

Python 3

i

About the Tutorial

Python is a general-purpose interpreted, interactive, object-oriented, and high-level

programming language. It was created by Guido van Rossum during 1985 – 1990. Like

Perl, Python source code is also available under the GNU General Public License (GPL).

Python is named after a TV Show called ‘Monty Python’s Flying Circus’ and not after

Python-the snake.

Python 3.0 was released in 2008. Although this version is supposed to be backward

incompatibles, later on many of its important features have been backported to be

compatible with the version 2.7. This tutorial gives enough understanding on Python 3

version programming language. Please refer to this link for our Python 2 tutorial.

Audience

This tutorial is designed for software programmers who want to upgrade their Python skills

to Python 3. This tutorial can also be used to learn Python programming language from

scratch.

Prerequisites

You should have a basic understanding of Computer Programming terminologies. A basic

understanding of any of the programming languages is a plus.

Execute Python Programs

For most of the examples given in this tutorial you will find Try it option, so just make use

of it and enjoy your learning.

Try the following example using Try it option available at the top right corner of the below

sample code box −

#!/usr/bin/python3

print ("Hello, Python!")

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

http://www.tutorialspoint.com/python/
mailto:contact@tutorialspoint.com

Python 3

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Execute Python Programs .. i
Copyright & Disclaimer ... i
Table of Contents .. ii

PYTHON 3 – BASIC TUTORIAL .. 1

1. Python 3 – What is New? .. 2
The __future__ module ... 2
The print Function ... 2
Reading Input from Keyboard ... 2
Integer Division .. 3
Unicode Representation .. 3
xrange() Function Removed .. 4
raise exceprion .. 4
Arguments in Exceptions ... 4
next() Function and .next() Method .. 4
2to3 Utility ... 4

2. Python 3 – Overview ... 6
History of Python ... 6
Python Features .. 7

3. Python 3 – Environment Setup.. 8
Local Environment Setup ... 8
Getting Python .. 8
Setting up PATH ... 9
Setting Path at Unix/Linux ... 10
Setting Path at Windows ... 10
Python Environment Variables .. 10
Running Python ... 11

4. Python 3 – Basic Syntax .. 13
First Python Program ... 13
Python Identifiers .. 14
Reserved Words .. 15
Lines and Indentation .. 15
Multi-Line Statements ... 17
Quotation in Python .. 17
Comments in Python ... 17
Using Blank Lines ... 18
Waiting for the User .. 18
Multiple Statements on a Single Line .. 18
Multiple Statement Groups as Suites .. 19
Command Line Arguments .. 19

Python 3

iii

Parsing Command-Line Arguments ... 20

5. Python 3 – Variable Types ... 23
Assigning Values to Variables .. 23
Multiple Assignment ... 23
Standard Data Types.. 24
Python Numbers .. 24
Python Strings.. 25
Python Lists ... 26
Python Tuples .. 27
Python Dictionary .. 27
Data Type Conversion .. 28

6. Python 3 – Basic Operators ... 30
Types of Operator .. 30
Python Arithmetic Operators .. 30
Python Comparison Operators .. 32
Python Assignment Operators .. 33
Python Bitwise Operators .. 35
Python Logical Operators .. 37
Python Membership Operators ... 38
Python Identity Operators ... 39
Python Operators Precedence .. 40

7. Python 3 – Decision Making .. 43
IF Statement .. 44
IF...ELIF...ELSE Statements ... 45
Nested IF Statements .. 48
Single Statement Suites ... 49

8. Python 3 – Loops ... 51
while Loop Statements .. 52
for Loop Statements .. 56
Nested loops .. 59
Loop Control Statements ... 60
break statement .. 61
continue Statement ... 63
pass Statement .. 65
Iterator and Generator .. 66

9. Python 3 – Numbers ... 68
Mathematical Functions .. 70
Number abs() Method ... 71
Number ceil() Method ... 71
Number exp() Method ... 72
Number fabs() Method .. 73
Number floor() Method ... 74
Number log() Method.. 75
Number log10() Method ... 76
Number max() Method .. 77
Number min() Method .. 78
Number modf() Method .. 79

Python 3

iv

Number pow() Method ... 80
Number round() Method ... 80
Number sqrt() Method .. 81
Random Number Functions ... 82
Number choice() Method .. 82
Number randrange() Method .. 83
Number random() Method .. 84
Number seed() Method ... 85
Number shuffle() Method ... 86
Number uniform() Method ... 87
Trigonometric Functions ... 88
Number acos() Method ... 88
Number asin() Method .. 89
Number atan() Method ... 90
Number atan2() Method ... 91
Number cos() Method ... 92
Number hypot() Method ... 93
Number sin() Method .. 94
Number tan() Method ... 95
Number degrees() Method .. 96
Number radians() Method ... 97
Mathematical Constants ... 98

10. Python 3 – Strings ... 99
Accessing Values in Strings .. 99
Updating Strings .. 99
Escape Characters ... 100
String Special Operators .. 101
String Formatting Operator ... 102
Triple Quotes ... 104
Unicode String ... 105
String capitalize() Method ... 109
String center() Method .. 110
String count() Method ... 111
String decode() Method .. 112
String encode() Method .. 112
String endswith() Method ... 113
String expandtabs() Method.. 114
String find() Method .. 115
String index() Method ... 116
String isalnum() Method .. 117
String isalpha() Method ... 118
String isdigit() Method ... 118
String islower() Method ... 119
String isnumeric() Method .. 120
String isspace() Method ... 121
String istitle() Method ... 122
String isupper() Method .. 122
String join() Method .. 123
String len() Method ... 124
String ljust() Method ... 125
String lower() Method ... 125

Python 3

v

String lstrip() Method .. 126
String maketrans() Method ... 127
String max() Method ... 128
String min() Method .. 129
String replace() Method .. 129
String rfind() Method ... 130
String rindex() Method .. 131
String rjust() Method ... 132
String rstrip() Method .. 133
String split() Method ... 134
String splitlines() Method .. 135
String startswith() Method .. 135
String strip() Method ... 136
String swapcase() Method ... 137
String title() Method .. 138
String translate() Method .. 138
String upper() Method ... 140
String zfill() Method ... 140
String isdecimal() Method ... 141

11. Python 3 – Lists ... 143
Python Lists ... 143
Accessing Values in Lists .. 143
Updating Lists .. 144
Delete List Elements .. 144
Basic List Operations ... 144
Indexing, Slicing and Matrixes ... 145
Built-in List Functions & Methods ... 145
List len() Method ... 146
List max() Method ... 147
List min() Method .. 147
List list() Method ... 148
List append() Method .. 150
List count() Method ... 151
List extend() Method ... 151
List index() Method ... 152
List insert() Method ... 153
List pop() Method .. 154
List remove() Method .. 154
List reverse() Method .. 155
List sort() Method .. 156

12. Python 3 – Tuples.. 157
Accessing Values in Tuples .. 157
Updating Tuples ... 158
Delete Tuple Elements .. 158
Basic Tuples Operations .. 159
Indexing, Slicing, and Matrixes .. 159
No Enclosing Delimiters ... 160
Built-in Tuple Functions ... 160
Tuple len() Method .. 160
Tuple max() Method .. 161

Python 3

vi

Tuple min() Method .. 162
Tuple tuple() Method .. 162

13. Python 3 – Dictionary .. 164
Accessing Values in Dictionary .. 164
Updating Dictionary ... 165
Delete Dictionary Elements ... 165
Properties of Dictionary Keys .. 166
Built-in Dictionary Functions & Methods .. 167
Dictionary len() Method .. 167
Dictionary str() Method ... 168
Dictionary type() Method .. 168
Dictionary clear() Method ... 170
Dictionary copy() Method ... 171
Dictionary fromkeys() Method .. 172
Dictionary get() Method .. 172
Dictionary items() Method .. 173
Dictionary keys() Method .. 174
Dictionary setdefault() Method ... 174
Dictionary update() Method .. 175
Dictionary values() Method ... 176

14. Python 3 – Date & Time .. 178
What is Tick?.. 178
What is TimeTuple? ... 178
Getting current time .. 180
Getting formatted time ... 180
Getting calendar for a month .. 180
The time Module ... 181
Time altzone() Method .. 182
Time asctime() Method ... 183
Time clock() Method ... 184
Time ctime() Method ... 185
Time gmtime() Method ... 186
Time localtime() Method ... 187
Time mktime() Method ... 187
Time sleep() Method ... 188
Time strftime() Method ... 189
Time strptime() Method .. 191
Time time() Method .. 193
Time tzset() Method .. 194
The calendar Module .. 196
Other Modules & Functions .. 198

15. Python 3 – Functions ... 199
Defining a Function.. 199
Calling a Function .. 200
Pass by Reference vs Value ... 200
Function Arguments .. 202
Required Arguments.. 202
Keyword Arguments .. 202
Default Arguments .. 203

Python 3

vii

Variable-length Arguments ... 204
The Anonymous Functions .. 205
The return Statement .. 206
Global vs. Local variables ... 206

16. Python 3 – Modules .. 208
The import Statement ... 208
The from...import Statement .. 209
The from...import * Statement: .. 209
Executing Modules as Scripts .. 209
Locating Modules .. 210
The PYTHONPATH Variable ... 210
Namespaces and Scoping .. 211
The dir() Function ... 212
The globals() and locals() Functions.. 212
The reload() Function .. 212
Packages in Python .. 213

17. Python 3 – Files I/O ... 215
Printing to the Screen .. 215
Reading Keyboard Input .. 215
The input Function .. 215
Opening and Closing Files .. 216
The open Function .. 216
The file Object Attributes .. 217
The close() Method ... 218
Reading and Writing Files .. 219
The write() Method ... 219
The read() Method .. 220
File Positions .. 220
Renaming and Deleting Files ... 221
The rename() Method ... 221
The remove() Method ... 222
Directories in Python ... 222
The mkdir() Method .. 222
The chdir() Method ... 223
The getcwd() Method ... 223
The rmdir() Method .. 224
File & Directory Related Methods ... 224
File Methods .. 224
File close() Method .. 226
File flush() Method .. 227
File fileno() Method ... 228
File isatty() Method ... 228
File next() Method ... 229
File read() Method ... 231
File readline() Method ... 232
File readlines() Method ... 233
File seek() Method ... 234
File tell() Method ... 236
File truncate() Method .. 237

Python 3

viii

File write() Method .. 238
File writelines() Method .. 240
OS File/Directory Methods .. 241
os.access() Method .. 248
os.chdir() Method .. 250
os.chflags() Method ... 251
os.chmod() Method ... 252
os.chown() Method ... 254
os.chroot() Method ... 255
Python os.close() Method ... 255
os.closerange() Method .. 256
os.dup() Method .. 258
os.dup2() Method .. 259
os.fchdir() Method... 260
os.fchmod() Method .. 261
os.fchown() Method .. 263
os.fdatasync() Method .. 264
os.fdopen() Method .. 266
os.fpathconf() Method .. 267
os.fstat() Method ... 269
os.fstatvfs() Method .. 270
os.fsync() Method .. 272
os.ftruncate() Method ... 273
os.getcwd() Method .. 274
os.getcwdu() Method .. 275
os.isatty() Method ... 276
os.lchflags() Method .. 278
os.lchown() Method .. 279
os.link() Method .. 280
os.listdir() Method ... 281
os.lseek() Method .. 282
os.lstat() Method ... 284
os.major() Method .. 286
os.makedev() Method ... 286
os.makedirs() Method ... 288
os.minor() Method .. 288
os.mkdir() Method... 289
os.mkfifo() Method ... 290
os.mknod() Method ... 291
os.open() Method .. 292
os.openpty() Method .. 293
os.pathconf() Method ... 294
os.pipe() Method ... 296
os.popen() Method .. 297
os.read() Method ... 298
os.readlink() Method ... 299
os.remove() Method.. 300
os.removedirs() Method .. 301
os.rename() Method ... 302
os.renames() Method .. 303
os.renames() Method .. 304
os.rmdir() Method ... 305

Python 3

ix

os.stat() Method .. 307
os.stat_float_times() Method ... 308
os.statvfs() Method ... 309
os.symlink() Method .. 310
os.tcgetpgrp() Method .. 311
os.tcsetpgrp() Method ... 312
os.tempnam() Method .. 313
os.tmpfile() Method .. 314
os.tmpnam() Method .. 315
os.ttyname() Method .. 315
os.unlink() Method .. 317
os.utime() Method .. 318
os.walk() Method .. 319
os.write() Method ... 321

18. Python 3 – Exceptions Handling ... 323
Standard Exceptions .. 323
Assertions in Python .. 325
What is Exception? .. 326
Handling an Exception ... 326
The except Clause with No Exceptions ... 328
The except Clause with Multiple Exceptions .. 328
The try-finally Clause ... 329
Argument of an Exception ... 330
Raising an Exception .. 331
User-Defined Exceptions ... 332

PYTHON 3 – ADVANCED TUTORIAL ... 333

19. Python 3 – Object Oriented ... 334
Overview of OOP Terminology .. 334
Creating Classes ... 335
Creating Instance Objects .. 336
Accessing Attributes .. 336
Built-In Class Attributes ... 337
Destroying Objects (Garbage Collection) .. 339
Class Inheritance ... 340
Overriding Methods .. 342
Base Overloading Methods ... 342
Overloading Operators .. 343
Data Hiding .. 344

20. Python 3 – Regular Expressions ... 346
The match Function .. 347
The search Function ... 348
Matching Versus Searching ... 349
Search and Replace ... 350
Regular Expression Modifiers: Option Flags .. 350
Regular Expression Patterns .. 351
Regular Expression Examples .. 353
Character classes ... 354

Python 3

x

Special Character Classes .. 354
Repetition Cases .. 355
Nongreedy Repetition ... 355
Grouping with Parentheses ... 355
Backreferences .. 356
Alternatives ... 356
Anchors .. 356
Special Syntax with Parentheses ... 357

21. Python 3 – CGI Programming .. 358
What is CGI? .. 358
Web Browsing ... 358
CGI Architecture Diagram .. 359
Web Server Support and Configuration .. 359
First CGI Program... 360
HTTP Header .. 361
CGI Environment Variables .. 361
GET and POST Methods ... 363
Passing Information using GET method .. 363
Simple URL Example – Get Method ... 363
Simple FORM Example – GET Method .. 364
Passing Radio Button Data to CGI Program ... 367
Passing Text Area Data to CGI Program... 368
Passing Drop Down Box Data to CGI Program ... 369
Using Cookies in CGI .. 370
How It Works? ... 370
Setting up Cookies ... 371
Retrieving Cookies ... 371
File Upload Example .. 372
How To Raise a "File Download" Dialog Box ? ... 374

22. Python 3 – MySQL Database Access .. 375
What is PyMySQL ? .. 375
How do I Install PyMySQL? .. 376
Database Connection .. 376
Creating Database Table .. 377
INSERT Operation .. 378
READ Operation ... 380
Update Operation .. 382
DELETE Operation .. 383
Performing Transactions ... 383
COMMIT Operation ... 384
ROLLBACK Operation ... 384
Disconnecting Database .. 384
Handling Errors .. 385

23. Python 3 – Network Programming ... 387
What is Sockets? .. 387
The socket Module .. 388
Server Socket Methods ... 388
Client Socket Methods .. 388
General Socket Methods ... 389

Python 3

xi

A Simple Server.. 389
A Simple Client... 390
Python Internet Modules .. 391
Further Readings ... 392

24. Python 3 – Sending Email using SMTP .. 393
Sending an HTML e-mail using Python .. 394
Sending Attachments as an E-mail .. 395

25. Python 3 – Multithreaded Programming .. 398
Starting a New Thread ... 398
The Threading Module .. 400
Creating Thread Using Threading Module .. 400
Synchronizing Threads ... 402
Multithreaded Priority Queue ... 404

26. Python 3 – XML Processing ... 407
What is XML? ... 407
XML Parser Architectures and APIs ... 407
Parsing XML with SAX APIs .. 408
The make_parser Method .. 409
The parse Method .. 409
The parseString Method .. 409
Parsing XML with DOM APIs .. 412

27. Python 3 – GUI Programming (Tkinter) ... 415
Tkinter Programming ... 415
Tkinter Widgets ... 416
Tkinter Button ... 418
Tkinter Canvas ... 420
Tkinter Checkbutton .. 423
Tkinter Entry .. 427
Tkinter Frame .. 431
Tkinter Label .. 433
Tkinter Listbox ... 435
Tkinter Menubutton .. 439
Tkinter Menu ... 442
Tkinter Message .. 446
Tkinter Radiobutton .. 449
Tkinter Scale .. 453
Tkinter Scrollbar .. 457
Tkinter Text.. 460
Tkinter Toplevel ... 464
Tkinter Spinbox .. 467
Tkinter PanedWindow ... 471
Tkinter LabelFrame .. 473
Tkinter tkMessageBox ... 475
Standard Attributes ... 477
Tkinter Dimensions .. 477
Tkinter Colors .. 478
Tkinter Fonts .. 479
Tkinter Anchors ... 480

Python 3

xii

Tkinter Relief styles ... 481
Tkinter Bitmaps ... 482
Tkinter Cursors .. 484
Geometry Management .. 485
Tkinter pack() Method ... 486
Tkinter grid() Method .. 487
Tkinter place() Method .. 488

28. Python 3 – Extension Programming with C ... 490
Pre-Requisites for Writing Extensions ... 490
First look at a Python Extension .. 490
The Header File Python.h .. 490
The C Functions ... 491
The Method Mapping Table .. 491
The Initialization Function ... 492
Building and Installing Extensions ... 494
Importing Extensions ... 494
Passing Function Parameters .. 495
The PyArg_ParseTuple Function .. 496
Returning Values ... 497
The Py_BuildValue Function .. 498

Python 3

1

Python 3 – Basic Tutorial

Python 3

2

The __future__ module

Python 3.x introduced some Python 2-incompatible keywords and features that can be

imported via the in-built __future__ module in Python 2. It is recommended to use

__future__ imports, if you are planning Python 3.x support for your code.

For example, if we want Python 3.x's integer division behavior in Python 2, add the

following import statement.

from __future__ import division

The print Function

Most notable and most widely known change in Python 3 is how the print function is used.

Use of parenthesis () with print function is now mandatory. It was optional in Python 2.

print "Hello World" #is acceptable in Python 2

print ("Hello World") # in Python 3, print must be followed by ()

The print() function inserts a new line at the end, by default. In Python 2, it can be

suppressed by putting ',' at the end. In Python 3, "end=' '" appends space instead of

newline.

print x, # Trailing comma suppresses newline in Python 2

print(x, end=" ") # Appends a space instead of a newline in Python 3

Reading Input from Keyboard

Python 2 has two versions of input functions, input() and raw_input(). The input()

function treats the received data as string if it is included in quotes '' or "", otherwise the

data is treated as number.

In Python 3, raw_input() function is deprecated. Further, the received data is always

treated as string.

In Python 2

>>> x=input('something:')

something:10 #entered data is treated as number

>>> x

10

>>> x=input('something:')

something:'10' #eentered data is treated as string

1. Python 3 – What is New?

Python 3

3

>>> x

'10'

>>> x=raw_input("something:")

something:10 #entered data is treated as string even without ''

>>> x

'10'

>>> x=raw_input("something:")

something:'10' #entered data treated as string including ''

>>> x

"'10'"

In Python 3

>>> x=input("something:")

something:10

>>> x

'10'

>>> x=input("something:")

something:'10' #entered data treated as string with or without ''

>>> x

"'10'"

>>> x=raw_input("something:") # will result NameError

Traceback (most recent call last):

 File "", line 1, in

 x=raw_input("something:")

NameError: name 'raw_input' is not defined

Integer Division

In Python 2, the result of division of two integers is rounded to the nearest integer. As a

result, 3/2 will show 1. In order to obtain a floating-point division, numerator or

denominator must be explicitly used as float. Hence, either 3.0/2 or 3/2.0 or 3.0/2.0 will

result in 1.5

Python 3 evaluates 3 / 2 as 1.5 by default, which is more intuitive for new programmers.

Unicode Representation

Python 2 requires you to mark a string with a u if you want to store it as Unicode.

Python 3 stores strings as Unicode, by default. We have Unicode (utf-8) strings, and 2

byte classes: byte and byte arrays.

Python 3

4

xrange() Function Removed

In Python 2 range() returns a list, and xrange() returns an object that will only generate

the items in the range when needed, saving memory.

In Python 3, the range() function is removed, and xrange() has been renamed as range().

In addition, the range() object supports slicing in Python 3.2 and later .

raise exceprion

Python 2 accepts both notations, the 'old' and the 'new' syntax; Python 3 raises a

SyntaxError if we do not enclose the exception argument in parenthesis.

raise IOError, "file error" #This is accepted in Python 2

raise IOError("file error") #This is also accepted in Python 2

raise IOError, "file error" #syntax error is raised in Python 3

raise IOError("file error") #this is the recommended syntax in Python 3

Arguments in Exceptions

In Python 3, arguments to exception should be declared with 'as' keyword.

except Myerror, err: # In Python2

except Myerror as err: #In Python 3

next() Function and .next() Method

In Python 2, next() as a method of generator object, is allowed. In Python 2, the next()

function, to iterate over generator object, is also accepted. In Python 3, however, next(0

as a generator method is discontinued and raises AttributeError.

gen = (letter for letter in 'Hello World') # creates generator object

next(my_generator) #allowed in Python 2 and Python 3

my_generator.next() #allowed in Python 2. raises AttributeError in Python 3

2to3 Utility

Along with Python 3 interpreter, 2to3.py script is usually installed in tools/scripts folder.

It reads Python 2.x source code and applies a series of fixers to transform it into a valid

Python 3.x code.

Here is a sample Python 2 code (area.py):

def area(x,y=3.14):

 a=y*x*x

 print a

 return a

Python 3

5

a=area(10)

print "area",a

To convert into Python 3 version:

$2to3 -w area.py

Converted code :

def area(x,y=3.14): # formal parameters

 a=y*x*x

 print (a)

 return a

a=area(10)

print("area",a)

Python 3

6

Python is a high-level, interpreted, interactive and object-oriented scripting language.

Python is designed to be highly readable. It uses English keywords frequently whereas the

other languages use punctuations. It has fewer syntactical constructions than other

languages.

 Python is Interpreted: Python is processed at runtime by the interpreter. You do

not need to compile your program before executing it. This is similar to PERL and

PHP.

 Python is Interactive: You can actually sit at a Python prompt and interact with

the interpreter directly to write your programs.

 Python is Object-Oriented: Python supports Object-Oriented style or technique

of programming that encapsulates code within objects.

 Python is a Beginner's Language: Python is a great language for the beginner-

level programmers and supports the development of a wide range of applications

from simple text processing to WWW browsers to games.

History of Python

Python was developed by Guido van Rossum in the late eighties and early nineties at the

National Research Institute for Mathematics and Computer Science in the Netherlands.

 Python is derived from many other languages, including ABC, Modula-3, C, C++,

Algol-68, SmallTalk, and Unix shell and other scripting languages.

 Python is copyrighted. Like Perl, Python source code is now available under the

GNU General Public License (GPL).

 Python is now maintained by a core development team at the institute, although

Guido van Rossum still holds a vital role in directing its progress.

 Python 1.0 was released in November 1994. In 2000, Python 2.0 was released.

Python 2.7.11 is the latest edition of Python 2.

 Meanwhile, Python 3.0 was released in 2008. Python 3 is not backward compatible

with Python 2. The emphasis in Python 3 had been on the removal of duplicate

programming constructs and modules so that "There should be one -- and

preferably only one -- obvious way to do it." Python 3.5.1 is the latest version of

Python 3.

2. Python 3 – Overview

Python 3

7

Python Features

Python's features include-

 Easy-to-learn: Python has few keywords, simple structure, and a clearly defined

syntax. This allows a student to pick up the language quickly.

 Easy-to-read: Python code is more clearly defined and visible to the eyes.

 Easy-to-maintain: Python's source code is fairly easy-to-maintain.

 A broad standard library: Python's bulk of the library is very portable and cross-

platform compatible on UNIX, Windows, and Macintosh.

 Interactive Mode: Python has support for an interactive mode, which allows

interactive testing and debugging of snippets of code.

 Portable: Python can run on a wide variety of hardware platforms and has the

same interface on all platforms.

 Extendable: You can add low-level modules to the Python interpreter. These

modules enable programmers to add to or customize their tools to be more

efficient.

 Databases: Python provides interfaces to all major commercial databases.

 GUI Programming: Python supports GUI applications that can be created and

ported to many system calls, libraries and windows systems, such as Windows MFC,

Macintosh, and the X Window system of Unix.

 Scalable: Python provides a better structure and support for large programs than

shell scripting.

Apart from the above-mentioned features, Python has a big list of good features. A few

are listed below-

 It supports functional and structured programming methods as well as OOP.

 It can be used as a scripting language or can be compiled to byte-code for building

large applications.

 It provides very high-level dynamic data types and supports dynamic type

checking.

 It supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Python 3

8

Try it Option Online

We have set up the Python Programming environment online, so that you can compile and

execute all the available examples online. It will give you the confidence in what you are

reading and will enable you to verify the programs with different options. Feel free to

modify any example and execute it online.

Try the following example using our online compiler available at CodingGround

#!/usr/bin/python3

print ("Hello, Python!")

For most of the examples given in this tutorial, you will find a Try it option on our website

code sections, at the top right corner that will take you to the online compiler. Just use it

and enjoy your learning.

Python 3 is available for Windows, Mac OS and most of the flavors of Linux operating

system. Even though Python 2 is available for many other OSs, Python 3 support either

has not been made available for them or has been dropped.

Local Environment Setup

Open a terminal window and type "python" to find out if it is already installed and which

version is installed.

Getting Python

Windows platform

Binaries of latest version of Python 3 (Python 3.5.1) are available on this download page

The following different installation options are available.

 Windows x86-64 embeddable zip file

 Windows x86-64 executable installer

 Windows x86-64 web-based installer

 Windows x86 embeddable zip file

 Windows x86 executable installer

 Windows x86 web-based installer

Note:In order to install Python 3.5.1, minimum OS requirements are Windows 7 with SP1.

For versions 3.0 to 3.4.x, Windows XP is acceptable.

3. Python 3 – Environment Setup

http://www.tutorialspoint.com/codingground.htm
https://www.python.org/downloads/windows/

Python 3

9

Linux platform

Different flavors of Linux use different package managers for installation of new packages.

On Ubuntu Linux, Python 3 is installed using the following command from the terminal.

$sudo apt-get install python3-minimal

Installation from source

Download Gzipped source tarball from Python's download URL:

https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz

Extract the tarball

tar xvfz Python-3.5.1.tgz

Configure and Install:

cd Python-3.5.1

./configure --prefix=/opt/python3.5.1

make

sudo make install

Mac OS

Download Mac OS installers from this URL:https://www.python.org/downloads/mac-osx/

 Mac OS X 64-bit/32-bit installer : python-3.5.1-macosx10.6.pkg

 Mac OS X 32-bit i386/PPC installer : python-3.5.1-macosx10.5.pkg

Double click this package file and follow the wizard instructions to install.

The most up-to-date and current source code, binaries, documentation, news, etc., is

available on the official website of Python:

Python Official Website : http://www.python.org/

You can download Python documentation from the following site. The documentation is

available in HTML, PDF and PostScript formats.

Python Documentation Website : www.python.org/doc/

Setting up PATH

Programs and other executable files can be in many directories. Hence, the operating

systems provide a search path that lists the directories that it searches for executables.

The important features are-

 The path is stored in an environment variable, which is a named string maintained

by the operating system. This variable contains information available to the

command shell and other programs.

https://www.python.org/ftp/python/3.5.1/Python-3.5.1.tgz
https://www.python.org/downloads/mac-osx/
http://www.python.org/
http://www.python.org/doc/

Python 3

10

 The path variable is named as PATH in Unix or Path in Windows (Unix is case-

sensitive; Windows is not).

 In Mac OS, the installer handles the path details. To invoke the Python interpreter

from any particular directory, you must add the Python directory to your path.

Setting Path at Unix/Linux

To add the Python directory to the path for a particular session in Unix-

 In the csh shell: type setenv PATH "$PATH:/usr/local/bin/python3" and press

Enter.

 In the bash shell (Linux): type export PATH="$PATH:/usr/local/bin/python3"

and press Enter.

 In the sh or ksh shell: type PATH="$PATH:/usr/local/bin/python3" and press

Enter.

Note: /usr/local/bin/python3 is the path of the Python directory.

Setting Path at Windows

To add the Python directory to the path for a particular session in Windows-

At the command prompt : type

path %path%;C:\Python and press Enter.

Note: C:\Python is the path of the Python directory.

Python Environment Variables

Here are important environment variables, which are recognized by Python-

Variable Description

PYTHONPATH

It has a role similar to PATH. This variable tells the Python

interpreter where to locate the module files imported into a

program. It should include the Python source library directory and

the directories containing Python source code. PYTHONPATH is

sometimes, preset by the Python installer.

PYTHONSTARTUP

It contains the path of an initialization file containing Python

source code. It is executed every time you start the interpreter. It

is named as .pythonrc.py in Unix and it contains commands that

load utilities or modify PYTHONPATH.

Python 3

11

PYTHONCASEOK

It is used in Windows to instruct Python to find the first case-

insensitive match in an import statement. Set this variable to any

value to activate it.

PYTHONHOME

It is an alternative module search path. It is usually embedded in

the PYTHONSTARTUP or PYTHONPATH directories to make

switching module libraries easy.

Running Python

There are three different ways to start Python-

(1) Interactive Interpreter

You can start Python from Unix, DOS, or any other system that provides you a command-

line interpreter or shell window.

Enter python the command line.

Start coding right away in the interactive interpreter.

$python # Unix/Linux

or

python% # Unix/Linux

or

C:>python # Windows/DOS

Here is the list of all the available command line options-

Option Description

-d provide debug output

-O generate optimized bytecode (resulting in .pyo files)

-S do not run import site to look for Python paths on startup

-v verbose output (detailed trace on import statements)

-X
disable class-based built-in exceptions (just use strings); obsolete starting

with version 1.6

-c cmd run Python script sent in as cmd string

Python 3

12

file run Python script from given file

(2) Script from the Command-line

A Python script can be executed at the command line by invoking the interpreter on your

application, as shown in the following example.

$python script.py # Unix/Linux

or

python% script.py # Unix/Linux

or

C:>python script.py # Windows/DOS

Note: Be sure the file permission mode allows execution.

(3) Integrated Development Environment

You can run Python from a Graphical User Interface (GUI) environment as well, if you have

a GUI application on your system that supports Python.

 Unix: IDLE is the very first Unix IDE for Python.

 Windows: PythonWin is the first Windows interface for Python and is an IDE with

a GUI.

 Macintosh: The Macintosh version of Python along with the IDLE IDE is available

from the main website, downloadable as either MacBinary or BinHex'd files.

If you are not able to set up the environment properly, then you can take the help of your

system admin. Make sure the Python environment is properly set up and working perfectly

fine.

Note: All the examples given in subsequent chapters are executed with Python 3.4.1

version available on Windows 7 and Ubuntu Linux.

We have already set up Python Programming environment online, so that you can execute

all the available examples online while you are learning theory. Feel free to modify any

example and execute it online.

Python 3

13

The Python language has many similarities to Perl, C, and Java. However, there are some

definite differences between the languages.

First Python Program

Let us execute the programs in different modes of programming.

Interactive Mode Programming

Invoking the interpreter without passing a script file as a parameter brings up the following

prompt-

$ python

Python 3.3.2 (default, Dec 10 2013, 11:35:01)

[GCC 4.6.3] on Linux

Type "help", "copyright", "credits", or "license" for more information.

>>>

On Windows:

Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06) [MSC v.1600 32 bit (Intel)] on

win32

Type "copyright", "credits" or "license()" for more information.

>>>

Type the following text at the Python prompt and press Enter-

>>> print ("Hello, Python!")

If you are running the older version of Python (Python 2.x), use of parenthesis as

inprint function is optional. This produces the following result-

Hello, Python!

Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the script and

continues until the script is finished. When the script is finished, the interpreter is no longer

active.

Let us write a simple Python program in a script. Python files have the extension.py. Type

the following source code in a test.py file-

print ("Hello, Python!")

4. Python 3 – Basic Syntax

Python 3

14

We assume that you have the Python interpreter set in PATH variable. Now, try to run

this program as follows-

On Linux

$ python test.py

This produces the following result-

Hello, Python!

On Windows

C:\Python34>Python test.py

This produces the following result-

Hello, Python!

Let us try another way to execute a Python script in Linux. Here is the modified test.py

file-

#!/usr/bin/python3

print ("Hello, Python!")

We assume that you have Python interpreter available in the /usr/bin directory. Now, try

to run this program as follows-

$ chmod +x test.py # This is to make file executable

$./test.py

This produces the following result-

Hello, Python!

Python Identifiers

A Python identifier is a name used to identify a variable, function, class, module or other

object. An identifier starts with a letter A to Z or a to z or an underscore (_) followed by

zero or more letters, underscores and digits (0 to 9).

Python does not allow punctuation characters such as @, $, and % within identifiers.

Python is a case sensitive programming language. Thus, Manpower and manpower are

two different identifiers in Python.

Here are naming conventions for Python identifiers-

 Class names start with an uppercase letter. All other identifiers start with a

lowercase letter.

 Starting an identifier with a single leading underscore indicates that the identifier

is private.

Python 3

15

 Starting an identifier with two leading underscores indicates a strong private

identifier.

 If the identifier also ends with two trailing underscores, the identifier is a language-

defined special name.

Reserved Words

The following list shows the Python keywords. These are reserved words and you cannot

use them as constants or variables or any other identifier names. All the Python keywords

contain lowercase letters only.

and exec Not

as finally or

assert for pass

break from print

class global raise

continue if return

def import try

del in while

elif is with

else lambda yield

except

Lines and Indentation

Python does not use braces({}) to indicate blocks of code for class and function definitions

or flow control. Blocks of code are denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but all statements within the block

must be indented the same amount. For example-

Python 3

16

if True:

 print ("True")

else:

 print ("False")

However, the following block generates an error-

if True:

 print ("Answer")

 print ("True")

else:

 print "(Answer")

 print ("False")

Thus, in Python all the continuous lines indented with the same number of spaces would

form a block. The following example has various statement blocks-

Note: Do not try to understand the logic at this point of time. Just make sure you

understood the various blocks even if they are without braces.

#!/usr/bin/python3

import sys

try:

 # open file stream

 file = open(file_name, "w")

except IOError:

 print ("There was an error writing to", file_name)

 sys.exit()

print ("Enter '", file_finish,)

print "' When finished"

while file_text != file_finish:

 file_text = raw_input("Enter text: ")

 if file_text == file_finish:

 # close the file

 file.close

 break

 file.write(file_text)

 file.write("\n")

file.close()

file_name = input("Enter filename: ")

if len(file_name) == 0:

 print ("Next time please enter something")

Python 3

17

 sys.exit()

try:

 file = open(file_name, "r")

except IOError:

 print ("There was an error reading file")

 sys.exit()

file_text = file.read()

file.close()

print (file_text)

Multi-Line Statements

Statements in Python typically end with a new line. Python, however, allows the use of

the line continuation character (\) to denote that the line should continue. For example-

total = item_one + \

 item_two + \

 item_three

The statements contained within the [], {}, or () brackets do not need to use the line

continuation character. For example-

days = ['Monday', 'Tuesday', 'Wednesday',

 'Thursday', 'Friday']

Quotation in Python

Python accepts single ('), double (") and triple (''' or """) quotes to denote string literals,

as long as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example, all the

following are legal-

word = 'word'

sentence = "This is a sentence."

paragraph = """This is a paragraph. It is

made up of multiple lines and sentences."""

Comments in Python

A hash sign (#) that is not inside a string literal is the beginning of a comment. All

characters after the #, up to the end of the physical line, are part of the comment and the

Python interpreter ignores them.

#!/usr/bin/python3

Python 3

18

First comment

print ("Hello, Python!") # second comment

This produces the following result-

Hello, Python!

You can type a comment on the same line after a statement or expression-

name = "Madisetti" # This is again comment

Python does not have multiple-line commenting feature. You have to comment each line

individually as follows-

This is a comment.

This is a comment, too.

This is a comment, too.

I said that already.

Using Blank Lines

A line containing only whitespace, possibly with a comment, is known as a blank line and

Python totally ignores it.

In an interactive interpreter session, you must enter an empty physical line to terminate

a multiline statement.

Waiting for the User

The following line of the program displays the prompt and the statement saying “Press the

enter key to exit”, and then waits for the user to take action −

#!/usr/bin/python3

input("\n\nPress the enter key to exit.")

Here, "\n\n" is used to create two new lines before displaying the actual line. Once the

user presses the key, the program ends. This is a nice trick to keep a console window open

until the user is done with an application.

Multiple Statements on a Single Line

The semicolon (;) allows multiple statements on a single line given that no statement

starts a new code block. Here is a sample snip using the semicolon-

import sys; x = 'foo'; sys.stdout.write(x + '\n')

Python 3

19

Multiple Statement Groups as Suites

Groups of individual statements, which make a single code block are called suites in

Python. Compound or complex statements, such as if, while, def, and class require a

header line and a suite.

Header lines begin the statement (with the keyword) and terminate with a colon (:) and

are followed by one or more lines which make up the suite. For example −

if expression :

 suite

elif expression :

 suite

else :

 suite

Command Line Arguments

Many programs can be run to provide you with some basic information about how they

should be run. Python enables you to do this with -h:

$ python -h

usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...

Options and arguments (and corresponding environment variables):

-c cmd : program passed in as string (terminates option list)

-d : debug output from parser (also PYTHONDEBUG=x)

-E : ignore environment variables (such as PYTHONPATH)

-h : print this help message and exit

[etc.]

You can also program your script in such a way that it should accept various

options. Command Line Arguments is an advance topic. Let us understand it.

Command Line Arguments

Python provides a getopt module that helps you parse command-line options and

arguments.

$ python test.py arg1 arg2 arg3

The Python sys module provides access to any command-line arguments via

the sys.argv. This serves two purposes-

 sys.argv is the list of command-line arguments.

 len(sys.argv) is the number of command-line arguments.

Here sys.argv[0] is the program i.e. the script name.

Python 3

20

Example

Consider the following script test.py-

#!/usr/bin/python3

import sys

print ('Number of arguments:', len(sys.argv), 'arguments.')

print ('Argument List:', str(sys.argv))

Now run the above script as follows −

$ python test.py arg1 arg2 arg3

This produces the following result-

Number of arguments: 4 arguments.

Argument List: ['test.py', 'arg1', 'arg2', 'arg3']

NOTE: As mentioned above, the first argument is always the script name and it is also

being counted in number of arguments.

Parsing Command-Line Arguments

Python provided a getopt module that helps you parse command-line options and

arguments. This module provides two functions and an exception to enable command line

argument parsing.

getopt.getopt method

This method parses the command line options and parameter list. Following is a simple

syntax for this method-

getopt.getopt(args, options, [long_options])

Here is the detail of the parameters-

 args: This is the argument list to be parsed.

 options: This is the string of option letters that the script wants to recognize, with

options that require an argument should be followed by a colon (:).

 long_options: This is an optional parameter and if specified, must be a list of

strings with the names of the long options, which should be supported. Long

options, which require an argument should be followed by an equal sign ('='). To

accept only long options, options should be an empty string.

 This method returns a value consisting of two elements- the first is a list

of (option, value) pairs, the second is a list of program arguments left after the

option list was stripped.

Python 3

21

 Each option-and-value pair returned has the option as its first element, prefixed

with a hyphen for short options (e.g., '-x') or two hyphens for long options (e.g., '-

-long-option').

Exception getopt.GetoptError

This is raised when an unrecognized option is found in the argument list or when an option

requiring an argument is given none.

The argument to the exception is a string indicating the cause of the error. The

attributes msg and opt give the error message and related option.

Example

Suppose we want to pass two file names through command line and we also want to give

an option to check the usage of the script. Usage of the script is as follows-

usage: test.py -i <inputfile> -o <outputfile>

Here is the following script to test.py-

#!/usr/bin/python3

import sys, getopt

def main(argv):

 inputfile = ''

 outputfile = ''

 try:

 opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="])

 except getopt.GetoptError:

 print ('test.py -i <inputfile> -o <outputfile>')

 sys.exit(2)

 for opt, arg in opts:

 if opt == '-h':

 print ('test.py -i <inputfile> -o <outputfile>')

 sys.exit()

 elif opt in ("-i", "--ifile"):

 inputfile = arg

 elif opt in ("-o", "--ofile"):

 outputfile = arg

 print ('Input file is "', inputfile)

 print ('Output file is "', outputfile)

if __name__ == "__main__":

 main(sys.argv[1:])

Python 3

22

Now, run the above script as follows-

$ test.py -h

usage: test.py -i <inputfile> -o <outputfile>

$ test.py -i BMP -o

usage: test.py -i <inputfile> -o <outputfile>

$ test.py -i inputfile -o outputfile

Input file is " inputfile

Output file is " outputfile

Python 3

23

Variables are nothing but reserved memory locations to store values. It means that when

you create a variable, you reserve some space in the memory.

Based on the data type of a variable, the interpreter allocates memory and decides what

can be stored in the reserved memory. Therefore, by assigning different data types to the

variables, you can store integers, decimals or characters in these variables.

Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory space. The declaration

happens automatically when you assign a value to a variable. The equal sign (=) is used

to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to

the right of the = operator is the value stored in the variable. For example-

#!/usr/bin/python3

counter = 100 # An integer assignment

miles = 1000.0 # A floating point

name = "John" # A string

print (counter)

print (miles)

print (name)

Here, 100, 1000.0 and "John" are the values assigned to counter, miles, and

name variables, respectively. This produces the following result −

100

1000.0

John

Multiple Assignment

Python allows you to assign a single value to several variables simultaneously.

For example-

a = b = c = 1

Here, an integer object is created with the value 1, and all the three variables are assigned

to the same memory location. You can also assign multiple objects to multiple variables.

5. Python 3 – Variable Types

Python 3

24

For example-

 a, b, c = 1, 2, "john"

Here, two integer objects with values 1 and 2 are assigned to the variables a and b

respectively, and one string object with the value "john" is assigned to the variable c.

Standard Data Types

The data stored in memory can be of many types. For example, a person's age is stored

as a numeric value and his or her address is stored as alphanumeric characters. Python

has various standard data types that are used to define the operations possible on them

and the storage method for each of them.

Python has five standard data types-

 Numbers

 String

 List

 Tuple

 Dictionary

Python Numbers

Number data types store numeric values. Number objects are created when you assign a

value to them. For example-

var1 = 1

var2 = 10

You can also delete the reference to a number object by using the del statement. The

syntax of the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement.

For example-

del var

del var_a, var_b

Python supports three different numerical types −

 int (signed integers)

 float (floating point real values)

 complex (complex numbers)

Python 3

25

All integers in Python 3 are represented as long integers. Hence, there is no separate

number type as long.

Examples

Here are some examples of numbers-

int float complex

10 0.0 3.14j

100 15.20 45.j

-786 -21.9 9.322e-36j

080 32.3+e18 .876j

-0490 -90. -.6545+0J

-0x260 -32.54e100 3e+26J

0x69 70.2-E12 4.53e-7j

A complex number consists of an ordered pair of real floating-point numbers denoted by

x + yj, where x and y are real numbers and j is the imaginary unit.

Python Strings

Strings in Python are identified as a contiguous set of characters represented in the

quotation marks. Python allows either pair of single or double quotes. Subsets of strings

can be taken using the slice operator ([] and [:]) with indexes starting at 0 in the

beginning of the string and working their way from -1 to the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition

operator. For example-

#!/usr/bin/python3

str = 'Hello World!'

print (str) # Prints complete string

print (str[0]) # Prints first character of the string

print (str[2:5]) # Prints characters starting from 3rd to 5th

print (str[2:]) # Prints string starting from 3rd character

print (str * 2) # Prints string two times

print (str + "TEST") # Prints concatenated string

Python 3

26

This will produce the following result-

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

Python Lists

Lists are the most versatile of Python's compound data types. A list contains items

separated by commas and enclosed within square brackets ([]). To some extent, lists are

similar to arrays in C. One of the differences between them is that all the items belonging

to a list can be of different data type.

The values stored in a list can be accessed using the slice operator ([] and [:]) with

indexes starting at 0 in the beginning of the list and working their way to end -1. The plus

(+) sign is the list concatenation operator, and the asterisk (*) is the repetition operator.

For example-

#!/usr/bin/python3

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print (list) # Prints complete list

print (list[0]) # Prints first element of the list

print (list[1:3]) # Prints elements starting from 2nd till 3rd

print (list[2:]) # Prints elements starting from 3rd element

print (tinylist * 2) # Prints list two times

print (list + tinylist) # Prints concatenated lists

This produces the following result-

['abcd', 786, 2.23, 'john', 70.200000000000003]

abcd

[786, 2.23]

[2.23, 'john', 70.200000000000003]

[123, 'john', 123, 'john']

['abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john']

Python 3

27

Python Tuples

A tuple is another sequence data type that is similar to the list. A tuple consists of a

number of values separated by commas. Unlike lists, however, tuples are enclosed within

parenthesis.

The main difference between lists and tuples is- Lists are enclosed in brackets ([]) and

their elements and size can be changed, while tuples are enclosed in parentheses (())

and cannot be updated. Tuples can be thought of as read-only lists. For example-

#!/usr/bin/python3

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print (tuple) # Prints complete tuple

print (tuple[0]) # Prints first element of the tuple

print (tuple[1:3]) # Prints elements starting from 2nd till 3rd

print (tuple[2:]) # Prints elements starting from 3rd element

print (tinytuple * 2) # Prints tuple two times

print (tuple + tinytuple) # Prints concatenated tuple

This produces the following result-

('abcd', 786, 2.23, 'john', 70.200000000000003)

abcd

(786, 2.23)

(2.23, 'john', 70.200000000000003)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john')

The following code is invalid with tuple, because we attempted to update a tuple, which is

not allowed. Similar case is possible with lists −

#!/usr/bin/python3

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

list = ['abcd', 786 , 2.23, 'john', 70.2]

tuple[2] = 1000 # Invalid syntax with tuple

list[2] = 1000 # Valid syntax with list

Python Dictionary

Python's dictionaries are kind of hash-table type. They work like associative arrays or

hashes found in Perl and consist of key-value pairs. A dictionary key can be almost any

Python type, but are usually numbers or strings. Values, on the other hand, can be any

arbitrary Python object.

Python 3

28

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed

using square braces ([]). For example-

#!/usr/bin/python3

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print (dict['one']) # Prints value for 'one' key

print (dict[2]) # Prints value for 2 key

print (tinydict) # Prints complete dictionary

print (tinydict.keys()) # Prints all the keys

print (tinydict.values()) # Prints all the values

This produces the following result-

This is one

This is two

{'dept': 'sales', 'code': 6734, 'name': 'john'}

['dept', 'code', 'name']

['sales', 6734, 'john']

Dictionaries have no concept of order among the elements. It is incorrect to say that the

elements are "out of order"; they are simply unordered.

Data Type Conversion

Sometimes, you may need to perform conversions between the built-in types. To convert

between types, you simply use the type-name as a function.

There are several built-in functions to perform conversion from one data type to another.

These functions return a new object representing the converted value.

Function Description

int(x [,base]) Converts x to an integer. The base specifies the base if x is a

string.

float(x) Converts x to a floating-point number.

complex(real

[,imag])

Creates a complex number.

Python 3

29

str(x) Converts object x to a string representation.

repr(x) Converts object x to an expression string.

eval(str) Evaluates a string and returns an object.

tuple(s) Converts s to a tuple.

list(s) Converts s to a list.

set(s) Converts s to a set.

dict(d) Creates a dictionary. d must be a sequence of (key,value) tuples.

frozenset(s) Converts s to a frozen set.

chr(x) Converts an integer to a character.

unichr(x) Converts an integer to a Unicode character.

ord(x) Converts a single character to its integer value.

hex(x) Converts an integer to a hexadecimal string.

oct(x) Converts an integer to an octal string.

Python 3

30

Operators are the constructs, which can manipulate the value of operands. Consider the

expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called the operator.

Types of Operator

Python language supports the following types of operators-

 Arithmetic Operators

 Comparison (Relational) Operators

 Assignment Operators

 Logical Operators

 Bitwise Operators

 Membership Operators

 Identity Operators

Let us have a look at all the operators one by one.

Python Arithmetic Operators

Assume variable a holds the value 10 and variable b holds the value 21, then-

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 31

- Subtraction Subtracts right hand operand from left hand

operand.

a – b = -11

* Multiplication Multiplies values on either side of the operator a * b = 210

/ Division Divides left hand operand by right hand

operand

b / a = 2.1

% Modulus Divides left hand operand by right hand

operand and returns remainder

b % a = 1

** Exponent Performs exponential (power) calculation on

operators

a**b =10 to the

power 20

6. Python 3 – Basic Operators

Python 3

31

// Floor Division - The division of operands where

the result is the quotient in which the digits

after the decimal point are removed.

9//2 = 4 and

9.0//2.0 = 4.0

Example

Assume variable a holds 10 and variable b holds 20, then-

#!/usr/bin/python3

a = 21

b = 10

c = 0

c = a + b

print ("Line 1 - Value of c is ", c)

c = a - b

print ("Line 2 - Value of c is ", c)

c = a * b

print ("Line 3 - Value of c is ", c)

c = a / b

print ("Line 4 - Value of c is ", c)

c = a % b

print ("Line 5 - Value of c is ", c)

a = 2

b = 3

c = a**b

print ("Line 6 - Value of c is ", c)

a = 10

b = 5

c = a//b

print ("Line 7 - Value of c is ", c)

When you execute the above program, it produces the following result-

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Python 3

32

Line 3 - Value of c is 210

Line 4 - Value of c is 2.1

Line 5 - Value of c is 1

Line 6 - Value of c is 8

Line 7 - Value of c is 2

Python Comparison Operators

These operators compare the values on either side of them and decide the relation among

them. They are also called Relational operators.

Assume variable a holds the value 10 and variable b holds the value 20, then-

Operator Description Example

==
If the values of two operands are equal, then the condition

becomes true.

(a == b)

is not

true.

!=
If values of two operands are not equal, then condition

becomes true.

(a!= b) is

true.

>
If the value of left operand is greater than the value of right

operand, then condition becomes true.

(a > b) is

not true.

<
If the value of left operand is less than the value of right

operand, then condition becomes true.

(a < b) is

true.

>=
If the value of left operand is greater than or equal to the

value of right operand, then condition becomes true.

(a >= b)

is not

true.

<=
If the value of left operand is less than or equal to the value

of right operand, then condition becomes true.

(a <= b)

is true.

Example

Assume variable a holds 10 and variable b holds 20, then-

#!/usr/bin/python3

a = 21
b = 10

if (a == b):

 print ("Line 1 - a is equal to b")
else:

Python 3

33

 print ("Line 1 - a is not equal to b")

if (a != b):
 print ("Line 2 - a is not equal to b")

else:

 print ("Line 2 - a is equal to b")

if (a < b):

 print ("Line 3 - a is less than b")
else:

 print ("Line 3 - a is not less than b")

if (a > b):

 print ("Line 4 - a is greater than b")

else:
 print ("Line 4 - a is not greater than b")

a,b=b,a #values of a and b swapped. a becomes 10, b becomes 21

if (a <= b):

 print ("Line 5 - a is either less than or equal to b")
else:

 print ("Line 5 - a is neither less than nor equal to b")

if (b >= a):

 print ("Line 6 - b is either greater than or equal to b")

else:
 print ("Line 6 - b is neither greater than nor equal to b")

When you execute the above program, it produces the following result-

Line 1 - a is not equal to b

Line 2 - a is not equal to b

Line 3 - a is not less than b

Line 4 - a is greater than b

Line 5 - a is either less than or equal to b

Line 6 - b is either greater than or equal to b

Python Assignment Operators

Assume variable a holds 10 and variable b holds 20, then-

Operator Description Example

= Assigns values from right side operands to

left side operand

c = a + b assigns

value of a + b into c

+= Add AND It adds right operand to the left operand

and assign the result to left operand

c += a is equivalent

to c = c + a

Python 3

34

-= Subtract AND It subtracts right operand from the left

operand and assign the result to left

operand

c -= a is equivalent

to c = c - a

*= Multiply AND It multiplies right operand with the left

operand and assign the result to left

operand

c *= a is equivalent

to c = c * a

/= Divide AND It divides left operand with the right

operand and assign the result to left

operand

c /= a is equivalent

to c = c / ac /= a is

equivalent to c = c /

a

%= Modulus AND It takes modulus using two operands and

assign the result to left operand

c %= a is equivalent

to c = c % a

**= Exponent AND Performs exponential (power) calculation

on operators and assign value to the left

operand

c **= a is

equivalent to c = c

** a

//= Floor Division It performs floor division on operators and

assign value to the left operand

c //= a is equivalent

to c = c // a

Example

Assume variable a holds 10 and variable b holds 20, then-

#!/usr/bin/python3

a = 21

b = 10

c = 0

c = a + b

print ("Line 1 - Value of c is ", c)

c += a

print ("Line 2 - Value of c is ", c)

c *= a

print ("Line 3 - Value of c is ", c)

Python 3

35

c /= a

print ("Line 4 - Value of c is ", c)

c = 2

c %= a

print ("Line 5 - Value of c is ", c)

c **= a

print ("Line 6 - Value of c is ", c)

c //= a

print ("Line 7 - Value of c is ", c)

When you execute the above program, it produces the following result-

Line 1 - Value of c is 31

Line 2 - Value of c is 52

Line 3 - Value of c is 1092

Line 4 - Value of c is 52.0

Line 5 - Value of c is 2

Line 6 - Value of c is 2097152

Line 7 - Value of c is 99864

Python Bitwise Operators

Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; and

b = 13; Now in binary format they will be as follows-

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

Pyhton's built-in function bin() can be used to obtain binary representation of an integer

number.

Python 3

36

The following Bitwise operators are supported by Python language-

Operator Description Example

& Binary AND Operator copies a bit to the result, if it

exists in both operands

(a & b) (means 0000

1100)

| Binary OR It copies a bit, if it exists in either

operand.

(a | b) = 61 (means

0011 1101)

^ Binary XOR It copies the bit, if it is set in one operand

but not both.

(a ^ b) = 49 (means

0011 0001)

~ Binary Ones

Complement

It is unary and has the effect of 'flipping'

bits.

(~a) = -61 (means

1100 0011 in 2's

complement form

due to a signed

binary number.

<< Binary Left Shift The left operand’s value is moved left by

the number of bits specified by the right

operand.

a << = 240 (means

1111 0000)

>> Binary Right Shift The left operand’s value is moved right

by the number of bits specified by the

right operand.

a >> = 15 (means

0000 1111)

Example

#!/usr/bin/python3

a = 60 # 60 = 0011 1100

b = 13 # 13 = 0000 1101

print ('a=',a,':',bin(a),'b=',b,':',bin(b))

c = 0

c = a & b; # 12 = 0000 1100

print ("result of AND is ", c,':',bin(c))

c = a | b; # 61 = 0011 1101

print ("result of OR is ", c,':',bin(c))

Python 3

37

c = a ^ b; # 49 = 0011 0001

print ("result of EXOR is ", c,':',bin(c))

c = ~a; # -61 = 1100 0011

print ("result of COMPLEMENT is ", c,':',bin(c))

c = a << 2; # 240 = 1111 0000

print ("result of LEFT SHIFT is ", c,':',bin(c))

c = a >> 2; # 15 = 0000 1111

print ("result of RIGHT SHIFT is ", c,':',bin(c))

When you execute the above program, it produces the following result-

a= 60 : 0b111100 b= 13 : 0b1101

result of AND is 12 : 0b1100

result of OR is 61 : 0b111101

result of EXOR is 49 : 0b110001

result of COMPLEMENT is -61 : -0b111101

result of LEFT SHIFT is 240 : 0b11110000

result of RIGHT SHIFT is 15 : 0b111

Python Logical Operators

The following logical operators are supported by Python language. Assume variable a holds

True and variable b holds False then-

Operator Description Example

and Logical
AND

If both the operands are true then condition
becomes true.

(a and b) is
False.

or Logical OR If any of the two operands are non-zero then

condition becomes true.

(a or b) is

True.

not Logical NOT Used to reverse the logical state of its operand. Not(a and b)

is True.

Python 3

38

Python Membership Operators

Python’s membership operators test for membership in a sequence, such as strings, lists,

or tuples. There are two membership operators as explained below-

Operator Description Example

in Evaluates to true, if it finds a variable

in the specified sequence and false

otherwise.

x in y, here in results in

a 1 if x is a member of

sequence y.

not in Evaluates to true, if it does not find a

variable in the specified sequence and

false otherwise.

x not in y, here not in

results in a 1 if x is not

a member of sequence

y.

Example

#!/usr/bin/python3

a = 10

b = 20

list = [1, 2, 3, 4, 5]

if (a in list):

 print ("Line 1 - a is available in the given list")

else:

 print ("Line 1 - a is not available in the given list")

if (b not in list):

 print ("Line 2 - b is not available in the given list")

else:

 print ("Line 2 - b is available in the given list")

c=b/a

if (c in list):

 print ("Line 3 - a is available in the given list")

else:

print ("Line 3 - a is not available in the given list")

Python 3

39

When you execute the above program, it produces the following result-

Line 1 - a is not available in the given list

Line 2 - b is not available in the given list

Line 3 - a is available in the given list

Python Identity Operators

Identity operators compare the memory locations of two objects. There are two Identity

operators as explained below:

Operator Description Example

is Evaluates to true if the variables on

either side of the operator point to the

same object and false otherwise.

x is y, here is results

in 1 if id(x) equals

id(y).

is not Evaluates to false if the variables on

either side of the operator point to the

same object and true otherwise.

x is not y, here is

not results in 1 if id(x)

is not equal to id(y).

Example

#!/usr/bin/python3

a = 20

b = 20

print ('Line 1','a=',a,':',id(a), 'b=',b,':',id(b))

if (a is b):

 print ("Line 2 - a and b have same identity")

else:

 print ("Line 2 - a and b do not have same identity")

if (id(a) == id(b)):

 print ("Line 3 - a and b have same identity")

else:

 print ("Line 3 - a and b do not have same identity")

Python 3

40

b = 30

print ('Line 4','a=',a,':',id(a), 'b=',b,':',id(b))

if (a is not b):

 print ("Line 5 - a and b do not have same identity")

else:

 print ("Line 5 - a and b have same identity")

When you execute the above program, it produces the following result-

Line 1 a= 20 : 1594701888 b= 20 : 1594701888

Line 2 - a and b have same identity

Line 3 - a and b have same identity

Line 4 a= 20 : 1594701888 b= 30 : 1594702048

Line 5 - a and b do not have same identity

Python Operators Precedence

The following table lists all the operators from highest precedence to the lowest.

Operator Description

** Exponentiation (raise to the power)

~ + - Ccomplement, unary plus and minus (method names for

the last two are +@ and -@)

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= < > >= Comparison operators

<> == != Equality operators

Python 3

41

= %= /= //= -= += *=

**=

Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

Operator precedence affects the evaluation of an an expression.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because the operator * has

higher precedence than +, so it first multiplies 3*2 and then is added to 7.

Here, the operators with the highest precedence appear at the top of the table, those with

the lowest appear at the bottom.

