

Safety assessment and risk analysis of potential fire hazards and fire development in industrial facilities

I. Vela, C. Knaust, A. Rogge, K.-D. Wehrstedt Federal Institute for Materials Research and Testing (BAM) Unter den Eichen 87, 12205 Berlin

iris.vela@bam.de

Future Safety and Security Research in Europe Prague, 24. - 25. 10. 2013

Outline

- Introduction to fire science at BAM

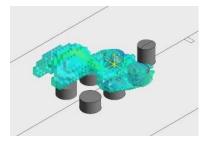
- Industrial fire accidents – effects

BAM recent research

- BAM contribution to HORIZON 2020

X BAM

BAM: safety in technology and chemistry


Bundesanstalt für Materialforschung und -prüfung

Working areas

- Behaviour of structures in fire,
- Fire scenarios and fire analytics,
- Fire testing of construction materials and elements
- Large-scale industrial fires,
- Assessment of dangerous goods/substances
- Flammable bulk materials and dusts, solid fuels
- Explosive substances of chemical Industries
- Explosion dynamics
- Chemical process safety

Pool fire test

Numerical simulation of fire propagation across a tank model

Fire test stand for containment systems of dangerous goods

Unter den Eichen 87 12205 Berlin www.bam.de

Explosion test ground

Fire test stand B, heat input test on a 5000-l container

BAM: fire science

Interdisciplinary research
Dimensions from nm to 100 m
Experiment and Simulation

Chemical Safety Engineering

Enginooning

Combustible Dusts

Pool Fires

Fire Engineering

Fire Testing

Coatings

Nanotechnology

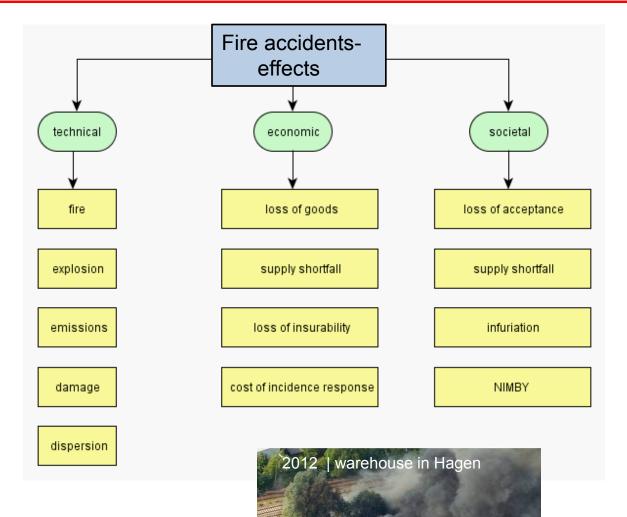
Containment Systems

Full Scale Testing Standardisation

Simulation

Analytical Chemistry

Gas Analysis


Thermal Analysis Polymer Science

Microscopy

B. Schartel

Fire accidents - effects

iNTeg-Risk Deliverable T1.3.2, BAM U. Krause, University of Magdeburg

Industrial system – safety requirements

- Fire safety regulations for design of industrial buildings and storages
 - deterministic methods and approaches
 - prescriptive methods design of industrial buildings
 - performance base engineering methods
 - SEVESO directives, REACH regulation
- Complex industrial system requires appropriate methodologies

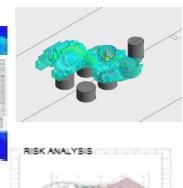
- new methods, considering coupled incidents and probabilities
- new methodologies and recommendations
- safe and economical design of industrial structures and storages

Materialforschung und -prüfung

BAM recent research

Risk analyses of fire hazards and fire development in industrial buildings and storages

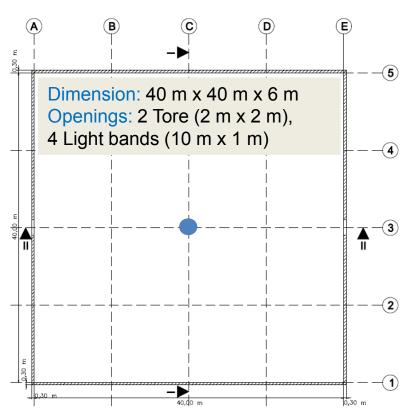
- Experiments and numerical simulations
- fire and smoke propagation, temperature, thermal radiation, fire toxicity
- impact of fire to the structure, stresses and strains in construction elements, load-carrying capacity of buildings


