Linear Algebra with Application to
Engineering Computations

A brief introduction to

MATLAB

September 2006

CME200

M. Gerritsen
Autumn 2006
Handout 3

MATLAB, short for MATrix LABoratory is a programming package specifically designed for quick and easy
scientific calculations and I/O. It has literally hundreds of built-in functions for a wide variety of computations
and many toolboxes designed for specific research disciplines, including statistics, optimization, solution of
partial differential equations, data analysis.

For CME200, you need a solid knowledge of basic MATLAB commands and several more advanced features
including two- and three-dimensional graphics, solution of algebraic equations, solution of ordinary differential
equations, calculations with matrices and solutions of linear systems of equations. Most of what you need is
discussed here, but most importantly, after this tutorial you should be able to find your way around the
MATLAB help function and browser functions to find any additional features you may need or want to use.

General directions
This is a hands-on tutorial. MATLAB commands for you to type are printed in bold letters. Bold letters are also
used to make MATLAB expressions that are in lower case more visible when found in a sentence.

Where to find MATLAB?

For those who own a PC, the cheap student edition of MATLAB is available at the bookstore. We recommend
you buy a copy of this version because you will likely use it throughout your Stanford career and beyond.

If you do not have your own PC, you will find that MATLAB is available on a wide variety of platforms around
campus.

This tutorial assumes you can open the MATLAB GUI. If you are running on a UNIX machine, you can also run
MATLAB in any xterm window, but you will miss the advanced interface options that makes the new versions
of MATLAB such a pleasure to deal with.

This MATLAB tutorial is based on version 6x (from 2001). The latest version of MATLAB has a slightly
different interface, and additional features. However, the basic commands and workings of MATLAB discussed
in this tutorial are still the same.

¢ Section 1 — The Basics

1) Start MATLAB by double clicking on the MATLAB icon in the applications folder, or wherever it is.
Note that on some campus machines MATLAB is listed as an Optional software under the applications
folder. If that is the case, you must download the complete MATLAB folder onto the hard drive from the
server. Read the Optional software instructions available there. This download may take up to 30
minutes.

The MATLAB window should come up on your screen. It looks like:

<) MATLAB (O] x|

File Edit View Web Window Help
| [}"'| 2 B o | n | ? |Currerr!Directory:lZ:1 j J
Workspace u m Command Window
= Staek:lE'sse vl =
o H ‘ H ‘ @ This is a Classroom License for instructional use only.
Name Size Bytes Research and commercial use is prohibited.
@a xl 8 dou] To get started, select "MATLAB Help” from the Help menu.
>> a=3+4
a =
7
4| | Ll >>
<| >| Launch Pad ‘Workspace I
Command History n m
%-- 12:32 PM 12/21/00 --%
$-- 12:37 PM 12/21/00 --%
$-- §:09 PM 2/22/01 --%
%-- 12:01 PM 4/09/01 --%
a=3+4
<| >| Command Histary | current Directory_| 2| I»[
Ready

This is the window in which you interact with MATLAB. The main window on the right is called the Command
Window. You can see the command prompt in this window, which looks like >>. If this prompt is visible
MATLAB is ready for you to enter a command. In the figure, you can see that we typed in the command a=3+4.
In the top left corner you can view the Launch Pad window and the Workspace window. Swap from one to the
other by clicking on the appropriate tag. The Workspace window will show you all variables that you are using in
your current MATLAB session. In this example, the workspace contains the variable 'a'. When you first start up
MATLAB, the workspace is empty. More about workspaces later.

In the bottom left corner you can see the Command History window, which simply gives a chronological list of
all MATLAB commands that you used, and the Current Directory window which shows you the contents and
location of the directory you are currently working in.

You can change the layout of the MATLAB window:

2) To change the layout of the MATLAB window, select View, then Desktop Layout. Six different layout
styles can be chosen.

Note that MATLAB is case-sensitive, so

3) make sure that the 'Caps Lock' is switched off!

During the MATLARB sessions you will create files to store programs or workspaces.

4) Create an appropriate folder to store this lab’s files.

5) Go to the Current Directory window. Find the Browse for folder button on the menu (the one with the 3
dots ...). Select the folder you just created so that MATLAB will automatically save files in this folder.
Note that the current directory (or folder: folder and directory mean the same thing) is also displayed in

the top right corner next to the main menu.

If you like to see a demo of MATLAB you can type demo after the prompt.

6) Now, let's try a simple command. Next to the prompt in the Command Window type a=3+4 and then
press 'enter' to activate this command. On the screen you should see

a=
7

Notice how MATLAB carries out this command immediately, and gives you the prompt >> for your next

command. Here, a variable called 'a' is created by MATLAB and assigned the value of 7. MATLAB stores the

variable a in its workspace until you exit MATLAB or tell MATLAB to delete the variable.

7) Go to the Workspace window and check that the variable a is in your workspace.

You will see in this window that a is stored in 8 bytes, that it is a double and that it has size 1x1. This size seems
a bit odd and we will explain it later.

8) In the Workspace window, double click on the name 'a'. A small window will pop up displaying a’s
value. This is a handy feature.

We can change the value of the variable:

9) Try a =9, followed by 'enter' to change the value of a to 9. Then type b=sqrt(a) to find the square root of
a. Don't forget to press 'enter' to enter the command (we will not always remind you to hit 'enter' but it is
necessary to tell MATLAB to carry out the command). Now you should see
b=

3

10) Go back to the Workspace window and check that b is indeed in your workspace. Also check by double-
clicking on a that a’s value has changed.

* Section 2 - The MATLAB on-line help facility

MATLAB has handy on-line help facilities. There are several ways to get help. You can go to Help on the menu
(or the ? on the menu) and select any of the available help facilities listed there. There are simpler help
commands as well that work in all versions of MATLAB.

1) Type the command help in the Command Window to find a long list of all different categories for which
there are MATLAB commands. Each of the listed categories contains more detailed information about
available MATLAB functions. For example, 'ops' (listed in the top under 'matlab:ops') contains
information about MATLAB operators such as addition and subtraction.

2) Type help ops to find a list of MATLAB operators. You can see from this list, for example, that more
information about addition can be found in help arith .

Alternatively you can launch the help window:

3) Type helpwin to launch the help window shown below.

) Help = B3
File Edit View Go Web Window Help

Help Navigator

¢ Y - ‘ =] ‘Findinpage:l Go
I M-File Help: Default Topics LI Add to Favorites |

Product filter: & 21 € Selected

Corterts | Favortes |

= _ Default Topics
rJ:L\' Documentation Mot Found
&

% R12 Release Notes

L HELP topics
Support and Weh Services

matlab)general
matlabyops
matlabylang
matlabbelmat

General purpose commands.

Operators and special characters.

Programming language constructs.

Elementary matrices and matrix manipulation.
matlablelfun Elementary math functions.

matlablspecfun Specialized math functions. =
natrlahlimarfim

. . Worriv Fimorions — smarical
< o

| I N R R B

Ready

In this window, you can get help on operators, for example, by double clicking on 'ops'.

Another very useful MATLAB command is the lookfor command. You can use this to search for commands
related to a keyword.

4) Find out which MATLAB commands are available for plotting using the command lookfor plot in the
command window. It may take a bit of time to get all commands on the screen. You can stop the search at
any time by typing Ctrl-c (the control and the ¢ key simultaneously).

Important

In the MATLAB help descriptions, the MATLAB commands and functions are often given in capital letters.
But: always type commands in lower case. MATLAB is case sensitive and will generally not recognize
commands typed in capital letters! Note that because of this case sensitivity the variables 'A' and 'a', for example,
are different. Here, we use capital letters like 'A', 'B' for matrices and lower case letters for scalars or vectors.

