49

Unconditional Jump .. 50

SYNTAX: .. 50

EXAMPLE: ... 50

Conditional Jump ... 50

Example: .. 51

Assembly Loops ... 53

Example: .. 53

Assembly Numbers .. 55

ASCII Representation... 56

BCD Representation .. 57

Example: .. 57

Assembly Strings ... 59

String Instructions .. 59

MOVS... 60

LODS ... 61

CMPS ... 62

SCAS ... 63

Repetition Prefixes ... 64

Assembly Arrays .. 65

Example: .. 66

Assembly Procedures .. 67

Syntax: ... 67

Example: .. 67

Stacks Data Structure: ... 68

EXAMPLE: .. 69

Assembly Recursion .. 70

Assembly Macros ... 72

Example: .. 73

Assembly File Management ... 74

File Descriptor .. 74

File Pointer ... 74

File Handling System Calls .. 74

TUTORIALS POINT

Simply Easy Learning

Creating and Opening a File .. 75

Opening an Existing File .. 75

Reading from a File .. 75

Writing to a File .. 76

Closing a File ... 76

Updating a File ... 76

Example: .. 77

Memory Management .. 79

Example: .. 79

TUTORIALS POINT

Simply Easy Learning

Assembly Introduction

What is Assembly Language?

Each personal computer has a microprocessor that manages the computer's arithmetical, logical and

control activities.

Each family of processors has its own set of instructions for handling various operations like getting input from
keyboard, displaying information on screen and performing various other jobs. These set of instructions are called
'machine language instruction'.

Processor understands only machine language instructions which are strings of 1s and 0s. However machine
language is too obscure and complex for using in software development. So the low level assembly language is
designed for a specific family of processors that represents various instructions in symbolic code and a more
understandable form.

Advantages of Assembly Language
An understanding of assembly language provides knowledge of:

 Interface of programs with OS, processor and BIOS;

 Representation of data in memory and other external devices;

 How processor accesses and executes instruction;

 How instructions accesses and process data;

 How a program access external devices.

Other advantages of using assembly language are:

 It requires less memory and execution time;

 It allows hardware-specific complex jobs in an easier way;

 It is suitable for time-critical jobs;

CHAPTER

1

TUTORIALS POINT

Simply Easy Learning

 It is most suitable for writing interrupt service routines and other memory resident programs.

Basic Features of PC Hardware
The main internal hardware of a PC consists of the processor, memory and the registers. The registers are
processor components that hold data and address. To execute a program the system copies it from the external
device into the internal memory. The processor executes the program instructions.

The fundamental unit of computer storage is a bit; it could be on (1) or off (0). A group of nine related bits makes a
byte. Eight bits are used for data and the last one is used for parity. According to the rule of parity, number of bits
that are on (1) in each byte should always be odd.

So the parity bit is used to make the number of bits in a byte odd. If the parity is even, the system assumes that
there had been a parity error (though rare) which might have caused due to hardware fault or electrical
disturbance.

The processor supports the following data sizes:

 Word: a 2-byte data item

 Doubleword: a 4-byte (32 bit) data item

 Quadword: an 8-byte (64 bit) data item

 Paragraph: a 16-byte (128 bit) area

 Kilobyte: 1024 bytes

 Megabyte: 1,048,576 bytes

The Binary Number System
Every number system uses positional notation i.e., each position in which a digit is written has a different
positional value. Each position is power of the base, which is 2 for binary number system, and these powers begin
at 0 and increase by 1.

The following table shows the positional values for an 8-bit binary number, where all bits are set on.

Bit value 1 1 1 1 1 1 1 1

Position value as a
power of base 2

128 64 32 16 8 4 2 1

Bit number 7 6 5 4 3 2 1 0

The value of a binary number is based on the presence of 1 bits and their positional value. So the value of the

given binary number is: 1 + 2 + 4 + 8 +16 + 32 + 64 + 128 = 255, which is same as 2
8
 - 1.

The Hexadecimal Number System
Hexadecimal number system uses base 16. The digits range from 0 to 15. By convention, the letters A through F
is used to represent the hexadecimal digits corresponding to decimal values 10 through 15.

TUTORIALS POINT

Simply Easy Learning

Main use of hexadecimal numbers in computing is for abbreviating lengthy binary representations. Basically
hexadecimal number system represents a binary data by dividing each byte in half and expressing the value of
each half-byte. The following table provides the decimal, binary and hexadecimal equivalents:

Decimal number Binary representation Hexadecimal representation

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

To convert a binary number to its hexadecimal equivalent, break it into groups of 4 consecutive groups each,
starting from the right, and write those groups over the corresponding digits of the hexadecimal number.

Example: Binary number 1000 1100 1101 0001 is equivalent to hexadecimal - 8CD1

To convert a hexadecimal number to binary just write each hexadecimal digit into its 4-digit binary equivalent.

Example: Hexadecimal number FAD8 is equivalent to binary - 1111 1010 1101 1000

Binary Arithmetic
The following table illustrates four simple rules for binary addition:

(i) (ii) (iii) (iv)

1

0 1 1 1

+0 +0 +1 +1

=0 =1 =10 =11

Rules (iii) and (iv) shows a carry of a 1-bit into the next left position.

Example:

TUTORIALS POINT

Simply Easy Learning

Decimal Binary

60 00111100

+42 00101010

102 01100110

A negative binary value is expressed in two's complement notation. According to this rule, to convert a binary
number to its negative value is to reverse its bit values and add 1.

Example:

Number 53 00110101

Reverse the bits 11001010

Add 1 1

Number -53 11001011

To subtract one value from another, convert the number being subtracted to two's complement format and add
the numbers.

Example: Subtract 42 from 53

Number 53 00110101

Number 42 00101010

Reverse the bits of 42 11010101

Add 1 1

Number -42 11010110

53 - 42 = 11 00001011

Overflow of the last 1 bit is lost.

Addressing Data in Memory
The process through which the processor controls the execution of instructions is referred as the fetch-decode-
execute cycle, or the execution cycle. It consists of three continuous steps:

 Fetching the instruction from memory

 Decoding or identifying the instruction

 Executing the instruction

The processor may access one or more bytes of memory at a time. Let us consider a hexadecimal number
0725H. This number will require two bytes of memory. The high-order byte or most significant byte is 07 and the
low order byte is 25.

The processor stores data in reverse-byte sequence i.e., the low-order byte is stored in low memory address and
high-order byte in high memory address. So if processor brings the value 0725H from register to memory, it will
transfer 25 first to the lower memory address and 07 to the next memory address.

TUTORIALS POINT

Simply Easy Learning

x: memory address

When the processor gets the numeric data from memory to register, it again reverses the bytes. There are two
kinds of memory addresses:

 An absolute address - a direct reference of specific location.

 The segment address (or offset) - starting address of a memory segment with the offset value

TUTORIALS POINT

Simply Easy Learning

Assembly Environment Setup

Assembly language is dependent upon the instruction set and the architecture of the processor. In this

tutorial, we focus on Intel 32 processors like Pentium. To follow this tutorial, you will need:

 An IBM PC or any equivalent compatible computer

 A copy of Linux operating system

 A copy of NASM assembler program

There are many good assembler programs, like:

 Microsoft Assembler (MASM)

 Borland Turbo Assembler (TASM)

 The GNU assembler (GAS)

We will use the NASM assembler, as it is:

 Free. You can download it from various web sources.

 Well documented and you will get lots of information on net.

 Could be used on both Linux and Windows

Installing NASM
If you select "Development Tools" while installed Linux, you may NASM installed along with the Linux operating
system and you do not need to download and install it separately. For checking whether you already have NASM
installed, take the following steps:

 Open a Linux terminal.

 Type whereis nasm and press ENTER.

 If it is already installed then a line like, nasm: /usr/bin/nasm appears. Otherwise, you will see justnasm:, then
you need to install NASM.

To install NASM take the following steps:

CHAPTER

2

TUTORIALS POINT

Simply Easy Learning

 Check The netwide assembler (NASM) website for the latest version.

 Download the Linux source archive nasm-X.XX. ta .gz, where X.XX is the NASM version number in the
archive.

 Unpack the archive into a directory, which creates a subdirectory nasm-X. XX.

 cd to nasm-X. XX and type ./configure . This shell script will find the best C compiler to use and set up

Makefiles accordingly.

 Type make to build the nasm and ndisasm binaries.

 Type make install to install nasm and ndisasm in /usr/local/bin and to install the man pages.

This should install NASM on your system. Alternatively, you can use an RPM distribution for the Fedora Linux.
This version is simpler to install, just double-click the RPM file.

http://www.nasm.us/

TUTORIALS POINT

Simply Easy Learning

Assembly Basic Syntax

An assembly program can be divided into three sections:

 The data section

 The bss section

 The text section

The data Section
The data section is used for declaring initialized data or constants. This data does not change at runtime. You

can declare various constant values, file names or buffer size etc. in this section.

The syntax for declaring data section is:

section .data

The bss Section
The bss section is used for declaring variables. The syntax for declaring bss section is:

section .bss

The text section
The text section is used for keeping the actual code. This section must begin with the declarationglobal main,

which tells the kernel where the program execution begins.

The syntax for declaring text section is:

section .text

 global main

main:

Comments
Assembly language comment begins with a semicolon (;). It may contain any printable character including blank.
It can appear on a line by itself, like:

CHAPTER

3

TUTORIALS POINT

Simply Easy Learning

; This program displays a message on screen

or, on the same line along with an instruction, like:

add eax ,ebx ; adds ebx to eax

Assembly Language Statements
Assembly language programs consist of three types of statements:

 Executable instructions or instructions

 Assembler directives or pseudo-ops

 Macros

The executable instructions or simply instructions tell the processor what to do. Each instruction consists of
an operation code (opcode). Each executable instruction generates one machine language instruction.
The assembler directives or pseudo-ops tell the assembler about the various aspects of the assembly process.

These are non-executable and do not generate machine language instructions.

Macros are basically a text substitution mechanism.

Syntax of Assembly Language Statements
Assembly language statements are entered one statement per line. Each statement follows the following format:

[label] mnemonic [operands] [;comment]

The fields in the square brackets are optional. A basic instruction has two parts, the first one is the name of the
instruction (or the mnemonic) which is to be executed, and the second are the operands or the parameters of the
command.

