
1

Basic  Principles of Deterministic  Quantum  Physics

Daniele  Sasso *

Abstract

In  this  paper the  following results are  achieved:  at  first  we  demonstrate that
Heisenberg’ s  indeterminacy  principle  is  based  on  a mathematical  model that  is  
unsound  because  of an  inadequate  use  of  the  Fourier  development and  we  prove  
a new  mathematical  model.  In  second  place  we  show that  with  regard  to  physical  
quantities there  isn’ t  theoretical  indeterminacy  and  only   the  inadequacy  of  
measuring  instruments  can  cause  working  indeterminacy. Then we  prove within  the  
ambit  of  the  new  theory: the  stability  of  orbital  motions  of  atomic  electrons,  the  
quantized  wave  equation, the  fine  and  hyperfine  structure of  atoms, the  Lamb  shift
as  a  consequence  of  the  relativistic  correction. Results  on  these  subjects  are  
concordant  with  experimental  data and  are  obtained without  making  use of  
probabilistic  concepts. We  think  that  only  the most adequate use of mathematical  
models can  allow  a  further  evolution  of  our  scientific  knowledges  that  must  be  
adapted  to the  examined  physical  event and  supported  with  more  valid  analyses.
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Introduction

Contemporary physics in  its  standard  models  and  theories  is  based  on  the  concept  
of  indeterminacy:  this  is  no  doubt  manifest  with  regard  to  quantum  mechanics  (QM)
whose  theoretical  foundation  is  just  Heisenberg’ s  indeterminacy principle.
Also  in  Special  Relativity nevertheless there  is  an  indeterminacy  because  the  speed  
of  light  is invariant  with  respect  to  all  inertial  reference  systems and  this  introduces  
an  indeterminacy  just  on  the  reference. The Theory  of  Reference  Frames  (TR)[1]

eliminates  this  indeterminacy  and  defines  the  peculiarity  of  the  preferred  reference  
frame that  coincides  with  the  physical  system  where  event  happens.
The  concrete  possibility  then  to  explain  in deterministic  way  the  working  of  some  
systems  that  in scientific  literature  are described  normally  by  probabilistic  models[2]

has  strengthened  my  aim  to  contribute to  eliminate  the  indeterminacy  in  physical  
knowledge as  far  as  it  is  possible. The  probability  theory  is  a  formidable  
mathematical  instrument  that we  can  command in  order  to  foresee  a  future  event  
or  to  describe  a  not  well-known  physical  situation  in  all  its  specifics  but  we  cannot  
think  that probability  and  indeterminacy  are the  theoretical  foundations  of nature.  
The  prime  purpose  of  this  paper  is  to  show  that  quantum  physics doesn’ t  require  
necessarily  a  probabilistic  approach  and  therefore  atomic  structure  and  behavior  of  
elementary  particles  can  be  explained  by  deterministic  reasonings  and  methods.

1. The  indeterminacy principle  and  new  mathematical  models

1.1 Probability  and determinism

Classical  mechanics allows  to  know and  verify by  a  correct  method  of  measure for  
every  physical  quantity the  precise  value  with  an  error  that  is  generally  small and  
due  to  measuring  instruments.  Moreover  if  initial  conditions  are  well-known,  for  
example initial  position  and  initial  velocity  of  a  moving  system,  it  is  possible  to  
know  in  the  absence  of  external  noises  by  the  equation  of  motion  the  values that  
these  quantities  assume  at  any  time. On  this  account classical physics  is  able  also  
to  foresee events that  happen in  the  same  physical  conditions.  This  possibility  is  
called  “determinism”,  it  is  based  on  causality which assers  that  in  the  absence  of  
external  noises  equal causes  determine  always same  effects.
When  physical  science  began  to  study  microphysical  systems  serious problems  
were  born:  in  the  first  place  measures  on  elementary  particles  were  very  
complicated  and  therefore  the  concepts  of  position  and  velocity  lost  meaning.
Moreover  it  was  hard  to  define  the  concept  of  trajectory  whether  for  elementary  
particles  or  photons  and  also  to  reconcile  the  quantum nature  of  photon  with  the  
continuous  feature of  the  luminous  intensity.  All  these  and  other  difficulties (like 
stability  of  atomic  systems)  encouraged  scientists  to search  for  new  ways:  
Heisenberg’ s  indeterminacy principle  and  Schrodinger’ s  wave  equation  were  the  
basic  results  of the  new  research.  
Heisenberg’ s  indeterminacy principle  defined  a  incompatibility  between fundamental  
physical  quantities like position  and  velocity,  wave  number  and  position,  energy  and  
time,  and underlined  the  theoretical  impossibility, and  not  only  experimental,  to  
know  simultaneously  both  those  physical  magnitudes whether   for  photons or  for  
elementary  particles. On  this  account  physicists  abandoned the  classical  model  of  
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microphysical  systems and developed  a  new  model  based  on  the method  of  matrix  
algebra due  above  all  to Heisenberg,  Born  and  Jordan.
Schrodinger’ s  wave  equation  was  born  almost  simultaneously  to  the matrix  method
and  it  is  the  foundation  of  wave  mechanics  where  elementary  particles  are  
considered  wave  systems. In  this  viewpoint  Schrodinger’ s  wave  equation  is  the  
new  mathematical  model  that  allows  to  describe  the  behavior  of  elementary  
particles.  Later  Schrodinger  proved  that  matrix  method  and  wave  mechanics were
equivalent  and  reached the  same  results.
The  method  of  matrix  algebra  and  the  wave  mechanics are  the  foundations  of  
quantum mechanics  that  are based  on  the  following  reasoning: it  is  impossible  to  
know  and  foresee  at  any  time for  particles  and  for  photons  the  simultaneous  
values  of  two  incompatible  quantities,  like for  example  position  and  velocity.  On  
this  account  we  can  only  define  all  the  possible  results  of  these  quantities and  
allocate a  value  of  probability  to  every  result.  This  reasoning  represents  the  
transition  from  the deterministic  philosophy  of  nature  to  the probabilistic  philosophy.
Schrodinger’ s  wave  general  equation,  derived  from d’ Alembert’ s  wave  equation,
is[3]

= 1  (1.1)
V2 t2

where  is  Laplace’ s  operator, V is  the  speed  of  De  Broglie’ s  equivalent  wave,
 is  the  amplitude  of  probability  and   P=||2 is  the  density  of probability.  In  this  
viewpoint Pdxdydz  represents  the  probability  at  any  time  t  to  find  the  particle in  
the  element of  volume  dxdydz.