Example

#!/usr/bin/python3

a = 20

b = 10

c = 15

d = 5

print ("a:%d b:%d c:%d d:%d" % (a,b,c,d))

e = (a + b) * c / d #(30 * 15) / 5

print ("Value of (a + b) * c / d is ", e)

e = ((a + b) * c) / d # (30 * 15) / 5

print ("Value of ((a + b) * c) / d is ", e)

e = (a + b) * (c / d) # (30) * (15/5)

print ("Value of (a + b) * (c / d) is ", e)

e = a + (b * c) / d # 20 + (150/5)

print ("Value of a + (b * c) / d is ", e)

When you execute the above program, it produces the following result-

a:20 b:10 c:15 d:5

Value of (a + b) * c / d is 90.0

Python 3

42

Value of ((a + b) * c) / d is 90.0

Value of (a + b) * (c / d) is 90.0

Value of a + (b * c) / d is 50.0

Python 3

43

Decision-making is the anticipation of conditions occurring during the execution of a

program and specified actions taken according to the conditions.

Decision structures evaluate multiple expressions, which produce TRUE or FALSE as the

outcome. You need to determine which action to take and which statements to execute if

the outcome is TRUE or FALSE otherwise.

Following is the general form of a typical decision making structure found in most of the

programming languages-

Python programming language assumes any non-zero and non-null values as TRUE, and

any zero or null values as FALSE value.

Python programming language provides the following types of decision-making

statements.

Statement Description

if statements
An if statement consists of a Boolean expression followed by

one or more statements.

if...else statements

An if statement can be followed by an optional else

statement, which executes when the boolean expression is

FALSE.

7. Python 3 – Decision Making

Python 3

44

nested if statements
You can use one if or else if statement inside

another if or else if statement(s).

Let us go through each decision-making statement quickly.

IF Statement

The IF statement is similar to that of other languages. The if statement contains a logical

expression using which the data is compared and a decision is made based on the result

of the comparison.

Syntax

if expression:

 statement(s)

If the boolean expression evaluates to TRUE, then the block of statement(s) inside the if

statement is executed. In Python, statements in a block are uniformly indented after the

: symbol. If boolean expression evaluates to FALSE, then the first set of code after the

end of block is executed.

Flow Diagram

Example

#!/usr/bin/python3

var1 = 100

if var1:

 print ("1 - Got a true expression value")

 print (var1)

Python 3

45

var2 = 0

if var2:

 print ("2 - Got a true expression value")

 print (var2)

print ("Good bye!")

When the above code is executed, it produces the following result −

1 - Got a true expression value

100

Good bye!

IF...ELIF...ELSE Statements

An else statement can be combined with an if statement. An else statement contains a

block of code that executes if the conditional expression in the if statement resolves to 0

or a FALSE value.

The else statement is an optional statement and there could be at the most only

one else statement following if.

Syntax

The syntax of the if...else statement is-

if expression:

 statement(s)

else:

 statement(s)

Python 3

46

Flow Diagram

Example

#!/usr/bin/python3

amount=int(input("Enter amount: "))

if amount<1000:

 discount=amount*0.05

 print ("Discount",discount)

else:

 discount=amount*0.10

 print ("Discount",discount)

print ("Net payable:",amount-discount)

In the above example, discount is calculated on the input amount. Rate of discount is 5%,

if the amount is less than 1000, and 10% if it is above 10000. When the above code is

executed, it produces the following result-

Enter amount: 600

Discount 30.0

Net payable: 570.0

Enter amount: 1200

Discount 120.0

Python 3

47

Net payable: 1080.0

The elif Statement

The elif statement allows you to check multiple expressions for TRUE and execute a block

of code as soon as one of the conditions evaluates to TRUE.

Similar to the else, the elif statement is optional. However, unlike else, for which there

can be at the most one statement, there can be an arbitrary number of elif statements

following an if.

Syntax

if expression1:

 statement(s)

elif expression2:

 statement(s)

elif expression3:

 statement(s)

else:

 statement(s)

Core Python does not provide switch or case statements as in other languages, but we can

use if..elif...statements to simulate switch case as follows-

Example

#!/usr/bin/python3

amount=int(input("Enter amount: "))

if amount<1000:

 discount=amount*0.05

 print ("Discount",discount)

elif amount<5000:

 discount=amount*0.10

 print ("Discount",discount)

else:

 discount=amount*0.15

 print ("Discount",discount)

print ("Net payable:",amount-discount)

When the above code is executed, it produces the following result-

Python 3

48

Enter amount: 600

Discount 30.0

Net payable: 570.0

Enter amount: 3000

Discount 300.0

Net payable: 2700.0

Enter amount: 6000

Discount 900.0

Net payable: 5100.0

Nested IF Statements

There may be a situation when you want to check for another condition after a condition

resolves to true. In such a situation, you can use the nested if construct.

In a nested if construct, you can have an if...elif...else construct inside another

if...elif...else construct.

Syntax

The syntax of the nested if...elif...else construct may be-

if expression1:

 statement(s)

 if expression2:

 statement(s)

 elif expression3:

 statement(s)

 else

 statement(s)

elif expression4:

 statement(s)

else:

 statement(s)

Example

!/usr/bin/python3

num=int(input("enter number"))

Python 3

49

if num%2==0:

 if num%3==0:

 print ("Divisible by 3 and 2")

 else:

 print ("divisible by 2 not divisible by 3")

else:

 if num%3==0:

 print ("divisible by 3 not divisible by 2")

 else:

 print ("not Divisible by 2 not divisible by 3")

When the above code is executed, it produces the following result-

enter number8

divisible by 2 not divisible by 3

enter number15

divisible by 3 not divisible by 2

enter number12

Divisible by 3 and 2

enter number5

not Divisible by 2 not divisible by 3

Single Statement Suites

If the suite of an if clause consists only of a single line, it may go on the same line as the

header statement.

Here is an example of a one-line if clause-

#!/usr/bin/python3

var = 100

if (var == 100) : print ("Value of expression is 100")

print ("Good bye!")

When the above code is executed, it produces the following result-

Value of expression is 100

Good bye!

Python 3

50

Python 3

51

In general, statements are executed sequentially- The first statement in a function is

executed first, followed by the second, and so on. There may be a situation when you need

to execute a block of code several number of times.

Programming languages provide various control structures that allow more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times.

The following diagram illustrates a loop statement.

Python programming language provides the following types of loops to handle looping

requirements.

Loop Type Description

while loop Repeats a statement or group of statements while a given

condition is TRUE. It tests the condition before executing the

loop body.

for loop Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

8. Python 3 – Loops

Python 3

52

nested loops You can use one or more loop inside any another while, or

for loop.

while Loop Statements

A while loop statement in Python programming language repeatedly executes a target

statement as long as a given condition is true.

Syntax

The syntax of a while loop in Python programming language is-

while expression:

 statement(s)

Here, statement(s) may be a single statement or a block of statements with uniform

indent. The condition may be any expression, and true is any non-zero value. The loop

iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately

following the loop.

In Python, all the statements indented by the same number of character spaces after a

programming construct are considered to be part of a single block of code. Python uses

indentation as its method of grouping statements.

Flow Diagram

Python 3

53

Here, a key point of the while loop is that the loop might not ever run. When the condition

is tested and the result is false, the loop body will be skipped and the first statement after

the while loop will be executed.

Example

#!/usr/bin/python3

count = 0

while (count < 9):

 print ('The count is:', count)

 count = count + 1

print ("Good bye!")

When the above code is executed, it produces the following result-

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

Python 3

54

The count is: 5

The count is: 6

The count is: 7

The count is: 8

Good bye!

The block here, consisting of the print and increment statements, is executed repeatedly

until count is no longer less than 9. With each iteration, the current value of the index

count is displayed and then increased by 1.

The Infinite Loop

A loop becomes infinite loop if a condition never becomes FALSE. You must be cautious

when using while loops because of the possibility that this condition never resolves to a

FALSE value. This results in a loop that never ends. Such a loop is called an infinite loop.

An infinite loop might be useful in client/server programming where the server needs to

run continuously so that client programs can communicate with it as and when required.

#!/usr/bin/python3

var = 1

while var == 1 : # This constructs an infinite loop

 num = int(input("Enter a number :"))

 print ("You entered: ", num)

print ("Good bye!")

When the above code is executed, it produces the following result-

Enter a number :20

You entered: 20

Enter a number :29

You entered: 29

Enter a number :3

You entered: 3

Enter a number :11

You entered: 11

Enter a number :22

You entered: 22

Enter a number :Traceback (most recent call last):

 File "examples\test.py", line 5, in

 num = int(input("Enter a number :"))

KeyboardInterrupt

Python 3

55

The above example goes in an infinite loop and you need to use CTRL+C to exit the

program.

Using else Statement with Loops

Python supports having an else statement associated with a loop statement.

 If the else statement is used with a for loop, the else statement is executed when

the loop has exhausted iterating the list.

 If the else statement is used with a while loop, the else statement is executed

when the condition becomes false.

The following example illustrates the combination of an else statement with a while

statement that prints a number as long as it is less than 5, otherwise the else statement

gets executed.

#!/usr/bin/python3

count = 0

while count < 5:

 print (count, " is less than 5")

 count = count + 1

else:

 print (count, " is not less than 5")

When the above code is executed, it produces the following result-

0 is less than 5

1 is less than 5

2 is less than 5

3 is less than 5

4 is less than 5

5 is not less than 5

Single Statement Suites

Similar to the if statement syntax, if your while clause consists only of a single statement,

it may be placed on the same line as the while header.

Here is the syntax and example of a one-line while clause-

#!/usr/bin/python3

flag = 1

while (flag): print ('Given flag is really true!')

print ("Good bye!")

The above example goes into an infinite loop and you need to press CTRL+C keys to exit.

Python 3

56

for Loop Statements

The for statement in Python has the ability to iterate over the items of any sequence, such

as a list or a string.

Syntax

for iterating_var in sequence:

 statements(s)

If a sequence contains an expression list, it is evaluated first. Then, the first item in the

sequence is assigned to the iterating variable iterating_var. Next, the statements block is

executed. Each item in the list is assigned to iterating_var, and the statement(s) block is

executed until the entire sequence is exhausted.

Flow Diagram

Python 3

57

The range() function

The built-in function range() is the right function to iterate over a sequence of numbers.

It generates an iterator of arithmetic progressions.

>>> range(5)

range(0, 5)

>>> list(range(5))

[0, 1, 2, 3, 4]

range() generates an iterator to progress integers starting with 0 upto n-1. To obtain a

list object of the sequence, it is typecasted to list(). Now this list can be iterated using the

for statement.

>>> for var in list(range(5)):

 print (var)

This will produce the following output.

0

1

2

3

4

Example

#!/usr/bin/python3

for letter in 'Python': # traversal of a string sequence

 print ('Current Letter :', letter)

print()

fruits = ['banana', 'apple', 'mango']

for fruit in fruits: # traversal of List sequence

 print ('Current fruit :', fruit)

print ("Good bye!")

When the above code is executed, it produces the following result −

Current Letter : P

Current Letter : y

Python 3

58

Current Letter : t

Current Letter : h

Current Letter : o

Current Letter : n

Current fruit : banana

Current fruit : apple

Current fruit : mango

Good bye!

Iterating by Sequence Index

An alternative way of iterating through each item is by index offset into the sequence

itself. Following is a simple example-

#!/usr/bin/python3

fruits = ['banana', 'apple', 'mango']

for index in range(len(fruits)):

 print ('Current fruit :', fruits[index])

print ("Good bye!")

When the above code is executed, it produces the following result-

Current fruit : banana

Current fruit : apple

Current fruit : mango

Good bye!

Here, we took the assistance of the len() built-in function, which provides the total number

of elements in the tuple as well as the range() built-in function to give us the actual

sequence to iterate over.

Using else Statement with Loops

Python supports having an else statement associated with a loop statement.

 If the else statement is used with a for loop, the else block is executed only if for

loops terminates normally (and not by encountering break statement).

 If the else statement is used with a while loop, the else statement is executed

when the condition becomes false.

Python 3

59

The following example illustrates the combination of an else statement with a for

statement that searches for even number in given list.

#!/usr/bin/python3

numbers=[11,33,55,39,55,75,37,21,23,41,13]

for num in numbers:

 if num%2==0:

 print ('the list contains an even number')

 break

else:

 print ('the list doesnot contain even number')

When the above code is executed, it produces the following result-

the list does not contain even number

Nested loops

Python programming language allows the use of one loop inside another loop. The

following section shows a few examples to illustrate the concept.

Syntax

for iterating_var in sequence:

 for iterating_var in sequence:

 statements(s)

 statements(s)

The syntax for a nested while loop statement in Python programming language is as

follows-

while expression:

 while expression:

 statement(s)

 statement(s)

A final note on loop nesting is that you can put any type of loop inside any other type of

loop. For example a for loop can be inside a while loop or vice versa.

Example

The following program uses a nested-for loop to display multiplication tables from 1-10.

#!/usr/bin/python3

import sys

Python 3

60

for i in range(1,11):

 for j in range(1,11):

 k=i*j

 print (k, end=' ')

 print()

The print() function inner loop has end=' ' which appends a space instead of default

newline. Hence, the numbers will appear in one row.

Last print() will be executed at the end of inner for loop.

When the above code is executed, it produces the following result −

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Loop Control Statements

The Loop control statements change the execution from its normal sequence. When the

execution leaves a scope, all automatic objects that were created in that scope are

destroyed.

Python supports the following control statements.

Control Statement Description

break statement Terminates the loop statement and transfers

execution to the statement immediately

following the loop.

continue statement Causes the loop to skip the remainder of its

body and immediately retest its condition prior

to reiterating.

Python 3

61

pass statement The pass statement in Python is used when a

statement is required syntactically but you do

not want any command or code to execute.

Let us go through the loop control statements briefly.

break statement

The break statement is used for premature termination of the current loop. After

abandoning the loop, execution at the next statement is resumed, just like the traditional

break statement in C.

The most common use of break is when some external condition is triggered requiring a

hasty exit from a loop. The break statement can be used in both while and for loops.

If you are using nested loops, the break statement stops the execution of the innermost

loop and starts executing the next line of the code after the block.

Syntax

The syntax for a break statement in Python is as follows-

break

Flow Diagram

Python 3

62

Example

#!/usr/bin/python3

for letter in 'Python': # First Example

 if letter == 'h':

 break

 print ('Current Letter :', letter)

var = 10 # Second Example

while var > 0:

 print ('Current variable value :', var)

 var = var -1

 if var == 5:

 break

print ("Good bye!")

When the above code is executed, it produces the following result-

Current Letter : P

Current Letter : y

Current Letter : t

Python 3

63

Current variable value : 10

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

Good bye!

The following program demonstrates the use of break in a for loop iterating over a list.

User inputs a number, which is searched in the list. If it is found, then the loop terminates

with the 'found' message.

#!/usr/bin/python3

no=int(input('any number: '))

numbers=[11,33,55,39,55,75,37,21,23,41,13]

for num in numbers:

 if num==no:

 print ('number found in list')

 break

else:

 print ('number not found in list')

The above program will produce the following output-

any number: 33

number found in list

any number: 5

number not found in list

continue Statement

The continue statement in Python returns the control to the beginning of the current loop.

When encountered, the loop starts next iteration without executing the remaining

statements in the current iteration.

The continue statement can be used in both while and for loops.

Syntax

continue

Python 3

64

Flow Diagram

Example

#!/usr/bin/python3

for letter in 'Python': # First Example

 if letter == 'h':

 continue

 print ('Current Letter :', letter)

var = 10 # Second Example

while var > 0:

 var = var -1

 if var == 5:

 continue

 print ('Current variable value :', var)

print ("Good bye!")

When the above code is executed, it produces the following result-

Current Letter : P

Python 3

65

Current Letter : y

Current Letter : t

Current Letter : o

Current Letter : n

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

Current variable value : 4

Current variable value : 3

Current variable value : 2

Current variable value : 1

Current variable value : 0

Good bye!

pass Statement

It is used when a statement is required syntactically but you do not want any command

or code to execute.

The pass statement is a null operation; nothing happens when it executes. The

pass statement is also useful in places where your code will eventually go, but has not

been written yet i.e. in stubs).

Syntax

pass

Example

#!/usr/bin/python3

for letter in 'Python':

 if letter == 'h':

 pass

 print ('This is pass block')

 print ('Current Letter :', letter)

print ("Good bye!")

When the above code is executed, it produces the following result-

Python 3

66

Current Letter : P

Current Letter : y

Current Letter : t

This is pass block

Current Letter : h

Current Letter : o

Current Letter : n

Good bye!

Iterator and Generator

Iterator is an object, which allows a programmer to traverse through all the elements of

a collection, regardless of its specific implementation. In Python, an iterator object

implements two methods, iter() and next().

String, List or Tuple objects can be used to create an Iterator.

list=[1,2,3,4]

it = iter(list) # this builds an iterator object

print (next(it)) #prints next available element in iterator

Iterator object can be traversed using regular for statement

!usr/bin/python3

for x in it:

 print (x, end=" ")

or using next() function

while True:

 try:

 print (next(it))

 except StopIteration:

 sys.exit() #you have to import sys module for this

A generator is a function that produces or yields a sequence of values using yield method.

When a generator function is called, it returns a generator object without even beginning

execution of the function. When the next() method is called for the first time, the function

starts executing, until it reaches the yield statement, which returns the yielded value. The

yield keeps track i.e. remembers the last execution and the second next() call continues

from previous value.

The following example defines a generator, which generates an iterator for all the Fibonacci

numbers.

!usr/bin/python3

Python 3

67

import sys

def fibonacci(n): #generator function

 a, b, counter = 0, 1, 0

 while True:

 if (counter > n):

 return

 yield a

 a, b = b, a + b

 counter += 1

f = fibonacci(5) #f is iterator object

while True:

 try:

 print (next(f), end=" ")

 except StopIteration:

 sys.exit()

Python 3

68

Number data types store numeric values. They are immutable data types. This means,

changing the value of a number data type results in a newly allocated object.

Number objects are created when you assign a value to them. For example-

var1 = 1

var2 = 10

You can also delete the reference to a number object by using the del statement. The

syntax of the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For example-

del var

del var_a, var_b

Python supports different numerical types-

 int (signed integers): They are often called just integers or ints. They are

positive or negative whole numbers with no decimal point. Integers in Python 3 are

of unlimited size. Python 2 has two integer types - int and long. There is no 'long

integer' in Python 3 anymore.

 float (floating point real values) : Also called floats, they represent real

numbers and are written with a decimal point dividing the integer and the fractional

parts. Floats may also be in scientific notation, with E or e indicating the power of

10 (2.5e2 = 2.5 x 102 = 250).

 complex (complex numbers) : are of the form a + bJ, where a and b are floats

and J (or j) represents the square root of -1 (which is an imaginary number). The

real part of the number is a, and the imaginary part is b. Complex numbers are not

used much in Python programming.

It is possible to represent an integer in hexa-decimal or octal form.

>>> number = 0xA0F #Hexa-decimal

>>> number

2575

>>> number=0o37 #Octal

>>> number

9. Python 3 – Numbers

Python 3

69

31

Examples

Here are some examples of numbers.

int float complex

10 0.0 3.14j

100 15.20 45.j

-786 -21.9 9.322e-36j

080 32.3+e18 .876j

-0490 -90. -.6545+0J

-0x260 -32.54e100 3e+26J

0x69 70.2-E12 4.53e-7j

A complex number consists of an ordered pair of real floating-point numbers denoted by

a + bj, where a is the real part and b is the imaginary part of the complex number.

Number Type Conversion

Python converts numbers internally in an expression containing mixed types to a common

type for evaluation. Sometimes, you need to coerce a number explicitly from one type to

another to satisfy the requirements of an operator or function parameter.

 Type int(x) to convert x to a plain integer.

 Type long(x) to convert x to a long integer.

 Type float(x) to convert x to a floating-point number.

 Type complex(x) to convert x to a complex number with real part x and imaginary

part zero.

 Type complex(x, y) to convert x and y to a complex number with real part x and

imaginary part y. x and y are numeric expressions.

Python 3

70

Mathematical Functions

Python includes the following functions that perform mathematical calculations.

Function Returns (Description)

abs(x) The absolute value of x: the (positive) distance between x and

zero.

ceil(x) The ceiling of x: the smallest integer not less than x.

cmp(x, y) -1 if x < y, 0 if x == y, or 1 if x > y. Deprecated in Python 3;

Instead use return (x>y)-(x<y).

exp(x) The exponential of x: ex

fabs(x) The absolute value of x.

floor(x) The floor of x: the largest integer not greater than x.

log(x) The natural logarithm of x, for x> 0.

log10(x) The base-10 logarithm of x for x> 0.

max(x1, x2,...) The largest of its arguments: the value closest to positive infinity.

min(x1, x2,...) The smallest of its arguments: the value closest to negative

infinity.

modf(x) The fractional and integer parts of x in a two-item tuple. Both

parts have the same sign as x. The integer part is returned as a

float.

pow(x, y) The value of x**y.

round(x [,n]) x rounded to n digits from the decimal point. Python rounds away

from zero as a tie-breaker: round(0.5) is 1.0 and round(-0.5) is -

1.0.

sqrt(x) The square root of x for x > 0.

Let us learn about these functions in detail.

Python 3

71

Number abs() Method

Description

The abs() method returns the absolute value of x i.e. the positive distance between x and

zero.

Syntax

Following is the syntax for abs() method-

abs(x)

Parameters

x - This is a numeric expression.

Return Value

This method returns the absolute value of x.

Example

The following example shows the usage of the abs() method.

#!/usr/bin/python3

print ("abs(-45) : ", abs(-45))

print ("abs(100.12) : ", abs(100.12))

When we run the above program, it produces the following result-

abs(-45) : 45

abs(100.12) : 100.12

Number ceil() Method

Description

The ceil() method returns the ceiling value of x i.e. the smallest integer not less than x.

Syntax

Following is the syntax for the ceil() method-

import math

math.ceil(x)

Note: This function is not accessible directly, so we need to import math module and then

we need to call this function using the math static object.

Python 3

72

Parameters

x - This is a numeric expression.

Return Value

This method returns the smallest integer not less than x.

Example

The following example shows the usage of the ceil() method.

#!/usr/bin/python3

import math # This will import math module

print ("math.ceil(-45.17) : ", math.ceil(-45.17))

print ("math.ceil(100.12) : ", math.ceil(100.12))

print ("math.ceil(100.72) : ", math.ceil(100.72))

print ("math.ceil(math.pi) : ", math.ceil(math.pi))

When we run the above program, it produces the following result-

math.ceil(-45.17) : -45

math.ceil(100.12) : 101

math.ceil(100.72) : 101

math.ceil(math.pi) : 4

Number exp() Method

Description

The exp() method returns exponential of x: ex.

Syntax

Following is the syntax for the exp() method-

import math

math.exp(x)

Note: This function is not accessible directly. Therefore, we need to import the math

module and then we need to call this function using the math static object.

Parameters

X - This is a numeric expression.

Python 3

73

Return Value

This method returns exponential of x: ex.

Example

The following example shows the usage of exp() method.

#!/usr/bin/python3

import math # This will import math module

print ("math.exp(-45.17) : ", math.exp(-45.17))

print ("math.exp(100.12) : ", math.exp(100.12))

print ("math.exp(100.72) : ", math.exp(100.72))

print ("math.exp(math.pi) : ", math.exp(math.pi))

When we run the above program, it produces the following result-

math.exp(-45.17) : 2.4150062132629406e-20

math.exp(100.12) : 3.0308436140742566e+43

math.exp(100.72) : 5.522557130248187e+43

math.exp(math.pi) : 23.140692632779267

Number fabs() Method

Description

The fabs() method returns the absolute value of x. Although similar to the abs() function,

there are differences between the two functions. They are-

 abs() is a built in function whereas fabs() is defined in math module.

 fabs() function works only on float and integer whereas abs() works with complex

number also.

Syntax

Following is the syntax for the fabs() method-

import math

math.fabs(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This is a numeric value.

Python 3

74

Return Value

This method returns the absolute value of x.

Example

The following example shows the usage of the fabs() method.

#!/usr/bin/python3

import math # This will import math module

print ("math.fabs(-45.17) : ", math.fabs(-45.17))

print ("math.fabs(100.12) : ", math.fabs(100.12))

print ("math.fabs(100.72) : ", math.fabs(100.72))

print ("math.fabs(math.pi) : ", math.fabs(math.pi))

When we run the above program, it produces following result-

math.fabs(-45.17) : 45.17

math.fabs(100) : 100.0

math.fabs(100.72) : 100.72

math.fabs(math.pi) : 3.141592653589793

Number floor() Method

Description

The floor() method returns the floor of x i.e. the largest integer not greater than x.

Syntax

Following is the syntax for the floor() method-

import math

math.floor(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This is a numeric expression.

Return Value

This method returns the largest integer not greater than x.

Example

Python 3

75

The following example shows the usage of the floor() method.

#!/usr/bin/python3

import math # This will import math module

print ("math.floor(-45.17) : ", math.floor(-45.17))

print ("math.floor(100.12) : ", math.floor(100.12))

print ("math.floor(100.72) : ", math.floor(100.72))

print ("math.floor(math.pi) : ", math.floor(math.pi))

When we run the above program, it produces the following result-

math.floor(-45.17) : -46

math.floor(100.12) : 100

math.floor(100.72) : 100

math.floor(math.pi) : 3

Number log() Method

Description

The log() method returns the natural logarithm of x, for x > 0.

Syntax

Following is the syntax for the log() method-

import math

math.log(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This is a numeric expression.

Return Value

This method returns natural logarithm of x, for x > 0.

Example

The following example shows the usage of the log() method.

Python 3

76

#!/usr/bin/python3

import math # This will import math module

print ("math.log(100.12) : ", math.log(100.12))

print ("math.log(100.72) : ", math.log(100.72))

print ("math.log(math.pi) : ", math.log(math.pi))

When we run the above program, it produces the following result-

math.log(100.12) : 4.6063694665635735

math.log(100.72) : 4.612344389736092

math.log(math.pi) : 1.1447298858494002

Number log10() Method

Description

The log10() method returns base-10 logarithm of x for x > 0.

Syntax

Following is the syntax for log10() method-

import math

math.log10(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This is a numeric expression.

Return Value

This method returns the base-10 logarithm of x for x > 0.

Example

The following example shows the usage of the log10() method.

#!/usr/bin/python3

import math # This will import math module

print ("math.log10(100.12) : ", math.log10(100.12))

print ("math.log10(100.72) : ", math.log10(100.72))

print ("math.log10(119) : ", math.log10(119))

print ("math.log10(math.pi) : ", math.log10(math.pi))

Python 3

77

When we run the above program, it produces the following result-

math.log10(100.12) : 2.0005208409361854

math.log10(100.72) : 2.003115717099806

math.log10(119) : 2.0755469613925306

math.log10(math.pi) : 0.49714987269413385

Number max() Method

Description

The max() method returns the largest of its arguments i.e. the value closest to positive

infinity.

Syntax

Following is the syntax for max() method-

max(x, y, z,)

Parameters

 x - This is a numeric expression.

 y - This is also a numeric expression.

 z - This is also a numeric expression.

Return Value

This method returns the largest of its arguments.

Example

The following example shows the usage of the max() method.

#!/usr/bin/python3

print ("max(80, 100, 1000) : ", max(80, 100, 1000))

print ("max(-20, 100, 400) : ", max(-20, 100, 400))

print ("max(-80, -20, -10) : ", max(-80, -20, -10))

print ("max(0, 100, -400) : ", max(0, 100, -400))

When we run the above program, it produces the following result-

max(80, 100, 1000) : 1000

max(-20, 100, 400) : 400

max(-80, -20, -10) : -10

Python 3

78

max(0, 100, -400) : 100

Number min() Method

Description

The method min() returns the smallest of its arguments i.e. the value closest to negative

infinity.

Syntax

Following is the syntax for the min() method-

min(x, y, z,)

Parameters

 x - This is a numeric expression.

 y - This is also a numeric expression.

 z - This is also a numeric expression.

Return Value

This method returns the smallest of its arguments.

Example

The following example shows the usage of the min() method.

#!/usr/bin/python3

print ("min(80, 100, 1000) : ", min(80, 100, 1000))

print ("min(-20, 100, 400) : ", min(-20, 100, 400))

print ("min(-80, -20, -10) : ", min(-80, -20, -10))

print ("min(0, 100, -400) : ", min(0, 100, -400))

When we run the above program, it produces the following result-

min(80, 100, 1000) : 80

min(-20, 100, 400) : -20

min(-80, -20, -10) : -80

min(0, 100, -400) : -400

Python 3

79

Number modf() Method

Description

The modf() method returns the fractional and integer parts of x in a two-item tuple. Both

parts have the same sign as x. The integer part is returned as a float.

Syntax

Following is the syntax for the modf() method-

import math

math.modf(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This is a numeric expression.

Return Value

This method returns the fractional and integer parts of x in a two-item tuple. Both the

parts have the same sign as x. The integer part is returned as a float.

Example

The following example shows the usage of the modf() method.

#!/usr/bin/python3

import math # This will import math module

print ("math.modf(100.12) : ", math.modf(100.12))

print ("math.modf(100.72) : ", math.modf(100.72))

print ("math.modf(119) : ", math.modf(119))

print ("math.modf(math.pi) : ", math.modf(math.pi))

When we run the above program, it produces the following result-

math.modf(100.12) : (0.12000000000000455, 100.0)

math.modf(100.72) : (0.7199999999999989, 100.0)

math.modf(119) : (0.0, 119.0)

math.modf(math.pi) : (0.14159265358979312, 3.0)

Python 3

80

Number pow() Method

Return Value

This method returns the value of xy.

Example

The following example shows the usage of the pow() method.

#!/usr/bin/python3

import math # This will import math module

print ("math.pow(100, 2) : ", math.pow(100, 2))

print ("math.pow(100, -2) : ", math.pow(100, -2))

print ("math.pow(2, 4) : ", math.pow(2, 4))

print ("math.pow(3, 0) : ", math.pow(3, 0))

When we run the above program, it produces the following result-

math.pow(100, 2) : 10000.0

math.pow(100, -2) : 0.0001

math.pow(2, 4) : 16.0

math.pow(3, 0) : 1.0

Number round() Method

Description

round() is a built-in function in Python. It returns x rounded to n digits from the decimal

point.

Syntax

Following is the syntax for the round() method-

round(x [, n])

Parameters

 x - This is a numeric expression.

 n - Represents number of digits from decimal point up to which x is to be rounded.

Default is 0.

Return Value

This method returns x rounded to n digits from the decimal point.

Python 3

81

Example

The following example shows the usage of round() method.

#!/usr/bin/python3

print ("round(70.23456) : ", round(70.23456))

print ("round(56.659,1) : ", round(56.659,1))

print ("round(80.264, 2) : ", round(80.264, 2))

print ("round(100.000056, 3) : ", round(100.000056, 3))

print ("round(-100.000056, 3) : ", round(-100.000056, 3))

When we run the above program, it produces the following result-

round(70.23456) : 70

round(56.659,1) : 56.7

round(80.264, 2) : 80.26

round(100.000056, 3) : 100.0

round(-100.000056, 3) : -100.0

Number sqrt() Method

Description

The sqrt() method returns the square root of x for x > 0.

Syntax

Following is the syntax for sqrt() method-

import math

math.sqrt(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This is a numeric expression.

Return Value

This method returns square root of x for x > 0.

Example

The following example shows the usage of sqrt() method.

Python 3

82

#!/usr/bin/python3

import math # This will import math module

print ("math.sqrt(100) : ", math.sqrt(100))

print ("math.sqrt(7) : ", math.sqrt(7))

print ("math.sqrt(math.pi) : ", math.sqrt(math.pi))

When we run the above program, it produces the following result-

math.sqrt(100) : 10.0

math.sqrt(7) : 2.6457513110645907

math.sqrt(math.pi) : 1.7724538509055159

Random Number Functions

Random numbers are used for games, simulations, testing, security, and privacy

applications. Python includes the following functions that are commonly used.

Function Description

choice(seq) A random item from a list, tuple, or string.

randrange ([start,] stop [,step])

A randomly selected element from range(start,

stop, step).

random() A random float r, such that 0 is less than or equal

to r and r is less than 1.

seed([x]) Sets the integer starting value used in

generating random numbers. Call this function

before calling any other random module

function. Returns None.

shuffle(lst) Randomizes the items of a list in place. Returns

None.

uniform(x, y) A random float r, such that x is less than or equal

to r and r is less than y.

Number choice() Method

Description

Python 3

83

The choice() method returns a random item from a list, tuple, or string.

Syntax

Following is the syntax for choice() method-

choice(seq)

Note: This function is not accessible directly, so we need to import the random module

and then we need to call this function using the random static object.

Parameters

seq - This could be a list, tuple, or string...

Return Value

This method returns a random item.

Example

The following example shows the usage of the choice() method.

#!/usr/bin/python3

import random

print ("returns a random number from range(100) : ",random.choice(range(100)))

print ("returns random element from list [1, 2, 3, 5, 9]) : ", random.choice([1,

2, 3, 5, 9]))

print ("returns random character from string 'Hello World' : ",

random.choice('Hello World'))

When we run the above program, it produces a result similar to the following-

returns a random number from range(100) : 19

returns random element from list [1, 2, 3, 5, 9]) : 9

returns random character from string 'Hello World' : r

Number randrange() Method

Description

The randrange() method returns a randomly selected element from range(start, stop,

step).

Syntax

Following is the syntax for the randrange() method-

Python 3

84

randrange ([start,] stop [,step])

Note: This function is not accessible directly, so we need to import the random module

and then we need to call this function using the random static object.

Parameters

 start - Start point of the range. This would be included in the range. Default is 0.

 stop - Stop point of the range. This would be excluded from the range.

 step - Value with which number is incremented. Default is 1.

Return Value

This method returns a random item from the given range.

Example

The following example shows the usage of the randrange() method.

#!/usr/bin/python3

import random

randomly select an odd number between 1-100

print ("randrange(1,100, 2) : ", random.randrange(1, 100, 2))

randomly select a number between 0-99

print ("randrange(100) : ", random.randrange(100))

When we run the above program, it produces the following result-

randrange(1,100, 2) : 83

randrange(100) : 93

Number random() Method

Description

The random() method returns a random floating point number in the range [0.0, 1.0].

Syntax

Following is the syntax for the random() method-

random ()

Note: This function is not accessible directly, so we need to import the random module

and then we need to call this function using the random static object.

Parameters

Python 3

85

NA

Return Value

This method returns a random float r, such that 0.0 <= r <= 1.0

Example

The following example shows the usage of the random() method.

#!/usr/bin/python3

import random

First random number

print ("random() : ", random.random())

Second random number

print ("random() : ", random.random())

When we run the above program, it produces the following result-

random() : 0.281954791393

random() : 0.309090465205

Number seed() Method

Description

The seed() method initializes the basic random number generator. Call this function

before calling any other random module function.

Syntax

Following is the syntax for the seed() method-

seed ([x], [y])

Note: This function initializes the basic random number generator.

Parameters

 x - This is the seed for the next random number. If omitted, then it takes system

time to generate the next random number. If x is an int, it is used directly.

 Y - This is version number (default is 2). str, byte or byte array object gets

converted in int. Version 1 used hash() of x.

Return Value

This method does not return any value.

Python 3

86

Example

The following example shows the usage of the seed() method.

#!/usr/bin/python3

import random

random.seed()

print ("random number with default seed", random.random())

random.seed(10)

print ("random number with int seed", random.random())

random.seed("hello",2)

print ("random number with string seed", random.random())

When we run above program, it produces following result-

random number with default seed 0.2524977842762465

random number with int seed 0.5714025946899135

random number with string seed 0.3537754404730722

Number shuffle() Method

Description

The shuffle() method randomizes the items of a list in place.

Syntax

Following is the syntax for the shuffle() method-

shuffle (lst,[random])

Note: This function is not accessible directly, so we need to import the shuffle module and

then we need to call this function using the random static object.

Parameters

 lst - This could be a list or tuple.

 random - This is an optional 0 argument function returning float between 0.0 -

1.0. Default is None.

Return Value

This method returns reshuffled list.

Example

Python 3

87

The following example shows the usage of the shuffle() method.

#!/usr/bin/python3

import random

list = [20, 16, 10, 5];

random.shuffle(list)

print ("Reshuffled list : ", list)

random.shuffle(list)

print ("Reshuffled list : ", list)

When we run the above program, it produces the following result-

Reshuffled list : [16, 5, 10, 20]

reshuffled list : [20, 5, 10, 16]

Number uniform() Method

Description

The uniform() method returns a random float r, such that x is less than or equal to r and

r is less than y.

Syntax

Following is the syntax for the uniform() method-

uniform(x, y)

Note: This function is not accessible directly, so we need to import the uniform module

and then we need to call this function using the random static object.

Parameters

 x - Sets the lower limit of the random float.

 y - Sets the upper limit of the random float.

Return Value

This method returns a floating point number r such that x <=r < y.

Example

The following example shows the usage of the uniform() method.

#!/usr/bin/python3

import random

Python 3

88

print ("Random Float uniform(5, 10) : ", random.uniform(5, 10))

print ("Random Float uniform(7, 14) : ", random.uniform(7, 14))

Let us run the above program. This will produce the following result-

Random Float uniform(5, 10) : 5.52615217015

Random Float uniform(7, 14) : 12.5326369199

Trigonometric Functions

Python includes the following functions that perform trigonometric calculations.

Function Description

acos(x) Return the arc cosine of x, in radians.

asin(x) Return the arc sine of x, in radians.

atan(x) Return the arc tangent of x, in radians.

atan2(y, x) Return atan(y / x), in radians.

cos(x) Return the cosine of x radians.

hypot(x, y) Return the Euclidean norm, sqrt(x*x + y*y).

sin(x) Return the sine of x radians.

tan(x) Return the tangent of x radians.

degrees(x) Converts angle x from radians to degrees.

radians(x) Converts angle x from degrees to radians.

Number acos() Method

Description

The acos() method returns the arc cosine of x in radians.

Syntax

Python 3

89

Following is the syntax for acos() method-

acos(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This must be a numeric value in the range -1 to 1. If x is greater than 1 then it will

generate 'math domain error'.

Return Value

This method returns arc cosine of x, in radians.

Example

The following example shows the usage of the acos() method.

#!/usr/bin/python3

import math

print ("acos(0.64) : ", math.acos(0.64))

print ("acos(0) : ", math.acos(0))

print ("acos(-1) : ", math.acos(-1))

print ("acos(1) : ", math.acos(1))

When we run the above program, it produces the following result-

acos(0.64) : 0.876298061168

acos(0) : 1.57079632679

acos(-1) : 3.14159265359

acos(1) : 0.0

Number asin() Method

Description

The asin() method returns the arc sine of x (in radians).

Syntax

Following is the syntax for the asin() method-

asin(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function usingthe math static object.

Python 3

90

Parameters

x - This must be a numeric value in the range -1 to 1. If x is greater than 1 then it will

generate 'math domain error'.

Return Value

This method returns arc sine of x, in radians.

Example

The following example shows the usage of the asin() method.

#!/usr/bin/python3

import math

print ("asin(0.64) : ", math.asin(0.64))

print ("asin(0) : ", math.asin(0))

print ("asin(-1) : ", math.asin(-1))

print ("asin(1) : ", math.asin(1))

When we run the above program, it produces the following result-

asin(0.64) : 0.694498265627

asin(0) : 0.0

asin(-1) : -1.57079632679

asin(1) : 1.5707963267

Number atan() Method

Description

The atan() method returns the arc tangent of x, in radians.

Syntax

Following is the syntax for atan() method-

atan(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This must be a numeric value.

Return Value

Python 3

91

This method returns arc tangent of x, in radians.

Example

The following example shows the usage of the atan() method.

#!/usr/bin/python3

import math

print ("atan(0.64) : ", math.atan(0.64))

print ("atan(0) : ", math.atan(0))

print ("atan(10) : ", math.atan(10))

print ("atan(-1) : ", math.atan(-1))

print ("atan(1) : ", math.atan(1))

When we run the above program, it produces the following result-

atan(0.64) : 0.569313191101

atan(0) : 0.0

atan(10) : 1.4711276743

atan(-1) : -0.785398163397

atan(1) : 0.785398163397

Number atan2() Method

Description

The atan2() method returns atan(y / x), in radians.

Syntax

Following is the syntax for atan2() method-

atan2(y, x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

 y - This must be a numeric value.

 x - This must be a numeric value.

Return Value

Python 3

92

This method returns atan(y / x), in radians.

Example

The following example shows the usage of atan2() method.

#!/usr/bin/python3

import math

print ("atan2(-0.50,-0.50) : ", math.atan2(-0.50,-0.50))

print ("atan2(0.50,0.50) : ", math.atan2(0.50,0.50))

print ("atan2(5,5) : ", math.atan2(5,5))

print ("atan2(-10,10) : ", math.atan2(-10,10))

print ("atan2(10,20) : ", math.atan2(10,20))

When we run the above program, it produces the following result-

atan2(-0.50,-0.50) : -2.35619449019

atan2(0.50,0.50) : 0.785398163397

atan2(5,5) : 0.785398163397

atan2(-10,10) : -0.785398163397

atan2(10,20) : 0.463647609001

Number cos() Method

Description

The cos() method returns the cosine of x radians.

Syntax

Following is the syntax for cos() method-

cos(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This must be a numeric value.

Return Value

This method returns a numeric value between -1 and 1, which represents the cosine of

the angle.

Example

Python 3

93

The following example shows the usage of cos() method.

#!/usr/bin/python3

import math

print ("cos(3) : ", math.cos(3))

print ("cos(-3) : ", math.cos(-3))

print ("cos(0) : ", math.cos(0))

print ("cos(math.pi) : ", math.cos(math.pi))

print ("cos(2*math.pi) : ", math.cos(2*math.pi))

When we run the above program, it produces the following result-

cos(3) : -0.9899924966

cos(-3) : -0.9899924966

cos(0) : 1.0

cos(math.pi) : -1.0

cos(2*math.pi) : 1.0

Number hypot() Method

Description

The method hypot() return the Euclidean norm, sqrt(x*x + y*y). This is length of vector

from origin to point (x,y)

Syntax

Following is the syntax for hypot() method-

hypot(x, y)

Note: This function is not accessible directly, so we need to import math module and then

we need to call this function using math static object.

Parameters

 x - This must be a numeric value.

 y - This must be a numeric value.

Return Value

This method returns Euclidean norm, sqrt(x*x + y*y).

Example

Python 3

94

The following example shows the usage of hypot() method.

#!/usr/bin/python3

import math

print ("hypot(3, 2) : ", math.hypot(3, 2))

print ("hypot(-3, 3) : ", math.hypot(-3, 3))

print ("hypot(0, 2) : ", math.hypot(0, 2))

When we run the above program, it produces the following result-

hypot(3, 2) : 3.60555127546

hypot(-3, 3) : 4.24264068712

hypot(0, 2) : 2.0

Number sin() Method

Description

The sin() method returns the sine of x, in radians.

Syntax

Following is the syntax for sin() method-

sin(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This must be a numeric value.

Return Value

This method returns a numeric value between -1 and 1, which represents the sine of the

parameter x.

Example

The following example shows the usage of sin() method.

#!/usr/bin/python3

import math

print ("sin(3) : ", math.sin(3))

print ("sin(-3) : ", math.sin(-3))

print ("sin(0) : ", math.sin(0))

Python 3

95

print ("sin(math.pi) : ", math.sin(math.pi))

print ("sin(math.pi/2) : ", math.sin(math.pi/2))

When we run the above program, it produces the following result-

sin(3) : 0.14112000806

sin(-3) : -0.14112000806

sin(0) : 0.0

sin(math.pi) : 1.22460635382e-16

sin(math.pi/2) : 1

Number tan() Method

Description

The tan() method returns the tangent of x radians.

Syntax

Following is the syntax for tan() method.

tan(x)

Note: This function is not accessible directly, so we need to import math module and then

we need to call this function using math static object.

Parameters

x - This must be a numeric value.

Return Value

This method returns a numeric value between -1 and 1, which represents the tangent of

the parameter x.

Example

The following example shows the usage of tan() method.

#!/usr/bin/python3

import math

print ("(tan(3) : ", math.tan(3))

print ("tan(-3) : ", math.tan(-3))

print ("tan(0) : ", math.tan(0))

print ("tan(math.pi) : ", math.tan(math.pi))

print ("tan(math.pi/2) : ", math.tan(math.pi/2))

Python 3

96

print ("tan(math.pi/4) : ", math.tan(math.pi/4))

When we run the above program, it produces the following result-

print ("(tan(3) : ", math.tan(3))

print ("tan(-3) : ", math.tan(-3))

print ("tan(0) : ", math.tan(0))

print ("tan(math.pi) : ", math.tan(math.pi))

print ("tan(math.pi/2) : ", math.tan(math.pi/2))

print ("tan(math.pi/4) : ", math.tan(math.pi/4))

Number degrees() Method

Description

The degrees() method converts angle x from radians to degrees..

Syntax

Following is the syntax for degrees() method-

degrees(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This must be a numeric value.

Return Value

This method returns the degree value of an angle.

Example

The following example shows the usage of degrees() method.

#!/usr/bin/python3

import math

print ("degrees(3) : ", math.degrees(3))

print ("degrees(-3) : ", math.degrees(-3))

print ("degrees(0) : ", math.degrees(0))

print ("degrees(math.pi) : ", math.degrees(math.pi))

print ("degrees(math.pi/2) : ", math.degrees(math.pi/2))

Python 3

97

print ("degrees(math.pi/4) : ", math.degrees(math.pi/4))

When we run the above program, it produces the following result-

degrees(3) : 171.88733853924697

degrees(-3) : -171.88733853924697

degrees(0) : 0.0

degrees(math.pi) : 180.0

degrees(math.pi/2) : 90.0

degrees(math.pi/4) : 45.0

Number radians() Method

Description

The radians() method converts angle x from degrees to radians.

Syntax

Following is the syntax for radians() method-

radians(x)

Note: This function is not accessible directly, so we need to import the math module and

then we need to call this function using the math static object.

Parameters

x - This must be a numeric value.

Return Value

This method returns radian value of an angle.

Example

The following example shows the usage of radians() method.

#!/usr/bin/python3

import math

print ("radians(3) : ", math.radians(3))

print ("radians(-3) : ", math.radians(-3))

print ("radians(0) : ", math.radians(0))

print ("radians(math.pi) : ", math.radians(math.pi))

print ("radians(math.pi/2) : ", math.radians(math.pi/2))

Python 3

98

print ("radians(math.pi/4) : ", math.radians(math.pi/4))

When we run the above program, it produces the following result-

radians(3) : 0.0523598775598

radians(-3) : -0.0523598775598

radians(0) : 0.0

radians(math.pi) : 0.0548311355616

radians(math.pi/2) : 0.0274155677808

radians(math.pi/4) : 0.0137077838904

Mathematical Constants

The module also defines two mathematical constants-

Constants Description

pi The mathematical constant pi.

e The mathematical constant e.

Python 3

99

Strings are amongst the most popular types in Python. We can create them simply by

enclosing characters in quotes. Python treats single quotes the same as double quotes.

Creating strings is as simple as assigning a value to a variable. For example-

var1 = 'Hello World!'

var2 = "Python Programming"

Accessing Values in Strings

Python does not support a character type; these are treated as strings of length one, thus

also considered a substring.

To access substrings, use the square brackets for slicing along with the index or indices to

obtain your substring. For example-

#!/usr/bin/python3

var1 = 'Hello World!'

var2 = "Python Programming"

print ("var1[0]: ", var1[0])

print ("var2[1:5]: ", var2[1:5])

When the above code is executed, it produces the following result-

var1[0]: H

var2[1:5]: ytho

Updating Strings

You can "update" an existing string by (re)assigning a variable to another string. The new

value can be related to its previous value or to a completely different string altogether.

For example-

#!/usr/bin/python3

var1 = 'Hello World!'

print ("Updated String :- ", var1[:6] + 'Python')

When the above code is executed, it produces the following result-

Updated String :- Hello Python

10. Python 3 – Strings

Python 3

100

Escape Characters

Following table is a list of escape or non-printable characters that can be represented with

backslash notation.

An escape character gets interpreted; in a single quoted as well as double quoted strings.

Backslash

notation

Hexadecimal

character
Description

a 0x07 Bell or alert

b 0x08 Backspace

\cx Control-x

\C-x Control-x

\e 0x1b Escape

\f 0x0c Formfeed

\M-\C-x Meta-Control-x

\n 0x0a Newline

\nnn

Octal notation, where n is in the range

0.7

\r 0x0d Carriage return

\s 0x20 Space

\t 0x09 Tab

Python 3

101

\v 0x0b Vertical tab

\x Character x

\xnn

Hexadecimal notation, where n is in the

range 0.9, a.f, or A.F

String Special Operators

Assume string variable a holds 'Hello' and variable b holds 'Python', then-

Operator Description Example

+ Concatenation - Adds values on either side of the

operator

a + b will give

HelloPython

* Repetition - Creates new strings, concatenating

multiple copies of the same string

a*2 will give -

HelloHello

[] Slice - Gives the character from the given index a[1] will give e

[:] Range Slice - Gives the characters from the given

range

a[1:4] will give ell

in Membership - Returns true if a character exists in

the given string

H in a will give 1

not in Membership - Returns true if a character does not

exist in the given string

M not in a will give

1

r/R Raw String - Suppresses actual meaning of Escape

characters. The syntax for raw strings is exactly the

same as for normal strings with the exception of the

raw string operator, the letter "r," which precedes

the quotation marks. The "r" can be lowercase (r) or

uppercase (R) and must be placed immediately

preceding the first quote mark.

print r'\n' prints \n

and print

R'\n'prints \n

Python 3

102

% Format - Performs String formatting See next section

String Formatting Operator

One of Python's coolest features is the string format operator %. This operator is unique

to strings and makes up for the pack of having functions from C's printf() family. Following

is a simple example −

#!/usr/bin/python3

print ("My name is %s and weight is %d kg!" % ('Zara', 21))

When the above code is executed, it produces the following result −

My name is Zara and weight is 21 kg!

Here is the list of complete set of symbols which can be used along with %-

Format Symbol Conversion

%c character

%s string conversion via str() prior to formatting

%i signed decimal integer

%d signed decimal integer

%u unsigned decimal integer

%o octal integer

%x hexadecimal integer (lowercase letters)

%X hexadecimal integer (UPPERcase letters)

%e exponential notation (with lowercase 'e')

Python 3

103

%E exponential notation (with UPPERcase 'E')

%f floating point real number

%g the shorter of %f and %e

%G the shorter of %f and %E

Other supported symbols and functionality are listed in the following table-

Symbol Functionality

* argument specifies width or precision

- left justification

+ display the sign

<sp> leave a blank space before a positive number

add the octal leading zero ('0') or hexadecimal leading '0x'

or '0X', depending on whether 'x' or 'X' were used.

0 pad from left with zeros (instead of spaces)

% '%%' leaves you with a single literal '%'

(var) mapping variable (dictionary arguments)

m.n. m is the minimum total width and n is the number of digits

to display after the decimal point (if appl.)

Python 3

104

Triple Quotes

Python's triple quotes comes to the rescue by allowing strings to span multiple lines,

including verbatim NEWLINEs, TABs, and any other special characters.

The syntax for triple quotes consists of three consecutive single or double quotes.

#!/usr/bin/python3

para_str = """this is a long string that is made up of

several lines and non-printable characters such as

TAB (\t) and they will show up that way when displayed.

NEWLINEs within the string, whether explicitly given like

this within the brackets [\n], or just a NEWLINE within

the variable assignment will also show up.

"""

print (para_str)

When the above code is executed, it produces the following result. Note how every single

special character has been converted to its printed form, right down to the last NEWLINE

at the end of the string between the "up." and closing triple quotes. Also note that

NEWLINEs occur either with an explicit carriage return at the end of a line or its escape

code (\n) −

this is a long string that is made up of

several lines and non-printable characters such as

TAB () and they will show up that way when displayed.

NEWLINEs within the string, whether explicitly given like

this within the brackets [

], or just a NEWLINE within

the variable assignment will also show up.

Raw strings do not treat the backslash as a special character at all. Every character you

put into a raw string stays the way you wrote it-

#!/usr/bin/python3

print ('C:\\nowhere')

When the above code is executed, it produces the following result-

C:\nowhere

Now let us make use of raw string. We would put expression in r'expression' as follows-

#!/usr/bin/python3

Python 3

105

print (r'C:\\nowhere')

When the above code is executed, it produces the following result-

C:\\nowhere

Unicode String

In Python 3, all strings are represented in Unicode. In Python 2 are stored internally as 8-

bit ASCII, hence it is required to attach 'u' to make it Unicode. It is no longer necessary

now.

Built-in String Methods
Python includes the following built-in methods to manipulate strings-

S. No. Methods with Description

1
capitalize()

Capitalizes first letter of string

2

center(width, fillchar)

Returns a string padded with fillchar with the original string centered to a total

of width columns.

3

count(str, beg= 0,end=len(string))

Counts how many times str occurs in string or in a substring of string if starting

index beg and ending index end are given.

4

decode(encoding='UTF-8',errors='strict')

Decodes the string using the codec registered for encoding. encoding defaults

to the default string encoding.

5

encode(encoding='UTF-8',errors='strict')

Returns encoded string version of string; on error, default is to raise a

ValueError unless errors is given with 'ignore' or 'replace'.

6 endswith(suffix, beg=0, end=len(string))

Python 3

106

Determines if string or a substring of string (if starting index beg and ending

index end are given) ends with suffix; returns true if so and false otherwise.

7

expandtabs(tabsize=8)

Expands tabs in string to multiple spaces; defaults to 8 spaces per tab if tabsize

not provided.

8

find(str, beg=0 end=len(string))

Determine if str occurs in string or in a substring of string if starting index beg

and ending index end are given returns index if found and -1 otherwise.

9

index(str, beg=0, end=len(string))

Same as find(), but raises an exception if str not found.

10

isalnum()

Returns true if string has at least 1 character and all characters are

alphanumeric and false otherwise.

11

isalpha()

Returns true if string has at least 1 character and all characters are alphabetic

and false otherwise.

12

isdigit()

Returns true if the string contains only digits and false otherwise.

13

islower()

Returns true if string has at least 1 cased character and all cased characters

are in lowercase and false otherwise.

14

isnumeric()

Returns true if a unicode string contains only numeric characters and false

otherwise.

Python 3

107

15

isspace()

Returns true if string contains only whitespace characters and false otherwise.

16

istitle()

Returns true if string is properly "titlecased" and false otherwise.

17

isupper()

Returns true if string has at least one cased character and all cased characters

are in uppercase and false otherwise.

18

join(seq)

Merges (concatenates) the string representations of elements in sequence seq

into a string, with separator string.

19

len(string)

Returns the length of the string

20

ljust(width[, fillchar])

Returns a space-padded string with the original string left-justified to a total

of width columns.

21

lower()

Converts all uppercase letters in string to lowercase.

22

lstrip()

Removes all leading whitespace in string.

23

maketrans()

Returns a translation table to be used in translate function.

Python 3

108

24

max(str)

Returns the max alphabetical character from the string str.

25

min(str)

Returns the min alphabetical character from the string str.

26

replace(old, new [, max])

Replaces all occurrences of old in string with new or at most max occurrences

if max given.

27

rfind(str, beg=0,end=len(string))

Same as find(), but search backwards in string.

28

rindex(str, beg=0, end=len(string))

Same as index(), but search backwards in string.

29

rjust(width,[, fillchar])

Returns a space-padded string with the original string right-justified to a total

of width columns.

30

rstrip()

Removes all trailing whitespace of string.

31

split(str="", num=string.count(str))

Splits string according to delimiter str (space if not provided) and returns list

of substrings; split into at most num substrings if given.

32

splitlines(num=string.count('\n'))

Splits string at all (or num) NEWLINEs and returns a list of each line with

NEWLINEs removed.

Python 3

109

33

startswith(str, beg=0,end=len(string))

Determines if string or a substring of string (if starting index beg and ending

index end are given) starts with substring str; returns true if so and false

otherwise.

34

strip([chars])

Performs both lstrip() and rstrip() on string

35

swapcase()

Inverts case for all letters in string.

36

title()

Returns "titlecased" version of string, that is, all words begin with uppercase

and the rest are lowercase.

37

translate(table, deletechars="")

Translates string according to translation table str(256 chars), removing those

in the del string.

38

upper()

Converts lowercase letters in string to uppercase.

39

zfill (width)

Returns original string leftpadded with zeros to a total of width characters;

intended for numbers, zfill() retains any sign given (less one zero).

40

isdecimal()

Returns true if a unicode string contains only decimal characters and false

otherwise.

String capitalize() Method

It returns a copy of the string with only its first character capitalized.

Python 3

110

Syntax

str.capitalize()

Parameters

NA

Return Value

string

Example

#!/usr/bin/python3

str = "this is string example....wow!!!"

print ("str.capitalize() : ", str.capitalize())

Result

str.capitalize() : This is string example....wow!!!

String center() Method

The method center() returns centered in a string of length width. Padding is done using

the specified fillchar. Default filler is a space.

Syntax

str.center(width[, fillchar])

Parameters

 width - This is the total width of the string.

 fillchar - This is the filler character.

Return Value

This method returns a string that is at least width characters wide, created by padding the

string with the character fillchar (default is a space).

Example

The following example shows the usage of the center() method.

#!/usr/bin/python3

str = "this is string example....wow!!!"

Python 3

111

print ("str.center(40, 'a') : ", str.center(40, 'a'))

Result

str.center(40, 'a') : aaaathis is string example....wow!!!aaaa

String count() Method

Description

The count() method returns the number of occurrences of substring sub in the range

[start, end]. Optional arguments start and end are interpreted as in slice notation.

Syntax

str.count(sub, start= 0,end=len(string))

Parameters

 sub - This is the substring to be searched.

 start - Search starts from this index. First character starts from 0 index. By default

search starts from 0 index.

 end - Search ends from this index. First character starts from 0 index. By default

search ends at the last index.

Return Value

Centered in a string of length width.

Example

#!/usr/bin/python3

str="this is string example....wow!!!"

sub='i'

print ("str.count('i') : ", str.count(sub))

sub='exam'

print ("str.count('exam', 10, 40) : ", str.count(sub,10,40))

Result

str.count('i') : 3

str.count('exam', 4, 40) :

Python 3

112

String decode() Method

Description

The decode() method decodes the string using the codec registered for encoding. It

defaults to the default string encoding.

Syntax

Str.decode(encoding='UTF-8',errors='strict')

Parameters

 encoding - This is the encodings to be used. For a list of all encoding schemes

please visit: Standard Encodings.

 errors - This may be given to set a different error handling scheme. The default

for errors is 'strict', meaning that encoding errors raise a UnicodeError. Other

possible values are 'ignore', 'replace', 'xmlcharrefreplace', 'backslashreplace' and

any other name registered via codecs.register_error()..

Return Value

Decoded string.

Example

#!/usr/bin/python3

Str = "this is string example....wow!!!";

Str = Str.encode('base64','strict');

print "Encoded String: " + Str

print "Decoded String: " + Str.decode('base64','strict')

Result

Encoded String: b'dGhpcyBpcyBzdHJpbmcgZXhhbXBsZS4uLi53b3chISE='

Decoded String: this is string example....wow!!!