Following are some examples of typical assembly language statements:

INC COUNT ; Increment the memory variable COUNT

MOV TOTAL, 48 ; Transfer the value 48 in the

 ; memory variable TOTAL

ADD AH, BH ; Add the content of the

 ; BH register into the AH register

AND MASK1, 128 ; Perform AND operation on the

 ; variable MASK1 and 128

ADD MARKS, 10 ; Add 10 to the variable MARKS

MOV AL, 10 ; Transfer the value 10 to the AL register

The Hello World Program in Assembly
The following assembly language code displays the string 'Hello World' on the screen:

section .text

 global main ;must be declared for linker (ld)

main: ;tells linker entry point

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

TUTORIALS POINT

Simply Easy Learning

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db 'Hello, world!', 0xa ;our dear string

len equ $ - msg ;length of our dear string

When the above code is compiled and executed, it produces following result:

Hello, world!

Compiling and Linking an Assembly Program in NASM
Make sure you have set the path of nasm and ld binaries in your PATH environment variable. Now take the

following steps for compiling and linking the above program:

 Type the above code using a text editor and save it as hello.asm.

 Make sure that you are in the same directory as where you saved hello.asm.

 To assemble the program, type nasm -f elf hello.asm

 If there is any error, you will be prompted about that at this stage. Otherwise an object file of your program
named hello.o will be created.

 To link the object file and create an executable file named hello, type ld -m elf_i386 -s -o hello hello.o

 Execute the program by typing ./hello

If you have done everything correctly, it will display Hello, world! on the screen.

TUTORIALS POINT

Simply Easy Learning

Assembly Memory Segments

We have already discussed three sections of an assembly program. These sections represent various

memory segments as well.

Interestingly, if you replace the section keyword with segment, you will get the same result. Try the following code:

segment .text ;code segment

 global main ;must be declared for linker

main: ;tell linker entry point

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

segment .data ;data segment

msg db Hello, world!',0xa ;our dear string

len equ $ - msg ;length of our dear string

When the above code is compiled and executed, it produces following result:

Hello, world!

Memory Segments
A segmented memory model divides the system memory into groups of independent segments, referenced by
pointers located in the segment registers. Each segment is used to contain a specific type of data. One segment
is used to contain instruction codes, another segment stores the data elements, and a third segment keeps the
program stack.

In the light of the above discussion, we can specify various memory segments as:

 Data segment - it is represented by .data section and the .bss. The .data section is used to declare the

memory region where data elements are stored for the program. This section cannot be expanded after the
data elements are declared, and it remains static throughout the program.

 The .bss section is also a static memory section that contains buffers for data to be declared later in the
program. This buffer memory is zero-filled.

CHAPTER

4

TUTORIALS POINT

Simply Easy Learning

 Code segment - it is represented by .text section. This defines an area in memory that stores the instruction

codes. This is also a fixed area.

 Stack - this segment contains data values passed to functions and procedures within the program.

TUTORIALS POINT

Simply Easy Learning

Assembly Registers

Processor operations mostly involve processing data. This data can be stored in memory and accessed

from thereon. However, reading data from and storing data into memory slows down the processor, as it involves
complicated processes of sending the data request across the control bus, and into the memory storage unit and
getting the data through the same channel.

To speed up the processor operations, the processor includes some internal memory storage locations,
called registers.

The registers stores data elements for processing without having to access the memory. A limited number of
registers are built into the processor chip.

Processor Registers
There are ten 32-bit and six 16-bit processor registers in IA-32 architecture. The registers are grouped into three
categories:

 General registers

 Control registers

 Segment registers

The general registers are further divided into the following groups:

 Data registers

 Pointer registers

 Index registers

Data Registers
Four 32-bit data registers are used for arithmetic, logical and other operations. These 32-bit registers can be used
in three ways:

1. As complete 32-bit data registers: EAX, EBX, ECX, EDX.

CHAPTER

5

TUTORIALS POINT

Simply Easy Learning

2. Lower halves of the 32-bit registers can be used as four 16-bit data registers: AX, BX, CX and DX.

3. Lower and higher halves of the above-mentioned four 16-bit registers can be used as eight 8-bit data
registers: AH, AL, BH, BL, CH, CL, DH, and DL.

Some of these data registers has specific used in arithmetical operations.

AX is the primary accumulator; it is used in input/output and most arithmetic instructions. For example, in

multiplication operation, one operand is stored in EAX, or AX or AL register according to the size of the operand.
BX is known as the base register as it could be used in indexed addressing.
CX is known as the count register as the ECX, CX registers store the loop count in iterative operations.
DX is known as the data register. It is also used in input/output operations. It is also used with AX register along

with DX for multiply and divide operations involving large values.

Pointer Registers
The pointer registers are 32-bit EIP, ESP and EBP registers and corresponding 16-bit right portions � IP, SP and
BP. There are three categories of pointer registers:

 Instruction Pointer (IP) - the 16-bit IP register stores the offset address of the next instruction to be

executed. IP in association with the CS register (as CS:IP) gives the complete address of the current
instruction in the code segment.

 Stack Pointer (SP) - the 16-bit SP register provides the offset value within the program stack. SP in

association with the SS register (SS:SP) refers to be current position of data or address within the program
stack.

 Base Pointer (BP) - the 16-bit BP register mainly helps in referencing the parameter variables passed to a

subroutine. The address in SS register is combined with the offset in BP to get the location of the parameter.
BP can also be combined with DI and SI as base register for special addressing.

Index Registers
The 32-bit index registers ESI and EDI and their 16-bit rightmost portions SI and DI are used for indexed
addressing and sometimes used in addition and subtraction. There are two sets of index pointers:

 Source Index (SI) - it is used as source index for string operations

 Destination Index (DI) - it is used as destination index for string operations.

TUTORIALS POINT

Simply Easy Learning

Control Registers
The 32-bit instruction pointer register and 32-bit flags register combined are considered as the control registers.

Many instructions involve comparisons and mathematical calculations and change the status of the flags and
some other conditional instructions test the value of these status flags to take the control flow to other location.

The common flag bits are:

 Overflow Flag (OF): indicates the overflow of a high-order bit (leftmost bit) of data after a signed arithmetic

operation.

 Direction Flag (DF): determines left or right direction for moving or comparing string data. When the DF

value is 0, the string operation takes left-to-right direction and when the value is set to 1, the string operation
takes right-to-left direction.

 Interrupt Flag (IF): determines whether the external interrupts like, keyboard entry etc. are to be ignored or

processed. It disables the external interrupt when the value is 0 and enables interrupts when set to 1.

 Trap Flag (TF): allows setting the operation of the processor in single-step mode. The DEBUG program we

used sets the trap flag, so we could step through the execution one instruction at a time.

 Sign Flag (SF): shows the sign of the result of an arithmetic operation. This flag is set according to the sign

of a data item following the arithmetic operation. The sign is indicated by the high-order of leftmost bit. A
positive result clears the value of SF to 0 and negative result sets it to 1.

 Zero Flag (ZF): indicates the result of an arithmetic or comparison operation. A nonzero result clears the

zero flag to 0, and a zero result sets it to 1.

 Auxiliary Carry Flag (AF): contains the carry from bit 3 to bit 4 following an arithmetic operation; used for

specialized arithmetic. The AF is set when a 1-byte arithmetic operation causes a carry from bit 3 into bit 4.

 Parity Flag (PF): indicates the total number of 1-bits in the result obtained from an arithmetic operation. An

even number of 1-bits clears the parity flag to 0 and an odd number of 1-bits sets the parity flag to 1.

 Carry Flag (CF): contains the carry of 0 or 1 from a high-order bit (leftmost) after an arithmetic operation. It
also stores the contents of last bit of a shift or rotate operation.

The following table indicates the position of flag bits in the 16-bit Flags register:

Flag:

O D I T S Z

A

P

C

Bit no: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Segment Registers
Segments are specific areas defined in a program for containing data, code and stack. There are three main
segments:

 Code Segment: it contains all the instructions to be executed. A 16 - bit Code Segment register or CS

register stores the starting address of the code segment.

 Data Segment: it contains data, constants and work areas. A 16 - bit Data Segment register of DS register

stores the starting address of the data segment.

 Stack Segment: it contains data and return addresses of procedures or subroutines. It is implemented as a

'stack' data structure. The Stack Segment register or SS register stores the starting address of the stack.

TUTORIALS POINT

Simply Easy Learning

Apart from the DS, CS and SS registers, there are other extra segment registers - ES (extra segment), FS and
GS, which provides additional segments for storing data.

In assembly programming, a program needs to access the memory locations. All memory locations within a
segment are relative to the starting address of the segment. A segment begins in an address evenly disable by 16
or hexadecimal 10. So all the rightmost hex digit in all such memory addresses is 0, which is not generally stored
in the segment registers.

The segment registers stores the starting addresses of a segment. To get the exact location of data or instruction
within a segment, an offset value (or displacement) is required. To reference any memory location in a segment,
the processor combines the segment address in the segment register with the offset value of the location.

Example:
Look at the following simple program to understand the use of registers in assembly programming. This program
displays 9 stars on the screen along with a simple message:

section .text

 global main ;must be declared for linker (gcc)

main: ;tell linker entry point

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov edx,9 ;message length

 mov ecx,s2 ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db 'Displaying 9 stars',0xa ;a message

len equ $ - msg ;length of message

s2 times 9 db '*'

When the above code is compiled and executed, it produces following result:

Displaying 9 stars

TUTORIALS POINT

Simply Easy Learning

Assembly System Calls

System calls are APIs for the interface between user space and kernel space. We have already used the

system calls sys_write and sys_exit for writing into the screen and exiting from the program respectively.

Linux System Calls
You can make use of Linux system calls in your assembly programs. You need to take the following steps for
using Linux system calls in your program:

 Put the system call number in the EAX register.

 Store the arguments to the system call in the registers EBX, ECX, etc.

 Call the relevant interrupt (80h)

 The result is usually returned in the EAX register

There are six registers that stores the arguments of the system call used. These are the EBX, ECX, EDX, ESI,
EDI, and EBP. These registers take the consecutive arguments, starting with the EBX register. If there are more
than six arguments then the memory location of the first argument is stored in the EBX register.

The following code snippet shows the use of the system call sys_exit:

mov eax,1 ; system call number (sys_exit)

int 0x80 ; call kernel

The following code snippet shows the use of the system call sys_write:

mov edx,4 ; message length

mov ecx,msg ; message to write

mov ebx,1 ; file descriptor (stdout)

mov eax,4 ; system call number (sys_write)

int 0x80 ; call kernel

All the syscalls are listed in /usr/include/asm/unistd.h, together with their numbers (the value to put in EAX before
you call int 80h).