Determination of safety distances

Evaluation:

Risk from fire to humans and environment Risk from fire to industrial structures

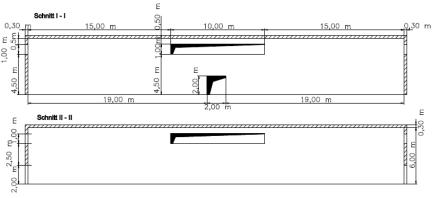
 Design of industrial buildings and the sizing of components with respect to safety and economic efficiency



Fires in industrial buildings

- Numerical modeling

Determination of the gas and components temperature in an industrial building

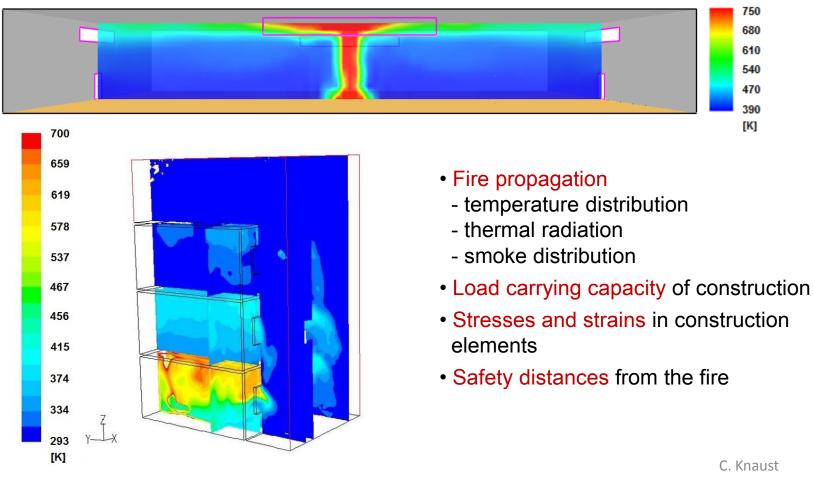


Fire load quantity: 172,80 MJ/m²
Specific fire power: 48 KW/m²
Uistribution: uniform

Heating value: 4,8 kWh/kg

Pyrolysis rate: 10, 20, 30kg/(m² h)

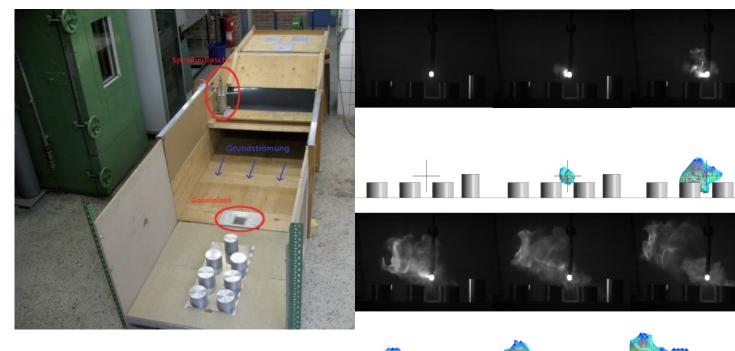
Fire spread: 1 m/min



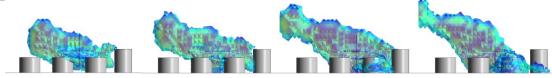
Fires in industrial buildings

Numerical and empirical models in the fire protection engineering

- effects of mass and energy releases


Fire in industrial building – the complex structure

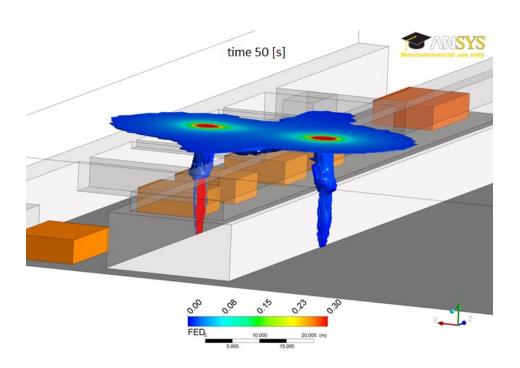
BAM


Fires in industrial plant

Fire propagation tests and numerical modeling

Fire test in wind channel with a model of industrial plant
Small scale tests: 1:200
Methan fire propagation
(low wind conditions, v_w < 1 m/s)