1.2 Mathematical  models

1.2.1 Periodic functions and  domains  

Let  us  consider  the f(t)  function defined  only  in  the  interval  (a,b)  and representable  
by  a  graph  in the  system  of  two  Cartesian  axes (Fig.1.1).

f(t)

a    b                        t

Figure 1.1 The  f(t)  function is  defined  only  in  the  (a,b)  interval.  Out  of  this  interval  the  function  
doesn’ t  exist. The  (a,b)  interval  is  the  domain  of  the  f(t)  function.

Let  us  define  “ periodic  function  fp(t) ” the  function  obtained  by  f(t)  expanding  its  
domain  over the  entire  axis  of  time (Fig.1.2)    
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fp(t)

a          b                       d                                    t

Figure 1.2 Expansion  of  the  f(t)  function throughout  the  axis  of  t  time.

Let  us  define  then  “ bounded periodic  function  fpk(t) “  the  f(t)  function expanded  
only  over a subset  k  of  the  t  axis.  In  Fig.1.2  an  example  of  bounded  periodic  
function  is  that  defined,  for  example, in  the  (a,d)  interval with  k=4.  

1.2.2  Bounded sine  function

Let  us  consider  now  the V  vector  whose  vertex  makes  one complete  round  with  
o constant  angular  velocity  along  the  circumference  (with  r=1) in  the  positive  
direction (anticlockwise) as  from  the  P  point  (Fig.1.3). If  we  consider  the  vertical  
projection  of  the  vector  vertex  at  any  time  and  transfer  this  projection  along  the
direction  of the  t  axis  we  obtain  the  graph  like in  figure  where  To=2/o  is  the  
time  that  the  vector  spends  to  cover  a  complete  round.

f(t)

o
r=1  

3 To
4             To

P 0      To To To t
8     4            2               

Figure 1.3 A  complete  rotation  of  the  V  vector generates  one  cycle  of  the  sine  function.  

The  obtained  function  has  the  trend  like in  figure 1.3 in  the  (0,To)  interval  and  it  
isn’ t defined  out  of this  domain.  We  call  this  function  “ bounded  sine  function “
with  k=1.  If  we  expand  the  bounded  sine  function over the  entire  axis  of  time  we  
have   the  classical trigonometric  sine  function.

V                         
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1.2.3 Development  in  series  of  functions

Let  us  apply  the  development  in  Fourier  series  to  the  following  bounded  sine 
function represented  in  fig. 1.3

f(t) = sint      for  0≤t≤To
f(t)   non defined          for t<0  and   t>To (1.2)

The f(t)  function respects  the  following  conditions  of  development  in  Fourier  series:
“ f(t)  must  be  generally  continuous  and  generally  derivable  in  the  interval  (0,To)  with    
generally  continuous  first  derivative  ”.
In  order  to  develop  f(t)  in  Fourier  series it  is  necessary  to  expand  the  f(t)  function  
over the  entire  axis  of  time  and  to  apply  the  development  in  Fourier  series to  the  
fp(t)  obtained  function  which  is  periodic  and  coincides  with  the  trigonometric  sine. 
Representing the  Fourier  series  with  FS we  have

FS[f(t)] = FS[fp(t)] = sint (1.3)

We  deduce  that  the  bounded  sine  and  the  trigonometric  sine  have  the  same 
frequency  spectrum  according  to  Fourier  represented  only  by one  line (Fig.1.4).

fp(t) spectrum f(t) spectrum 

fo f                                       fo f

a.                                      b.

Figure 1.4 Frequency  spectra  with  fo = o/2
a. Frequency  spectrum  of  the fp(t)  function  obtained  expanding  f(t) over  the  entire  axis  

of  time.  The  fp(t)  function  coincides  with  the  trigonometric  sine  function.
b. Frequency  spectrum  of  the  f(t)  bounded  function  

If  in place  of  the  considered  previously  f(t)  function we  consider  now  the  function

f1(t) = sint for 0≤t≤To
f1 (t) = 0  for t>To (1.4)
f1(t)  not  defined    for     t<0

defined  and  null  for  t>To, it  isn’ t  possible  to  expand  the  function  over the  entire  
axis  of  time  and  therefore  the  f1(t)  function  isn’ t  developable  in  Fourier  series.  It  is  
possible  however  to  develop the  f1(t)  function  according  to the  Fourier integral and  
because f1(t)  is  an  odd  function  we  have

F1() = - j To sin(- ) To - sin() To (1.5)
() To () To

Considering  only  real  positive frequencies  and  overlooking  not  real  negative  
frequencies  the  frequency  spectrum  |F1()| of  the  f1(t)  function  has  the  trend  like
in  Fig.1.5.
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f1(t)  spectrum = |F1()|

fo f

Figure 1.5 Frequency  spectrum  of  the f1(t)  function  defined  and  null for  t>To

We  can  see  that  the  two  functions, f(t)  and  f1(t),  have  very  different frequency  
spectra:  the  f(t)  function,  defined  only  in  the  interval  (0,To) has only one  fo
frequency  line, the f1(t)  function  defined  and  null  for  t>To has  a  rich  spectrum in  
harmonics  round  the  fundamental  frequency  fo.  The  two  functions  are  equal in  the  
interval  (0,To)  but  they  have  different  domains  of  existence  and  this  causes  very  
different  frequency  spectra.