The following table shows some of the system calls used in this tutorial:

CHAPTER

6

TUTORIALS POINT

Simply Easy Learning

%eax Name %ebx %ecx %edx %esx %edi

1 sys_exit int - - - -

2 sys_fork struct pt_regs - - - -

3 sys_read unsigned int char * size_t - -

4 sys_write unsigned int const char * size_t - -

5 sys_open const char * int int - -

6 sys_close unsigned int - - - -

Example
The following example reads a number from the keyboard and displays it on the screen:

section .data ;Data segment

 userMsg db 'Please enter a number: ' ;Ask the user to enter a number

 lenUserMsg equ $-userMsg ;The length of the message

 dispMsg db 'You have entered: '

 lenDispMsg equ $-dispMsg

section .bss ;Uninitialized data

 num resb 5

section .text ;Code Segment

 global main

 main:

 ;User prompt

 mov eax, 4

 mov ebx, 1

 mov ecx, userMsg

 mov edx, lenUserMsg

 int 80h

 ;Read and store the user input

 mov eax, 3

 mov ebx, 2

 mov ecx, num

 mov edx, 5 ;5 bytes (numeric, 1 for sign) of that information

 int 80h

 ;Output the message 'The entered number is: '

 mov eax, 4

 mov ebx, 1

 mov ecx, dispMsg

 mov edx, lenDispMsg

 int 80h

 ;Output the number entered

 mov eax, 4

 mov ebx, 1

 mov ecx, num

 mov edx, 5

 int 80h

; Exit code

 mov eax, 1

 mov ebx, 0

 int 80h

When the above code is compiled and executed, it produces following result:

TUTORIALS POINT

Simply Easy Learning

Please enter a number:

1234

You have entered:1234

TUTORIALS POINT

Simply Easy Learning

Addressing Modes

Most assembly language instructions require operands to be processed. An operand address provides

the location where the data to be processed is stored. Some instructions do not require an operand, whereas
some other instructions may require one, two or three operands.

When an instruction requires two operands, the first operand is generally the destination, which contains data in a
register or memory location and the second operand is the source. Source contains either the data to be
delivered (immediate addressing) or the address (in register or memory) of the data. Generally the source data
remains unaltered after the operation.

The three basic modes of addressing are:

 Register addressing

 Immediate addressing

 Memory addressing

Register Addressing
In this addressing mode, a register contains the operand. Depending upon the instruction, the register may be the
first operand, the second operand or both.

For example,

MOV DX, TAX_RATE ; Register in first operand

MOV COUNT, CX ; Register in second operand

MOV EAX, EBX ; Both the operands are in registers

As processing data between registers does not involve memory, it provides fastest processing of data.

Immediate Addressing
An immediate operand has a constant value or an expression. When an instruction with two operands uses
immediate addressing, the first operand may be a register or memory location, and the second operand is an
immediate constant. The first operand defines the length of the data.

For example:

BYTE_VALUE DB 150 ; A byte value is defined

WORD_VALUE DW 300 ; A word value is defined

ADD BYTE_VALUE, 65 ; An immediate operand 65 is added

MOV AX, 45H ; Immediate constant 45H is transferred to AX

CHAPTER

7

TUTORIALS POINT

Simply Easy Learning

Direct Memory Addressing
When operands are specified in memory addressing mode, direct access to main memory, usually to the data
segment, is required. This way of addressing results in slower processing of data. To locate the exact location of
data in memory, we need the segment start address, which is typically found in the DS register and an offset
value. This offset value is also called effective address.

In direct addressing mode, the offset value is specified directly as part of the instruction, usually indicated by the
variable name. The assembler calculates the offset value and maintains a symbol table, which stores the offset
values of all the variables used in the program.

In direct memory addressing, one of the operands refers to a memory location and the other operand references
a register.

For example,

ADD BYTE_VALUE, DL ; Adds the register in the memory location

MOV BX, WORD_VALUE ; Operand from the memory is added to register

Direct-Offset Addressing
This addressing mode uses the arithmetic operators to modify an address. For example, look at the following
definitions that define tables of data:

BYTE_TABLE DB 14, 15, 22, 45 ; Tables of bytes

WORD_TABLE DW 134, 345, 564, 123 ; Tables of words

The following operations access data from the tables in the memory into registers:

MOV CL, BYTE_TABLE[2] ; Gets the 3rd element of the BYTE_TABLE

MOV CL, BYTE_TABLE + 2 ; Gets the 3rd element of the BYTE_TABLE

MOV CX, WORD_TABLE[3] ; Gets the 4th element of the WORD_TABLE

MOV CX, WORD_TABLE + 3 ; Gets the 4th element of the WORD_TABLE

Indirect Memory Addressing
This addressing mode utilizes the computer's ability of Segment:Offset addressing. Generally the base registers
EBX, EBP (or BX, BP) and the index registers (DI, SI), coded within square brackets for memory references, are
used for this purpose.

Indirect addressing is generally used for variables containing several elements like, arrays. Starting address of the
array is stored in, say, the EBX register.

The following code snippet shows how to access different elements of the variable.

MY_TABLE TIMES 10 DW 0 ; Allocates 10 words (2 bytes) each initialized to 0

MOV EBX, [MY_TABLE] ; Effective Address of MY_TABLE in EBX

MOV [EBX], 110 ; MY_TABLE[0] = 110

ADD EBX, 2 ; EBX = EBX +2

MOV [EBX], 123 ; MY_TABLE[1] = 123

The MOV Instruction
We have already used the MOV instruction that is used for moving data from one storage space to another. The
MOV instruction takes two operands.

SYNTAX:
Syntax of the MOV instruction is:

TUTORIALS POINT

Simply Easy Learning

MOV destination, source

The MOV instruction may have one of the following five forms:

MOV register, register

MOV register, immediate

MOV memory, immediate

MOV register, memory

MOV memory, register

Please note that:

 Both the operands in MOV operation should be of same size

 The value of source operand remains unchanged

The MOV instruction causes ambiguity at times. For example, look at the statements:

MOV EBX, [MY_TABLE] ; Effective Address of MY_TABLE in EBX

MOV [EBX], 110 ; MY_TABLE[0] = 110

It is not clear whether you want to move a byte equivalent or word equivalent of the number 110. In such cases, it
is wise to use a type specifier.

Following table shows some of the common type specifiers:

Type Specifier Bytes addressed

BYTE 1

WORD 2

DWORD 4

QWORD 8

TBYTE 10

EXAMPLE:
The following program illustrates some of the concepts discussed above. It stores a name 'Zara Ali' in the data
section of the memory. Then changes its value to another name 'Nuha Ali' programmatically and displays both the
names.

section .text

 global main ;must be declared for linker (ld)

main: ;tell linker entry point

;writing the name 'Zara Ali'

 mov edx,9 ;message length

 mov ecx, name ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov [name], dword 'Nuha' ; Changed the name to Nuha Ali

;writing the name 'Nuha Ali'

 mov edx,8 ;message length

 mov ecx,name ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

TUTORIALS POINT

Simply Easy Learning

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

name db 'Zara Ali '

When the above code is compiled and executed, it produces following result:

Zara Ali Nuha Ali

TUTORIALS POINT

Simply Easy Learning

Assembly Variables

NASM provides various define directives for reserving storage space for variables. The define

assembler directive is used for allocation of storage space. It can be used to reserve as well as initialize one or
more bytes.

Allocating Storage Space for Initialized Data
The syntax for storage allocation statement for initialized data is:

[variable-name] define-directive initial-value [,initial-value]...

Where, variable-name is the identifier for each storage space. The assembler associates an offset value for each

variable name defined in the data segment.

There are five basic forms of the define directive:

Directive Purpose Storage Space

DB Define Byte allocates 1 byte

DW Define Word allocates 2 bytes

DD Define Doubleword allocates 4 bytes

DQ Define Quadword allocates 8 bytes

DT Define Ten Bytes allocates 10 bytes

Following are some examples of using define directives:

choice DB 'y'

number DW 12345

neg_number DW -12345

big_number DQ 123456789

real_number1 DD 1.234

real_number2 DQ 123.456

Please note that:

 Each byte of character is stored as its ASCII value in hexadecimal

 Each decimal value is automatically converted to its 16-bit binary equivalent and stored as a hexadecimal
number

CHAPTER

8

TUTORIALS POINT

Simply Easy Learning

 Processor uses the little-endian byte ordering

 Negative numbers are converted to its 2's complement representation

 Short and long floating-point numbers are represented using 32 or 64 bits, respectively

The following program shows use of the define directive:

section .text

 global main ;must be declared for linker (gcc)

main: ;tell linker entry point

 mov edx,1 ;message length

 mov ecx,choice ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

choice DB 'y'

When the above code is compiled and executed, it produces following result:

y

Allocating Storage Space for Uninitialized Data
The reserve directives are used for reserving space for uninitialized data. The reserve directives take a single
operand that specifies the number of units of space to be reserved. Each define directive has a related reserve
directive.

There are five basic forms of the reserve directive:

Directive Purpose

RESB Reserve a Byte

RESW Reserve a Word

RESD Reserve a Doubleword

RESQ Reserve a Quadword

REST Reserve a Ten Bytes

Multiple Definitions
You can have multiple data definition statements in a program. For example:

choice DB 'Y' ;ASCII of y = 79H

number1 DW 12345 ;12345D = 3039H

number2 DD 12345679 ;123456789D = 75BCD15H

The assembler allocates contiguous memory for multiple variable definitions.

TUTORIALS POINT

Simply Easy Learning

Multiple Initializations
The TIMES directive allows multiple initializations to the same value. For example, an array named marks of size
9 can be defined and initialized to zero using the following statement:

marks TIMES 9 DW 0

The TIMES directive is useful in defining arrays and tables. The following program displays 9 asterisks on the
screen:

section .text

 global main ;must be declared for linker (ld)

main: ;tell linker entry point

 mov edx,9 ;message length

 mov ecx, stars ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

stars times 9 db '*'

When the above code is compiled and executed, it produces following result:

TUTORIALS POINT

Simply Easy Learning

Assembly Constants

There are several directives provided by NASM that define constants. We have already used the EQU

directive in previous chapters. We will particularly discuss three directives:

 EQU

 %assign

 %define

The EQU Directive
The EQU directive is used for defining constants. The syntax of the EQU directive is as follows:

CONSTANT_NAME EQU expression

For example,

TOTAL_STUDENTS equ 50

You can then use this constant value in your code, like:

mov ecx, TOTAL_STUDENTS

cmp eax, TOTAL_STUDENTS

The operand of an EQU statement can be an expression:

LENGTH equ 20

WIDTH equ 10

AREA equ length * width

Above code segment would define AREA as 200.