* Section 3 - Data representation in MATLAB

As we discussed in the lectures, MATLAB stands for '"MATrix LABoratory'. This title is appropriate because
the structure for the storage of all data in MATLAB is a matrix. The MATLAB matrix-variables may have any
number of rows and columns. Scalars like the variables a and b that you worked with above are also stored as
matrix variables with 1 row and 1 column. This is the reason that the variable a in your workspace is shown as a
1x1 matrix!

So beware, a matrix-variable can be any variable in MATLAB, that is, it could be a scalar, a vector or a matrix
of any size. If we refer to scalars, vectors or matrices specifically we mean just that: scalars, vectors or matrices.

Entering variables

An mxn ('m by n") MATLAB matrix-variable (or simply variable) has m rows and n columns. For example, the
1

4

element on row 1 and column 2 has the value 2. The element on row 2 and column 3 has the value 6.

variable A = [] is a 2x3 matrix. The numbers 1 through 6 are called the elements of the matrix. The

1) Create the matrix A by typing A = [1 2 3;4 5 6] followed by the enter. Make sure that you separate the
elements 1,2 and 3, and 4, 5 and 6 with a space. If you don’t MATLAB will think you created the vector
A with first element 123 (one hundred and twenty-three) and second element 456. Also, use square
brackets instead of parentheses.

Instead of a space, you can also use a comma to separate the elements. The semi-colon (;) in this context is used
to separate the elements of one row from another, but you can also use a line break to separate rows as shown
below.

2) Remove the matrix A by typing clear A. Then recreate A using
>> A =[1,2,3 (now hit enter for the line break)
4,5,6]

Error messages

If your command is invalid MATLAB gives you explanatory error messages (luckily!). Read them carefully.
Normally MATLAB points to the exact position of where things went wrong.

11
3) Try to change A to [

22
using the incorrect command A = [11 22 33;44]
33 44

The command has failed. MATLAB tells you that you do not have the same number of columns in each row, i.e.
the same number of elements in each row. You put the semi-colon in the wrong place.

Row and column vectors
A row vector has one row and any number of columns. Similarly a column vector has one column and any
number of rows.

4) Type v=[1, 2, 3] . Now use the size function to check that v has 1 row and 3 columns by typing n= size(v)

size is an example of a MATLAB function. The round brackets enclose the variable to be operated on. The first
number returned by the size function gives the number of rows in the variable and the second number gives the
number of columns.

1
5) Enter the column vector ¢ = |2| using ¢ = [1; 2; 3] and check that is has 3 rows and 1 column (note the
3

use of semicolons to separate the rows).

Changing matrices
Just as with scalars, you can change a matrix simply by defining it to be something else. We already
unsuccessfully tried this when we tried to change A. Lets get it right this time.

6) Type A=[11 22;33 44] to make A become the 2x2 matrix given earlier.

The 2x3 matrix that A used to be has now been lost. The variable A still exists of course in MATLABs
workspace but now has a different size and different values for its elements.

* Section 4 - Scrolling

Suppose you want to repeat or edit an earlier command. If you dislike typing it all back in, then there is good
news for you: MATLAB lets you search through your previous commands using the up-arrow and down-arrow
keys. This is a very convenient facility, which can save a considerable amount of time.

1) Suppose you regret the last command, and that you want A still to be the 2x3 matrix you originally
defined. Press the up-arrow key until the earlier command
A=[1 2 3;4 5 6] appears in the Command Window (the down-arrow key can be used if you go back too
far). Now press enter. The matrix A is back to what it was originally.

You can speed up the scroll if you remember the first letters of the command you are interested in. For example,
if you quickly want to jump back to the command v = [1, 2, 3] just type v = and then press the up-arrow-key.

MATLAB will display the most recent command starting with 'v ='. Alternatively you can use 'Copy' and 'Paste’
under 'Edit'".

In MATLAB 6 you can also use the Command History window to jump to a previous command:

2) Go to the Command History window. Jump back to the command v=[1,2,3] by double-clicking on this
line in the Command History window. The command will be carried out immediately.

* Section 5 - Basic arithmetic operations in MATLAB

MATLAB allows you to do operations on variables as single entities like in matrix-matrix multiplication and
also operations on the individual elements of the matrix.

1 2 4
1) Verify on paper that the product of the matrices A = [0 1} and B = 3

2] . 10 12
is equal to AB = .
5 3 5

Remember that the multiplication AB is possible because the number of columns in A is equal to the number of
rows in B. Matrix multiplication is generally not commutative (commutative means AB = BA), so it is no

4 10
surprise to find that BA = [3 11] is a different matrix.

2) Create the matrices A and B in MATLAB.

3) Type A*B to perform the first multiplication. Because you did not give the result of this expression a
name MATLAB calls it 'ans' (which is short for answer). Note that multiplication of matrices in
MATLAB as in A*B is the matrix multiplication (product) operation.

4) Type B*A to perform the second matrix multiplication. The matrix 'ans' has now changed to be the result
of this expression. In MATLAB 'ans' is the result of the last unnamed MATLAB command, so you
should not use 'ans' as the name of one of your variables!

5) Type A+B to add the two matrices. Type 3*A to multiply A by 3.

So you see that MATLAB can be used as a simple 'pocket calculator' for matrices. You can quickly and easily

multiply, add or subtract them. It is a very handy tool to check matrix computations that you must carry out for
other courses.

* Section 6 - Keeping in touch with your variables

By now you might have lost track of what variables you created. Yet they are still there as we mentioned before:
Unless you explicitly delete them, change them or quit MATLAB, they do not go away, but are kept in
MATLABs workspace. You can see a list of all your variables in the Workspace window. Alternatively you can
use commands in the Command window to do the same:

1) Type who to see all your matrices.

2) Type whos to see a more complete description, including sizes, of all your stored data. From this
description check that v is a row vector and ¢ is a column vector

Deleting matrices

3) Remove the matrix B and the vector v by typing clear B v . Alternatively, you can remove B and v by
selecting them in the Workspace window and then clicking the ‘Delete Selection’ button (with the wee
trashcan).

Remember that you don't have to clear matrices to use the same names again. You can just set up a new matrix
with the same name.

4) Change the matrix A by typing A=2.

5) Check that A is now a scalar - the previous A matrix is lost. Again, we changed the size and the value of
the elements of the matrix-variable A. The size is now 1x1.

6) More drastically, remove all your variables by just typing clear without any names following.

7) Check that there are is nothing left in your workspace. Careful with this command!

* Section 7 - Generating variables made easy
Ready-made matrices and vectors

MATLAB provides functions to create several basic matrices automatically without having to type or read in
each of the elements. The most important functions are

Zeros zeros(m,n) creates an mxn matrix whose elements are equal to zero

ones ones(m,n) creates an mxn matrix whose elements are equal to one.

eye eye(m,n) creates an mxn identity matrix

rand rand(m,n) creates an mxn matrix whose elements are all random number between 0 and 1
1) Create a 5x5 matrix with random numbers. Now add to it a diagonal matrix with the diagonal elements

equal to 2. You can create such a diagonal matrix using the command 2*eye(5,5) .
The colon operator as a way of generating row vectors

The colon (:) is used a lot in MATLAB. One of its functions is to generate sequences of equally spaced numbers
in a row vector.

2) Type h=10:2:20. You should see that you have created a row vector h with elements starting at 10 and
increasing in steps of 2 up to 20. We could also have created this vector with h=[10 12 14 16 18 20]. Note
that we did NOT need brackets in h=10:2:20

If the step size is negative the sequence decreases. So i=9:-1:5setsitobe [98 7 6 5].

3) Type r=50:55. You should have the vector [50 51 52 53 54 55]. In other words, if the step size is
omitted it is assumed to be +1.