String encode() Method

Description

The encode() method returns an encoded version of the string. Default encoding is the

current default string encoding. The errors may be given to set a different error handling

scheme.

Python 3

113

Syntax

str.encode(encoding='UTF-8',errors='strict')

Parameters

 encoding - This is the encodings to be used. For a list of all encoding schemes

please visit: Standard Encodings.

 errors - This may be given to set a different error handling scheme. The default

for errors is 'strict', meaning that encoding errors raise a UnicodeError. Other

possible values are 'ignore', 'replace', 'xmlcharrefreplace', 'backslashreplace' and

any other name registered via codecs.register_error().

Return Value

Decoded string.

Example

#!/usr/bin/python3

import base64

Str = "this is string example....wow!!!"

Str=base64.b64encode(Str.encode('utf-8',errors='strict'))

print ("Encoded String: " , Str)

Result

Encoded String: b'dGhpcyBpcyBzdHJpbmcgZXhhbXBsZS4uLi53b3chISE='

String endswith() Method

Description

It returns True if the string ends with the specified suffix, otherwise return False optionally

restricting the matching with the given indices start and end.

Syntax

str.endswith(suffix[, start[, end]])

Parameters

 suffix - This could be a string or could also be a tuple of suffixes to look for.

 start - The slice begins from here.

Python 3

114

 end - The slice ends here.

Return Value

TRUE if the string ends with the specified suffix, otherwise FALSE.

Example

#!/usr/bin/python3

Str='this is string example....wow!!!'

suffix='!!'

print (Str.endswith(suffix))

print (Str.endswith(suffix,20))

suffix='exam'

print (Str.endswith(suffix))

print (Str.endswith(suffix, 0, 19))

Result

True

True

False

True

String expandtabs() Method

Description

The expandtabs() method returns a copy of the string in which the tab characters ie. '\t'

are expanded using spaces, optionally using the given tabsize (default 8)..

Syntax

str.expandtabs(tabsize=8)

Parameters

tabsize - This specifies the number of characters to be replaced for a tab character '\t'.

Return Value

This method returns a copy of the string in which tab characters i.e., '\t' have been

expanded using spaces.

Example

Python 3

115

#!/usr/bin/python3

str = "this is\tstring example....wow!!!"

print ("Original string: " + str)

print ("Defualt exapanded tab: " + str.expandtabs())

print ("Double exapanded tab: " + str.expandtabs(16))

Result

Original string: this is string example....wow!!!

Defualt exapanded tab: this is string example....wow!!!

Double exapanded tab: this is string example....wow!!!

String find() Method

Description

The find() method determines if the string str occurs in string, or in a substring of string

if the starting index beg and ending index end are given.

Syntax

str.find(str, beg=0 end=len(string))

Parameters

 str - This specifies the string to be searched.

 beg - This is the starting index, by default its 0.

 end - This is the ending index, by default its equal to the lenght of the string.

Return Value

Index if found and -1 otherwise.

Example

#!/usr/bin/python3

str1 = "this is string example....wow!!!"

str2 = "exam";

print (str1.find(str2))

print (str1.find(str2, 10))

print (str1.find(str2, 40))

Python 3

116

Result

15

15

-1

String index() Method

Description

The index() method determines if the string str occurs in string or in a substring of string,

if the starting index beg and ending index end are given. This method is same as find(),

but raises an exception if sub is not found.

Syntax

str.index(str, beg=0 end=len(string))

Parameters

 str - This specifies the string to be searched.

 beg - This is the starting index, by default its 0.

 end - This is the ending index, by default its equal to the length of the string.

Return Value

Index if found otherwise raises an exception if str is not found.

Example

#!/usr/bin/python3

str1 = "this is string example....wow!!!"

str2 = "exam";

print (str1.index(str2))

print (str1.index(str2, 10))

print (str1.index(str2, 40))

Result

15

Python 3

117

15

Traceback (most recent call last):

 File "test.py", line 7, in

 print (str1.index(str2, 40))

ValueError: substring not found

shell returned 1

String isalnum() Method

Description

The isalnum() method checks whether the string consists of alphanumeric characters.

Syntax

Following is the syntax for isalnum() method-

str.isa1num()

Parameters

NA

Return Value

This method returns true if all the characters in the string are alphanumeric and there is

at least one character, false otherwise.

Example

The following example shows the usage of isalnum() method.

#!/usr/bin/python3

str = "this2016" # No space in this string

print (str.isalnum())

str = "this is string example....wow!!!"

print (str.isalnum())

When we run the above program, it produces the following result-

True

False

Python 3

118

String isalpha() Method

Description

The isalpha() method checks whether the string consists of alphabetic characters only.

Syntax

Following is the syntax for islpha() method-

str.isalpha()

Parameters

NA

Return Value

This method returns true if all the characters in the string are alphabetic and there is at

least one character, false otherwise.

Example

The following example shows the usage of isalpha() method.

#!/usr/bin/python3

str = "this"; # No space & digit in this string

print (str.isalpha())

str = "this is string example....wow!!!"

print (str.isalpha())

Result

True

False

String isdigit() Method

Description

The method isdigit() checks whether the string consists of digits only.

Syntax

Following is the syntax for isdigit() method-

str.isdigit()

Python 3

119

Parameters

NA

Return Value

This method returns true if all characters in the string are digits and there is at least one

character, false otherwise.

Example

The following example shows the usage of isdigit() method.

#!/usr/bin/python3

str = "123456"; # Only digit in this string

print (str.isdigit())

str = "this is string example....wow!!!"

print (str.isdigit())

Result

True

False

String islower() Method

Description

The islower() method checks whether all the case-based characters (letters) of the string

are lowercase.

Syntax

Following is the syntax for islower() method-

str.islower()

Parameters

NA

Return Value

This method returns true if all cased characters in the string are lowercase and there is at

least one cased character, false otherwise.

Example

Python 3

120

The following example shows the usage of islower() method.

#!/usr/bin/python3

str = "THIS is string example....wow!!!"

print (str.islower())

str = "this is string example....wow!!!"

print (str.islower())

Result

False

True

String isnumeric() Method

Description

The isnumeric() method checks whether the string consists of only numeric characters.

This method is present only on unicode objects.

Note: Unlike Python 2, all strings are represented in Unicode in Python 3. Given below is

an example illustrating it.

Syntax

Following is the syntax for isnumeric() method-

str.isnumeric()

Parameters

NA

Return Value

This method returns true if all characters in the string are numeric, false otherwise.

Example

The following example shows the usage of isnumeric() method.

#!/usr/bin/python3

str = "this2016"

print (str.isnumeric())

str = "23443434"

Python 3

121

print (str.isnumeric())

Result

False

True

String isspace() Method

Description

The isspace() method checks whether the string consists of whitespace..

Syntax

Following is the syntax for isspace() method-

str.isspace()

Parameters

NA

Return Value

This method returns true if there are only whitespace characters in the string and there is

at least one character, false otherwise.

Example

The following example shows the usage of isspace() method.

#!/usr/bin/python3

str = " "

print (str.isspace())

str = "This is string example....wow!!!"

print (str.isspace())

Result

True

False

Python 3

122

String istitle() Method

Description

The istitle() method checks whether all the case-based characters in the string following

non-casebased letters are uppercase and all other case-based characters are lowercase.

Syntax

Following is the syntax for istitle() method-

str.istitle()

Parameters

NA

Return Value

This method returns true if the string is a titlecased string and there is at least one

character, for example uppercase characters may only follow uncased characters and

lowercase characters only cased ones. It returns false otherwise.

Example

The following example shows the usage of istitle() method.

#!/usr/bin/python3

str = "This Is String Example...Wow!!!"

print (str.istitle())

str = "This is string example....wow!!!"

print (str.istitle())

Result

True

False

String isupper() Method

Description

Python 3

123

The isupper() method checks whether all the case-based characters (letters) of the string

are uppercase.

Syntax

Following is the syntax for isupper() method-

str.isupper()

Parameters

NA

Return Value

This method returns true if all the cased characters in the string are uppercase and there

is at least one cased character, false otherwise.

Example

The following example shows the usage of isupper() method.

#!/usr/bin/python3

str = "THIS IS STRING EXAMPLE....WOW!!!"

print (str.isupper())

str = "THIS is string example....wow!!!"

print (str.isupper())

Result

True

False

String join() Method

Description

The join() method returns a string in which the string elements of sequence have been

joined by str separator.

Syntax

Following is the syntax for join() method-

str.join(sequence)

Parameters

Python 3

124

sequence - This is a sequence of the elements to be joined.

Return Value

This method returns a string, which is the concatenation of the strings in the sequence

seq. The separator between elements is the string providing this method.

Example

The following example shows the usage of join() method.

#!/usr/bin/python3

s = "-"

seq = ("a", "b", "c") # This is sequence of strings.

print (s.join(seq))

Result

a-b-c

String len() Method

Description

The len() method returns the length of the string.

Syntax

Following is the syntax for len() method −

len(str)

Parameters

NA

Return Value

This method returns the length of the string.

Example

The following example shows the usage of len() method.

#!/usr/bin/python3

str = "this is string example....wow!!!"

print ("Length of the string: ", len(str))

Python 3

125

Result

Length of the string: 32

String ljust() Method

Description

The method ljust() returns the string left justified in a string of length width. Padding is

done using the specified fillchar (default is a space). The original string is returned if width

is less than len(s).

Syntax

Following is the syntax for ljust() method −

str.ljust(width[, fillchar])

Parameters

 width - This is string length in total after padding.

 fillchar - This is filler character, default is a space.

Return Value

This method returns the string left justified in a string of length width. Padding is done

using the specified fillchar (default is a space). The original string is returned if width is

less than len(s).

Example

The following example shows the usage of ljust() method.

#!/usr/bin/python3

str = "this is string example....wow!!!"

print str.ljust(50, '*')

Result

this is string example....wow!!!******************

String lower() Method

Description

The method lower() returns a copy of the string in which all case-based characters have

been lowercased.

Python 3

126

Syntax

Following is the syntax for lower() method −

str.lower()

Parameters

NA

Return Value

This method returns a copy of the string in which all case-based characters have been

lowercased.

Example

The following example shows the usage of lower() method.

#!/usr/bin/python3

str = "THIS IS STRING EXAMPLE....WOW!!!"

print (str.lower())

Result

this is string example....wow!!!

String lstrip() Method

Description

The lstrip() method returns a copy of the string in which all chars have been stripped

from the beginning of the string (default whitespace characters).

Syntax

Following is the syntax for lstrip() method-

str.lstrip([chars])

Parameters

chars - You can supply what chars have to be trimmed.

Return Value

This method returns a copy of the string in which all chars have been stripped from the

beginning of the string (default whitespace characters).

Python 3

127

Example

The following example shows the usage of lstrip() method.

#!/usr/bin/python3

str = " this is string example....wow!!!"

print (str.lstrip())

str = "*****this is string example....wow!!!*****"

print (str.lstrip('*'))

Result

this is string example....wow!!!

this is string example....wow!!!*****

String maketrans() Method

Description

The maketrans() method returns a translation table that maps each character in the

intabstring into the character at the same position in the outtab string. Then this table is

passed to the translate() function.

Note: Both intab and outtab must have the same length.

Syntax

Following is the syntax for maketrans() method-

str.maketrans(intab, outtab]);

Parameters

 intab - This is the string having actual characters.

 outtab - This is the string having corresponding mapping character.

Return Value

This method returns a translate table to be used translate() function.

Example

The following example shows the usage of maketrans() method. Under this, every vowel

in a string is replaced by its vowel position −

#!/usr/bin/python3

intab = "aeiou"

Python 3

128

outtab = "12345"

trantab = str.maketrans(intab, outtab)

str = "this is string example....wow!!!"

print (str.translate(trantab))

Result

th3s 3s str3ng 2x1mpl2....w4w!!!

String max() Method

Description

The max() method returns the max alphabetical character from the string str.

Syntax

Following is the syntax for max() method-

max(str)

Parameters

str - This is the string from which max alphabetical character needs to be returned.

Return Value

This method returns the max alphabetical character from the string str.

Example

The following example shows the usage of max() method.

#!/usr/bin/python3

str = "this is a string example....really!!!"

print ("Max character: " + max(str))

str = "this is a string example....wow!!!"

print ("Max character: " + max(str))

Result

Max character: y

Max character: x

Python 3

129

String min() Method

Description

The min() method returns the min alphabetical character from the string str.

Syntax

Following is the syntax for min() method-

min(str)

Parameters

str - This is the string from which min alphabetical character needs to be returned.

Return Value

This method returns the max alphabetical character from the string str.

Example

The following example shows the usage of min() method.

#!/usr/bin/python3

str = "www.tutorialspoint.com"

print ("Min character: " + min(str))

str = "TUTORIALSPOINT"

print ("Min character: " + min(str))

Result

Min character: .

Min character: A

String replace() Method

Description

The replace() method returns a copy of the string in which the occurrences of old have

been replaced with new, optionally restricting the number of replacements to max.

Syntax

Following is the syntax for replace() method-

str.replace(old, new[, max])

Python 3

130

Parameters

 old - This is old substring to be replaced.

 new - This is new substring, which would replace old substring.

 max - If this optional argument max is given, only the first count occurrences are

replaced.

Return Value

This method returns a copy of the string with all occurrences of substring old replaced by

new. If the optional argument max is given, only the first count occurrences are replaced.

Example

The following example shows the usage of replace() method.

#!/usr/bin/python3

str = "this is string example....wow!!! this is really string"

print (str.replace("is", "was"))

print (str.replace("is", "was", 3))

Result

thwas was string example....wow!!! thwas was really string

thwas was string example....wow!!! thwas is really string

String rfind() Method

Description

The rfind() method returns the last index where the substring str is found, or -1 if no

such index exists, optionally restricting the search to string[beg:end].

Syntax

Following is the syntax for rfind() method-

str.rfind(str, beg=0 end=len(string))

Parameters

 str - This specifies the string to be searched.

 beg - This is the starting index, by default its 0.

 end - This is the ending index, by default its equal to the length of the string.

Python 3

131

Return Value

This method returns last index if found and -1 otherwise.

Example

The following example shows the usage of rfind() method.

#!/usr/bin/python3

str1 = "this is really a string example....wow!!!"

str2 = "is"

print (str1.rfind(str2))

print (str1.rfind(str2, 0, 10))

print (str1.rfind(str2, 10, 0))

print (str1.find(str2))

print (str1.find(str2, 0, 10))

print (str1.find(str2, 10, 0))

Result

5

5

-1

2

2

-1

String rindex() Method

Description

The rindex() method returns the last index where the substring str is found, or raises an

exception if no such index exists, optionally restricting the search to string[beg:end].

Syntax

Following is the syntax for rindex() method-

str.rindex(str, beg=0 end=len(string))

Parameters

 str - This specifies the string to be searched.

Python 3

132

 beg - This is the starting index, by default its 0.

 len - This is ending index, by default its equal to the length of the string.

Return Value

This method returns last index if found otherwise raises an exception if str is not found.

Example

The following example shows the usage of rindex() method.

#!/usr/bin/python3

str1 = "this is really a string example....wow!!!"

str2 = "is"

print (str1.rindex(str2))

print (str1.rindex(str2,10))

Result

5

Traceback (most recent call last):

 File "test.py", line 5, in

 print (str1.rindex(str2,10))

ValueError: substring not found

String rjust() Method

Description

The rjust() method returns the string right justified in a string of length width. Padding

is done using the specified fillchar (default is a space). The original string is returned if

width is less than len(s).

Syntax

Following is the syntax for rjust() method-

str.rjust(width[, fillchar])

Parameters

 width - This is the string length in total after padding.

 fillchar - This is the filler character, default is a space.

Python 3

133

Return Value

This method returns the string right justified in a string of length width. Padding is done

using the specified fillchar (default is a space). The original string is returned if the width

is less than len(s).

Example

The following example shows the usage of rjust() method.

#!/usr/bin/python3

str = "this is string example....wow!!!"

print (str.rjust(50, '*'))

Result

******************this is string example....wow!!!

String rstrip() Method

Description

The rstrip() method returns a copy of the string in which all chars have been stripped

from the end of the string (default whitespace characters).

Syntax

Following is the syntax for rstrip() method-

str.rstrip([chars])

Parameters

chars - You can supply what chars have to be trimmed.

Return Value

This method returns a copy of the string in which all chars have been stripped from the

end of the string (default whitespace characters).

Example

The following example shows the usage of rstrip() method.

#!/usr/bin/python3

str = " this is string example....wow!!! "

print (str.rstrip())

str = "*****this is string example....wow!!!*****"

Python 3

134

print (str.rstrip('*'))

Result

 this is string example....wow!!!

*****this is string example....wow!!!

String split() Method

Description

The split() method returns a list of all the words in the string, using str as the separator

(splits on all whitespace if left unspecified), optionally limiting the number of splits to num.

Syntax

Following is the syntax for split() method-

str.split(str="", num=string.count(str)).

Parameters

 str - This is any delimeter, by default it is space.

 num - this is number of lines to be made

Return Value

This method returns a list of lines.

Example

The following example shows the usage of split() method.

#!/usr/bin/python3

str = "this is string example....wow!!!"

print (str.split())

print (str.split('i',1))

print (str.split('w'))

Result

['this', 'is', 'string', 'example....wow!!!']

['th', 's is string example....wow!!!']

['this is string example....', 'o', '!!!']

Python 3

135

String splitlines() Method

Description

The splitlines() method returns a list with all the lines in string, optionally including the

line breaks (if num is supplied and is true).

Syntax

Following is the syntax for splitlines() method-

str.splitlines(num=string.count('\n'))

Parameters

num - This is any number, if present then it would be assumed that the line breaks need

to be included in the lines.

Return Value

This method returns true if found matching with the string otherwise false.

Example

The following example shows the usage of splitlines() method.

#!/usr/bin/python3

str = "this is \nstring example....\nwow!!!"

print (str.splitlines())

Result

['this is ', 'string example....', 'wow!!!']

String startswith() Method

Description

The startswith() method checks whether the string starts with str, optionally restricting

the matching with the given indices start and end.

Syntax

Following is the syntax for startswith() method-

str.startswith(str, beg=0,end=len(string));

Python 3

136

Parameters

 str - This is the string to be checked.

 beg - This is the optional parameter to set start index of the matching boundary.

 end - This is the optional parameter to set start index of the matching boundary.

Return Value

This method returns true if found matching with the string otherwise false.

Example

The following example shows the usage of startswith() method.

#!/usr/bin/python3

str = "this is string example....wow!!!"

print (str.startswith('this'))

print (str.startswith('string', 8))

print (str.startswith('this', 2, 4))

Result

True

True

False

String strip() Method

Description

The strip() method returns a copy of the string in which all chars have been stripped from

the beginning and the end of the string (default whitespace characters).

Syntax

Following is the syntax for strip() method −

str.strip([chars]);

Parameters

chars - The characters to be removed from beginning or end of the string.

Return Value

Python 3

137

This method returns a copy of the string in which all the chars have been stripped from

the beginning and the end of the string.

Example

The following example shows the usage of strip() method.

#!/usr/bin/python3

str = "*****this is string example....wow!!!*****"

print (str.strip('*'))

Result

this is string example....wow!!!

String swapcase() Method

Description

The swapcase() method returns a copy of the string in which all the case-based

characters have had their case swapped.

Syntax

Following is the syntax for swapcase() method-

str.swapcase();

Parameters

NA

Return Value

This method returns a copy of the string in which all the case-based characters have had

their case swapped.

Example

The following example shows the usage of swapcase() method.

#!/usr/bin/python3

str = "this is string example....wow!!!"

print (str.swapcase())

str = "This Is String Example....WOW!!!"

print (str.swapcase())

Python 3

138

Result

THIS IS STRING EXAMPLE....WOW!!!

tHIS iS sTRING eXAMPLE....wow!!!

String title() Method

Description

The title() method returns a copy of the string in which first characters of all the words

are capitalized.

Syntax

Following is the syntax for title() method-

str.title();

Parameters

NA

Return Value

This method returns a copy of the string in which first characters of all the words are

capitalized.

Example

The following example shows the usage of title() method.

#!/usr/bin/python3

str = "this is string example....wow!!!"

print (str.title())

Result

This Is String Example....Wow!!!

String translate() Method

Description

The method translate() returns a copy of the string in which all the characters have been

translated using table (constructed with the maketrans() function in the string module),

optionally deleting all characters found in the string deletechars.

Python 3

139

Syntax

Following is the syntax for translate() method-

str.translate(table[, deletechars]);

Parameters

 table - You can use the maketrans() helper function in the string module to create

a translation table.

 deletechars - The list of characters to be removed from the source string.

Return Value

This method returns a translated copy of the string.

Example

The following example shows the usage of translate() method. Under this, every vowel in

a string is replaced by its vowel position.

#!/usr/bin/python3

from string import maketrans # Required to call maketrans function.

intab = "aeiou"

outtab = "12345"

trantab = maketrans(intab, outtab)

str = "this is string example....wow!!!";

print (str.translate(trantab))

Result

th3s 3s str3ng 2x1mpl2....w4w!!!

Following is the example to delete 'x' and 'm' characters from the string-

#!/usr/bin/python3

from string import maketrans # Required to call maketrans function.

intab = "aeiouxm"

outtab = "1234512"

trantab = maketrans(intab, outtab)

str = "this is string example....wow!!!";

print (str.translate(trantab))

Python 3

140

Result

th3s 3s str3ng 21pl2....w4w!!!

String upper() Method

Description

The upper() method returns a copy of the string in which all case-based characters have

been uppercased.

Syntax

Following is the syntax for upper() method −

str.upper()

Parameters

NA

Return Value

This method returns a copy of the string in which all case-based characters have been

uppercased.

Example

The following example shows the usage of upper() method.

#!/usr/bin/python3

str = "this is string example....wow!!!"

print ("str.upper : ",str.upper())

Result

str.upper : THIS IS STRING EXAMPLE....WOW!!!

String zfill() Method

Description

The zfill() method pads string on the left with zeros to fill width.

Syntax

Python 3

141

Following is the syntax for zfill() method-

str.zfill(width)

Parameters

width - This is final width of the string. This is the width which we would get after filling

zeros.

Return Value

This method returns padded string.

Example

The following example shows the usage of zfill() method.

#!/usr/bin/python3

str = "this is string example....wow!!!"

print ("str.zfill : ",str.zfill(40))

print ("str.zfill : ",str.zfill(50))

Result

str.zfill : 00000000this is string example....wow!!!

str.zfill : 000000000000000000this is string example....wow!!!

String isdecimal() Method

Description

The isdecimal() method checks whether the string consists of only decimal characters.

This method are present only on unicode objects.

Note: Unlike in Python 2, all strings are represented as Unicode in Python 3. Given Below

is an example illustrating it.

Syntax

Following is the syntax for isdecimal() method-

str.isdecimal()

Parameters

NA

Return Value

Python 3

142

This method returns true if all the characters in the string are decimal, false otherwise.

Example

The following example shows the usage of isdecimal() method.

#!/usr/bin/python3

str = "this2016"

print (str.isdecimal())

str = "23443434"

print (str.isdecimal())

Result

False

True

Python 3

143

The most basic data structure in Python is the sequence. Each element of a sequence is

assigned a number - its position or index. The first index is zero, the second index is one,

and so forth.

Python has six built-in types of sequences, but the most common ones are lists and tuples,

which we would see in this tutorial.

There are certain things you can do with all the sequence types. These operations include

indexing, slicing, adding, multiplying, and checking for membership. In addition, Python

has built-in functions for finding the length of a sequence and for finding its largest and

smallest elements.

Python Lists

The list is the most versatile datatype available in Python, which can be written as a list

of comma-separated values (items) between square brackets. Important thing about a list

is that the items in a list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square

brackets. For example-

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"];

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and

so on.

Accessing Values in Lists

To access values in lists, use the square brackets for slicing along with the index or indices

to obtain value available at that index. For example-

#!/usr/bin/python3

list1 = ['physics', 'chemistry', 1997, 2000]

list2 = [1, 2, 3, 4, 5, 6, 7]

print ("list1[0]: ", list1[0])

print ("list2[1:5]: ", list2[1:5])

When the above code is executed, it produces the following result −

list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

11. Python 3 – Lists

Python 3

144

Updating Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side

of the assignment operator, and you can add to elements in a list with the append()

method. For example-

#!/usr/bin/python3

list = ['physics', 'chemistry', 1997, 2000]

print ("Value available at index 2 : ", list[2])

list[2] = 2001

print ("New value available at index 2 : ", list[2])

Note: The append() method is discussed in the subsequent section.

When the above code is executed, it produces the following result −

Value available at index 2 :

1997

New value available at index 2 :

2001

Delete List Elements

To remove a list element, you can use either the del statement if you know exactly which

element(s) you are deleting. You can use the remove() method if you do not know exactly

which items to delete. For example-

#!/usr/bin/python3

list = ['physics', 'chemistry', 1997, 2000]

print (list)

del list[2]

print ("After deleting value at index 2 : ", list)

When the above code is executed, it produces the following result-

['physics', 'chemistry', 1997, 2000]

After deleting value at index 2 : ['physics', 'chemistry', 2000]

Note: remove() method is discussed in subsequent section.

Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the

prior chapter.

Python 3

145

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1,2,3] : print (x,end='

')

1 2 3 Iteration

Indexing, Slicing and Matrixes

Since lists are sequences, indexing and slicing work the same way for lists as they do for

strings.

Assuming the following input-

L=['C++'', 'Java', 'Python']

Python Expression Results Description

L[2] 'Python' Offsets start at zero

L[-2] 'Java' Negative: count from the

right

L[1:] ['Java', 'Python'] Slicing fetches sections

Built-in List Functions & Methods

Python includes the following list functions-

SN Function with Description

1 cmp(list1, list2)

No longer available in Python 3.

Python 3

146

2 len(list)

Gives the total length of the list.

3 max(list)

Returns item from the list with max value.

4 min(list)

Returns item from the list with min value.

5 list(seq)

Converts a tuple into list.

Let us understand the use of these functions.

List len() Method

Description

The len() method returns the number of elements in the list.

Syntax

Following is the syntax for len() method-

len(list)

Parameters

list - This is a list for which, number of elements are to be counted.

Return Value

This method returns the number of elements in the list.

Example

The following example shows the usage of len() method.

#!/usr/bin/python3

list1 = ['physics', 'chemistry', 'maths']

print (len(list1))

list2=list(range(5)) #creates list of numbers between 0-4

print (len(list2))

Python 3

147

When we run above program, it produces following result-

3

5

List max() Method

Description

The max() method returns the elements from the list with maximum value.

Syntax

Following is the syntax for max() method-

max(list)

Parameters

list - This is a list from which max valued element are to be returned.

Return Value

This method returns the elements from the list with maximum value.

Example

The following example shows the usage of max() method.

#!/usr/bin/python3

list1, list2 = ['C++','Java', 'Python'], [456, 700, 200]

print ("Max value element : ", max(list1))

print ("Max value element : ", max(list2))

When we run above program, it produces following result-

Max value element : Python

Max value element : 700

List min() Method

Description

The method min() returns the elements from the list with minimum value.

Python 3

148

Syntax

Following is the syntax for min() method-

min(list)

Parameters

list - This is a list from which min valued element is to be returned.

Return Value

This method returns the elements from the list with minimum value.

Example

The following example shows the usage of min() method.

#!/usr/bin/python3

list1, list2 = ['C++','Java', 'Python'], [456, 700, 200]

print ("min value element : ", min(list1))

print ("min value element : ", min(list2))

When we run above program, it produces following result-

min value element : C++

min value element : 200

List list() Method

Description

The list() method takes sequence types and converts them to lists. This is used to convert

a given tuple into list.

Note: Tuple are very similar to lists with only difference that element values of a tuple

can not be changed and tuple elements are put between parentheses instead of square

bracket. This function also converts characters in a string into a list.

Syntax

Following is the syntax for list() method-

list(seq)

Parameters

seq - This is a tuple or string to be converted into list.

Python 3

149

Return Value

This method returns the list.

Example

The following example shows the usage of list() method.

#!/usr/bin/python3

aTuple = (123, 'C++', 'Java', 'Python')

list1 = list(aTuple)

print ("List elements : ", list1)

str="Hello World"

list2=list(str)

print ("List elements : ", list2)

When we run above program, it produces following result-

List elements : [123, 'C++', 'Java', 'Python']

List elements : ['H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 'l', 'd']

Python includes the following list methods-

SN Methods with Description

1 list.append(obj)

Appends object obj to list

2 list.count(obj)

Returns count of how many times obj occurs in list

3 list.extend(seq)

Appends the contents of seq to list

4 list.index(obj)

Returns the lowest index in list that obj appears

5 list.insert(index, obj)

Inserts object obj into list at offset index

Python 3

150

6 list.pop(obj=list[-1])

Removes and returns last object or obj from list

7 list.remove(obj)

Removes object obj from list

8 list.reverse()

Reverses objects of list in place

9 list.sort([func])

Sorts objects of list, use compare func if given

List append() Method

Description

The append() method appends a passed obj into the existing list.

Syntax

Following is the syntax for append() method-

list.append(obj)

Parameters

obj - This is the object to be appended in the list.

Return Value

This method does not return any value but updates existing list.

Example

The following example shows the usage of append() method.

#!/usr/bin/python3

list1 = ['C++', 'Java', 'Python']

list1.append('C#')

print ("updated list : ", list1)

When we run the above program, it produces the following result-

updated list : ['C++', 'Java', 'Python', 'C#']

Python 3

151

List count() Method

Description

The count() method returns count of how many times obj occurs in list.

Syntax

Following is the syntax for count() method-

list.count(obj)

Parameters

obj - This is the object to be counted in the list.

Return Value

This method returns count of how many times obj occurs in list.

Example

The following example shows the usage of count() method.

#!/usr/bin/python3

aList = [123, 'xyz', 'zara', 'abc', 123];

print ("Count for 123 : ", aList.count(123))

print ("Count for zara : ", aList.count('zara'))

When we run the above program, it produces the following result-

Count for 123 : 2

Count for zara : 1

List extend() Method

Description

The extend() method appends the contents of seq to list.

Syntax

Following is the syntax for extend() method-

Python 3

152

list.extend(seq)

Parameters

seq - This is the list of elements

Return Value

This method does not return any value but adds the content to an existing list.

Example

The following example shows the usage of extend() method.

#!/usr/bin/python3

list1 = ['physics', 'chemistry', 'maths']

list2=list(range(5)) #creates list of numbers between 0-4

list1.extend('Extended List :', list2)

print (list1)

When we run the above program, it produces the following result-

Extended List : ['physics', 'chemistry', 'maths', 0, 1, 2, 3, 4]

List index() Method

Description

The index() method returns the lowest index in list that obj appears.

Syntax

Following is the syntax for index() method-

list.index(obj)

Parameters

obj - This is the object to be find out.

Return Value

This method returns index of the found object otherwise raises an exception indicating

that the value is not found.

Example

The following example shows the usage of index() method.

Python 3

153

#!/usr/bin/python3

list1 = ['physics', 'chemistry', 'maths']

print ('Index of chemistry', list1.index('chemistry'))

print ('Index of C#', list1.index('C#'))

When we run the above program, it produces the following result-

Index of chemistry 1

Traceback (most recent call last):

 File "test.py", line 3, in

 print ('Index of C#', list1.index('C#'))

ValueError: 'C#' is not in list

List insert() Method

Description

The insert() method inserts object obj into list at offset index.

Syntax

Following is the syntax for insert() method-

list.insert(index, obj)

Parameters

 index - This is the Index where the object obj need to be inserted.

 obj - This is the Object to be inserted into the given list.

Return Value

This method does not return any value but it inserts the given element at the given index.

Example

The following example shows the usage of insert() method.

#!/usr/bin/python3

list1 = ['physics', 'chemistry', 'maths']

list1.insert(1, 'Biology')

print ('Final list : ', list1)

When we run the above program, it produces the following result-

Python 3

154

Final list : ['physics', 'Biology', 'chemistry', 'maths']

List pop() Method

Description

The pop() method removes and returns last object or obj from the list.

Syntax

Following is the syntax for pop() method-

list.pop(obj=list[-1])

Parameters

obj - This is an optional parameter, index of the object to be removed from the list.

Return Value

This method returns the removed object from the list.

Example

The following example shows the usage of pop() method.

#!/usr/bin/python3

list1 = ['physics', 'Biology', 'chemistry', 'maths']

list1.pop()

print ("list now : ", list1)

list1.pop(1)

print ("list now : ", list1)

When we run the above program, it produces the following result-

list now : ['physics', 'Biology', 'chemistry']

list now : ['physics', 'chemistry']

List remove() Method

Parameters

obj - This is the object to be removed from the list.

Return Value

This method does not return any value but removes the given object from the list.

Python 3

155

Example

The following example shows the usage of remove() method.

#!/usr/bin/python3

list1 = ['physics', 'Biology', 'chemistry', 'maths']

list1.remove('Biology')

print ("list now : ", list1)

list1.remove('maths')

print ("list now : ", list1)

When we run the above program, it produces the following result-

list now : ['physics', 'chemistry', 'maths']

list now : ['physics', 'chemistry']

List reverse() Method

Description

The reverse() method reverses objects of list in place.

Syntax

Following is the syntax for reverse() method-

list.reverse()

Parameters

NA

Return Value

This method does not return any value but reverse the given object from the list.

Example

The following example shows the usage of reverse() method.

#!/usr/bin/python3

list1 = ['physics', 'Biology', 'chemistry', 'maths']

list1.reverse()

print ("list now : ", list1)

When we run above program, it produces following result-

Python 3

156

list now : ['maths', 'chemistry', 'Biology', 'physics']

List sort() Method

Description

The sort() method sorts objects of list, use compare function if given.

Syntax

Following is the syntax for sort() method-

list.sort([func])

Parameters

NA

Return Value

This method does not return any value but reverses the given object from the list.

Example

The following example shows the usage of sort() method.

#!/usr/bin/python3

list1 = ['physics', 'Biology', 'chemistry', 'maths']

list1.sort()

print ("list now : ", list1)

When we run the above program, it produces the following result-

list now : ['Biology', 'chemistry', 'maths', 'physics']

Python 3

157

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists.

The main difference between the tuples and the lists is that the tuples cannot be changed

unlike lists. Tuples use parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally, you

can put these comma-separated values between parentheses also. For example-

tup1 = ('physics', 'chemistry', 1997, 2000)

tup2 = (1, 2, 3, 4, 5)

tup3 = "a", "b", "c", "d"

The empty tuple is written as two parentheses containing nothing.

tup1 = ();

To write a tuple containing a single value you have to include a comma, even though there

is only one value.

tup1 = (50,)

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so

on.

Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices

to obtain the value available at that index. For example-

#!/usr/bin/python3

tup1 = ('physics', 'chemistry', 1997, 2000)

tup2 = (1, 2, 3, 4, 5, 6, 7)

print ("tup1[0]: ", tup1[0])

print ("tup2[1:5]: ", tup2[1:5])

When the above code is executed, it produces the following result-

tup1[0]: physics

tup2[1:5]: [2, 3, 4, 5]

12. Python 3 – Tuples

Python 3

158

Updating Tuples

Tuples are immutable, which means you cannot update or change the values of tuple

elements. You are able to take portions of the existing tuples to create new tuples as the

following example demonstrates.

#!/usr/bin/python3

tup1 = (12, 34.56)

tup2 = ('abc', 'xyz')

Following action is not valid for tuples

tup1[0] = 100;

So let's create a new tuple as follows

tup3 = tup1 + tup2

print (tup3)

When the above code is executed, it produces the following result-

(12, 34.56, 'abc', 'xyz')

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with

putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example-

#!/usr/bin/python3

tup = ('physics', 'chemistry', 1997, 2000);

print (tup)

del tup;

print "After deleting tup : "

print tup

This produces the following result.

Note: An exception is raised. This is because after del tup, tuple does not exist any more.

('physics', 'chemistry', 1997, 2000)

After deleting tup :

Traceback (most recent call last):

 File "test.py", line 9, in <module>

 print tup;

Python 3

159

NameError: name 'tup' is not defined

Basic Tuples Operations

Tuples respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new tuple, not a string.

In fact, tuples respond to all of the general sequence operations we used on strings in the

previous chapter.

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1,2,3) : print (x, end='

')

1 2 3 Iteration

Indexing, Slicing, and Matrixes

Since tuples are sequences, indexing and slicing work the same way for tuples as they do

for strings, assuming the following input-

T=('C++', 'Java', 'Python')

Python Expression Results Description

T[2] 'Python' Offsets start at zero

T[-2] 'Java' Negative: count from the right

T[1:] ('Java', 'Python') Slicing fetches sections

Python 3

160

No Enclosing Delimiters

No enclosing Delimiters is any set of multiple objects, comma-separated, written without

identifying symbols, i.e., brackets for lists, parentheses for tuples, etc., default to tuples,

as indicated in these short examples.

Built-in Tuple Functions

Python includes the following tuple functions-

SN Function with Description

1 cmp(tuple1, tuple2)

No longer available in Python 3.

2 len(tuple)

Gives the total length of the tuple.

3 max(tuple)

Returns item from the tuple with max value.

4 min(tuple)

Returns item from the tuple with min value.

5 tuple(seq)

Converts a list into tuple.

Tuple len() Method

Description

The len() method returns the number of elements in the tuple.

Syntax

Following is the syntax for len() method-

len(tuple)

Parameters

tuple - This is a tuple for which number of elements to be counted.

Python 3

161

Return Value

This method returns the number of elements in the tuple.

Example

The following example shows the usage of len() method.

#!/usr/bin/python3

tuple1, tuple2 = (123, 'xyz', 'zara'), (456, 'abc')

print ("First tuple length : ", len(tuple1))

print ("Second tuple length : ", len(tuple2))

When we run above program, it produces following result-

First tuple length : 3

Second tuple length : 2

Tuple max() Method

Description

The max() method returns the elements from the tuple with maximum value.

Syntax

Following is the syntax for max() method-

max(tuple)

Parameters

tuple - This is a tuple from which max valued element to be returned.

Return Value

This method returns the elements from the tuple with maximum value.

Example

The following example shows the usage of max() method.

#!/usr/bin/python3

tuple1, tuple2 = ('maths', 'che', 'phy', 'bio'), (456, 700, 200)

print ("Max value element : ", max(tuple1))

print ("Max value element : ", max(tuple2))

Python 3

162

When we run the above program, it produces the following result-

Max value element : phy

Max value element : 700

Tuple min() Method

Description

The min() method returns the elements from the tuple with minimum value.

Syntax

Following is the syntax for min() method-

min(tuple)

Parameters

tuple - This is a tuple from which min valued element is to be returned.

Return Value

This method returns the elements from the tuple with minimum value.

Example

The following example shows the usage of min() method.

#!/usr/bin/python3

tuple1, tuple2 = ('maths', 'che', 'phy', 'bio'), (456, 700, 200)

print ("min value element : ", min(tuple1))

print ("min value element : ", min(tuple2))

When we run the above program, it produces the following result-

min value element : bio

min value element : 200

Tuple tuple() Method

Description

The tuple() method converts a list of items into tuples.

Syntax

Python 3

163

Following is the syntax for tuple() method-

tuple(seq)

Parameters

seq - This is a tuple to be converted into tuple.

Return Value

This method returns the tuple.

Example

The following example shows the usage of tuple() method.

#!/usr/bin/python3

list1= ['maths', 'che', 'phy', 'bio']

tuple1=tuple(list1)

print ("tuple elements : ", tuple1)

When we run the above program, it produces the following result-

tuple elements : ('maths', 'che', 'phy', 'bio')

Python 3

164

Each key is separated from its value by a colon (:), the items are separated by commas,

and the whole thing is enclosed in curly braces. An empty dictionary without any items is

written with just two curly braces, like this: {}.

Keys are unique within a dictionary while values may not be. The values of a dictionary

can be of any type, but the keys must be of an immutable data type such as strings,

numbers, or tuples.

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the

key to obtain its value. Following is a simple example.

#!/usr/bin/python3

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

print ("dict['Name']: ", dict['Name'])

print ("dict['Age']: ", dict['Age'])

When the above code is executed, it produces the following result-

dict['Name']: Zara

dict['Age']: 7

If we attempt to access a data item with a key, which is not a part of the dictionary, we

get an error as follows-

#!/usr/bin/python3

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'};

print "dict['Alice']: ", dict['Alice']

When the above code is executed, it produces the following result-

dict['Zara']:

Traceback (most recent call last):

 File "test.py", line 4, in <module>

 print "dict['Alice']: ", dict['Alice'];

KeyError: 'Alice'

13. Python 3 – Dictionary

Python 3

165

Updating Dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an

existing entry, or deleting an existing entry as shown in a simple example given below.

#!/usr/bin/python3

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

dict['Age'] = 8; # update existing entry

dict['School'] = "DPS School" # Add new entry

print ("dict['Age']: ", dict['Age'])

print ("dict['School']: ", dict['School'])

When the above code is executed, it produces the following result-

dict['Age']: 8

dict['School']: DPS School

Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire contents of a

dictionary. You can also delete entire dictionary in a single operation.

To explicitly remove an entire dictionary, just use the del statement. Following is a simple

example-

#!/usr/bin/python3

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

del dict['Name'] # remove entry with key 'Name'

dict.clear() # remove all entries in dict

del dict # delete entire dictionary

print ("dict['Age']: ", dict['Age'])

print ("dict['School']: ", dict['School'])

This produces the following result.

Note: An exception is raised because after del dict, the dictionary does not exist

anymore.

dict['Age']:

Traceback (most recent call last):

 File "test.py", line 8, in <module>

Python 3

166

 print "dict['Age']: ", dict['Age'];

TypeError: 'type' object is unsubscriptable

Note: The del() method is discussed in subsequent section.

Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, either

standard objects or user-defined objects. However, same is not true for the keys.

There are two important points to remember about dictionary keys-

(a) More than one entry per key is not allowed. This means no duplicate key is allowed.

When duplicate keys are encountered during assignment, the last assignment wins. For

example-

#!/usr/bin/python3

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'}

print ("dict['Name']: ", dict['Name'])

When the above code is executed, it produces the following result-

dict['Name']: Manni

(b) Keys must be immutable. This means you can use strings, numbers or tuples as

dictionary keys but something like ['key'] is not allowed. Following is a simple example-

#!/usr/bin/python3

dict = {['Name']: 'Zara', 'Age': 7}

print ("dict['Name']: ", dict['Name'])

When the above code is executed, it produces the following result-

Traceback (most recent call last):

 File "test.py", line 3, in <module>

 dict = {['Name']: 'Zara', 'Age': 7}

TypeError: list objects are unhashable

Python 3

167

Built-in Dictionary Functions & Methods

Python includes the following dictionary functions-

SN Functions with Description

1 cmp(dict1, dict2)

No longer available in Python 3.

2 len(dict)

Gives the total length of the dictionary. This would be equal to the number of items

in the dictionary.

3 str(dict)

Produces a printable string representation of a dictionary.

4 type(variable)

Returns the type of the passed variable. If passed variable is dictionary, then it

would return a dictionary type.

Dictionary len() Method

DescriptionThe method len() gives the total length of the dictionary. This

would be equal to the number of items in the dictionary.

Syntax

Following is the syntax for len() method-

len(dict)

Parameters

dict - This is the dictionary, whose length needs to be calculated.

Return Value

This method returns the length.

Example

The following example shows the usage of len() method.

#!/usr/bin/python3

Python 3

168

dict = {'Name': 'Manni', 'Age': 7, 'Class': 'First'}

print ("Length : %d" % len (dict))

When we run the above program, it produces the following result-

Length : 3

Dictionary str() Method

Description

The method str() produces a printable string representation of a dictionary.

Syntax

Following is the syntax for str() method −

str(dict)

Parameters

dict - This is the dictionary.

Return Value

This method returns string representation.

Example

The following example shows the usage of str() method.

#!/usr/bin/python3

dict = {'Name': 'Manni', 'Age': 7, 'Class': 'First'}

print ("Equivalent String : %s" % str (dict))

When we run the above program, it produces the following result-

Equivalent String : {'Name': 'Manni', 'Age': 7, 'Class': 'First'}

Dictionary type() Method

Description

The method type() returns the type of the passed variable. If passed variable is dictionary

then it would return a dictionary type.

Python 3

169

Syntax

Following is the syntax for type() method-

type(dict)

Parameters

dict - This is the dictionary.

Return Value

This method returns the type of the passed variable.

Example

The following example shows the usage of type() method.

#!/usr/bin/python3

dict = {'Name': 'Manni', 'Age': 7, 'Class': 'First'}

print ("Variable Type : %s" % type (dict))

When we run the above program, it produces the following result-

Variable Type : <type 'dict'>

Python includes the following dictionary methods-

SN Methods with Description

1 dict.clear()

Removes all elements of dictionary dict.

2 dict.copy()

Returns a shallow copy of dictionary dict.

3 dict.fromkeys()

Create a new dictionary with keys from seq and values set to value.

4 dict.get(key, default=None)

For key key, returns value or default if key not in dictionary.

Python 3

170

5 dict.has_key(key)

Removed, use the in operation instead.

6 dict.items()

Returns a list of dict's (key, value) tuple pairs.

7 dict.keys()

Returns list of dictionary dict's keys.

8 dict.setdefault(key, default=None)

Similar to get(), but will set dict[key]=default if key is not already in dict.

9 dict.update(dict2)

Adds dictionary dict2's key-values pairs to dict.

10 dict.values()

Returns list of dictionary dict's values.

Dictionary clear() Method

Description

The method clear() removes all items from the dictionary.

Syntax

Following is the syntax for clear() method-

dict.clear()

Parameters

NA

Return Value

This method does not return any value.

Example

The following example shows the usage of clear() method.

#!/usr/bin/python3

Python 3

171

dict = {'Name': 'Zara', 'Age': 7}

print ("Start Len : %d" % len(dict))

dict.clear()

print ("End Len : %d" % len(dict))

When we run the above program, it produces the following result-

Start Len : 2

End Len : 0

Dictionary copy() Method

Description

The method copy() returns a shallow copy of the dictionary.

Syntax

Following is the syntax for copy() method-

dict.copy()

Parameters

NA

Return Value

This method returns a shallow copy of the dictionary.

Example

The following example shows the usage of copy() method.

#!/usr/bin/python3

dict1 = {'Name': 'Manni', 'Age': 7, 'Class': 'First'}

dict2 = dict1.copy()

print ("New Dictionary : ",dict2)

When we run the above program, it produces following result-

New dictionary : {'Name': 'Manni', 'Age': 7, 'Class': 'First'}

Python 3

172

Dictionary fromkeys() Method

Description

The method fromkeys() creates a new dictionary with keys from seq and values set to

value.

Syntax

Following is the syntax for fromkeys() method-

dict.fromkeys(seq[, value]))

Parameters

 seq - This is the list of values which would be used for dictionary keys preparation.

 value - This is optional, if provided then value would be set to this value

Return Value

This method returns the list.

Example

The following example shows the usage of fromkeys() method.

#!/usr/bin/python3

seq = ('name', 'age', 'sex')

dict = dict.fromkeys(seq)

print ("New Dictionary : %s" % str(dict))

dict = dict.fromkeys(seq, 10)

print ("New Dictionary : %s" % str(dict))

When we run the above program, it produces the following result-

New Dictionary : {'age': None, 'name': None, 'sex': None}

New Dictionary : {'age': 10, 'name': 10, 'sex': 10}

Dictionary get() Method

Description

The method get() returns a value for the given key. If the key is not available then returns

default value None.

Syntax

Python 3

173

Following is the syntax for get() method-

dict.get(key, default=None)

Parameters

 key - This is the Key to be searched in the dictionary.

 default - This is the Value to be returned in case key does not exist.

Return Value

This method returns a value for the given key. If the key is not available, then returns

default value as None.

Example

The following example shows the usage of get() method.

#!/usr/bin/python3

dict = {'Name': 'Zara', 'Age': 27}

print ("Value : %s" % dict.get('Age'))

print ("Value : %s" % dict.get('Sex', "NA"))

When we run the above program, it produces the following result-

Value : 27

Value : NA

Dictionary items() Method

Description

The method items() returns a list of dict's (key, value) tuple pairs.

Syntax

Following is the syntax for items() method-

dict.items()

Parameters

NA

Return Value

This method returns a list of tuple pairs.

Python 3

174

Example

The following example shows the usage of items() method.

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7}

print ("Value : %s" % dict.items())

When we run the above program, it produces the following result-

Value : [('Age', 7), ('Name', 'Zara')]

Dictionary keys() Method

Description

The method keys() returns a list of all the available keys in the dictionary.

Syntax

Following is the syntax for keys() method-

dict.keys()

Parameters

NA

Return Value

This method returns a list of all the available keys in the dictionary.

Example

The following example shows the usage of keys() method.

#!/usr/bin/python3

dict = {'Name': 'Zara', 'Age': 7}

print ("Value : %s" % dict.keys())

When we run the above program, it produces the following result-

Value : ['Age', 'Name']

Dictionary setdefault() Method

Description

Python 3

175

The method setdefault() is similar to get(), but will set dict[key]=default if the key is not

already in dict.

Syntax

Following is the syntax for setdefault() method-

dict.setdefault(key, default=None)

Parameters

 key - This is the key to be searched.

 default - This is the Value to be returned in case key is not found.

Return Value

This method returns the key value available in the dictionary and if given key is not

available then it will return provided default value.

Example

The following example shows the usage of setdefault() method.

#!/usr/bin/python3

dict = {'Name': 'Zara', 'Age': 7}

print ("Value : %s" % dict.setdefault('Age', None))

print ("Value : %s" % dict.setdefault('Sex', None))

print (dict)

When we run the above program, it produces the following result-

Value : 7

Value : None

{'Name': 'Zara', 'Sex': None, 'Age': 7}

Dictionary update() Method

Description

The method update() adds dictionary dict2's key-values pairs in to dict. This function

does not return anything.

Syntax

Following is the syntax for update() method-

dict.update(dict2)

Python 3

176

Parameters

dict2 - This is the dictionary to be added into dict.

Return Value

This method does not return any value.

Example

The following example shows the usage of update() method.

#!/usr/bin/python3

dict = {'Name': 'Zara', 'Age': 7}

dict2 = {'Sex': 'female' }

dict.update(dict2)

print ("updated dict : ", dict)

When we run the above program, it produces the following result-

updated dict : {'Sex': 'female', 'Age': 7, 'Name': 'Zara'}

Dictionary values() Method

Description

The method values() returns a list of all the values available in a given dictionary.

Syntax

Following is the syntax for values() method-

dict.values()

Parameters

NA

Return Value

This method returns a list of all the values available in a given dictionary.

Example

The following example shows the usage of values() method.

#!/usr/bin/python3

dict = {'Sex': 'female', 'Age': 7, 'Name': 'Zara'}

Python 3

177

print ("Values : ", list(dict.values()))

When we run above program, it produces following result-

Values : ['female', 7, 'Zara']

Python 3

178

A Python program can handle date and time in several ways. Converting between date

formats is a common chore for computers. Python's time and calendar modules help track

dates and times.

What is Tick?

Time intervals are floating-point numbers in units of seconds. Particular instants in time

are expressed in seconds since 12:00am, January 1, 1970(epoch).

There is a popular time module available in Python, which provides functions for working

with times, and for converting between representations. The function time.time() returns

the current system time in ticks since 12:00am, January 1, 1970(epoch).

Example

#!/usr/bin/python3

import time; # This is required to include time module.

ticks = time.time()

print ("Number of ticks since 12:00am, January 1, 1970:", ticks)

This would produce a result something as follows-

Number of ticks since 12:00am, January 1, 1970: 1455508609.34375

Date arithmetic is easy to do with ticks. However, dates before the epoch cannot be

represented in this form. Dates in the far future also cannot be represented this way - the

cutoff point is sometime in 2038 for UNIX and Windows.

What is TimeTuple?

Many of the Python's time functions handle time as a tuple of 9 numbers, as shown below-

Index Field Values

0 4-digit year 2016

1 Month 1 to 12

2 Day 1 to 31

14. Python 3 – Date & Time

Python 3

179

3 Hour 0 to 23

4 Minute 0 to 59

5 Second 0 to 61 (60 or 61 are leap-seconds)

6 Day of Week 0 to 6 (0 is Monday)

7 Day of year 1 to 366 (Julian day)

8 Daylight savings -1, 0, 1, -1 means library determines DST

For Example-

>>>import time

>>> print (time.localtime())

This would produce a result as follows-

time.struct_time(tm_year=2016, tm_mon=2, tm_mday=15, tm_hour=9, tm_min=29,

tm_sec=2, tm_wday=0, tm_yday=46, tm_isdst=0)

The above tuple is equivalent to struct_time structure. This structure has the following

attributes-

Index Attributes Values

0 tm_year 2016

1 tm_mon 1 to 12

2 tm_mday 1 to 31

3 tm_hour 0 to 23

4 tm_min 0 to 59

5 tm_sec 0 to 61 (60 or 61 are leap-seconds)

6 tm_wday 0 to 6 (0 is Monday)

Python 3

180

7 tm_yday 1 to 366 (Julian day)

8 tm_isdst -1, 0, 1, -1 means library determines DST

Getting current time

To translate a time instant from seconds since the epoch floating-point value into a time-

tuple, pass the floating-point value to a function (e.g., localtime) that returns a time-tuple

with all valid nine items.

#!/usr/bin/python3

import time

localtime = time.localtime(time.time())

print ("Local current time :", localtime)

This would produce the following result, which could be formatted in any other presentable

form-

Local current time : time.struct_time(tm_year=2016, tm_mon=2, tm_mday=15,

tm_hour=9, tm_min=29, tm_sec=2, tm_wday=0, tm_yday=46, tm_isdst=0)

Getting formatted time

You can format any time as per your requirement, but a simple method to get time in a

readable format is asctime() −

#!/usr/bin/python3

import time

localtime = time.asctime(time.localtime(time.time()))

print ("Local current time :", localtime)

This would produce the following result-

Local current time : Mon Feb 15 09:34:03 2016

Getting calendar for a month

The calendar module gives a wide range of methods to play with yearly and monthly

calendars. Here, we print a calendar for a given month (Jan 2008).

#!/usr/bin/python3

import calendar

Python 3

181

cal = calendar.month(2016, 2)

print ("Here is the calendar:")

print (cal)

This would produce the following result-

Here is the calendar:

 February 2016

Mo Tu We Th Fr Sa Su

 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29

The time Module

There is a popular time module available in Python, which provides functions for working

with times and for converting between representations. Here is the list of all available

methods.

SN Function with Description

1 time.altzone

The offset of the local DST timezone, in seconds west of UTC, if one is defined.

This is negative if the local DST timezone is east of UTC (as in Western Europe,

including the UK). Use this if the daylight is nonzero.

2 time.asctime([tupletime])

Accepts a time-tuple and returns a readable 24-character string such as 'Tue Dec

11 18:07:14 2008'.

3 time.clock()

Returns the current CPU time as a floating-point number of seconds. To measure

computational costs of different approaches, the value of time.clock is more useful

than that of time.time().

4 time.ctime([secs])

Like asctime(localtime(secs)) and without arguments is like asctime()

Python 3

182

5 time.gmtime([secs])

Accepts an instant expressed in seconds since the epoch and returns a time-tuple

t with the UTC time. Note : t.tm_isdst is always 0

6 time.localtime([secs])

Accepts an instant expressed in seconds since the epoch and returns a time-tuple

t with the local time (t.tm_isdst is 0 or 1, depending on whether DST applies to

instant secs by local rules).

7 time.mktime(tupletime)

Accepts an instant expressed as a time-tuple in local time and returns a floating-

point value with the instant expressed in seconds since the epoch.

8 time.sleep(secs)

Suspends the calling thread for secs seconds.

9 time.strftime(fmt[,tupletime])

Accepts an instant expressed as a time-tuple in local time and returns a string

representing the instant as specified by string fmt.

10 time.strptime(str,fmt='%a %b %d %H:%M:%S %Y')

Parses str according to format string fmt and returns the instant in time-tuple

format.

11 time.time()

Returns the current time instant, a floating-point number of seconds since the

epoch.

12 time.tzset()

Resets the time conversion rules used by the library routines. The environment

variable TZ specifies how this is done.

Let us go through the functions briefly-

Time altzone() Method

Description

The method altzone() is the attribute of the time module. This returns the offset of the

local DST timezone, in seconds west of UTC, if one is defined. This is negative if the local

Python 3

183

DST timezone is east of UTC (as in Western Europe, including the UK). Only use this if

daylight is nonzero.

Syntax

Following is the syntax for altzone() method-

time.altzone

Parameters

NA

Return Value

This method returns the offset of the local DST timezone, in seconds west of UTC, if one

is defined.

Example

The following example shows the usage of altzone() method.

#!/usr/bin/python3

import time

print ("time.altzone : ", time.altzone)

When we run the above program, it produces the following result-

time.altzone : -23400

Time asctime() Method

Description

The method asctime() converts a tuple or struct_time representing a time as returned by

gmtime() or localtime() to a 24-character string of the following form: 'Tue Feb 17

23:21:05 2009'.

Syntax

Following is the syntax for asctime() method-

time.asctime([t]))

Parameters

t - This is a tuple of 9 elements or struct_time representing a time as returned by gmtime()

or localtime() function.

Python 3

184

Return Value

This method returns 24-character string of the following form: 'Tue Feb 17 23:21:05

2009'.

Example

The following example shows the usage of asctime() method.

#!/usr/bin/python3

import time

t = time.localtime()

print ("asctime : ",time.asctime(t))

When we run the above program, it produces the following result-

asctime : Mon Feb 15 09:46:24 2016

Time clock() Method

Description

The method clock() returns the current processor time as a floating point number

expressed in seconds on Unix. The precision depends on that of the C function of the same

name, but in any case, this is the function to use for benchmarking Python or timing

algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this

function, as a floating point number, based on the Win32 function

QueryPerformanceCounter.

Syntax

Following is the syntax for clock() method-

time.clock()

Parameters

NA

Return Value

This method returns the current processor time as a floating point number expressed in

seconds on Unix and in Windows it returns wall-clock seconds elapsed since the first call

to this function, as a floating point number.

Example

The following example shows the usage of clock() method.

Python 3

185

#!/usr/bin/python3

import time

def procedure():

 time.sleep(2.5)

measure process time

t0 = time.clock()

procedure()

print (time.clock() - t0, "seconds process time")

measure wall time

t0 = time.time()

procedure()

print (time.time() - t0, "seconds wall time")

When we run the above program, it produces the following result-

2.4993855364299096 seconds process time

2.5 seconds wall time

Note: Not all systems can measure the true process time. On such systems (including

Windows), clock usually measures the wall time since the program was started.

Time ctime() Method

Description

The method ctime() converts a time expressed in seconds since the epoch to a string

representing local time. If secs is not provided or None, the current time as returned by

time() is used. This function is equivalent to asctime(localtime(secs)). Locale information

is not used by ctime().

Syntax

Following is the syntax for ctime() method-

time.ctime([sec])

Parameters

sec - These are the number of seconds to be converted into string representation.

Return Value

This method does not return any value.

Python 3

186

Example

The following example shows the usage of ctime() method.