Example:
The following example illustrates the use of the EQU directive:

SYS_EXIT equ 1

SYS_WRITE equ 4

CHAPTER

9

TUTORIALS POINT

Simply Easy Learning

STDIN equ 0

STDOUT equ 1

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, msg1

 mov edx, len1

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, msg2

 mov edx, len2

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, msg3

 mov edx, len3

 int 0x80

 mov eax,SYS_EXIT ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg1 db 'Hello, programmers!',0xA,0xD

len1 equ $ - msg1

msg2 db 'Welcome to the world of,', 0xA,0xD

len2 equ $ - msg2

msg3 db 'Linux assembly programming! '

len3 equ $- msg3

When the above code is compiled and executed, it produces following result:

Hello, programmers!

Welcome to the world of,

Linux assembly programming!

The %assign Directive
The %assign directive can be used to define numeric constants like the EQU directive. This directive allows

redefinition. For example, you may define the constant TOTAL as:

%assign TOTAL 10

Later in the code you can redefine it as:

%assign TOTAL 20

This directive is case-sensitive.

The %define Directive
The %define directive allows defining both numeric and string constants. This directive is similar to the #define in
C. For example, you may define the constant PTR as:

%define PTR [EBP+4]

TUTORIALS POINT

Simply Easy Learning

The above code replaces PTR by [EBP+4].

This directive also allows redefinition and it is case sensitive.

TUTORIALS POINT

Simply Easy Learning

Arithmetic Instructions

The INC Instruction

The INC instruction is used for incrementing an operand by one. It works on a single operand that can be

either in a register or in memory.

SYNTAX:
The INC instruction has the following syntax:

INC destination

The operand destination could be an 8-bit, 16-bit or 32-bit operand.

EXAMPLE:

INC EBX ; Increments 32-bit register

INC DL ; Increments 8-bit register

INC [count] ; Increments the count variable

The DEC Instruction
The DEC instruction is used for decrementing an operand by one. It works on a single operand that can be either
in a register or in memory.

SYNTAX:
The DEC instruction has the following syntax:

DEC destination

The operand destination could be an 8-bit, 16-bit or 32-bit operand.

EXAMPLE:

segment .data

 count dw 0

 value db 15

segment .text

 inc [count]

CHAPTER

10

TUTORIALS POINT

Simply Easy Learning

 dec [value]

 mov ebx, count

 inc word [ebx]

 mov esi, value

 dec byte [esi]

The ADD and SUB Instructions
The ADD and SUB instructions are used for performing simple addition/subtraction of binary data in
byte, word and doubleword size, i.e., for adding or subtracting 8-bit, 16-bit or 32-bit operands
respectively.

SYNTAX:
The ADD and SUB instructions have the following syntax:

ADD/SUB destination, source

The ADD/SUB instruction can take place between:

 Register to register

 Memory to register

 Register to memory

 Register to constant data

 Memory to constant data

However, like other instructions, memory-to-memory operations are not possible using ADD/SUB instructions. An
ADD or SUB operation sets or clears the overflow and carry flags.

EXAMPLE:
The following example asks two digits from the user, stores the digits in the EAX and EBX register respectively,
adds the values, stores the result in a memory location 'res' and finally displays the result.

SYS_EXIT equ 1

SYS_READ equ 3

SYS_WRITE equ 4

STDIN equ 0

STDOUT equ 1

segment .data

 msg1 db "Enter a digit ", 0xA,0xD

 len1 equ $- msg1

 msg2 db "Please enter a second digit", 0xA,0xD

 len2 equ $- msg2

 msg3 db "The sum is: "

 len3 equ $- msg3

segment .bss

TUTORIALS POINT

Simply Easy Learning

 num1 resb 2

 num2 resb 2

 res resb 1

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, msg1

 mov edx, len1

 int 0x80

 mov eax, SYS_READ

 mov ebx, STDIN

 mov ecx, num1

 mov edx, 2

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, msg2

 mov edx, len2

 int 0x80

 mov eax, SYS_READ

 mov ebx, STDIN

 mov ecx, num2

 mov edx, 2

 int 0x80

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, msg3

 mov edx, len3

 int 0x80

 ; moving the first number to eax register and second number to ebx

 ; and subtracting ascii '0' to convert it into a decimal number

 mov eax, [number1]

 sub eax, '0'

 mov ebx, [number2]

 sub ebx, '0'

 ; add eax and ebx

 add eax, ebx

 ; add '0' to to convert the sum from decimal to ASCII

 add eax, '0'

 ; storing the sum in memory location res

 mov [res], eax

 ; print the sum

 mov eax, SYS_WRITE

 mov ebx, STDOUT

 mov ecx, res

 mov edx, 1

 int 0x80

exit:

 mov eax, SYS_EXIT

 xor ebx, ebx

TUTORIALS POINT

Simply Easy Learning

 int 0x80

When the above code is compiled and executed, it produces following result:

Enter a digit:

3

Please enter a second digit:

4

The sum is:

7

The program with hardcoded variables:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov eax,'3'

 sub eax, '0'

 mov ebx, '4'

 sub ebx, '0'

 add eax, ebx

 add eax, '0'

 mov [sum], eax

 mov ecx,msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 nwln

 mov ecx,sum

 mov edx, 1

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

 msg db "The sum is:", 0xA,0xD

 len equ $ - msg

 segment .bss

 sum resb 1

When the above code is compiled and executed, it produces following result:

The sum is:

7

The MUL/IMUL Instruction
There are two instructions for multiplying binary data. The MUL (Multiply) instruction handles unsigned data and
the IMUL (Integer Multiply) handles signed data. Both instructions affect the Carry and Overflow flag.

SYNTAX:
The syntax for the MUL/IMUL instructions is as follows:

MUL/IMUL multiplier

TUTORIALS POINT

Simply Easy Learning

Multiplicand in both cases will be in an accumulator, depending upon the size of the multiplicand and the
multiplier and the generated product is also stored in two registers depending upon the size of the operands.
Following section explains MULL instructions with three different cases:

SN Scenarios

1

When two bytes are multiplied

The multiplicand is in the AL register, and the multiplier is a byte in the memory or in another register. The
product is in AX. High order 8 bits of the product is stored in AH and the low order 8 bits are stored in AL

2

When two one-word values are multiplied

The multiplicand should be in the AX register, and the multiplier is a word in memory or another register. For
example, for an instruction like MUL DX, you must store the multiplier in DX and the multiplicand in AX.

The resultant product is a double word, which will need two registers. The High order (leftmost) portion gets
stored in DX and the lower-order (rightmost) portion gets stored in AX.

3

When two doubleword values are multiplied

When two doubleword values are multiplied, the multiplicand should be in EAX and the multiplier is a
doubleword value stored in memory or in another register. The product generated is stored in the EDX:EAX
registers, i.e., the high order 32 bits gets stored in the EDX register and the low order 32-bits are stored in
the EAX register.

EXAMPLE:

MOV AL, 10

MOV DL, 25

MUL DL

...

MOV DL, 0FFH ; DL= -1

MOV AL, 0BEH ; AL = -66

IMUL DL

EXAMPLE:

The following example multiplies 3 with 2, and displays the result:

section .text

TUTORIALS POINT

Simply Easy Learning

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov al,'3'

 sub al, '0'

 mov bl, '2'

 sub bl, '0'

 mul bl

 add al, '0'

 mov [res], al

 mov ecx,msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 nwln

 mov ecx,res

 mov edx, 1

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db "The result is:", 0xA,0xD

len equ $- msg

segment .bss

res resb 1

When the above code is compiled and executed, it produces following result:

The result is:

6

The DIV/IDIV Instructions
The division operation generates two elements - a quotient and a remainder. In case of multiplication, overflow

does not occur because double-length registers are used to keep the product. However, in case of division,
overflow may occur. The processor generates an interrupt if overflow occurs.

The DIV (Divide) instruction is used or unsigned data and the IDIV (Integer Divide) is used for signed data.

SYNTAX:
The format for the DIV/IDIV instruction:

DIV/IDIV divisor

The dividend is in an accumulator. Both the instructions can work with 8-bit, 16-bit or 32-bit operands. The
operation affects all six status flags. Following section explains three cases of division with different operand size:

SN Scenarios

1

When the divisor is 1 byte

The dividend is assumed to be in the AX register (16 bits). After division, the quotient goes to the AL register
and the remainder goes to the AH register.

TUTORIALS POINT

Simply Easy Learning

2

When the divisor is 1 word

The dividend is assumed to be 32 bits long and in the DX:AX registers. The high order 16 bits are in DX and the
low order 16 bits are in AX. After division, the 16 bit quotient goes to the AX register and the 16 bit remainder
goes to the DX register.

3

When the divisor is doubleword

The dividend is assumed to be 64 bits long and in the EDX:EAX registers. The high order 32 bits are in EDX
and the low order 32 bits are in EAX. After division, the 32 bit quotient goes to the EAX register and the 32 bit
remainder goes to the EDX register.

EXAMPLE:
The following example divides 8 with 2. The dividend 8 is stored in the 16 bit AX register and thedivisor 2 is
stored in the 8 bit BL register.

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov ax,'8'

 sub ax, '0'

 mov bl, '2'

 sub bl, '0'

 div bl

 add ax, '0'

TUTORIALS POINT

Simply Easy Learning

 mov [res], ax

 mov ecx,msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 nwln

 mov ecx,res

 mov edx, 1

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db "The result is:", 0xA,0xD

len equ $- msg

segment .bss

res resb 1

When the above code is compiled and executed, it produces following result:

The result is:

4

TUTORIALS POINT

Simply Easy Learning

Logical Instructions

The processor instruction set provides the instructions AND, OR, XOR, TEST and NOT Boolean logic,

which tests, sets and clears the bits according to the need of the program.

The format for these instructions:

SN Instruction Format

1 AND AND operand1, operand2

2 OR OR operand1, operand2

3 XOR XOR operand1, operand2

4 TEST TEST operand1, operand2

5 NOT NOT operand1

The first operand in all the cases could be either in register or in memory. The second operand could be either in
register/memory or an immediate (constant) value. However, memory to memory operations are not possible.
These instructions compare or match bits of the operands and set the CF, OF, PF, SF and ZF flags.