Suppression of output

Up till now you have always seen the results of each command on the screen. This is often not required or even
desirable; the output might clutter up the screen, or be long and take a long time to print. MATLAB suppresses
the output of a command if you finish the command with a semi-colon ;. This is therefore the second use of the
semicolon that you have come across. What was the first one again?

4) Set up the row vector with the first 500 whole numbers by just typing r=1:500 and see how long it takes
to echo on the screen.

5) Now let's create a second such vector by typing rr=1:500; noting that we have added a semicolon.
This last command executes quickly: the printing on the screen was taking up all the time.
Building larger matrices from smaller ones

6) Delete all your variables using clear.

) 1 2 -8 -7 -6
7) Create the matrices A = [3 4} and B = [}

-5 -4 -3

8) Now type C=[A B] or C=[A,B] and you should see that MATLAB put A and B side-by-side and called
the resulting matrix C.

9) Type D=[A B;B A] and you should see that MATLAB placed the matrix [B A] below the matrix [A B]
and called it D.

10) Now type D=[A;B].

This gives an error message, which tells you that this operation cannot be done. The number of columns in A
and B are not equal. The matrix

1 2 2
3004 9

D=
-8 -7 -6
-5 -4 -3

is a nonsense matrix. No new matrix D has been created and D is still equal to [A B;B A].

Changing values of individual elements

Individual elements in a variable can be identified using index numbers. For example the element 3 in the
matrix A above can be referred to as A(2,1) because it is the first element of the second row of A. Note that the
row and column indices are separated by a comma.

11) Change this element to have the value of 1 by typing A(2,1)=1

Note how MATLAB prints the whole matrix (unless you include a ; at the end), and that A(2,1) has changed.
Similarly sections of matrices (sub-matrices) can be identified using the colon operator.

12) Type A2 =A(1:2,1) to extract the first column of A and store it in A2.

We could also have achieved this by typing A2 = A(:,1) . The colon operator identifies all of the first column
(taking the first element in ALL of the rows). Similarly A(2,:) identifies the whole of the second row of A. Note
that MATLAB will object if you use negative (or zero!) indices for matrices.

13) Type A(-1,1)=23 for example.

However if you use an index which is above the maximum dimension the matrix is enlarged and all the
intervening elements are set to zero.

14) Type A(4,4)=2.

See how the extra elements of the matrix have been created, but only A(4,4) has been set to 2, the other extra
elements are set to zero by default.

We can use indexing to shift elements of a variable.

15) Swap the first and second columns of B by typing B = [B(:,2) , B(:,1), B(:,3)] . This overwrites the old
B. So read this as : B becomes the matrix with first column equal to the second column of the old B,
second column equal to the first column of the old B and third column equal to the third column of the
old B. Why couldn’t you do it like this: B(:,1) = B(:,2) followed by B(:,2) = B(:,1) ?

Transposing matrices and vectors

The operator ' (single quote) finds the transpose of a variable (note that the transpose of a scalar is just the scalar
itself). Transposing a matrix or vector swaps rows and columns while retaining their order. For example if A is

1 4

1 2 3
the matrix A = [4 5 6} ,then B = A" gives the matrix B=|2 5
3 6

A column vector is the transpose of a row vector.

16) Setup a column vector of the first 10 whole numbers by writing (1:10)'

* Section 8 — Saving and retrieving your work

All variables that you created in this MATLAB session are stored in MATLAB’s workspace. Upon exiting
MATLAB this workspace will be destroyed. So you must save your workspace if you want to use it in later
MATLAB sessions.

1) Select Save Workspace As under File on the menu. A save window will come up. Check that the correct
folder is given. Type in the name you wish to use for the workspace file, for example 'lab6' and save the
file. MATLAB automatically selects the '.mat' extension for the workspace files.

VERY IMPORTANT:

These .mat files are BINARY files_which means that you CAN NOT EDIT OR READ THEM like you can with
ascii files. SO DO NOT ATTEMPT TO DO THAT. Reading the saved information MUST be done using the
MATLAB Import Data option discussed below.

2) Type clear to delete your workspace. Type who to check that your workspace is empty (or check your
Workspace window). Retrieve the saved workspace using Import Data under File. Type who again to
check that all your variables are back in the workspace (or check the Workspace window). So, use the
Import Data option to load mat files back into memory.

This method of saving saves all the variables in your workspace. You can select any number of variables if you
save from within the Command Window instead.

3) Create two random variables by typing x=rand; and y=rand; To save these two variables in a .mat file
called 'savexy.mat' type save savexy X Yy .

The contents of your current directory is shown in the Current Directory window. But you can also find out its
contents using a command:

4) The command dir gives you the list of all files that are in your current directory. The command what
gives you the files in the current folder relevant to MATLAB only. Try them both.

10

Practice

1 2
1) Set up the matrix |3 4|. Interchange the 2nd and 3rd rows using one line of code.
56
2) Create a 10x10 matrix with random numbers between 0 and 10. Now, make all elements in the first row

and first column equal to 1.

3) We would like to create the row vector [8 6 420 ..00 10] with a total number of elements

equal to 200 (that means there are 195 zeros in the vector). Think of two ways to create this variable
without typing in all the numbers.

11

* Section 9- Script files

In this section we show you how to store commands in a file. Such MATLAB command files are known as
script files. They are stored with the .m extension. In MATLAB files with the .m extension are also called
M-files. All script files are M-files, but not all M-files are script files as you will see later (for example,
MATLAB functions are also stored in .m files)

1) From the menu choose File then New then M-file.
You are now in the MATLAB Editor/Debugger.
2) Type the following lines in the new file window. Note that the file is still called "Untitled'.

% Add two matrices and display the result
A=11,1;2,2]

B=12,2;3,3]

D=A+B

disp('The result is ");

disp(D);

The first line is a comment written to explain what your program does. MATLAB ignores everything on a
line after a %-character. Note that comments are displayed in a different colour so you can directly
recognize them. It is very important to write adequate comments so that other people who need to use your
program can understand it.

You may have noticed that when closing brackets the two matching brackets are identified (usually by
flashing or underscoring them). This is useful in cases where you have several sets of brackets: you can
easily check if all brackets are matched up.

The disp command is used to display output strings on your screen, as in disp('the result is ') and also to
display variables as in disp(D) . The text that will be displayed is shown in a different colour. Note that we
can display strings or variables but not at the same time. So the command disp('the result is ',D); is not

accepted.

We will now save this file.

3) Choose File then Save As from the menu. The current directory (which should be the directory you
just created) is automatically selected. Save the file as addmat.m .

4) Go back to the command window and type addmat to run the file (note that you should not type the
.m extension!). If MATLAB gives an error saying that it can not find addmat, make sure that the
directory in which the addmat.m file is stored and MATLAB’s current directory are one and the
same.

Running a program step-by-step, one command at a time

MATLAB runs the addmat program without breaks or pauses. Often it is convenient to run a program step
by step to carefully check that all the lines of code that you wrote are doing what you expect them to do.
This is a good way to find errors in your code, or in other words to debug your code.

5) Go back to the MATLAB Editor/Debugger window. Click on the first command line of the
addmat.m (the line A = [1, 152, 2];). Now select Breakpoints from the menu and then the line
containing Set /Clear Breakpoint.

This will force MATLAB to break the execution of addmat at this line. You should see a red dot appear left
of this command line.

6) Select Run under Debug. A yellow arrow appears at the first command line in the Editor/Debugger
window indicating that MATLAB stopped at that line and is waiting for you to tell it to continue.
Select Debug and Step to step to the next command line in the script file. Back in the Command

window you see the first line being executed and A is shown as is expected. Step through the rest of
the program and check the results in the command window.

The matrices A and B are written to screen because we did not add any semi-colons to the end of the
command lines. To view the contents of A and B you could of course also use the Workspace window as
we did last week.