#!/usr/bin/python3

import time

print ("ctime : ", time.ctime())

When we run the above program, it produces the following result-

ctime : Mon Feb 15 09:55:34 2016

Time gmtime() Method

Description

The method gmtime() converts a time expressed in seconds since the epoch to a

struct_time in UTC in which the dst flag is always zero. If secs is not provided or None,

the current time as returned by time() is used.

Syntax

Following is the syntax for gmtime() method-

time.gmtime([sec])

Parameters

sec - These are the number of seconds to be converted into structure struct_time

representation.

Return Value

This method does not return any value.

Example

The following example shows the usage of gmtime() method.

#!/usr/bin/python3

import time

print ("gmtime :", time.gmtime(1455508609.34375))

When we run the above program, it produces the following result-

Python 3

187

gmtime : time.struct_time(tm_year=2016, tm_mon=2, tm_mday=15, tm_hour=3,

tm_min=56, tm_sec=49, tm_wday=0, tm_yday=46, tm_isdst=0)

Time localtime() Method

Description

The method localtime() is similar to gmtime() but it converts number of seconds to local

time. If secs is not provided or None, the current time as returned by time() is used. The

dst flag is set to 1 when DST applies to the given time.

Syntax

Following is the syntax for localtime() method-

time.localtime([sec])

Parameters

sec - These are the number of seconds to be converted into structure struct_time

representation.

Return Value

This method does not return any value.

Example

The following example shows the usage of localtime() method.

#!/usr/bin/python3

import time

print ("time.localtime() : %s" , time.localtime())

When we run the above program, it produces the following result-

time.localtime() : time.struct_time(tm_year=2016, tm_mon=2, tm_mday=15,

tm_hour=10, tm_min=13, tm_sec=50, tm_wday=0, tm_yday=46, tm_isdst=0)

Time mktime() Method

Description

The method mktime() is the inverse function of localtime(). Its argument is the struct_time

or full 9-tuple and it returns a floating point number, for compatibility with time().

Python 3

188

If the input value cannot be represented as a valid time, either OverflowError or ValueError

will be raised.

Syntax

Following is the syntax for mktime() method-

time.mktime(t)

Parameters

t - This is the struct_time or full 9-tuple.

Return Value

This method returns a floating point number, for compatibility with time().

Example

The following example shows the usage of mktime() method.

#!/usr/bin/python3

import time

t = (2016, 2, 15, 10, 13, 38, 1, 48, 0)

d=time.mktime(t)

print ("time.mktime(t) : %f" % d)

print ("asctime(localtime(secs)): %s" % time.asctime(time.localtime(d)))

When we run the above program, it produces the following result-

time.mktime(t) : 1455511418.000000

asctime(localtime(secs)): Mon Feb 15 10:13:38 2016

Time sleep() Method

Description

The method sleep() suspends execution for the given number of seconds. The argument

may be a floating point number to indicate a more precise sleep time.

The actual suspension time may be less than that requested because any caught signal

will terminate the sleep() following execution of that signal's catching routine.

Syntax

Following is the syntax for sleep() method-

Python 3

189

time.sleep(t)

Parameters

t - This is the number of seconds for which the execution is to be suspended.

Return Value

This method does not return any value.

Example

The following example shows the usage of sleep() method.

#!/usr/bin/python3

import time

print ("Start : %s" % time.ctime())

time.sleep(5)

print ("End : %s" % time.ctime())

When we run the above program, it produces the following result-

Start : Mon Feb 15 12:08:42 2016

End : Mon Feb 15 12:08:47 2016

Time strftime() Method

Description

The method strftime() converts a tuple or struct_time representing a time as returned

by gmtime() or localtime() to a string as specified by the format argument.

If t is not provided, the current time as returned by localtime() is used. The format must

be a string. An exception ValueError is raised if any field in t is outside of the allowed

range.

Syntax

Following is the syntax for strftime() method-

time.strftime(format[, t])

Parameters

 t - This is the time in number of seconds to be formatted.

Python 3

190

 format - This is the directive which would be used to format given time.

The following directives can be embedded in the format string-

Directive

 %a - abbreviated weekday name

 %A - full weekday name

 %b - abbreviated month name

 %B - full month name

 %c - preferred date and time representation

 %C - century number (the year divided by 100, range 00 to 99)

 %d - day of the month (01 to 31)

 %D - same as %m/%d/%y

 %e - day of the month (1 to 31)

 %g - like %G, but without the century

 %G - 4-digit year corresponding to the ISO week number (see %V).

 %h - same as %b

 %H - hour, using a 24-hour clock (00 to 23)

 %I - hour, using a 12-hour clock (01 to 12)

 %j - day of the year (001 to 366)

 %m - month (01 to 12)

 %M - minute

 %n - newline character

 %p - either am or pm according to the given time value

 %r - time in a.m. and p.m. notation

 %R - time in 24 hour notation

 %S - second

 %t - tab character

 %T - current time, equal to %H:%M:%S

 %u - weekday as a number (1 to 7), Monday=1. Warning: In Sun Solaris Sunday=1

 %U - week number of the current year, starting with the first Sunday as the first

day of the first week

Python 3

191

 %V - The ISO 8601 week number of the current year (01 to 53), where week 1 is

the first week that has at least 4 days in the current year, and with Monday as the

first day of the week

 %W - week number of the current year, starting with the first Monday as the first

day of the first week

 %w - day of the week as a decimal, Sunday=0

 %x - preferred date representation without the time

 %X - preferred time representation without the date

 %y - year without a century (range 00 to 99)

 %Y - year including the century

 %Z or %z - time zone or name or abbreviation

 %% - a literal % character

Return Value

This method does not return any value.

Example

The following example shows the usage of strftime() method.

#!/usr/bin/python3

import time

t = (2015, 12, 31, 10, 39, 45, 1, 48, 0)

t = time.mktime(t)

print (time.strftime("%b %d %Y %H:%M:%S", time.localtime(t)))

When we run the above program, it produces the following result-

Dec 31 2015 10:39:45

Time strptime() Method

Description

The method strptime() parses a string representing a time according to a format. The

return value is a struct_time as returned by gmtime() or localtime().

The format parameter uses the same directives as those used by strftime(); it defaults to

"%a %b %d %H:%M:%S %Y" which matches the formatting returned by ctime().

If string cannot be parsed according to format, or if it has excess data after parsing,

ValueError is raised.

Syntax

Python 3

192

Following is the syntax for strptime() method-

time.strptime(string[, format])

Parameters

 string - This is the time in string format which would be parsed based on the given

format.

 format - This is the directive which would be used to parse the given string.

Directive

The following directives can be embedded in the format string-

 %a - abbreviated weekday name

 %A - full weekday name

 %b - abbreviated month name

 %B - full month name

 %c - preferred date and time representation

 %C - century number (the year divided by 100, range 00 to 99)

 %d - day of the month (01 to 31)

 %D - same as %m/%d/%y

 %e - day of the month (1 to 31)

 %g - like %G, but without the century

 %G - 4-digit year corresponding to the ISO week number (see %V).

 %h - same as %b

 %H - hour, using a 24-hour clock (00 to 23)

 %I - hour, using a 12-hour clock (01 to 12)

 %j - day of the year (001 to 366)

 %m - month (01 to 12)

 %M - minute

 %n - newline character

 %p - either am or pm according to the given time value

 %r - time in a.m. and p.m. notation

 %R - time in 24 hour notation

 %S - second

 %t - tab character

 %T - current time, equal to %H:%M:%S

 %u - weekday as a number (1 to 7), Monday=1. Warning: In Sun Solaris Sunday=1

 %U - week number of the current year, starting with the first Sunday as the first

day of the first week

Python 3

193

 %V - The ISO 8601 week number of the current year (01 to 53), where week 1 is

the first week that has at least 4 days in the current year, and with Monday as the

first day of the week

 %W - week number of the current year, starting with the first Monday as the first

day of the first week

 %w - day of the week as a decimal, Sunday=0

 %x - preferred date representation without the time

 %X - preferred time representation without the date

 %y - year without a century (range 00 to 99)

 %Y - year including the century

 %Z or %z - time zone or name or abbreviation

 %% - a literal % character

Return Value

This return value is struct_time as returned by gmtime() or localtime().

Example

The following example shows the usage of strptime() method.

#!/usr/bin/python3

import time

struct_time = time.strptime("30 12 2015", "%d %m %Y")

print ("tuple : ", struct_time)

When we run the above program, it produces the following result-

tuple : time.struct_time(tm_year=2015, tm_mon=12, tm_mday=30, tm_hour=0,

tm_min=0, tm_sec=0, tm_wday=2, tm_yday=364, tm_isdst=-1)

Time time() Method

Description

The method time() returns the time as a floating point number expressed in seconds since

the epoch, in UTC.

Note: Even though the time is always returned as a floating point number, not all systems

provide time with a better precision than 1 second. While this function normally returns

non-decreasing values, it can return a lower value than a previous call if the system clock

has been set back between the two calls.

Syntax

Python 3

194

Following is the syntax for time() method-

time.time()

Parameters

NA

Return Value

This method returns the time as a floating point number expressed in seconds since the

epoch, in UTC.

Example

The following example shows the usage of time() method.

#!/usr/bin/python3

import time

print ("time.time(): %f " % time.time())

print (time.localtime(time.time()))

print (time.asctime(time.localtime(time.time())))

When we run the above program, it produces the following result-

time.time(): 1455519806.011433

time.struct_time(tm_year=2016, tm_mon=2, tm_mday=15, tm_hour=12, tm_min=33,

tm_sec=26, tm_wday=0, tm_yday=46, tm_isdst=0)

Mon Feb 15 12:33:26 2016

Time tzset() Method

Description

The method tzset() resets the time conversion rules used by the library routines. The

environment variable TZ specifies how this is done.

The standard format of the TZ environment variable is (whitespace added for clarity)-

std offset [dst [offset [,start[/time], end[/time]]]]

 std and dst: Three or more alphanumerics giving the timezone abbreviations. These

will be propagated into time.tzname.

 offset: The offset has the form: .hh[:mm[:ss]]. This indicates the value added the

local time to arrive at UTC. If preceded by a '-', the timezone is east of the Prime

Meridian; otherwise, it is west. If no offset follows dst, summer time is assumed to

be one hour ahead of standard time.

Python 3

195

 start[/time], end[/time]: Indicates when to change to and back from DST. The

format of the start and end dates are one of the following:

o Jn: The Julian day n (1 <= n <= 365). Leap days are not counted, so in all years

February 28 is day 59 and March 1 is day 60.

o n: The zero-based Julian day (0 <= n <= 365). Leap days are counted, and it is

possible to refer to February 29.

o Mm.n.d: The d'th day (0 <= d <= 6) or week n of month m of the year (1 <= n

<= 5, 1 <= m <= 12, where week 5 means 'the last d day in month m' which

may occur in either the fourth or the fifth week). Week 1 is the first week in which

the d'th day occurs. Day zero is Sunday.

o time: This has the same format as offset except that no leading sign ('-' or '+')

is allowed. The default, if time is not given, is 02:00:00.

Syntax

Following is the syntax for tzset() method-

time.tzset()

Parameters

NA

Return Value

This method does not return any value.

Example

The following example shows the usage of tzset() method.

#!/usr/bin/python3

import time

import os

os.environ['TZ'] = 'EST+05EDT,M4.1.0,M10.5.0'

time.tzset()

print time.strftime('%X %x %Z')

os.environ['TZ'] = 'AEST-10AEDT-11,M10.5.0,M3.5.0'

time.tzset()

print time.strftime('%X %x %Z')

Python 3

196

When we run the above program, it produces the following result-

13:00:40 02/17/09 EST

05:00:40 02/18/09 AEDT

There are two important attributes available with time module. They are-

SN Attribute with Description

1 time.timezone

Attribute time.timezone is the offset in seconds of the local time zone (without

DST) from UTC (>0 in the Americas; <=0 in most of Europe, Asia, Africa).

2 time.tzname

Attribute time.tzname is a pair of locale-dependent strings, which are the names

of the local time zone without and with DST, respectively.

The calendar Module

The calendar module supplies calendar-related functions, including functions to print a text

calendar for a given month or year.

By default, calendar takes Monday as the first day of the week and Sunday as the last

one. To change this, call the calendar.setfirstweekday() function.

Here is a list of functions available with the calendar module-

SN Function with Description

1 calendar.calendar(year,w=2,l=1,c=6)

Returns a multiline string with a calendar for year year formatted into three

columns separated by c spaces. w is the width in characters of each date; each

line has length 21*w+18+2*c. l is the number of lines for each week.

Python 3

197

2 calendar.firstweekday()

Returns the current setting for the weekday that starts each week. By default,

when calendar is first imported, this is 0, meaning Monday.

3 calendar.isleap(year)

Returns True if year is a leap year; otherwise, False.

4 calendar.leapdays(y1,y2)

Returns the total number of leap days in the years within range(y1,y2).

5 calendar.month(year,month,w=2,l=1)

Returns a multiline string with a calendar for month month of year year, one line

per week plus two header lines. w is the width in characters of each date; each

line has length 7*w+6. l is the number of lines for each week.

6 calendar.monthcalendar(year,month)

Returns a list of lists of ints. Each sublist denotes a week. Days outside month

month of year year are set to 0; days within the month are set to their day-of-

month, 1 and up.

7 calendar.monthrange(year,month)

Returns two integers. The first one is the code of the weekday for the first day of

the month month in year year; the second one is the number of days in the month.

Weekday codes are 0 (Monday) to 6 (Sunday); month numbers are 1 to 12.

8 calendar.prcal(year,w=2,l=1,c=6)

Like print calendar.calendar(year,w,l,c).

9 calendar.prmonth(year,month,w=2,l=1)

Like print calendar.month(year,month,w,l).

10 calendar.setfirstweekday(weekday)

Sets the first day of each week to weekday code weekday. Weekday codes are 0

(Monday) to 6 (Sunday).

11 calendar.timegm(tupletime)

The inverse of time.gmtime: accepts a time instant in time-tuple form and returns

the same instant as a floating-point number of seconds since the epoch.

Python 3

198

12 calendar.weekday(year,month,day)

Returns the weekday code for the given date. Weekday codes are 0 (Monday) to

6 (Sunday); month numbers are 1 (January) to 12 (December).

Other Modules & Functions

If you are interested, then here you would find a list of other important modules and

functions to play with date & time in Python-

 The datetime Module

 The pytz Module

 The dateutil Module

http://docs.python.org/library/datetime.html#module-datetime
http://www.twinsun.com/tz/tz-link.htm
http://labix.org/python-dateutil

Python 3

199

A function is a block of organized, reusable code that is used to perform a single, related

action. Functions provide better modularity for your application and a high degree of code

reusing.

As you already know, Python gives you many built-in functions like print(), etc. but you

can also create your own functions. These functions are called user-defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to

define a function in Python.

 Function blocks begin with the keyword def followed by the function name and

parentheses (()).

 Any input parameters or arguments should be placed within these parentheses.

You can also define parameters inside these parentheses.

 The first statement of a function can be an optional statement - the documentation

string of the function or docstring.

 The code block within every function starts with a colon (:) and is indented.

 The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as

return None.

Syntax

def functionname(parameters):

 "function_docstring"

 function_suite

 return [expression]

By default, parameters have a positional behavior and you need to inform them in the

same order that they were defined.

Example
The following function takes a string as input parameter and prints it on the standard

screen.

def printme(str):

 "This prints a passed string into this function"

 print (str)

15. Python 3 – Functions

Python 3

200

 return

Calling a Function

Defining a function gives it a name, specifies the parameters that are to be included in the

function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from

another function or directly from the Python prompt. Following is an example to call the

printme() function-

#!/usr/bin/python3

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print (str)

 return

Now you can call printme function

printme("This is first call to the user defined function!")

printme("Again second call to the same function")

When the above code is executed, it produces the following result-

This is first call to the user defined function!

Again second call to the same function

Pass by Reference vs Value

All parameters (arguments) in the Python language are passed by reference. It means if

you change what a parameter refers to within a function, the change also reflects back in

the calling function. For example-

#!/usr/bin/python3

Function definition is here

def changeme(mylist):

 "This changes a passed list into this function"

 print ("Values inside the function before change: ", mylist)

 mylist[2]=50

 print ("Values inside the function after change: ", mylist)

Python 3

201

 return

Now you can call changeme function

mylist = [10,20,30]

changeme(mylist)

print ("Values outside the function: ", mylist)

Here, we are maintaining reference of the passed object and appending values in the same

object. Therefore, this would produce the following result-

Values inside the function before change: [10, 20, 30]

Values inside the function after change: [10, 20, 50]

Values outside the function: [10, 20, 50]

There is one more example where argument is being passed by reference and the

reference is being overwritten inside the called function.

#!/usr/bin/python3

Function definition is here

def changeme(mylist):

 "This changes a passed list into this function"

 mylist = [1,2,3,4] # This would assi new reference in mylist

 print ("Values inside the function: ", mylist)

 return

Now you can call changeme function

mylist = [10,20,30]

changeme(mylist)

print ("Values outside the function: ", mylist)

The parameter mylist is local to the function changeme. Changing mylist within the

function does not affect mylist. The function accomplishes nothing and finally this would

produce the following result-

Values inside the function: [1, 2, 3, 4]

Values outside the function: [10, 20, 30]

Python 3

202

Function Arguments

You can call a function by using the following types of formal arguments-

 Required arguments

 Keyword arguments

 Default arguments

 Variable-length arguments

Required Arguments

Required arguments are the arguments passed to a function in correct positional order.

Here, the number of arguments in the function call should match exactly with the function

definition.

To call the function printme(), you definitely need to pass one argument, otherwise it gives

a syntax error as follows-

#!/usr/bin/python3

Function definition is here

def printme(str):

 "This prints a passed string into this function"

 print (str)

 return

Now you can call printme function

printme()

When the above code is executed, it produces the following result-

Traceback (most recent call last):

 File "test.py", line 11, in <module>

 printme()

TypeError: printme() missing 1 required positional argument: 'str'

Keyword Arguments

Keyword arguments are related to the function calls. When you use keyword arguments

in a function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python

interpreter is able to use the keywords provided to match the values with parameters. You

can also make keyword calls to the printme() function in the following ways-

#!/usr/bin/python3

Function definition is here

Python 3

203

def printme(str):

 "This prints a passed string into this function"

 print (str)

 return

Now you can call printme function

printme(str = "My string")

When the above code is executed, it produces the following result-

My string

The following example gives a clearer picture. Note that the order of parameters does not

matter.

#!/usr/bin/python3

Function definition is here

def printinfo(name, age):

 "This prints a passed info into this function"

 print ("Name: ", name)

 print ("Age ", age)

 return

Now you can call printinfo function

printinfo(age=50, name="miki")

When the above code is executed, it produces the following result-

Name: miki

Age 50

Default Arguments

A default argument is an argument that assumes a default value if a value is not provided

in the function call for that argument. The following example gives an idea on default

arguments, it prints default age if it is not passed.

#!/usr/bin/python3

Function definition is here

def printinfo(name, age = 35):

 "This prints a passed info into this function"

 print ("Name: ", name)

Python 3

204

 print ("Age ", age)

 return

Now you can call printinfo function

printinfo(age=50, name="miki")

printinfo(name="miki")

When the above code is executed, it produces the following result-

Name: miki

Age 50

Name: miki

Age 35

Variable-length Arguments

You may need to process a function for more arguments than you specified while defining

the function. These arguments are called variable-length arguments and are not named in

the function definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is given below-

def functionname([formal_args,] *var_args_tuple):

 "function_docstring"

 function_suite

 return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword

variable arguments. This tuple remains empty if no additional arguments are specified

during the function call. Following is a simple example-

#!/usr/bin/python3

Function definition is here

def printinfo(arg1, *vartuple):

 "This prints a variable passed arguments"

 print ("Output is: ")

 print (arg1)

 for var in vartuple:

 print (var)

 return

Now you can call printinfo function

printinfo(10)

printinfo(70, 60, 50)

Python 3

205

When the above code is executed, it produces the following result-

Output is:

10

Output is:

70

60

50

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard

manner by using the def keyword. You can use the lambda keyword to create small

anonymous functions.

 Lambda forms can take any number of arguments but return just one value in the

form of an expression. They cannot contain commands or multiple expressions.

 An anonymous function cannot be a direct call to print because lambda requires an

expression.

 Lambda functions have their own local namespace and cannot access variables

other than those in their parameter list and those in the global namespace.

 Although it appears that lambdas are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is to stack allocation

by passing function, during invocation for performance reasons.

Syntax
The syntax of lambda function contains only a single statement, which is as follows-

lambda [arg1 [,arg2,.....argn]]:expression

Following is an example to show how lambda form of function works-

#!/usr/bin/python3

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2

 # Now you can call sum as a function

print ("Value of total : ", sum(10, 20))

print ("Value of total : ", sum(20, 20))

When the above code is executed, it produces the following result-

Python 3

206

Value of total : 30

Value of total : 40

The return Statement

The statement return [expression] exits a function, optionally passing back an expression

to the caller. A return statement with no arguments is the same as return None.

All the examples given above are not returning any value. You can return a value from a

function as follows-

#!/usr/bin/python3

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2

 print ("Inside the function : ", total)

 return total

Now you can call sum function

total = sum(10, 20)

print ("Outside the function : ", total)

When the above code is executed, it produces the following result-

Inside the function : 30

Outside the function : 30

Scope of Variables
All variables in a program may not be accessible at all locations in that program. This

depends on where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a

particular identifier. There are two basic scopes of variables in Python-

 Global variables

 Local variables

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined

outside have a global scope.

Python 3

207

This means that local variables can be accessed only inside the function in which they are

declared, whereas global variables can be accessed throughout the program body by all

functions. When you call a function, the variables declared inside it are brought into scope.

Following is a simple example-

#!/usr/bin/python3

total = 0 # This is global variable.

Function definition is here

def sum(arg1, arg2):

 # Add both the parameters and return them."

 total = arg1 + arg2; # Here total is local variable.

 print ("Inside the function local total : ", total)

 return total

Now you can call sum function

sum(10, 20)

print ("Outside the function global total : ", total)

When the above code is executed, it produces the following result-

Inside the function local total : 30

Outside the function global total : 0

Python 3

208

A module allows you to logically organize your Python code. Grouping related code into a

module makes the code easier to understand and use. A module is a Python object with

arbitrarily named attributes that you can bind and reference.

Simply, a module is a file consisting of Python code. A module can define functions, classes

and variables. A module can also include runnable code.

Example

The Python code for a module named aname normally resides in a file namedaname.py.

Here is an example of a simple module, support.py-

def print_func(par):

 print "Hello : ", par

 return

The import Statement

You can use any Python source file as a module by executing an import statement in some

other Python source file. The import has the following syntax-

import module1[, module2[,... moduleN]

When the interpreter encounters an import statement, it imports the module if the module

is present in the search path. A search path is a list of directories that the interpreter

searches before importing a module. For example, to import the module hello.py, you

need to put the following command at the top of the script-

#!/usr/bin/python3

Import module support

import support

Now you can call defined function that module as follows

support.print_func("Zara")

When the above code is executed, it produces the following result-

Hello : Zara

A module is loaded only once, regardless of the number of times it is imported. This

prevents the module execution from happening repeatedly, if multiple imports occur.

16. Python 3 – Modules

Python 3

209

The from...import Statement

Python's from statement lets you import specific attributes from a module into the current

namespace. The from...import has the following syntax-

from modname import name1[, name2[, ... nameN]]

For example, to import the function fibonacci from the module fib, use the following

statement-

#!/usr/bin/python3

Fibonacci numbers module

def fib(n): # return Fibonacci series up to n

 result = []

 a, b = 0, 1

 while b < n:

 result.append(b)

 a, b = b, a+b

 return result

>>> from fib import fib

>>> fib(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This statement does not import the entire module fib into the current namespace; it just

introduces the item fibonacci from the module fib into the global symbol table of the

importing module.

The from...import * Statement:

It is also possible to import all the names from a module into the current namespace by

using the following import statement-

from modname import *

This provides an easy way to import all the items from a module into the current

namespace; however, this statement should be used sparingly.

Executing Modules as Scripts

Within a module, the module’s name (as a string) is available as the value of the global

variable __name__. The code in the module will be executed, just as if you imported it,

but with the __name__ set to "__main__".

Python 3

210

Add this code at the end of your module-

#!/usr/bin/python3

Fibonacci numbers module

def fib(n): # return Fibonacci series up to n

 result = []

 a, b = 0, 1

 while b < n:

 result.append(b)

 a, b = b, a+b

 return result

if __name__ == "__main__":

 f=fib(100)

 print(f)

When you run the above code, the following output will be displayed.

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Locating Modules

When you import a module, the Python interpreter searches for the module in the following

sequences-

 The current directory.

 If the module is not found, Python then searches each directory in the shell variable

PYTHONPATH.

 If all else fails, Python checks the default path. On UNIX, this default path is

normally /usr/local/lib/python3/.

The module search path is stored in the system module sys as the sys.path variable. The

sys.path variable contains the current directory, PYTHONPATH, and the installation-

dependent default.

The PYTHONPATH Variable

The PYTHONPATH is an environment variable, consisting of a list of directories. The syntax

of PYTHONPATH is the same as that of the shell variable PATH.

Python 3

211

Here is a typical PYTHONPATH from a Windows system-

set PYTHONPATH=c:\python34\lib;

And here is a typical PYTHONPATH from a UNIX system-

set PYTHONPATH=/usr/local/lib/python

Namespaces and Scoping

Variables are names (identifiers) that map to objects. A namespace is a dictionary of

variable names (keys) and their corresponding objects (values).

 A Python statement can access variables in a local namespace and in the global

namespace. If a local and a global variable have the same name, the local variable

shadows the global variable.

 Each function has its own local namespace. Class methods follow the same scoping

rule as ordinary functions.

 Python makes educated guesses on whether variables are local or global. It

assumes that any variable assigned a value in a function is local.

 Therefore, in order to assign a value to a global variable within a function, you must

first use the global statement.

 The statement global VarName tells Python that VarName is a global variable.

Python stops searching the local namespace for the variable.

For example, we define a variable Money in the global namespace. Within the

function Money, we assign Money a value, therefore Python assumes Money as a local

variable.

However, we accessed the value of the local variable Money before setting it, so an

UnboundLocalError is the result. Uncommenting the global statement fixes the problem.

#!/usr/bin/python3

Money = 2000

def AddMoney():

 # Uncomment the following line to fix the code:

 # global Money

 Money = Money + 1

print (Money)

AddMoney()

print (Money)

Python 3

212

The dir() Function

The dir() built-in function returns a sorted list of strings containing the names defined by

a module.

The list contains the names of all the modules, variables and functions that are defined in

a module. Following is a simple example-

#!/usr/bin/python3

Import built-in module math

import math

content = dir(math)

print (content)

When the above code is executed, it produces the following result-

['__doc__', '__file__', '__name__', 'acos', 'asin', 'atan',

'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp',

'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log',

'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh',

'sqrt', 'tan', 'tanh']

Here, the special string variable __name__ is the module's name, and __file__is the

filename from which the module was loaded.

The globals() and locals() Functions

The globals() and locals() functions can be used to return the names in the global and

local namespaces depending on the location from where they are called.

 If locals() is called from within a function, it will return all the names that can be

accessed locally from that function.

 If globals() is called from within a function, it will return all the names that can

be accessed globally from that function.

The return type of both these functions is dictionary. Therefore, names can be extracted

using the keys() function.

The reload() Function

When a module is imported into a script, the code in the top-level portion of a module is

executed only once.

Therefore, if you want to reexecute the top-level code in a module, you can use

the reload() function. The reload() function imports a previously imported module again.

The syntax of the reload() function is this-

Python 3

213

reload(module_name)

Here, module_name is the name of the module you want to reload and not the string

containing the module name. For example, to reload hello module, do the following-

reload(hello)

Packages in Python

A package is a hierarchical file directory structure that defines a single Python application

environment that consists of modules and subpackages and sub-subpackages, and so on.

Consider a file Pots.py available in Phone directory. This file has the following line of

source code-

#!/usr/bin/python3

def Pots():

 print ("I'm Pots Phone")

Similarly, we have other two files having different functions with the same name as above.

They are −

 Phone/Isdn.py file having function Isdn()

 Phone/G3.py file having function G3()

Now, create one more file __init__.py in the Phone directory-

 Phone/__init__.py

To make all of your functions available when you have imported Phone, you need to put

explicit import statements in __init__.py as follows-

from Pots import Pots

from Isdn import Isdn

from G3 import G3

After you add these lines to __init__.py, you have all of these classes available when you

import the Phone package.

#!/usr/bin/python3

Now import your Phone Package.

import Phone

Phone.Pots()

Phone.Isdn()

Phone.G3()

When the above code is executed, it produces the following result-

Python 3

214

I'm Pots Phone

I'm 3G Phone

I'm ISDN Phone

In the above example, we have taken example of a single function in each file, but you

can keep multiple functions in your files. You can also define different Python classes in

those files and then you can create your packages out of those classes.

Python 3

215

This chapter covers all the basic I/O functions available in Python 3. For more functions,

please refer to the standard Python documentation.

Printing to the Screen

The simplest way to produce output is using the print statement where you can pass zero

or more expressions separated by commas. This function converts the expressions you

pass into a string and writes the result to standard output as follows-

#!/usr/bin/python3

print ("Python is really a great language,", "isn't it?")

This produces the following result on your standard screen-

Python is really a great language, isn't it?

Reading Keyboard Input

Python 2 has two built-in functions to read data from standard input, which by default

comes from the keyboard. These functions are input() and raw_input()

In Python 3, raw_input() function is deprecated. Moreover, input() functions read data

from keyboard as string, irrespective of whether it is enclosed with quotes ('' or "") or

not.

The input Function

The input([prompt]) function is equivalent to raw_input, except that it assumes that the

input is a valid Python expression and returns the evaluated result to you.

#!/usr/bin/python3

>>> x=input("something:")

something:10

>>> x

'10'

>>> x=input("something:")

something:'10' #entered data treated as string with or without ''

>>> x

"'10'"

17. Python 3 – Files I/O

Python 3

216

Opening and Closing Files

Until now, you have been reading and writing to the standard input and output. Now, we

will see how to use actual data files.

Python provides basic functions and methods necessary to manipulate files by default. You

can do most of the file manipulation using a file object.

The open Function

Before you can read or write a file, you have to open it using Python's built-in

open() function. This function creates a file object, which would be utilized to call other

support methods associated with it.

Syntax

file object = open(file_name [, access_mode][, buffering])

Here are parameter details-

 file_name: The file_name argument is a string value that contains the name of

the file that you want to access.

 access_mode: The access_mode determines the mode in which the file has to be

opened, i.e., read, write, append, etc. A complete list of possible values is given

below in the table. This is an optional parameter and the default file access mode

is read (r).

 buffering: If the buffering value is set to 0, no buffering takes place. If the

buffering value is 1, line buffering is performed while accessing a file. If you specify

the buffering value as an integer greater than 1, then buffering action is performed

with the indicated buffer size. If negative, the buffer size is the system default

(default behavior).

Here is a list of the different modes of opening a file-

Modes Description

r Opens a file for reading only. The file pointer is placed at the beginning of the

file. This is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the

beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer placed at the

beginning of the file.

Python 3

217

rb+ Opens a file for both reading and writing in binary format. The file pointer

placed at the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file

does not exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the file

exists. If the file does not exist, creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if the file

exists. If the file does not exist, creates a new file for reading and writing.

wb+ Opens a file for both writing and reading in binary format. Overwrites the

existing file if the file exists. If the file does not exist, creates a new file for

reading and writing.

a Opens a file for appending. The file pointer is at the end of the file if the file

exists. That is, the file is in the append mode. If the file does not exist, it

creates a new file for writing.

ab Opens a file for appending in binary format. The file pointer is at the end of

the file if the file exists. That is, the file is in the append mode. If the file does

not exist, it creates a new file for writing.

a+ Opens a file for both appending and reading. The file pointer is at the end of

the file if the file exists. The file opens in the append mode. If the file does

not exist, it creates a new file for reading and writing.

ab+ Opens a file for both appending and reading in binary format. The file pointer

is at the end of the file if the file exists. The file opens in the append mode. If

the file does not exist, it creates a new file for reading and writing.

The file Object Attributes

Once a file is opened and you have one file object, you can get various information related

to that file.

Here is a list of all the attributes related to a file object-

Attribute Description

file.closed Returns true if file is closed, false otherwise.

Python 3

218

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

Note: softspace attribute is not supported in Python 3.x

Example

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "wb")

print ("Name of the file: ", fo.name)

print ("Closed or not : ", fo.closed)

print ("Opening mode : ", fo.mode)

fo.close()

This produces the following result-

Name of the file: foo.txt

Closed or not : False

Opening mode : wb

The close() Method

The close() method of a file object flushes any unwritten information and closes the file

object, after which no more writing can be done.

Python automatically closes a file when the reference object of a file is reassigned to

another file. It is a good practice to use the close() method to close a file.

Syntax

fileObject.close();

Example

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "wb")

print ("Name of the file: ", fo.name)

Python 3

219

Close opened file

fo.close()

This produces the following result-

Name of the file: foo.txt

Reading and Writing Files

The file object provides a set of access methods to make our lives easier. We would see

how to use read() and write() methods to read and write files.

The write() Method

The write() method writes any string to an open file. It is important to note that Python

strings can have binary data and not just text.

The write() method does not add a newline character ('\n') to the end of the string-

Syntax

fileObject.write(string);

Here, passed parameter is the content to be written into the opened file.

Example

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "w")

fo.write("Python is a great language.\nYeah its great!!\n")

Close opend file

fo.close()

The above method would create foo.txt file and would write given content in that file and

finally it would close that file. If you would open this file, it would have the following

content-

Python is a great language.

Yeah its great!!

Python 3

220

The read() Method

The read() method reads a string from an open file. It is important to note that Python

strings can have binary data apart from the text data.

Syntax

fileObject.read([count]);

Here, passed parameter is the number of bytes to be read from the opened file. This

method starts reading from the beginning of the file and if count is missing, then it tries

to read as much as possible, maybe until the end of file.

Example

Let us take a file foo.txt, which we created above.

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "r+")

str = fo.read(10)

print ("Read String is : ", str)

Close opened file

fo.close()

This produces the following result-

Read String is : Python is

File Positions

The tell() method tells you the current position within the file; in other words, the next

read or write will occur at that many bytes from the beginning of the file.

The seek(offset[, from]) method changes the current file position. The offset argument

indicates the number of bytes to be moved. The from argument specifies the reference

position from where the bytes are to be moved.

If from is set to 0, the beginning of the file is used as the reference position. If it is set to

1, the current position is used as the reference position. If it is set to 2 then the end of

the file would be taken as the reference position.

Example

Let us take a file foo.txt, which we created above.

#!/usr/bin/python3

Python 3

221

Open a file

fo = open("foo.txt", "r+")

str = fo.read(10)

print ("Read String is : ", str)

Check current position

position = fo.tell()

print ("Current file position : ", position)

Reposition pointer at the beginning once again

position = fo.seek(0, 0)

str = fo.read(10)

print ("Again read String is : ", str)

Close opened file

fo.close()

This produces the following result-

Read String is : Python is

Current file position : 10

Again read String is : Python is

Renaming and Deleting Files

Python os module provides methods that help you perform file-processing operations,

such as renaming and deleting files.

To use this module, you need to import it first and then you can call any related functions.

The rename() Method

The rename() method takes two arguments, the current filename and the new filename.

Syntax

os.rename(current_file_name, new_file_name)

Example

Following is an example to rename an existing file test1.txt-

#!/usr/bin/python3

import os

Python 3

222

Rename a file from test1.txt to test2.txt

os.rename("test1.txt", "test2.txt")

The remove() Method

You can use the remove() method to delete files by supplying the name of the file to be

deleted as the argument.

Syntax

os.remove(file_name)

Example

Following is an example to delete an existing file test2.txt-

#!/usr/bin/python3

import os

Delete file test2.txt

os.remove("text2.txt")

Directories in Python

All files are contained within various directories, and Python has no problem handling these

too. The os module has several methods that help you create, remove, and change

directories.

The mkdir() Method

You can use the mkdir() method of the os module to create directories in the current

directory. You need to supply an argument to this method, which contains the name of

the directory to be created.

Syntax

os.mkdir("newdir")

Example

Following is an example to create a directory test in the current directory-

#!/usr/bin/python3

import os

Python 3

223

Create a directory "test"

os.mkdir("test")

The chdir() Method

You can use the chdir() method to change the current directory. The chdir() method takes

an argument, which is the name of the directory that you want to make the current

directory.

Syntax

os.chdir("newdir")

Example

Following is an example to go into "/home/newdir" directory-

#!/usr/bin/python3

import os

Changing a directory to "/home/newdir"

os.chdir("/home/newdir")

The getcwd() Method

The getcwd() method displays the current working directory.

Syntax

os.getcwd()

Example

Following is an example to give current directory-

#!/usr/bin/python3

import os

This would give location of the current directory

os.getcwd()

Python 3

224

The rmdir() Method

The rmdir() method deletes the directory, which is passed as an argument in the method.

Before removing a directory, all the contents in it should be removed.

Syntax

os.rmdir('dirname')

Example

Following is an example to remove the "/tmp/test" directory. It is required to give fully

qualified name of the directory, otherwise it would search for that directory in the current

directory.

#!/usr/bin/python3

import os

This would remove "/tmp/test" directory.

os.rmdir("/tmp/test")

File & Directory Related Methods

There are three important sources, which provide a wide range of utility methods to handle

and manipulate files & directories on Windows and Unix operating systems. They are as

follows-

 File Object Methods: The file object provides functions to manipulate files.

 OS Object Methods: This provides methods to process files as well as directories.

File Methods

A file object is created using open function and here is a list of functions which can be

called on this object.

S.

No.
Methods with Description

1 file.close()

Close the file. A closed file cannot be read or written any more.

2 file.flush()

Python 3

225

Flush the internal buffer, like stdio's fflush. This may be a no-op on some file-like

objects.

3 file.fileno()

Returns the integer file descriptor that is used by the underlying implementation

to request I/O operations from the operating system.

4 file.isatty()

Returns True if the file is connected to a tty(-like) device, else False.

5 next(file)

Returns the next line from the file each time it is being called.

6 file.read([size])

Reads at most size bytes from the file (less if the read hits EOF before obtaining

size bytes).

7 file.readline([size])

Reads one entire line from the file. A trailing newline character is kept in the

string.

8 file.readlines([sizehint])

Reads until EOF using readline() and return a list containing the lines. If the

optional sizehint argument is present, instead of reading up to EOF, whole lines

totalling approximately sizehint bytes (possibly after rounding up to an internal

buffer size) are read.

9 file.seek(offset[, whence])

Sets the file's current position

10 file.tell()

Returns the file's current position

11 file.truncate([size])

Truncates the file's size. If the optional size argument is present, the file is

truncated to (at most) that size.

12 file.write(str)

Python 3

226

Writes a string to the file. There is no return value.

13 file.writelines(sequence)

Writes a sequence of strings to the file. The sequence can be any iterable object

producing strings, typically a list of strings.

Let us go through the above mentions methods briefly.

File close() Method

Description

The method close() closes the opened file. A closed file cannot be read or written any

more. Any operation, which requires that the file be opened will raise a ValueError after

the file has been closed. Calling close() more than once is allowed.

Python automatically closes a file when the reference object of a file is reassigned to

another file. It is a good practice to use the close() method to close a file.

Syntax

Following is the syntax for close() method-

fileObject.close()

Parameters

NA

Return Value

This method does not return any value.

Example

The following example shows the usage of close() method.

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "wb")

print ("Name of the file: ", fo.name)

Close opened file

fo.close()

Python 3

227

When we run the above program, it produces the following result-

Name of the file: foo.txt

File flush() Method

Description

The method flush() flushes the internal buffer, like stdio's fflush. This may be a no-op on

some file-like objects.

Python automatically flushes the files when closing them. But you may want to flush the

data before closing any file.

Syntax

Following is the syntax for flush() method-

fileObject.flush()

Parameters

NA

Return Value

This method does not return any value.

Example

The following example shows the usage of flush() method.

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "wb")

print ("Name of the file: ", fo.name)

Here it does nothing, but you can call it with read operation.

fo.flush()

Close opend file

fo.close()

When we run the above program, it produces the following result-

Name of the file: foo.txt

Python 3

228

File fileno() Method

Description

The method fileno() returns the integer file descriptor that is used by the underlying

implementation to request I/O operations from the operating system.

Syntax

Following is the syntax for fileno() method-

fileObject.fileno()

Parameters

NA

Return Value

This method returns the integer file descriptor.

Example

The following example shows the usage of fileno() method.

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "wb")

print ("Name of the file: ", fo.name)

fid = fo.fileno()

print ("File Descriptor: ", fid)

Close opend file

fo.close()

When we run the above program, it produces the following result-

Name of the file: foo.txt

File Descriptor: 3

File isatty() Method

Description

The method isatty() returns True if the file is connected (is associated with a terminal

device) to a tty(-like) device, else False.

Python 3

229

Syntax

Following is the syntax for isatty() method-

fileObject.isatty()

Parameters

NA

Return Value

This method returns true if the file is connected (is associated with a terminal device) to

a tty(-like) device, else false.

Example

The following example shows the usage of isatty() method-

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "wb")

print ("Name of the file: ", fo.name)

ret = fo.isatty()

print ("Return value : ", ret)

Close opend file

fo.close()

When we run the above program, it produces the following result-

Name of the file: foo.txt

Return value : False

File next() Method

Description

File object in Python 3 does not support next() method. Python 3 has a built-in function

next() which retrieves the next item from the iterator by calling its __next__() method. If

default is given, it is returned if the iterator is exhausted, otherwise StopIteration is raised.

This method can be used to read the next input line, from the file object.

Syntax

Following is the syntax for next() method-

Python 3

230

next(iterator[,default])

Parameters

 iterator : file object from which lines are to be read

 default : returned if iterator exhausted. If not given, StopIteration is raised

Return Value

This method returns the next input line.

Example

The following example shows the usage of next() method-

Assuming that 'foo.txt' contains following lines

C++

Java

Python

Perl

PHP

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "r")

print ("Name of the file: ", fo.name)

for index in range(5):

 line = next(fo)

 print ("Line No %d - %s" % (index, line))

Close opened file

fo.close()

When we run the above program, it produces the following result-

Name of the file: foo.txt

Line No 0 - C++

Line No 1 - Java

Line No 2 - Python

Line No 3 - Perl

Line No 4 - PHP

Python 3

231

File read() Method

Description

The method read() reads at most size bytes from the file. If the read hits EOF before

obtaining size bytes, then it reads only available bytes.

Syntax

Following is the syntax for read() method-

fileObject.read(size);

Parameters

size - This is the number of bytes to be read from the file.

Return Value

This method returns the bytes read in string.

Example

The following example shows the usage of read() method.

Assuming that 'foo.txt' file contains the following text:

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "r+")

print ("Name of the file: ", fo.name)

line = fo.read(10)

print ("Read Line: %s" % (line))

Close opened file

fo.close()

When we run the above program, it produces the following result-

Name of the file: foo.txt

Python 3

232

Read Line: This is 1s

File readline() Method

Description

The method readline()reads one entire line from the file. A trailing newline character is

kept in the string. If the size argument is present and non-negative, it is a maximum byte

count including the trailing newline and an incomplete line may be returned.

An empty string is returned only when EOF is encountered immediately.

Syntax

Following is the syntax for readline() method-

fileObject.readline(size);

Parameters

size - This is the number of bytes to be read from the file.

Return Value

This method returns the line read from the file.

Example

The following example shows the usage of readline() method.

Assuming that 'foo.txt' file contains following text-

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "r+")

print ("Name of the file: ", fo.name)

line = fo.readline()

print ("Read Line: %s" % (line))

line = fo.readline(5)

Python 3

233

print ("Read Line: %s" % (line))

Close opened file

fo.close()

When we run the above program, it produces the following result-

Name of the file: foo.txt

Read Line: This is 1st line

Read Line: This

File readlines() Method

Description

The method readlines() reads until EOF using readline() and returns a list containing the

lines. If the optional sizehint argument is present, instead of reading up to EOF, whole

lines totalling approximately sizehint bytes (possibly after rounding up to an internal buffer

size) are read.

An empty string is returned only when EOF is encountered immediately.

Syntax

Following is the syntax for readlines() method-

fileObject.readlines(sizehint);

Parameters

sizehint - This is the number of bytes to be read from the file.

Return Value

This method returns a list containing the lines.

Example

The following example shows the usage of readlines() method.

Assuming that 'foo.txt' file contains following text:

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

Python 3

234

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "r+")

print ("Name of the file: ", fo.name)

line = fo.readlines()

print ("Read Line: %s" % (line))

line = fo.readlines(2)

print ("Read Line: %s" % (line))

Close opened file

fo.close()

When we run above program, it produces following result-

Name of the file: foo.txt

Read Line: ['This is 1st line\n', 'This is 2nd line\n',

 'This is 3rd line\n', 'This is 4th line\n',

 'This is 5th line\n']

Read Line:

File seek() Method

Description

The method seek() sets the file's current position at the offset. The whence argument is

optional and defaults to 0, which means absolute file positioning, other values are 1 which

means seek relative to the current position and 2 means seek relative to the file's end.

There is no return value. Note that if the file is opened for appending using either 'a' or

'a+', any seek() operations will be undone at the next write.

If the file is only opened for writing in append mode using 'a', this method is essentially a

no-op, but it remains useful for files opened in append mode with reading enabled (mode

'a+').

If the file is opened in text mode using 't', only offsets returned by tell() are legal. Use of

other offsets causes undefined behavior.

Note that not all file objects are seekable.

Syntax

Following is the syntax for seek() method-

fileObject.seek(offset[, whence])

Python 3

235

Parameters

 offset- This is the position of the read/write pointer within the file.

 whence- This is optional and defaults to 0 which means absolute file positioning,

other values are 1 which means seek relative to the current position and 2 means

seek relative to the file's end.

Return Value

This method does not return any value.

Example

The following example shows the usage of seek() method.

Assuming that 'foo.txt' file contains following text:

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

#!/usr/bin/python3

Open a file

fo = open("foo.txt", "rw+")

print ("Name of the file: ", fo.name)

line = fo.readlines()

print ("Read Line: %s" % (line))

Again set the pointer to the beginning

fo.seek(0, 0)

line = fo.readline()

print ("Read Line: %s" % (line))

Close opened file

fo.close()

When we run the above program, it produces the following result-

Python 3

236

Name of the file: foo.txt

Read Line: ['This is 1st line\n', 'This is 2nd line\n', 'This is 3rd line\n',

'This is 4th line\n', 'This is 5th line']

Read Line: This is 1st line

File tell() Method

Description

The method tell() returns the current position of the file read/write pointer within the file.

Syntax

Following is the syntax for tell() method-

fileObject.tell()

Parameters

NA

Return Value

This method returns the current position of the file read/write pointer within the file.

Example

The following example shows the usage of tell() method-

Assuming that 'foo.txt' file contains following text:

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

#!/usr/bin/python3

fo = open("foo.txt", "r+")

print ("Name of the file: ", fo.name)

line = fo.readline()

print ("Read Line: %s" % (line))

pos=fo.tell()

print ("current position : ",pos)

Python 3

237

Close opened file

fo.close()

When we run the above program, it produces the following result-

Name of the file: foo.txt

Read Line: This is 1st line

Current Position: 18

File truncate() Method

Description

The method truncate() truncates the file's size. If the optional size argument is present,

the file is truncated to (at most) that size.

The size defaults to the current position. The current file position is not changed. Note that

if a specified size exceeds the file's current size, the result is platform-dependent.

Note: This method will not work in case the file is opened in read-only mode.

Syntax

Following is the syntax for truncate() method-

fileObject.truncate([size])

Parameters

size - If this optional argument is present, the file is truncated to (at most) that size.

Return Value

This method does not return any value.

Example

The following example shows the usage of truncate() method.

Assuming that 'foo.txt' file contains following text:

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

Python 3

238

#!/usr/bin/python3

fo = open("foo.txt", "r+")

print ("Name of the file: ", fo.name)

line = fo.readline()

print ("Read Line: %s" % (line))

fo.truncate()

line = fo.readlines()

print ("Read Line: %s" % (line))

Close opened file

fo.close()

When we run the above program, it produces the following result-

Name of the file: foo.txt

Read Line: This is 1s

Read Line: []

File write() Method

Description

The method write() writes a string str to the file. There is no return value. Due to

buffering, the string may not actually show up in the file until the flush() or close() method

is called.

Syntax

Following is the syntax for write() method-

fileObject.write(str)

Parameters

str - This is the String to be written in the file.

Return Value

This method does not return any value.

Python 3

239

Example

The following example shows the usage of write() method.

Assuming that 'foo.txt' file contains following text:

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

#!/usr/bin/python3

Open a file in read/write mode

fo = open("abc.txt", "r+")

print ("Name of the file: ", fo.name)

str = "This is 6th line"

Write a line at the end of the file.

fo.seek(0, 2)

line = fo.write(str)

Now read complete file from beginning.

fo.seek(0,0)

for index in range(6):

 line = next(fo)

 print ("Line No %d - %s" % (index, line))

Close opened file

fo.close()

When we run the above program, it produces the following result-

Name of the file: foo.txt

Line No 0 - This is 1st line

Line No 1 - This is 2nd line

Line No 2 - This is 3rd line

Line No 3 - This is 4th line

Line No 4 - This is 5th line

Python 3

240

Line No 5 - This is 6th line

File writelines() Method

Description

The method writelines() writes a sequence of strings to the file. The sequence can be

any iterable object producing strings, typically a list of strings. There is no return value.

Syntax

Following is the syntax for writelines() method −

fileObject.writelines(sequence)

Parameters

sequence - This is the Sequence of the strings.

Return Value

This method does not return any value.

Example

The following example shows the usage of writelines() method.

Assuming that 'foo.txt' file contains following text:

This is 1st line

This is 2nd line

This is 3rd line

This is 4th line

This is 5th line

#!/usr/bin/python3

Open a file in read/write mode

fo = open("abc.txt", "r+")

print ("Name of the file: ", fo.name)

seq = ["This is 6th line\n", "This is 7th line"]

Write sequence of lines at the end of the file.

fo.seek(0, 2)

line = fo.writelines(seq)

Python 3

241

Now read complete file from beginning.

fo.seek(0,0)

for index in range(7):

 line = next(fo)

 print ("Line No %d - %s" % (index, line))

Close opened file

fo.close()

When we run the above program, it produces the following result-

Name of the file: foo.txt

Line No 0 - This is 1st line

Line No 1 - This is 2nd line

Line No 2 - This is 3rd line

Line No 3 - This is 4th line

Line No 4 - This is 5th line

Line No 5 - This is 6th line

Line No 6 - This is 7th line

OS File/Directory Methods

The os module provides a big range of useful methods to manipulate files and directories.

Most of the useful methods are listed here:

S.

No.
Methods with Description

1 os.access(path, mode)

Use the real uid/gid to test for access to path.

Python 3

242

2 os.chdir(path)

Change the current working directory to path

3 os.chflags(path, flags)

Set the flags of path to the numeric flags.

4 os.chmod(path, mode)

Change the mode of path to the numeric mode.

5 os.chown(path, uid, gid)

Change the owner and group id of path to the numeric uid and gid.

6 os.chroot(path)

Change the root directory of the current process to path.

7 os.close(fd)

Close file descriptor fd.

8 os.closerange(fd_low, fd_high)

Close all file descriptors from fd_low (inclusive) to fd_high (exclusive), ignoring

errors.

9 os.dup(fd)

Return a duplicate of file descriptor fd.

10 os.dup2(fd, fd2)

Duplicate file descriptor fd to fd2, closing the latter first if necessary.

11 os.fchdir(fd)

Python 3

243

Change the current working directory to the directory represented by the file

descriptor fd.

12 os.fchmod(fd, mode)

Change the mode of the file given by fd to the numeric mode.

13 os.fchown(fd, uid, gid)

Change the owner and group id of the file given by fd to the numeric uid and

gid.

14 os.fdatasync(fd)

Force write of file with filedescriptor fd to disk.

15 os.fdopen(fd[, mode[, bufsize]])

Return an open file object connected to the file descriptor fd.

16 os.fpathconf(fd, name)

Return system configuration information relevant to an open file. name

specifies the configuration value to retrieve.

17 os.fstat(fd)

Return status for file descriptor fd, like stat().

18 os.fstatvfs(fd)

Return information about the filesystem containing the file associated with file

descriptor fd, like statvfs().

19 os.fsync(fd)

Force write of file with filedescriptor fd to disk.

20 os.ftruncate(fd, length)

Python 3

244

Truncate the file corresponding to file descriptor fd, so that it is at most length

bytes in size.

21 os.getcwd()

Return a string representing the current working directory.

22 os.getcwdu()

Return a Unicode object representing the current working directory.

23 os.isatty(fd)

Return True if the file descriptor fd is open and connected to a tty(-like) device,

else False.

24 os.lchflags(path, flags)

Set the flags of path to the numeric flags, like chflags(), but do not follow

symbolic links.

25 os.lchmod(path, mode)

Change the mode of path to the numeric mode.

26 os.lchown(path, uid, gid)

Change the owner and group id of path to the numeric uid and gid. This function

will not follow symbolic links.

27 os.link(src, dst)

Create a hard link pointing to src named dst.

28 os.listdir(path)

Return a list containing the names of the entries in the directory given by path.

29 os.lseek(fd, pos, how)

Python 3

245

Set the current position of file descriptor fd to position pos, modified by how.

30 os.lstat(path)

Like stat(), but do not follow symbolic links.

31 os.major(device)

Extract the device major number from a raw device number.

32 os.makedev(major, minor)

Compose a raw device number from the major and minor device numbers.

33 os.makedirs(path[, mode])

Recursive directory creation function.

34 os.minor(device)

Extract the device minor number from a raw device number .

35 os.mkdir(path[, mode])

Create a directory named path with numeric mode mode.

36 os.mkfifo(path[, mode])

Create a FIFO (a named pipe) named path with numeric mode mode. The

default mode is 0666 (octal).

37 os.mknod(filename[, mode=0600, device])

Create a filesystem node (file, device special file or named pipe) named

filename.

38 os.open(file, flags[, mode])

http://www.tutorialspoint.com/python3/os_minor.htm

Python 3

246

Open the file file and set various flags according to flags and possibly its mode

according to mode.

39 os.openpty()

Open a new pseudo-terminal pair. Return a pair of file descriptors (master,

slave) for the pty and the tty, respectively.

40 os.pathconf(path, name)

Return system configuration information relevant to a named file.

41 os.pipe()

Create a pipe. Return a pair of file descriptors (r, w) usable for reading and

writing, respectively.

42 os.popen(command[, mode[, bufsize]])

Open a pipe to or from command.

43 os.read(fd, n)

Read at most n bytes from file descriptor fd. Return a string containing the

bytes read. If the end of the file referred to by fd has been reached, an empty

string is returned.

44 os.readlink(path)

Return a string representing the path to which the symbolic link points.

45 os.remove(path)

Remove the file path.

46 os.removedirs(path)

Remove directories recursively.

Python 3

247

47 os.rename(src, dst)

Rename the file or directory src to dst.

48 os.renames(old, new)

Recursive directory or file renaming function.

49 os.rmdir(path)

Remove the directory path

50 os.stat(path)

Perform a stat system call on the given path.

51 os.stat_float_times([newvalue])

Determine whether stat_result represents time stamps as float objects.

52 os.statvfs(path)

Perform a statvfs system call on the given path.

53 os.symlink(src, dst)

Create a symbolic link pointing to src named dst.

54 os.tcgetpgrp(fd)

Return the process group associated with the terminal given by fd (an open file

descriptor as returned by open()).

55 os.tcsetpgrp(fd, pg)

Set the process group associated with the terminal given by fd (an open file

descriptor as returned by open()) to pg.

56 os.tempnam([dir[, prefix]])

http://www.tutorialspoint.com/python3/os_statvfs.htm

Python 3

248

Return a unique path name that is reasonable for creating a temporary file.

57 os.tmpfile()

Return a new file object opened in update mode (w+b).

58 os.tmpnam()

Return a unique path name that is reasonable for creating a temporary file.

59 os.ttyname(fd)

Return a string which specifies the terminal device associated with file

descriptor fd. If fd is not associated with a terminal device, an exception is

raised.

60 os.unlink(path)

Remove the file path.

61 os.utime(path, times)

Set the access and modified times of the file specified by path.

62 os.walk(top[, topdown=True[, onerror=None[, followlinks=False]]])

Generate the file names in a directory tree by walking the tree either top-down

or bottom-up.

63 os.write(fd, str)

Write the string str to file descriptor fd. Return the number of bytes actually

written.

Let us go through the methods briefly-

os.access() Method

Description

Python 3

249

The method access() uses the real uid/gid to test for access to path. Most operations will

use the effective uid/gid, therefore this routine can be used in a suid/sgid environment to

test if the invoking user has the specified access to path.It returns True if access is allowed,

False if not.

Syntax

Following is the syntax for access() method-

os.access(path, mode)

Parameters

 path - This is the path which would be tested for existence or any access.

 mode - This should be F_OK to test the existence of path, or it can be the inclusive

OR of one or more of R_OK, W_OK, and X_OK to test permissions.

o os.F_OK: Value to pass as the mode parameter of access() to test the existence

of path.

o os.R_OK: Value to include in the mode parameter of access() to test the

readability of path.

o os.W_OK: Value to include in the mode parameter of access() to test the

writability of path.

o os.X_OK: Value to include in the mode parameter of access() to determine if

path can be executed.

Return Value

This method returns True if access is allowed, False if not.

Example

The following example shows the usage of access() method.

#!/usr/bin/python3

import os, sys

Assuming /tmp/foo.txt exists and has read/write permissions.

ret = os.access("/tmp/foo.txt", os.F_OK)

print ("F_OK - return value %s"% ret)

ret = os.access("/tmp/foo.txt", os.R_OK)

print ("R_OK - return value %s"% ret)

Python 3

250

ret = os.access("/tmp/foo.txt", os.W_OK)

print ("W_OK - return value %s"% ret)

ret = os.access("/tmp/foo.txt", os.X_OK)

print ("X_OK - return value %s"% ret)

When we run the above program, it produces the following result-

F_OK - return value True

R_OK - return value True

W_OK - return value True

X_OK - return value False

os.chdir() Method

Description

The method chdir() changes the current working directory to the given path.It returns

None in all the cases.

Syntax

Following is the syntax for chdir() method-

os.chdir(path)

Parameters

path - This is complete path of the directory to be changed to a new location.

Return Value

This method does not return any value. It throws FileNotFoundError if the specified path

is not found.

Example

The following example shows the usage of chdir() method.

#!/usr/bin/python3

import os

path = "d:\\python3" #change path for linux

Now change the directory

os.chdir(path)

Check current working directory.

Python 3

251

retval = os.getcwd()

print ("Directory changed successfully %s" % retval)

When we run the above program, it produces the following result-

Directory changed successfully d:\python3

os.chflags() Method

Description

The method chflags() sets the flags of path to the numeric flags. The flags may take a

combination (bitwise OR) of the various values described below.

Note: This method is available Python version 2.6 onwards. Most of the flags can be

changed by super-user only.