The AND Instruction
The AND instruction is used for supporting logical expressions by performing bitwise AND operation. The bitwise
AND operation returns 1, if the matching bits from both the operands are 1, otherwise it returns 0. For example:

 Operand1: 0101

 Operand2: 0011

After AND -> Operand1: 0001

The AND operation can be used for clearing one or more bits. For example, say, the BL register contains 0011
1010. If you need to clear the high order bits to zero, you AND it with 0FH.

AND BL, 0FH ; This sets BL to 0000 1010

Let's take up another example. If you want to check whether a given number is odd or even, a simple test would
be to check the least significant bit of the number. If this is 1, the number is odd, else the number is even.

Assuming the number is in AL register, we can write:

CHAPTER

11

TUTORIALS POINT

Simply Easy Learning

AND AL, 01H ; ANDing with 0000 0001

JZ EVEN_NUMBER

The following program illustrates this:

Example:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov ax, 8h ;getting 8 in the ax

 and ax, 1 ;and ax with 1

 jz evnn

 mov eax, 4 ;system call number (sys_write)

 mov ebx, 1 ;file descriptor (stdout)

 mov ecx, odd_msg ;message to write

 mov edx, len2 ;length of message

 int 0x80 ;call kernel

 jmp outprog

evnn:

 mov ah, 09h

 mov eax, 4 ;system call number (sys_write)

 mov ebx, 1 ;file descriptor (stdout)

 mov ecx, even_msg ;message to write

 mov edx, len1 ;length of message

 int 0x80 ;call kernel

outprog:

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

even_msg db 'Even Number!' ;message showing even number

len1 equ $ - even_msg

odd_msg db 'Odd Number!' ;message showing odd number

len2 equ $ - odd_msg

When the above code is compiled and executed, it produces following result:

Even Number!

Change the value in the ax register with an odd digit, like:

mov ax, 9h ; getting 9 in the ax

The program would display:

Odd Number!

Similarly to clear the entire register you can AND it with 00H.

The OR Instruction
The OR instruction is used for supporting logical expression by performing bitwise OR operation. The bitwise OR
operator returns 1, if the matching bits from either or both operands are one. It returns 0, if both the bits are zero.

For example,

 Operand1: 0101

 Operand2: 0011

TUTORIALS POINT

Simply Easy Learning

After OR -> Operand1: 0111

The OR operation can be used for setting one or more bits. For example, let us assume the AL register contains
0011 1010, you need to set the four low order bits, you can OR it with a value 0000 1111, i.e., FH.

OR BL, 0FH ; This sets BL to 0011 1111

Example:
The following example demonstrates the OR instruction. Let us store the value 5 and 3 in the AL and the BL register
respectively. Then the instruction,

OR AL, BL

should store 7 in the AL register:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov al, 5 ;getting 5 in the al

 mov bl, 3 ;getting 3 in the bl

 or al, bl ;or al and bl registers, result should be 7

 add al, byte '0' ;converting decimal to ascii

 mov [result], al

 mov eax, 4

 mov ebx, 1

 mov ecx, result

 mov edx, 1

 int 0x80

outprog:

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .bss

result resb 1

When the above code is compiled and executed, it produces following result:

7

The XOR Instruction
The XOR instruction implements the bitwise XOR operation. The XOR operation sets the resultant bit to 1, if and
only if the bits from the operands are different. If the bits from the operands are same (both 0 or both 1), the
resultant bit is cleared to 0.

For example,

 Operand1: 0101

 Operand2: 0011

After XOR -> Operand1: 0110

XORing an operand with itself changes the operand to 0. This is used to clear a register.

XOR EAX, EAX

TUTORIALS POINT

Simply Easy Learning

The TEST Instruction
The TEST instruction works same as the AND operation, but unlike AND instruction, it does not change the first
operand. So, if we need to check whether a number in a register is even or odd, we can also do this using the
TEST instruction without changing the original number.

TEST AL, 01H

JZ EVEN_NUMBER

The NOT Instruction
The NOT instruction implements the bitwise NOT operation. NOT operation reverses the bits in an operand. The
operand could be either in a register or in the memory.

For example,

 Operand1: 0101 0011

After NOT -> Operand1: 1010 1100

TUTORIALS POINT

Simply Easy Learning

Assembly Conditions

Conditional execution in assembly language is accomplished by several looping and branching

instructions. These instructions can change the flow of control in a program. Conditional execution is observed in
two scenarios:

SN Conditional Instructions

1

Unconditional jump

This is performed by the JMP instruction. Conditional execution often involves a transfer of control to the
address of an instruction that does not follow the currently executing instruction. Transfer of control may be
forward to execute a new set of instructions, or backward to re-execute the same steps.

2

Conditional jump

This is performed by a set of jump instructions j<condition> depending upon the condition. The conditional
instructions transfer the control by breaking the sequential flow and they do it by changing the offset value in
IP.

Let us discuss the CMP instruction before discussing the conditional instructions.

The CMP Instruction
The CMP instruction compares two operands. It is generally used in conditional execution. This instruction
basically subtracts one operand from the other for comparing whether the operands are equal or not. It does not
disturb the destination or source operands. It is used along with the conditional jump instruction for decision
making.

SYNTAX

CMP destination, source

CMP compares two numeric data fields. The destination operand could be either in register or in memory. The
source operand could be a constant (immediate) data, register or memory.

EXAMPLE:

CMP DX, 00 ; Compare the DX value with zero

JE L7 ; If yes, then jump to label L7

.

.

CHAPTER

12

TUTORIALS POINT

Simply Easy Learning

L7: ...

CMP is often used for comparing whether a counter value has reached the number of time a loop needs to be
run. Consider the following typical condition:

INC EDX

CMP EDX, 10 ; Compares whether the counter has reached 10

JLE LP1 ; If it is less than or equal to 10, then jump to LP1

Unconditional Jump
As mentioned earlier this is performed by the JMP instruction. Conditional execution often involves a transfer of
control to the address of an instruction that does not follow the currently executing instruction. Transfer of control
may be forward to execute a new set of instructions, or backward to re-execute the same steps.

SYNTAX:
The JMP instruction provides a label name where the flow of control is transferred immediately. The syntax of the
JMP instruction is:

JMP label

EXAMPLE:
The following code snippet illustrates the JMP instruction:

MOV AX, 00 ; Initializing AX to 0

MOV BX, 00 ; Initializing BX to 0

MOV CX, 01 ; Initializing CX to 1

L20:

ADD AX, 01 ; Increment AX

ADD BX, AX ; Add AX to BX

SHL CX, 1 ; shift left CX, this in turn doubles the CX value

JMP L20 ; repeats the statements

Conditional Jump
If some specified condition is satisfied in conditional jump, the control flow is transferred to a target instruction.
There are numerous conditional jump instructions, depending upon the condition and data.

Following are the conditional jump instructions used on signed data used for arithmetic operations:

Instruction Description Flags tested

JE/JZ Jump Equal or Jump Zero ZF

JNE/JNZ Jump not Equal or Jump Not Zero ZF

JG/JNLE Jump Greater or Jump Not Less/Equal OF, SF, ZF

JGE/JNL Jump Greater or Jump Not Less OF, SF

JL/JNGE Jump Less or Jump Not Greater/Equal OF, SF

JLE/JNG Jump Less/Equal or Jump Not Greater OF, SF, ZF

Following are the conditional jump instructions used on unsigned data used for logical operations:

Instruction Description Flags tested

TUTORIALS POINT

Simply Easy Learning

JE/JZ Jump Equal or Jump Zero ZF

JNE/JNZ Jump not Equal or Jump Not Zero ZF

JA/JNBE Jump Above or Jump Not Below/Equal CF, ZF

JAE/JNB Jump Above/Equal or Jump Not Below CF

JB/JNAE Jump Below or Jump Not Above/Equal CF

JBE/JNA Jump Below/Equal or Jump Not Above AF, CF

The following conditional jump instructions have special uses and check the value of flags:

Instruction Description Flags tested

JXCZ Jump if CX is Zero none

JC Jump If Carry CF

JNC Jump If No Carry CF

JO Jump If Overflow OF

JNO Jump If No Overflow OF

JP/JPE Jump Parity or Jump Parity Even PF

JNP/JPO Jump No Parity or Jump Parity Odd PF

JS Jump Sign (negative value) SF

JNS Jump No Sign (positive value) SF

The syntax for the J<condition> set of instructions:

Example,

CMP AL, BL

JE EQUAL

CMP AL, BH

JE EQUAL

CMP AL, CL

JE EQUAL

NON_EQUAL: ...

EQUAL: ...

Example:
The following program displays the largest of three variables. The variables are double-digit variables. The three
variables num1, num2 and num3 have values 47, 72 and 31 respectively:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov ecx, [num1]

 cmp ecx, [num2]

 jg check_third_num

 mov ecx, [num3]

 check_third_num:

 cmp ecx, [num3]

TUTORIALS POINT

Simply Easy Learning

 jg _exit

 mov ecx, [num3]

 _exit:

 mov [largest], word ecx

 mov ecx,msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 nwln

 mov ecx,largest

 mov edx, 2

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax, 1

 int 80h

section .data

 msg db "The largest digit is: ", 0xA,0xD

 len equ $- msg

 num1 dd '47'

 num2 dd '22'

 num3 dd '31'

segment .bss

 largest resb 2

When the above code is compiled and executed, it produces following result:

The largest digit is:

47

TUTORIALS POINT

Simply Easy Learning

Assembly Loops

The JMP instruction can be used for implementing loops. For example, the following code snippet can be

used for executing the loop-body 10 times.

MOV CL, 10

L1:

<LOOP-BODY>

DEC CL

JNZ L1

The processor instruction set however includes a group of loop instructions for implementing iteration. The basic
LOOP instruction has the following syntax:

LOOP label

Where, label is the target label that identifies the target instruction as in the jump instructions. The LOOP
instruction assumes that the ECX register contains the loop count. When the loop instruction is executed, the

ECX register is decremented and the control jumps to the target label, until the ECX register value, i.e., the
counter reaches the value zero.

The above code snippet could be written as:

mov ECX,10

l1:

<loop body>

loop l1

Example:
The following program prints the number 1 to 9 on the screen:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov ecx,10

 mov eax, '1'

l1:

 mov [num], eax

 mov eax, 4

 mov ebx, 1

 push ecx

CHAPTER

13

TUTORIALS POINT

Simply Easy Learning

 mov ecx, num

 mov edx, 1

 int 0x80

 mov eax, [num]

 sub eax, '0'

 inc eax

 add eax, '0'

 pop ecx

 loop l1

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .bss

num resb 1

When the above code is compiled and executed, it produces following result:

123456789

TUTORIALS POINT

Simply Easy Learning

Assembly Numbers

Numerical data is generally represented in binary system. Arithmetic instructions operate on binary data.

