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Bi l l iards and f lat surfaces

Diana Davis

Billiards, the study of a ball bouncing around on a
table, is a rich area of current mathematical research.
We discuss questions and results on billiards, and on
the related topic of flat surfaces.

1 Let ’s star t playing!

Wherever you are sitting to read this, molecules of oxygen and other gas
particles are bouncing against each other and against the walls of the room.
Understanding the movements of all those particles would be interesting, but
very complicated. A common strategy that mathematicians use is to simplify a
problem as much as possible, and try to understand the simpler system. In this
case, we could simplify it so that there are no collisions or other interactions
between molecules, by studying just one particle bouncing around the room
and ignoring all the others. In fact, we could simplify it even further, to two
dimensions instead of three, a particle bouncing around on a surface, just like a
ball on a billiards or pool table. It turns out that this is already very interesting.

(a) (b) (c) (d)

Figure 1: Different paths on a square billiard table.

Consider the simplest case, when the billiard table is a square. We will
assume that the ball (or particle) is just a point, moving with no friction (so it
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goes forever), and that when it hits the edge of the table, the angle of reflection
is equal to the angle of incidence (just as in real life).

Is it possible to hit the ball so that it repeats its path? Yes: if we hit it
vertically or horizontally, it will bounce back and forth between two points on
parallel edges, see Figure 1 (a). We say that this trajectory (path) is periodic,
with period 2 (it bounces off the edge of the table two times before retracing its
own steps). Other examples, with periods 4 and 6, respectively, are in Figure
1 (b) and Figure 1 (c).

Is it possible to hit the ball so that it never repeats its path? It is more
difficult to draw a picture of an example of such a non-periodic trajectory
because the trajectory never repeats. In fact, it will gradually fill up the table
until the picture is a black square (Figure 1 (d)). However, if we don’t restrict
ourselves to just the table, we can draw a picture of the trajectory by unfolding
the table:

Consider the simple trajectory in Figure 2 (a) below. When the ball hits the
top edge, instead of having it bounce and go downwards, we unfold the table
upward, creating another copy of the table in which the ball can keep going
straight (Figure 2 (b)). 1 Now when the trajectory hits the right edge, we do the
same thing: we unfold the table to the right, creating another copy of the table,
in which the ball can keep going straight (Figure 2 (c)). We can keep doing this,
creating a new square every time the trajectory crosses an edge. In this way,
a trajectory on the square table is represented as a line on a piece of graph paper.

(a) (b) (c) (d)

Figure 2: Unfolding the billiard table.

By thinking of the trajectory as a line on graph paper, we can easily find
an example of a non-periodic trajectory. Suppose that we draw a line with an
irrational slope. Then it will never cross two different horizontal (or vertical)
edges at the same point: if it did, then the slope between those corresponding

1 It is best to think of a transparent table, so that you don’t have to worry about whether
the ball is now on the “upside” or the “downside” of the table.
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points would be a ratio of two integers. But we chose the slope to be irrational,
so this can’t happen. Hence, if we hit the ball with any irrational slope, its
trajectory on the table will be non-periodic. By a similar argument, if we hit
the ball with any rational slope, its trajectory on the table will be periodic.

2 Unusual bi l l iard tables

These are fundamental questions to ask about any dynamical system: Does it
have periodic behavior? Does it have non-periodic behavior? We have seen
that both behaviors can occur in the simplest case, that of the square table.
Stretching the square table horizontally or vertically preserves the rules of the
system, so the same results are true for all rectangular tables. Now perhaps we
are ready to make our system more complicated. We can ask the same questions
for any other table shape − for example, a triangular table, a pentagonal table,
or a table made from several rectangles glued together. A trajectory on a
pentagonal table with many bounces is shown in Figure 3. (Can you figure out
what a trajectory on a circular table would look like?)

Figure 3: A trajectory on a pentagonal table.

For the square table, we mentioned above that every trajectory is either
periodic (we can draw a picture), or its path eventually covers the table (the
picture is black). Does this always happen? Surprisingly, the answer is no!
There are tables where some trajectory completely covers one region of the
table, but never goes to another region of the table: An illustration of this
phenomenon, constructed by Curtis McMullen, is shown in Figure 4. The
trajectory gets “trapped” in the rectangle and a portion of the square, and
never visits the other two corners of the square. If we let the ball keep going,
the shaded region would become completely black, but the corners would stay
white.
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Figure 4: A non-periodic trajectory that never enters the white corners.

This raises the question: which table shapes have the property that every
non-periodic trajectory covers the whole table? It turns out that most of them
don’t: this is only true of tables that have a lot of symmetry, such as regular
polygons, tables made from multiple squares glued together, and some simple
triangles. People are trying to find more examples of table shapes that have
this property, but so far, only these few families of examples are known [1, 5, 6].

3 Playing bi l l iards on a donut

Let’s return to the unfolded billiard table. We unfolded the top edge of the
table, creating another copy in which the ball can keep going straight. The edge
that the ball would have bounced off of no longer acts as a wall, so we make it
a dotted line (Figure 5). The new top edge is just a copy of the bottom edge,
so we now label them both A to remember that they are the same. Similarly,
we unfolded the right edge of the table, creating another copy of the unfolded
table, which gives us four copies of the original table. The new right edge is a
copy of the left edge, so we now label them both B. When the trajectory hits
the top edge A, it just reappears in the same place on the bottom edge A and
keeps going. Similarly, when the trajectory hits the right edge B, it reappears
on the left edge B. This is called identifying the top and bottom edges, and
identifying the left and right edges.

You may be familiar with this idea of entering the right wall and re-emerging
from the left wall from video games like “Pac-Man”, “Snake”, or “Portal”.
However, you may not have realized that with these edge identifications, you
are no longer on the flat plane, but on an entirely different flat surface! It
turns out that this surface is actually the surface of a bagel or a donut, which
mathematicians call a torus.

It is a fun exercise to see why this is the case. You can see that if you glue
both copies of edge A to each other, you get a cylinder, whose ends are both
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Figure 5: Identifying the edges of a square.

edge B (Figure 6). When you wrap the cylinder around to glue both copies of
edge B to each other, you get the torus surface (you will have to stretch and
compress the cylinder considerably, but no worries – you may think of it as
being very elastic).

Figure 6: The gluing of a torus.

We can create many other surfaces in the same way (see Figure 7). For
example, if we take a regular octagon and identify each pair of parallel edges,
we get another surface, actually a torus with two holes [4]. We could also take
two pentagons, one of which has been rotated by 180◦, and identify the five
pairs of parallel edges. 2 It turns out that this surface is also the two-holed
torus.

Can you visualize how to roll up and glue the identified edges of the octagon,
in the same way that we did it for the square? It is much more difficult –
you have to squeeze the octagon considerably when fitting its corners together.
Still, it is possible to do it; there is a nice picture in Allen Hatcher’s Algebraic
Topology [3, p. 5].

2 I made a video that uses dance to rigorously explain my research on the double pentagon:
http://vimeo.com/47049144.
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Figure 7: An octagon or two pentagons can be glued into a two-holed torus.

4 Twist ing the surface

My research, on the double pentagon surface and other related surfaces, is on
the following problem: Suppose that you have a trajectory on a surface. Then
you cut the surface, twist it, and put it back together in such a way that the
cut edges are glued back together again. What happens to the trajectory?

On the torus, this amounts to slicing the surface open, twisting it one, two,
three, or more times (it gets twisted once in Figure 8), and then gluing the ends
back together. We can see that if we start with a very simple trajectory (an
equator of the torus), twisting the surface makes the trajectory go around the
center hole.

Figure 8: Cutting, twisting, and gluing back together the torus.

Even with this simplest example, it is a bit difficult to see the trajectory
on the torus surface. You can see in Figure 9 that it is much easier to draw
it on the square, both the original trajectory in Figure 9 (a) and the twisted
trajectory in Figure 9 (b). For more complicated surfaces and more complicated
trajectories (see Figure 9 (c)), it is far easier to study this twisting action on the
polygons than it would be to try to draw a three-dimensional representation of
the surface.

Still, we need a way to refer to a trajectory on a surface. It is convenient
to do this by writing down the edge labels that the trajectory crosses: the
trajectory in Figure 9 (a) is . . . BBB . . . or B for short, the trajectory in Figure
9 (b) is . . . ABABAB . . . or AB, and the trajectory in Figure 9 (c) is EBECDC.
These are called the cutting sequences corresponding to each of the trajectories.
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(a) (b) (c)

Figure 9: Twisting a trajectory on a square (a) - (b) and a trajectory on two
pentagons (c).

You might ask, given a string of As and Bs, how do you know if it is the cutting
sequence of some trajectory on the square torus? Can you think of a string of
As and Bs that is not a cutting sequence on the square torus? 3

These cutting sequences of As and Bs on the square torus are beautiful and
interesting. They are related to continued fractions: you can use the cutting
sequence of a trajectory to find the continued fraction expansion for the slope
of that trajectory. Even if the slope is irrational, there is an algorithm to give
closer and closer approximations to the slope. If the trajectory is periodic, can
you figure out how to use the number of As and Bs in one period of its cutting
sequence to determine the (rational) slope of the trajectory? 4

The subject of my research is to describe all possible cutting sequences for the
double pentagon surface and for related surfaces: which sequences of As, Bs, Cs,
Ds and Es represent actual trajectories on the double pentagon? Twisting the
surface, as described above, helps to answer this question, because we start with
a trajectory that we already know, and then twisting the surface gives us a new
trajectory on the surface [2]. John Smillie and Corinna Ulcigrai have completely
described all possible cutting sequences on the regular octagon surface, and
even found an analog of the continued fraction expansion for the direction of
the trajectory [4]. Unfortunately, the answer is much more difficult to describe
than the result for sequences on the square torus, but that is not surprising;
the simplest examples are often the most elegant ones.

The study of flat surfaces 5 is a rich area of current research. Maryam
Mirzakhani recently received the Fields Medal, the highest honor in mathematics,
for her work on areas related to billiards and flat surfaces. However, Mirzakhani

3 Solution: any sequence containing both AA and BB, for example.
4 Solution: slope = rise

run = number of As
number of Bs .

5 Surfaces as the ones we have seen above are often called flat because they arise from gluing
edges in polygons that are part of the flat plane, in such a way that a trajectory is always
parallel to itself.
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does not just study the dynamics of a ball on one billiard table or surface, or
even on a group of surfaces; she essentially studies the space of all possible
surfaces. The study of such spaces, and the study of billiards, flat surfaces, and
other related questions, are collectively called dynamics. This is a relatively
new field in mathematics, in which many people are doing research.

Image credi ts

Figures 3 and 4 were provided by Curtis McMullen.
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