Syntax

Following is the syntax for chflags() method-

os.chflags(path, flags)

Parameters

 path - This is a complete path of the directory to be changed to a new location.

 flags - The flags specified are formed by OR'ing the following values-

o os.UF_NODUMP: Do not dump the file.

o os.UF_IMMUTABLE: The file may not be changed.

o os.UF_APPEND: The file may only be appended to.

o os.UF_NOUNLINK: The file may not be renamed or deleted.

o os.UF_OPAQUE: The directory is opaque when viewed through a union stack.

o os.SF_ARCHIVED: The file may be archived.

o os.SF_IMMUTABLE: The file may not be changed.

o os.SF_APPEND: The file may only be appended to.

o os.SF_NOUNLINK: The file may not be renamed or deleted.

o os.SF_SNAPSHOT: The file is a snapshot file.

Return Value

This method does not return any value.

Example

Python 3

252

The following example shows the usage of chflags() method.

#!/usr/bin/python3

import os

path = "/tmp/foo.txt"

Set a flag so that file may not be renamed or deleted.

flags = os.SF_NOUNLINK

retval = os.chflags(path, flags)

print ("Return Value: %s" % retval)

When we run the above program, it produces the following result-

Return Value : None

os.chmod() Method

Description

The method chmod() changes the mode of path to the passed numeric mode. The mode

may take one of the following values or bitwise ORed combinations of them-

 stat.S_ISUID: Set user ID on execution.

 stat.S_ISGID: Set group ID on execution.

 stat.S_ENFMT: Record locking enforced.

 stat.S_ISVTX: Save text image after execution.

 stat.S_IREAD: Read by owner.

 stat.S_IWRITE: Write by owner.

 stat.S_IEXEC: Execute by owner.

 stat.S_IRWXU: Read, write, and execute by owner.

 stat.S_IRUSR: Read by owner.

 stat.S_IWUSR: Write by owner.

 stat.S_IXUSR: Execute by owner.

 stat.S_IRWXG: Read, write, and execute by group.

 stat.S_IRGRP: Read by group.

 stat.S_IWGRP: Write by group.

Python 3

253

 stat.S_IXGRP: Execute by group.

 stat.S_IRWXO: Read, write, and execute by others.

 stat.S_IROTH: Read by others.

 stat.S_IWOTH: Write by others.

 stat.S_IXOTH: Execute by others.

Syntax

Following is the syntax for chmod() method-

os.chmod(path, mode)

Parameters

 path - This is the path for which mode would be set.

 mode - This may take one of the above mentioned values or bitwise ORed

combinations of them.

Return Value

This method does not return any value.

Note : Although Windows supports chmod(), you can only set the file’s read-only flag with

it (via the stat.S_IWRITE and stat.S_IREAD constants or a corresponding integer value).

All other bits are ignored.

Example

The following example shows the usage of chmod() method-

#!/usr/bin/python3

import os, sys, stat

Assuming /tmp/foo.txt exists, Set a file execute by the group.

os.chmod("/tmp/foo.txt", stat.S_IXGRP)

Set a file write by others.

os.chmod("/tmp/foo.txt", stat.S_IWOTH)

print ("Changed mode successfully!!")

Python 3

254

When we run the above program, it produces the following result-

Changed mode successfully!!

os.chown() Method

Description

The method chown() changes the owner and group id of path to the numeric uid and gid.

To leave one of the ids unchanged, set it to -1.To set ownership, you would need super

user privilege..

Syntax

Following is the syntax for chown() method-

os.chown(path, uid, gid)

Parameters

 path - This is the path for which owner id and group id need to be setup.

 uid - This is Owner ID to be set for the file.

 gid - This is Group ID to be set for the file.

Return Value

This method does not return any value.

Example

The following example shows the usage of chown() method.

#!/usr/bin/python3

import os, sys

Assuming /tmp/foo.txt exists.

To set owner ID 100 following has to be done.

os.chown("/tmp/foo.txt", 100, -1)

print ("Changed ownership successfully!!")

When we run the above program, it produces the following result-

Changed ownership successfully!!

Python 3

255

os.chroot() Method

Description

The method chroot() changes the root directory of the current process to the given path.

Available on Unix like systems only. To use this method, you would need super user

privilege.

Syntax

Following is the syntax for chroot() method-

os.chroot(path)

Parameters

path - This is the path which would be set as root for the current process.

Return Value

This method does not return any value.

Example

The following example shows the usage of chroot() method.

#!/usr/bin/python3

import os, sys

To set the current root path to /tmp/user

os.chroot("/tmp/usr")

print ("Changed root path successfully!!")

When we run the above program, it produces the following result-

Changed root path successfully!!

Python os.close() Method

Description

The method close() closes the associated with file descriptor fd.

Syntax

Following is the syntax for close() method-

os.close(fd)

Python 3

256

Parameters

fd - This is the file descriptor of the file.

Return Value

This method does not return any value.

Note: This function is intended for low-level I/O and must be applied to a file descriptor

as returned by os.open() or pipe().

Example

The following example shows the usage of close() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Write one string

line="this is test"

string needs to be converted byte object

b=str.encode(line)

os.write(fd, b)

Close opened file

os.close(fd)

print ("Closed the file successfully!!")

When we run the above program, it produces the following result-

Closed the file successfully!!

os.closerange() Method

Description

The method closerange() closes all file descriptors from fd_low (inclusive) to fd_high

(exclusive), ignoring errors.This method is introduced in Python version 2.6.

Syntax

Following is the syntax for closerange() method-

os.closerange(fd_low, fd_high)

Parameters

Python 3

257

 fd_low - This is the Lowest file descriptor to be closed.

 fd_high - This is the Highest file descriptor to be closed.

This function is equivalent to-

for fd in xrange(fd_low, fd_high):

 try:

 os.close(fd)

 except OSError:

 pass

Return Value

This method does not return any value.

Example

The following example shows the usage of closerange() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Write one string

line="this is test"

string needs to be converted byte object

b=str.encode(line)

os.write(fd, b)

Close a single opened file

os.closerange(fd, fd)

print ("Closed all the files successfully!!")

This would create given file foo.txt and then write given content in that file. This will

produce the following result-

Closed all the files successfully!

Python 3

258

os.dup() Method

Description

The method dup() returns a duplicate of file descriptor fd which can be used in place of

original descriptor.

Syntax

Following is the syntax for dup() method-

os.dup(fd)

Parameters

fd - This is the original file descriptor.

Return Value

This method returns a duplicate of file descriptor.

Example

The following example shows the usage of dup() method-

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Get one duplicate file descriptor

d_fd = os.dup(fd)

Write one string using duplicate fd

line="this is test"

string needs to be converted byte object

b=str.encode(line)

os.write(d_fd, b)

Close a single opened file

os.closerange(fd, d_fd)

Python 3

259

print "Closed all the files successfully!!"

When we run the above program, it produces the following result-

Closed all the files successfully!!

os.dup2() Method

Description

The method dup2() duplicates file descriptor fd to fd2, closing the latter first if necessary.

Note: New file description would be assigned only when it is available. In the following

example given below, 1000 would be assigned as a duplicate fd in case when 1000 is

available.

Syntax

Following is the syntax for dup2() method-

os.dup2(fd, fd2)

Parameters

 fd - This is File descriptor to be duplicated.

 fd2 - This is Duplicate file descriptor.

Return Value

This method returns a duplicate of file descriptor.

Example

The following example shows the usage of dup2() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Write one string using duplicate fd

line="this is test"

string needs to be converted byte object

b=str.encode(line)

Python 3

260

os.write(fd, b)

Now duplicate this file descriptor as 1000

fd2 = 1000

os.dup2(fd, fd2);

Now read this file from the beginning using fd2.

os.lseek(fd2, 0, 0)

line = os.read(fd2, 100)

str=line.decode()

print ("Read String is : ", str)

Close opened file

os.closerange(fd,fd2)

print ("Closed the file successfully!!")

When we run the above program, it produces the following result-

Read String is : This is test

Closed the file successfully!!

os.fchdir() Method

Description

The method fchdir() change the current working directory to the directory represented

by the file descriptor fd. The descriptor must refer to an opened directory, not an open

file.

Syntax

Following is the syntax for fchdir() method-

os.fchdir(fd)

Parameters

fd - This is Directory descriptor.

Return Value

This method does not return any value.

Python 3

261

Example

The following example shows the usage of fchdir() method.

#!/usr/bin/python3

import os, sys

First go to the "/var/www/html" directory

os.chdir("/var/www/html")

Print current working directory

print ("Current working dir : %s" % os.getcwd())

Now open a directory "/tmp"

fd = os.open("/tmp", os.O_RDONLY)

Use os.fchdir() method to change the dir

os.fchdir(fd)

Print current working directory

print ("Current working dir : %s" % os.getcwd())

Close opened directory.

os.close(fd)

When we run the above program, it produces the following result-

Current working dir : /var/www/html

Current working dir : /tmp

os.fchmod() Method

Description

The method fchmod() changes the mode of the file given by fd to the numeric mode. The

mode may take one of the following values or bitwise ORed combinations of them-

Note: This method is available Python 2.6 onwards.

 stat.S_ISUID: Set user ID on execution.

 stat.S_ISGID: Set group ID on execution.

 stat.S_ENFMT: Record locking enforced.

Python 3

262

 stat.S_ISVTX: Save text image after execution.

 stat.S_IREAD: Read by owner.

 stat.S_IWRITE: Write by owner.

 stat.S_IEXEC: Execute by owner.

 stat.S_IRWXU: Read, write, and execute by owner.

 stat.S_IRUSR: Read by owner.

 stat.S_IWUSR: Write by owner.

 stat.S_IXUSR: Execute by owner.

 stat.S_IRWXG: Read, write, and execute by group.

 stat.S_IRGRP: Read by group.

 stat.S_IWGRP: Write by group.

 stat.S_IXGRP: Execute by group.

 stat.S_IRWXO: Read, write, and execute by others.

 stat.S_IROTH: Read by others.

 stat.S_IWOTH: Write by others.

 stat.S_IXOTH: Execute by others.

Syntax

Following is the syntax for fchmod() method-

os.fchmod(fd, mode)

Parameters

 fd - This is the file descriptor for which mode would be set.

 mode - This may take one of the above mentioned values or bitwise ORed

combinations of them.

Return Value

This method does not return any value. Available on Unix like operating systems only.

Example

Python 3

263

The following example shows the usage of fchmod() method-

#!/usr/bin/python3

import os, sys, stat

Now open a file "/tmp/foo.txt"

fd = os.open("/tmp", os.O_RDONLY)

Set a file execute by the group.

os.fchmod(fd, stat.S_IXGRP)

Set a file write by others.

os.fchmod(fd, stat.S_IWOTH)

print ("Changed mode successfully!!")

Close opened file.

os.close(fd)

When we run the above program, it produces the following result-

Changed mode successfully!!

os.fchown() Method

Description

The method fchown() changes the owner and group id of the file given by fd to the numeric

uid and gid. To leave one of the ids unchanged, set it to -1.

Note:This method is available Python 2.6 onwards.

Syntax

Following is the syntax for fchown() method-

os.fchown(fd, uid, gid)

Parameters

 fd - This is the file descriptor for which owner id and group id need to be set up.

 uid - This is Owner ID to be set for the file.

Python 3

264

 gid - This is Group ID to be set for the file.

Return Value

This method does not return any value. Available in Unix like operating systems only.

Example

The following example shows the usage of fchown() method.

#!/usr/bin/python3

import os, sys, stat

Now open a file "/tmp/foo.txt"

fd = os.open("/tmp", os.O_RDONLY)

Set the user Id to 100 for this file.

os.fchown(fd, 100, -1)

Set the group Id to 50 for this file.

os.fchown(fd, -1, 50)

print ("Changed ownership successfully!!")

Close opened file.

os.close(fd)

When we run the above program, it produces the following result-

Changed ownership successfully!!

os.fdatasync() Method

Description

The method fdatasync() forces write of file with filedescriptor fd to disk. This does not

force update of metadata. If you want to flush your buffer then you can use this method.

Syntax

Following is the syntax for fdatasync() method-

os.fdatasync(fd)

Parameters

fd - This is the file descriptor for which data to be written.

Python 3

265

Return Value

This method does not return any value.

Example

The following example shows the usage of fdatasync() method-

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Write one string

line="this is test"

string needs to be converted byte object

b=str.encode(line)

os.write(fd, b)

Now you can use fdatasync() method.

Infact here you would not be able to see its effect.

os.fdatasync(fd)

Now read this file from the beginning.

os.lseek(fd, 0, 0)

str = os.read(fd, 100)

line = os.read(fd2, 100)

str=line.decode()

print ("Read String is : ", str)

Close opened file

os.close(fd)

print ("Closed the file successfully!!")

When we run the above program, it produces the following result-

Read String is : This is test

Closed the file successfully!!

Python 3

266

os.fdopen() Method

Description

The method fdopen() returns an open file object connected to the file descriptor fd. Then

you can perform all the defined functions on file object.

Syntax

Following is the syntax for fdopen() method-

os.fdopen(fd, [, mode[, bufsize]]);

Parameters

 fd - This is the file descriptor for which a file object is to be returned.

 mode - This optional argument is a string indicating how the file is to be opened.

The most commonly-used values of mode are 'r' for reading, 'w' for writing

(truncating the file if it already exists), and 'a' for appending.

 bufsize - This optional argument specifies the file's desired buffer size: 0 means

unbuffered, 1 means line buffered, any other positive value means use a buffer of

(approximately) that size.

Return Value

This method returns an open file object connected to the file descriptor.

Example

The following example shows the usage of fdopen() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Now get a file object for the above file.

fo = os.fdopen(fd, "w+")

Tell the current position

print ("Current I/O pointer position :%d" % fo.tell())

Write one string

fo.write("Python is a great language.\nYeah its great!!\n");

Python 3

267

Now read this file from the beginning.

os.lseek(fd, 0, 0)

str = os.read(fd, 100)

print ("Read String is : ", str)

Tell the current position

print "Current I/O pointer position :%d" % fo.tell()

Close opened file

fo.close()

print ("Closed the file successfully!!")

When we run the above program, it produces the following result-

Current I/O pointer position :0

Read String is : This is testPython is a great language.

Yeah its great!!

Current I/O pointer position :45

Closed the file successfully!!

os.fpathconf() Method

Description

The method fpathconf() returns system configuration information relevant to an open

file.This variable is very similar to unix system call fpathconf() and accept the similar

arguments.

Syntax

Following is the syntax for fpathconf() method-

os.fpathconf(fd, name)

Parameters

 fd - This is the file descriptor for which system configuration information is to be

returned.

 name - This specifies the configuration value to retrieve; it may be a string, which

is the name of a defined system value; these names are specified in a number of

Python 3

268

standards (POSIX.1, Unix 95, Unix 98, and others). The names known to the host

operating system are given in the os.pathconf_names dictionary.

Return Value

This method returns system configuration information relevant to an open file.

Example

The following example shows the usage of fpathconf() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

print ("%s" % os.pathconf_names)

Now get maximum number of links to the file.

no = os.fpathconf(fd, 'PC_LINK_MAX')

print ("Maximum number of links to the file. :%d" % no)

Now get maximum length of a filename

no = os.fpathconf(fd, 'PC_NAME_MAX')

print ("Maximum length of a filename :%d" % no)

Close opened file

os.close(fd)

print ("Closed the file successfully!!")

When we run the above program, it produces the following result-

{'PC_MAX_INPUT': 2, 'PC_VDISABLE': 8, 'PC_SYNC_IO': 9,

'PC_SOCK_MAXBUF': 12, 'PC_NAME_MAX': 3, 'PC_MAX_CANON': 1,

'PC_PRIO_IO': 11, 'PC_CHOWN_RESTRICTED': 6, 'PC_ASYNC_IO': 10,

'PC_NO_TRUNC': 7, 'PC_FILESIZEBITS': 13, 'PC_LINK_MAX': 0,

'PC_PIPE_BUF': 5, 'PC_PATH_MAX': 4}

Maximum number of links to the file. :127

Maximum length of a filename :255

Closed the file successfully!!

Python 3

269

os.fstat() Method

Description

The method fstat() returns information about a file associated with the fd. Here is the

structure returned by fstat method-

 st_dev: ID of device containing file

 st_ino: inode number

 st_mode: protection

 st_nlink: number of hard links

 st_uid: user ID of owner

 st_gid: group ID of owner

 st_rdev: device ID (if special file)

 st_size: total size, in bytes

 st_blksize: blocksize for filesystem I/O

 st_blocks: number of blocks allocated

 st_atime: time of last access

 st_mtime: time of last modification

 st_ctime: time of last status change

Syntax

Following is the syntax for fstat() method-

os.fstat(fd)

Parameters

fd - This is the file descriptor for which system information is to be returned.

Return Value

This method returns information about a file associated with the fd.

Example

The following example shows the usage of chdir() method.

#!/usr/bin/python3

Python 3

270

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Now get the touple

info = os.fstat(fd)

print ("File Info :", info)

Now get uid of the file

print ("UID of the file :%d" % info.st_uid)

Now get gid of the file

print ("GID of the file :%d" % info.st_gid)

Close opened file

os.close(fd)

When we run the above program, it produces the following result-

File Info : os.stat_result(st_mode=33206, st_ino=2533274790483933,

st_dev=1017554828, st_nlink=1, st_uid=0, st_gid=0, st_size=61,

st_atime=1455562034, st_mtime=1455561637, st_ctime=1455561164)

UID of the file :0

GID of the file :0

os.fstatvfs() Method

Description

The method fstatvfs() returns information about the file system containing the file

associated with file descriptor fd. This returns the following structure-

 f_bsize: file system block size

 f_frsize: fragment size

 f_blocks: size of fs in f_frsize units

 f_bfree: free blocks

 f_bavail: free blocks for non-root

 f_files: inodes

Python 3

271

 f_ffree: free inodes

 f_favail: free inodes for non-root

 f_fsid: file system ID

 f_flag: mount flags

 f_namemax: maximum filename length

Syntax

Following is the syntax for fstatvfs() method-

os.fstatvfs(fd)

Parameters

fd - This is the file descriptor for which system information is to be returned.

Return Value

This method returns information about the file system containing the file associated.

Example

The following example shows the usage of fstatvfs() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Now get the touple

info = os.fstatvfs(fd)

print ("File Info :", info)

Now get maximum filename length

print ("Maximum filename length :%d" % info.f_namemax:)

Now get free blocks

Python 3

272

print ("Free blocks :%d" % info.f_bfree)

Close opened file

os.close(fd)

When we run the above program, it produces the following result-

File Info : (4096, 4096, 2621440L, 1113266L, 1113266L,

 8929602L, 8764252L, 8764252L, 0, 255)

Maximum filename length :255

Free blocks :1113266

os.fsync() Method

Description

The method fsync() forces write of file with file descriptor fd to disk. If you're starting with

a Python file object f, first do f.flush(), and then do os.fsync(f.fileno()), to ensure that all

internal buffers associated with f are written to disk.

Syntax

Following is the syntax for fsync() method-

os.fsync(fd)

Parameters

fd - This is the file descriptor for buffer sync is required.

Return Value

This method does not return any value.

Example

The following example shows the usage of fsync() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Write one string

Python 3

273

line="this is test"

b=line.encode()

os.write(fd, b)

Now you can use fsync() method.

Infact here you would not be able to see its effect.

os.fsync(fd)

Now read this file from the beginning

os.lseek(fd, 0, 0)

line = os.read(fd, 100)

b=line.decode()

print ("Read String is : ", b)

Close opened file

os.close(fd)

print ("Closed the file successfully!!")

When we run the above program, it produces the following result-

Read String is : this is test

Closed the file successfully!!

os.ftruncate() Method

Description

The method ftruncate() truncates the file corresponding to file descriptor fd, so that it is

at most length bytes in size.

Syntax

Following is the syntax for ftruncate() method-

os.ftruncate(fd, length)

Parameters

 fd - This is the file descriptor, which needs to be truncated.

 length - This is the length of the file where file needs to be truncated.

Return Value

This method does not return any value. Available on Unix like systems.

Example

Python 3

274

The following example shows the usage of ftruncate() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Write one string

os.write(fd, "This is test - This is test")

Now you can use ftruncate() method.

os.ftruncate(fd, 10)

Now read this file from the beginning.

os.lseek(fd, 0, 0)

str = os.read(fd, 100)

print ("Read String is : ", str)

Close opened file

os.close(fd)

print ("Closed the file successfully!!")

When we run the above program, it produces the following result-

Read String is : This is te

Closed the file successfully!!

os.getcwd() Method

Description

The method getcwd() returns current working directory of a process.

Syntax

Following is the syntax for getcwd() method-

os.ggetcwd(path)

Parameters

NA

Python 3

275

Return Value

This method returns the current working directory of a process.

Example

The following example shows the usage of getcwd() method-

#!/usr/bin/python3

import os, sys

First go to the "/var/www/html" directory

os.chdir("/var/www/html")

Print current working directory

print ("Current working dir : %s" % os.getcwd())

Now open a directory "/tmp"

fd = os.open("/tmp", os.O_RDONLY)

Use os.fchdir() method to change the dir

os.fchdir(fd)

Print current working directory

print ("Current working dir : %s" % os.getcwd())

Close opened directory.

os.close(fd)

When we run the above program, it produces the following result-

Current working dir : /var/www/html

Current working dir : /tmp

os.getcwdu() Method

Description

The method getcwdu() returns a unicode object representing the current working

directory.

Syntax

Following is the syntax for getcwdu() method-

os.getcwdu()

Python 3

276

Parameters

NA

Return Value

This method returns a unicode object representing the current working directory.

Example

The following example shows the usage of getcwdu() method.

#!/usr/bin/python3

import os, sys

First go to the "/var/www/html" directory

os.chdir("/var/www/html")

Print current working directory

print ("Current working dir : %s" % os.getcwdu())

Now open a directory "/tmp"

fd = os.open("/tmp", os.O_RDONLY)

Use os.fchdir() method to change the dir

os.fchdir(fd)

Print current working directory

print ("Current working dir : %s" % os.getcwdu())

Close opened directory.

os.close(fd)

When we run the above program, it produces the following result-

Current working dir : /var/www/html

Current working dir : /tmp

os.isatty() Method

Description

Python 3

277

The method isatty()returns True if the file descriptor fd is open and connected to a tty(-

like) device, else False.

Syntax

Following is the syntax for isatty() method-

os.isatty(fd)

Parameters

fd - This is the file descriptor for which association needs to be checked.

Return Value

This method returns True if the file descriptor fd is open and connected to a tty(-like)

device, else False.

Example

The following example shows the usage of isatty() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Write one string

line="This is test"

b=line.encode()

os.write(fd, b)

Now use isatty() to check the file.

ret = os.isatty(fd)

print ("Returned value is: ", ret)

Close opened file

os.close(fd)

When we run the above program, it produces the following result-

Returned value is: False

Python 3

278

os.lchflags() Method

Description

The method lchflags() sets the flags of path to the numeric flags. This method does not

follow symbolic links unlike chflags() method. As of Python 3.3, this is equivalent to

os.chflags(path, flags, follow_symlinks=False).

Here, flags may take a combination (bitwise OR) of the following values (as defined in the

stat module):

 UF_NODUMP: Do not dump the file.

 UF_IMMUTABLE: The file may not be changed.

 UF_APPEND: The file may only be appended to.

 UF_NOUNLINK: The file may not be renamed or deleted.

 UF_OPAQUE: The directory is opaque when viewed through a union stack.

 SF_ARCHIVED: The file may be archived.

 SF_IMMUTABLE: The file may not be changed.

 SF_APPEND: The file may only be appended to.

 SF_NOUNLINK: The file may not be renamed or deleted.

 SF_SNAPSHOT: The file is a snapshot file.

Note: This method has been introduced in Python 2.6

Syntax

Following is the syntax for lchflags() method-

os.lchflags(path, flags)

Parameters

 path - This is the file path for which flags to be set.

 flags - This could be a combination (bitwise OR) of the above defined flags values.

Return Value

This method does not return any value. Available on Unix like systems.

Example

The following example shows the usage of lchflags() method.

Python 3

279

#!/usr/bin/python3

import os, sys

Open a file

path = "/var/www/html/foo.txt"

fd = os.open(path, os.O_RDWR|os.O_CREAT)

Close opened file

os.close(fd)

Now change the file flag.

ret = os.lchflags(path, os.UF_IMMUTABLE)

print ("Changed file flag successfully!!")

When we run the above program, it produces the following result-

Changed file flag successfully!!

os.lchown() Method

Description

The method lchown() changes the owner and group id of path to the numeric uid and gid.

This function will not follow symbolic links. To leave one of the ids unchanged, set it to -

1. As of Python 3.3, this is equivalent to os.chown(path, uid, gid, follow_symlinks=False).

Syntax

Following is the syntax for lchown() method-

os.lchown(path, uid, gid)

Parameters

 path - This is the file path for which ownership to be set.

 uid - This is the Owner ID to be set for the file.

 gid - This is the Group ID to be set for the file.

Python 3

280

Return Value

This method does not return any value.

Example

The following example shows the usage of lchown() method.

#!/usr/bin/python3

import os, sys

Open a file

path = "/var/www/html/foo.txt"

fd = os.open(path, os.O_RDWR|os.O_CREAT)

Close opened file

os.close(fd)

Now change the file ownership.

Set a file owner ID

os.lchown(path, 500, -1)

Set a file group ID

os.lchown(path, -1, 500)

print ("Changed ownership successfully!!")

When we run above program, it produces following result-

Changed ownership successfully!!

os.link() Method

Description

The method link() creates a hard link pointing to src named dst. This method is very useful

to create a copy of existing file.

Syntax

Following is the syntax for link() method-

os.link(src, dst)

Python 3

281

Parameters

 src - This is the source file path for which hard link would be created.

 dest - This is the target file path where hard link would be created.

Return Value

This method does not return any value. Available on Unix, Windows.

Example

The following example shows the usage of link() method.

#!/usr/bin/python3

import os, sys

Open a file

path = "d:\\python3\\foo.txt"

fd = os.open(path, os.O_RDWR|os.O_CREAT)

Close opened file

os.close(fd)

Now create another copy of the above file.

dst = "d:\\tmp\\foo.txt"

os.link(path, dst)

print ("Created hard link successfully!!")

When we run the above program, it produces the following result-

Created hard link successfully!!

os.listdir() Method

Description

The method listdir() returns a list containing the names of the entries in the directory

given by path. The list is in arbitrary order. It does not include the special entries '.' and

'..' even if they are present in the directory.

path may be either of type str or of type bytes. If path is of type bytes, the filenames

returned will also be of type bytes; in all other circumstances, they will be of type str.

Syntax

Python 3

282

Following is the syntax for listdir() method-

os.listdir(path)

Parameters

path - This is the directory, which needs to be explored.

Return Value

This method returns a list containing the names of the entries in the directory given by

path.

Example

The following example shows the usage of listdir() method.

#!/usr/bin/python3

import os, sys

Open a file

path = "d:\\tmp\\"

dirs = os.listdir(path)

This would print all the files and directories

for file in dirs:

 print (file)

When we run the above program, it produces the following result-

Applicationdocs.docx

test.java

book.zip

foo.txt

Java Multiple Inheritance.htm

Java Multiple Inheritance_files

java.ppt

ParallelPortViewer

os.lseek() Method

Description

The method lseek() sets the current position of file descriptor fd to the given position pos,

modified by how.

Python 3

283

Syntax

Following is the syntax for lseek() method-

os.lseek(fd, pos, how)

Parameters

 fd - This is the file descriptor, which needs to be processed.

 pos - This is the position in the file with respect to given parameter how. You give

os.SEEK_SET or 0 to set the position relative to the beginning of the file,

os.SEEK_CUR or 1 to set it relative to the current position; os.SEEK_END or 2 to

set it relative to the end of the file.

 how - This is the reference point with-in the file. os.SEEK_SET or 0 means

beginning of the file, os.SEEK_CUR or 1 means the current position and

os.SEEK_END or 2 means end of the file.

Defined pos constants

 os.SEEK_SET - 0

 os.SEEK_CUR - 1

 os.SEEK_END - 2

Return Value

This method does not return any value.

Example

The following example shows the usage of lseek() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Write one string

line="This is test"

b=line.encode()

os.write(fd, b)

Now you can use fsync() method.

Infact here you would not be able to see its effect.

os.fsync(fd)

Now read this file from the beginning

os.lseek(fd, 0, 0)

Python 3

284

line = os.read(fd, 100)

print ("Read String is : ", line.decode())

Close opened file

os.close(fd)

print "Closed the file successfully!!"

When we run the above program, it produces the following result-

Read String is : This is test

Closed the file successfully!!

os.lstat() Method

Description

The method lstat() is very similar to fstat() and returns a stat_result object containing the

information about a file, but do not follow symbolic links. This is an alias for fstat() on

platforms that do not support symbolic links, such as Windows.

Here is the structure returned by lstat method-

 st_dev: ID of device containing file

 st_ino: inode number

 st_mode: protection

 st_nlink: number of hard links

 st_uid: user ID of owner

 st_gid: group ID of owner

 st_rdev: device ID (if special file)

 st_size: total size, in bytes

 st_blksize: blocksize for filesystem I/O

 st_blocks: number of blocks allocated

 st_atime: time of last access

 st_mtime: time of last modification

 st_ctime: time of last status change

Python 3

285

Syntax

Following is the syntax for lstat() method:

os.lstat(path)

Parameters

path - This is the file for which information would be returned.

Return Value

This method returns the information about a file.

Example

The following example shows the usage of lstat() method.

#!/usr/bin/python3

import os, sys

Open a file

path = "d:\\python3\\foo.txt"

fd = os.open(path, os.O_RDWR|os.O_CREAT)

Close opened file

os.close(fd)

Now get the touple

info = os.lstat(path)

print ("File Info :", info)

Now get uid of the file

print ("UID of the file :%d" % info.st_uid)

Now get gid of the file

print ("GID of the file :%d" % info.st_gid)

When we run the above program, it produces the following result-

File Info : os.stat_result(st_mode=33206, st_ino=281474976797706,

st_dev=1017554828, st_nlink=2, st_uid=0, st_gid=0, st_size=13,

st_atime=1455597777, st_mtime=1438077266, st_ctime=1455560006)

UID of the file :0

GID of the file :0

Python 3

286

os.major() Method

Description

The method major() extracts the device major number from a raw device number (usually

the st_dev or st_rdev field from stat).

Syntax

Following is the syntax for major() method-

os.major(device)

Parameters

device - This is a raw device number (usually the st_dev or st_rdev field from stat).

Return Value

This method returns the device major number.

Example

The following example shows the usage of major() method.

#!/usr/bin/python3

import os, sys

path = "/var/www/html/foo.txt"

Now get the touple

info = os.lstat(path)

Get major and minor device number

major_dnum = os.major(info.st_dev)

minor_dnum = os.minor(info.st_dev)

print ("Major Device Number :", major_dnum)

print ("Minor Device Number :", minor_dnum)

When we run the above program, it produces the following result-

Major Device Number : 0

Minor Device Number : 103

os.makedev() Method

Description

Python 3

287

The method makedev() composes a raw device number from the major and minor device

numbers.

Syntax

Following is the syntax for makedev() method-

os.makedev(major, minor)

Parameters

 major - This is Major device number.

 minor - This is Minor device number.

Return Value

This method returns the device number.

Example

The following example shows the usage of makedev() method.

#!/usr/bin/python3

import os, sys

path = "/var/www/html/foo.txt"

Now get the touple

info = os.lstat(path)

Get major and minor device number

major_dnum = os.major(info.st_dev)

minor_dnum = os.minor(info.st_dev)

print ("Major Device Number :", major_dnum)

print ("Minor Device Number :", minor_dnum)

Make a device number

dev_num = os.makedev(major_dnum, minor_dnum)

print ("Device Number :", dev_num)

When we run the above program, it produces the following result-

Major Device Number : 0

Minor Device Number : 103

Device Number : 103

Python 3

288

os.makedirs() Method

Description

The method makedirs() is recursive directory creation function. Like mkdir(), but makes

all intermediate-level directories needed to contain the leaf directory.

The default mode is 0o777 (octal). On some systems, mode is ignored. Where it is used,

the current umask value is first masked out.

If exist_ok is False (the default), an OSError is raised if the target directory already exists.

Syntax

Following is the syntax for makedirs() method-

os.makedirs(path[, mode])

Parameters

 path - This is the path, which needs to be created recursively.

 mode - This is the Mode of the directories to be given.

Return Value

This method does not return any value.

Example

The following example shows the usage of makedirs() method.

#!/usr/bin/python3

import os, sys

Path to be created

path = "d:/tmp/home/monthly/daily"

os.makedirs(path, 493) #decimal equivalent of 0755 used on Windows

print ("Path is created")

When we run the above program, it produces the following result-

Path is created

os.minor() Method

Description

The method minor() extracts the device minor number from a raw device number (usually

the st_dev or st_rdev field from stat).

Python 3

289

Syntax

Following is the syntax for minor() method-

os.minor(device)

Parameters

device - This is a raw device number (usually the st_dev or st_rdev field from stat).

Return Value

This method returns the device minor number.

Example

The following example shows the usage of minor() method.

#!/usr/bin/python3

import os, sys

path = "/var/www/html/foo.txt"

Now get the touple

info = os.lstat(path)

Get major and minor device number

major_dnum = os.major(info.st_dev)

minor_dnum = os.minor(info.st_dev)

print ("Major Device Number :", major_dnum)

print ("Minor Device Number :", minor_dnum)

When we run the above program, it produces the following result-

Major Device Number : 0

Minor Device Number : 103

os.mkdir() Method

Description

The method mkdir() create a directory named path with numeric mode mode. The default

mode is 0777 (octal). On some systems, mode is ignored. Where it is used, the current

umask value is first masked out.

Python 3

290

Syntax

Following is the syntax for mkdir() method-

os.mkdir(path[, mode])

Parameters

 path - This is the path, which needs to be created.

 mode - This is the mode of the directories to be given.

Return Value

This method does not return any value.

Example

The following example shows the usage of mkdir() method.

#!/usr/bin/python3

import os, sys

Path to be created

path = "/tmp/home/monthly/daily/hourly"

os.mkdir(path, 0755);

print "Path is created"

When we run the above program, it produces the following result-

Path is created

os.mkfifo() Method

Description

The method mkfifo() create a FIFO named path with numeric mode. The default mode is

0666 (octal).The current umask value is first masked out.

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted

Syntax

Following is the syntax for mkfifo() method-

os.mkfifo(path[, mode])

Python 3

291

Parameters

 path - This is the path, which needs to be created.

 mode - This is the mode of the named path to be given.

Return Value

This method does not return any value.

Example

The following example shows the usage of mkfifo() method.

!/usr/bin/python3

import os, sys

Path to be created

path = "/tmp/hourly"

os.mkfifo(path, 0644)

print ("Path is created")

When we run the above program, it produces the following result-

Path is created

os.mknod() Method

Description

The method mknod() creates a filesystem node (file, device special file or named pipe)

named filename.

Syntax

Following is the syntax for mknod() method-

os.mknod(filename[, mode=0600[, device=0]])

Parameters

 filename - This is the filesystem node to be created.

 mode - The mode specifies both the permissions to use and the type of node to be

created combined (bitwise OR) with one of the values stat.S_IFREG, stat.S_IFCHR,

stat.S_IFBLK, and stat.S_IFIFO. They can be ORed base don requirement.

 device - This is the device special file created and its optional to provide.

Python 3

292

Return Value

This method does not return any value. Available on Unix like systems.

Example

The following example shows the usage of mknod() method.

!/usr/bin/python3

import os

import stat

filename = '/tmp/tmpfile'

mode = 0600|stat.S_IRUSR

filesystem node specified with different modes

os.mknod(filename, mode)

Let us compile and run the above program, this will create a simple file in /tmp directory

with a name tmpfile:

-rw-------. 1 root root 0 Apr 30 02:38 tmpfile

os.open() Method

Description

The method open() opens the file file and set various flags according to flags and possibly

its mode according to mode.The default mode is 0777 (octal), and the current umask value

is first masked out.

Syntax

Following is the syntax for open() method:

os.open(file, flags[, mode]);

Parameters

 file - File name to be opened.

 flags - The following constants are options for the flags. They can be combined

using the bitwise OR operator |. Some of them are not available on all platforms.

o os.O_RDONLY: open for reading only

o os.O_WRONLY: open for writing only

o os.O_RDWR : open for reading and writing

o os.O_NONBLOCK: do not block on open

Python 3

293

o os.O_APPEND: append on each write

o os.O_CREAT: create file if it does not exist

o os.O_TRUNC: truncate size to 0

o os.O_EXCL: error if create and file exists

o os.O_SHLOCK: atomically obtain a shared lock

o os.O_EXLOCK: atomically obtain an exclusive lock

o os.O_DIRECT: eliminate or reduce cache effects

o os.O_FSYNC : synchronous writes

o os.O_NOFOLLOW: do not follow symlinks

 mode - This work in similar way as it works for chmod() method.

Return Value

This method returns the file descriptor for the newly opened file.

Example

The following example shows the usage of open() method.

#!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt", os.O_RDWR|os.O_CREAT)

Write one string

line="this is test"

string needs to be converted byte object

b=str.encode(line)

os.write(fd, b)

Close opened file

os.close(fd)

print ("Closed the file successfully!!")

This would create given file foo.txt and then would write given content in that file and

would produce the following result-

Closed the file successfully!!

os.openpty() Method

Description

Python 3

294

The method openpty() opens a pseudo-terminal pair and returns a pair of file

descriptors(master,slave) for the pty & the tty respectively.

The new file descriptors are non-inheritable. For a (slightly) more portable approach, use

the pty module.

Syntax

Following is the syntax for openpty() method-

os.openpty()

Parameters

NA

Return Value

This method returns a pair of file descriptors i.e., master and slave.

Example

The following example shows the usage of openpty() method.

!/usr/bin/python3

import os

master for pty, slave for tty

m,s = os.openpty()

print (m)

print (s)

showing terminal name

s = os.ttyname(s)

print (m)

print(s)

When we run the above program, it produces the following result-

3

4

3

/dev/pty0

os.pathconf() Method

Description

Python 3

295

The method pathconf() returns system configuration information relevant to a named file.

Syntax

Following is the syntax for pathconf() method-

os.pathconf(path, name)

Parameters

 path - This is the file path.

 name - This specifies the configuration value to retrieve; it may be a string which

is the name of a defined system value; these names are specified in a number of

standards (POSIX.1, Unix 95, Unix 98, and others). The names known to the host

operating system are given in the os.pathconf_names dictionary.

Return Value

This method returns system configuration information of a file. Available on Unix like

systems.

Example

The following example shows the usage of pathconf() method.

#!/usr/bin/python3

import os, sys

print ("%s" % os.pathconf_names)

Retrieve maximum length of a filename

no = os.pathconf('a2.py', 'PC_NAME_MAX')

print ("Maximum length of a filename :%d" % no)

Retrieve file size

no = os.pathconf('a2.py', 'PC_FILESIZEBITS')

print ("file size in bits :%d" % no)

When we run the above program, it produces the following result-

{'PC_MAX_INPUT': 2, 'PC_VDISABLE': 8, 'PC_SYNC_IO': 9,

'PC_SOCK_MAXBUF': 12, 'PC_NAME_MAX': 3, 'PC_MAX_CANON': 1,

'PC_PRIO_IO': 11, 'PC_CHOWN_RESTRICTED': 6, 'PC_ASYNC_IO': 10,

'PC_NO_TRUNC': 7, 'PC_FILESIZEBITS': 13, 'PC_LINK_MAX': 0,

'PC_PIPE_BUF': 5, 'PC_PATH_MAX': 4}

 Maximum length of a filename :255

Python 3

296

 file size in bits : 64

os.pipe() Method

Description

The method pipe() creates a pipe and returns a pair of file descriptors (r, w) usable for

reading and writing, respectively

Syntax

Following is the syntax for pipe() method-

os.pipe()

Parameters

NA

Return Value

This method returns a pair of file descriptors.

Example

The following example shows the usage of pipe() method.

#!/usr/bin/python3

import os, sys

print ("The child will write text to a pipe and ")

print ("the parent will read the text written by child...")

file descriptors r, w for reading and writing

r, w = os.pipe()

processid = os.fork()

if processid:

 # This is the parent process

 # Closes file descriptor w

 os.close(w)

 r = os.fdopen(r)

 print ("Parent reading")

Python 3

297

 str = r.read()

 print ("text =", str)

 sys.exit(0)

else:

 # This is the child process

 os.close(r)

 w = os.fdopen(w, 'w')

 print ("Child writing")

 w.write("Text written by child...")

 w.close()

 print ("Child closing")

 sys.exit(0)

When we run the above program, it produces the following result-

The child will write text to a pipe and

the parent will read the text written by child...

Parent reading

Child writing

Child closing

text = Text written by child...

os.popen() Method

Description

The method popen() opens a pipe to or from command.The return value is an open file

object connected to the pipe, which can be read or written depending on whether mode is

'r' (default) or 'w'.The bufsize argument has the same meaning as in open() function.

Syntax

Following is the syntax for popen() method-

os.popen(command[, mode[, bufsize]])

Parameters

 command - This is command used.

 mode - This is the Mode can be 'r'(default) or 'w'.

Python 3

298

 bufsize - If the buffering value is set to 0, no buffering will take place. If the

buffering value is 1, line buffering will be performed while accessing a file. If you

specify the buffering value as an integer greater than 1, then buffering action will

be performed with the indicated buffer size. If negative, the buffer size is the

system default(default behavior).

Return Value

This method returns an open file object connected to the pipe.

Example

The following example shows the usage of popen() method.

!/usr/bin/python3

import os, sys

using command mkdir

a = 'mkdir nwdir'

b = os.popen(a,'r',1)

print b

When we run the above program, it produces the following result-

open file 'mkdir nwdir', mode 'r' at 0x81614d0

os.read() Method

Description

The method read() reads at most n bytes from file desciptor fd, return a string containing

the bytes read. If the end of file referred to by fd has been reached, an empty string is

returned.

Note: This function is intended for low-level I/O and must be applied to a file descriptor

as returned by os.open() or pipe(). To read a “file object” returned by the built-in function

open() or by popen() or fdopen(), or sys.stdin, use its read() or readline() methods.

Syntax

Following is the syntax for read() method-

os.read(fd,n)

Parameters

 fd - This is the file descriptor of the file.

 n - These are n bytes from file descriptor fd.

Python 3

299

Return Value

This method returns a string containing the bytes read.

Example

The following example shows the usage of read() method.

!/usr/bin/python3

import os, sys

Open a file

fd = os.open("foo.txt",os.O_RDWR)

Reading text

ret = os.read(fd,12)

print (ret.decode())

Close opened file

os.close(fd)

print ("Closed the file successfully!!")

Let us compile and run the above program, this will print the contents of file foo.txt-

This is test

Closed the file successfully!!

os.readlink() Method

Description

The method readlink() returns a string representing the path to which the symbolic link

points. It may return an absolute or relative pathname.

Syntax

Following is the syntax for readlink() method-

os.readlink(path)

Parameters

path - This is the path or symblic link for which we are going to find source of the link.

Return Value

This method return a string representing the path to which the symbolic link points.

Example

Python 3

300

The following example shows the usage of readlink() method.

!/usr/bin/python3

import os

src = 'd://tmp//python3'

dst = 'd://tmp//python2'

This creates a symbolic link on python in tmp directory

os.symlink(src, dst)

Now let us use readlink to display the source of the link.

path = os.readlink(dst)

print (path)

Let us compile and run the above program. This will create a symblic link to

d:\tmp\python3 and later it will read the source of the symbolic link using readlink() call.

This is an example on Windows platform and needs administrator privilege to run. Before

running this program make sure you do not have d:\tmp\python2 already available.

d:\tmp\python2

os.remove() Method

Description

The method remove() removes the file path. If the path is a directory, OSError is raised.

Syntax

Following is the syntax for remove() method-

os.remove(path)

Parameters

path - This is the path, which is to be removed.

Return Value

This method does not return any value.

Example

The following example shows the usage of remove() method.

!/usr/bin/python3

import os, sys

os.chdir("d:\\tmp")

Python 3

301

listing directories

print ("The dir is: %s" %os.listdir(os.getcwd()))

removing

os.remove("test.java")

listing directories after removing path

print ("The dir after removal of path : %s" %os.listdir(os.getcwd()))

When we run above program, it produces following result-

The dir is: ['Applicationdocs.docx', 'book.zip', 'foo.txt', 'home', 'Java

Multiple Inheritance.htm', 'Java Multiple Inheritance_files', 'java.ppt',

'ParallelPortViewer', 'test.java']

The dir after removal of path : ['Applicationdocs.docx', 'book.zip', 'foo.txt',

'home', 'Java Multiple Inheritance.htm', 'Java Multiple Inheritance_files',

'java.ppt', 'ParallelPortViewer']

os.removedirs() Method

Description

The method removedirs() removes dirs recursively. If the leaf directory is succesfully

removed, removedirs tries to successively remove every parent directory displayed in

path. Raises OSError if the leaf directory could not be successfully removed.

Syntax

Following is the syntax for removedirs() method-

os.removedirs(path)

Parameters

path - This is the path of the directory, which needs to be removed.

Return Value

This method does not return any value.

Example

The following example shows the usage of removedirs() method.

!/usr/bin/python3

import os, sys

Python 3

302

os.chdir("d:\\tmp")

listing directories

print ("The dir is: %s" %os.listdir(os.getcwd()))

removing

os.removedirs("home\\monthly\\daily")

listing directories after removing directory

print ("The dir after removal is:" %os.listdir(os.getcwd()))

When we run the above program, it produces the following result-

The dir is: ['Applicationdocs.docx', 'book.zip', 'foo.txt', 'home', 'Java

Multiple Inheritance.htm', 'Java Multiple Inheritance_files', 'java.ppt',

'ParallelPortViewer']

The dir after removal is:

['Applicationdocs.docx', 'book.zip', 'foo.txt', 'Java Multiple Inheritance.htm',

'Java Multiple Inheritance_files', 'java.ppt', 'ParallelPortViewer']

os.rename() Method

Description

The method rename() renames the file or directory src to dst. If dst is a file or

directory(already present), OSError will be raised.

Syntax

Following is the syntax for rename() method-

os.rename(src, dst)

Parameters

 src - This is the actual name of the file or directory.

 dst - This is the new name of the file or directory.

Return Value

This method does not return any value.

Example

The following example shows the usage of rename() method.

!/usr/bin/python3

import os, sys

Python 3

303

os.chdir("d:\\tmp")

listing directories

print ("The dir is: %s"%os.listdir(os.getcwd()))

renaming directory ''tutorialsdir"

os.rename("python3","python2")

print ("Successfully renamed.")

listing directories after renaming "python3"

print ("the dir is: %s" %os.listdir(os.getcwd()))

When we run the above program, it produces the following result-

The dir is: ['Applicationdocs.docx', 'book.zip', 'foo.txt', 'Java Multiple

Inheritance.htm', 'Java Multiple Inheritance_files', 'java.ppt', 'Python3']

Successfully renamed.

the dir is: ['Applicationdocs.docx', 'book.zip', 'foo.txt', 'Java Multiple

Inheritance.htm', 'Java Multiple Inheritance_files', 'java.ppt', 'python2']

os.renames() Method

Description

The method renames() is recursive directory or file renaming function. It does the same

functioning as os.rename(), but it also moves a file to a directory, or a whole tree of

directories, that do not exist.

Syntax

Following is the syntax for renames() method:

os.renames(old, new)

Parameters

 old - This is the actual name of the file or directory to be renamed.

 new - This is the new name of the file or directory. It can even include a file to a

directory, or a whole tree of directories, that do not exist.

Return Value

This method does not return any value.

Example

The following example shows the usage of renames() method.

Python 3

304

!/usr/bin/python3

import os, sys

os.chdir("d:\\tmp")

print ("Current directory is: %s" %os.getcwd())

listing directories

print ("The dir is: %s"%os.listdir(os.getcwd()))

renaming file "aa1.txt"

os.renames("foo.txt","newdir/foonew.txt")

print ("Successfully renamed.")

listing directories after renaming and moving "foo.txt"

print ("The dir is: %s" %os.listdir(os.getcwd()))

os.chdir("newdir")

print ("The dir is: %s" %os.listdir(os.getcwd()))

When we run the above program, it produces the following result-

Current directory is: d:\tmp

The dir is: ['Applicationdocs.docx', 'book.zip', 'foo.txt', 'Java Multiple

Inheritance.htm', 'Java Multiple Inheritance_files', 'java.ppt', 'python2']

Successfully renamed.

The dir is: ['Applicationdocs.docx', 'book.zip', 'Java Multiple Inheritance.htm',

'Java Multiple Inheritance_files', 'java.ppt', 'newdir', 'python2']

The file foo.txt is not visible here, as it is been moved to newdir and renamed

as foonew.txt. The directory newdir and its contents are shown below:

The dir is: ['foonew.txt']

os.renames() Method

Description

The method renames() is recursive directory or file renaming function. It does the same

functioning as os.rename(), but it also moves a file to a directory, or a whole tree of

directories, that do not exist.

Syntax

Following is the syntax for renames() method-

os.renames(old, new)

Parameters

 old - This is the actual name of the file or directory to be renamed.

Python 3

305

 new - This is the new name of the file or directory.It can even include a file to a

directory, or a whole tree of directories, that do not exist.

Return Value

This method does not return any value.

Example

The following example shows the usage of renames() method.

!/usr/bin/python3

import os, sys

os.chdir("d:\\tmp")

print ("Current directory is: %s" %os.getcwd())

listing directories

print ("The dir is: %s"%os.listdir(os.getcwd()))

renaming file "aa1.txt"

os.renames("foo.txt","newdir/foonew.txt")

print ("Successfully renamed.")

listing directories after renaming and moving "foo.txt"

print ("The dir is: %s" %os.listdir(os.getcwd()))

os.chdir("newdir")

print ("The dir is: %s" %os.listdir(os.getcwd()))

When we run the above program, it produces the following result-

Current directory is: d:\tmp

The dir is: ['Applicationdocs.docx', 'book.zip', 'foo.txt', 'Java Multiple

Inheritance.htm', 'Java Multiple Inheritance_files', 'java.ppt', 'python2']

Successfully renamed.

The dir is: ['Applicationdocs.docx', 'book.zip', 'Java Multiple Inheritance.htm',

'Java Multiple Inheritance_files', 'java.ppt', 'newdir', 'python2']

The file foo.txt is not visible here, as it is been moved to newdir and renamed

as foonew.txt. The directory newdir and its contents are shown below:

The dir is: ['foonew.txt']

os.rmdir() Method

Description

Python 3

306

The method rmdir() removes the directory path. It works only when the directory is

empty, else OSError is raised.

Syntax

Following is the syntax for rmdir() method-

os.rmdir(path)

Parameters

path - This is the path of the directory, which needs to be removed.

Return Value

This method does not return any value.

Example

The following example shows the usage of rmdir() method.

!/usr/bin/python3

import os, sys

os.chdir("d:\\tmp")

listing directories

print ("the dir is: %s" %os.listdir(os.getcwd()))

removing path

os.rmdir("newdir")

listing directories after removing directory path

print ("the dir is:" %os.listdir(os.getcwd()))

When we run the above program, it produces the following result-

the dir is: ['Applicationdocs.docx', 'book.zip', 'Java Multiple Inheritance.htm',

'Java Multiple Inheritance_files', 'java.ppt', 'newdir', 'python2']

Traceback (most recent call last):

 File "test.py", line 8, in

 os.rmdir("newdir")

OSError: [WinError 145] The directory is not empty: 'newdir'

The error is coming as 'newdir' directory is not empty. If 'newdir' is an empty

directory, then this would produce following result:

Python 3

307

the dir is: ['Applicationdocs.docx', 'book.zip', 'Java Multiple Inheritance.htm',

'Java Multiple Inheritance_files', 'java.ppt', 'newdir', 'python2']

the dir is: ['Applicationdocs.docx', 'book.zip', 'Java Multiple Inheritance.htm',

'Java Multiple Inheritance_files', 'java.ppt', 'python2']

os.stat() Method

Description

The method stat() performs a stat system call on the given path.

Syntax

Following is the syntax for stat() method-

os.stat(path)

Parameters

path - This is the path, whose stat information is required.

Return Value

Here is the list of members of stat structure-

 st_mode: protection bits.

 st_ino: inode number.

 st_dev: device.

 st_nlink: number of hard links.

 st_uid: user id of owner.

 st_gid: group id of owner.

 st_size: size of file, in bytes.

 st_atime: time of most recent access.

 st_mtime: time of most recent content modification.

 st_ctime: time of most recent metadata change.

Example

The following example shows the usage of stat() method.

!/usr/bin/python3

import os, sys

showing stat information of file "foo.txt"

statinfo = os.stat('foo.txt')

Python 3

308

print (statinfo)

When we run the above program, it produces the following result-

os.stat_result(st_mode=33206, st_ino=281474976797706, st_dev=1017554828,

st_nlink=1, st_uid=0, st_gid=0, st_size=13, st_atime=1455649253,

st_mtime=1438077266, st_ctime=1455560006)

os.stat_float_times() Method

Description

The method stat_float_times() determines whether stat_result represents time stamps as

float objects.

Syntax

Following is the syntax for stat_float_times() method-

os.stat_float_times([newvalue])

Parameters

newvalue - If newvalue is True, future calls to stat() return floats, if it is False, future call

on stat returns ints. If newvalue is not mentioned, it returns the current settings.

Return Value

This method returns either True or False.

Example

The following example shows the usage of stat_float_times() method.

#!/usr/bin/python3

import os, sys

Stat information

statinfo = os.stat('a2.py')

print (statinfo)

statinfo = os.stat_float_times()

print (statinfo)

When we run the above program, it produces the following result-

Python 3

309

os.stat_result(st_mode=33206, st_ino=562949953508433, st_dev=1017554828,

st_nlink=1, st_uid=0, st_gid=0, st_size=27, st_atime=1455597032,

st_mtime=1455597032, st_ctime=1455562995)

True

os.statvfs() Method

Description

The method statvfs() perform a statvfs system call on the given path.

Syntax

Following is the syntax for statvfs() method-

os.statvfs(path)

Parameters

path - This is the path, whose statvfs information is required.

Return Value

Here is the list of members of statvfs structure-

 f_bsize: preferred file system block size.

 f_frsize: fundamental file system block size.

 f_blocks: total number of blocks in the filesystem.

 f_bfree: total number of free blocks.

 f_bavail: free blocks available to non-super user.

 f_files: total number of file nodes.

 f_ffree: total number of free file nodes.

 f_favail: free nodes available to non-super user.

 f_flag: system dependent.

 f_namemax: maximum file name length.

Example

The following example shows the usage of statvfs() method. Availabe on Unix like

systems-

!/usr/bin/python3

import os, sys

showing statvfs information of file "a1.py"

stinfo = os.statvfs('a1.py')

Python 3

310

print (stinfo)

When we run the above program, it produces the following result-

posix.statvfs_result(f_bsize=4096, f_frsize=4096, f_blocks=1909350L,

f_bfree=1491513L,

f_bavail=1394521L, f_files=971520L, f_ffree=883302L, f_fvail=883302L, f_flag=0,

f_namemax=255)

os.symlink() Method

Description

The method symlink() creates a symbolic link dst pointing to src.

Syntax

Following is the syntax for symlink() method-

os.symlink(src, dst)

Parameters

 src - This is the source.

 dest - This is the destination, which did not exist previously.

Return Value

This method does not return any value.

Example

The following example shows the usage of symlink() method-

#!/usr/bin/python3

import os

src = '/usr/bin/python3'

dst = '/tmp/python'

This creates a symbolic link on python in tmp directory

os.symlink(src, dst)

print "symlink created"

Let us compile and run the above program, this will create a symbolic link in /tmp directory

which will be as follows-

Python 3

311

lrwxrwxrwx. 1 root root 15 Apr 30 03:00 python -> /usr/bin/python3

os.tcgetpgrp() Method

Description

The method tcgetpgrp() returns the process group associated with the terminal given by

fd (an open file descriptor as returned by os.open())

Syntax

Following is the syntax for tcgetpgrp() method-

os.tcgetpgrp(fd)

Parameters

fd - This is the file descriptor.

Return Value

This method returns the process group.

Example

The following example shows the usage of tcgetpgrp() method-

!/usr/bin/python3

import os, sys

Showing current directory

print ("Current working dir :%s" %os.getcwd())

Changing dir to /dev/tty

fd = os.open("/dev/tty",os.O_RDONLY)

f = os.tcgetpgrp(fd)

Showing the process group

print ("the process group associated is: ")

print (f)

os.close(fd)

print ("Closed the file successfully!!")

When we run the above program, it produces the following result-

Current working dir is :/tmp

the process group associated is:

Python 3

312

2670

Closed the file successfully!!

os.tcsetpgrp() Method

Description

The method tcsetpgrp() sets the process group associated with the terminal given by fd

(an open file descriptor as returned by os.open()) to pg.

Syntax

Following is the syntax for tcsetpgrp() method-

os.tcsetpgrp(fd, pg)

Parameters

 fd - This is the file descriptor.

 pg - This set the process group to pg.

Return Value

This method does not return any value.

Example

The following example shows the usage of tcsetpgrp() method.

!/usr/bin/python3

import os, sys

Showing current directory

print ("Current working dir :%s" %os.getcwd())

Changing dir to /dev/tty

fd = os.open("/dev/tty",os.O_RDONLY)

f = os.tcgetpgrp(fd)

Showing the process group

print ("the process group associated is: ")

print (f)

Python 3

313

Setting the process group

os.tcsetpgrp(fd,2672)

print ("done")

os.close(fd)

print "Closed the file successfully!!"

When we run the above program, it produces the following result-

Current working dir is :/tmp

the process group associated is:

2672

done

Closed the file successfully!!

os.tempnam() Method

Description

The method tempnam() returns a unique path name that is reasonable for creating a

temporary file.

Syntax

Following is the syntax for tempnam() method-

os.tempnam(dir, prefix)

Parameters

 dir - This is the dir where the temporary filename will be created.

 prefix - This is the prefix of the generated temporary filename.

Return Value

This method returns a unique path.

Example

The following example shows the usage of tempnam() method.

!/usr/bin/python3

import os, sys

prefix is tuts1 of the generated file

tmpfn = os.tempnam('/tmp/tutorialsdir,'tuts1')

Python 3

314

print "This is the unique path:"

print tmpfn

When we run the above program, it produces the following result-

This is the unique path:

/tmp/tutorialsdir/tuts1IbAco8

os.tmpfile() Method

Description

The method tmpfile() returns a new temporary file object opened in update mode (w+b).

The file has no directory entries associated with it and will be deleted automatically once

there are no file descriptors.

Syntax

Following is the syntax for tmpfile() method-

os.tmpfile

Parameters

NA

Return Value

This method returns a new temporary file object.

Example

The following example shows the usage of tmpfile() method.

!/usr/bin/python3

import os

The file has no directory entries associated with it and will be

deleted automatically once there are no file descriptors.

tmpfile = os.tmpfile()

tmpfile.write('Temporary newfile is here.....')

tmpfile.seek(0)

print tmpfile.read()

Python 3

315

tmpfile.close

When we run the above program, it produces the following result-

Temporary newfile is here.....

os.tmpnam() Method

Description

The method tmpnam() returns a unique path name that is reasonable for creating a

temporary file.

Syntax

Following is the syntax for tmpnam() method-

os.tmpnam()

Parameters

NA

Return Value

This method returns a unique path name.