When numbers are displayed on screen or entered from keyboard, they are in ASCII form.

So far, we have converted this input data in ASCII form to binary for arithmetic calculations and converted the
result back to binary. The following code shows this:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov eax,'3'

 sub eax, '0'

 mov ebx, '4'

 sub ebx, '0'

 add eax, ebx

 add eax, '0'

 mov [sum], eax

 mov ecx,msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 nwln

 mov ecx,sum

 mov edx, 1

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db "The sum is:", 0xA,0xD

len equ $ - msg

segment .bss

sum resb 1

When the above code is compiled and executed, it produces following result:

The sum is:

7

CHAPTER

14

TUTORIALS POINT

Simply Easy Learning

Such conversions are however, has an overhead and assembly language programming allows processing
numbers in a more efficient way, in the binary form. Decimal numbers can be represented in two forms:

 ASCII form

 BCD or Binary Coded Decimal form

ASCII Representation
In ASCII representation, decimal numbers are stored as string of ASCII characters. For example, the decimal
value 1234 is stored as:

31 32 33 34H

Where, 31H is ASCII value for 1, 32H is ASCII value for 2, and so on. There are the following four instructions for
processing numbers in ASCII representation:

 AAA - ASCII Adjust After Addition

 AAS - ASCII Adjust After Subtraction

 AAM - ASCII Adjust After Multiplication

 AAD - ASCII Adjust Before Division

These instructions do not take any operands and assumes the required operand to be in the AL register.

The following example uses the AAS instruction to demonstrate the concept:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 sub ah, ah

 mov al, '9'

 sub al, '3'

 aas

 or al, 30h

 mov [res], ax

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov edx,1 ;message length

 mov ecx,res ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db 'The Result is:',0xa

len equ $ - msg

section .bss

res resb 1

When the above code is compiled and executed, it produces following result:

The Result is:

6

TUTORIALS POINT

Simply Easy Learning

BCD Representation
There are two types of BCD representation:

 Unpacked BCD representation

 Packed BCD representation

In unpacked BCD representation, each byte stores the binary equivalent of a decimal digit. For example, the
number 1234 is stored as:

01 02 03 04H

There are two instructions for processing these numbers:

 AAM - ASCII Adjust After Multiplication

 AAD - ASCII Adjust Before Division

The four ASCII adjust instructions, AAA, AAS, AAM and AAD can also be used with unpacked BCD
representation. In packed BCD representation, each digit is stored using four bits. Two decimal digits are packed
into a byte. For example, the number 1234 is stored as:

12 34H

There are two instructions for processing these numbers:

 DAA - Decimal Adjust After Addition

 DAS - decimal Adjust After Subtraction

There is no support for multiplication and division in packed BCD representation.

Example:
The following program adds up two 5-digit decimal numbers and displays the sum. It uses the above concepts:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov esi, 4 ;pointing to the rightmost digit

 mov ecx, 5 ;num of digits

 clc

add_loop:

 mov al, [num1 + esi]

 adc al, [num2 + esi]

 aaa

 pushf

 or al, 30h

 popf

 mov [sum + esi], al

 dec esi

 loop add_loop

 mov edx,len ;message length

TUTORIALS POINT

Simply Easy Learning

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov edx,5 ;message length

 mov ecx,sum ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg db 'The Sum is:',0xa

len equ $ - msg

num1 db '12345'

num2 db '23456'

sum db ' '

When the above code is compiled and executed, it produces following result:

The Sum is:

35801

TUTORIALS POINT

Simply Easy Learning

Assembly Strings

We have already used variable lengths strings in our previous examples. You must have noticed that,

the variable lengths strings can have as many characters as required. Generally, we specify the length of the
string by either of the two ways:

 Explicitly storing string length

 Using a sentinel character

We can store the string length explicitly by using the $ location counter symbol, that represents the current value
of the location counter. In the following example:

msg db 'Hello, world!',0xa ;our dear string

len equ $ - msg ;length of our dear string

$ points to the byte after the last character of the string variable msg. Therefore, $-msg gives the length of the

string. We can also write

msg db 'Hello, world!',0xa ;our dear string

len equ 13 ;length of our dear string

Alternatively, you can store strings with a trailing sentinel character to delimit a string instead of storing the string
length explicitly. The sentinel character should be a special character that does not appear within a string.

For example:

message DB 'I am loving it!', 0

String Instructions
Each string instruction may require a source operand, a destination operand, or both. For 32-bit segments, string
instructions use ESI and EDI registers to point to the source and destination operands, respectively.

For 16-bit segments, however, the SI and the DI registers are used to point to the source and destination
respectively.

There are five basic instructions for processing strings. They are:

 MOVS - This instruction moves 1 Byte, Word or Doubleword of data from memory location to another.

CHAPTER

15

TUTORIALS POINT

Simply Easy Learning

 LODS - This instruction loads from memory. If the operand is of one byte, it is loaded into the AL register, if

the operand is one word, it is loaded into the AX register and a doubleword is loaded into the EAX register.

 STOS - This instruction stores data from register (AL, AX, or EAX) to memory.

 CMPS - This instruction compares two data items in memory. Data could be of a byte size, word or

doubleword.

 SCAS - This instruction compares the contents of a register (AL, AX or EAX) with the contents of an item in

memory.

Each of the above instruction has a byte, word and doubleword version and string instructions can be repeated by
using a repetition prefix.

These instructions use the ES:DI and DS:SI pair of registers, where DI and SI registers contain valid offset
addresses that refers to bytes stored in memory. SI is normally associated with DS (data segment) and DI is
always associated with ES (extra segment).

The DS:SI (or ESI) and ES:DI (or EDI) registers point to the source and destination operands respectively. The
source operand is assumed to be at DS:SI (or ESI) and the destination operand at ES:DI (or EDI) in memory.

For 16-bit addresses the SI and DI registers are used and for 32-bit addresses the ESI and EDI registers are
used.

The following table provides various versions of string instructions and the assumed space of the operands.

Basic Instruction Operands at Byte Operation Word Operation Double word Operation

MOVS ES:DI, DS:EI MOVSB MOVSW MOVSD

LODS AX, DS:SI LODSB LODSW LODSD

STOS ES:DI, AX STOSB STOSW STOSD

CMPS DS:SI, ES: DI CMPSB CMPSW CMPSD

SCAS ES:DI, AX SCASB SCASW SCASD

MOVS
The MOVS instruction is used to copy a data item (byte, word or doubleword) from the source string to the
destination string. The source string is pointed by DS:SI and the destination string is pointed by ES:DI.

The following example explains the concept:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov ecx, len

 mov esi, s1

 mov edi, s2

 cld

 rep movsb

 mov edx,20 ;message length

 mov ecx,s2 ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

s1 db 'Hello, world!',0 ;string 1

TUTORIALS POINT

Simply Easy Learning

len equ $-s1

section .bss

s2 resb 20 ;destination

When the above code is compiled and executed, it produces following result:

Hello, world!

LODS
In cryptography, a Caesar cipher is one of the simplest known encryption techniques. In this method, each letter
in the data to be encrypted is replaced by a letter some fixed number of positions down the alphabet.

In this example, let us encrypt a data by simply replacing each alphabet in it with a shift of two alphabets, so a will
be substituted by c, b with d and so on.

We use LODS to load the original string 'password' into the memory.

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov ecx, len

 mov esi, s1

 mov edi, s2

loop_here:

 lodsb

 add al, 02

 stosb

 loop loop_here

 cld

 rep movsb

 mov edx,20 ;message length

 mov ecx,s2 ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

s1 db 'password', 0 ;source

len equ $-s1

section .bss

s2 resb 10 ;destination

When the above code is compiled and executed, it produces following result:

rcuuyqtf

STOS
The STOS instruction copies the data item from AL (for bytes - STOSB), AX (for words - STOSW) or EAX (for
doublewords - STOSD) to the destination string, pointed to by ES:DI in memory.

The following example demonstrates use of the LODS and STOS instruction to convert an upper case string to its
lower case value:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

TUTORIALS POINT

Simply Easy Learning

 mov ecx, len

 mov esi, s1

 mov edi, s2

loop_here:

 lodsb

 or al, 20h

 stosb

 loop loop_here

 cld

 rep movsb

 mov edx,20 ;message length

 mov ecx,s2 ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

s1 db 'HELLO, WORLD', 0 ;source

len equ $-s1

section .bss

s2 resb 20 ;destination

When the above code is compiled and executed, it produces following result:

hello, world

CMPS
The CMPS instruction compares two strings. This instruction compares two data items of one byte, word or
doubleword, pointed to by the DS:SI and ES:DI registers and sets the flags accordingly. You can also use the
conditional jump instructions along with this instruction.

The following example demonstrates comparing two strings using the CMPS instruction:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov esi, s1

 mov edi, s2

 mov ecx, lens2

 cld

 repe cmpsb

 jecxz equal ;jump when ecx is zero

 ;If not equal then the following code

 mov eax, 4

 mov ebx, 1

 mov ecx, msg_neq

 mov edx, len_neq

 int 80h

 jmp exit

equal:

 mov eax, 4

 mov ebx, 1

 mov ecx, msg_eq

 mov edx, len_eq

 int 80h

exit:

 mov eax, 1

TUTORIALS POINT

Simply Easy Learning

 mov ebx, 0

 int 80h

section .data

s1 db 'Hello, world!',0 ;our first string

lens1 equ $-s1

s2 db 'Hello, there!', 0 ;our second string

lens2 equ $-s2

msg_eq db 'Strings are equal!', 0xa

len_eq equ $-msg_eq

msg_neq db 'Strings are not equal!'

len_neq equ $-msg_neq

When the above code is compiled and executed, it produces following result:

Strings are not equal!

SCAS
The SCAS instruction is used for searching a particular character or set of characters in a string. The data item to
be searched should be in AL (for SCASB), AX (for SCASW) or EAX (for SCASD) registers. The string to be
searched should be in memory and pointed by the ES:DI (or EDI) register.