Under Debug and Breakpoints on the menu there are more options than the single step option we just
explored. For example, you can ask MATLAB to stop when it encounters an error (Stop if error under
Breakpoints) or when it sees that you are not doing something quite right (Stop if warning under
Breakpoints). Also, you can create a breakpoint further down in your file and use Continue under Debug to
run the program until it hits the next break point. Explore the MATLAB debugger in these labs: it is a very
useful tool.

Also have a look at Text in the Editor/debugger window. This gives you handy ways to comment out parts
of your code, uncomment or improve your layout using indentation.

* Section 10 - Logical expressions

Relational operators

MATLAB has 6 relational operators to make comparisons between variables. These are

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to
= is equal to

~= is not equal to

Note that the is equal to operator consists of two equal signs and not a single = sign as you might expect.
We’ll play around with these relational operators for a little while.

1) Go back to the Command Window. Set up the scalars g=10, w=10, and e=20.

In MATLAB a logical expression has two possible values that are not ‘true’ or ‘false’ but numeric, i.e. 1 if
the expression is true and 0 if it is false.

2) Type w< e to see that the result is given the value of 1 because w is indeed less than e. Now type
gq==e. The == operator checks if two variables have the same value. Therefore the answer is 0 in this
case.

Relational operations are performed affer arithmetic operations. For example q == w-e results in 0.

Parentheses can be used to override the natural order of precedence. So (q==w) - e results in -19.
The relational operators can be used for all elements of vectors simultaneously.
3) Create the vectors x and y by typing x=[-1, 3, 9] and y=[-5, 5, 9] . Now type

z= (x <y) . The i-th element of z is 1 if x(i) < y(i), otherwise it is 0. So, the answer is the vector
with elements 0, 1, and 0.

Logical operators
MATLAB uses three logical operators. These are
and &

or |
not ~

For & (and) to give a true result both expressions either side of the & must be true. The logical expression
e> 0 is true and the logical expression q<0 is false. So the logical expression (e>0) & (q<0) is false.

For | (or) to give a true result only one of the expressions either side of the | needs to be true.
4) Type (e>0) | (q<0) . Is the result as expected?

The ~ (not) operator changes a logical expression from 0 to 1 and vice versa. So result = ~(q<0) would be 1.
The operator ~ has a high priority. So, to avoid mistakes, put whatever expression you want to negate in
parentheses, as we did here.

The operations & and | are performed after the relational operations,<>== etc.
Just as with relational operators we can use logical operators for vectors or matrices.

5) Try z=~(x <y) . Is the answer as you expected?

¢ Section 11 - The ‘if' statements

The if-statement starts with if followed by a condition, usually a relational operation, and is finished with an
end; command. For example (taken from a soccer game simulator)

if score ~=0
disp('GGOOAAALLL - the score is ');
disp(score);

end;

The body of this if-statement consists of two lines and both will be carried out if the score is not equal to
zero. We can include as many lines in a body as we want.

We could also write a message if the score is zero. Instead of writing a separate if-statement for this case we
combine it with the previous one in

if score~=0
disp('GGOOAAALLL - the score is');
disp(score);

else
disp('darn — kick too soft');

end;

If the score is not zero the first body will be carried out (the one immediately following the first condition
statement). Otherwise the command in the body after the else-statement is carried out.

Another example:

if score==
disp('FFFIIIRRRSSSTTT GGGOOAAALLL');
elseif score > 1
disp("We are on a roll');
else
disp('darn — kick too soft');
end;

The elseif statement allows us to include more options.

Yet another example where now we check if a penalty kick will enter the goal (our keeper has a reaction
time of 0.5 seconds):
if time <0.5
% compute the height of the ball as it reaches the goal
height = initialS*time*sin(angle) — 0.5*g*time"2;

if height < goalheight
score = score +1;
end;
end;

From this example we see that it is possible to have nested if-statements, that is if- statements inside other if-
statements. Now we get two end statements, one for each if. It is VERY IMPORTANT TO USE
INDENTATION!!! Otherwise it is hard to figure out which end belongs to which if. Note that you can use
the Text menu item in the editor/debugger window to add fancy indentations.

Practice

1)

2)

Create two random numbers x and y. Write an if-statement that displays x if x is smaller than y.
Now, write an if-else statement to display the minimum of x and y. Create a third random number z.
Write an if-statement that displays the value of z if z is larger than x or y.

The height h(t) and speed S(t) of a projectile (such as a kicked soccer ball, or a rocket) launched with
an initial speed S, at an angle A to the horizontal are given by

h(t) = Sytsin(A) - 0.5gt

S(1) = /Sy’ - 2S,gtsin(A) + gt
where g is the acceleration due to gravity. The projectile will strike the ground when h(t)=0 which
gives the time to hit t,; = 2(SO /g)sin(A) .

* Write a MATLAB program that computes the hit time for a given initial speed and angle, and
displays the hit time and the speed of the rocket when it hits the ground.

* Follow the programming steps as discussed in the lecture.

« Store the program in a script file called rocket.m and run it.

Note: you can compute square roots using the MATLAB function sqrt . Do not forget to include
comments and a header, use meaningful variable names and indentation when appropriate.

* Section 12 - The 'for' loop

Let’s start with a very simple example. We will create a vector with 3 random angles between 0 and 7T,
compute the cosine of each angle, and display it.

The program is

angle = pi*rand(3,1);

for k=1:3
cosangle = cos(angle(k));
disp(cosangle);

end;

Note

* ks called the loop-variable.

* the loop is ended as required by the end; statement

* the body is the code between the for-statement and the corresponding end;

* the body is indented to make it easy to see what’s happening inside the loop

Now, let’s save the computed cosines and store them in a vector called cosines. To do this we can add the
line cosines(k) = cosangle; at the end of the body of the for-loop and remove disp(cosangle);

1) Try that.

In this for-loop we access the k-th element of the vector called angle in each pass and store the result of our
cosine computation in the k-th element of the vector called cosines.

We could shorten the program a bit by storing the compute cosine value in the cosines vector immediately,
and replace the body of the for-loop with the one line cosines(k) = cos(angle(k)); .

In the above examples the loop increment 1is 1 (the loop increment is the amount with which the
loopvariable is incremented each time MATLAB starts a new pass). But it does not have to be 1. For
example, we can loop over the odd elements of angle by writing for k=1:2:5 instead. The loop variable k is
now incremented with 2 at each pass and takes on the values 1, 3 and 5. The second and fourth element of
the cosines vector have not been given a value by the program. MATLAB automatically sets them to zero.

Let’s look at another example. Suppose we want to find the maximum element of a vector x with 4
elements that are random numbers between 0 and 1. We could use the MATLAB function max of course,
but here we write our own code.

We store the maximum value in the variable called maxval. At the start of our code we initialize maxval to
0. Then we access all elements of the vector X one-by-one and each time check if the element is larger than
maxval. If so, we set maxval to this new value. Accessing the elements can be done in a for-loop:

x = rand(4,1);
maxval = 0;

for k=1:4
if (x(k) > maxval)
maxval = x(k);
end;
end;

disp(maxval);

Note that both the if-statement and the for-loop must have a corresponding end statement. We used
indentation and therefore it is easy to see which end belongs to which statement.

Do you understand why we initialized the variable maxval to 0 at the start of our program?

* Section 13 — Nested for-loops

Just as we can have if-statements inside for-loops we can have for-loops inside for-loops. We compute the
exponential of each element of a 2x2 matrix A.

A =rand(2,2);

for k=1:2
for m=1:2
exponential = exp(A(k,m));
display(exponential);
end;
end;

What happens? Let’s go through the program step-by-step. You can do this in the debugger as well. We
will call the k-loop the outer loop and the m-loop the inner loop.

[N U S R

N

10.

11.

MATLAB enters the outer loop and sets k to 1.

At the next line, MATLAB reaches the inner for-loop and sets m to 1.

It computes the exponential of A(1,1) and displays it.

It reaches the end; statement corresponding to the inner-loop.

Since it has not completed the inner loop yet, MATLAB jumps back to the for-statement of the inner
loop and sets m to 2.

It computes the exponential of A(1,2) and displays it.

It reaches the end; statement of the inner-loop.

It realizes that it has completely carried out the inner loop and continues to the next line in the program
which is the end; statement of the outer-loop.

Since it has not completed the outer loop yet, MATLAB jumps back to the for-statement of the outer
loop and sets k to 2.

It goes to the inner loop and passes through it twice as above for k=1, computing the exponential of
A(2,1) and displaying it, and then computing A(2,2) and displaying it.

It then reaches the end; statement of the outer loop once more, realizes it is done and stops.

* Section 14 — While loops

In a for-loop we repeat the statements inside the body a fixed number of times. But often we want to repeat
some calculation not for a fixed number of times but until some condition is satisfied. Let's look at a very
simple example.

x=17;
while x > 0
X = x-4;
disp(x);
end;

disp('Done');

How does it work?
. The variable x is equal to 7 initially.
. Since x > 0 MATLAB enters the body of the while loop and subtracts 4 from x, which is now equal to
. MATLAB displays the new value of x.
. MATLAB reaches the end; statement and jumps back to the while-condition (while x>0).

. MATLAB reaches the end; statement and jumps back to the while-condition.
. Now x is smaller than 0, so MATLAB will not enter the body of the while-loop but jumps to the final

1
2
3
3
4. Again x > 0 so MATLAB goes into the while-loop, sets x to —1 and displays it.
5
6
d

isplay statement and writes "Done" to screen.

In this example we must set X to a value (initialize) before we start the while-loop. Otherwise the condition
in the while-statement can not be checked. So, MAKE SURE YOU INITIALIZE.

Here, x should change value as we are looping and at some point reach a negative value. Otherwise we will
never get out of the while-loop. So, MAKE SURE THAT THE WHILE-LOOP TERMINATES.

Another example. Suppose that we are gambling on a 1-dollar slot machine. We start off with 10 dollars
and will keep playing until we run out of money. It's a very simple machine: we have 25 % chance of
winning 2 dollars each time we play. We can simulate a run by drawing a random number between 0 and 1
using the function rand . If the number is below 0.25 we win, otherwise we loose. We will keep track of
how many times we can play. In MATLAB code

money = 10;
numberplay = 0;

while money > 0
money = money — 1;
% keep score
numberplay = numberplay + 1;
% draw a number
draw = rand;
if draw < 0.25
money = money + 2;
end;
end;

disp(numberplay);

Below is a third example:

money = 10;
while money ~= 0

money = money-3;
end;

The program does not terminate. Do you see why?

* Section 15 - Advanced matrix and vector operations

In many engineering applications we need to solve matrix-vector equations. This is very easy in MATLAB,
as MATLAB was especially designed for matrices. In this section we look at some matrix operations and
then discuss how to solve the matrix-vector equations. We will run this section from the command
window. It is not necessary to store the commands in an script file.

. 1 2 4 2
We create the matrices A = ,B= .
0 1 35

We can ‘divide’ the matrices by typing G=A/B. This is called right division and finds the matrix G such
that A=G*B, or in other words: G equals A times the inverse of B.

1) Perform the right division by typing G=A/B, and check that GB is the same matrix as A by typing
G*B-A .

MATLAB also allows left division entered by typing H=A\B which calculates H such that A¥*H=B, or in
other words, H equals the inverse of A times B. So, in matrices slashes refer to inverses:

If the slash is a backslash (\) then the inverse is taken of the preceding matrix. If it is a normal slash (/)
then the inverse is taken of the following matrix!

2) Perform the left division by typing H=A\B and check that AH is the same matrix as B by typing
A*H-B.

Now suppose that we want to solve the system of equations represented by the matrix-vector equation
Ax =b, where x and b are two vectors with n elements and A is an nxn matrix. For example, A is given as

X 5
above, X = [1} is the vector with unknowns and b = [2} . The matrix-vector equation then represents the
X

X;+2%x, =5

system of equations . The answer is given by X = Ab. Using left division we can compute

X, =
x with x = A\b.

3) Create the vector b and then type x = A\b and check that the answer is given by x, =2,x, =1.

Compare the result of the command A*x with b. They should be the same. Now try to type x=A\b'
using a row vector instead of a column vector. You will get an error message.

Often people are tempted to use the command x = b/A instead. This command is accepted if b is a row
vector but gives completely the wrong answer. The correct command x = A\b only works for a column
vector b. So a good 'trick’ is to make sure b is always a column vector!

In class, we will discuss the LU decomposition. The above command x=A\b actually computes the LU
decomposition of A first behind the scenes and then performs the back and forward substitutions that we’ll
talk about in class. The L and U matrices are not stored for you. To explicitly generate them, you can use the
lu function.

4) Find the L and U matrices of A by typing [L,U] = lu(A) . If neceded, MATLAB will perform
pivoting. To get the permutation matrix, you can use [L,U,P] = lu(A) .

Note that it is of course not necessary to use the names L, U or P in the left hand side. You can use
whatever notation you like such as [Aap, Noot, Mies] = lu(A), but do remember that the order in which the
solutions are given is fixed, so if you type [P,U,L] = lu(P), the L matrix will be stored in your variable P,
and P in your variable L.

Other useful MATLAB matrix functions for this course are eig that computes eigenvalues and eigenvectors
of a matrix, orth that computes an orthogonal basis for the range of a matrix, and svd that returns the
singular value decomposition. Do browse for useful functions as the course progresses.

Practice

1) Create two random vectors x and y, each with 5 elements. Write a for-loop to add x(1) to y(1), x(2)
to y(2), etc. Each time, store the computed value in a variable called sumelements.

2) Write a while-loop that finds the index of the first element of x that is larger than the corresponding
element of y. For example, if x =[0.1, 0.11, 0.05, 0.8, 0.91] and y = [0.83, 0.64, 0.09, 0.42, 0.5], you
should find that the required index is 4, because x(4) > y(4) but the first three elements of x are all
smaller than the corresponding elements of y.

* Section 16 — Writing your own MATLAB functions

Let’s look at a MATLAB function, for example cos. If we type cosangle = cos(0) we give the function a
value (0) and it returns a value for the cosine which is stored in cosangle. Another example: when calling
the function disp, you give it a string or a variable as in disp(cosangle) and it returns text to the screen.

In all cases, you give the function information, and it returns a result.

We will call the information you give the function the 'function input' and the returned results the 'function
output'.

MATLAB has a large number of built-in functions, and the number is constantly increasing with new
releases. But, MATLAB may not always supply what you want or need. You can construct your own

functions in MATLAB and in this section we will tell you how.

The first MATLAB function you will write is a simple function to convert temperatures given in degrees
Fahrenheit into degrees Celsius, according to the formula:

teelsius = (tfahrenheit -32) *5/9
1) Open a new M-file. Type
function tc = fahtocel(tf)

% converts function input 'tf' of temperatures in Fahrenheit to
% function output 'tc'of temperatures in Celsius

temp = tf-32;
tc = temp*5/9;
return;

The word function on the first line tells MATLAB that you are about to define a function. The next words
tc = fahtocel(tf) tcll MATLAB that:

- the function is called 'fahtocel'

- the function returns a function output variable called 'tc'

- the function is given a function input variable called 'tf".

The return statement indicates the end of the function and asks MATLAB to return to the place from which
the function was called. You can call functions from the command window of course, or from script files, or
even from other functions.

Note that we indented the body of the function for clarity. This is not required but it does make it easier to
read the file.

Function M-files must always start with the function statement and the name of the function M-file must
always be the same as the name of the function. So here, we must save this M-file as 'fahtocel.m'.

2) Save the M-file as 'fahtocel.m'. MATLAB will suggest the name fahtocel.m to you automatically and
all you have to do is press the save button.

The function is now known to MATLAB and we can use it like any MATLAB function.

3) The boiling point of water in Fahrenheit is 212°. This is 100° Celsius. To show this type boilcel =
fahtocel(212) in the Command Window.

We can also pass a variable name to our function instead of a number.
4) For example, type

tempf=1000;
temp c=fahtocel(tempf)

to get the required answer of 537.78" (rounded).

Could we use the function to compute temperatures in Celsius for a vector or matrix of temperatures given

in Fahrenheit, all at the same time? Let's try.

5) Create the vector [212 200 350] by typing tempf = [212 200 350] . Now type fahvec =
fahtocel(tempf) .

The resulting vector 'fahvec' contains the conversions of all the elements of the 'tempf vector. So here, we
can use the function for vector inputs as well. It will also work for matrices.

6) Type tempf = [212, 200; 100, 300]; followed by fahmat = fahtocel(tempf) .

As you can see, this function also accepts matrices.

e Section 17 - How do functions work?

Each function has its own workspace in memory. This workspace is different from the workspace used by
the Command Window and script files. In the discussion below we will use the abbreviation CW for the
command window and talk about 'CW's workspace' instead of 'CW and script files workspace' for brevity.

Computer memory

ki
CW and script orkepacy
files workspace fnction2
workspace
1) In the command window, type tempf = 212; followed by tempc=fahtocel(tempf)

The variables tempc and tempf are used in the command window so they live in CW's workspace.

Computer memory

Fahtocel's
workspace

tf, tc

CW's workspace

tempf, tempc

The function fahtocel is called so MATLAB will go to fahtocel's workspace to execute the function M-file.
The function is defined as function tc = fahtocel(tf) . So, in fahtocel's workspace we have the variables tc
and tf. Comparing the call to the function tempc = fahtocel(tempf) with the function definition function tc
= fahtocel(tf) we sec that tempf in CW's workspace corresponds to tf in the function's workspace, and
tempc in CW's workspace corresponds to tc in the function's workspace.

CW can not read or access tf and tc. Fahtocel can not read or access tempf and tempc.

2) To check that the variable tc is really not known in the command window, type tc in the command

window. MATLAB warns you that this variable is not known.

MATLAB copies the value of tempf , which is 212, to tf in fahtocel's workspace.
The function computes tc, which is 100. MATLAB copies the value of tc to tempc in CW's workspace.
This is illustrated below:

CW's
workspace

fahtocel's
workspace

tempf —212 —p tf
tempc <100 — tc

Because the function workspace and the normal workspace are completely separate the same variable names
could be used in each of the workspaces to stand for two different variables.

3) To test this, type temp = [1, 2]; in the command window to create a variable called temp in the
command window’s workspace. Then type tempc = fahtocel(tempf) to run the program again
followed by disp(temp) .

Your output shows that the variable named temp is still the same vector [1, 2] in the command window
even though the function used a variable with the same name. This is nice: we cannot mess up variables in
the command window if we accidentally use the same variable names in a function.

* Section 18 - Functions with more than one input variable

So far, we have only seen functions with one function input variable and one function output variable.
Functions can have more than one input variable or output variable however.

As an example we will write a function to find the volume of a cuboid with the lengths of the three sides as
the input variables.

1) Type the following in a new M-file and save the function.

function vol = cuboid(len,br,dep)
% Function to return the volume of a cuboid given
% the length len, breadth br and depth dep
vol =len*br*dep;

return;

This function accepts three input arguments and returns one output argument.
We will now call this function from a script file instead of the command window.
2) Open a new M-file and type

% script file for cuboid

length=5;

breadth=4;

depth=3;

% call the function cuboid

volume = cuboid(length,breadth,depth);
disp(volume);

When you call the function, you must make sure that the input variables are given in the correct order. Here,
the first input variable is length, the second breadth and the third depth. This corresponds to the order in
which they are written in the function itself.

Note that in the function the variables are known as len, br and dep. So length in CW's workspace
corresponds to len in cuboid's workspace. The values of length and len are the same. Similarly, breadth
corresponds to br and depth to dep. The output variable vol in cuboid's workspace corresponds to the
variable volume in CW's workspace.

3) Save this script file as cub.m, and run this script file from the command window. You should see that
the volume is 60.

4) Delete the ,depth from the last line of cub.m so that the line finishes with cuboid(length,breadth) ,
save the file, and try to run it again.

MATLAB objects because it knows that the cuboid function needs three input arguments. You provided
only two, so it gives an error message suggesting that it cannot find the third argument which is known by
the name 'dep’ within the function.

* Section 19 - Functions with more than one output variable

Suppose that we also want to compute the surface area of the cuboid. We do not have to construct a second
function, but can compute both volume and surface area in the cuboid function.

1) Change your cuboid function to

function [vol, surf] = cuboid(len,br,dep)
% Function to return the volume and surface area of a cuboid given
% the length len, breadth br and depth dep
vol =len*br*dep;
surf =2*(len*br + len*dep + br*dep);
return;

The function now accepts three input arguments and returns two output arguments. The output arguments
are always written in square brackets, separated by commas.

2) Could we compute volumes and surfaces for more than one cuboid at the same time? Let’s try to
change the cub.m file to

% script file for cuboid

length =[5, 10];

breadth = [4, 10];

depth = [3, 8];

% call the function

[volume, surface] = cuboid(length,breadth,depth)

Run it.

MATLAB will complain that matrix dimensions in the multiplication operation of cuboid do not agree.
We can solve this by using the “element-by-element” operations instead. These are created simply by
inserting a dot before the operation symbol. For example, vol = len.*br.*dep; will compute a matrix vol
with two elements, the first giving the volume for the first cuboid with length 5, breadth 4 and depth 3 and
the second element giving the volume for the second cuboid with length 10, breadth 10 and depth 8.

Note that by using [volume, surface] = cuboid(length,breadth,depth) we tell MATLAB to store the
output of the cuboid function in the variables 'volume' and 'surface'. Again, the order in which you write
volume and surface should correspond to the order in which they are written in the function description.
Here, vol in cuboid's workspace corresponds to volume in CW's workspace and surf in cuboid's workspace
corresponds to surface in CW's workspace.

* Section 20 - Functions with no input or no output variables

Functions do not HAVE to have input or output variables. Suppose that we want the cuboid function to
compute the volume and surface and display them on screen, but we are not interested in keeping the
output. Then we do not have to specify any output variables in the function. The cuboid function then looks
like

function cuboid(len,br,dep)
% Function to return the volume and surface area of a cuboid given
% the length len, breadth br and depth dep
vol = len*br*dep;
surf =2*(len*br + len*dep + br*dep);

disp('The volume is ');
disp(vol);
disp('The surface area is ');
disp(surf);

return;

We simply left out everything to the left of the function name in the function statement.

The cub.m file needs to be changed now too. In the previous file, we asked for the volume and surface to be
sent back from the function. Now we cannot, because the function does not have any output. So we change
the line [volume, surface] = cuboid(length,breadth,depth) to cuboid(length,breadth,depth);

1) Change the cuboid function and cub file as above and run the program.

An example of a function that does not take any input variables is discussed in the assignment.

Practice

1) Create a function that computes the volume of a sphere with a certain radius. Call the function
'volsphere'. Now compute the volumes of the spheres with radii 0.1, 0.2, 0.3, through to 1.2 using a
for-loop. Display the computed volumes. Store the program in a script file called volumes.m

2) Change the function and script file of task 1 so that you also compute and display the surface areas of
the spheres.

* Section 21 - Introduction to MATLAB graphics

MATLAB has a large number of functions associated with graphical output. If you'd like to explore the
possibilities use help plot or help plot3 for 3-dimensional plots, or run the MATLAB demo (by typing
demo) and look at the information on visualization and graphics.

We start with basic plotting routines and look at some fancy graphics to get a taste of MATLAB’s abilities.

Suppose that the maximum and minimum temperature (in degrees Celsius) recorded from 12 to 18
December are 23, 27, 21, 28, 24, 25, 26, and 11, 10, 15, 15, 14, 15, 12 respectively.

1) Set up the vector 'date’ to have elements from 12 to 18, and the vectors 'maxtemp' and 'mintemp' to
contain the temperature data given above. It does not matter whether the vectors are row or column
vectors.

All the vectors are of the same length so it is possible to plot one against the other.

2) Create a plot of the maximum temperatures by typing plot(date, maxtemp)

The x-axis variable is listed first. This graph will be created in a window called Figure No. 1. If this
window is not visible select Figure No. 1 under Window on the menu. Your graph should look like the
one below.

<) Figure No. 1 =] B3

File Edit View Inset Tools Window Help

I ERY Y2

28

27r

/ “l
L /o \]
26 / ".\ / ‘\\ 7

/A ' \ /
51 f | / ‘ -

2L

231 \ f |

2t \ ‘;’ |

21 1 V L 1 1
12 13 14 15 16 17 18

3) Now type plot(date,mintemp) .
The previous plot disappears and the new plot is displayed.
We can also plot both graphs in one figure:

4) Type plot(date,maxtemp); followed by hold on; Then type plot(date, mintemp); followed by
hold off;

hold on tells MATLAB to keep the old plot and add the new graph to it. hold off turns the hold-feature
off again. We could also have used plot(date, maxtemp, date, mintemp); which tells MATLAB to plot
maxtemp against date and then mintemp against date in the same graph. The colours of the graphs are then
different.

The plot could be made to look a lot better.
5) Select Insert from the figure window and then Title. A text box will appear in the figure window.

Type '12-18 December'. Now add the label 'date' to the x-axis and 'temp (Celsius)' to the y-axis using
the appropriate selections under Insert.

Note: in older versions of MATLAB a title can be created using the MATLAB command title and labels
can be added using the xlabel and ylabel commands.

The set of axes chosen is just large enough to contain all the data points, but this doesn't necessarily
produce the most pleasing display.

6) Select Edit and then Axes properties. Un-select Auto for X (click in the Auto box to remove the tick).
Then change the limits of 12 and 18 for the x-axis to 11.5 and 18.5 respectively. Now change the
limits for the y-axis to 9 and 30. If the Immediately apply box at the bottom of the Axes Properties
window is not ticked you must click OK to see the changes.

This plot is better but some might say that discrete data points should not be joined with lines because, for
example, 'maximum temperature on the twelfth-and-a-half day in December' is not a meaningful statement.

7) Click on the graph corresponding to the maximum temperature. Then select Current Object
Properties under Edit in the figure window. Select No line (none) under Line Style. Under Marker
Properties, select a marker of your choice, eg. Six-pointed star. Choose a nice colour.

8) Repeat for the graph corresponding to the minimum temperature with a different colour and marker.

If you want to change two or more graphs at the same time (and give them the same properties), you click
on the first graph, hold down the shift key while clicking on the other graphs and then follow the above
steps.

9) To add a legend, select Insert then Legend. You can change the description of the graphs in the
legend by double clicking on the text in the figure window. Change the descriptions to 'maxima' for
the maximum temperature graph and 'minima' for the minimum temperature graph.

Finally we add some text inside the plot.

10) Select Insert, then Text (or click on the A button on the menu). Move your mouse to the plot
window. Position the cursor near the highest point in the graph and click. Type 'highest' in the field.

The final graph is shown below

<) Figure No. 1 - [O] x]

File Edit View Inset Tools Window Help
=== =AY W AR
12-18 December

30 T T T T T T T
highest maxima
28+ ® minima |

26 B

24| .

N
N
T

N
o
T

L

temnp (Celsius)

date

* Section 22 — Three-dimensional plots and a movie

We will first create a three-dimensional plot of a sample function often used in MATLAB demos. This is
the function called 'peaks'.

1) Close the current figure window. You can do that by typing close or clicking on the x in the upper
right corner of the figure window. Type sampleplot = peaks(25); This creates the matrix sampleplot
whose elements are values of the peaks function. Type surf(sampleplot); to create a 3-D surface plot
of these function values.

A three-dimensional plot is shown in the figure window. The axes are the x-, y- and z-axis. The z-axis is in
the vertical. The colours vary with the value of z. The colour scheme used can easily be changed. Let’s
liven this picture up a bit:

2) Let’s change the background colour of the plot. Go to Edit then Figure Properties. Click on Style.
Select yellow for background colour. Select Title and set title to ‘groovy plot’ for example. This title
will show up next to the Figure No. 1 text. Close the Figure Properties window. Click on the plotted
surface. Select Current Object Properties under Edit. Go to Color and change the colormap. Play
around to get a feel for what you can do. For example, the lighting possibilities of 3D objects are
pretty impressive.

3) We can view the object from different angles. Go to Tools and then select Rotate 3D, or click on the
rotation button (far right next to the magnifying glasses). Click anywhere in the figure and hold the
cursor down. Now move the cursor around a bit. As you can see you can control the viewing point
that way.

There are many many more features. Have a play! For example, try out the camera.
Let's look at another example.

4) Type sphere . This command will create a three dimensional picture of a sphere with radius 1. It is
drawn (per default) using 400 points on the sphere.

Depending on the size of your plot window, the sphere may look flattened. Change the window size to a
square to improve the look.

Now let’s make a little movie. The program below is just an example to play with. You do not have to
remember how to make movies since it's a little complicated. But if you ever want to make a movie
yourself you can use this program as a start.

5) Create the following program:

% clear the figure window

clf;

% create a sphere using 10 points
[X,y,z]=sphere(10);

% create a first plot

surf(x,y,z);

% initialize a movie with 19 frames
M=moviein(19);

% fill the frames

for j=1:19,
% compute the x-position of the sphere in this frame
posx = j-1;

% compute the z-position of the sphere in this frame

% no worries about the maths here: we make the sphere follow
% a parabolic path to simulate a bouncing ball

posz = -(rem(j-1,6)-3)"2+9;

% plot the sphere in the frame
surf(x+posx,y,z+posz);
shading interp;
axis([0,18,-6,6,0,10]);

% store the frame
M(:,j)=getframe;
disp('collecting frame ');
disp(j);

end;

This program stores 19 pictures in a movie variable called M. Each time a frame is collected, the sphere is
moved to a new position determined by posx and posz (the y value stays the same). The sphere follows a
parabola (a bit like a bouncing ball).

6) If you have a figure window open close it using the close command. Run the program. Now type clf;
followed by movie(M); to see the movie.

The movie you stored will be played. You may see the movie twice. The first time is when MATLAB stores
the movie into memory. We can also run the movie backwards and forwards and at a slower rate by typing,
for example, movie(M, -2, 4) . The argument -2 tells MATLAB to run the movie twice from front to back
and back to front. The argument 4 tells MATLAB to run the movie at 4 frames per second.

* Section 23 — Fast MATLAB loops: the dot-operator

Sometimes for-loops can be sped up in MATLAB. Let's say that we want to square all 10 elements of a
vector called 'v'. We store the squares in a vector called 'sqv'. We could write:

for k=1:10
sqv(k) = v(k)*v(K);
end;

But we can do better in MATLAB. MATLAB provides a fast way to perform an operation on all elements
of a vector (or matrix): the 'element-by-element method'. Instead of the for-loop we can write sqv = v.*v;

1) In the Command Window type v=rand(10,1); to create a random vector v with 10 elements,
followed by sqv=v.*v . Check that sqv contains the correct values.

The element-by-element method always uses a dot in front of the operation. It performs the operation behind
the dot on all individual elements of the vectors (or matrices). Another example

2) Type w = sqv./v; Each element of sqv is now divided by the corresponding element of v so w should
be the same as v. Check this.

It is usually much more efficient to use the element-by-element method than the for-loop.

* Section 24 — A different way to look at MATLAB for-loops

So far we have used standard for-loops only. An example is

for k=1:10
sq(k) = k*k;
end;

Here, we loop over the integers 1 through to 10, compute their squares and store them in the vector sq. You
will encounter such for-loops in other programming languages as well. The syntax in other programming
languages will be very similar to the syntax used in MATLAB.

In MATLAB however, we can look at this for-loop in a different way. We know that in MATLAB the
command 1:10 creates the vector (1, 2, 3, ..., 10). So, for k=1:10 can be interpreted to loop k over all
elements in the vector (1, 2, 3,, 10).

Could we replace the vector 1:10 by another vector? For example,

for k=[1, 3, 10]
sq(k) = k*k;
end;

1) Write the above code in a script file. Type clear to clear your workspace. Run the script file. Display
sq.

You will see that this code computes the squares of 1, 3 and 10 and stores them in the first, third and tenth
element of the vector sq respectively. So the command for k=[1, 3, 10] sets k equal to 1 in the first pass of
the loop, equal to 3 in the second pass and equal to 10 in the third pass. MATLAB loops k over all
elements of the vector [1, 3, 10]. Intermediate elements in sq are set to 0 by MATLAB.

2) Replace [1, 3, 10] by [4, 2, 9] in the script file, type clear sq and run the script file.
Now the squares of 4, 2 and 9 are computed and stored in the fourth, second and ninth element of sq
respectively. We see that the elements in the vector used in the for-loop do not have to be in increasing

order.

As a last example, suppose that we want to compute the squares of the elements of the vector [.1, -2, 5.7]
and display them. We could write this in two different ways. First, the traditional way:

v=1[1,-2,5.7];

for m=1:3
square = v(m)*v(m);
disp(square);

end;

Now we write it in the special MATLAB way by looping directly over the vector [.1, -2, 5.7]:

for k=[.1, -2, 5.7]
square=k*k;
disp(square);

end;

3) Write this last loop in a script file. Call the script file specialloop.m and run it. Check the answers.

Note that loops can only be written this way in MATLAB.

e Section 25 - Function-functions

A group of predefined MATLAB functions go by the curious title of function-functions. These refer to
functions that have another function as an input argument. For example, the function-function fminbnd can
be used to find the position of the minimum of a function.

We will use fminbnd to find the positions of the minima of the function
f(x) = 2x* +3x* -12x? = 7x +2. The function fminbnd takes three input arguments. The first input

argument is the name of the function we want to minimize. The second and third arguments are the x-values
between which MATLAB should look for a minimum.

This function f(x) is of course not readily available within MATLAB. That means that we have to write our
own function for f(x). Since 'f' is not a descriptive name, we rename it to 'quartic'.

1) Without looking at the example below try writing the function quartic yourself.
Now check your function and save it. It should look like

function y=quartic(x)

y=2*x."4 + 3*x.A3 - 12*x."2 - T*x +2;
return;

Here, x is the input variable and y is the returned output. We have used the dot power (.*) so that we can
use vectors as input variables as well.

A quartic polynomial may have two local minima. Let's make a plot of quartic to find out where the
minima are located. This is easy using the special function plot command fplot .

2) In the Command Window type fplot('quartic',[-3, 3]); View the plot.

The function is plotted in the interval [-3, 3]. We see that the function has two minima in this interval, and
that these are approximately given by x =-2.3 and x = 1.4.

<) Figure No. 1 [_[O] x|

File Edit View Insett Tools Window Help

DsRa YA A/ poo

120

i
100+

g0} ,'/‘
B0t ff .
40} /1
20t / .
of — ~ /

/ ” "*\ﬁ___//
20 k e |

40 . . ! ! !
- E E

We will search for the first minimum in the interval [-3,-2] and for the second in the interval [1,2].
3) Type xminl=fminbnd('quartic',-3,-2) to see that the minimum is at -2.2747
When we call the fminbnd function with these arguments, MATLAB evaluates quartic(x) for many x-

values in the interval between -3 and -2, and picks out the x-value (within some predefined error tolerance)
which corresponds to a local minimum between these limits.

4) Type yminl=quartic(xminl) to see that the function at this local minimum has a value of -25.9320
5) Find out what happens if you give fminbnd the interval boundaries -3 and 2. Which of the minima is
computed?

So, MATLAB only returns one value and will not warn you that there are more. You have to do some
research (for example by plotting the function) to find out how many minima there are and where they are
located approximately. We will compute the second minimum in the assignment.

Other function-functions are, for example, fzero which finds the value of x at which the function value is
equal to zero, and quad which can be used to compute integrals.

The last example

For our last example we will solve a simple ordinary differential equation (ODE) in MATLAB. You have
learned about the so-called ODEs in Mathematical Modelling 1. Remember the water tank problem? Water
flows out of the bottom of a tank of muddy water through a small tap at a rate proportional to the volume.
With time, the tap slowly clogs up and the rate of flow of water is inversely proportional to the time.
Experiments show that the water in this situation flows at a rate which can be modelled by

Vie — 0.5V
t b
where V is the volume in litres and t is the time in hours starting at an initial time of 10 hours. The initial

volume in the tank at t = 10 is equal to 24000.

In MATLAB it is reasonably simple to do this computation using functions and a built-in function-function
called ode23. This function solves ODEs using a second order Runge-Kutta method with automatic time-
step selection. MATLAB has several different Runge-Kutta solvers. Another solver is ode45, which is a
fourth-order method.

How do we set this computation up in MATLAB?

First of all, we create a function that computes the right hand side of the above equation, in other words a
function that tells us what V' (the rate of change of the volume) is at any given time.

6) Create the following function. Save it under the appropriate name.
function vprime = watertank(t,volume)

vprime = -0.5*volume/t;
return;

This function can be used by ode23 . All functions used by ode23 must be of the form:
function derivative = name(t,value)

We can use any name we like for the derivative (above we use vprime), and the value (above we use
volume) and the name of the function (watertank in the example), but we can not change the order in which t
and value are given inside the brackets.

Solving the equation is now simple.

7) In the command window type timespan=[10,100]; followed by
[allt, allvolumes]| = ode23('watertank',timespan, 24000)

MATLAB now computes volumes at a lot of different times t between 10 and 100, with an initial value of
24000 for the volume. So the first argument of the ode23 function is the name of the function in which you
stored the derivative. The second argument is the timespan, and the third the initial value of the volume.
The computed volumes are stored in the vector 'allvolumes' and the times at which the volumes are
computed are stored in 'allt'.

8) To see a plot of the volumes as a function of the time type plot(allt,allvolumes)

In this example MATLAB decides at which times between 10 and 100 it computes the volumes.
MATLAB chooses these times based on the required accuracy of the computations. The default accuracy is
usually equal to 0.001 . You can change this accuracy but we do not want to go into that now.

We can force MATLAB to compute the volumes at specific times by storing more than two values in the
'timespan' vector. For example, suppose we are only interested in the volumes at times 10, 20, 30, ..., 100.
Then we can set timespan=10:10:100; and run ode23 again.

9) Try this.