Safety distances for tanks and people


- Ignition and propagation of a methane flame
- Temperature distribution
- Thermal radiation intensity
- Pressure waves

S. Pfister, Dissertation BAM

Airport fire

Experiments and numerical modeling
 New model for determination of smoke propagation and toxicity
 (Fractional Effective Dose (FED) concept)

Safety distances

- Fire propagation
- Smoke propagation
- Smoke toxicity (CO₂, CO, HCN, O, soot)

Risk assessment:

- tenable risk
- the rescue situation for people
 (direction and time for evacuation)

Airport terminal

Dimension: 125 m x 20 m x 220 m

und -prüfung

Large scale storage of hazardous materials

Technological risk due to storage failure

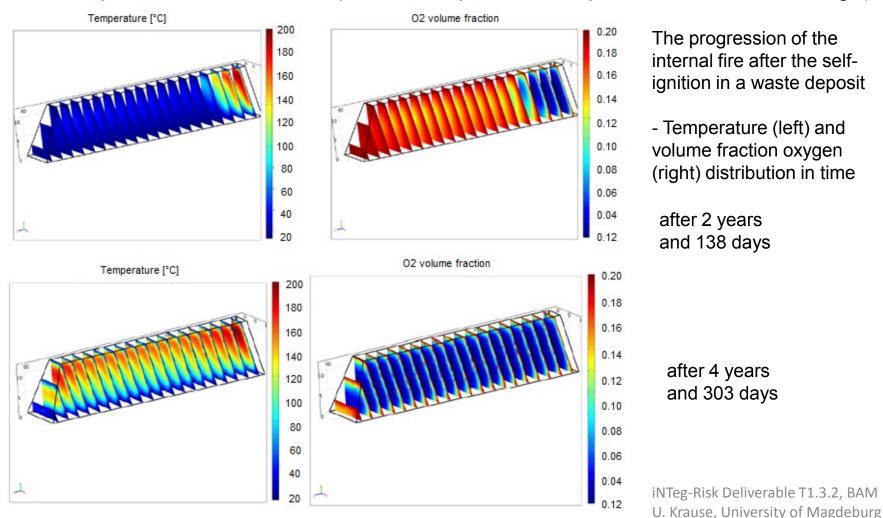
emerging risk

A methodology to assess the hazard of unwanted chemical reactions

- characterisation of long-term thermal and chemical stability of the stored material, prediction of the long-term thermal stability of the deposit.
 - experimental investigation using methods of thermal analysis

advanced predictive model

mathematical analysis.



 effect of unwanted reactions on the public and on the environment (smoke and fire products emissions)

Storage of combustible wastes

- Numerical modeling
Fires in porous bulk materials (waste dumps, coal heaps, silos, biomass storage)

Explosive substances of chemical Industries

Storage Group	Hazard
1.1	Mass explosion, with or without heavy fragments.
1.2	Explosions, but no mass explosion, with or without heavy fragments.
1.3/la	Mass fire.
lb	Fires, the intensity of which range between mass and
II	ordinary fires.
1.4/III	Ordinary fire.
IV	Only for organic peroxides according to UVV; it is not possible to initiate a fire (e. g. stable dispersions in water)

The storage groups Ia, Ib, II, III and IV were introduced as shown in the table (German Explosives Act).

- Safety distances from peroxide fires
 - laboratory and large scale tests
- Development of criteria for storage groups
- Improvement of existing and establishing new standards

- German storage regulations for substances which are not used as explosives but showing "explosive properties"

Large scale fire tests with 5 tons TBPB (left) and 5 tons TBPEH

und -prüfung

Laboratory scale tests on pool fires

- Experiments and numerical modeling

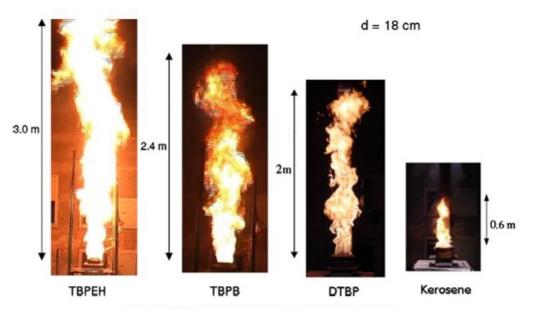
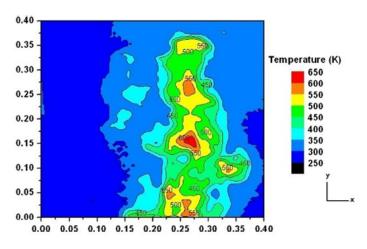
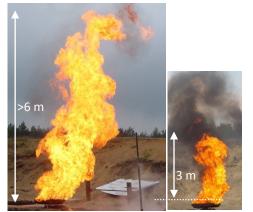



Fig. 5. Visible flame lengths of kerosene and peroxy-fuels.

Measurements:

- Mass burning rate
- Temperature
- Thermal radiation (surface emissive power, irradiance)
- Flame height


Simulated flame temperature of kerosene pool fire (section above the liquid pool surface)

Large scale fire tests on liquid and solid fuels

Safety distances from hydrocarbon and peroxide fires

- Experiments and numerical modeling

DTBP and kerosene pool fires (d = 1 m)

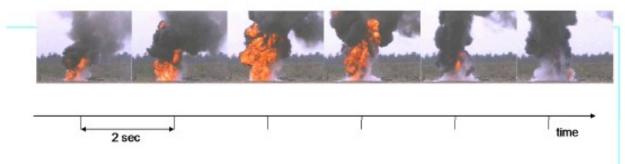
Radiometers

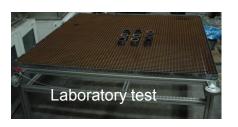
Measurements:

- Mass burning rate
- Temperature
- Thermal radiation (surface emissive power, irradiance)
- Flame height

Burning of Dibenzoyl peroxide with 25% water

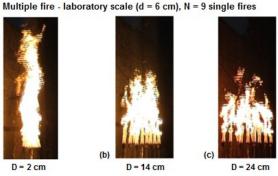
- short sequence of a test with 5 packages each with 20 kg(100 kg)
- intensive heat radiation, pulsating burning
- height of maximum flame about 8 m

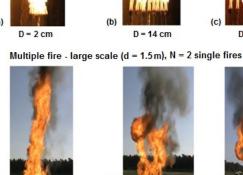


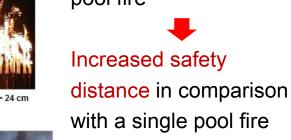

image sequence of one pulse

Multiple fires

Safety distances from multiple hydrocarbon and peroxide pool fires


- Experiments and numerical modeling



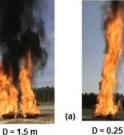


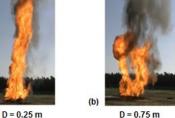
Multiple fire - laboratory scale (d = 6 cm), N = 9 single fires D = 10 cmMultiple fire - large scale (d = 1.5 m), N = 2 single fires

 $D = 0.75 \, \text{m}$

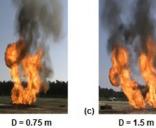
Observed:

Flame merging (depending on distance D between pools)



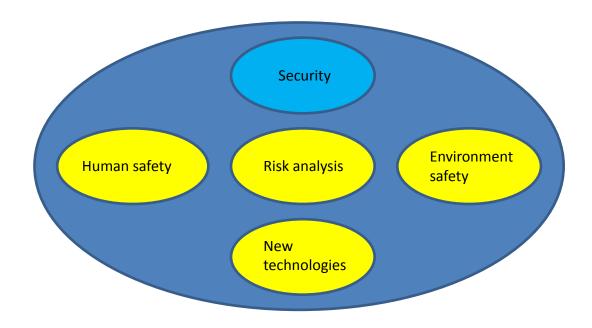

Increased thermal radiation in comparison with a single pool fire

> S. Schälike, Dissertation BAM University of Duisburg-Essen


Kerosene pool fires

D = 0.25 m

DTBP pool fires



BAM contribution to the HORIZON 2020

Experimental and numerical research with respect to

- Risk analysis of potential fire hazards and fire development in industrial buildings and storages
- Technical, environmental and human safety
- Safety improvements of industrial structures
- Safety assessment of road, sea and air transport

Thank you for your State of Materials Research and Testing

Contact details:

A. Rogge

andreas.rogge@bam.de

C. Knaust

christian.knaust@bam.de

K.-D. Wehrstedt

klaus-dieter.wehrstedt@bam.de

I. Vela

iris.vela@bam.de

http://www.bam.de/