Look at the following program to understand the concept:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov ecx,len

 mov edi,my_string

 mov al , 'e'

 cld

 repne scasb

 je found ; when found

 ; If not not then the following code

 mov eax,4

 mov ebx,1

 mov ecx,msg_notfound

 mov edx,len_notfound

 int 80h

 jmp exit

found:

 mov eax,4

 mov ebx,1

 mov ecx,msg_found

 mov edx,len_found

 int 80h

exit:

 mov eax,1

 mov ebx,0

 int 80h

section .data

my_string db 'hello world', 0

len equ $-my_string

msg_found db 'found!', 0xa

len_found equ $-msg_found

msg_notfound db 'not found!'

len_notfound equ $-msg_notfound

When the above code is compiled and executed, it produces following result:

TUTORIALS POINT

Simply Easy Learning

found!

Repetition Prefixes
The REP prefix, when set before a string instruction, for example - REP MOVSB, causes repetition of the
instruction based on a counter placed at the CX register. REP executes the instruction, decreases CX by 1, and
checks whether CX is zero. It repeats the instruction processing until CX is zero.

The Direction Flag (DF) determines the direction of the operation.

 Use CLD (Clear Direction Flag, DF = 0) to make the operation left to right.

 Use STD (Set Direction Flag, DF = 1) to make the operation right to left.

The REP prefix also has the following variations:

 REP: it is the unconditional repeat. It repeats the operation until CX is zero.

 REPE or REPZ: It is conditional repeat. It repeats the operation while the zero flag indicate equal/zero. It
stops when the ZF indicates not equal/zero or when CX is zero.

 REPNE or REPNZ: It is also conditional repeat. It repeats the operation while the zero flag indicate not
equal/zero. It stops when the ZF indicates equal/zero or when CX is decremented to zero.

TUTORIALS POINT

Simply Easy Learning

Assembly Arrays

We have already discussed that the data definition directives to the assembler are used for allocating

storage for variables. The variable could also be initialized with some specific value. The initialized value could be
specified in hexadecimal, decimal or binary form.

For example, we can define a word variable months in either of the following way:

MONTHS DW 12

MONTHS DW 0CH

MONTHS DW 0110B

The data definition directives can also be used for defining a one dimensional array. Let us define a one
dimensional array of numbers.

NUMBERS DW 34, 45, 56, 67, 75, 89

The above definition declares an array of six words each initialized with the numbers 34, 45, 56, 67, 75, 89. This
allocates 2x6 = 12 bytes of consecutive memory space. The symbolic address of the first number will be
NUMBERS and that of the second number will be NUMBERS + 2 and so on.

Let us take up another example. You can define an array named inventory of size 8, and initialize all the values
with zero, as:

INVENTORY DW 0

 DW 0

 DW 0

 DW 0

 DW 0

 DW 0

 DW 0

 DW 0

Which, can be abbreviated as:

INVENTORY DW 0, 0 , 0 , 0 , 0 , 0 , 0 , 0

The TIMES directive can also be used for multiple initializations to the same value. Using TIMES, the
INVENTORY array can be defined as

INVENTORY TIMES 8 DW 0

CHAPTER

16

TUTORIALS POINT

Simply Easy Learning

Example:

The following example demonstrates the above concepts by defining a 3 element array x, which stores three
values: 2, 3 and 4. It adds the values in the array and displays the sum 9:

section .text

 global main ;must be declared for linker (ld)

main:

 mov eax,3 ;number bytes to be summed

 mov ebx,0 ;EBX will store the sum

 mov ecx, x ;ECX will point to the current element to be summed

top: add ebx, [ecx]

 add ecx,1 ;move pointer to next element

 dec eax ;decrement counter

 jnz top ;if counter not 0, then loop again

done:

 add ebx, '0'

 mov [sum],byte ebx ;done, store result in "sum"

display:

 mov edx,1 ;message length

 mov ecx, sum ;message to write

 mov ebx, 1 ;file descriptor (stdout)

 mov eax, 4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax, 1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

global x

x:

 db 2

 db 4

 db 3

sum:

 db 0

When the above code is compiled and executed, it produces following result:

9

TUTORIALS POINT

Simply Easy Learning

Assembly Procedures

Procedures or subroutines are very important in assembly language, as the assembly language programs

tend to be large in size. Procedures are identified by a name. Following this name, the body of the procedure is
described, which perform a well-defined job. End of the procedure is indicated by a return statement.

Syntax:
Following is the syntax to define a procedure:

proc_name:

 procedure body

 ...

 ret

The procedure is called from another function by using the CALL instruction. The CALL instruction should have
the name of the called procedure as argument as shown below:

CALL proc_name

The called procedure returns the control to the calling procedure by using the RET instruction.

Example:
Let us write a very simple procedure named sum that adds the variables stored in the ECX and EDX register and
returns the sum in the EAX register:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov ecx,'4'

 sub ecx, '0'

 mov edx, '5'

 sub edx, '0'

 call sum ;call sum procedure

 mov [res], eax

 mov ecx, msg

 mov edx, len

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 nwln

CHAPTER

17

TUTORIALS POINT

Simply Easy Learning

 mov ecx, res

 mov edx, 1

 mov ebx, 1 ;file descriptor (stdout)

 mov eax, 4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

sum:

 mov eax, ecx

 add eax, edx

 add eax, '0'

 ret

section .data

msg db "The sum is:", 0xA,0xD

len equ $- msg

segment .bss

res resb 1

When the above code is compiled and executed, it produces following result:

The sum is:

9

Stacks Data Structure:
A stack is an array-like data structure in the memory in which data can be stored and removed from a location
called the 'top' of the stack. The data need to be stored is 'pushed' into the stack and data to be retrieved is
'popped' out from the stack. Stack is a LIFO data structure, i.e., the data stored first is retrieved last.

Assembly language provides two instructions for stack operations: PUSH and POP. These instructions have
syntaxes like:

PUSH operand

POP address/register

The memory space reserved in the stack segment is used for implementing stack. The registers SS and ESP (or
SP) are used for implementing the stack. The top of the stack, which points to the last data item inserted into the
stack is pointed to by the SS:ESP register, where the SS register points to the beginning of the stack segment
and the SP (or ESP) gives the offset into the stack segment.

The stack implementation has the following characteristics:

 Only words or doublewords could be saved into the stack, not a byte.

 The stack grows in the reverse direction i.e., toward the lower memory address

 The top of the stack points to the last item inserted in the stack; it points to the lower byte of the last word
inserted.

As we discussed about storing the values of the registers in the stack before using them for some use; it can be
done in following way:

; Save the AX and BX registers in the stack

PUSH AX

PUSH BX

; Use the registers for other purpose

MOV AX, VALUE1

TUTORIALS POINT

Simply Easy Learning

MOV BX, VALUE2

...

MOV VALUE1, AX

MOV VALUE2, BX

; Restore the original values

POP AX

POP BX

EXAMPLE:
The following program displays the entire ASCII character set. The main program calls a procedure
named display, which displays the ASCII character set.

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 call display

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

display:

 mov ecx, 256

next:

 push ecx

 mov eax, 4

 mov ebx, 1

 mov ecx, achar

 mov edx, 1

 int 80h

 pop ecx

 mov dx, [achar]

 cmp byte [achar], 0dh

 inc byte [achar]

 loop next

 ret

section .data

achar db '0'

When the above code is compiled and executed, it produces following result:

0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}

...

...

TUTORIALS POINT

Simply Easy Learning

Assembly Recursion

Arecursion procedure is one that calls itself. There are two kinds of recursion: direct and indirect. In

direct recursion, the procedure calls itself and in indirect recursion, the first procedure calls a second procedure,
which in turn, calls the first procedure.

Recursion could be observed in numerous mathematical algorithms. For example consider the case of calculating
the factorial of a number. Factorial of a number is given by the equation:

Fact (n) = n * fact (n-1) for n > 0

For example: factorial of 5 is 1 x 2 x 3 x 4 x 5 = 5 x factorial of 4 and this can be a good example of showing a
recursive procedure. Every recursive algorithm must have an ending condition i.e., the recursive calling of the
program should be stopped when a condition is fulfilled. In the case of factorial algorithm the end condition is
reached when n is 0.

The following program shows how factorial n is implemented in assembly language. To keep the program simple,
we will calculate factorial 3.

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov bx, 3 ;for calculating factorial 3

 call proc_fact

 add ax, 30h

 mov [fact], ax

 mov edx,len ;message length

 mov ecx,msg ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov edx,1 ;message length

 mov ecx,fact ;message to write

 mov ebx,1 ;file descriptor (stdout)

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

CHAPTER

18

TUTORIALS POINT

Simply Easy Learning

proc_fact:

 cmp bl, 1

 jg do_calculation

 mov ax, 1

 ret

do_calculation:

 dec bl

 call proc_fact

 inc bl

 mul bl ;ax = al * bl

 ret

section .data

msg db 'Factorial 3 is:',0xa

len equ $ - msg

section .bss

fact resb 1

When the above code is compiled and executed, it produces following result:

Factorial 3 is:

6

TUTORIALS POINT

Simply Easy Learning

Assembly Macros

Writing a macro is another way of ensuring modular programming in assembly language.

 A macro is a sequence of instructions, assigned by a name and could be used anywhere in the program.

 In NASM, macros are defined with %macro and %endmacro directives.

 The macro begins with the %macro directive and ends with the %endmacro directive.

The Syntax for macro definition:

%macro macro_name number_of_params

<macro body>

%endmacro

Where, number_of_params specifies the number parameters , macro_name specifies the name of the macro.

The macro is invoked by using the macro name along with the necessary parameters. When you need to use
some sequence of instructions many times in a program, you can put those instructions in a macro and use it
instead of writing the instructions all the time.

For example, a very common need for programs is to write a string of characters in the screen. For displaying a
string of characters, you need the following sequence of instructions:

mov edx,len ;message length

mov ecx,msg ;message to write

mov ebx,1 ;file descriptor (stdout)

mov eax,4 ;system call number (sys_write)

int 0x80 ;call kernel

We have observed that, some instructions like IMUL, IDIV, INT etc., need some of the information to be stored in
some particular registers and even returns values in some specific register(s). If the program was already using
those registers for keeping important data, then the existing data from these registers should be saved in the
stack and restored after the instruction is executed.

In the above example of displaying a character string also, the registers EAX, EBX, ECX and EDX we will used by
the INT 80H function call. So for each time you need to display on screen, you need to save these registers on
the stack, invoke INT 80H and then restore the original value of the registers from the stack. So it could be useful
to write two macros for saving and restoring data.