1.3 Critical  analysis of  the  indeterminacy principle  

1.3.1   Mathematical  representation  of  photon

Photon  is  an  electromagnetic  nanowave[4][5] which can  be  represented in  the  space  
at  any  time  t  by a  nanowave function,  for  instance sinusoidal, (Fig. 1.6)

f(x,t) = sin2ko x             for   0≤x≤o

f(x,t) = non  defined           for   x<0 and   x>o (1.6)

f(x,t)

x

o

Figure 1.6 Graphic  representation  of  photon:  o is  the  length  of  one  nanowave,  ko =1/o is  the 
nanowave  number in  one metre.
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According  to  the  preceding  considerations, expanding  the  function  f(x,t)  over the  x    
entire  axis and  developing  in  Fourier  series  we  obtain that  the spectrum  of  f(x,t)  at  
any  time  t  is  characterized only by  one  line  ko (Fig.1.7).  

spectrum of nanowave photon 

ko k=1/

Figure 1.7 Spectrum  of  nanowave  photon  that  is  represented  by  the  relationship  (1.6).

In  Heisenberg’ s  theory the  mathematical  representation of  photon  is defined null  
for  x>o and  the  following  mathematical  model  is  considered

f(x,t) = sin2ko x for   0≤x≤o

f(x,t) = 0                 for   x>o (1.7)
f(x,t)  not  defined    for    x<0

On  this  account  in Heisenberg’ s  theory  the  spectrum  of  photon  is rich  in  
harmonics  like in  Fig.1.8.

spectrum of Heisenberg’s photon

ko k=1/

k=4/o

Figure 1.8 Spectrum  of Heisenberg’s  photon that  is  represented  by  relationship  (1.7).
The  k  quantity  represents  the  wave  number.

The  difference  between  the  two  spectra represented  in  fig.7  and  in  fig.8  depends  
exclusively  on  the  different  domains used by  the  two mathematical  and  physical  
models  in  the  (1.6)  and   (1.7) relationships.
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1.3.2 Photons,  elementary  particles  and indeterminacy

The  indeterminacy principle  asserts  that  it  isn’ t  possible  theoretically  to  know and  
to  measure simultaneously  whether  for  photons  or  for  elementary  particles  two  
characteristic quantities,  like position  and  momentum,  position  and  wave  number.  
Heisenberg  proved  the  following  conditions  of  indeterminacy  for photons[3] with  
respect  to position  (x,y,z)  and  momentum  (px, py, pz)

x px ≥ ~ h y py ≥ ~ h              z pz ≥ ~ h (1.8)

and  with  respect to  position  (x,y,z)  and  wave  number  k (kx, ky, kz)

 x kx ≥ ~ 1 y ky ≥ ~ 1 z kz≥ ~ 1 (1.9)


Heisenberg  proved  these  conditions  assuming  for  photon  the  mathematical  model
(1.7) with  rich  spectrum in  harmonics.  If  we  assume  the new  mathematical  model  
(1.6)  in  which photon  has a spectrum  with  only  one  line  of  wave  number,
Heisenberg’ s  conditions  lose  validity  because  k=0  (kx=ky=kz=0) and  p=0  
(px=py=pz=0) being  p=hk.  Indeterminacy  therefore  isn’ t  in  the  physical  nature  of  
photons  but  depends  only  on  the  used  mathematical  model.
The same  considerations  can  be  applied  as  per  De  Broglie’ s  equivalence  principle  
also to all  the  other  elementary  particles, like electrons, and  therefore  also  for  
them theoretical  indeterminacy  loses  meaning  and  at  the  most  it  is  possible  to  
suppose  a  working  indeterminacy  which  now  we  want  to  point  out.  Let  us  consider  
in  fact  an  electron beam with  fixed  momentum p(px,0,0)  and  fixed velocity  v(vx,0,0)
that  moves  in  parallel  direction  to  axis  x.  In  order  to  measure  the  y  position of  
electrons  we  interpose  a S  surface  provided  with  a slot  that  has  d  width (Fig.1.9).  

y    S    

px

p        py 

d                         
px



xo x

Figure 1.9 There  is  working  indeterminacy  relatively to  position  and  momentum  of  electron  only  if  
the  d  width of  the  slot  is  comparable  to De  Broglie’ s  wavelength  (d ≈ ).  
If  d>> after  the  slot  py =0 ,  py = 0 ,  ypy = 0  and  therefore  there  isn’ t  indeterminacy.

For  every  particle  passing  through  the  slot  the  coordinate  y  is  determined with  an
uncertainty y=~d. According  to  De  Broglie’ s equivalence  relation[3][5] a  wavelength  
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=h/mv  is  associated  to  every  electron  and  for  d>> the  electron  isn’ t  subjected
to  diffraction  and  deflection.  On  this  account after  the  slot  py=0 and  there  isn’t  
indeterminacy.  In  order  to  reduce  the  uncertainty relatively to  y  it  is  necessary  to  
reduce  the  d  width but  for  very  small widths (d≈) the  particle  is  subjected to  a  
phenomenon  of  diffraction  and  deflection. In  that  case  every  particle, provided  with  
fixed  momentum   p(px,0,0) before the  slot, passing  through  the  slot suffers an  
angular  deflection .
Before  the  slot  py=0  and  after  the  slot py=psin=mvy and for  De Broglie’ s  
equivalence  relation (p=mv=h/ we  have

py = hsin (1.10)


Because  d≈ and  because  sin varies  between  0  and  1,  the py component of  
momentum  after  the  slot  is  characterized  by  an uncertainty

py =~ h           (1.11)
d

and  consequently

y py =~ h (1.12)

This  proves  that  indeterminacy  is  only  working because  in  order  to  measure  the  
coordinate  y  of  the  particle  it  has  been  necessary  to  use  a  screen  with  slot  which
generates  a  phenomenon  of  diffraction  from  which  indeterminacy  in  momentum  and  
in  position derives  when d≈.
Electron  diffraction can  be  explained  by  the  Fourier  integral  likewise  radiant  
energy[4][5]. In  fact  if  N(x,y,z,t)  is  the  number  of  electrons  in  the  beam  at  xo
abscissa, where  the  slot  is positioned,  we  have   

N(xo,y,z,t) =  N           inside  the  slot
(1.13)

N(xo,y,z,t) =  0           outside  the  slot

For  d>> there  isn’ t practically  diffraction,  electrons  don’ t  undergo  deflection  and  
therefore after  the  slot  we  have  py=0 and  ypy=0: there  isn’ t  indeterminacy. 
Decreasing  the  d  width  of  the  slot  the  diffraction  increases  and  it  has  the  
maximum  intensity  when  d≈. In  these  conditions  the  equation  (1.12)  is  valid  and  
we  have working  indeterminacy. The  same  working  indeterminacy  can  be  pointed
out  also  for  photons  when they  produce  diffraction[5].
In  conclusion  we  have  proved  that theoretical  indeterminacy  can  be  eliminated  
using  a  more  adequate  mathematical  model  and  therefore  it  isn’ t  in the  physical  
nature  of  photons  and  particles.  Inadequacy  of  measuring  instruments  (in  our  case  
the  use  of  a  surface  with  slot)  then  can  involve  a  working  indeterminacy  when  we  
intervene  on  the  microphysical  event  in  order  to  execute  a  measurement of  not  
observable  directly  physical  quantities.
We  see  in  conclusion  that Heisenberg’ s  indeterminacy  is  the  fruit of both  the use   
inadequate of  the  mathematical  model  (that  generates  theoretical  indeterminacy)  and  
the  use  of not  osservable  directly  physical  quantities  like  position (that  generates  
working  indeterminacy).
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2. Stability  of  atomic  systems in DQP

2.1 Wave  model  of  electron  orbital  motions

Classical  physics  wasn’ t  able  to  explain  the  stability  of  the  atomic  orbital  structure,
in  fact as  per  fundamentals  of classical  physics  moving  orbital electron around  the  
nucleus  is  an  accelerated  electric  charge and  on  this  account it  must  irradiate  
electromagnetic  energy.  Electron  therefore loses energy,  its  orbit  narrows  gradually  
as  far  as the  fall  of  electron  in  nucleus  with annihilation  and instability  of  atom.  
Because  this  doesn’ t  happen  Bohr introduced  some  postulates  that  were  out  of  
classical physics,  specifically  Bohr  assumed  that  orbital  electrons  don’ t  irradiate 
energy  and  orbits  are  quantized.   These concepts  were  concordant  with  experience  
but  in  disagreement  with  classical  scientific  theories  for  which  many  scientists  left  
the  classical  theory  and  accepted  the  foundations  of  the new  theory  of  quantum  
mechanics  based  on  a  probabilistic  approach  of  physics.  
We  will  show  now  that  theoretical  problem  of  the  atom  stability can  be  completely 
solved out  of the  probabilistic  model  of quantum  mechanics and consequently  it  is  
possible  to  formulate  the  theory  of Deterministic Quantum  Phisics  (DQP).
To  that  end  let  us  assume  d’ Alembert’ s  wave  model  for describing the  electron   
orbital  motion  in  the  central  field  of  the  atomic  nucleus.  In  this  model  the  electron  
motion is  described  by  the  following  wave  equation[3], derived  from  the (1.1),

u+ C (E - Ep) u = 0  (2.1)

where x2 + y2 + z2 is  Laplace’ s  operator,  u(x,y,z)  is  a  space  function
independent  of time,  C  is  a  quantity  to  calculate, E  is  the  electron  total  energy,  
Ep is  its potential  energy and  Ec=E-Ep is  the  kinetic  energy.
Suppose  still  that  electron  motion  is  circular  and  periodic  with  radius  r  and its  
constant  angular  speed is  o (Fig.2.1).  In  the  considered  model  the  u(x,y,z)  wave  
function  represents  the  projection  of  orbital motion  on  the  axis  y and  therefore  it  
is  function  only  of  the  x  variable.

y u(x)
u(x)


A

-r              r                                    x    r          2r                3r 4r x

Figure 2.1 The  orbital  motion  of  the  electron  around  nucleus generates  the  u(x)  function that  is  the  
projection  of  the  orbital  motion  on  the  y  axis. Suppose  that  the  electron  motion  starts  
from  the  A  point.

r

x                             
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Assuming  W=CEc where  C  is  a  quantity  to  calculate,  the  wave  equation  of motion
is  a  linear  differential  equation  of  second  order

d2u  + W u = 0  (2.2)
dx2

that  respects the  initial  conditions  u(0)=r  and [du/dx]0=0 .
In  terms  of  algebra  the  equation  (2.2)  has  two  solutions   p1= - -W and p2= + -W
and  therefore  the  wave  function  u(x)  has  the  expression

u(x) = A1e-x  -W + A2e+x -W (2.3)

It  is  important  to  underline  that  in  Schrodinger’ s  wave  mechanics  the  u  wave 
function is  associated  to  the  probability  concept:  in  fact  |u|2=||2 is the  density of  
probability; in  our  model  the  same  function  has  no probabilistic  meaning.  

2.2 Stability of orbital  motions

The  orbital  motion  is stable  if  it  maintains the  same  orbit  in  the  course  of  time  
and  consequently  if  the  maximum  amplitude  of  the  u(x)  wave  function is  constant.  
Let  us  consider  two  possible  situations  according  as W  is  negative  or  positive  and  
assume the  quantity  C  is  positive. Let  us  reminder  that  in  classical  physics  the  
kinetic  energy  cannot  be  negative while  in  quantum mechanics this  is  possible  as
also  it  is  possible  that  a  particle  with  energy  E is  able  to  pass  a  barrier  of  
potential  energy larger  than  E.

2.2.1 W<0 and  therefore  Ec<0.

In  that  case  the  two  solutions  are  real,  p1 is  certainly  negative  while  p2 is  certainly
positive.  In  the  theory  of  stability  of  linear  systems[6] a  positive  real  solution  
produces  instability  because  the  u(x)  amplitude of  orbital  motion  tends  to  increase  
in exponential  way  (Fig.2.2).

A2ep2x

A2

x

Figure 2.2 A  positive  real  solution  generates  an  unstable  orbital  motion  with increasing  amplitude  

A  negative  solution  instead  produces  an  exponential  decrease  of the  u(x)  amplitude 
(Fig.2.3)  and  this  causes  a  gradual  narrowing  of  the  orbit until  the  fall  of  electron  
in  nucleus  with  manifest  instability  of  the  orbital  motion.
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A1ep1x

A1

x

Figure 2.3 A  negative  real  solution  generates  an  unstable  orbital  motion  with decreasing  amplitude

In  our  wave  model  the  Ec negative  kinetic  energy  involves  necessarily   instability  of
orbital  motion  and  on  this  account  decomposition  of  atom. Consequently  while  in  
QM  kinetic  energy  can  be  negative  in  DQP  it  cannot  be  negative.

2.2.2 W > 0  and Ec > 0.

The  two  algebraic  solutions  are  conjugate  imaginary and  assuming  W=Z2 the  wave  
function  has  the  expression

u(x) = A1 e-iZx + A2 eiZx (2.4)

Applying  Eulero’ s  formulas  we  have

u(x) = (A1+A2) cos Zx - i (A1- A2) sen Zx (2.5)

Because  u(x)  is  a  real  function, it  is  necessarily   A1=A2 and  therefore

u(x) = (A1+A2) cos Zx (2.6)

This  result  is  concordant  with  the  theory  of  stability  of linear  systems[6] which
asserts  that  imaginary  solutions  produce  trends with  constant  maximum  amplitude;  
in  that case  in  fact  u(x)  has  constant  maximum  amplitude (Fig.2.4).  Therefore  
imaginary  solutions  deriving  from positive  kinetic  energy  assure  the  stability  of  
orbital  trajectories. In  our  model the atom  stability is  the  result of  deterministic  
considerations  and  no  probabilistic  hypothesis  is  necessary.

u(x)
r



  3 5 7  Zx
2          2      2              2

Figure 2.4 Imaginary  solutions  generate an  orbital  motion  with  stable  and  constant  maximum    
amplitude
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In  concordance  with the  initial  condition  u(r)=0 we  have  

cos Z r = 0 (2.7)

The  preceding  relation  is  fulfilled  only  if

Zr = (2l –1)  with  l=1, 2, 3, .......      (2.8)
2

for  wich being  W=Z2 we  have

W =  (2l – 1)22 (2.9)
4 r2

and for  the  kinetic  energy

Ec(r) = (2l – 1 )2  (2.10)
4 C r2

where  C  is  a  quantity  to calculate. We  will  see  the  l  integer number doesn’ t  have  
influence  on  the  kinetic  energy.

2.3 Equivalence  between  matter particles  and  energy  particles

Photon  is  an energy  particle  with  null  real  mass, representable  mathematically  at  
any  time  by  the  limited  sine  function (nanowave)[4][5],  

f(x,t) = sen 2kx   for    0≤x≤
f(x,t) = non  defined        for  x<0  and  x> (2.11)

where  k=1/ is  the  nanowave  number (Fig.2.5).   

f(x,t)

x




Figure 2.5. Space  mathematical  representation  of  photon with  one  nanowave.

For  the  photon  the  following  well-known  relationships  are  valid: p=h/,  W=hf,  f=c
in  which  p  is  the  momentum  of  photon,  W  is  the  energy  associated  with photon,  
f  is  the  frequency,   is  the  nanowavelength  and  c  is  the  physical  speed  of photon.
Because  a matter elementary  particle  with  at  rest  mo electrodynamic  mass[7] has  
an  intrinsic  energy   W=c2mo, we  can  associate  a  virtual  electrodynamic  mass  
mf =hf/c2 with  photon  and  therefore  we  can  set  out  the  equivalence  between  the  
energy  photon  and  a  virtual  elementary  particle  with  mass  mf. Similarly  according  
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to  De  Broglie’ s idea,   we  can  associate  an energy  virtual  quantum  with a  matter
elementary  particle  that  has electrodynamic  mass  m  and  constant  speed  v,  where
wavelength   is  related  to  momentum  of  particle  by  the  relationship  p=mv=h/from  
which   =h/mv:  it’ s  manifest  the  wavelength  of  the  virtual photon  depends  on  the  
speed  of  matter  elementary  particle  while  the  wavelength of  the  real  photon  is  
independent  from  its  speed which  is  constant  and  equals  c.
It  needs  to  underline that  photons  and  matter particles  are different  physical  
entities,  in  fact  photon  is  a moving  energy  quantum with  the  constant  physical  
speed  of  light  while elementary  particles  are  matter  quanta  that  have  an  
electrodynamic  mass  that  decreases  when speed increases.  Therefore  the fixed  
equivalence  is  only  an  useful  instrument  in  order  to  describe  and  study  some  
physical  situations concerning  elementary  particles  and  photons.
Using  De  Broglie’s  equivalence  an  electron  with  m  electrodynamic  mass and  v  
velocity  is  representable  with a  virtual  photon with  wavelength  =h/p=h/mv.  
In  the  fixed  equivalence  a  moving  electron along  an  orbit  with  r  radius  in  the  
central  field  of  atomic  nucleus, in  order  to  maintain  the  stability ,  must  cover  an  
integer number  of  wavelengths  in  order  for  it  to  be  in  phase  at  the  end  of  every
orbit and  therefore

2r=n (2.12)

where  n  is  an  integer number with  n=1, 2, ….
From  (2.12) we  obtain  the momentum  of orbital  electron

p = mv = h = n h (2.13)
 2r

and  the  angular  momentum

q = mvr = n h  (2.14)
2

We  deduce  therefore  from  equations  (2.12), (2.13)  and  (2.14) that  the  orbital  radius
r=n/2,  the  momentum  and  the  angular  momentum of  electron  in  atom  are  
quantized,  depending  on  the  quantum  number  n: it proves  that  atom  has  a  
quantum  nature.  The  n  integer  number is  the  “ quantum  number  of state ”.

2.4 The quantized wave  equation of  electron  in  the  central  field  of  nucleus  

Let  us calculate  now  the  quantity  C.  From  the  relationship  (2.10)  and  from
the  well-known  expression  of  kinetic  energy  Ec(r)=mv2/2  we  infer

C = (2l – 1 )2 2 (2.15)
2mv2r2

From  (2.14) we  derive
v2r2 =    n2 h2 (2.16)

42m2

and  therefore  the  quantity  C  is

C = 24m (2l-1)2 (2.17)
h2n2
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Replacing  (2.17)  in (2.10)  the  values  of  kinetic  energy of  atomic  electron are

Ec(r) =   h2n2 (2.18)
8  m r2

The  important  relationship  (2.18)  proves  that  for  every  r  quantized  value  of  orbital  
radius, depending  on  n as  per  (2.12), there  are n  values  of  kinetic  energy  into  the
orbit  with  r  radius  and n  quantum  state.
In  order  to  avoid  confusion  with  regard  to  the  n  quantum  number it  is  convenient  
to  introduce  a  second  quantum  number  k=1, 2, ….n  that  is  the  “ quantum  number  
of  energy ”  and  therefore  the  (2.18)  can  be  rewrited  in  the  following

Ec(r) =       h2k2 k=1, 2, ….n             (2.19)
8  m r2

It is  time now  to  calculate  the  r  quantized  value  of the  orbital  radius  of  atomic  
electron.    
To  that  end  let’s  suppose that  atom  is  an  isolated  system  and  the  central  nucleus  
has  a  positive  charge  Q=+Ze  where  Z  is  the  atomic  number and   “e”  is  the  
absolute  value  of  electron  charge.  For   Z=1 we  have  hydrogen  atom.
Let’s  suppose  too  that  atom  has  lost   Z-1  electrons. The  residual  electron  is  
attracted  by  Coulomb’s  central force   F=Ze2/4or2 (*). This  force  is  balanced  in  the  
orbital  motion  by  the  centrifugal  force  Fc=mv2/r  and  therefore  the  radius  of  the  orbit  
is   r=Ze2/4omv2. Deriving  v2 from  the  (2.16)  we  have

r =  o h2n2 (2.20)
me2Z

Relationship (2.20) gives  the  radius  of orbital  trajectory  and  establishes that  orbital  
radius  is quantized  depending  on   the  quantum  number  n.  Consequently  electron  in  
atom  cannot  assume  all  the  orbits  for  any value  of  the  r  radius but  only  orbits  
with  radius  fixed  by  (2.20)  are  permitted.  We  deduce  from  this  that  orbital  electron  
can  emit  energy  only  through quanta  and  not  with  continuity.  It  isn’ t  possible  
therefore  that  electron  loses  energy  with  continuity  until  its collapse  in  nucleus.
The  stability  of  orbital  electrons  in  atom  is  fully  explained  in  DQP  by  the  theory  of  
stability  of  linear  systems.  We  observe  moreover  that orbital  radius depends  also  
on  the electrodynamic  mass of  electron.
Replacing before  (2.20)  in  (2.19) and  after  (2.17)  and  (2.19)  in  the  relationship  
(2.1)  we  obtain  the  quantized  wave  equation  of  electron  in  the  central  field  of  
atomic  nucleus

u + 4e4m2Z2(2l-1)2k2 u = 0           (2.21)
4o

2h4n6

which  has  the  following  solutions

u(x) =  oh2n2 cos 2e2mZ(2l-1)x (2.22)
e2mZ              2oh2n2



(*) In scientific  literature  generally  the  1/4o term  is  omitted  but  this  omission generates  often  
confusion  and errors.
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2.5  Energy  levels,  frequency  spectra  and  fine  structure

Continuing in  calculation  we  deduce  that for  every  value  of  the  radius depending  
on  n  there  are n  levels  of  kinetic  energy  of  atom  electron.  In  fact  according  to  
(2.20)  the  (2.19)  becomes

Ecnk =  e4m Z2k2 n=1, 2,……  (2.23)
8o

2h2n4 k=1, 2,….n

Assuming  for  the  Ep potential  energy  the  expression  -Ze2/4or  we  obtain  that  also  
the  potential  energy  in  atom  is  quantized

Epn = - e4 m Z2 (2.24)
4o

2 h2 n2

and  similarly  also  the  total  energy Enk = Ecnk + Epn is  quantized

Enk = - e4mZ2 1 – k2 n=1, 2,….. (2.25)
4o

2 h2n2 2n2 k=1, 2, …n

Levels  of total  energy  are  quantized   and  concordant  with  energy  levels  of  
Bohr-Sommerfeld’ s  theory for  k=n.
Let  us  consider  now  an  atomic  electron which  is  in  the  n  quantum  state and  in  
the  k  energy  level.  Acquiring  energy it  jumps  for  instance  into  the  n’  quantum  
state and  the  k’  energy  level with  n’>n.  The  same  electron  going  back  to  the  
initial  quantum  state  emits  an energy  quantum  with  intensity

 E = En‘k’ – Enk = e4 m Z2 1 - 1 +  k‘2 - k2 (2.26)
4o

2 h2 n2 n‘2 2n‘4 2n4

and  with  frequency f= E/h

f = En‘k’ – Enk = e4 m Z2 1 - 1  +  k‘2 - k2 (2.27)
h              4o

2 h3 n2 n‘2 2n‘4 2n4

Equations  (2.25)  and  (2.27) are  the  fundamentals of Deterministic  Quantum  Physics  
(DQP).  Equations  (2.25)  and (2.27)  through  the  introduction  of k  (called  also  
“quantum  number of  fine  structure”)  furnish the  fine  structure  of  frequency  spectra.  
For  k’=n’  and  k=n  the  equation  (2.27) gives Bohr  and  Sommerfeld’ s  frequency    
spectra  which are  therefore  a  particular  case  of  (2.27). In  that  case  for  k’=n’ ,  k=n  
and for  Z=1  (hydrogen atom)  we  obtain  Lyman’ s  series  (n=k=1, n’=k’>1),  Balmer’ s  
series  (n=k=2, n’=k’>2),  Paschen’ s  series  (n=k=3, n’=k’>3),  Brackett’ s series (n=k=4, 
n’=k’>4).
Complex  ions similar  to  hydrogen  atom  (Z>1  and  with  only  one  orbital  electron)
have  spectra  that  are  obtained  with  good  reliability  from  the  spectrum  of  hydrogen  
atom  multiplying  the  frequency  of  emission  of  hydrogen  atom  for  Z2.
For  example  with  regard  to helium  ion  He+ with Z=2,  for  k=n=4,  k’=n’>4, we  obtain  
Pickering’s  series

f =  e4 m 1    - 1 (2.28)
2o

2 h3 16   n’2
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3. Relativistic  Deterministic  Quantum  Physics (RDQP)

3.1   Relativistic  correction and Lamb  shift

In  the  equation  (2.27)  the  emitted  frequency  depends  on  m  electrodynamic  mass of
electron  and  we  know the  relativistic  variation  of  electrodynamic  mass  with  speed[7]

is m=mo(1-v2/2c2) where  mo is  the  electrodynamic  mass  at  rest. In  order  to  
consider  this  variation  let’ s  calculate the quantized  values  of  velocity.  From  (2.13)  
we  derive

v =   nh    (3.1)
2mr 

For  every  value  r  of  orbital  radius  depending  on  n  we  have  n  different  values  of  
speed.  In  order  to  avoid  confusions  we  make  still  use of the  k  quantum  number  
like  in  (2.19) and  according  to  (2.20)  we  have

vnk = e2Z   k (3.2)
2oh n2 

where  n=1, 2, …    is  the  quantum  number  of  state  and  k=1, 2, …n   is  the  “quantum  
number  of  energy ”  or “quantum  number  of  fine  structure”.
We  can  use the  relativistic  correction  of  mass  into  the  expression (2.25) for  which

Enk = Enko 1 - 1  vnk
2 (3.3)

2   c2

where

Enko =  - e4moZ2 1 – k2 (3.4)
4o

2h2n2 2n2

and  replacing (3.2)  and  (3.4)  in  (3.3)  we  have

Enk =  - e4moZ2 1 – k2 1 - 1   e4Z2 k2 (3.5)
4o

2 h2 n2 2n2 2  4o
2 c2h2 n4

Considering Rydberg’s  constant  R=e4mo/8o
2ch3 and “ Lamb’ s  constant “ (known  

like  constant  of  fine  structure) =e2/2och  we  have  

Enk = - 2Rhc Z2 1 – k2 1 - 1  2Z2 k2 (3.6)
n2 2n2 2   n4

Through  Lamb’ s  constant  the  relativistic  correction  explains completely  the  Lamb  
shift of  energy  levels. For  a  different  quantum  state n’>n we  have

En’k’ = - 2Rhc Z2 1 – k’2 1- 1 2Z2 k’2 (3.7)
n’2 2n’2 2  n’4

where   k’=1, 2, …n’   is  the  quantum  number  of  energy relative  to  the  state  n’.
Energy  difference between  the  two  energy  levels  according  to  relativistic  correction  
is consequently
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E=En’k’ –Enk=2RhcZ2 1 – k2 1- 1 Z2k2 - 1 - k’2 1 - 1 2Z2k’2 ( 3.8)              
n2 2n4 2 n4 n’2 2n’4 2 n’4

and  therefore  frequencies  emitted  by  atom  are

f= En’k’ –Enk = 2RcZ2 1 – k2 1- 1 Z2k2 - 1 - k’2 1 - 1  2Z2k’2 ( 3.9)              
h                 n2 2n4 2    n4 n’2 2n’4 2     n’4

For  =0,  k=n  and  k’=n’  we  have  again  Bohr and Sommerfeld’ s  frequency  spectra.  
The  quantum  number  k  and  the  relativistic  correction  due  to  the  variation  of  
electrodynamic  mass  with  the   velocity  are able  to  explain  completely  the  fine  
structure  of  frequency  spectra and  the  Lamb  shift. Equations  (3.6)  and  (3.9)  are  
the  foundations  of  the  Relativistic Deterministic  Quantum  Physics  (RDQP).

3.2 Spin  quantum  number  and  hyperfine  structure

We  deduce from  (3.2)  and  (2.20)  that  the  electron  with  momentum  pnk =mvnk has  
a  quantized  angular  momentum   qk=kh/2 dependent  only  on k  and  independent  
from  n.  This  angular  momentum  is  a  mechanical  momentum  due  to  the  orbital  
motion  of  electron  around  nucleus. An  orbital  electron  is  also  equivalent  to  a  
moving  electric  charge  and  hence  to  an  electric current  that  has  a  quantized  
magnetic  moment[8]

Mk =  ehk (3.10)
4m

and  in  Gauss  units
Mk = ehk (3.11)

4mc

For  k=1 we  have  the  Bohr  magneton  that  is  the  magnetic  moment  in  the  energy   
fundamental  level M1=eh/4mc.
Orbital  electron  is  supplied  in  addition  with  a rotary  motion  around  its  axis  for  
which  it  has  an  intrinsic  angular  momentum  qs (spin)  that  can  be  calculated easily.
In  fact  if  J  is  moment  of  inertia  of  rotating  electron,  s is  its  angular  speed,  the 
spin  momentum  is   ps=Js and  considering  for  convenience  of  calculation a  
punctiform  electron  with  mass  m  at  distance  rs from  the  axis  of  rotation  its  spin  
angular  momentum  is   qs=rsps= rsJs.  We  can  associate  a  wavelength  s=h/ps with
the  rotating electron  for  which for  stability’ s  sake  2rs=ss where   s  is  spin  
quantum  number. Continuing  in  calculation we  have  

qs = rsps =  ss h (3.12)
2s

qs =  s  h  (3.13)
2
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An  elementary  particle  rotating  around  its  axis  is  also  equivalent  to  moving  electric  
charge that  produces  a  Ms spin  magnetic  moment  equal  to  orbital  magnetic  
moment  Mk. From  this  we  deduce  in  Gauss  units  for  intrinsic  motion

Ms = ek (3.14)
qs 2mcs

and  for orbital  motion

Mk = e                        (3.15)
qk 2mc

A  few  experiments  (for  example  Zeeman  effect[3])  prove that

Ms = 2 Mk (3.16)
qs qk

from  which
s =  1 k (3.17)

2 

We  deduce  therefore  that  electron  has  a  spin  angular  momentum

qs = s  h  = 1 k h = 1 qk (3.18)
2 2     2 2

The  spin  angular  momentum  is  the  half  of  the  orbital  angular  momentum.  Because  
the  spin  angular  momentum  can  have  the  same  direction  or  opposite  direction  of  
the  orbital  angular  momentum  we  can  write  

qs = + 1 qk (3.19)
2

Orbital  electron  in  the  n  quantum  state and  in  the  k  energy  level  has  a  total  
angular  momentum  qkt = qk + qs from  which

qkt = k h + s h (3.20)
2 2


qkt = h (k + s) (3.21)

2

It  is  manifest  the spin decomposes  every  energy  level  in  other  two  sublevels  very  
close  between them  and  therefore energy  complete  levels  of  atom  are

Enks = - 2Rhc Z2 1 – k2 1- 1 2Z2(k�s)2 (3.22)
n2 2n2 2   n4

where n=1, 2,….. ;     k=1, 2, …….n;   and   s=k/2.
For  =0  and  k=n  we  have  again Bohr and Sommerfeld’ s  energy  levels.
The  equation  (3.22)  defines the  hyperfine  structure  of  frequency  atomic  spectra
with  the  splitting  of  energy  levels through  the  agency  of  the  s  quantum  number.
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3.3 Complex  atomic  systems

The  above explained  theory  is  relative to  the  hydrogen  atom  and  to  simple  ions  
with  only  one  orbital  electron,  complex  ions  have over  one orbital  electron.  In  that  
case  every electron  fills  the most  inside  free  energy  level. The  state with  n   
quantum  number  contains  n levels  of  energy (k=1, 2, ..n) because  of the  fine  
structure  of  atom  and  energy  levels  belonging  to the  same  quantum  state contain  
the  same  number  of  electrons.  Every k  energy  level with  n  quantum  number can  
contain n  electrons  and the  quantum  state  n  can  contain a  total  of  n2 electrons.  
Taking  account  of  the  hyperfine  structure  every  electron  can  have  two  values  of  
spin  and  the  n  quantum  state contains therefore  at  the  maximum  2n2 electrons.  

maximum
Maximum number of electrons for energy level =2n     number of

Quantum electrons for 
state k=1     k=2               k=3                 k=4          k=5 the quantum

n level s           level p      level d level f  level q   state n
=2n2

n=1 2e                                                                                                            2e

n=2                    4e                 4e                                                                        8e

n=3          6e       6e                  6e                        18e

n=4                    8e                 8e                  8e                 8e 32e

n=5                   10e               10e               10e               10e                    10e                 50e

table1. In  the  classical  representation  the  levels  (s, p, d, f, q)  have always  the  same maximum     
number  of  electrons  for  any  n  quantum  state:  s=2, p=6, d=10, f=14, q=18.  In  our  
representation  energy  levels  of  every  n  state  are  equivalent  and  the  number  of  electrons  
for  level  is  determined  only  by  the  quantum  number  of  state.

Calculating  the  energy levels  through  the  equation (3.22)  we  see  that  electron  
energies relative  to  the  quantum  state  n=4 (energy  level  k=1) are  in  absolute  value  
greater  than  electron  energies  relative  to  the  quantum  state  n=3 (energy  level  k=3)
in  accordance  with  the  experimental  results. Similarly  electron  energies  relative  to  
the  quantum  states  n=5  (energy  levels  k=1,  k=2,  k=3)  are  in  absolute  value  
greater  than  electron  energies  relative  to  the  quantum  state  n=4  (energy  level  k=4).
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