Example

The following example shows the usage of tmpnam() method.

!/usr/bin/python3

import os, sys

Temporary file generated in current directory

tmpfn = os.tmpnam()

print "This is the unique path:"

print tmpfn

When we run the above program, it produces the following result-

This is the unique path:

/tmp/fileUFojpd

os.ttyname() Method

Description

Python 3

316

The method ttyname() returns a string, which specifies the terminal device associated

with fd. If fd is not associated with a terminal device, an exception is raised.

Syntax

Following is the syntax for ttyname() method-

os.ttyname(fd)

Parameters

fd - This is the file descriptor.

Return Value

This method returns a string which specifies the terminal device. Available on Unix like

Systems.

Example

The following example shows the usage of ttyname() method.

!/usr/bin/python33

import os, sys

Showing current directory

print ("Current working dir :%s" %os.getcwd())

Changing dir to /dev/tty

fd = os.open("/dev/tty",os.O_RDONLY)

p = os.ttyname(fd)

print ("the terminal device associated is: ")

print p

print ("done!!")

os.close(fd)

print ("Closed the file successfully!!")

When we run the above program, it produces the following result-

Current working dir is :/tmp

the terminal device associated is:

/dev/tty

Python 3

317

done!!

Closed the file successfully!!

os.unlink() Method

Description

The method unlink() removes (deletes) the file path. If the path is a directory, OSError

is raised. This function is identical to the remove() mehod; the unlink name is its traditional

Unix name.

Syntax

Following is the syntax for unlink() method-

os.unlink(path)

Parameters

path - This is the path, which is to be removed.

Return Value

This method does not return any value.

Example

The following example shows the usage of unlink() method.

!/usr/bin/python3

import os, sys

os.chdir("d:\\tmp")

listing directories

print ("The dir is: %s" %os.listdir(os.getcwd()))

os.unlink("foo.txt")

listing directories after removing path

print ("The dir after removal of path : %s" %os.listdir(os.getcwd()))

When we run the above program, it produces the following result-

The dir is: ['Applicationdocs.docx', 'book.zip', 'foo.txt', 'Java Multiple

Inheritance.htm', 'Java Multiple Inheritance_files', 'java.ppt', 'python2']

The dir after removal of path : ['Applicationdocs.docx', 'book.zip', 'Java

Multiple Inheritance.htm', 'Java Multiple Inheritance_files', 'java.ppt',

'python2']

Python 3

318

os.utime() Method

Description

The method utime() sets the access and modified times of the file specified by path.

Syntax

Following is the syntax for utime() method-

os.utime(path, times)

Parameters

 path - This is the path of the file.

 times - This is the file access and modified time. If times is none, then the file

access and modified times are set to the current time. The parameter times consists

of row in the form of (atime, mtime) i.e (accesstime, modifiedtime).

Return Value

This method does not return any value.

Example

The following example shows the usage of utime() method.

!/usr/bin/python3

import os, sys, time

os.chdir("d:\\tmp")

Showing stat information of file

stinfo = os.stat('foo.txt')

print (stinfo)

Using os.stat to recieve atime and mtime of file

print ("access time of foo.txt: %s" %stinfo.st_atime)

print ("modified time of foo.txt: %s" %stinfo.st_mtime)

print (time.asctime(time.localtime(stinfo.st_atime)))

Modifying atime and mtime

os.utime("foo.txt",(1330712280, 1330712292))

print ("after modification")

print (time.asctime(time.localtime(stinfo.st_atime)))

print ("done!!")

When we run the above program, it produces the following result-

Python 3

319

os.stat_result(st_mode=33206, st_ino=1688849860351098, st_dev=1017554828,

st_nlink=1, st_uid=0, st_gid=0, st_size=0, st_atime=1455684273,

st_mtime=1455684273, st_ctime=1455683589)

access time of foo.txt: 1455684273.84375

modified time of foo.txt: 1455684273.84375

Wed Feb 17 10:14:33 2016

after modification

Fri Mar 2 23:48:00 2012

done!!

os.walk() Method

Description

The method walk() generates the file names in a directory tree by walking the tree either

top-down or bottom-up.

Syntax

Following is the syntax for the walk() method-

os.walk(top[, topdown=True[, onerror=None[, followlinks=False]]])

Parameters

 top - Each directory rooted at directory, yields 3-tuples, i.e., (dirpath, dirnames,

filenames)

 topdown - If optional argument topdown is True or not specified, directories are

scanned from top-down. If topdown is set to False, directories are scanned from

bottom-up.

 onerror - This can show error to continue with the walk, or raise the exception to

abort the walk.

 followlinks - This visits directories pointed to by symlinks, if set to true.

Return Value

This method does not return any value.

Example

The following example shows the usage of walk() method.

!/usr/bin/python3

import os

Python 3

320

os.chdir("d:\\tmp")

for root, dirs, files in os.walk(".", topdown=False):

 for name in files:

 print(os.path.join(root, name))

 for name in dirs:

 print(os.path.join(root, name))

Let us compile and run the above program. This will scan all the directories and

subdirectories bottom-to-up.

.\python2\testdir\Readme_files\Lpt_Port_Config.gif

.\python2\testdir\Readme_files\ParallelPortViever.gif

.\python2\testdir\Readme_files\softcollection.css

.\python2\testdir\Readme_files\Thumbs.db

.\python2\testdir\Readme_files\Yellov_Ball.gif

.\python2\testdir\Readme.htm

.\python2\testdir\Readme_files

.\python2\testdir

.\Applicationdocs.docx

.\book.zip

.\foo.txt

.\java.ppt

.\python2

If you will change the value of topdown to True, then it will give you the following result-

.\Applicationdocs.docx

.\book.zip

.\foo.txt

.\java.ppt

.\python2

.\python2\testdir

.\python2\testdir\Readme.htm

.\python2\testdir\Readme_files

.\python2\testdir\Readme_files\Lpt_Port_Config.gif

.\python2\testdir\Readme_files\ParallelPortViever.gif

.\python2\testdir\Readme_files\softcollection.css

.\python2\testdir\Readme_files\Thumbs.db

Python 3

321

.\python2\testdir\Readme_files\Yellov_Ball.gif

os.write() Method

Description

The method write() writes the string str to file descriptor fd. It returns the number of

bytes actually written.

Syntax

Following is the syntax for write() method-

os.write(fd, str)

Parameters

 fd - This is the file descriptor.

 str - This is the string to be written.

Return Value

This method returns the number of bytes actually written.

Example

The following example shows the usage of the write() method-

!/usr/bin/python3

import os, sys

Open a file

fd = os.open("f1.txt", os.O_RDWR|os.O_CREAT)

Write one string

line="this is test"

string needs to be converted byte object

b=str.encode(line)

ret=os.write(fd, b)

ret consists of number of bytes written to f1.txt

print ("the number of bytes written: ", ret)

Close opened file

os.close(fd)

print ("Closed the file successfully!!")

When we run the above program, it produces the following result-

Python 3

322

the number of bytes written: 12

Closed the file successfully!!

Python 3

323

Python provides two very important features to handle any unexpected error in your

Python programs and to add debugging capabilities in them-

 Exception Handling.

 Assertions.

Standard Exceptions

Here is a list of Standard Exceptions available in Python.

EXCEPTION NAME DESCRIPTION

Exception Base class for all exceptions

StopIteration Raised when the next() method of an iterator does not point to

any object.

SystemExit Raised by the sys.exit() function.

StandardError Base class for all built-in exceptions except StopIteration and

SystemExit.

ArithmeticError Base class for all errors that occur for numeric calculation.

OverflowError Raised when a calculation exceeds maximum limit for a numeric

type.

FloatingPointError Raised when a floating point calculation fails.

ZeroDivisonError Raised when division or modulo by zero takes place for all

numeric types.

AssertionError Raised in case of failure of the Assert statement.

AttributeError Raised in case of failure of attribute reference or assignment.

18. Python 3 – Exceptions Handling

Python 3

324

EOFError Raised when there is no input from either the raw_input() or

input() function and the end of file is reached.

ImportError Raised when an import statement fails.

KeyboardInterrupt Raised when the user interrupts program execution, usually by

pressing Ctrl+c.

LookupError Base class for all lookup errors.

IndexError Raised when an index is not found in a sequence.

KeyError Raised when the specified key is not found in the dictionary.

NameError Raised when an identifier is not found in the local or global

namespace.

UnboundLocalError Raised when trying to access a local variable in a function or

method but no value has been assigned to it.

EnvironmentError Base class for all exceptions that occur outside the Python

environment.

IOError Raised when an input/ output operation fails, such as the print

statement or the open() function when trying to open a file that

does not exist.

OSError Raised for operating system-related errors.

SyntaxError Raised when there is an error in Python syntax.

IndentationError Raised when indentation is not specified properly.

SystemError Raised when the interpreter finds an internal problem, but when

this error is encountered the Python interpreter does not exit.

SystemExit Raised when Python interpreter is quit by using the sys.exit()

function. If not handled in the code, causes the interpreter to

exit.

Python 3

325

TypeError Raised when an operation or function is attempted that is

invalid for the specified data type.

ValueError Raised when the built-in function for a data type has the valid

type of arguments, but the arguments have invalid values

specified.

RuntimeError Raised when a generated error does not fall into any category.

NotImplementedError Raised when an abstract method that needs to be implemented

in an inherited class is not actually implemented.

Assertions in Python

An assertion is a sanity-check that you can turn on or turn off when you are done with

your testing of the program.

 The easiest way to think of an assertion is to liken it to a raise-if statement (or to

be more accurate, a raise-if-not statement). An expression is tested, and if the

result comes up false, an exception is raised.

 Assertions are carried out by the assert statement, the newest keyword to Python,

introduced in version 1.5.

 Programmers often place assertions at the start of a function to check for valid

input, and after a function call to check for valid output.

The assert Statement

When it encounters an assert statement, Python evaluates the accompanying expression,

which is hopefully true. If the expression is false, Python raises

anAssertionError exception.

The syntax for assert is −

assert Expression[, Arguments]

If the assertion fails, Python uses ArgumentExpression as the argument for the

AssertionError. AssertionError exceptions can be caught and handled like any other

exception, using the try-except statement. If they are not handled, they will terminate the

program and produce a traceback.

Example

Here is a function that converts a given temperature from degrees Kelvin to degrees

Fahrenheit. Since 0° K is as cold as it gets, the function bails out if it sees a negative

temperature −

Python 3

326

#!/usr/bin/python3

def KelvinToFahrenheit(Temperature):

 assert (Temperature >= 0),"Colder than absolute zero!"

 return ((Temperature-273)*1.8)+32

print (KelvinToFahrenheit(273))

print (int(KelvinToFahrenheit(505.78)))

print (KelvinToFahrenheit(-5))

When the above code is executed, it produces the following result-

32.0

451

Traceback (most recent call last):

File "test.py", line 9, in

print KelvinToFahrenheit(-5)

File "test.py", line 4, in KelvinToFahrenheit

assert (Temperature >= 0),"Colder than absolute zero!"

AssertionError: Colder than absolute zero!

What is Exception?

An exception is an event, which occurs during the execution of a program that disrupts

the normal flow of the program's instructions. In general, when a Python script encounters

a situation that it cannot cope with, it raises an exception. An exception is a Python object

that represents an error.

When a Python script raises an exception, it must either handle the exception immediately

otherwise it terminates and quits.

Handling an Exception

If you have some suspicious code that may raise an exception, you can defend your

program by placing the suspicious code in a try: block. After the try: block, include

an except: statement, followed by a block of code which handles the problem as elegantly

as possible.

Syntax

Here is simple syntax of try....except...else blocks-

try:

 You do your operations here

Python 3

327

except ExceptionI:

 If there is ExceptionI, then execute this block.

except ExceptionII:

 If there is ExceptionII, then execute this block.

else:

 If there is no exception then execute this block.

Here are few important points about the above-mentioned syntax-

 A single try statement can have multiple except statements. This is useful when

the try block contains statements that may throw different types of exceptions.

 You can also provide a generic except clause, which handles any exception.

 After the except clause(s), you can include an else-clause. The code in the else-

block executes if the code in the try: block does not raise an exception.

 The else-block is a good place for code that does not need the try: block's

protection.

Example

This example opens a file, writes content in the file and comes out gracefully because there

is no problem at all.

#!/usr/bin/python3

try:

 fh = open("testfile", "w")

 fh.write("This is my test file for exception handling!!")

except IOError:

 print ("Error: can\'t find file or read data")

else:

 print ("Written content in the file successfully")

 fh.close()

This produces the following result-

Written content in the file successfully

Example

This example tries to open a file where you do not have the write permission, so it raises

an exception-

Python 3

328

#!/usr/bin/python3

try:

 fh = open("testfile", "r")

 fh.write("This is my test file for exception handling!!")

except IOError:

 print ("Error: can\'t find file or read data")

else:

 print ("Written content in the file successfully")

This produces the following result-

Error: can't find file or read data

The except Clause with No Exceptions

You can also use the except statement with no exceptions defined as follows-

try:

 You do your operations here

except:

 If there is any exception, then execute this block.

else:

 If there is no exception then execute this block.

This kind of a try-except statement catches all the exceptions that occur. Using this kind

of try-except statement is not considered a good programming practice though, because

it catches all exceptions but does not make the programmer identify the root cause of the

problem that may occur.

The except Clause with Multiple Exceptions

You can also use the same except statement to handle multiple exceptions as follows-

try:

 You do your operations here

except(Exception1[, Exception2[,...ExceptionN]]]):

 If there is any exception from the given exception list,

 then execute this block.

Python 3

329

else:

 If there is no exception then execute this block.

The try-finally Clause

You can use a finally: block along with a try: block. The finally: block is a place to put

any code that must execute, whether the try-block raised an exception or not. The syntax

of the try-finally statement is this-

try:

 You do your operations here;

 Due to any exception, this may be skipped.

finally:

 This would always be executed.

Note: You can provide except clause(s), or a finally clause, but not both. You cannot

use else clause as well along with a finally clause.

Example

#!/usr/bin/python3

try:

 fh = open("testfile", "w")

 fh.write("This is my test file for exception handling!!")

finally:

 print ("Error: can\'t find file or read data")

 fh.close()

If you do not have permission to open the file in writing mode, then this will produce the

following result-

Error: can't find file or read data

Same example can be written more cleanly as follows-

#!/usr/bin/python3

try:

 fh = open("testfile", "w")

 try:

 fh.write("This is my test file for exception handling!!")

Python 3

330

 finally:

 print ("Going to close the file")

 fh.close()

except IOError:

 print ("Error: can\'t find file or read data")

When an exception is thrown in the try block, the execution immediately passes to

the finally block. After all the statements in the finally block are executed, the exception

is raised again and is handled in the except statements if present in the next higher layer

of the try-except statement.

Argument of an Exception

An exception can have an argument, which is a value that gives additional information

about the problem. The contents of the argument vary by exception. You capture an

exception's argument by supplying a variable in the except clause as follows-

try:

 You do your operations here

except ExceptionType as Argument:

 You can print value of Argument here...

If you write the code to handle a single exception, you can have a variable follow the name

of the exception in the except statement. If you are trapping multiple exceptions, you can

have a variable follow the tuple of the exception.

This variable receives the value of the exception mostly containing the cause of the

exception. The variable can receive a single value or multiple values in the form of a tuple.

This tuple usually contains the error string, the error number, and an error location.

Example

Following is an example for a single exception-

#!/usr/bin/python3

Define a function here.

def temp_convert(var):

try:

returnint(var)

except ValueError as Argument:

print("The argument does not contain numbers\n",Argument)

Call above function here.

Python 3

331

temp_convert("xyz")

This produces the following result-

The argument does not contain numbers

invalid literal for int() with base 10: 'xyz'

Raising an Exception

You can raise exceptions in several ways by using the raise statement. The general syntax

for the raise statement is as follows-

Syntax

raise [Exception [, args [, traceback]]]

Here, Exception is the type of exception (for example, NameError) and argument is a

value for the exception argument. The argument is optional; if not supplied, the exception

argument is None.

The final argument, traceback, is also optional (and rarely used in practice), and if present,

is the traceback object used for the exception.

Example

An exception can be a string, a class or an object. Most of the exceptions that the Python

core raises are classes, with an argument that is an instance of the class. Defining new

exceptions is quite easy and can be done as follows-

def functionName(level):

 if level <1:

 raise Exception(level)

 # The code below to this would not be executed

 # if we raise the exception

 return level

Note: In order to catch an exception, an "except" clause must refer to the same exception

thrown either as a class object or a simple string. For example, to capture the above

exception, we must write the except clause as follows-

try:

 Business Logic here...

except Exception as e:

 Exception handling here using e.args...

Python 3

332

else:

 Rest of the code here...

The following example illustrates the use of raising an exception-

#!/usr/bin/python3

def functionName(level):
 if level <1:

 raise Exception(level)

 # The code below to this would not be executed
 # if we raise the exception

 return level

try:

 l=functionName(-10)

 print ("level=",l)
except Exception as e:

 print ("error in level argument",e.args[0])

This will produce the following result-

error in level argument -10

User-Defined Exceptions

Python also allows you to create your own exceptions by deriving classes from the standard

built-in exceptions.

Here is an example related to RuntimeError. Here, a class is created that is subclassed

from RuntimeError. This is useful when you need to display more specific information when

an exception is caught.

In the try block, the user-defined exception is raised and caught in the except block. The

variable e is used to create an instance of the class Networkerror.

class Networkerror(RuntimeError):

 def __init__(self, arg):

 self.args = arg

So once you have defined the above class, you can raise the exception as follows-

try:

 raise Networkerror("Bad hostname")

except Networkerror,e:

 print e.args

Python 3

333

Python 3 – Advanced Tutorial

Python 3

334

Python has been an object-oriented language since the time it existed. Due to this,

creating and using classes and objects are downright easy. This chapter helps you become

an expert in using Python's object-oriented programming support.

If you do not have any previous experience with object-oriented (OO) programming, you

may want to consult an introductory course on it or at least a tutorial of some sort so that

you have a grasp of the basic concepts.

However, here is a small introduction of Object-Oriented Programming (OOP) to help you.

Overview of OOP Terminology

 Class: A user-defined prototype for an object that defines a set of attributes that

characterize any object of the class. The attributes are data members (class

variables and instance variables) and methods, accessed via dot notation.

 Class variable: A variable that is shared by all instances of a class. Class variables

are defined within a class but outside any of the class's methods. Class variables

are not used as frequently as instance variables are.

 Data member: A class variable or instance variable that holds data associated with

a class and its objects.

 Function overloading: The assignment of more than one behavior to a particular

function. The operation performed varies by the types of objects or arguments

involved.

 Instance variable: A variable that is defined inside a method and belongs only to

the current instance of a class.

 Inheritance: The transfer of the characteristics of a class to other classes that are

derived from it.

 Instance: An individual object of a certain class. An object obj that belongs to a

class Circle, for example, is an instance of the class Circle.

 Instantiation: The creation of an instance of a class.

 Method : A special kind of function that is defined in a class definition.

 Object: A unique instance of a data structure that is defined by its class. An object

comprises both data members (class variables and instance variables) and

methods.

 Operator overloading: The assignment of more than one function to a particular

operator.

19. Python 3 – Object Oriented

Python 3

335

Creating Classes

The class statement creates a new class definition. The name of the class immediately

follows the keyword class followed by a colon as follows-

class ClassName:

 'Optional class documentation string'

 class_suite

 The class has a documentation string, which can be accessed

viaClassName.__doc__.

 The class_suite consists of all the component statements defining class members,

data attributes and functions.

Example

Following is an example of a simple Python class-

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 Employee.empCount += 1

 def displayCount(self):

 print "Total Employee %d" % Employee.empCount

 def displayEmployee(self):

 print ("Name : ", self.name, ", Salary: ", self.salary)

 The variable empCount is a class variable whose value is shared among all the

instances of a in this class. This can be accessed as Employee.empCount from

inside the class or outside the class.

 The first method __init__() is a special method, which is called class constructor

or initialization method that Python calls when you create a new instance of this

class.

 You declare other class methods like normal functions with the exception that the

first argument to each method is self. Python adds the self argument to the list for

you; you do not need to include it when you call the methods.

Python 3

336

Creating Instance Objects

To create instances of a class, you call the class using class name and pass in whatever

arguments its __init__ method accepts.

This would create first object of Employee class

emp1 = Employee("Zara", 2000)

This would create second object of Employee class

emp2 = Employee("Manni", 5000)

Accessing Attributes

You access the object's attributes using the dot operator with object. Class variable would

be accessed using class name as follows-

emp1.displayEmployee()

emp2.displayEmployee()

print ("Total Employee %d" % Employee.empCount)

Now, putting all the concepts together-

#!/usr/bin/python3

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 Employee.empCount += 1

 def displayCount(self):

 print ("Total Employee %d" % Employee.empCount)

 def displayEmployee(self):

 print ("Name : ", self.name, ", Salary: ", self.salary)

#This would create first object of Employee class"

emp1 = Employee("Zara", 2000)

#This would create second object of Employee class"

Python 3

337

emp2 = Employee("Manni", 5000)

emp1.displayEmployee()

emp2.displayEmployee()

print ("Total Employee %d" % Employee.empCount)

When the above code is executed, it produces the following result-

Name : Zara ,Salary: 2000

Name : Manni ,Salary: 5000

Total Employee 2

You can add, remove, or modify attributes of classes and objects at any time-

emp1.salary = 7000 # Add an 'salary' attribute.

emp1.name = 'xyz' # Modify 'age' attribute.

del emp1.salary # Delete 'age' attribute.

Instead of using the normal statements to access attributes, you can use the following

functions-

 The getattr(obj, name[, default]): to access the attribute of object.

 The hasattr(obj,name): to check if an attribute exists or not.

 The setattr(obj,name,value): to set an attribute. If attribute does not exist, then

it would be created.

 The delattr(obj, name): to delete an attribute.

hasattr(emp1, 'salary') # Returns true if 'salary' attribute exists

getattr(emp1, 'salary') # Returns value of 'salary' attribute

setattr(emp1, 'salary', 7000) # Set attribute 'age' at 8

delattr(emp1, 'salary') # Delete attribute 'age'

Built-In Class Attributes

Every Python class keeps the following built-in attributes and they can be accessed using

dot operator like any other attribute −

 __dict__: Dictionary containing the class's namespace.

 __doc__: Class documentation string or none, if undefined.

 __name__: Class name.

 __module__: Module name in which the class is defined. This attribute is

"__main__" in interactive mode.

Python 3

338

 __bases__: A possibly empty tuple containing the base classes, in the order of

their occurrence in the base class list.

For the above class let us try to access all these attributes-

#!/usr/bin/python3

class Employee:

 'Common base class for all employees'

 empCount = 0

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 Employee.empCount += 1

 def displayCount(self):

 print ("Total Employee %d" % Employee.empCount)

 def displayEmployee(self):

 print ("Name : ", self.name, ", Salary: ", self.salary)

emp1 = Employee("Zara", 2000)

emp2 = Employee("Manni", 5000)

print ("Employee.__doc__:", Employee.__doc__)

print ("Employee.__name__:", Employee.__name__)

print ("Employee.__module__:", Employee.__module__)

print ("Employee.__bases__:", Employee.__bases__)

print ("Employee.__dict__:", Employee.__dict__)

When the above code is executed, it produces the following result-

Employee.__doc__: Common base class for all employees

Employee.__name__: Employee

Employee.__module__: __main__

Employee.__bases__: (,)

Employee.__dict__: {'displayCount': , '__module__': '__main__', '__doc__':

'Common base class for all employees', 'empCount': 2, '__init__': ,

'displayEmployee': , '__weakref__': , '__dict__': }

Python 3

339

Destroying Objects (Garbage Collection)

Python deletes unneeded objects (built-in types or class instances) automatically to free

the memory space. The process by which Python periodically reclaims blocks of memory

that no longer are in use is termed as Garbage Collection.

Python's garbage collector runs during program execution and is triggered when an

object's reference count reaches zero. An object's reference count changes as the number

of aliases that point to it changes.

An object's reference count increases when it is assigned a new name or placed in a

container (list, tuple, or dictionary). The object's reference count decreases when it is

deleted with del, its reference is reassigned, or its reference goes out of scope. When an

object's reference count reaches zero, Python collects it automatically.

a = 40 # Create object <40>

b = a # Increase ref. count of <40>

c = [b] # Increase ref. count of <40>

del a # Decrease ref. count of <40>

b = 100 # Decrease ref. count of <40>

c[0] = -1 # Decrease ref. count of <40>

You normally will not notice when the garbage collector destroys an orphaned instance

and reclaims its space. However, a class can implement the special method__del__(),

called a destructor, that is invoked when the instance is about to be destroyed. This

method might be used to clean up any non-memory resources used by an instance.

Example

This __del__() destructor prints the class name of an instance that is about to be

destroyed.

#!/usr/bin/python3

class Point:

 def __init(self, x=0, y=0):

 self.x = x

 self.y = y

 def __del__(self):

 class_name = self.__class__.__name__

 print (class_name, "destroyed")

pt1 = Point()

pt2 = pt1

pt3 = pt1

Python 3

340

print (id(pt1), id(pt2), id(pt3) # prints the ids of the obejcts)

del pt1

del pt2

del pt3

When the above code is executed, it produces the following result-

3083401324 3083401324 3083401324

Point destroyed

Note: Ideally, you should define your classes in a separate file, then you should import

them in your main program file using import statement.

In the above example, assuming definition of a Point class is contained in point.py and there

is no other executable code in it.

#!/usr/bin/python3

import point

p1=point.Point()

Class Inheritance

Instead of starting from a scratch, you can create a class by deriving it from a pre-existing

class by listing the parent class in parentheses after the new class name.

The child class inherits the attributes of its parent class, and you can use those attributes

as if they were defined in the child class. A child class can also override data members and

methods from the parent.

Syntax

Derived classes are declared much like their parent class; however, a list of base classes

to inherit from is given after the class name −

class SubClassName (ParentClass1[, ParentClass2, ...]):

 'Optional class documentation string'

 class_suite

Example

#!/usr/bin/python3

class Parent: # define parent class

 parentAttr = 100

 def __init__(self):

Python 3

341

 print ("Calling parent constructor")

 def parentMethod(self):

 print ('Calling parent method')

 def setAttr(self, attr):

 Parent.parentAttr = attr

 def getAttr(self):

 print ("Parent attribute :", Parent.parentAttr)

class Child(Parent): # define child class

 def __init__(self):

 print ("Calling child constructor")

 def childMethod(self):

 print ('Calling child method')

c = Child() # instance of child

c.childMethod() # child calls its method

c.parentMethod() # calls parent's method

c.setAttr(200) # again call parent's method

c.getAttr() # again call parent's method

When the above code is executed, it produces the following result-

Calling child constructor

Calling child method

Calling parent method

Parent attribute : 200

In a similar way, you can drive a class from multiple parent classes as follows-

class A: # define your class A

.....

class B: # define your calss B

.....

class C(A, B): # subclass of A and B

.....

Python 3

342

You can use issubclass() or isinstance() functions to check a relationship of two classes

and instances.

 The issubclass(sub, sup) boolean function returns True, if the given

subclass sub is indeed a subclass of the superclass sup.

 The isinstance(obj, Class) boolean function returns True, if obj is an instance of

class Class or is an instance of a subclass of Class.

Overriding Methods

You can always override your parent class methods. One reason for overriding parent's

methods is that you may want special or different functionality in your subclass.

Example

#!/usr/bin/python3

class Parent: # define parent class

 def myMethod(self):

 print ('Calling parent method')

class Child(Parent): # define child class

 def myMethod(self):

 print ('Calling child method')

c = Child() # instance of child

c.myMethod() # child calls overridden method

When the above code is executed, it produces the following result-

Calling child method

Base Overloading Methods

The following table lists some generic functionality that you can override in your own

classes-

SN Method, Description & Sample Call

1 __init__ (self [,args...])

Constructor (with any optional arguments)

Sample Call : obj = className(args)

Python 3

343

2 __del__(self)

Destructor, deletes an object

Sample Call : del obj

3 __repr__(self)

Evaluatable string representation

Sample Call : repr(obj)

4 __str__(self)

Printable string representation

Sample Call : str(obj)

5 __cmp__ (self, x)

Object comparison

Sample Call : cmp(obj, x)

Overloading Operators

Suppose you have created a Vector class to represent two-dimensional vectors. What

happens when you use the plus operator to add them? Most likely Python will yell at you.

You could, however, define the __add__ method in your class to perform vector addition

and then the plus operator would behave as per expectation −

Example

#!/usr/bin/python3

class Vector:

 def __init__(self, a, b):

 self.a = a

 self.b = b

 def __str__(self):

 return 'Vector (%d, %d)' % (self.a, self.b)

 def __add__(self,other):

 return Vector(self.a + other.a, self.b + other.b)

v1 = Vector(2,10)

v2 = Vector(5,-2)

print (v1 + v2)

When the above code is executed, it produces the following result-

Python 3

344

Vector(7,8)

Data Hiding

An object's attributes may or may not be visible outside the class definition. You need to

name attributes with a double underscore prefix, and those attributes then will not be

directly visible to outsiders.

Example

#!/usr/bin/python3

class JustCounter:

 __secretCount = 0

 def count(self):

 self.__secretCount += 1

 print (self.__secretCount)

counter = JustCounter()

counter.count()

counter.count()

print (counter.__secretCount)

When the above code is executed, it produces the following result-

1

2

Traceback (most recent call last):

 File "test.py", line 12, in <module>

 print counter.__secretCount

AttributeError: JustCounter instance has no attribute '__secretCount'

Python protects those members by internally changing the name to include the class name.

You can access such attributes as object._className__attrName. If you would replace

your last line as following, then it works for you-

.........................

print (counter._JustCounter__secretCount)

When the above code is executed, it produces the following result-

Python 3

345

1

2

2

Python 3

346

A regular expression is a special sequence of characters that helps you match or find other

strings or sets of strings, using a specialized syntax held in a pattern. Regular expressions

are widely used in UNIX world.

The module re provides full support for Perl-like regular expressions in Python. The re

module raises the exception re.error if an error occurs while compiling or using a regular

expression.

We would cover two important functions, which would be used to handle regular

expressions. Nevertheless, a small thing first: There are various characters, which would

have special meaning when they are used in regular expression. To avoid any confusion

while dealing with regular expressions, we would use Raw Strings asr'expression'.

Basic patterns that match single chars

 a, X, 9, < -- ordinary characters just match themselves exactly.

 . (a period) -- matches any single character except newline '\n'

 \w -- matches a "word" character: a letter or digit or underbar [a-zA-Z0-9_].

 \W -- matches any non-word character.

 \b -- boundary between word and non-word

 \s -- matches a single whitespace character -- space, newline, return, tab

 \S -- matches any non-whitespace character.

 \t, \n, \r -- tab, newline, return

 \d -- decimal digit [0-9]

 ^ = matches start of the string

 $ = match the end of the string

 \ -- inhibit the "specialness" of a character.

Compilation flags

Compilation flags let you modify some aspects of how regular expressions work. Flags are

available in the re module under two names, a long name such as IGNORECASE and a

short, one-letter form such as I.

Flag Meaning

ASCII, A
Makes several escapes like \w, \b, \s and \d match only on ASCII

characters with the respective property.

DOTALL, S Make, match any character, including newlines

IGNORECASE, I Do case-insensitive matches

20. Python 3 – Regular Expressions

Python 3

347

LOCALE, L Do a locale-aware match

MULTILINE, M Multi-line matching, affecting ^ and $

VERBOSE, X (for

‘extended’)

Enable verbose REs, which can be organized more cleanly and

understandably

The match Function

This function attempts to match RE pattern to string with optional flags.

Here is the syntax for this function-

re.match(pattern, string, flags=0)

Here is the description of the parameters-

Parameter Description

pattern This is the regular expression to be matched.

string This is the string, which would be searched to match the

pattern at the beginning of string.

flags You can specify different flags using bitwise OR (|). These are

modifiers, which are listed in the table below.

The re.match function returns a match object on success, None on failure. We use

group(num) or groups() function of match object to get matched expression.

Match Object

Methods

Description

group(num=0) This method returns entire match (or specific subgroup num)

groups() This method returns all matching subgroups in a tuple (empty

if there weren't any)

Example

#!/usr/bin/python3

import re

line = "Cats are smarter than dogs"

Python 3

348

matchObj = re.match(r'(.*) are (.*?) .*', line, re.M|re.I)

if matchObj:

 print ("matchObj.group() : ", matchObj.group())

 print ("matchObj.group(1) : ", matchObj.group(1))

 print ("matchObj.group(2) : ", matchObj.group(2))

else:

 print ("No match!!")

When the above code is executed, it produces the following result-

matchObj.group() : Cats are smarter than dogs

matchObj.group(1) : Cats

matchObj.group(2) : smarter

The search Function

This function searches for first occurrence of RE pattern within the string, with

optional flags.

Here is the syntax for this function-

re.search(pattern, string, flags=0)

Here is the description of the parameters-

Parameter Description

pattern This is the regular expression to be matched.

string This is the string, which would be searched to match the

pattern anywhere in the string.

flags You can specify different flags using bitwise OR (|). These are

modifiers, which are listed in the table below.

The re.search function returns a match object on success, none on failure. We

use group(num) or groups() function of match object to get the matched expression.

Match Object

Methods

Description

group(num=0) This method returns entire match (or specific subgroup num)

Python 3

349

groups() This method returns all matching subgroups in a tuple (empty

if there weren't any)

Example

#!/usr/bin/python3

import re

line = "Cats are smarter than dogs";

searchObj = re.search(r'(.*) are (.*?) .*', line, re.M|re.I)

if searchObj:

 print ("searchObj.group() : ", searchObj.group())

 print ("searchObj.group(1) : ", searchObj.group(1))

 print ("searchObj.group(2) : ", searchObj.group(2))

else:

 print ("Nothing found!!")

When the above code is executed, it produces following result-

matchObj.group() : Cats are smarter than dogs

matchObj.group(1) : Cats

matchObj.group(2) : smarter

Matching Versus Searching

Python offers two different primitive operations based on regular expressions

:match checks for a match only at the beginning of the string, while search checks for a

match anywhere in the string (this is what Perl does by default).

Example

#!/usr/bin/python3

import re

line = "Cats are smarter than dogs";

matchObj = re.match(r'dogs', line, re.M|re.I)

if matchObj:

 print ("match --> matchObj.group() : ", matchObj.group())

else:

 print ("No match!!")

searchObj = re.search(r'dogs', line, re.M|re.I)

if searchObj:

Python 3

350

 print ("search --> searchObj.group() : ", searchObj.group())

else:

 print ("Nothing found!!")

When the above code is executed, it produces the following result-

No match!!

search --> matchObj.group() : dogs

Search and Replace

One of the most important re methods that use regular expressions is sub.

Syntax

re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the RE pattern in string with repl, substituting all

occurrences unless max is provided. This method returns modified string.

Example

#!/usr/bin/python3

import re

phone = "2004-959-559 # This is Phone Number"

Delete Python-style comments

num = re.sub(r'#.*$', "", phone)

print ("Phone Num : ", num)

Remove anything other than digits

num = re.sub(r'\D', "", phone)

print ("Phone Num : ", num)

When the above code is executed, it produces the following result-

Phone Num : 2004-959-559

Phone Num : 2004959559

Regular Expression Modifiers: Option Flags

Regular expression literals may include an optional modifier to control various aspects of

matching. The modifiers are specified as an optional flag. You can provide multiple

Python 3

351

modifiers using exclusive OR (|), as shown previously and may be represented by one of

these-

Modifier Description

re.I Performs case-insensitive matching.

re.L Interprets words according to the current locale. This

interpretation affects the alphabetic group (\w and \W), as well

as word boundary behavior (\b and \B).

re.M Makes $ match the end of a line (not just the end of the string)

and makes ^ match the start of any line (not just the start of the

string).

re.S Makes a period (dot) match any character, including a newline.

re.U Interprets letters according to the Unicode character set. This flag

affects the behavior of \w, \W, \b, \B.

re.X Permits "cuter" regular expression syntax. It ignores whitespace

(except inside a set [] or when escaped by a backslash) and treats

unescaped # as a comment marker.

Regular Expression Patterns

Except for the control characters, (+ ? . * ^ $ () [] { } | \), all characters match

themselves. You can escape a control character by preceding it with a backslash.

The following table lists the regular expression syntax that is available in Python-

Pattern Description

^ Matches beginning of line.

$ Matches end of line.

. Matches any single character except newline. Using m option

allows it to match newline as well.

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets

Python 3

352

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 1 or more occurrence of preceding expression.

re? Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding

expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding

expression.

a| b Matches either a or b.

(re) Groups regular expressions and remembers matched text.

(?imx) Temporarily toggles on i, m, or x options within a regular

expression. If in parentheses, only that area is affected.

(?-imx) Temporarily toggles off i, m, or x options within a regular

expression. If in parentheses, only that area is affected.

(?: re) Groups regular expressions without remembering matched text.

(?imx: re) Temporarily toggles on i, m, or x options within parentheses.

(?-imx: re) Temporarily toggles off i, m, or x options within parentheses.

(?#...) Comment.

(?= re) Specifies position using a pattern. Does not have a range.

(?! re) Specifies position using pattern negation. Does not have a range.

(?> re) Matches independent pattern without backtracking.

\w Matches word characters.

Python 3

353

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0-9].

\D Matches nondigits.

\A Matches beginning of string.

\Z Matches end of string. If a newline exists, it matches just before

newline.

\z Matches end of string.

\G Matches point where last match finished.

\b Matches word boundaries when outside brackets. Matches

backspace (0x08) when inside brackets.

\B Matches nonword boundaries.

\n, \t, etc. Matches newlines, carriage returns, tabs, etc.

\1...\9 Matches nth grouped subexpression.

\10 Matches nth grouped subexpression if it matched already.

Otherwise refers to the octal representation of a character code.

Regular Expression Examples

Literal characters

Example Description

python Match "python".

Python 3

354

Character classes

Example Description

[Pp]ython Match "Python" or "python"

rub[ye] Match "ruby" or "rube"

[aeiou] Match any one lowercase vowel

[0-9] Match any digit; same as [0123456789]

[a-z] Match any lowercase ASCII letter

[A-Z] Match any uppercase ASCII letter

[a-zA-Z0-9] Match any of the above

[^aeiou] Match anything other than a lowercase vowel

[^0-9] Match anything other than a digit

Special Character Classes

Example Description

. Match any character except newline

\d Match a digit: [0-9]

\D Match a nondigit: [^0-9]

\s Match a whitespace character: [\t\r\n\f]

\S Match nonwhitespace: [^ \t\r\n\f]

\w Match a single word character: [A-Za-z0-9_]

\W Match a nonword character: [^A-Za-z0-9_]

Python 3

355

Repetition Cases

Example Description

ruby? Match "rub" or "ruby": the y is optional

ruby* Match "rub" plus 0 or more ys

ruby+ Match "rub" plus 1 or more ys

\d{3} Match exactly 3 digits

\d{3,} Match 3 or more digits

\d{3,5} Match 3, 4, or 5 digits

Nongreedy Repetition

This matches the smallest number of repetitions-

Example Description

<.*> Greedy repetition: matches "<python>perl>"

<.*?> Nongreedy: matches "<python>" in "<python>perl>"

Grouping with Parentheses

Example Description

\D\d+ No group: + repeats \d

(\D\d)+ Grouped: + repeats \D\d pair

([Pp]ython(,)?)+ Match "Python", "Python, python, python", etc.

Python 3

356

Backreferences

This matches a previously matched group again-

Example Description

([Pp])ython&\1ails Match python&pails or Python&Pails

(['"])[^\1]*\1 Single or double-quoted string. \1 matches whatever the 1st

group matched. \2 matches whatever the 2nd group matched,

etc.

Alternatives

Example Description

python|perl Match "python" or "perl"

rub(y|le)) Match "ruby" or "ruble"

Python(!+|\?) "Python" followed by one or more ! or one ?

Anchors

This needs to specify match position.

Example Description

^Python Match "Python" at the start of a string or internal line

Python$ Match "Python" at the end of a string or line

\APython Match "Python" at the start of a string

Python\Z Match "Python" at the end of a string

\bPython\b Match "Python" at a word boundary

\brub\B \B is nonword boundary: match "rub" in "rube" and "ruby" but not

alone

Python 3

357

Python(?=!) Match "Python", if followed by an exclamation point.

Python(?!!) Match "Python", if not followed by an exclamation point.

Special Syntax with Parentheses

Example Description

R(?#comment) Matches "R". All the rest is a comment

R(?i)uby Case-insensitive while matching "uby"

R(?i:uby) Same as above

rub(?:y|le)) Group only without creating \1 backreference

Python 3

358

The Common Gateway Interface, or CGI, is a set of standards that define how information

is exchanged between the web server and a custom script. The CGI specs are currently

maintained by the NCSA and NCSA.

What is CGI?

 The Common Gateway Interface, or CGI, is a standard for external gateway

programs to interface with information servers such as HTTP servers.

 The current version is CGI/1.1 and CGI/1.2 is under progress.

Web Browsing

To understand the concept of CGI, let us see what happens when we click a hyperlink to

browse a particular web page or URL.

 Your browser contacts the HTTP web server and demands for the URL, i.e.,

filename.

 The web server parses the URL and looks for the filename. If it finds the particular

file, then it sends it back to the browser, otherwise sends an error message

indicating that you requested a wrong file.

 The web browser takes response from the web server and displays either, the

received file or error message.

However, it is possible to set up the HTTP server so that whenever a file in a certain

directory is requested that file is not sent back. Instead, it is executed as a program, and

whatever that output of the program, is sent back for your browser to display. This function

is called the Common Gateway Interface or CGI and the programs are called CGI scripts.

These CGI programs can be Python Script, PERL Script, Shell Script, C or C++ program,

etc.

21. Python 3 – CGI Programming

Python 3

359

CGI Architecture Diagram

Web Server Support and Configuration

Before you proceed with CGI Programming, make sure that your Web Server supports CGI

and it is configured to handle CGI Programs. All the CGI Programs, which are to be

executed by the HTTP server, are kept in a pre-configured directory. This directory is called

CGI Directory and by convention it is named as /var/www/cgi-bin. By convention, CGI files

have extension as .cgi, but you can keep your files with python extension .py as well.

By default, the Linux server is configured to run only the scripts in the cgi-bin directory in

/var/www. If you want to specify any other directory to run your CGI scripts, comment

the following lines in the httpd.conf file −

<Directory "/var/www/cgi-bin">

 AllowOverride None

 Options ExecCGI

 Order allow,deny

 Allow from all

</Directory>

Python 3

360

<Directory "/var/www/cgi-bin">

Options All

</Directory>

The following line should also be added for apache server to treat .py file as cgi script.

AddHandler cgi-script .py

Here, we assume that you have Web Server up and running successfully and you are able

to run any other CGI program like Perl or Shell, etc.

First CGI Program

Here is a simple link, which is linked to a CGI script called hello.py. This file is kept in

/var/www/cgi-bin directory and it has the following content. Before running your CGI

program, make sure you have changed the mode of file using chmod 755 hello.py,

the UNIX command to make file executable.

#!/usr/bin/python3

print ("Content-type:text/html")

print()

print ("<html>")

print ('<head>')

print ('<title>Hello Word - First CGI Program</title>')

print ('</head>')

print ('<body>')

print ('<h2>Hello Word! This is my first CGI program</h2>')

print ('</body>')

print ('</html>')

Note: First line in the script must be the path to Python executable. In Linux, it should be

#!/usr/bin/python3

Enter the following URL in your browser -

http://www.tutorialspoint.com/cgi-bin/hello.py

Hello Word! This is my first CGI program

This hello.py script is a simple Python script, which writes its output on STDOUT file, i.e.,

the screen. There is one important and extra feature available that is the first line to be

printed Content-type:text/html followed by a blank line. This line is sent back to the

browser and it specifies the content type to be displayed on the browser screen.

http://www.tutorialspoint.com/cgi-bin/hello.py
http://www.tutorialspoint.com/cgi-bin/hello.py

Python 3

361

By now, you must have understood the basic concept of CGI and you can write many

complicated CGI programs using Python. This script can interact with any other external

system also to exchange information such as RDBMS.

HTTP Header

The line Content-type:text/html\r\n\r\n is part of HTTP header which is sent to the

browser to understand the content. All the HTTP header will be in the following form-

HTTP Field Name: Field Content

For Example

Content-type: text/html\r\n\r\n

There are few other important HTTP headers, which you will use frequently in your CGI

Programming.

Header Description

Content-type: A MIME string defining the format of the file being returned.

Example is Content-type:text/html

Expires: Date The date the information becomes invalid. It is used by the

browser to decide when a page needs to be refreshed. A valid

date string is in the format 01 Jan 1998 12:00:00 GMT.

Location: URL The URL that is returned instead of the URL requested. You

can use this field to redirect a request to any file.

Last-modified: Date The date of last modification of the resource.

Content-length: N The length, in bytes, of the data being returned. The browser

uses this value to report the estimated download time for a

file.

Set-Cookie: String Set the cookie passed through the string

CGI Environment Variables

All the CGI programs have access to the following environment variables. These variables

play an important role while writing any CGI program.

Variable Name Description

Python 3

362

CONTENT_TYPE The data type of the content. Used when the client is sending

attached content to the server. For example, file upload.

CONTENT_LENGTH The length of the query information. It is available only for

POST requests.

HTTP_COOKIE Returns the set cookies in the form of key & value pair.

HTTP_USER_AGENT The User-Agent request-header field contains information

about the user agent originating the request. It is name of

the web browser.

PATH_INFO The path for the CGI script.

QUERY_STRING The URL-encoded information that is sent with GET method

request.

REMOTE_ADDR The IP address of the remote host making the request. This

is useful logging or for authentication.

REMOTE_HOST The fully qualified name of the host making the request. If

this information is not available, then REMOTE_ADDR can be

used to get IR address.

REQUEST_METHOD The method used to make the request. The most common

methods are GET and POST.

SCRIPT_FILENAME The full path to the CGI script.

SCRIPT_NAME The name of the CGI script.

SERVER_NAME The server's hostname or IP Address

SERVER_SOFTWARE The name and version of the software the server is running.

Here is a small CGI program to list out all the CGI variables. Click this link to see the

result Get Environment.

#!/usr/bin/python3

import os

print ("Content-type: text/html")

print ()

print ("Environment<\br>";)

Python 3

363

for param in os.environ.keys():

 print ("%20s: %s<\br>" % (param, os.environ[param]))

GET and POST Methods

You must have come across many situations when you need to pass some information

from your browser to web server and ultimately to your CGI Program. Most frequently, a

browser uses two methods to pass this information to the web server. These methods are

GET Method and POST Method.

Passing Information using GET method

The GET method sends the encoded user information appended to the page request. The

page and the encoded information are separated by the ? character as follows-

http://www.test.com/cgi-bin/hello.py?key1=value1&key2=value2

 The GET method is the default method to pass information from the browser to the

web server and it produces a long string that appears in your browser's

Location:box.

 Never use GET method if you have password or other sensitive information to pass

to the server.

 The GET method has size limtation: only 1024 characters can be sent in a request

string.

 The GET method sends information using QUERY_STRING header and will be

accessible in your CGI Program through QUERY_STRING environment variable.

You can pass information by simply concatenating key and value pairs along with any URL

or you can use HTML <FORM> tags to pass information using GET method.

Simple URL Example – Get Method

Here is a simple URL, which passes two values to hello_get.py program using GET method.

/cgi-bin/hello_get.py?first_name=Malhar&last_name=Lathkar

Given below is the hello_get.py script to handle the input given by web browser. We are

going to use the cgi module, which makes it very easy to access the passed information-

#!/usr/bin/python3

Import modules for CGI handling

import cgi, cgitb

Create instance of FieldStorage

form = cgi.FieldStorage()

http://www.tutorialspoint.com/cgi-bin/hello_get.py?first_name=Malhar&last_name=Lathkar

Python 3

364

Get data from fields

first_name = form.getvalue('first_name')

last_name = form.getvalue('last_name')

print ("Content-type:text/html")

print()

print ("<html>)"

print ("<head>")

print ("<title>Hello - Second CGI Program</title>")

print ("</head>")

print ("<body>")

print ("<h2>Hello %s %s</h2>" % (first_name, last_name))

print ("</body>")

print ("</html>">)

This would generate the following result-

Hello ZARA ALI

Simple FORM Example – GET Method

This example passes two values using HTML FORM and submit button. We use the same

CGI script hello_get.py to handle this input.

<form action="/cgi-bin/hello_get.py" method="get">

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />

<input type="submit" value="Submit" />

</form>

Here is the actual output of the above form, you enter the First and the Last Name and

then click submit button to see the result.

First Name:

Last Name:
Submit

Passing Information Using POST Method

Python 3

365

A generally more reliable method of passing information to a CGI program is the POST

method. This packages the information in exactly the same way as the GET methods, but

instead of sending it as a text string after a ? in the URL, it sends it as a separate message.

This message comes into the CGI script in the form of the standard input.

Given below is same hello_get.py script, which handles GET as well as the POST method.

#!/usr/bin/python3

Import modules for CGI handling

import cgi, cgitb

Create instance of FieldStorage

form = cgi.FieldStorage()

Get data from fields

first_name = form.getvalue('first_name')

last_name = form.getvalue('last_name')

print ("Content-type:text/html")

print()

print ("<html>")

print ("<head>")

print ("<title>Hello - Second CGI Program</title>")

print ("</head>")

print ("<body>")

print ("<h2>Hello %s %s</h2>" % (first_name, last_name))

print ("</body>")

print ("</html>")

Let us again take the same example as above, which passes two values using the HTML

FORM and the submit button. We use the same CGI script hello_get.py to handle this

input.

<form action="/cgi-bin/hello_get.py" method="post">

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />

<input type="submit" value="Submit" />

</form>

Python 3

366

Here is the actual output of the above form. You enter the First and the Last Name and

then click the submit button to see the result.

First Name:

Last Name:
Submit

Passing Checkbox Data to CGI Program
Checkboxes are used when more than one option is required to be selected.

Here is an HTML code example for a form with two checkboxes-

<form action="/cgi-bin/checkbox.py" method="POST" target="_blank">

<input type="checkbox" name="maths" value="on" /> Maths

<input type="checkbox" name="physics" value="on" /> Physics

<input type="submit" value="Select Subject" />

</form>

The result of this code is in the above form-

 Maths Physics
Select Subject

Given below is the checkbox.cgi script to handle the input given by web browser for

checkbox button.

 #!/usr/bin/python3

Import modules for CGI handling

import cgi, cgitb

Create instance of FieldStorage

form = cgi.FieldStorage()

Get data from fields

if form.getvalue('maths'):

 math_flag = "ON"

else:

 math_flag = "OFF"

if form.getvalue('physics'):

 physics_flag = "ON"

else:

Python 3

367

 physics_flag = "OFF"

print ("Content-type:text/html")

print()

print ("<html>")

print ("<head>")

print ("<title>Checkbox - Third CGI Program</title>")

print ("</head>")

print ("<body>")

print ("<h2> CheckBox Maths is : %s</h2>" % math_flag)

print ("<h2> CheckBox Physics is : %s</h2>" % physics_flag)

print ("</body>")

print ("</html>")

Passing Radio Button Data to CGI Program

Radio Buttons are used when only one option is required to be selected.

Here is an HTML code example for a form with two radio buttons-

<form action="/cgi-bin/radiobutton.py" method="post" target="_blank">

<input type="radio" name="subject" value="maths" /> Maths

<input type="radio" name="subject" value="physics" /> Physics

<input type="submit" value="Select Subject" />

</form>

The result of this code is the following form-

 Maths Physics
Select Subject

Below is radiobutton.py script to handle input given by web browser for radio button-

 #!/usr/bin/python3

Import modules for CGI handling

import cgi, cgitb

Create instance of FieldStorage

form = cgi.FieldStorage()

Get data from fields

if form.getvalue('subject'):

Python 3

368

 subject = form.getvalue('subject')

else:

 subject = "Not set"

print "Content-type:text/html")

print()

print ("<html>")

print ("<head>")

print ("<title>Radio - Fourth CGI Program</title>")

print ("</head>")

print ("<body>")

print ("<h2> Selected Subject is %s</h2>" % subject)

print ("</body>")

print ("</html>")

Passing Text Area Data to CGI Program

TEXTAREA element is used when multiline text has to be passed to the CGI Program.

Here is an HTML code example for a form with a TEXTAREA box-

<form action="/cgi-bin/textarea.py" method="post" target="_blank">

<textarea name="textcontent" cols="40" rows="4">

Type your text here...

</textarea>

<input type="submit" value="Submit" />

</form>

The result of this code is the following form-

Submit

Given below is the textarea.cgi script to handle input given by web browser-

#!/usr/bin/python3

Import modules for CGI handling

import cgi, cgitb

Create instance of FieldStorage

Python 3

369

form = cgi.FieldStorage()

Get data from fields

if form.getvalue('textcontent'):

 text_content = form.getvalue('textcontent')

else:

 text_content = "Not entered"

print "Content-type:text/html")

print()

print ("<html>")

print ("<head>";)

print ("<title>Text Area - Fifth CGI Program</title>")

print ("</head>")

print ("<body>")

print ("<h2> Entered Text Content is %s</h2>" % text_content)

print ("</body>")

Passing Drop Down Box Data to CGI Program

The Drop-Down Box is used when we have many options available but only one or two are

selected.

Here is an HTML code example for a form with one drop-down box-

<form action="/cgi-bin/dropdown.py" method="post" target="_blank">

<select name="dropdown">

<option value="Maths" selected>Maths</option>

<option value="Physics">Physics</option>

</select>

<input type="submit" value="Submit"/>

</form>

The result of this code is the following form-

Maths

Submit

Following is the dropdown.py script to handle the input given by web browser.

#!/usr/bin/python3

Import modules for CGI handling

import cgi, cgitb

Python 3

370

Create instance of FieldStorage

form = cgi.FieldStorage()

Get data from fields

if form.getvalue('dropdown'):

 subject = form.getvalue('dropdown')

else:

 subject = "Not entered"

print "Content-type:text/html")

print()

print ("<html>")

print ("<head>")

print ("<title>Dropdown Box - Sixth CGI Program</title>")

print ("</head>")

print ("<body>")

print ("<h2> Selected Subject is %s</h2>" % subject)

print ("</body>")

print ("</html>")

Using Cookies in CGI

HTTP protocol is a stateless protocol. For a commercial website, it is required to maintain

session information among different pages. For example, one user registration ends after

completing many pages. How to maintain user's session information across all the web

pages?

In many situations, using cookies is the most efficient method of remembering and

tracking preferences, purchases, commissions, and other information required for better

visitor experience or site statistics.

How It Works?

Your server sends some data to the visitor's browser in the form of a cookie. The browser

may accept the cookie. If it does, it is stored as a plain text record on the visitor's hard

drive. Now, when the visitor arrives at another page on your site, the cookie is available

for retrieval. Once retrieved, your server knows/remembers what was stored.

Cookies are a plain text data record of five variable-length fields-

 Expires: The date the cookie will expire. If this is blank, the cookie will expire when

the visitor quits the browser.

Python 3

371

 Domain: The domain name of your site.

 Path: The path to the directory or web page that sets the cookie. This may be

blank if you want to retrieve the cookie from any directory or page.

 Secure: If this field contains the word "secure", then the cookie may only be

retrieved with a secure server. If this field is blank, no such restriction exists.

 Name=Value: Cookies are set and retrieved in the form of key and value pairs.

Setting up Cookies

It is very easy to send cookies to the browser. These cookies are sent along with the HTTP

Header before the Content-type field is sent. Assuming you want to set the User ID and

Password as cookies, Cookies are set as follows-

#!/usr/bin/python3

print ("Set-Cookie:UserID=XYZ;\r\n")

print ("Set-Cookie:Password=XYZ123;\r\n")

print ("Set-Cookie:Expires=Tuesday, 31-Dec-2007 23:12:40 GMT";\r\n")

print ("Set-Cookie:Domain=www.tutorialspoint.com;\r\n")

print ("Set-Cookie:Path=/perl;\n")

print ("Content-type:text/html\r\n\r\n")

...........Rest of the HTML Content....

From this example, you must have understood how to set cookies. We use Set-

Cookie HTTP header to set the cookies.

It is optional to set cookies attributes like Expires, Domain, and Path. It is notable that the

cookies are set before sending the magic line "Content-type:text/html\r\n\r\n.

Retrieving Cookies

It is very easy to retrieve all the set cookies. Cookies are stored in CGI environment

variable HTTP_COOKIE and they will have the following form-

key1=value1;key2=value2;key3=value3....

Here is an example of how to retrieve cookies-

#!/usr/bin/python3

Import modules for CGI handling

from os import environ

import cgi, cgitb

Python 3

372

if environ.has_key('HTTP_COOKIE'):

 for cookie in map(strip, split(environ['HTTP_COOKIE'], ';')):

 (key, value) = split(cookie, '=');

 if key == "UserID":

 user_id = value

 if key == "Password":

 password = value

print ("User ID = %s" % user_id)

print ("Password = %s" % password)

This produces the following result for the cookies set by the above script-

User ID = XYZ

Password = XYZ123

File Upload Example

To upload a file, the HTML form must have the enctype attribute set to multipart/form-

data. The input tag with the file type creates a "Browse" button.

<html>

<body>

 <form enctype="multipart/form-data"

 action="save_file.py" method="post">

 <p>File: <input type="file" name="filename" /></p>

 <p><input type="submit" value="Upload" /></p>

 </form>

</body>

</html>

The result of this code is the following form-

File:

Upload

The above example has been disabled intentionally to save the people from uploading the

file on our server, but you can try the above code with your server.

Python 3

373

Here is the script save_file.py to handle file upload-

#!/usr/bin/python3

import cgi, os

import cgitb; cgitb.enable()

form = cgi.FieldStorage()

Get filename here.

fileitem = form['filename']

Test if the file was uploaded

if fileitem.filename:

 # strip leading path from file name to avoid

 # directory traversal attacks

 fn = os.path.basename(fileitem.filename)

 open('/tmp/' + fn, 'wb').write(fileitem.file.read())

 message = 'The file "' + fn + '" was uploaded successfully'

else:

 message = 'No file was uploaded'

print ("""\

Content-Type: text/html\n

<html>

<body>

 <p>%s</p>

</body>

</html>

""" % (message,))

If you run the above script on Unix/Linux, then you need to take care of replacing file

separator as follows, otherwise on your windows machine above open() statement should

work fine.

Python 3

374

fn = os.path.basename(fileitem.filename.replace("\\", "/"))

How To Raise a "File Download" Dialog Box ?

Sometimes, it is desired that you want to give an option where a user can click a link and

it will pop up a "File Download" dialogue box to the user instead of displaying actual

content. This is very easy and can be achieved through HTTP header. This HTTP header is

different from the header mentioned in the previous section.

For example, if you want make a FileName file downloadable from a given link, then its

syntax is as follows-

#!/usr/bin/python3

HTTP Header

print ("Content-Type:application/octet-stream; name=\"FileName\"\r\n")

print ("Content-Disposition: attachment; filename=\"FileName\"\r\n\n")

Actual File Content will go hear.

fo = open("foo.txt", "rb")

str = fo.read()

print (str)

Close opened file

fo.close()

Python 3

375

The Python standard for database interfaces is the Python DB-API. Most Python database

interfaces adhere to this standard.

You can choose the right database for your application. Python Database API supports a

wide range of database servers such as −

 GadFly

 mSQL

 MySQL

 PostgreSQL

 Microsoft SQL Server 2000

 Informix

 Interbase

 Oracle

 Sybase

 SQLite

Here is the list of available Python database interfaces: Python Database Interfaces and

APIs. You must download a separate DB API module for each database you need to access.

For example, if you need to access an Oracle database as well as a MySQL database, you

must download both the Oracle and the MySQL database modules.

The DB API provides a minimal standard for working with databases using Python

structures and syntax wherever possible. This API includes the following:

 Importing the API module.

 Acquiring a connection with the database.

 Issuing SQL statements and stored procedures.

 Closing the connection

Python has an in-built support for SQLite. In this section, we would learn all the concepts

using MySQL. MySQLdb module, a popular interface with MySQL is not compatible with

Python 3. Instead, we shall use PyMySQL module.

What is PyMySQL ?

PyMySQL is an interface for connecting to a MySQL database server from Python. It

implements the Python Database API v2.0 and contains a pure-Python MySQL client

library. The goal of PyMySQL is to be a drop-in replacement for MySQLdb .

22. Python 3 – MySQL Database Access

http://wiki.python.org/moin/DatabaseInterfaces
http://wiki.python.org/moin/DatabaseInterfaces
http://www.pymysql.org/

Python 3

376

How do I Install PyMySQL?

Before proceeding further, you make sure you have PyMySQL installed on your machine.

Just type the following in your Python script and execute it-

#!/usr/bin/python3

import PyMySQL

If it produces the following result, then it means MySQLdb module is not installed-

Traceback (most recent call last):

 File “test.py”, line 3, in <module>

 Import PyMySQL

ImportError: No module named PyMySQL

The last stable release is available on PyPI and can be installed with pip:

pip install PyMySQL

Alternatively (e.g. if pip is not available), a tarball can be downloaded from GitHub and

installed with Setuptools as follows-

$ # X.X is the desired PyMySQL version (e.g. 0.5 or 0.6).

$ curl -L https://github.com/PyMySQL/PyMySQL/tarball/pymysql-X.X | tar xz

$ cd PyMySQL*

$ python setup.py install

$ # The folder PyMySQL* can be safely removed now.

Note: Make sure you have root privilege to install the above module.

Database Connection

Before connecting to a MySQL database, make sure of the following points-

 You have created a database TESTDB.

 You have created a table EMPLOYEE in TESTDB.

 This table has fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.

 User ID "testuser" and password "test123" are set to access TESTDB.

 Python module PyMySQL is installed properly on your machine.

 You have gone through MySQL tutorial to understand MySQL Basics.

https://github.com/PyMySQL/PyMySQL
http://www.tutorialspoint.com/mysql/index.htm

Python 3

377

Example

Following is an example of connecting with MySQL database "TESTDB"-

#!/usr/bin/python3

import PyMySQL

Open database connection

db = PyMySQL.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

execute SQL query using execute() method.

cursor.execute("SELECT VERSION()")

Fetch a single row using fetchone() method.

data = cursor.fetchone()

print ("Database version : %s " % data)

disconnect from server

db.close()

While running this script, it produces the following result-

Database version : 5.5.20-log

If a connection is established with the datasource, then a Connection Object is returned

and saved into db for further use, otherwise db is set to None. Next, db object is used to

create a cursor object, which in turn is used to execute SQL queries. Finally, before

coming out, it ensures that the database connection is closed and resources are released.

Creating Database Table

Once a database connection is established, we are ready to create tables or records into

the database tables using execute method of the created cursor.

Example

Let us create a Database table EMPLOYEE-

#!/usr/bin/python3

import PyMySQL

Python 3

378

Open database connection

db = PyMySQL.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Drop table if it already exist using execute() method.

cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

Create table as per requirement

sql = """CREATE TABLE EMPLOYEE (

 FIRST_NAME CHAR(20) NOT NULL,

 LAST_NAME CHAR(20),

 AGE INT,

 SEX CHAR(1),

 INCOME FLOAT)"""

cursor.execute(sql)

disconnect from server

db.close()

INSERT Operation

The INSERT Operation is required when you want to create your records into a database

table.

Example

The following example, executes SQL INSERT statement to create a record in the

EMPLOYEE table-

#!/usr/bin/python3

import PyMySQL

Open database connection

db = PyMySQL.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

Python 3

379

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = """INSERT INTO EMPLOYEE(FIRST_NAME,

 LAST_NAME, AGE, SEX, INCOME)

 VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

The above example can be written as follows to create SQL queries dynamically-

#!/usr/bin/python3

import PyMySQL

Open database connection

db = PyMySQL.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \

 LAST_NAME, AGE, SEX, INCOME) \

 VALUES ('%s', '%s', '%d', '%c', '%d')" % \

 ('Mac', 'Mohan', 20, 'M', 2000)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

Python 3

380

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Example

The following code segment is another form of execution where you can pass parameters

directly-

..................................

user_id = "test123"

password = "password"

con.execute('insert into Login values("%s", "%s")' % \

 (user_id, password))

..................................

READ Operation

READ Operation on any database means to fetch some useful information from the

database.

Once the database connection is established, you are ready to make a query into this

database. You can use either fetchone() method to fetch a single record

or fetchall() method to fetch multiple values from a database table.

 fetchone(): It fetches the next row of a query result set. A result set is an object

that is returned when a cursor object is used to query a table.

 fetchall(): It fetches all the rows in a result set. If some rows have already been

extracted from the result set, then it retrieves the remaining rows from the result

set.

 rowcount: This is a read-only attribute and returns the number of rows that were

affected by an execute() method.

Python 3

381

Example

The following procedure queries all the records from EMPLOYEE table having salary more

than 1000-

#!/usr/bin/python3

import PyMySQL

Open database connection

db = PyMySQL.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = "SELECT * FROM EMPLOYEE \

 WHERE INCOME > '%d'" % (1000)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Fetch all the rows in a list of lists.

 results = cursor.fetchall()

 for row in results:

 fname = row[0]

 lname = row[1]

 age = row[2]

 sex = row[3]

 income = row[4]

 # Now print fetched result

 print ("fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \

 (fname, lname, age, sex, income))

except:

 print ("Error: unable to fecth data")

disconnect from server

db.close()

Python 3

382

This will produce the following result-

fname=Mac, lname=Mohan, age=20, sex=M, income=2000

Update Operation

UPDATE Operation on any database means to update one or more records, which are

already available in the database.

The following procedure updates all the records having SEX as 'M'. Here, we increase the

AGE of all the males by one year.

Example

#!/usr/bin/python3

import PyMySQL

Open database connection

db = PyMySQL.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to UPDATE required records

sql = "UPDATE EMPLOYEE SET AGE = AGE + 1

 WHERE SEX = '%c'" % ('M')

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Python 3

383

DELETE Operation

DELETE operation is required when you want to delete some records from your database.

Following is the procedure to delete all the records from EMPLOYEE where AGE is more

than 20-

Example

#!/usr/bin/python3

import PyMySQL

Open database connection

db = PyMySQL.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to DELETE required records

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Performing Transactions

Transactions are a mechanism that ensure data consistency. Transactions have the

following four properties-

 Atomicity: Either a transaction completes or nothing happens at all.

 Consistency: A transaction must start in a consistent state and leave the system

in a consistent state.

 Isolation: Intermediate results of a transaction are not visible outside the current

transaction.

Python 3

384

 Durability: Once a transaction was committed, the effects are persistent, even

after a system failure.

The Python DB API 2.0 provides two methods to either commit or rollback a transaction.

Example

You already know how to implement transactions. Here is a similar example-

Prepare SQL query to DELETE required records

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

COMMIT Operation

Commit is an operation, which gives a green signal to the database to finalize the changes,

and after this operation, no change can be reverted back.

Here is a simple example to call the commit method.

 db.commit()

ROLLBACK Operation

If you are not satisfied with one or more of the changes and you want to revert back those

changes completely, then use the rollback() method.

Here is a simple example to call the rollback() method.

 db.rollback()

Disconnecting Database

To disconnect the Database connection, use the close() method.

 db.close()

If the connection to a database is closed by the user with the close() method, any

outstanding transactions are rolled back by the DB. However, instead of depending on any

Python 3

385

of the DB lower level implementation details, your application would be better off calling

commit or rollback explicitly.

Handling Errors

There are many sources of errors. A few examples are a syntax error in an executed SQL

statement, a connection failure, or calling the fetch method for an already cancelled or

finished statement handle.

The DB API defines a number of errors that must exist in each database module. The

following table lists these exceptions.

Exception Description

Warning Used for non-fatal issues. Must subclass StandardError.

Error Base class for errors. Must subclass StandardError.

InterfaceError Used for errors in the database module, not the database itself.

Must subclass Error.

DatabaseError Used for errors in the database. Must subclass Error.

DataError Subclass of DatabaseError that refers to errors in the data.

OperationalError Subclass of DatabaseError that refers to errors such as the loss of

a connection to the database. These errors are generally outside

of the control of the Python scripter.

IntegrityError Subclass of DatabaseError for situations that would damage the

relational integrity, such as uniqueness constraints or foreign

keys.

InternalError Subclass of DatabaseError that refers to errors internal to the

database module, such as a cursor no longer being active.

ProgrammingError Subclass of DatabaseError that refers to errors such as a bad table

name and other things that can safely be blamed on you.

NotSupportedError Subclass of DatabaseError that refers to trying to call unsupported

functionality.

Python 3

386

Your Python scripts should handle these errors, but before using any of the above

exceptions, make sure your MySQLdb has support for that exception. You can get more

information about them by reading the DB API 2.0 specification.

Python 3

387

Python provides two levels of access to the network services. At a low level, you can access

the basic socket support in the underlying operating system, which allows you to

implement clients and servers for both connection-oriented and connectionless protocols.

Python also has libraries that provide higher-level access to specific application-level

network protocols, such as FTP, HTTP, and so on.

This chapter gives you an understanding on the most famous concept in Networking -

Socket Programming.

What is Sockets?

Sockets are the endpoints of a bidirectional communications channel. Sockets may

communicate within a process, between processes on the same machine, or between

processes on different continents.

Sockets may be implemented over a number of different channel types: Unix domain

sockets, TCP, UDP, and so on. The socket library provides specific classes for handling the

common transports as well as a generic interface for handling the rest.

Sockets have their own vocabulary-

Term Description

domain The family of protocols that is used as the transport mechanism. These

values are constants such as AF_INET, PF_INET, PF_UNIX, PF_X25,

and so on.

type The type of communications between the two endpoints, typically

SOCK_STREAM for connection-oriented protocols and SOCK_DGRAM

for connectionless protocols.

protocol Typically zero, this may be used to identify a variant of a protocol

within a domain and type.

hostname The identifier of a network interface:

A string, which can be a host name, a dotted-quad address, or an IPV6

address in colon (and possibly dot) notation

A string "<broadcast>", which specifies an INADDR_BROADCAST

address.

A zero-length string, which specifies INADDR_ANY, or

23. Python 3 – Network Programming

Python 3

388

An Integer, interpreted as a binary address in host byte order.

port Each server listens for clients calling on one or more ports. A port may

be a Fixnum port number, a string containing a port number, or the

name of a service.

The socket Module

To create a socket, you must use the socket.socket() function available in the

socket module, which has the general syntax-

s = socket.socket (socket_family, socket_type, protocol=0)

Here is the description of the parameters-

 socket_family: This is either AF_UNIX or AF_INET, as explained earlier.

 socket_type: This is either SOCK_STREAM or SOCK_DGRAM.

 protocol: This is usually left out, defaulting to 0.

Once you have socket object, then you can use the required functions to create your client

or server program. Following is the list of functions required-

Server Socket Methods

Method Description

s.bind() This method binds address (hostname, port number pair) to socket.

s.listen() This method sets up and start TCP listener.

s.accept() This passively accept TCP client connection, waiting until connection

arrives (blocking).

Client Socket Methods

Method Description

s.connect() This method actively initiates TCP server connection.

Python 3

389

General Socket Methods

Method Description

s.recv() This method receives TCP message

s.send() This method transmits TCP message

s.recvfrom() This method receives UDP message

s.sendto() This method transmits UDP message

s.close() This method closes socket

socket.gethostname() Returns the hostname.

A Simple Server

To write Internet servers, we use the socket function available in socket module to create

a socket object. A socket object is then used to call other functions to setup a socket

server.

Now call the bind(hostname, port) function to specify a port for your service on the

given host.

Next, call the accept method of the returned object. This method waits until a client

connects to the port you specified, and then returns a connection object that represents

the connection to that client.

#!/usr/bin/python3 # This is server.py file

import socket

create a socket object

serversocket = socket.socket(

 socket.AF_INET, socket.SOCK_STREAM)

get local machine name

host = socket.gethostname()

port = 9999

Python 3

390

bind to the port

serversocket.bind((host, port))

queue up to 5 requests

serversocket.listen(5)

while True:

 # establish a connection

 clientsocket,addr = serversocket.accept()

 print("Got a connection from %s" % str(addr))

 msg='Thank you for connecting'+ "\r\n"

 clientsocket.send(msg.encode('ascii'))

 clientsocket.close()

A Simple Client

Let us write a very simple client program, which opens a connection to a given port 12345

and a given host. It is very simple to create a socket client using the

Python's socket module function.

The socket.connect(hosname, port) opens a TCP connection to hostname on the port.

Once you have a socket open, you can read from it like any IO object. When done,

remember to close it, as you would close a file.

The following code is a very simple client that connects to a given host and port, reads

any available data from the socket, and then exits-

#!/usr/bin/python3 # This is client.py file

import socket

create a socket object

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

get local machine name

host = socket.gethostname()

port = 9999

connection to hostname on the port.

s.connect((host, port))

Receive no more than 1024 bytes

msg = s.recv(1024)

s.close()

Python 3

391

print (msg.decode('ascii'))

Now run this server.py in the background and then run the above client.py to see the

result.

Following would start a server in background.

$ python server.py &

Once server is started run client as follows:

$ python client.py

This would produce the following result-

on server terminal

Got a connection from ('192.168.1.10', 3747)

On client terminal

Thank you for connecting

Python Internet Modules

A list of some important modules in Python Network/Internet programming are given

below.

Protocol Common function Port No Python module

HTTP Web pages 80 httplib, urllib, xmlrpclib

NNTP Usenet news 119 nntplib

FTP File transfers 20 ftplib, urllib

SMTP Sending email 25 smtplib

POP3 Fetching email 110 poplib

IMAP4 Fetching email 143 imaplib

Telnet Command lines 23 telnetlib

Gopher Document transfers 70 gopherlib, urllib

Python 3

392

Please check all the libraries mentioned above to work with FTP, SMTP, POP, and IMAP

protocols.

Further Readings

This was a quick start with the Socket Programming. It is a vast subject. It is

recommended to go through the following link to find more detail-

 Unix Socket Programming.

 Python Socket Library and Modules.

http://www.tutorialspoint.com/unix_sockets/index.htm
http://docs.python.org/3.0/library/socket.html

Python 3

393

Simple Mail Transfer Protocol (SMTP) is a protocol, which handles sending an e-mail and

routing e-mail between mail servers.

Python provides smtplib module, which defines an SMTP client session object that can be

used to send mails to any Internet machine with an SMTP or ESMTP listener daemon.

Here is a simple syntax to create one SMTP object, which can later be used to send an e-

mail-

import smtplib

smtpObj = smtplib.SMTP([host [, port [, local_hostname]]])

Here is the detail of the parameters-

 host: This is the host running your SMTP server. You can specifiy IP address of the

host or a domain name like tutorialspoint.com. This is an optional argument.

 port: If you are providing host argument, then you need to specify a port, where

SMTP server is listening. Usually this port would be 25.

 local_hostname: If your SMTP server is running on your local machine, then you

can specify just localhost as the option.

An SMTP object has an instance method called sendmail, which is typically, used to do

the work of mailing a message. It takes three parameters-

 The sender - A string with the address of the sender.

 The receivers - A list of strings, one for each recipient.

 The message - A message as a string formatted as specified in the various RFCs.

Example

Here is a simple way to send one e-mail using Python script. Try it once-

#!/usr/bin/python3

import smtplib

sender ='from@fromdomain.com'

receivers =['to@todomain.com']

message ="""From: From Person <from@fromdomain.com>

To: To Person <to@todomain.com>

Subject: SMTP e-mail test

24. Python 3 – Sending Email using SMTP

Python 3

394

This is a test e-mail message.

"""

try:

 smtpObj = smtplib.SMTP('localhost')

 smtpObj.sendmail(sender, receivers, message)

print ("Successfully sent email")

except smtplib.SMTPException:

print ("Error: unable to send email")

Here, you have placed a basic e-mail in message, using a triple quote, taking care to

format the headers correctly. An e-mail requires a From, To, and a Subject header,

separated from the body of the e-mail with a blank line.

To send the mail you use smtpObj to connect to the SMTP server on the local machine.

Then use the sendmail method along with the message, the from address, and the

destination address as parameters (even though the from and to addresses are within the

e-mail itself, these are not always used to route the mail).

If you are not running an SMTP server on your local machine, you can the usesmtplib client

to communicate with a remote SMTP server. Unless you are using a webmail service (such

as gmail or Yahoo! Mail), your e-mail provider must have provided you with the outgoing

mail server details that you can supply them, as follows-

mail=smtplib.SMTP('smtp.gmail.com', 587)

Sending an HTML e-mail using Python

When you send a text message using Python, then all the content is treated as simple

text. Even if you include HTML tags in a text message, it is displayed as simple text and

HTML tags will not be formatted according to the HTML syntax. However, Python provides

an option to send an HTML message as actual HTML message.

While sending an e-mail message, you can specify a Mime version, content type and the

character set to send an HTML e-mail.

Example

Following is an example to send the HTML content as an e-mail. Try it once-

#!/usr/bin/python3

import smtplib

message = """From: From Person <from@fromdomain.com>

To: To Person <to@todomain.com>

Python 3

395

MIME-Version: 1.0

Content-type: text/html

Subject: SMTP HTML e-mail test

This is an e-mail message to be sent in HTML format

This is HTML message.

<h1>This is headline.</h1>

"""

try:

 smtpObj = smtplib.SMTP('localhost')

 smtpObj.sendmail(sender, receivers, message)

 print "Successfully sent email"

except SMTPException:

 print "Error: unable to send email"

Sending Attachments as an E-mail

To send an e-mail with mixed content requires setting the Content-type header to

multipart/mixed. Then, the text and the attachment sections can be specified within

boundaries.

A boundary is started with two hyphens followed by a unique number, which cannot appear

in the message part of the e-mail. A final boundary denoting the e-mail's final section must

also end with two hyphens.

The attached files should be encoded with the pack("m") function to have base 64

encoding before transmission.

Example

Following is an example, which sends a file /tmp/test.txt as an attachment. Try it once-

#!/usr/bin/python3

import smtplib

import base64

filename = "/tmp/test.txt"

Read a file and encode it into base64 format

fo = open(filename, "rb")

filecontent = fo.read()

Python 3

396

encodedcontent = base64.b64encode(filecontent) # base64

sender = 'webmaster@tutorialpoint.com'

reciever = 'amrood.admin@gmail.com'

marker = "AUNIQUEMARKER"

body ="""

This is a test email to send an attachement.

"""

Define the main headers.

part1 = """From: From Person <me@fromdomain.net>

To: To Person <amrood.admin@gmail.com>

Subject: Sending Attachement

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary=%s

--%s

""" % (marker, marker)

Define the message action

part2 = """Content-Type: text/plain

Content-Transfer-Encoding:8bit

%s

--%s

""" % (body,marker)

Define the attachment section

part3 = """Content-Type: multipart/mixed; name=\"%s\"

Content-Transfer-Encoding:base64

Content-Disposition: attachment; filename=%s

%s

--%s--

""" %(filename, filename, encodedcontent, marker)

message = part1 + part2 + part3

try:

 smtpObj = smtplib.SMTP('localhost')

 smtpObj.sendmail(sender, reciever, message)

Python 3

397

 print ("Successfully sent email")

except Exception:

 print ("Error: unable to send email")

Python 3

398

Running several threads is similar to running several different programs concurrently, but

with the following benefits-

 Multiple threads within a process share the same data space with the main thread

and can therefore share information or communicate with each other more easily

than if they were separate processes.

 Threads are sometimes called light-weight processes and they do not require much

memory overhead; they are cheaper than processes.

A thread has a beginning, an execution sequence, and a conclusion. It has an instruction

pointer that keeps track of where within its context is it currently running.

 It can be pre-empted (interrupted).

 It can temporarily be put on hold (also known as sleeping) while other threads are

running - this is called yielding.

There are two different kind of threads-

 kernel thread

 user thread

Kernel Threads are a part of the operating system, while the User-space threads are not

implemented in the kernel.

There are two modules, which support the usage of threads in Python3-

 _thread

 threading

The thread module has been "deprecated" for quite a long time. Users are encouraged to

use the threading module instead. Hence, in Python 3, the module "thread" is not available

anymore. However, it has been renamed to "_thread" for backward compatibilities in

Python3.

Starting a New Thread

To spawn another thread, you need to call the following method available in the thread

module-

_thread.start_new_thread (function, args[, kwargs])

This method call enables a fast and efficient way to create new threads in both Linux and

Windows.

The method call returns immediately and the child thread starts and calls function with

the passed list of agrs. When the function returns, the thread terminates.

25. Python 3 – Multithreaded Programming

Python 3

399

Here, args is a tuple of arguments; use an empty tuple to call function without passing

any arguments. kwargs is an optional dictionary of keyword arguments.

Example

#!/usr/bin/python3

import _thread

import time

Define a function for the thread

def print_time(threadName, delay):

 count = 0

 while count < 5:

 time.sleep(delay)

 count += 1

 print ("%s: %s" % (threadName, time.ctime(time.time())))

Create two threads as follows

try:

 _thread.start_new_thread(print_time, ("Thread-1", 2,))

 _thread.start_new_thread(print_time, ("Thread-2", 4,))

except:

 print ("Error: unable to start thread")

while 1:

 pass

When the above code is executed, it produces the following result-

Thread-1: Fri Feb 19 09:41:39 2016

Thread-2: Fri Feb 19 09:41:41 2016

Thread-1: Fri Feb 19 09:41:41 2016

Thread-1: Fri Feb 19 09:41:43 2016

Thread-2: Fri Feb 19 09:41:45 2016

Thread-1: Fri Feb 19 09:41:45 2016

Thread-1: Fri Feb 19 09:41:47 2016

Thread-2: Fri Feb 19 09:41:49 2016

Thread-2: Fri Feb 19 09:41:53 2016

Python 3

400

Program goes in an infinite loop. You will have to press ctrl-c to stop.

Although it is very effective for low-level threading, the thread module is very limited

compared to the newer threading module.

The Threading Module

The newer threading module included with Python 2.4 provides much more powerful, high-

level support for threads than the thread module discussed in the previous section.

The threading module exposes all the methods of the thread module and provides some

additional methods:

 threading.activeCount(): Returns the number of thread objects that are active.

 threading.currentThread(): Returns the number of thread objects in the caller's

thread control.

 threading.enumerate(): Returns a list of all the thread objects that are currently

active.

In addition to the methods, the threading module has the Thread class that implements

threading. The methods provided by the Thread class are as follows:

 run(): The run() method is the entry point for a thread.

 start(): The start() method starts a thread by calling the run method.

 join([time]): The join() waits for threads to terminate.

 isAlive(): The isAlive() method checks whether a thread is still executing.

 getName(): The getName() method returns the name of a thread.

 setName(): The setName() method sets the name of a thread.

Creating Thread Using Threading Module

To implement a new thread using the threading module, you have to do the following −

 Define a new subclass of the Thread class.

 Override the __init__(self [,args]) method to add additional arguments.

 Then, override the run(self [,args]) method to implement what the thread should

do when started.

Once you have created the new Thread subclass, you can create an instance of it and then

start a new thread by invoking the start(), which in turn calls the run()method.

Example

#!/usr/bin/python3

Python 3

401

import threading

import time

exitFlag = 0

class myThread (threading.Thread):

 def __init__(self, threadID, name, counter):

 threading.Thread.__init__(self)

 self.threadID = threadID

 self.name = name

 self.counter = counter

 def run(self):

 print ("Starting " + self.name)

 print_time(self.name, self.counter, 5)

 print ("Exiting " + self.name)

def print_time(threadName, delay, counter):

 while counter:

 if exitFlag:

 threadName.exit()

 time.sleep(delay)

 print ("%s: %s" % (threadName, time.ctime(time.time())))

 counter -= 1

Create new threads

thread1 = myThread(1, "Thread-1", 1)

thread2 = myThread(2, "Thread-2", 2)

Start new Threads

thread1.start()

thread2.start()

thread1.join()

thread2.join()

print ("Exiting Main Thread")

When we run the above program, it produces the following result-

Starting Thread-1

Starting Thread-2

Thread-1: Fri Feb 19 10:00:21 2016

Thread-2: Fri Feb 19 10:00:22 2016

Thread-1: Fri Feb 19 10:00:22 2016

Python 3

402

Thread-1: Fri Feb 19 10:00:23 2016

Thread-2: Fri Feb 19 10:00:24 2016

Thread-1: Fri Feb 19 10:00:24 2016

Thread-1: Fri Feb 19 10:00:25 2016

Exiting Thread-1

Thread-2: Fri Feb 19 10:00:26 2016

Thread-2: Fri Feb 19 10:00:28 2016

Thread-2: Fri Feb 19 10:00:30 2016

Exiting Thread-2

Exiting Main Thread

Synchronizing Threads

The threading module provided with Python includes a simple-to-implement locking

mechanism that allows you to synchronize threads. A new lock is created by calling

the Lock() method, which returns the new lock.

The acquire(blocking) method of the new lock object is used to force the threads to run

synchronously. The optional blocking parameter enables you to control whether the thread

waits to acquire the lock.

If blocking is set to 0, the thread returns immediately with a 0 value if the lock cannot be

acquired and with a 1 if the lock was acquired. If blocking is set to 1, the thread blocks

and wait for the lock to be released.

The release() method of the new lock object is used to release the lock when it is no longer

required.

Example

#!/usr/bin/python3

import threading

import time

class myThread (threading.Thread):

 def __init__(self, threadID, name, counter):

 threading.Thread.__init__(self)

 self.threadID = threadID

 self.name = name

 self.counter = counter

 def run(self):

 print ("Starting " + self.name)

 # Get lock to synchronize threads

 threadLock.acquire()

 print_time(self.name, self.counter, 3)

Python 3

403

 # Free lock to release next thread

 threadLock.release()

def print_time(threadName, delay, counter):

 while counter:

 time.sleep(delay)

 print ("%s: %s" % (threadName, time.ctime(time.time())))

 counter -= 1

threadLock = threading.Lock()

threads = []

Create new threads

thread1 = myThread(1, "Thread-1", 1)

thread2 = myThread(2, "Thread-2", 2)

Start new Threads

thread1.start()

thread2.start()

Add threads to thread list

threads.append(thread1)

threads.append(thread2)

Wait for all threads to complete

for t in threads:

 t.join()

print ("Exiting Main Thread")

When the above code is executed, it produces the following result-

Starting Thread-1

Starting Thread-2

Thread-1: Fri Feb 19 10:04:14 2016

Thread-1: Fri Feb 19 10:04:15 2016

Thread-1: Fri Feb 19 10:04:16 2016

Thread-2: Fri Feb 19 10:04:18 2016

Thread-2: Fri Feb 19 10:04:20 2016

Thread-2: Fri Feb 19 10:04:22 2016

Exiting Main Thread

Python 3

404

Multithreaded Priority Queue

The Queue module allows you to create a new queue object that can hold a specific

number of items. There are following methods to control the Queue −

 get(): The get() removes and returns an item from the queue.

 put(): The put adds item to a queue.

 qsize() : The qsize() returns the number of items that are currently in the queue.

 empty(): The empty() returns True if queue is empty; otherwise, False.

 full(): the full() returns True if queue is full; otherwise, False.

Example

#!/usr/bin/python3

import queue

import threading

import time

exitFlag = 0

class myThread (threading.Thread):

 def __init__(self, threadID, name, q):

 threading.Thread.__init__(self)

 self.threadID = threadID

 self.name = name

 self.q = q

 def run(self):

 print ("Starting " + self.name)

 process_data(self.name, self.q)

 print ("Exiting " + self.name)

def process_data(threadName, q):

 while not exitFlag:

 queueLock.acquire()

 if not workQueue.empty():

 data = q.get()

 queueLock.release()

 print ("%s processing %s" % (threadName, data))

 else:

 queueLock.release()

Python 3

405

 time.sleep(1)

threadList = ["Thread-1", "Thread-2", "Thread-3"]

nameList = ["One", "Two", "Three", "Four", "Five"]

queueLock = threading.Lock()

workQueue = queue.Queue(10)

threads = []

threadID = 1

Create new threads

for tName in threadList:

 thread = myThread(threadID, tName, workQueue)

 thread.start()

 threads.append(thread)

 threadID += 1

Fill the queue

queueLock.acquire()

for word in nameList:

 workQueue.put(word)

queueLock.release()

Wait for queue to empty

while not workQueue.empty():

 pass

Notify threads it's time to exit

exitFlag = 1

Wait for all threads to complete

for t in threads:

 t.join()

print ("Exiting Main Thread")

When the above code is executed, it produces the following result-

Starting Thread-1

Starting Thread-2

Starting Thread-3

Python 3

406

Thread-1 processing One

Thread-2 processing Two

Thread-3 processing Three

Thread-1 processing Four

Thread-2 processing Five

Exiting Thread-3

Exiting Thread-1

Exiting Thread-2

Exiting Main Thread

Python 3

407

XML is a portable, open source language that allows programmers to develop applications

that can be read by other applications, regardless of operating system and/or

developmental language.

What is XML?

The Extensible Markup Language (XML) is a markup language much like HTML or SGML.

This is recommended by the World Wide Web Consortium and available as an open

standard.

XML is extremely useful for keeping track of small to medium amounts of data without

requiring an SQL- based backbone.

XML Parser Architectures and APIs

The Python standard library provides a minimal but useful set of interfaces to work with

XML.

The two most basic and broadly used APIs to XML data are the SAX and DOM interfaces.

 Simple API for XML (SAX): Here, you register callbacks for events of interest

and then let the parser proceed through the document. This is useful when your

documents are large or you have memory limitations, it parses the file as it reads

it from the disk and the entire file is never stored in the memory.

 Document Object Model (DOM) API: This is a World Wide Web Consortium

recommendation wherein the entire file is read into the memory and stored in a

hierarchical (tree-based) form to represent all the features of an XML document.

SAX obviously cannot process information as fast as DOM, when working with large files.

On the other hand, using DOM exclusively can really kill your resources, especially if used

on many small files.

SAX is read-only, while DOM allows changes to the XML file. Since these two different APIs

literally complement each other, there is no reason why you cannot use them both for

large projects.

For all our XML code examples, let us use a simple XML file movies.xml as an input-

<collection shelf="New Arrivals">

<movie title="Enemy Behind">

 <type>War, Thriller</type>

 <format>DVD</format>

 <year>2003</year>

 <rating>PG</rating>

 <stars>10</stars>

26. Python 3 – XML Processing

Python 3

408

 <description>Talk about a US-Japan war</description>

</movie>

<movie title="Transformers">

 <type>Anime, Science Fiction</type>

 <format>DVD</format>

 <year>1989</year>

 <rating>R</rating>

 <stars>8</stars>

 <description>A schientific fiction</description>

</movie>

 <movie title="Trigun">

 <type>Anime, Action</type>

 <format>DVD</format>

 <episodes>4</episodes>

 <rating>PG</rating>

 <stars>10</stars>

 <description>Vash the Stampede!</description>

</movie>

<movie title="Ishtar">

 <type>Comedy</type>

 <format>VHS</format>

 <rating>PG</rating>

 <stars>2</stars>

 <description>Viewable boredom</description>

</movie>

</collection>

Parsing XML with SAX APIs

SAX is a standard interface for event-driven XML parsing. Parsing XML with SAX generally

requires you to create your own ContentHandler by subclassing xml.sax.ContentHandler.

Your ContentHandler handles the particular tags and attributes of your flavor(s) of XML. A

ContentHandler object provides methods to handle various parsing events. Its owning

parser calls ContentHandler methods as it parses the XML file.

The methods startDocument and endDocument are called at the start and the end of the

XML file. The method characters(text) is passed the character data of the XML file via the

parameter text.

The ContentHandler is called at the start and end of each element. If the parser is not in

namespace mode, the methods startElement(tag, attributes) andendElement(tag) are

Python 3

409

called; otherwise, the corresponding methodsstartElementNS and endElementNS are

called. Here, tag is the element tag, and attributes is an Attributes object.

Here are other important methods to understand before proceeding-

The make_parser Method

The following method creates a new parser object and returns it. The parser object created

will be of the first parser type, the system finds.

xml.sax.make_parser([parser_list])

Here is the detail of the parameters-

 parser_list: The optional argument consisting of a list of parsers to use, which

must all implement the make_parser method.

The parse Method

The following method creates a SAX parser and uses it to parse a document.

xml.sax.parse(xmlfile, contenthandler[, errorhandler])

Here are the details of the parameters-

 xmlfile: This is the name of the XML file to read from.

 contenthandler: This must be a ContentHandler object.

 errorhandler: If specified, errorhandler must be a SAX ErrorHandler object.

The parseString Method

There is one more method to create a SAX parser and to parse the specifiedXML string.

xml.sax.parseString(xmlstring, contenthandler[, errorhandler])

Here are the details of the parameters-

 xmlstring: This is the name of the XML string to read from.

 contenthandler: This must be a ContentHandler object.

 errorhandler: If specified, errorhandler must be a SAX ErrorHandler object.

Example

#!/usr/bin/python3

import xml.sax

Python 3

410

class MovieHandler(xml.sax.ContentHandler):

 def __init__(self):

 self.CurrentData = ""

 self.type = ""

 self.format = ""

 self.year = ""

 self.rating = ""

 self.stars = ""

 self.description = ""

 # Call when an element starts

 def startElement(self, tag, attributes):

 self.CurrentData = tag

 if tag == "movie":

 print ("*****Movie*****")

 title = attributes["title"]

 print ("Title:", title)

 # Call when an elements ends

 def endElement(self, tag):

 if self.CurrentData == "type":

 print ("Type:", self.type)

 elif self.CurrentData == "format":

 print ("Format:", self.format)

 elif self.CurrentData == "year":

 print ("Year:", self.year)

 elif self.CurrentData == "rating":

 print ("Rating:", self.rating)

 elif self.CurrentData == "stars":

 print ("Stars:", self.stars)

 elif self.CurrentData == "description":

 print ("Description:", self.description)

 self.CurrentData = ""

 # Call when a character is read

 def characters(self, content):

 if self.CurrentData == "type":

 self.type = content

 elif self.CurrentData == "format":

Python 3

411

 self.format = content

 elif self.CurrentData == "year":

 self.year = content

 elif self.CurrentData == "rating":

 self.rating = content

 elif self.CurrentData == "stars":

 self.stars = content

 elif self.CurrentData == "description":

 self.description = content

if (__name__ == "__main__"):

 # create an XMLReader

 parser = xml.sax.make_parser()

 # turn off namepsaces

 parser.setFeature(xml.sax.handler.feature_namespaces, 0)

 # override the default ContextHandler

 Handler = MovieHandler()

 parser.setContentHandler(Handler)

 parser.parse("movies.xml")

This would produce the following result-

*****Movie*****

Title: Enemy Behind

Type: War, Thriller

Format: DVD

Year: 2003

Rating: PG

Stars: 10

Description: Talk about a US-Japan war

*****Movie*****

Title: Transformers

Type: Anime, Science Fiction

Format: DVD

Year: 1989

Rating: R

Stars: 8

Python 3

412

Description: A schientific fiction

*****Movie*****

Title: Trigun

Type: Anime, Action

Format: DVD

Rating: PG

Stars: 10

Description: Vash the Stampede!

*****Movie*****

Title: Ishtar

Type: Comedy

Format: VHS

Rating: PG

Stars: 2

Description: Viewable boredom

For a complete detail on SAX API documentation, please refer to the standard Python SAX

APIs.

Parsing XML with DOM APIs

The Document Object Model ("DOM") is a cross-language API from the World Wide Web

Consortium (W3C) for accessing and modifying the XML documents.

The DOM is extremely useful for random-access applications. SAX only allows you a view

of one bit of the document at a time. If you are looking at one SAX element, you have no

access to another.

Here is the easiest way to load an XML document quickly and to create a minidom object

using the xml.dom module. The minidom object provides a simple parser method that

quickly creates a DOM tree from the XML file.

The sample phrase calls the parse(file [,parser]) function of the minidom object to parse

the XML file, designated by file into a DOM tree object.

#!/usr/bin/python3

from xml.dom.minidom import parse

import xml.dom.minidom

Open XML document using minidom parser

DOMTree = xml.dom.minidom.parse("movies.xml")

collection = DOMTree.documentElement

if collection.hasAttribute("shelf"):

 print ("Root element : %s" % collection.getAttribute("shelf"))

http://docs.python.org/library/xml.sax.html
http://docs.python.org/library/xml.sax.html

Python 3

413

Get all the movies in the collection

movies = collection.getElementsByTagName("movie")

Print detail of each movie.

for movie in movies:

 print ("*****Movie*****")

 if movie.hasAttribute("title"):

 print ("Title: %s" % movie.getAttribute("title"))

 type = movie.getElementsByTagName('type')[0]

 print ("Type: %s" % type.childNodes[0].data)

 format = movie.getElementsByTagName('format')[0]

 print ("Format: %s" % format.childNodes[0].data)

 rating = movie.getElementsByTagName('rating')[0]

 print ("Rating: %s" % rating.childNodes[0].data)

 description = movie.getElementsByTagName('description')[0]

 print ("Description: %s" % description.childNodes[0].data)

This would produce the following result-

Root element : New Arrivals

*****Movie*****

Title: Enemy Behind

Type: War, Thriller

Format: DVD

Rating: PG

Description: Talk about a US-Japan war

*****Movie*****

Title: Transformers

Type: Anime, Science Fiction

Format: DVD

Rating: R

Description: A schientific fiction

*****Movie*****

Title: Trigun

Type: Anime, Action

Format: DVD

Python 3

414

Rating: PG

Description: Vash the Stampede!

*****Movie*****

Title: Ishtar

Type: Comedy

Format: VHS

Rating: PG

Description: Viewable boredom

For a complete detail on DOM API documentation, please refer to the standard Python

DOM APIs.

http://docs.python.org/library/xml.dom.html
http://docs.python.org/library/xml.dom.html

Python 3

415

Python provides various options for developing graphical user interfaces (GUIs). The most

important features are listed below.

 Tkinter: Tkinter is the Python interface to the Tk GUI toolkit shipped with Python.

We would look at this option in this chapter.

 wxPython: This is an open-source Python interface for wxWidgets GUI toolkit. You

can find a complete tutorial on WxPython here.

 PyQt:This is also a Python interface for a popular cross-platform Qt GUI library.

TutorialsPoint has a very good tutorial on PyQt here.

 JPython: JPython is a Python port for Java, which gives Python scripts seamless

access to the Java class libraries on the local machinehttp://www.jython.org.

There are many other interfaces available, which you can find them on the net.

Tkinter Programming

Tkinter is the standard GUI library for Python. Python when combined with Tkinter provides

a fast and easy way to create GUI applications. Tkinter provides a powerful object-oriented

interface to the Tk GUI toolkit.

Creating a GUI application using Tkinter is an easy task. All you need to do is perform the

following steps −

 Import the Tkinter module.

 Create the GUI application main window.

 Add one or more of the above-mentioned widgets to the GUI application.

 Enter the main event loop to take action against each event triggered by the user.

Example

#!/usr/bin/python3

import tkinter # note that module name has changed from Tkinter in Python 2 to tkinter in

Python 3

top = tkinter.Tk()

Code to add widgets will go here...

top.mainloop()

27. Python 3 – GUI Programming (Tkinter)

http://www.tutorialspoint.com/wxpython/index.htm
http://www.tutorialspoint.com/pyqt/index.htm
http://www.jython.org/

Python 3

416

This would create a following window-

Tkinter Widgets

Tkinter provides various controls, such as buttons, labels and text boxes used in a GUI

application. These controls are commonly called widgets.

There are currently 15 types of widgets in Tkinter. We present these widgets as well as a

brief description in the following table-

Operator Description

Button The Button widget is used to display the buttons in your

application.

Canvas The Canvas widget is used to draw shapes, such as lines,

ovals, polygons and rectangles, in your application.

Checkbutton The Checkbutton widget is used to display a number of

options as checkboxes. The user can select multiple

options at a time.

Entry The Entry widget is used to display a single-line text field

for accepting values from a user.

Frame The Frame widget is used as a container widget to

organize other widgets.

Label The Label widget is used to provide a single-line caption

for other widgets. It can also contain images.

Python 3

417

Listbox The Listbox widget is used to provide a list of options to

a user.

Menubutton The Menubutton widget is used to display menus in your

application.

Menu The Menu widget is used to provide various commands

to a user. These commands are contained inside

Menubutton.

Message The Message widget is used to display multiline text fields

for accepting values from a user.

Radiobutton The Radiobutton widget is used to display a number of

options as radio buttons. The user can select only one

option at a time.

Scale The Scale widget is used to provide a slider widget.

Scrollbar The Scrollbar widget is used to add scrolling capability to

various widgets, such as list boxes.

Text The Text widget is used to display text in multiple lines.

Toplevel The Toplevel widget is used to provide a separate window

container.

Spinbox The Spinbox widget is a variant of the standard Tkinter

Entry widget, which can be used to select from a fixed

number of values.

PanedWindow A PanedWindow is a container widget that may contain

any number of panes, arranged horizontally or vertically.

LabelFrame A labelframe is a simple container widget. Its primary

purpose is to act as a spacer or container for complex

window layouts.

tkMessageBox This module is used to display the message boxes in your

applications.

Python 3

418

Let us study these widgets in detail.

Tkinter Button

The Button widget is used to add buttons in a Python application. These buttons can display

text or images that convey the purpose of the buttons. You can attach a function or a

method to a button which is called automatically when you click the button.

Syntax

Here is the simple syntax to create this widget-

w = Button (master, option=value, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Option Description

activebackground Background color when the button is under the cursor.

activeforeground Foreground color when the button is under the cursor.

bd Border width in pixels. Default is 2.

bg Normal background color.

command Function or method to be called when the button is clicked.

fg Normal foreground (text) color.

font Text font to be used for the button's label.

height Height of the button in text lines (for textual buttons) or pixels

(for images).

Python 3

419

highlightcolor The color of the focus highlight when the widget has focus.

image Image to be displayed on the button (instead of text).

justify How to show multiple text lines: LEFT to left-justify each line;

CENTER to center them; or RIGHT to right-justify.

padx Additional padding left and right of the text.

pady Additional padding above and below the text.

relief Relief specifies the type of the border. Some of the values are

SUNKEN, RAISED, GROOVE, and RIDGE.

state Set this option to DISABLED to gray out the button and make it

unresponsive. Has the value ACTIVE when the mouse is over it.

Default is NORMAL.

underline Default is -1, meaning that no character of the text on the button

will be underlined. If nonnegative, the corresponding text

character will be underlined.

width Width of the button in letters (if displaying text) or pixels (if

displaying an image).

wraplength If this value is set to a positive number, the text lines will be

wrapped to fit within this length.

Methods

Following are commonly used methods for this widget-

Method Description

flash() Causes the button to flash several times between active and normal

colors. Leaves the button in the state it was in originally. Ignored if

the button is disabled.

invoke() Calls the button's callback, and returns what that function returns. Has

no effect if the button is disabled or there is no callback.

Python 3

420

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

from tkinter import messagebox

top = Tk()

top.geometry("100x100")

def helloCallBack():

 msg=messagebox.showinfo("Hello Python", "Hello World")

B = Button(top, text ="Hello", command = helloCallBack)

B.place(x=50,y=50)

top.mainloop()

When the above code is executed, it produces the following result-

Tkinter Canvas

The Canvas is a rectangular area intended for drawing pictures or other complex layouts.

You can place graphics, text, widgets or frames on a Canvas.

Syntax

Here is the simple syntax to create this widget-

w = Canvas (master, option=value, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Python 3

421

Option Description

bd Border width in pixels. Default is 2.

bg Normal background color.

confine If true (the default), the canvas cannot be scrolled outside of the

scrollregion.

cursor Cursor used in the canvas like arrow, circle, dot etc.

height Size of the canvas in the Y dimension.

highlightcolor Color shown in the focus highlight.

relief Relief specifies the type of the border. Some of the values are

SUNKEN, RAISED, GROOVE, and RIDGE.

scrollregion A tuple (w, n, e, s) that defines over how large an area the canvas

can be scrolled, where w is the left side, n the top, e the right side,

and s the bottom.

width Size of the canvas in the X dimension.

xscrollincrement If you set this option to some positive dimension, the canvas can be

positioned only on multiples of that distance, and the value will be

used for scrolling by scrolling units, such as when the user clicks on

the arrows at the ends of a scrollbar.

xscrollcommand If the canvas is scrollable, this attribute should be the .set() method

of the horizontal scrollbar.

yscrollincrement Works like xscrollincrement, but governs vertical movement.

yscrollcommand If the canvas is scrollable, this attribute should be the .set() method

of the vertical scrollbar.

The Canvas widget can support the following standard items-

arc . Creates an arc item, which can be a chord, a pieslice or a simple arc.

coord = 10, 50, 240, 210

Python 3

422

arc = canvas.create_arc(coord, start=0, extent=150, fill="blue")

image . Creates an image item, which can be an instance of either the BitmapImage or

the PhotoImage classes.

filename = PhotoImage(file = "sunshine.gif")

image = canvas.create_image(50, 50, anchor=NE, image=filename)

line . Creates a line item.

line = canvas.create_line(x0, y0, x1, y1, ..., xn, yn, options)

oval . Creates a circle or an ellipse at the given coordinates. It takes two pairs of

coordinates; the top left and bottom right corners of the bounding rectangle for the oval.

oval = canvas.create_oval(x0, y0, x1, y1, options)

polygon . Creates a polygon item that must have at least three vertices.

oval = canvas.create_polygon(x0, y0, x1, y1,...xn, yn, options)

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

from tkinter import messagebox

top = Tk()

C = Canvas(top, bg="blue", height=250, width=300)

coord = 10, 50, 240, 210

arc = C.create_arc(coord, start=0, extent=150, fill="red")

line = C.create_line(10,10,200,200,fill='white')

C.pack()

Top.mainloop()

Python 3

423

When the above code is executed, it produces the following result-

Tkinter Checkbutton

The Checkbutton widget is used to display a number of options to a user as toggle buttons.

The user can then select one or more options by clicking the button corresponding to each

option.

You can also display images in place of text.

Syntax

Here is the simple syntax to create this widget-

w = Checkbutton (master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Option Description

activebackground Background color when the checkbutton is under the cursor.

Python 3

424

activeforeground Foreground color when the checkbutton is under the cursor.

bg The normal background color displayed behind the label and

indicator.

bitmap To display a monochrome image on a button.

bd The size of the border around the indicator. Default is 2 pixels.

command A procedure to be called every time the user changes the state of

this checkbutton.

cursor If you set this option to a cursor name (arrow, dot etc.), the

mouse cursor will change to that pattern when it is over the

checkbutton.

disabledforeground The foreground color used to render the text of a disabled

checkbutton. The default is a stippled version of the default

foreground color.

font The font used for the text.

fg The color used to render the text.

height The number of lines of text on the checkbutton. Default is 1.

highlightcolor The color of the focus highlight when the checkbutton has the

focus.

image To display a graphic image on the button.

justify If the text contains multiple lines, this option controls how the

text is justified: CENTER, LEFT, or RIGHT.

offvalue Normally, a checkbutton's associated control variable will be set

to 0 when it is cleared (off). You can supply an alternate value for

the off state by setting offvalue to that value.

onvalue Normally, a checkbutton's associated control variable will be set

to 1 when it is set (on). You can supply an alternate value for the

on state by setting onvalue to that value.

Python 3

425

padx How much space to leave to the left and right of the checkbutton

and text. Default is 1 pixel.

pady How much space to leave above and below the checkbutton and

text. Default is 1 pixel.

relief With the default value, relief=FLAT, the checkbutton does not

stand out from its background. You may set this option to any of

the other styles

selectcolor The color of the checkbutton when it is set. Default is

selectcolor="red".

selectimage If you set this option to an image, that image will appear in the

checkbutton when it is set.

state The default is state=NORMAL, but you can use state=DISABLED

to gray out the control and make it unresponsive. If the cursor is

currently over the checkbutton, the state is ACTIVE.

text The label displayed next to the checkbutton. Use newlines ("\n")

to display multiple lines of text.

underline With the default value of -1, none of the characters of the text

label are underlined. Set this option to the index of a character in

the text (counting from zero) to underline that character.

variable The control variable that tracks the current state of the

checkbutton. Normally this variable is an IntVar, and 0 means

cleared and 1 means set, but see the offvalue and onvalue options

above.

width The default width of a checkbutton is determined by the size of

the displayed image or text. You can set this option to a number

of characters and the checkbutton will always have room for that

many characters.

wraplength Normally, lines are not wrapped. You can set this option to a

number of characters and all lines will be broken into pieces no

longer than that number.

Methods

Following are commonly used methods for this widget-

Python 3

426

Method Description

deselect() Clears (turns off) the checkbutton.

flash() Flashes the checkbutton a few times between its active and normal

colors, but leaves it the way it started.

invoke() You can call this method to get the same actions that would occur if

the user clicked on the checkbutton to change its state.

select() Sets (turns on) the checkbutton.

toggle() Clears the checkbutton if set, sets it if cleared.

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

import tkinter

top = Tk()

CheckVar1 = IntVar()

CheckVar2 = IntVar()

C1 = Checkbutton(top, text = "Music", variable = CheckVar1, \

 onvalue = 1, offvalue = 0, height=5, \

 width = 20,)

C2 = Checkbutton(top, text = "Video", variable = CheckVar2, \

 onvalue = 1, offvalue = 0, height=5, \

 width = 20)

C1.pack()

C2.pack()

top.mainloop()

Python 3

427

When the above code is executed, it produces the following result –

Tkinter Entry

The Entry widget is used to accept single-line text strings from a user.

 If you want to display multiple lines of text that can be edited, then you should use

the Text widget.

 If you want to display one or more lines of text that cannot be modified by the

user, then you should use the Label widget.

Syntax

Here is the simple syntax to create this widget-

w = Entry(master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Option Description

bg The normal background color displayed behind the label and

indicator.

bd The size of the border around the indicator. Default is 2 pixels.

Python 3

428

command A procedure to be called every time the user changes the state of

this checkbutton.

cursor If you set this option to a cursor name (arrow, dot etc.), the mouse

cursor will change to that pattern when it is over the checkbutton.

font The font used for the text.

exportselection By default, if you select text within an Entry widget, it is

automatically exported to the clipboard. To avoid this exportation,

use exportselection=0.

fg The color used to render the text.

highlightcolor The color of the focus highlight when the checkbutton has the

focus.

justify If the text contains multiple lines, this option controls how the text

is justified: CENTER, LEFT, or RIGHT.

relief With the default value, relief=FLAT, the checkbutton does not

stand out from its background. You may set this option to any of

the other styles

selectbackground The background color to use displaying selected text.

selectborderwidth The width of the border to use around selected text. The default is

one pixel.

selectforeground The foreground (text) color of selected text.

show Normally, the characters that the user types appear in the entry.

To make a .password. entry that echoes each character as an

asterisk, set show="*".

state The default is state=NORMAL, but you can use state=DISABLED to

gray out the control and make it unresponsive. If the cursor is

currently over the checkbutton, the state is ACTIVE.

textvariable In order to be able to retrieve the current text from your entry

widget, you must set this option to an instance of the StringVar

class.

Python 3

429

width The default width of a checkbutton is determined by the size of the

displayed image or text. You can set this option to a number of

characters and the checkbutton will always have room for that

many characters.

xscrollcommand If you expect that users will often enter more text than the

onscreen size of the widget, you can link your entry widget to a

scrollbar.

Methods

Following are commonly used methods for this widget-

Method Description

delete (first, last=None) Deletes characters from the widget, starting with
the one at index first, up to but not including the
character at position last. If the second argument

is omitted, only the single character at position
first is deleted.

get() Returns the entry's current text as a string.

icursor (index) Set the insertion cursor just before the character

at the given index.

index (index) Shift the contents of the entry so that the
character at the given index is the leftmost visible

character. Has no effect if the text fits entirely
within the entry.

insert (index, s) Inserts string s before the character at the given
index.

select_adjust (index) This method is used to make sure that the

selection includes the character at the specified
index.

select_clear() Clears the selection. If there isn't currently a
selection, has no effect.

Python 3

430

select_from (index) Sets the ANCHOR index position to the character

selected by index, and selects that character.

select_present() If there is a selection, returns true, else returns
false.

select_range (start, end) Sets the selection under program control. Selects
the text starting at the start index, up to but not

including the character at the end index. The start
position must be before the end position.

select_to (index) Selects all the text from the ANCHOR position up

to but not including the character at the given
index.

xview (index) This method is useful in linking the Entry widget to
a horizontal scrollbar.

xview_scroll (number, what) Used to scroll the entry horizontally. The what

argument must be either UNITS, to scroll by
character widths, or PAGES, to scroll by chunks
the size of the entry widget. The number is

positive to scroll left to right, negative to scroll
right to left.

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

top = Tk()

L1 = Label(top, text="User Name")

L1.pack(side = LEFT)

E1 = Entry(top, bd =5)

E1.pack(side = RIGHT)

top.mainloop()

Python 3

431

When the above code is executed, it produces the following result-

Tkinter Frame

The Frame widget is very important for the process of grouping and organizing other

widgets in a somehow friendly way. It works like a container, which is responsible for

arranging the position of other widgets.

It uses rectangular areas in the screen to organize the layout and to provide padding of

these widgets. A frame can also be used as a foundation class to implement complex

widgets.

Syntax

Here is the simple syntax to create this widget-

 w = Frame (master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

bg The normal background color displayed behind the label and

indicator.

bd The size of the border around the indicator. Default is 2 pixels.

cursor If you set this option to a cursor name (arrow, dot etc.), the

mouse cursor will change to that pattern when it is over the

checkbutton.

height The vertical dimension of the new frame.

highlightbackground Color of the focus highlight when the frame does not have focus.

highlightcolor Color shown in the focus highlight when the frame has the focus.

Python 3

432

highlightthickness Thickness of the focus highlight.

relief With the default value, relief=FLAT, the checkbutton does not

stand out from its background. You may set this option to any

of the other styles

width The default width of a checkbutton is determined by the size of

the displayed image or text. You can set this option to a number

of characters and the checkbutton will always have room for

that many characters.

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

root = Tk()

frame = Frame(root)

frame.pack()

bottomframe = Frame(root)

bottomframe.pack(side = BOTTOM)

redbutton = Button(frame, text="Red", fg="red")

redbutton.pack(side = LEFT)

greenbutton = Button(frame, text="Brown", fg="brown")

greenbutton.pack(side = LEFT)

bluebutton = Button(frame, text="Blue", fg="blue")

bluebutton.pack(side = LEFT)

blackbutton = Button(bottomframe, text="Black", fg="black")

blackbutton.pack(side = BOTTOM)

root.mainloop()

Python 3

433

When the above code is executed, it produces the following result-

Tkinter Label

This widget implements a display box where you can place text or images. The text

displayed by this widget can be updated at any time you want.

It is also possible to underline part of the text (like to identify a keyboard shortcut) and

span the text across multiple lines.

Syntax

Here is the simple syntax to create this widget-

w = Label (master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

anchor This options controls where the text is positioned if the widget has

more space than the text needs. The default is anchor=CENTER, which

centers the text in the available space.

bg The normal background color displayed behind the label and indicator.

bitmap Set this option equal to a bitmap or image object and the label will

display that graphic.

bd The size of the border around the indicator. Default is 2 pixels.

cursor If you set this option to a cursor name (arrow, dot etc.), the mouse

cursor will change to that pattern when it is over the checkbutton.

font If you are displaying text in this label (with the text or textvariable

option, the font option specifies in what font that text will be displayed.

Python 3

434

fg If you are displaying text or a bitmap in this label, this option specifies

the color of the text. If you are displaying a bitmap, this is the color

that will appear at the position of the 1-bits in the bitmap.

height The vertical dimension of the new frame.

image To display a static image in the label widget, set this option to an

image object.

justify Specifies how multiple lines of text will be aligned with respect to each

other: LEFT for flush left, CENTER for centered (the default), or RIGHT

for right-justified.

padx Extra space added to the left and right of the text within the widget.

Default is 1.

pady Extra space added above and below the text within the widget. Default

is 1.

relief Specifies the appearance of a decorative border around the label. The

default is FLAT; for other values.

text To display one or more lines of text in a label widget, set this option

to a string containing the text. Internal newlines ("\n") will force a line

break.

textvariable To slave the text displayed in a label widget to a control variable of

class StringVar, set this option to that variable.

underline You can display an underline (_) below the nth letter of the text,

counting from 0, by setting this option to n. The default is underline=-

1, which means no underlining.

width Width of the label in characters (not pixels!). If this option is not set,

the label will be sized to fit its contents.

wraplength You can limit the number of characters in each line by setting this

option to the desired number. The default value, 0, means that lines

will be broken only at newlines.

Python 3

435

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

root = Tk()

var = StringVar()

label = Label(root, textvariable=var, relief=RAISED)

var.set("Hey!? How are you doing?")

label.pack()

root.mainloop()

When the above code is executed, it produces the following result-

Tkinter Listbox

The Listbox widget is used to display a list of items from which a user can select a number

of items

Syntax

Here is the simple syntax to create this widget-

 w = Listbox (master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

bg The normal background color displayed behind the label and

indicator.

Python 3

436

bd The size of the border around the indicator. Default is 2

pixels.

cursor The cursor that appears when the mouse is over the listbox.

font The font used for the text in the listbox.

fg The color used for the text in the listbox.

height Number of lines (not pixels!) shown in the listbox. Default is

10.

highlightcolor Color shown in the focus highlight when the widget has the

focus.

highlightthickness Thickness of the focus highlight.

relief Selects three-dimensional border shading effects. The default

is SUNKEN.

selectbackground The background color to use displaying selected text.

selectmode Determines how many items can be selected, and how mouse

drags affect the selection:

 BROWSE: Normally, you can only select one line out

of a listbox. If you click on an item and then drag to a

different line, the selection will follow the mouse. This

is the default.

 SINGLE: You can only select one line, and you can't

drag the mouse.wherever you click button 1, that line

is selected.

 MULTIPLE: You can select any number of lines at

once. Clicking on any line toggles whether or not it is

selected.

 EXTENDED: You can select any adjacent group of

lines at once by clicking on the first line and dragging

to the last line.

width The width of the widget in characters. The default is 20.

Python 3

437

xscrollcommand If you want to allow the user to scroll the listbox horizontally,

you can link your listbox widget to a horizontal scrollbar.

yscrollcommand If you want to allow the user to scroll the listbox vertically,

you can link your listbox widget to a vertical scrollbar.

Methods

Methods on listbox objects include-

Options Description

activate (index) Selects the line specifies by the given index.

curselection() Returns a tuple containing the line numbers of the

selected element or elements, counting from 0. If

nothing is selected, returns an empty tuple.

delete (first, last=None) Deletes the lines whose indices are in the range [first,

last]. If the second argument is omitted, the single line

with index first is deleted.

get (first, last=None) Returns a tuple containing the text of the lines with

indices from first to last, inclusive. If the second

argument is omitted, returns the text of the line closest

to first.

index (i) If possible, positions the visible part of the listbox so

that the line containing index i is at the top of the

widget.

insert (index, *elements) Insert one or more new lines into the listbox before the

line specified by index. Use END as the first argument

if you want to add new lines to the end of the listbox.

nearest (y) Return the index of the visible line closest to the y-

coordinate y relative to the listbox widget.

see (index) Adjust the position of the listbox so that the line

referred to by index is visible.

size() Returns the number of lines in the listbox.

Python 3

438

xview() To make the listbox horizontally scrollable, set the

command option of the associated horizontal scrollbar

to this method.

xview_moveto (fraction) Scroll the listbox so that the leftmost fraction of the

width of its longest line is outside the left side of the

listbox. Fraction is in the range [0,1].

xview_scroll (number, what) Scrolls the listbox horizontally. For the what argument,

use either UNITS to scroll by characters, or PAGES to

scroll by pages, that is, by the width of the listbox. The

number argument tells how many to scroll.

yview() To make the listbox vertically scrollable, set the

command option of the associated vertical scrollbar to

this method.

yview_moveto (fraction) Scroll the listbox so that the top fraction of the width of

its longest line is outside the left side of the listbox.

Fraction is in the range [0,1].

yview_scroll (number, what) Scrolls the listbox vertically. For the what argument,

use either UNITS to scroll by lines, or PAGES to scroll

by pages, that is, by the height of the listbox. The

number argument tells how many to scroll.

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

import tkinter

top = Tk()

Lb1 = Listbox(top)

Lb1.insert(1, "Python")

Lb1.insert(2, "Perl")

Lb1.insert(3, "C")

Lb1.insert(4, "PHP")

Python 3

439

Lb1.insert(5, "JSP")

Lb1.insert(6, "Ruby")

Lb1.pack()

top.mainloop()

When the above code is executed, it produces the following result-

Tkinter Menubutton

A menubutton is the part of a drop-down menu that stays on the screen all the time. Every

menubutton is associated with a Menu widget that can display the choices for that

menubutton when the user clicks on it.

Syntax

Here is the simple syntax to create this widget-

 w = Menubutton (master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

activebackground The background color when the mouse is over the menubutton.

activeforeground The foreground color when the mouse is over the menubutton.

Python 3

440

anchor This options controls where the text is positioned if the widget

has more space than the text needs. The default is

anchor=CENTER, which centers the text.

bg The normal background color displayed behind the label and

indicator.

bitmap To display a bitmap on the menubutton, set this option to a

bitmap name.

bd The size of the border around the indicator. Default is 2 pixels.

cursor The cursor that appears when the mouse is over this menubutton.

direction Set direction=LEFT to display the menu to the left of the button;

use direction=RIGHT to display the menu to the right of the

button; or use direction='above' to place the menu above the

button.

disabledforeground The foreground color shown on this menubutton when it is

disabled.

fg The foreground color when the mouse is not over the

menubutton.

height The height of the menubutton in lines of text (not pixels!). The

default is to fit the menubutton's size to its contents.

highlightcolor Color shown in the focus highlight when the widget has the focus.

image To display an image on this menubutton,

justify This option controls where the text is located when the text

doesn't fill the menubutton: use justify=LEFT to left-justify the

text (this is the default); use justify=CENTER to center it, or

justify=RIGHT to right-justify.

menu To associate the menubutton with a set of choices, set this option

to the Menu object containing those choices. That menu object

must have been created by passing the associated menubutton

to the constructor as its first argument.

Python 3

441

padx How much space to leave to the left and right of the text of the

menubutton. Default is 1.

pady How much space to leave above and below the text of the

menubutton. Default is 1.

relief Selects three-dimensional border shading effects. The default is

RAISED.

state Normally, menubuttons respond to the mouse. Set

state=DISABLED to gray out the menubutton and make it

unresponsive.

text To display text on the menubutton, set this option to the string

containing the desired text. Newlines ("\n") within the string will

cause line breaks.

textvariable You can associate a control variable of class StringVar with this

menubutton. Setting that control variable will change the

displayed text.

underline Normally, no underline appears under the text on the

menubutton. To underline one of the characters, set this option

to the index of that character.

width The width of the widget in characters. The default is 20.

wraplength Normally, lines are not wrapped. You can set this option to a

number of characters and all lines will be broken into pieces no

longer than that number.

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

import tkinter

top = Tk()

mb= Menubutton (top, text="condiments", relief=RAISED)

Python 3

442

mb.grid()

mb.menu = Menu (mb, tearoff = 0)

mb["menu"] = mb.menu

mayoVar = IntVar()

ketchVar = IntVar()

mb.menu.add_checkbutton (label="mayo",

 variable=mayoVar)

mb.menu.add_checkbutton (label="ketchup",

 variable=ketchVar)

mb.pack()

top.mainloop()

When the above code is executed, it produces the following result-

Tkinter Menu

The goal of this widget is to allow us to create all kinds of menus that can be used by our

applications. The core functionality provides ways to create three menu types: pop-up,

toplevel and pull-down.

It is also possible to use other extended widgets to implement new types of menus, such

as the OptionMenu widget, which implements a special type that generates a pop-up list

of items within a selection.

Syntax

Here is the simple syntax to create this widget-

 w = Menu (master, option, ...)

Parameters

 master: This represents the parent window.

Python 3

443

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

activebackground The background color that will appear on a choice when it is under

the mouse.

activeborderwidth Specifies the width of a border drawn around a choice when it is

under the mouse. Default is 1 pixel.

activeforeground The foreground color that will appear on a choice when it is under

the mouse.

bg The background color for choices not under the mouse.

bd The width of the border around all the choices. Default is 1.

cursor The cursor that appears when the mouse is over the choices, but

only when the menu has been torn off.

disabledforeground The color of the text for items whose state is DISABLED.

font The default font for textual choices.

fg The foreground color used for choices not under the mouse.

postcommand You can set this option to a procedure, and that procedure will be

called every time someone brings up this menu.

relief The default 3-D effect for menus is relief=RAISED.

image To display an image on this menubutton.

selectcolor Specifies the color displayed in checkbuttons and radiobuttons

when they are selected.

tearoff Normally, a menu can be torn off, the first position (position 0) in

the list of choices is occupied by the tear-off element, and the

additional choices are added starting at position 1. If you set

Python 3

444

Methods

These methods are available on Menu objects-

Option Description

add_command (options) Adds a menu item to the menu.

add_radiobutton(options) Creates a radio button menu item.

add_checkbutton(options) Creates a check button menu item.

add_cascade(options) Creates a new hierarchical menu by associating a

given menu to a parent menu

add_separator() Adds a separator line to the menu.

add(type, options) Adds a specific type of menu item to the menu.

delete(startindex [, endindex]) Deletes the menu items ranging from startindex to

endindex.

entryconfig(index, options) Allows you to modify a menu item, which is identified

by the index, and change its options.

index(item) Returns the index number of the given menu item

label.

insert_separator (index) Insert a new separator at the position specified by

index.

tearoff=0, the menu will not have a tear-off feature, and choices

will be added starting at position 0.

title Normally, the title of a tear-off menu window will be the same as

the text of the menubutton or cascade that lead to this menu. If

you want to change the title of that window, set the title option to

that string.

Python 3

445

invoke (index) Calls the command callback associated with the

choice at position index. If a checkbutton, its state is

toggled between set and cleared; if a radiobutton,

that choice is set.

type (index) Returns the type of the choice specified by index:

either "cascade", "checkbutton", "command",

"radiobutton", "separator", or "tearoff".

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

def donothing():

 filewin = Toplevel(root)

 button = Button(filewin, text="Do nothing button")

 button.pack()

root = Tk()

menubar = Menu(root)

filemenu = Menu(menubar, tearoff=0)

filemenu.add_command(label="New", command=donothing)

filemenu.add_command(label="Open", command=donothing)

filemenu.add_command(label="Save", command=donothing)

filemenu.add_command(label="Save as...", command=donothing)

filemenu.add_command(label="Close", command=donothing)

filemenu.add_separator()

filemenu.add_command(label="Exit", command=root.quit)

menubar.add_cascade(label="File", menu=filemenu)

editmenu = Menu(menubar, tearoff=0)

editmenu.add_command(label="Undo", command=donothing)

Python 3

446

editmenu.add_separator()

editmenu.add_command(label="Cut", command=donothing)

editmenu.add_command(label="Copy", command=donothing)

editmenu.add_command(label="Paste", command=donothing)

editmenu.add_command(label="Delete", command=donothing)

editmenu.add_command(label="Select All", command=donothing)

menubar.add_cascade(label="Edit", menu=editmenu)

helpmenu = Menu(menubar, tearoff=0)

helpmenu.add_command(label="Help Index", command=donothing)

helpmenu.add_command(label="About...", command=donothing)

menubar.add_cascade(label="Help", menu=helpmenu)

root.config(menu=menubar)

root.mainloop()

When the above code is executed, it produces the following result-

Tkinter Message

This widget provides a multiline and noneditable object that displays texts, automatically

breaking lines and justifying their contents.

Its functionality is very similar to the one provided by the Label widget, except that it can

also automatically wrap the text, maintaining a given width or aspect ratio.

Syntax

Python 3

447

Here is the simple syntax to create this widget-

 w = Message (master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

anchor This options controls where the text is positioned if the widget has

more space than the text needs. The default is anchor=CENTER, which

centers the text in the available space.

bg The normal background color displayed behind the label and indicator.

bitmap Set this option equal to a bitmap or image object and the label will

display that graphic.

bd The size of the border around the indicator. Default is 2 pixels.

cursor If you set this option to a cursor name (arrow, dot etc.), the mouse

cursor will change to that pattern when it is over the checkbutton.

font If you are displaying text in this label (with the text or textvariable

option, the font option specifies in what font that text will be displayed.

fg If you are displaying text or a bitmap in this label, this option specifies

the color of the text. If you are displaying a bitmap, this is the color

that will appear at the position of the 1-bits in the bitmap.

height The vertical dimension of the new frame.

image To display a static image in the label widget, set this option to an

image object.

justify Specifies how multiple lines of text will be aligned with respect to each

other: LEFT for flush left, CENTER for centered (the default), or RIGHT

for right-justified.

Python 3

448

padx Extra space added to the left and right of the text within the widget.

Default is 1.

pady Extra space added above and below the text within the widget. Default

is 1.

relief Specifies the appearance of a decorative border around the label. The

default is FLAT; for other values.

text To display one or more lines of text in a label widget, set this option

to a string containing the text. Internal newlines ("\n") will force a line

break.

textvariable To slave the text displayed in a label widget to a control variable of

class StringVar, set this option to that variable.

underline You can display an underline (_) below the nth letter of the text,

counting from 0, by setting this option to n. The default is underline=-

1, which means no underlining.

width Width of the label in characters (not pixels!). If this option is not set,

the label will be sized to fit its contents.

wraplength You can limit the number of characters in each line by setting this

option to the desired number. The default value, 0, means that lines

will be broken only at newlines.

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

root = Tk()

var = StringVar()

label = Message(root, textvariable=var, relief=RAISED)

var.set("Hey!? How are you doing?")

label.pack()

Python 3

449

root.mainloop()

When the above code is executed, it produces the following result-

Tkinter Radiobutton

This widget implements a multiple-choice button, which is a way to offer many possible

selections to the user and lets user choose only one of them.

In order to implement this functionality, each group of radiobuttons must be associated to

the same variable and each one of the buttons must symbolize a single value. You can use

the Tab key to switch from one radionbutton to another.

Syntax

Here is the simple syntax to create this widget-

w = Radiobutton (master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

activebackground The background color when the mouse is over the radiobutton.

activeforeground The foreground color when the mouse is over the radiobutton.

anchor If the widget inhabits a space larger than it needs, this option

specifies where the radiobutton will sit in that space. The default

is anchor=CENTER.

bg The normal background color behind the indicator and label.

Python 3

450

bitmap To display a monochrome image on a radiobutton, set this

option to a bitmap.

borderwidth The size of the border around the indicator part itself. Default is

2 pixels.

command A procedure to be called every time the user changes the state

of this radiobutton.

cursor If you set this option to a cursor name (arrow, dot etc.), the

mouse cursor will change to that pattern when it is over the

radiobutton.

font The font used for the text.

fg The color used to render the text.

height The number of lines (not pixels) of text on the radiobutton.

Default is 1.

highlightbackground The color of the focus highlight when the radiobutton does not

have focus.

highlightcolor The color of the focus highlight when the radiobutton has the

focus.

image To display a graphic image instead of text for this radiobutton,

set this option to an image object.

justify If the text contains multiple lines, this option controls how the

text is justified: CENTER (the default), LEFT, or RIGHT.

padx How much space to leave to the left and right of the radiobutton

and text. Default is 1.

pady How much space to leave above and below the radiobutton and

text. Default is 1.

relief Specifies the appearance of a decorative border around the

label. The default is FLAT; for other values.

selectcolor The color of the radiobutton when it is set. Default is red.

Python 3

451

selectimage If you are using the image option to display a graphic instead of

text when the radiobutton is cleared, you can set the

selectimage option to a different image that will be displayed

when the radiobutton is set.

state The default is state=NORMAL, but you can set state=DISABLED

to gray out the control and make it unresponsive. If the cursor

is currently over the radiobutton, the state is ACTIVE.

text The label displayed next to the radiobutton. Use newlines ("\n")

to display multiple lines of text.

textvariable To slave the text displayed in a label widget to a control variable

of class StringVar, set this option to that variable.

underline You can display an underline (_) below the nth letter of the text,

counting from 0, by setting this option to n. The default is

underline=-1, which means no underlining.

value When a radiobutton is turned on by the user, its control variable

is set to its current value option. If the control variable is

an IntVar, give each radiobutton in the group a different integer

value option. If the control variable is aStringVar, give each

radiobutton a different string value option.

variable The control variable that this radiobutton shares with the other

radiobuttons in the group. This can be either an IntVar or a

StringVar.

width Width of the label in characters (not pixels!). If this option is not

set, the label will be sized to fit its contents.

wraplength You can limit the number of characters in each line by setting

this option to the desired number. The default value, 0, means

that lines will be broken only at newlines.

Methods

These methods are available.

Methods Description

deselect() Clears (turns off) the radiobutton.

Python 3

452

flash() Flashes the radiobutton a few times between its active and normal

colors, but leaves it the way it started.

invoke() You can call this method to get the same actions that would occur if

the user clicked on the radiobutton to change its state.

select() Sets (turns on) the radiobutton.

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

def sel():

 selection = "You selected the option " + str(var.get())

 label.config(text = selection)

root = Tk()

var = IntVar()

R1 = Radiobutton(root, text="Option 1", variable=var, value=1,

 command=sel)

R1.pack(anchor = W)

R2 = Radiobutton(root, text="Option 2", variable=var, value=2,

 command=sel)

R2.pack(anchor = W)

R3 = Radiobutton(root, text="Option 3", variable=var, value=3,

 command=sel)

R3.pack(anchor = W)

label = Label(root)

label.pack()

root.mainloop()

Python 3

453

When the above code is executed, it produces the following result-

Tkinter Scale

The Scale widget provides a graphical slider object that allows you to select values from a

specific scale.

Syntax

Here is the simple syntax to create this widget-

 w = Scale (master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

activebackground The background color when the mouse is over the scale.

bg The background color of the parts of the widget that are outside

the trough.

bd Width of the 3-d border around the trough and slider. Default is

2 pixels.

command A procedure to be called every time the slider is moved. This

procedure will be passed one argument, the new scale value. If

the slider is moved rapidly, you may not get a callback for every

possible position, but you'll certainly get a callback when it

settles.

Python 3

454

cursor If you set this option to a cursor name (arrow, dot etc.), the

mouse cursor will change to that pattern when it is over the

scale.

digits The way your program reads the current value shown in a scale

widget is through a control variable. The control variable for a

scale can be an IntVar, a DoubleVar (float), or a StringVar. If it

is a string variable, the digits option controls how many digits

to use when the numeric scale value is converted to a string.

font The font used for the label and annotations.

fg The color of the text used for the label and annotations.

from_ A float or integer value that defines one end of the scale's range.

highlightbackground The color of the focus highlight when the scale does not have

focus.

highlightcolor The color of the focus highlight when the scale has the focus.

label You can display a label within the scale widget by setting this

option to the label's text. The label appears in the top left corner

if the scale is horizontal, or the top right corner if vertical. The

default is no label.

length The length of the scale widget. This is the x dimension if the

scale is horizontal, or the y dimension if vertical. The default is

100 pixels.

orient Set orient=HORIZONTAL if you want the scale to run along the

x dimension, or orient=VERTICAL to run parallel to the y-axis.

Default is horizontal.

relief Specifies the appearance of a decorative border around the

label. The default is FLAT; for other values.

repeatdelay This option controls how long button 1 has to be held down in

the trough before the slider starts moving in that direction

repeatedly. Default is repeatdelay=300, and the units are

milliseconds.

resolution Normally, the user will only be able to change the scale in whole

units. Set this option to some other value to change the smallest

Python 3

455

increment of the scale's value. For example, if from_=-1.0 and

to=1.0, and you set resolution=0.5, the scale will have 5

possible values: -1.0, -0.5, 0.0, +0.5, and +1.0.

showvalue Normally, the current value of the scale is displayed in text form

by the slider (above it for horizontal scales, to the left for vertical

scales). Set this option to 0 to suppress that label.

sliderlength Normally the slider is 30 pixels along the length of the scale.

You can change that length by setting the sliderlength option to

your desired length.

state Normally, scale widgets respond to mouse events, and when

they have the focus, also keyboard events. Set state=DISABLED

to make the widget unresponsive.

takefocus Normally, the focus will cycle through scale widgets. Set this

option to 0 if you don't want this behavior.

tickinterval To display periodic scale values, set this option to a number,

and ticks will be displayed on multiples of that value. For

example, if from_=0.0, to=1.0, and tickinterval=0.25, labels

will be displayed along the scale at values 0.0, 0.25, 0.50, 0.75,

and 1.00. These labels appear below the scale if horizontal, to

its left if vertical. Default is 0, which suppresses display of ticks.

to A float or integer value that defines one end of the scale's range;

the other end is defined by the from_ option, discussed above.

The to value can be either greater than or less than the from_

value. For vertical scales, the to value defines the bottom of the

scale; for horizontal scales, the right end.

troughcolor The color of the trough.

variable The control variable for this scale, if any. Control variables may

be from class IntVar, DoubleVar (float), or StringVar. In the

latter case, the numerical value will be converted to a string.

width The width of the trough part of the widget. This is the x

dimension for vertical scales and the y dimension if the scale

has orient=HORIZONTAL. Default is 15 pixels.

Methods

Scale objects have these methods-

Python 3

456

Methods Description

get() This method returns the current value of the scale.

set (value) Sets the scale's value.

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

def sel():

 selection = "Value = " + str(var.get())

 label.config(text = selection)

root = Tk()

var = DoubleVar()

scale = Scale(root, variable = var)

scale.pack(anchor=CENTER)

button = Button(root, text="Get Scale Value", command=sel)

button.pack(anchor=CENTER)

label = Label(root)

label.pack()

root.mainloop()

When the above code is executed, it produces the following result-

Python 3

457

Tkinter Scrollbar

This widget provides a slide controller that is used to implement vertical scrolled widgets,

such as Listbox, Text and Canvas. Note that you can also create horizontal scrollbars on

Entry widgets.

Syntax

Here is the simple syntax to create this widget-

 w = Scrollbar (master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

activebackground The color of the slider and arrowheads when the mouse is over

them.

bg The color of the slider and arrowheads when the mouse is not

over them.

bd The width of the 3-d borders around the entire perimeter of the

trough, and also the width of the 3-d effects on the arrowheads

and slider. Default is no border around the trough, and a 2-pixel

border around the arrowheads and slider.

command A procedure to be called whenever the scrollbar is moved.

Python 3

458

cursor The cursor that appears when the mouse is over the scrollbar.

elementborderwidth The width of the borders around the arrowheads and slider. The

default is elementborderwidth=-1, which means to use the

value of the borderwidth option.

highlightbackground The color of the focus highlight when the scrollbar does not have

focus.

highlightcolor The color of the focus highlight when the scrollbar has the focus.

highlightthickness The thickness of the focus highlight. Default is 1. Set to 0 to

suppress display of the focus highlight.

jump This option controls what happens when a user drags the slider.

Normally (jump=0), every small drag of the slider causes the

command callback to be called. If you set this option to 1, the

callback isn't called until the user releases the mouse button.

orient Set orient=HORIZONTAL for a horizontal scrollbar,

orient=VERTICAL for a vertical one.

repeatdelay This option controls how long button 1 has to be held down in

the trough before the slider starts moving in that direction

repeatedly. Default is repeatdelay=300, and the units are

milliseconds.

repeatinterval repeatinterval

takefocus Normally, you can tab the focus through a scrollbar widget. Set

takefocus=0 if you don't want this behavior.

troughcolor The color of the trough.

width Width of the scrollbar (its y dimension if horizontal, and its x

dimension if vertical). Default is 16.

Methods

Scrollbar objects have these methods-

Methods Description

Python 3

459

get() Returns two numbers (a, b) describing the current position of the

slider. The a value gives the position of the left or top edge of the

slider, for horizontal and vertical scrollbars respectively; the b value

gives the position of the right or bottom edge.

set (first, last) To connect a scrollbar to another widget w, set w's xscrollcommand

or yscrollcommand to the scrollbar's set() method. The arguments

have the same meaning as the values returned by the get() method.

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

root = Tk()

scrollbar = Scrollbar(root)

scrollbar.pack(side = RIGHT, fill=Y)

mylist = Listbox(root, yscrollcommand = scrollbar.set)

for line in range(100):

 mylist.insert(END, "This is line number " + str(line))

mylist.pack(side = LEFT, fill = BOTH)

scrollbar.config(command = mylist.yview)

mainloop()

When the above code is executed, it produces the following result-

Python 3

460

Tkinter Text

Text widgets provide advanced capabilities that allow you to edit a multiline text and

format the way it has to be displayed, such as changing its color and font.

You can also use elegant structures like tabs and marks to locate specific sections of the

text, and apply changes to those areas. Moreover, you can embed windows and images in

the text because this widget was designed to handle both plain and formatted text.

Syntax

Here is the simple syntax to create this widget-

w = Text (master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

bg The default background color of the text widget.

bd The width of the border around the text widget. Default is 2

pixels.

cursor The cursor that will appear when the mouse is over the text

widget.

exportselection Normally, text selected within a text widget is exported to be

the selection in the window manager. Set exportselection=0 if

you don't want that behavior.

font The default font for text inserted into the widget.

fg The color used for text (and bitmaps) within the widget. You can

change the color for tagged regions; this option is just the

default.

height The height of the widget in lines (not pixels!), measured

according to the current font size.

Python 3

461

highlightbackground The color of the focus highlight when the text widget does not

have focus.

highlightcolor The color of the focus highlight when the text widget has the

focus.

highlightthickness The thickness of the focus highlight. Default is 1. Set

highlightthickness=0 to suppress display of the focus highlight.

insertbackground The color of the insertion cursor. Default is black.

insertborderwidth Size of the 3-D border around the insertion cursor. Default is 0.

insertofftime The number of milliseconds the insertion cursor is off during its

blink cycle. Set this option to zero to suppress blinking. Default

is 300.

insertontime The number of milliseconds the insertion cursor is on during its

blink cycle. Default is 600.

insertwidth Width of the insertion cursor (its height is determined by the

tallest item in its line). Default is 2 pixels.

padx The size of the internal padding added to the left and right of

the text area. Default is one pixel.

pady The size of the internal padding added above and below the text

area. Default is one pixel.

relief The 3-D appearance of the text widget. Default is

relief=SUNKEN.

selectbackground The background color to use displaying selected text.

selectborderwidth The width of the border to use around selected text.

spacing1 This option specifies how much extra vertical space is put above

each line of text. If a line wraps, this space is added only before

the first line it occupies on the display. Default is 0.

Python 3

462

spacing2 This option specifies how much extra vertical space to add

between displayed lines of text when a logical line wraps.

Default is 0.

spacing3 This option specifies how much extra vertical space is added

below each line of text. If a line wraps, this space is added only

after the last line it occupies on the display. Default is 0.

state Normally, text widgets respond to keyboard and mouse events;

set state=NORMAL to get this behavior. If you set

state=DISABLED, the text widget will not respond, and you

won't be able to modify its contents programmatically either.

tabs This option controls how tab characters position text.

width The width of the widget in characters (not pixels!), measured

according to the current font size.

wrap This option controls the display of lines that are too wide. Set

wrap=WORD and it will break the line after the last word that

will fit. With the default behavior, wrap=CHAR, any line that

gets too long will be broken at any character.

xscrollcommand To make the text widget horizontally scrollable, set this option

to the set() method of the horizontal scrollbar.

yscrollcommand To make the text widget vertically scrollable, set this option to

the set() method of the vertical scrollbar.

Methods

Text objects have these methods-

Methods & Description

delete(startindex [,endindex])

This method deletes a specific character or a range of text.

get(startindex [,endindex])

This method returns a specific character or a range of text.

index(index)

Returns the absolute value of an index based on the given index.

Python 3

463

insert(index [,string]...)

This method inserts strings at the specified index location.

see(index)

This method returns true if the text located at the index position is visible.

Text widgets support three distinct helper structures: Marks, Tabs, and Indexes-

Marks are used to bookmark positions between two characters within a given text. We

have the following methods available when handling marks:

Methods & Description

index(mark)

Returns the line and column location of a specific mark.

mark_gravity(mark [,gravity])

Returns the gravity of the given mark. If the second argument is provided, the

gravity is set for the given mark.

mark_names()

Returns all marks from the Text widget.

mark_set(mark, index)

Informs a new position to the given mark.

mark_unset(mark)

Removes the given mark from the Text widget.

Tags are used to associate names to regions of text which makes easy the task of

modifying the display settings of specific text areas. Tags are also used to bind event

callbacks to specific ranges of text.

Following are the available methods for handling tabs-

Methods & Description

tag_add(tagname, startindex[,endindex] ...)

This method tags either the position defined by startindex, or a range delimited by the

positions startindex and endindex.

tag_config

You can use this method to configure the tag properties, which include, justify(center,

left, or right), tabs(this property has the same functionality of the Text widget tabs's

property), and underline(used to underline the tagged text).

Python 3

464

tag_delete(tagname)

This method is used to delete and remove a given tag.

tag_remove(tagname [,startindex[.endindex]] ...)

After applying this method, the given tag is removed from the provided area without

deleting the actual tag definition.

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

root = Tk()

text = Text(root)

text.insert(INSERT, "Hello.....")

text.insert(END, "Bye Bye.....")

text.pack()

text.tag_add("here", "1.0", "1.4")

text.tag_add("start", "1.8", "1.13")

text.tag_config("here", background="yellow", foreground="blue")

text.tag_config("start", background="black", foreground="green")

root.mainloop()

When the above code is executed, it produces the following result-

Tkinter Toplevel

Toplevel widgets work as windows that are directly managed by the window manager.

They do not necessarily have a parent widget on top of them.

Your application can use any number of top-level windows.

Python 3

465

Syntax

Here is the simple syntax to create this widget-

w = Toplevel (option, ...)

Parameters

options: Here is the list of most commonly used options for this widget. These options

can be used as key-value pairs separated by commas.

Options Description

bg The background color of the window.

bd Border width in pixels; default is 0.

cursor The cursor that appears when the mouse is in this window.

class_ Normally, text selected within a text widget is exported to be the

selection in the window manager. Set exportselection=0 if you don't

want that behavior.

font The default font for text inserted into the widget.

fg The color used for text (and bitmaps) within the widget. You can

change the color for tagged regions; this option is just the default.

height Window height.

relief Normally, a top-level window will have no 3-d borders around it. To

get a shaded border, set the bd option larger that its default value of

zero, and set the relief option to one of the constants.

width The desired width of the window.

Methods

Toplevel objects have these methods-

Methods and Description

deiconify()

Python 3

466

Displays the window, after using either the iconify or the withdraw methods.

frame()

Returns a system-specific window identifier.

group(window)

Adds the window to the window group administered by the given window.

iconify()

Turns the window into an icon, without destroying it.

protocol(name, function)

Registers a function as a callback which will be called for the given protocol.

iconify()

Turns the window into an icon, without destroying it.

state()

Returns the current state of the window. Possible values are normal, iconic, withdrawn

and icon.

transient([master])

Turns the window into a temporary(transient) window for the given master or to the

window's parent, when no argument is given.

withdraw()

Removes the window from the screen, without destroying it.

maxsize(width, height)

Defines the maximum size for this window.

minsize(width, height)

Defines the minimum size for this window.

positionfrom(who)

Defines the position controller.

Python 3

467

resizable(width, height)

Defines the resize flags, which control whether the window can be resized.

sizefrom(who)

Defines the size controller.

title(string)

Defines the window title.

Example

Try following example yourself-

!/usr/bin/python3

from tkinter import *

root = Tk()

root.title("hello")

top = Toplevel()

top.title("Python")

top.mainloop()

When the above code is executed, it produces the following result-

Tkinter Spinbox

The Spinbox widget is a variant of the standard Tkinter Entry widget, which can be used

to select from a fixed number of values.

Python 3

468

Syntax

Here is the simple syntax to create this widget-

w = Spinbox(master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Options Description

activebackground The color of the slider and arrowheads when the mouse is over

them.

bg The color of the slider and arrowheads when the mouse is not

over them.

bd The width of the 3-d borders around the entire perimeter of the

trough, and also the width of the 3-d effects on the arrowheads

and slider. Default is no border around the trough, and a 2-pixel

border around the arrowheads and slider.

command A procedure to be called whenever the scrollbar is moved.

cursor The cursor that appears when the mouse is over the scrollbar.

disabledbackground The background color to use when the widget is disabled.

disabledforeground The text color to use when the widget is disabled.

fg Text color.

font The font to use in this widget.

format Format string. No default value.

from_ The minimum value. Used together with to to limit the spinbox

range.

Python 3

469

justify Default is LEFT

relief Default is SUNKEN.

repeatdelay Together with repeatinterval, this option controls button auto-

repeat. Both values are given in milliseconds.

repeatinterval See repeatdelay.

state One of NORMAL, DISABLED, or "readonly". Default is NORMAL.

textvariable No default value.

to See from.

validate Validation mode. Default is NONE.

validatecommand Validation callback. No default value.

values A tuple containing valid values for this widget. Overrides

from/to/increment.

vcmd Same as validatecommand.

width Widget width, in character units. Default is 20.

wrap If true, the up and down buttons will wrap around.

xscrollcommand Used to connect a spinbox field to a horizontal scrollbar. This

option should be set to the set method of the corresponding

scrollbar.

Methods

Spinbox objects have these methods-

Methods and Description

delete(startindex [,endindex])

This method deletes a specific character or a range of text.

Python 3

470

get(startindex [,endindex])

This method returns a specific character or a range of text.

identify(x, y)

Identifies the widget element at the given location.

index(index)

Returns the absolute value of an index based on the given index.

insert(index [,string]...)

This method inserts strings at the specified index location.

invoke(element)

Invokes a spinbox button.

Example

Try the following example yourself-

from Tkinter import *

master = Tk()

w = Spinbox(master, from_=0, to=10)

w.pack()

mainloop()

When the above code is execduted, it produces the following result-

Python 3

471

Tkinter PanedWindow

A PanedWindow is a container widget that may contain any number of panes, arranged

horizontally or vertically.

Each pane contains one widget and each pair of panes is separated by a moveable (via

mouse movements) sash. Moving a sash causes the widgets on either side of the sash to

be resized.

Syntax

Here is the simple syntax to create this widget-

w = PanedWindow(master, option, ...)

Parameters

 master: This represents the parent window.

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Option Description

bg The color of the slider and arrowheads when the mouse is not over

them.

bd The width of the 3-d borders around the entire perimeter of the trough,

and also the width of the 3-d effects on the arrowheads and slider.

Default is no border around the trough, and a 2-pixel border around

the arrowheads and slider.

borderwidth Default is 2.

cursor The cursor that appears when the mouse is over the window.

handlepad Default is 8.

handlesize Default is 8.

height No default value.

orient Default is HORIZONTAL.

Python 3

472

relief Default is FLAT.

sashcursor No default value.

sashrelief Default is RAISED.

sashwidth Default is 2.

showhandle No default value

width No default value.

Methods

PanedWindow objects have these methods-

Methods & Description

add(child, options)

Adds a child window to the paned window.

get(startindex [,endindex])

This method returns a specific character or a range of text.

config(options)

Modifies one or more widget options. If no options are given, the method returns a

dictionary containing all current option values.

Example

Try the following example yourself. Here is how to create a 3-pane widget-

!/usr/bin/python3

from tkinter import *

Python 3

473

m1 = PanedWindow()

m1.pack(fill=BOTH, expand=1)

left = Entry(m1, bd=5)

m1.add(left)

m2 = PanedWindow(m1, orient=VERTICAL)

m1.add(m2)

top = Scale(m2, orient=HORIZONTAL)

m2.add(top)

bottom = Button(m2, text="OK")

m2.add(bottom)

mainloop()

When the above code is executed, it produces the following result-

Tkinter LabelFrame

A labelframe is a simple container widget. Its primary purpose is to act as a spacer or

container for complex window layouts.

This widget has the features of a frame plus the ability to display a label.

Syntax

Here is the simple syntax to create this widget-

w = LabelFrame(master, option, ...)

Parameters

 master: This represents the parent window.

Python 3

474

 options: Here is the list of most commonly used options for this widget. These

options can be used as key-value pairs separated by commas.

Option Description

bg The normal background color displayed behind the label and

indicator.

bd The size of the border around the indicator. Default is 2 pixels.

cursor If you set this option to a cursor name (arrow, dot etc.), the

mouse cursor will change to that pattern when it is over the

checkbutton.

font The vertical dimension of the new frame.

height The vertical dimension of the new frame.

labelAnchor Specifies where to place the label.

highlightbackground Color of the focus highlight when the frame does not have focus.

highlightcolor Color shown in the focus highlight when the frame has the focus.

highlightthickness Thickness of the focus highlight.

relief With the default value, relief=FLAT, the checkbutton does not

stand out from its background. You may set this option to any

of the other styles

text Specifies a string to be displayed inside the widget.

width Specifies the desired width for the window.

Example

Try the following example yourself. Here is how to create a labelframe widget-

!/usr/bin/python3

from tkinter import *

Python 3

475

root = Tk()

labelframe = LabelFrame(root, text="This is a LabelFrame")

labelframe.pack(fill="both", expand="yes")

left = Label(labelframe, text="Inside the LabelFrame")

left.pack()

root.mainloop()

When the above code is executed, it produces the following result-

Tkinter tkMessageBox

The tkMessageBox module is used to display message boxes in your applications. This

module provides a number of functions that you can use to display an appropriate

message.

Some of these functions are showinfo, showwarning, showerror, askquestion, askokcancel,

askyesno, and askretryignore.

Syntax

Here is the simple syntax to create this widget-

tkMessageBox.FunctionName(title, message [, options])

Parameters

 FunctionName: This is the name of the appropriate message box function.

 title: This is the text to be displayed in the title bar of a message box.

 message: This is the text to be displayed as a message.

 options: options are alternative choices that you may use to tailor a standard

message box. Some of the options that you can use are default and parent. The

Python 3

476

default option is used to specify the default button, such as ABORT, RETRY, or

IGNORE in the message box. The parent option is used to specify the window on

top of which the message box is to be displayed.

You could use one of the following functions with dialogue box-

 showinfo()

 showwarning()

 showerror ()

 askquestion()

 askokcancel()

 askyesno ()

 askretrycancel ()

Example

Try the following example yourself-

!/usr/bin/python3

from tkinter import *

from tkinter import messagebox

top = Tk()

top.geometry("100x100")

def hello():

 messagebox.showinfo("Say Hello", "Hello World")

B1 = Button(top, text = "Say Hello", command = hello)

B1.place(x=35,y=50)

top.mainloop()

When the above code is executed, it produces the following result-

Python 3

477

Standard Attributes

Let us look at how some of the common attributes, such as sizes, colors and fonts are

specified.

 Dimensions

 Colors

 Fonts

 Anchors

 Relief styles

 Bitmaps

 Cursors

Let us study them briefly-

Tkinter Dimensions

Various lengths, widths, and other dimensions of widgets can be described in many

different units.

 If you set a dimension to an integer, it is assumed to be in pixels.

 You can specify units by setting a dimension to a string containing a number

followed by.

Character Description

Python 3

478

c Centimeters

i Inches

m Millimeters

p Printer's points (about 1/72")

Length options

Tkinter expresses a length as an integer number of pixels. Here is the list of common

length options-

 borderwidth: Width of the border which gives a three-dimensional look to the

widget.

 highlightthickness: Width of the highlight rectangle when the widget has focus .

 padX padY: Extra space the widget requests from its layout manager beyond the

minimum the widget needs to display its contents in the x and y directions.

 selectborderwidth: Width of the three-dimentional border around selected items

of the widget.

 wraplength: Maximum line length for widgets that perform word wrapping.

 height: Desired height of the widget; must be greater than or equal to 1.

 underline: Index of the character to underline in the widget's text (0 is the first

character, 1 the second one, and so on).

 width: Desired width of the widget.

Tkinter Colors

Tkinter represents colors with strings. There are two general ways to specify colors in

Tkinter-

 You can use a string specifying the proportion of red, green and blue in hexadecimal

digits. For example, "#fff" is white, "#000000" is black, "#000fff000" is pure green,

and "#00ffff" is pure cyan (green plus blue).

 You can also use any locally defined standard color name. The colors "white",

"black", "red", "green", "blue", "cyan", "yellow", and "magenta" will always be

available.

Python 3

479

Color options

The common color options are-

 activebackground: Background color for the widget when the widget is active.

 activeforeground: Foreground color for the widget when the widget is active.

 background: Background color for the widget. This can also be represented as bg.

 disabledforeground: Foreground color for the widget when the widget is

disabled.

 foreground: Foreground color for the widget. This can also be represented as fg.

 highlightbackground: Background color of the highlight region when the widget

has focus.

 highlightcolor: Foreground color of the highlight region when the widget has

focus.

 selectbackground: Background color for the selected items of the widget.

 selectforeground: Foreground color for the selected items of the widget.

Tkinter Fonts

There may be up to three ways to specify type style.

Simple Tuple Fonts

As a tuple whose first element is the font family, followed by a size in points, optionally

followed by a string containing one or more of the style modifiers bold, italic, underline

and overstrike.

Example

 ("Helvetica", "16") for a 16-point Helvetica regular.

 ("Times", "24", "bold italic") for a 24-point Times bold italic.

Font object Fonts

You can create a "font object" by importing the tkFont module and using its Font class

constructor −

import tkFont

font = tkFont.Font (option, ...)

Here is the list of options-

Python 3

480

 family: The font family name as a string.

 size: The font height as an integer in points. To get a font n pixels high, use -n.

 weight: "bold" for boldface, "normal" for regular weight.

 slant: "italic" for italic, "roman" for unslanted.

 underline: 1 for underlined text, 0 for normal.

 overstrike: 1 for overstruck text, 0 for normal.

Example

helv36 = tkFont.Font(family="Helvetica",size=36,weight="bold")

X Window Fonts

If you are running under the X Window System, you can use any of the X font names.

For example, the font named "-*-lucidatypewriter-medium-r-*-*-*-140-*-*-*-*-*-*" is

the author's favorite fixed-width font for onscreen use. Use thexfontsel program to help

you select pleasing fonts.

Tkinter Anchors

Anchors are used to define where text is positioned relative to a reference point.

Here is list of possible constants, which can be used for Anchor attribute.

 NW

 N

 NE

 W

 CENTER

 E

 SW

 S

 SE

For example, if you use CENTER as a text anchor, the text will be centered horizontally

and vertically around the reference point.

Anchor NW will position the text so that the reference point coincides with the northwest

(top left) corner of the box containing the text.

Anchor W will center the text vertically around the reference point, with the left edge of

the text box passing through that point, and so on.

If you create a small widget inside a large frame and use the anchor=SE option, the widget

will be placed in the bottom right corner of the frame. If you used anchor=N instead, the

widget would be centered along the top edge.

Python 3

481

Example

The anchor constants are shown in this diagram-

Tkinter Relief styles

The relief style of a widget refers to certain simulated 3-D effects around the outside of

the widget. Here is a screenshot of a row of buttons exhibiting all the possible relief styles-

Here is list of possible constants which can be used for relief attribute-

 FLAT

 RAISED

 SUNKEN

 GROOVE

 RIDGE

Example

!/usr/bin/python3

from tkinter import *

import tkinter

top = Tk()

B1 = Button(top, text ="FLAT", relief=FLAT)

Python 3

482

B2 = Button(top, text ="RAISED", relief=RAISED)

B3 = Button(top, text ="SUNKEN", relief=SUNKEN)

B4 = Button(top, text ="GROOVE", relief=GROOVE)

B5 = Button(top, text ="RIDGE", relief=RIDGE)

B1.pack()

B2.pack()

B3.pack()

B4.pack()

B5.pack()

top.mainloop()

When the above code is executed, it produces the following result-

Tkinter Bitmaps

This attribute to displays a bitmap. There are following type of bitmaps available-

 "error"

 "gray75"

 "gray50"

 "gray25"

 "gray12"

 "hourglass"

 "info"

Python 3

483

 "questhead"

 "question"

 "warning"

Example

!/usr/bin/python3

from tkinter import *

import tkinter

top = Tk()

B1 = Button(top, text ="error", relief=RAISED,\

 bitmap="error")

B2 = Button(top, text ="hourglass", relief=RAISED,\

 bitmap="hourglass")

B3 = Button(top, text ="info", relief=RAISED,\

 bitmap="info")

B4 = Button(top, text ="question", relief=RAISED,\

 bitmap="question")

B5 = Button(top, text ="warning", relief=RAISED,\

 bitmap="warning")

B1.pack()

B2.pack()

B3.pack()

B4.pack()

B5.pack()

top.mainloop()

When the above code is executed, it produces the following result-

Python 3

484

Tkinter Cursors

Python Tkinter supports quite a number of different mouse cursors available. The exact

graphic may vary according to your operating system.

Here is the list of interesting ones-

 "arrow"

 "circle"

 "clock"

 "cross"

 "dotbox"

 "exchange"

 "fleur"

 "heart"

 "heart"

 "man"

 "mouse"

 "pirate"

 "plus"

 "shuttle"

 "sizing"

 "spider"

 "spraycan"

 "star"

 "target"

 "tcross"

 "trek"

 "watch"

Python 3

485

Example

Try the following example by moving cursor on different buttons-

!/usr/bin/python3

from tkinter import *

import tkinter

top = Tk()

B1 = Button(top, text ="circle", relief=RAISED,\

 cursor="circle")

B2 = Button(top, text ="plus", relief=RAISED,\

 cursor="plus")

B1.pack()

B2.pack()

top.mainloop()

Geometry Management

All Tkinter widgets have access to the specific geometry management methods, which

have the purpose of organizing widgets throughout the parent widget area. Tkinter

exposes the following geometry manager classes: pack, grid, and place.

 The pack() Method - This geometry manager organizes widgets in blocks before

placing them in the parent widget.

 The grid() Method - This geometry manager organizes widgets in a table-like

structure in the parent widget.

 The place() Method -This geometry manager organizes widgets by placing them in

a specific position in the parent widget.

Let us study the geometry management methods briefly –

Python 3

486

Tkinter pack() Method

This geometry manager organizes widgets in blocks before placing them in the parent

widget.

Syntax

widget.pack(pack_options)

Here is the list of possible options-

 expand: When set to true, widget expands to fill any space not otherwise used in

widget's parent.

 fill: Determines whether widget fills any extra space allocated to it by the packer,

or keeps its own minimal dimensions: NONE (default), X (fill only horizontally), Y

(fill only vertically), or BOTH (fill both horizontally and vertically).

 side: Determines which side of the parent widget packs against: TOP (default),

BOTTOM, LEFT, or RIGHT.

Example

Try the following example by moving cursor on different buttons-

!/usr/bin/python3

from tkinter import *

root = Tk()

frame = Frame(root)

frame.pack()

bottomframe = Frame(root)

bottomframe.pack(side = BOTTOM)

redbutton = Button(frame, text="Red", fg="red")

redbutton.pack(side = LEFT)

greenbutton = Button(frame, text="Brown", fg="brown")

greenbutton.pack(side = LEFT)

bluebutton = Button(frame, text="Blue", fg="blue")

bluebutton.pack(side = LEFT)

Python 3

487

blackbutton = Button(bottomframe, text="Black", fg="black")

blackbutton.pack(side = BOTTOM)

root.mainloop()

When the above code is executed, it produces the following result-

Tkinter grid() Method

This geometry manager organizes widgets in a table-like structure in the parent widget.

Syntax

widget.grid(grid_options)

Here is the list of possible options-

 column : The column to put widget in; default 0 (leftmost column).

 columnspan: How many columns widgetoccupies; default 1.

 ipadx, ipady :How many pixels to pad widget, horizontally and vertically, inside

widget's borders.

 padx, pady : How many pixels to pad widget, horizontally and vertically, outside

v's borders.

 row: The row to put widget in; default the first row that is still empty.

 rowspan : How many rowswidget occupies; default 1.

 sticky : What to do if the cell is larger than widget. By default, with sticky='',

widget is centered in its cell. sticky may be the string concatenation of zero or more

of N, E, S, W, NE, NW, SE, and SW, compass directions indicating the sides and

corners of the cell to which widget sticks.

Example

Try the following example by moving cursor on different buttons-

!/usr/bin/python3

from tkinter import *

root = Tk()

Python 3

488

b=0

for r in range(6):

 for c in range(6):

 b=b+1

 Button(root, text=str(b),

 borderwidth=1).grid(row=r,column=c)

root.mainloop()

This would produce the following result displaying 12 labels arrayed in a 3 x 4 grid-

Tkinter place() Method

This geometry manager organizes widgets by placing them in a specific position in the

parent widget.

Syntax

widget.place(place_options)

Here is the list of possible options-

 anchor : The exact spot of widget other options refer to: may be N, E, S, W, NE,

NW, SE, or SW, compass directions indicating the corners and sides of widget;

default is NW (the upper left corner of widget)

 bordermode : INSIDE (the default) to indicate that other options refer to the

parent's inside (ignoring the parent's border); OUTSIDE otherwise.

 height, width : Height and width in pixels.

 relheight, relwidth : Height and width as a float between 0.0 and 1.0, as a

fraction of the height and width of the parent widget.

 relx, rely : Horizontal and vertical offset as a float between 0.0 and 1.0, as a

fraction of the height and width of the parent widget.

 x, y : Horizontal and vertical offset in pixels.

Python 3

489

Example

Try the following example by moving cursor on different buttons-

!/usr/bin/python3

ffrom tkinter import *

top = Tk()

L1 = Label(top, text="Physics")

L1.place(x=10,y=10)

E1 = Entry(top, bd =5)

E1.place(x=60,y=10)

L2=Label(top,text="Maths")

L2.place(x=10,y=50)

E2=Entry(top,bd=5)

E2.place(x=60,y=50)

L3=Label(top,text="Total")

L3.place(x=10,y=150)

E3=Entry(top,bd=5)

E3.place(x=60,y=150)

B = Button(top, text ="Add")

B.place(x=100, y=100)

top.geometry("250x250+10+10")

top.mainloop()

When the above code is executed, it produces the following result-

Python 3

490

Any code that you write using any compiled language like C, C++, or Java can be

integrated or imported into another Python script. This code is considered as an

"extension."

A Python extension module is nothing more than a normal C library. On Unix machines,

these libraries usually end in .so (for shared object). On Windows machines, you typically

see .dll (for dynamically linked library).

Pre-Requisites for Writing Extensions

To start writing your extension, you are going to need the Python header files.

 On Unix machines, this usually requires installing a developer-specific package such

as python2.5-dev.

 Windows users get these headers as part of the package when they use the binary

Python installer.

Additionally, it is assumed that you have a good knowledge of C or C++ to write any

Python Extension using C programming.

First look at a Python Extension

For your first look at a Python extension module, you need to group your code into four

parts-

 The header file Python.h.

 The C functions you want to expose as the interface from your module.

 A table mapping the names of your functions as Python developers see them as C

functions inside the extension module.

 An initialization function.

The Header File Python.h

You need to include Python.h header file in your C source file, which gives you the access

to the internal Python API used to hook your module into the interpreter.

Make sure to include Python.h before any other headers you might need. You need to

follow the includes with the functions you want to call from Python.

28. Python 3 – Extension Programming with C

http://packages.debian.org/etch-m68k/python2.5-dev

Python 3

491

The C Functions

The signatures of the C implementation of your functions always takes one of the following

three forms-

static PyObject *MyFunction(PyObject *self, PyObject *args);

static PyObject *MyFunctionWithKeywords(PyObject *self,

 PyObject *args,

 PyObject *kw);

static PyObject *MyFunctionWithNoArgs(PyObject *self);

Each one of the preceding declarations returns a Python object. There is no such thing as

a void function in Python as there is in C. If you do not want your functions to return a

value, return the C equivalent of Python's None value. The Python headers define a macro,

Py_RETURN_NONE, that does this for us.

The names of your C functions can be whatever you like as they are never seen outside of

the extension module. They are defined as static function.

Your C functions usually are named by combining the Python module and function names

together, as shown here −

static PyObject *module_func(PyObject *self, PyObject *args) {

 /* Do your stuff here. */

 Py_RETURN_NONE;

}

This is a Python function called func inside the module module. You will be putting pointers

to your C functions into the method table for the module that usually comes next in your

source code.

The Method Mapping Table

This method table is a simple array of PyMethodDef structures. That structure looks

something like this-

struct PyMethodDef {

 char *ml_name;

 PyCFunction ml_meth;

 int ml_flags;

 char *ml_doc;

};

Python 3

492

Here is the description of the members of this structure-

 ml_name: This is the name of the function as the Python interpreter presents

when it is used in Python programs.

 ml_meth: This is the address of a function that has any one of the signatures,

described in the previous section.

 ml_flags: This tells the interpreter which of the three signatures ml_meth is using.

o This flag usually has a value of METH_VARARGS.

o This flag can be bitwise OR'ed with METH_KEYWORDS if you want to allow

keyword arguments into your function.

o This can also have a value of METH_NOARGS that indicates you do not want

to accept any arguments.

 ml_doc: This is the docstring for the function, which could be NULL if you do not

feel like writing one.

This table needs to be terminated with a sentinel that consists of NULL and 0 values for

the appropriate members.

Example

For the above-defined function, we have the following method mapping table-

static PyMethodDef module_methods[] = {

 { "func", (PyCFunction)module_func, METH_NOARGS, NULL },

 { NULL, NULL, 0, NULL }

};

The Initialization Function

The last part of your extension module is the initialization function. This function is called

by the Python interpreter when the module is loaded. It is required that the function be

named initModule, where Module is the name of the module.

The initialization function needs to be exported from the library you will be building. The

Python headers define PyMODINIT_FUNC to include the appropriate incantations for that

to happen for the particular environment in which we are compiling. All you have to do is

use it when defining the function.

Your C initialization function generally has the following overall structure-

PyMODINIT_FUNC initModule() {

 Py_InitModule3(func, module_methods, "docstring...");

}

Python 3

493

Here is the description of Py_InitModule3 function-

 func: This is the function to be exported.

 module_methods: This is the mapping table name defined above.

 docstring: This is the comment you want to give in your extension.

Putting all this together, it looks like the following-

#include <Python.h>

static PyObject *module_func(PyObject *self, PyObject *args) {

 /* Do your stuff here. */

 Py_RETURN_NONE;

}

static PyMethodDef module_methods[] = {

 { "func", (PyCFunction)module_func, METH_NOARGS, NULL },

 { NULL, NULL, 0, NULL }

};

PyMODINIT_FUNC initModule() {

 Py_InitModule3(func, module_methods, "docstring...");

}

Example

A simple example that makes use of all the above concepts-

#include <Python.h>

static PyObject* helloworld(PyObject* self)

{

 return Py_BuildValue("s", "Hello, Python extensions!!");

}

static char helloworld_docs[] =

 "helloworld(): Any message you want to put here!!\n";

static PyMethodDef helloworld_funcs[] = {

 {"helloworld", (PyCFunction)helloworld,

 METH_NOARGS, helloworld_docs},

Python 3

494

 {NULL}

};

void inithelloworld(void)

{

 Py_InitModule3("helloworld", helloworld_funcs,

 "Extension module example!");

}

Here the Py_BuildValue function is used to build a Python value. Save above code in hello.c

file. We would see how to compile and install this module to be called from Python script.

Building and Installing Extensions

The distutils package makes it very easy to distribute Python modules, both pure Python

and extension modules, in a standard way. Modules are distributed in the source form,

built and installed via a setup script usually called setup.pyas.

For the above module, you need to prepare the following setup.py script −

from distutils.core import setup, Extension

setup(name='helloworld', version='1.0', \

 ext_modules=[Extension('helloworld', ['hello.c'])])

Now, use the following command, which would perform all needed compilation and linking

steps, with the right compiler and linker commands and flags, and copies the resulting

dynamic library into an appropriate directory-

$ python setup.py install

On Unix-based systems, you will most likely need to run this command as root in order to

have permissions to write to the site-packages directory. This usually is not a problem on

Windows.

Importing Extensions

Once you install your extensions, you would be able to import and call that extension in

your Python script as follows-

#!/usr/bin/python3

import helloworld

print helloworld.helloworld()

This would produce the following result-

Hello, Python extensions!!

Python 3

495

Passing Function Parameters

As you will most likely want to define functions that accept arguments, you can use one

of the other signatures for your C functions. For example, the following function, that

accepts some number of parameters, would be defined like this-

static PyObject *module_func(PyObject *self, PyObject *args) {

 /* Parse args and do something interesting here. */

 Py_RETURN_NONE;

}

The method table containing an entry for the new function would look like this-

static PyMethodDef module_methods[] = {

 { "func", (PyCFunction)module_func, METH_NOARGS, NULL },

 { "func", module_func, METH_VARARGS, NULL },

 { NULL, NULL, 0, NULL }

};

You can use the API PyArg_ParseTuple function to extract the arguments from the one

PyObject pointer passed into your C function.

The first argument to PyArg_ParseTuple is the args argument. This is the object you will

be parsing. The second argument is a format string describing the arguments as you

expect them to appear. Each argument is represented by one or more characters in the

format string as follows.

static PyObject *module_func(PyObject *self, PyObject *args) {

 int i;

 double d;

 char *s;

 if (!PyArg_ParseTuple(args, "ids", &i, &d, &s)) {

 return NULL;

 }

 /* Do something interesting here. */

 Py_RETURN_NONE;

}

Compiling the new version of your module and importing it enables you to invoke the new

function with any number of arguments of any type-

module.func(1, s="three", d=2.0)

module.func(i=1, d=2.0, s="three")

Python 3

496

module.func(s="three", d=2.0, i=1)

You can probably come up with even more variations.

The PyArg_ParseTuple Function

Here is the standard signature for the PyArg_ParseTuple function=

int PyArg_ParseTuple(PyObject* tuple,char* format,...)

This function returns 0 for errors, and a value not equal to 0 for success. Tuple is the

PyObject* that was the C function's second argument. Here format is a C string that

describes mandatory and optional arguments.

Here is a list of format codes for the PyArg_ParseTuple function-

Code C type Meaning

c char A Python string of length 1 becomes a C char.

d double A Python float becomes a C double.

f float A Python float becomes a C float.

i int A Python int becomes a C int.

l long A Python int becomes a C long.

L long long A Python int becomes a C long long

O PyObject* Gets non-NULL borrowed reference to Python argument.

s char* Python string without embedded nulls to C char*.

s# char*+int Any Python string to C address and length.

t# char*+int Read-only single-segment buffer to C address and

length.

u Py_UNICODE* Python Unicode without embedded nulls to C.

u# Py_UNICODE*+int Any Python Unicode C address and length.

Python 3

497

w# char*+int Read/write single-segment buffer to C address and

length.

z char* Like s, also accepts None (sets C char* to NULL).

z# char*+int Like s#, also accepts None (sets C char* to NULL).

(...) as per ... A Python sequence is treated as one argument per item.

| The following arguments are optional.

: Format end, followed by function name for error

messages.

; Format end, followed by entire error message text.

Returning Values

Py_BuildValue takes in a format string much like PyArg_ParseTuple does. Instead of

passing in the addresses of the values you are building, you pass in the actual values.

Here is an example showing how to implement an add function-

static PyObject *foo_add(PyObject *self, PyObject *args) {

 int a;

 int b;

 if (!PyArg_ParseTuple(args, "ii", &a, &b)) {

 return NULL;

 }

 return Py_BuildValue("i", a + b);

}

This is what it would look like if implemented in Python-

def add(a, b):

 return (a + b)

You can return two values from your function as follows. This would be captured using a

list in Python.

static PyObject *foo_add_subtract(PyObject *self, PyObject *args) {

 int a;

 int b;

Python 3

498

 if (!PyArg_ParseTuple(args, "ii", &a, &b)) {

 return NULL;

 }

 return Py_BuildValue("ii", a + b, a - b);

}

This is what it would look like if implemented in Python-

def add_subtract(a, b):

 return (a + b, a - b)

The Py_BuildValue Function

Here is the standard signature for Py_BuildValue function-

PyObject* Py_BuildValue(char* format,...)

Here format is a C string that describes the Python object to build. The following arguments

of Py_BuildValue are C values from which the result is built. ThePyObject* result is a new

reference.

The following table lists the commonly used code strings, of which zero or more are joined

into a string format.

Code C type Meaning

c char A C char becomes a Python string of length 1.

d double A C double becomes a Python float.

f float A C float becomes a Python float.

i int A C int becomes a Python int.

l long A C long becomes a Python int.

N PyObject* Passes a Python object and steals a reference.

O PyObject* Passes a Python object and INCREFs it as normal.

O& convert+void* Arbitrary conversion

Python 3

499

s char* C 0-terminated char* to Python string, or NULL to None.

s# char*+int C char* and length to Python string, or NULL to None.

u Py_UNICODE* C-wide, null-terminated string to Python Unicode, or

NULL to None.

u# Py_UNICODE*+int C-wide string and length to Python Unicode, or NULL to

None.

w# char*+int Read/write single-segment buffer to C address and

length.

z char* Like s, also accepts None (sets C char* to NULL).

z# char*+int Like s#, also accepts None (sets C char* to NULL).

(...) as per ... Builds Python tuple from C values.

[...] as per ... Builds Python list from C values.

{...} as per ... Builds Python dictionary from C values, alternating keys

and values.

Code {...} builds dictionaries from an even number of C values, alternately keys and

values. For example, Py_BuildValue("{issi}",23,"zig","zag",42) returns a dictionary like

Python's {23:'zig','zag':42}.