CHAPTER

19

TUTORIALS POINT

Simply Easy Learning

Example:
Following example shows defining and using macros:

; A macro with two parameters

; Implements the write system call

 %macro write_string 2

 mov eax, 4

 mov ebx, 1

 mov ecx, %1

 mov edx, %2

 int 80h

 %endmacro

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 write_string msg1, len1

 write_string msg2, len2

 write_string msg3, len3

 mov eax,1 ;system call number (sys_exit)

 int 0x80 ;call kernel

section .data

msg1 db 'Hello, programmers!',0xA,0xD

len1 equ $ - msg1

msg2 db 'Welcome to the world of,', 0xA,0xD

len2 equ $- msg2

msg3 db 'Linux assembly programming! '

len3 equ $- msg3

When the above code is compiled and executed, it produces following result:

Hello, programmers!

Welcome to the world of,

Linux assembly programming!

TUTORIALS POINT

Simply Easy Learning

Assembly File Management

The system considers any input or output data as stream of bytes. There are three standard file streams:

 Standard input (stdin)

 Standard output (stdout)

 Standard error (stderr)

File Descriptor
A file descriptor is a 16-bit integer assigned to a file as a file id. When a new file is created, or an existing file is

opened, the file descriptor is used for accessing the file.

File descriptor of the standard file streams - stdin, stdout and stderr are 0, 1 and 2 respectively.

File Pointer
A file pointer specifies the location for a subsequent read/write operation in the file in terms of bytes. Each file is

considered as a sequence of bytes. Each open file is associated with a file pointer that specifies an offset in
bytes, relative to the beginning of the file. When a file is opened, the file pointer is set to zero.

File Handling System Calls
The following table briefly describes the system calls related to file handling:

%eax Name %ebx %ecx %edx

2 sys_fork struct pt_regs - -

3 sys_read unsigned int char * size_t

4 sys_write unsigned int const char * size_t

5 sys_open const char * int int

6 sys_close unsigned int - -

8 sys_creat const char * int -

CHAPTER

20

TUTORIALS POINT

Simply Easy Learning

19 sys_lseek unsigned int off_t unsigned int

The steps required for using the system calls are same, as we discussed earlier:

 Put the system call number in the EAX register.

 Store the arguments to the system call in the registers EBX, ECX, etc.

 Call the relevant interrupt (80h)

 The result is usually returned in the EAX register

Creating and Opening a File
For creating and opening a file, perform the following tasks:

 Put the system call sys_creat() number 8, in the EAX register

 Put the filename in the EBX register

 Put the file permissions in the ECX register

The system call returns the file descriptor of the created file in the EAX register, in case of error, the error code is
in the EAX register.

Opening an Existing File
For opening an existing file, perform the following tasks:

 Put the system call sys_open() number 5, in the EAX register

 Put the filename in the EBX register

 Put the file access mode in the ECX register

 Put the file permissions in the EDX register

The system call returns the file descriptor of the created file in the EAX register, in case of error, the error code is
in the EAX register.

Among the file access modes, most commonly used are: read-only (0), write-only (1), and read-write (2).

Reading from a File
For reading from a file, perform the following tasks:

 Put the system call sys_read() number 3, in the EAX register

 Put the file descriptor in the EBX register

 Put the pointer to the input buffer in the ECX register

TUTORIALS POINT

Simply Easy Learning

 Put the buffer size, i.e., the number of bytes to read, in the EDX register

The system call returns the number of bytes read in the EAX register, in case of error, the error code is in the EAX
register.

Writing to a File
For writing to a file, perform the following tasks:

 Put the system call sys_write() number 4, in the EAX register

 Put the file descriptor in the EBX register

 Put the pointer to the output buffer in the ECX register

 Put the buffer size, i.e., the number of bytes to write, in the EDX register

The system call returns the actual number of bytes written in the EAX register, in case of error, the error code is in
the EAX register.

Closing a File
For closing a file, perform the following tasks:

 Put the system call sys_close() number 6, in the EAX register

 Put the file descriptor in the EBX register

The system call returns, in case of error, the error code in the EAX register.

Updating a File
For updating a file, perform the following tasks:

 Put the system call sys_lseek () number 19, in the EAX register

 Put the file descriptor in the EBX register

 Put the offset value in the ECX register

 Put the reference position for the offset in the EDX register

The reference position could be:

 Beginning of file - value 0

 Current position - value 1

 End of file - value 2

The system call returns, in case of error, the error code in the EAX register.

TUTORIALS POINT

Simply Easy Learning

Example:
The following program creates and open a file named myfile.txt, and writes a text 'Welcome to Tutorials Point' in
this file. Next the program reads from the file and stores the data into a buffer named info. Lastly it displays the
text as stored in info.

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

;create the file

 mov eax, 8

 mov ebx, file_name

 mov ecx, 0777 ;read, write and execute by all

 int 0x80 ;call kernel

 mov [fd_out], byte eax

; write into the file

 mov edx,len ;number of bytes

 mov ecx, msg ;message to write

 mov ebx, [fd_out] ;file descriptor

 mov eax,4 ;system call number (sys_write)

 int 0x80 ;call kernel

 ; close the file

 mov eax, 6

 mov ebx, [fd_out]

; write the message indicating end of file write

 mov eax, 4

 mov ebx, 1

 mov ecx, msg_done

 mov edx, len_done

 int 0x80

;open the file for reading

 mov eax, 5

 mov ebx, file_name

 mov ecx, 0 ;for read only access

 mov edx, 0777 ;read, write and execute by all

 int 0x80

 mov [fd_in], byte eax

;read from file

 mov eax, 3

 mov ebx, [fd_in]

 mov ecx, info

 mov edx, 26

 int 0x80

; close the file

 mov eax, 6

 mov ebx, [fd_in]

; print the info

 mov eax, 4

 mov ebx, 1

 mov ecx, info

 mov edx, 26

 int 0x80

 mov eax,1 ;system call number (sys_exit)

TUTORIALS POINT

Simply Easy Learning

 int 0x80 ;call kernel

section .data

file_name db 'myfile.txt'

msg db 'Welcome to Tutorials Point'

len equ $-msg

msg_done db 'Written to file', 0xa

len_done equ $-msg_done

section .bss

fd_out resb 1

fd_in resb 1

info resb 26

When the above code is compiled and executed, it produces following result:

Written to file

Welcome to Tutorials Point

TUTORIALS POINT

Simply Easy Learning

Memory Management

The sys_brk() system call is provided by the kernel, to allocate memory without the need of moving it

later. This call allocates memory right behind application image in memory. This system function allows you to set
the highest available address in the data section.

This system call takes one parameter, which is the highest memory address need to be set. This value is stored
in the EBX register.

In case of any error, sys_brk() returns -1 or returns the negative error code itself. The following example
demonstrates dynamic memory allocation.

Example:
The following program allocates 16kb of memory using the sys_brk() system call:

section .text

 global main ;must be declared for using gcc

main: ;tell linker entry point

 mov eax, 45 ;sys_brk

 xor ebx, ebx

 int 80h

 add eax, 16384 ;number of bytes to be reserved

 mov ebx, eax

 mov eax, 45 ;sys_brk

 int 80h

 cmp eax, 0

 jl exit ;exit, if error

 mov edi, eax ;EDI = highest available address

 sub edi, 4 ;pointing to the last DWORD

 mov ecx, 4096 ;number of DWORDs allocated

 xor eax, eax ;clear eax

 std ;backward

 rep stosd ;repete for entire allocated area

 cld ;put DF flag to normal state

 mov eax, 4

 mov ebx, 1

 mov ecx, msg

 mov edx, len

 int 80h ;print a message

exit:

CHAPTER

21

TUTORIALS POINT

Simply Easy Learning

 mov eax, 1

 xor ebx, ebx

 int 80h

section .data

msg db "Allocated 16 kb of memory!", 10

len equ $ - msg

When the above code is compiled and executed, it produces following result:

Allocated 16 kb of memory!

	Assembly Programming Tutorial
	Audience
	Prerequisites
	Copyright & Disclaimer Notice
	Assembly Introduction
	What is Assembly Language?
	Advantages of Assembly Language
	Basic Features of PC Hardware
	The Binary Number System
	The Hexadecimal Number System
	Binary Arithmetic
	Addressing Data in Memory

	Assembly Environment Setup
	Installing NASM

	Assembly Basic Syntax
	The data Section
	The bss Section
	The text section
	Comments
	Assembly Language Statements
	Syntax of Assembly Language Statements
	The Hello World Program in Assembly
	Compiling and Linking an Assembly Program in NASM

	Assembly Memory Segments
	Memory Segments

	Assembly Registers
	Processor Registers
	Data Registers
	Pointer Registers
	Index Registers
	Control Registers
	Segment Registers
	Example:

	Assembly System Calls
	Linux System Calls
	Example

	Addressing Modes
	Register Addressing
	Immediate Addressing
	Direct Memory Addressing
	Direct-Offset Addressing
	Indirect Memory Addressing
	The MOV Instruction
	SYNTAX:
	EXAMPLE:

	Assembly Variables
	Allocating Storage Space for Initialized Data
	Allocating Storage Space for Uninitialized Data
	Multiple Definitions
	Multiple Initializations

	Assembly Constants
	The EQU Directive
	Example:
	The %assign Directive
	The %define Directive

	Arithmetic Instructions
	SYNTAX:
	EXAMPLE:
	The DEC Instruction
	SYNTAX:
	EXAMPLE:

	The ADD and SUB Instructions
	SYNTAX:
	EXAMPLE:
	The MUL/IMUL Instruction
	SYNTAX:
	EXAMPLE:
	EXAMPLE:

	The DIV/IDIV Instructions
	SYNTAX:
	EXAMPLE:

	Logical Instructions
	The AND Instruction
	Example:
	The OR Instruction
	Example:
	The XOR Instruction
	The TEST Instruction
	The NOT Instruction

	Assembly Conditions
	The CMP Instruction
	SYNTAX
	EXAMPLE:
	Unconditional Jump
	SYNTAX:
	EXAMPLE:
	Conditional Jump
	Example:

	Assembly Loops
	Example:

	Assembly Numbers
	ASCII Representation
	BCD Representation
	Example:

	Assembly Strings
	String Instructions
	MOVS
	LODS
	CMPS
	SCAS
	Repetition Prefixes

	Assembly Arrays
	Example:

	Assembly Procedures
	Syntax:
	Example:
	Stacks Data Structure:
	EXAMPLE:

	Assembly Recursion
	Assembly Macros
	Example:

	Assembly File Management
	File Descriptor
	File Pointer
	File Handling System Calls
	Creating and Opening a File
	Opening an Existing File
	Reading from a File
	Writing to a File
	Closing a File
	Updating a File
	Example:

	Memory Management
	Example:

